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Preface 
This text is intended for microprocessor courses at the undergraduate level in technology and engineering. It is a comprehensive treatment of the microprocessor, covering both hardware and software based on the Z80 microprocessor family. The text assumes a course in digital logic as a prerequisite; however, it does not assume a background in programming. This text is also suited for the second level course in curricula where the first level course is based on another microprocessor. At the outset there are two critical questions: Why teach an 8-bit microprocessor when technology is dominated by 16- and 32-bit microprocessors? And why select the Z80 microprocessor? 
The first question is best answered by an anology from the auto industry. For transportation, we have trucks, sports cars, family cars, and compact cars. Each serves a different purpose. The 8-bit microprocessors have already established their market in the areas of industrial control, such as machine control, process control, instrumentation, and consumer appliances. The 16- and 32-bit microprocessors are so powerful that their applications are better suited in such areas as high-speed data processing, CAD/CAM, multitasking, and multi-user systems. The 16- and 32-bit microprocessors are less likely to replace 8-bit microprocessors in industrial control applications. In many applications, even 8-bit microprocessors are utilized at less than 50 percent of their capacity. Furthermore, the basic concepts of architecture, programming, and interfacing are easier to teach with the 8-bit than with the 16-bit microprocessor. 
The second question has several answers. One is that the Z80 is one of the most widely used microprocessors in industrial applications. It has simple architecture and a powerful instruction set that includes the 8085 instruction set (except for two instructions). In addition, there appears to be a resurgence of interest in the Z80, indicated by the 
X 
PREFACE 
introduction of Z80-compatible microprocessors by major manufacturers such as National Semiconductor, Hitachi, Toshiba, and Zilog itself. 
The microprocessor is a general purpose programmable logic device. A thorough understanding of the microprocessor demands the concepts and skills from two different disciplines: hardware concepts from electronics and programming skills from computer science. Hardware is the physical structure of the microprocessor and the programming makes it function—one without the other is meaningless. Therefore, in this text, the contents are presented with an integrated approach to hardware and software in the context of the Z80 microprocessor. Part I focuses on the microprocessor architecture and interfacing. Part II introduces programming, and Part III integrates the hardware and software concepts from earlier sections in dealing with interfacing and designing microprocessorbased products. Each topic is covered in depth from basic concepts to industrial applications and illustrated by numerous examples with complete schematics. Material is supported with assignments having practical applications. 
Part I consists of five chapters that deal with the hardware aspects of the microcomputer as a system, presented with the spiral approach. The material is presented in a format analogous to the view from an airplane that is getting ready to land. As the plane circles, the passenger observes a view without details. As the plane descends, the same view is seen with more details. This approach is preferable because students need to use a microcomputer as a system in their laboratory work in the early stages of a course, without understanding all aspects of the system. Chapter 1 presents an overview of the computer systems and discusses the microcomputer and its assembly language in the context of the entire spectrum of computers and their languages. Chapter 2 develops a generalized model of the microprocessor unit and focuses on the basic concepts related to memory and input/output (I/O). Chapter 3 examines the Z80 microprocessor in the context of the hardware and software models developed in Chapter 2. Chapters 4 and .5 are concerned with basic concepts in interfacing memory and I/O. 
Part II has six chapters that deal with Z80 instructions, programming techniques, program development, and software development systems. Chapters 6 and 7 are general in nature, serving as an introduction to assembly language programming and assemblers. In the remaining chapters (Chapters 8 through 11), the contents are presented in a stepby-step format. A few instructions that can perform a simple task are selected. Each instruction is reviewed briefly by referring to the instruction set in the appendix. These instructions are then used in writing programs with explanations of programming techniques and troubleshooting hints. Each illustrative program begins with a problem statement, provides the analysis of the problem, illustrates the program, and explains the programming steps. These chapters conclude by reviewing all the instructions discussed in those chapters. The contents in Part II are presented in such a way that, in a course with heavy emphasis on hardware, students can teach themselves assembly language programming if necessary. 
Part III synthesizes the hardware concepts of Part I and software techniques of Part II. It deals with advanced topics in interfacing memory and I/Os with numerous industrial and practical examples. Each illustration analyzes the hardware and includes software, and 
PREFACE 
describes how hardware and software work together to accomplish given objectives. Chapters 12 through 16 include various types of data transfer between the microprocessor and its peripherals, such as interrupts, interfacing of dynamic memory, I/O with handshake signals using programmable devices, and serial I/O. Chapter 17 deals primarily with the project design of a single-board microcomputer that brings together all the concepts discussed in the text, and Chapter 18 provides a brief introduction to 16-bit microprocessors and single-chip microcontrollers. Finally, the text includes two appendices related to the instruction set. Appendix A includes the complete set of Z80 instructions explained with illustrative examples in alphabetical order so that students can easily access the instruction set with a complete explanation of each item. In addition. Appendix E summarizes all the instructions with flat information for quick reference when writing programs. 
A Word to Faculty Members 
This is my second textbook based on my teaching experience and my association with industry engineers and programmers. It is an attempt to share my classroom experiences and my observations in industrial practices. My assumptions and observations are similar to those of my first 8085 textbook. They are as follows: 
1. It is easier to teach microprocessor concepts with an 8-bit microprocessor than with a 16-bit microprocessor. Due to their easy access on college campuses, personal computers can be used to develop programs using cross assemblers. 
2. Software (instructions) is an integral part of the microprocessor and demands an emphasis equal to that of the hardware. 
3. In industry, for the development of microprocessor-based projects, 70 percent of the efforts are devoted to software and 30 percent to hardware. 
4. Technology and engineering students tend to be oriented toward hardware and have considerable difficulty in programming. 
5. Students have difficulty in understanding mnemonics and realizing the critical importance of flags. 
The text meets the objectives of courses with various emphases at the undergraduate level. For a one-semester course with 50 percent hardware and 50 percent software emphasis, the following chapters are recommended: Chapters 1 through 5 for hardware and interfacing lectures, and Chapters 6 through 10 and selected sections of Chapter 11 for software laboratoiy sessions. For additional interfacing concepts, the initial sections of Chapters 12, 13, and 15 (concepts in introduction to interrupts, programmable I/O devices, and serial I/O) are recommended. If the course is heavily oriented toward hardware. Chapters 1 through 5 and Chapters 12 through 16 are recommended, and necessary programs can be selected from Chapters 6 through 10. Interfacing laboratory sessions can be designed around the illustrations in chapters or assignments given at the end of chapters. If the course is heavily oriented toward software. Chapters 1 through 3 and 6 through 11 can be used. For a two-semester course, the entire text can be covered. The instructor's manual includes a course design, suggested weekly lecture and laboratory schedule, solutions, and selected figures to produce transparencies. 
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A Word With Students 
The microprocessor is an exciting, challenging, and growing field; it will pervade industry for decades to come. To meet the challenges of this growing technology, you will need to be well conversant with the programmable aspect of the microprocessor. Programming is a process of problem solving and communication in a strange language of mnemonics. Most often, hardware-oriented students find this communication process very difficult. One of the questions frequently asked by a student is. How do I get started in a given programming assignment? One approach to learning programming is to examine various types of programs and imitate them: Begin by studying the illustrative program relevant to an assignment, its flowchart, its analysis, program description, and particularly, the comments. Read the instructions from Appendix A as necessary and pay attention to the flags. This text is written in such a way that simple programming of the microprocessor can be self-taught. Once you master the elementary programming techniques, interfacing and design become exciting and fun. 
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CHAPTER 1: 
Microprocessors, Microcomputers, and Assembly Language 
CHAPTER 2: 
Microcomputer System: MPU, Memory, and I/O CHAPTER 3: 
Z80 Microprocessor: Programming Model and Hardware Model 
CHAPTER 4: Memory Interfacing 
CHAPTER 5: Interfacing I/O Devices 
Part I of this book is concerned primarily with microprocessor architecture in the context of microprocessor-based products. The microprocessorbased systems are discussed in terms of three components—the microprocessor, memory, and input and output—and their communication process. The role of the programming languages, from the machine language to high-level languages, is presented in the context of the system. 
The material is presented in a format similar to the view from an airplane preparing to land. As the plane circles, one observes a view without any details. As the plane descends, one begins to see the same view but with more details. Chapter 1 presents the microprocessor from two points of view: the microprocessor as a programmable device and as an element of a computer system, and how it communicates with memory and I/O. The chapter also discusses the role of assembly language in microprocessor-based products and presents an overview of various types of computers—from large computers to microcomputers—and their applications. Chapter 2 describes in generalized models a microcomputer system and its three components: the 
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microprocessor, memory, and input and output (1/ O). Chapters 3,4, and 5 examine these components in detail and discuss how memory and I/O devices interface with the Z80 microprocessor, 
PREREQUISITES 
The reader is expected to know the following concepts: 
□ Number systems (binary, octal and hexadecimal) and their conversions. 
□ Boolean algebra, logic gates, flip-flops, and registers. 
□ Concepts in combinational and sequential logic. 
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        Microprocessors, 
Microcomputers, and Assembly Language 
The microcomputer plays a significant role in the everyday functioning of industrialized societies. The microcomputer is no different from any other computer in its basic structure. In the 1960s, computers were accessible and affordable only to such institutions as large corporations, universities, and government agencies. Today because of advances in semiconductor technology, the million-dollar computing capacity of the 1960s is now available for less than five dollars in an integrated circuit called the microprocessor. The microprocessor can be defined as a programmable logic device that can be used to control processes, to turn devices on or off, or as a data processing unit of a computer. A computer that is designed using the microprocessor is called a microcomputer. This chapter introduces the basic structure of a computer and shows how the same structure is applicable to microprocessor-based products. Later in the chapter, microcomputer applications in an industrial environment are presented in the context of the entire spectrum of various computer applications. 
The microprocessor communicates and operates in the binary numbers 0 and 1, called bits. Each microprocessor has a fixed set of instructions in the form of binary patterns called a machine language. However, it is difficult for humans to communicate 
in the language of Os and Is. Therefore, the binary instructions are given abbreviated names, called mnemonics, which form the assembly language for a given microprocessor. This chapter explains both the machine language and the assembly language of the microprocessor known as the Z80. The advantages of assembly language are compared with such English-like languages as BASIC and FORTRAN. 
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OBJECTIVES 
□ Draw a block diagram of a microprocessor-based system and explain the functions of each component: microprocessor, memory, and I/O, and their lines of communication (the bus). 
□ Explain the terms SSI, MSI, and LSI. 
□ Define the terms bit, byte, word, instruction, software, and hardware. 
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        MICROPROCESSORS 
□ Explain the difference between the machine language and the assembly language of a computer. 
□ Explain the terms low-level and high-level languages. 
□ Explain the advantages of an assembly language over high-level languages. 
A microprocessor is a multipurpose, programmable logic device that reads binary instructions from a storage device called memory, accepts binary data as input and processes data according to those instructions, and provides results as output. A typical programmable machine can be represented with three components: microprocessor, memory, and I/O as shown in Figure 1.1. These three components work together or interact with each other to perform a given task; thus, they comprise a system. The physical components of this system are called hardware. A set of instructions written for the microprocessor to perform a task is called a program, and a group of programs is called software. The machine (system) represented in Figure 1.1 can be programmed to turn traffic lights on and off, compute mathematical functions, or keep track of a guidance system. This system may be simple or sophisticated, depending on its applications, and it is recognized by various names depending upon the purpose for which it is designed. When the microprocessor system is used for control applications such as turning devices (or machines) on and off, it is generally known as a microcontroller. When it is used for computing or data processing, it is known as microcomputer. 
BINARY DIGITS 
The microprocessor operates in binary digits, 0 and 1, also known as bits. Bit is an abbreviation for the term binary digit. These digits are represented in terms of electrical voltages in the machine: generally, 0 represents one voltage level, and 1 represents another. The digits 0 and 1 are also synonymous with low and high, respectively. 
FIGURE 1.1 
A Programmable Machine 
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Each microprocessor recognizes and processes a group of bits called the word, and microprocessors aie classified according to their word length. For example, a processor with an 8-bit word is known as an 8-bit microprocessor, and a processor with a 16-bit word is known as a 16-bit microprocessor. 
A MICROPROCESSOR AS A PROGRAMMABLE DEVICE 
The fact that the microprocessor is programmable means it can be instructed to perform given tasks within its capability. A toaster is an example of an elementary programmable machine. It can be programmed to remain on for a given length of time by adjusting a mechanical lever to a' 'light'' or' 'dark'' setting. The toaster is designed to understand and execute one instruction. On the other hand, the present-day microprocessor is designed to understand and execute many binary instructions. It can be used to perform sophisticated computing functions as well as to perform such simple control tasks as turning devices on and off. The person using a microprocessor selects appropriate instructions and asks the microprocessor to perform various tasks on a given set of data. 
The engineer who designs a toaster determines the timing for light and dark toast, and the manufacturer of the toaster provides the necessary instructions to operate the toaster. Similarly, after the engineers designing a microprocessor determine a set of tasks the microprocessor should perform and design the necessary logic circuits, the manufacturer of the microprocessor provides the user with a list of the instructions the processor will understand. For example, an instruction for adding two numbers may look like a group of eight binary digits, such as 1000 0000. These instructions are simply a pattern of Os and Is. The user (programmer) selects instructions from the list and determines the sequence of execution for a given task. These instructions are entered or stored in a storage device called memory, which can be read by the microprocessor. 
MEMORY 
Memory is like the page(s) of a notebook with space for a fixed number of binary numbers on each line. However, these pages are generally made of semiconductor material. Typically, each line is an 8-bit register that can store eight binary bits, and several of these registers are arranged in a sequence called memory. These registers are always grouped together in powers of two. For example, a group of 1024 (2'°) 8-bit registers on a semiconductor chip is known as IK byte of memory; IK is the closest approximation in thousands. The user writes the necessary instructions and data in memory through an input device (described below), and asks the microprocessor to perform the given task and find an answer. The answer is generally displayed at an output device (described below) or stored in memory. 
INPUT/OUTPUT 
The user can enter instmctions and data into memory through such devices as a keyboard or simple switches. These devices are called input devices. The microprocessor reads the instructions from the memory and processes the data according to those instmctions. The result can be displayed by such a device as seven-segment LEDs (Light Emitting Diodes) or printed by a printer. These devices are called output devices. 
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MICROPROCESSOR AS A CPU 
We can also view the microprocessor as a primary component of a computer. Traditionally, the computer is represented in block diagram as shown in Figure 1.2 (a). The block diagram shows that the computer has four components: Memory, Input, Output, and the central processing unit (CPU), which consists of the ALU (Arithmetic/Logic Unit) and Control Unit. The CPU contains various registers to store data, the arithmetic/logic unit (ALU) to perform arithmetic and logical operations, instruction decoders, counters, and control lines. The CPU reads instructions from the memory and performs the tasks specified. It communicates with input/output devices either to accept or to send data. These devices are also known as peripherals. The CPU is the primary and central player in communicating with such devices as memory, input, and output. However, the timing of the communication process is controlled by the group of circuits called the control unit. 
In the 1960s, the CPU was designed with discrete components on various boards. With the advent of the integrated circuit technology, it became possible to build the CPU on a single chip; this came to be known as a microprocessor, and the traditional block diagram shown in Figure 1.2(a) can be replaced by the block diagram shown in Figure 1.2(b). 
FIGURE 1.2 
(a) Traditional Block Diagram of a Computer (b) Block Diagram of a Computer with the Microprocessor as CPU 
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1.11   Advances in Semiconductor Technology 
In the last thirty years, semiconductor technology has undergone unprecedented changes. After the invention of the transistor, integrated circuits (ICs) appeared on the scene at the end of the 1950s; an entire circuit consisting of several transistors, diodes, and resistors could be designed on a single chip. In the early 1960s, logic gates known as the 7400 series were commonly available as ICs, and the technology of integrating the circuits of a logic gate on a single chip became known as Small-Scale Integration (SSI). As semiconductor technology advanced, more than 100 gates were fabricated on one chip; this was called Medium-Scale Integration (MSI). A typical example of MSI is a decade counter (7490). Within a few years, it was possible to fabricate more than 1000 gates on a single chip; this came to be known as Large-Scale Integration (LSI). Now we are in the era of VeryLarge-Scale Integration (VLSI) and Super-Large-Scale Integration (SLSI). The lines of demarcation between these different scales of integration are rather ill-defined and arbitrary. 
As the technology moved from SSI to LSI, more and more logic circuits were built on one chip, and they could be programmed to do different functions through hard wired connections. For example, a counter chip can be programmed to count in Hex or decimal by providing logic 0 or 1 through appropriate pin connections. The next step was the idea of providing Os and Is through a register. The necessary signal patterns of Os and Is were stored in registers and given to the programmable chip at appropriate times; the group of registers used for storage was called memory. Because of the LSI technology, it became possible to build many computing functions and their related timing on a single chip. 
The Intel 4004 was the first 4-bit programmable device that was primarily used in calculators. It was designed by Intel Corporation and became known as the 4-bit microprocessor. It was quickly replaced by the 8-bit microprocessor (the Intel 8008), which was in turn superseded by the Intel 8080. In the mid-1970s, the Intel 8080 was widely used in control applications, and small computers also were designed using the 8080 as the CPU; these computers became known as microcomputers. Within a few years after the emergence of the 8080, the Motorola 6800, the Zilog Z80, and the Intel 8085 microprocessors were developed as improvements over the 8080. The 6800 was designed with a different architecture and the instruction set from the 8080. On the other hand, the 8085 and the Z80 were designed as upward software compatible with the 8080; that is, they included all the instructions of the 8080 plus additional instructions. In terms of the instruction set, the 8080 and the 8085 are almost identical; however, the Z80 has a powerful instruction set containing twice as many instnictions as the 8080. As the microprocessors began to acquire more and more computing functions, they were viewed more as CPUs rather than as programmable logic devices. Most microcomputers are now built with 16- and 32-bit microprocessors, and 64-bit microprocessors are also being used in some prototype computers. The 8-bit microprocessors are not simply being replaced by more powerful microprocessors, however; each microprocessor has begun to carve a niche for its own applications. The 8-bit microprocessors are being used as programmable logic devices in control applications, and the 16- and 32-bit microprocessors are being used for mathematical computing (number crunching) and data processing applications. Our focus here is in using 8-bit microprocessors as programmable devices. 
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1.12  Microcomputer Organization 
Figure 1.3 shows a simplified but formal structure of a microcomputer. It includes four components: microprocessor, input, output, and memory (Read/Write Memory and Readonly Memory). These components are organized around a common communication path called a bus. The entire group of components is also referred to as a system or a microcomputer system, and the components themselves are referred to as sub-systems. At the outset, it is necessary to differentiate between the terms microprocessor and microcomputer because of the common misuse of these terms in popular literature. The microprocessor is one component of the microcomputer. On the other hand, the microcomputer is a complete computer similar to any other computer, except that the CPU functions of the microcomputer are performed by the microprocessor. Similarly, the term peripheral is used for input/output devices. The various components of the microcomputer shown in Figure 1.3 and their functions are described in this section. 
MICROPROCESSOR 
The microprocessor is a semiconductor device consisting of electronic logic circuits manufactured by using either a large-scale (LSI) or very-large-scale integration (VLSI) technique. The microprocessor is capable of performing various computing functions and making decisions to change the sequence of program execution. In large computers, a CPU implemented on one or more circuit boards performs these computing functions. The microprocessor is in many ways similar to the CPU, but includes all the logic circuitry, including the control unit, on one chip. The microprocessor can be divided into three segments for the sake of clarity, as shown in Figure 1.3: Arithmetic/Logic Unit (ALU), Register Array, and Control Unit. 
Arithmetic/Logic Unit This is the area of the microprocessor where various computing functions are performed on data. The ALU unit performs such arithmetic operations as addition and subtraction, and such logic operations as AND, OR, and exclusive OR. Results are stored either in registers or in memory. 
Microprocessor 
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Register Array This area of the microprocessor consists of various registers. These registers are primarily used to store data temporarily during the execution of a program. Some of the registers are accessible to the user through instmctions. 
Control Unit The control unit provides the necessary timing and control signals to all the operations in the microcomputer. It controls the flow of data between the microprocessor and memory and peripherals. 
Now the question is: what is the relationship among the programmer's instruction (binary pattern of Os and Is), the ALU, and the control unit? This can be explained with the example of a Full Adder circuit. A Full Adder circuit can be designed with registers, logic gates, and a clock. The clock initiates the adding operation. Similarly, the bit pattern of an instruction initiates a sequence of clock signals, activates the appropriate logic circuits in the ALU, and performs the task. This is called microprogramming, which is done in the design stage of the microprocessor. The bit patterns required to initiate these microprogram operations are given to the programmer in the form of the instruction set of the microprocessor. The programmer selects appropriate bit patterns from the set for a given task and enters them sequentially in memory through an input device. When the CPU reads these bit patterns one at a time, it initiates appropriate microprograms through the control unit, and performs the task specified in the instiuctions. 
At present, various microprocessors are available from different manufacturers. Examples of widely used 8-bit microprocessors include the Intel 8085, Zilog Z80, and Motorola 6800 and 6809. Earlier microcomputers such as the Radio Shack TRS-80, the Televideo 803, and the Kaypro 4 are designed around the Z80 microprocessor. The recent versions of IBM personal computers, Personal Systeni/2, are designed around 16-bit and 32-bit microprocessors; the model 60 is based on the Intel 80286 (16-bit) and the model 80 is based on the Intel 80386 (32-bit). Single-board microcomputers such as the Intel SDK85, the Motorola MEK-6800-D2, the Multitech Micro-Professor, and the CAMI Research Micro-Trainer are commonly used in college laboratories; the SDK-85 is based on the 8085 microprocessor, the MEK-6800-D2 on the 6800 microprocessor, and the MicroProfessor and the Micro-Trainer on the Z80 microprocessor. 
INPUT 
The input section transfers data and instructions in binary from the outside world to the microprocessor. It includes such devices as a keyboard, a teletype, and an analog-todigital converter. Typically, a microcomputer used in college laboratories includes either a hexadecimal keyboard or an ASCII keyboaid as an input device. The hexadecimal (Hex) keyboard has 16 data keys (0 to 9 and A to F) and some additional function keys to perform such operations as storing data and executing programs. The ASCII keyboard (explained in Section 1.3) is similar to a typewriter keyboard, and it is used to enter programs in an English-like language. Although the ASCII keyboard is found in most microcomputers, single-board microcomputers generally have Hex keyboards. 
OUTPUT 
The output section transfers data from the microprocessor to such output devices as light emitting diodes (LEDs), a cathode-ray tube (CRT), a printer, a magnetic tape, or another 
computer. Typically, single-board computers include LEDs and seven-segment LEDs as output devices. 
MEMORY 
Memory stores such binary information as instructions and data, and provides that information to the microprocessor whenever necessary. To execute programs, the microprocessor reads instructions and data from memory and performs the computing operations in its ALU section. Results are either transferred to the output section for display or stored in memory for later use. The memory block (Figure 1.3) has two sections: Read-Only Memory (ROM) and Read/Write Memory (R/WM), popularly known as RandomAccess Memory (RAM). 
The ROM is used to store programs that do not need alterations. The monitor program of a single-board microcomputer is generally stored in the ROM. This program interprets the information entered through a keyboard and provides equivalent binary digits to the microprocessor. Programs stored in the ROM can only be read; they cannot be altered. 
The Read/Write Memory (R/WM) is also known as user memory. It is used to store user programs and data. In single-board microcomputers, the monitor program monitors the Hex keys and stores those instructions and data in the R/W memory. The information stored in this memory can be easily read and altered. 
SYSTEM BUS 
The system bus is a communication path between the microprocessor and peripherals; it is nothing but a group of wires to carry bits. In fact, there are several buses in the system that will be discussed in the next chapter. All peripherals (and memory) share the same bus; however, the microprocessor communicates with only one peripheral at a time; the timing is provided by the control unit of the microprocessor. 
1.13  How Does the Microcomputer Work? 
Assume that a program and data are already entered in the R/W memory. (How to write and execute a program will be explained later.) The program includes binary instructions to add given data and to display the answer at the seven-segment LEDs. When the microcomputer is given a command to execute the program, it reads and executes one instruction at a time and finally sends the result to the seven-segment LEDs for display. 
This process of program execution can best be described by comparing it to the process of assembling a radio kit. The instructions for assembling the radio are printed in a sequence on a sheet of paper. One reads the first instmction, then picks up the necessary components of the radio and performs the task. The sequence of the process is read, interpret, and perform. The microprocessor works the same way. The instructions are stored sequentially in the memory. The microprocessor fetches the first instruction from its memory sheet, decodes it, and executes that instruction. The sequence of fetch, decode, and execute is continued until the microprocessor comes across an instruction to stop. During the entire process, the microprocessor uses the system bus to fetch the binary instructions and data from the memory. It uses registers from the register section to store 
data temporarily, and it performs the computing function in the ALU section. Finally, it sends out the result in binary, using the same bus lines, to the seven-segment LEDs. 
1.14  Summary of Important Concepts 
The functions of various components of a microcomputer can be summarized as follows: 
1. The microprocessor 
□ communicates with all peripherals (memory and I/Os) using the system bus. 
□ controls timing of information flow. 
□ performs the computing tasks specified in a program. 
2. The memory 
□ stores binary instructions and data, called programs. 
□ provides the instructions and data to the microprocessor on request. 
□ stores results and data for the microprocessor. 
3. The input device 
□ enters data and instructions under the control of a program such as a monitor program. 
4. The output device 
□ accepts data from the microprocessor as specified in a program. 
5. The bus 
o carries bits between the microprocessor and memory and I/Os. 
FROM LARGE COMPUTERS TO SINGLE-CHIP 
MICROCOMPUTERS 
In the last thirty years, advances in semiconductor technology have had an unprecedented impact on computers. Thirty years ago, computers were accessible only to big corporations, universities, and government agencies. Now, "computer" has become a common word. The range of computers now available extends from such sophisticated, multimillion-dollar machines as the IBM 3090 to the less-than-$200 home computer. All the computers now available on the market include the same basic components shown in Figure 1.3. Nevertheless, it is obvious that these computers are not all the same. 
Different types of computers are designed to serve different purposes. Some are suitable for scientific calculations, while others are used simply for turning appliances on and off. Thus, it is necessary to have an overview of the entire spectrum of computer applications as a context for understanding the topics and applications discussed in this text. Until 15 years ago, computers were broadly classified in three categories: mainframe, mini-, and microcomputers. Since then, technology has changed considerably, and the distinctions between these categories have been blurred. Initially, the microcomputer was recognized as a computer with a microprocessor as its CPU. Now practically all computers have various types of microprocessors performing different functions within the large 
CPU. For the sake of convenience, computers are classified here as large computers, medium-sized computers, and microcomputers. 
1.21 Large Computers 
These are large, general-purpose computers designed to perform such data processing tasks as complex scientific and engineering calculations and handling of records for large corporations or government agencies. The price is generally beyond $1 million and can go as high as $10 million. Typical examples of these computers include IBM 3090 or IBM 9370 series. Burroughs 6700, and Univac 1100. 
These are high speed computers, and their word lengths range from 32 to 64 bits. They are capable of addressing megabytes of memory and handling all types of peripherals. For the more expensive, the CPU alone may cost more than one million dollars. For example, the IBM 3000/81 CPU, capable of addressing 32 megabytes of memory, may cost more than $3 million; the price of the total system may go as high as $6 million. However, IBM also has medium-sized systems, called 4300 series, costing around $100,000, and they are also known as mainframe computers. 
1.22 Medium-Sized Computers 
In the late 1960s, these computers were designed to meet the instructional needs of small colleges, the manufacturing problems of small factories, and the data processing tasks of medium-sized businesses, such as payroll and accounting. They were called minicomputers. The price range was anywhere from $2.5,000 to $100,000. Typical examples include such computers as Digital Equipment PDP 11/45 and Data General Nova. 
These computers were slower than the large computers, and their word length generally ranged from 12 to 32 bits. They were capable of addressing 64K to 256K bytes of memory. Some of the larger minicomputers were known as midicomputers. However, these classifications are no longer valid. For example. Digital Equipment's new VAX 11 system is a 32-bit machine with megabytes of memory addressing capacity. The price ranges from $50,000 to $450,000. The high end of the VAX 11 system is almost in the territory of the large computers. 
1.23 Microcomputers 
The 4-bit and 8-bit microprocessors became available in the mid 1970s, and initial applications were primarily in the areas of machine control and instrumentation. As the price of the microprocessors and memory began to decline, the applications mushroomed in almost all areas, including video games, word processing, and small business applications. Early arrivals in the microcomputer market, such as Cromemco, North Star Horizon, Radio Shack TRS-80, and Apple were designed around 8-bit microprocessors. Since then, 16-bit and 32-bit microprocessors such as Intel 8086/88, 80286, and 80386, Motorola 68000, and Zilog Z8000 have been introduced, and recent microcomputers have been designed around these microprocessors. Present day microcomputers can be classified into four groups: business (or personal), home, single-board, and single-chip microcomputers. 
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BUSINESS MICROCOMPUTERS 
These microcomputers are being used for a variety of purposes, such as payroll, business accounts, word processing, legal and medical recordkeeping, personal finance, and instruction. They are also known as personal computers. Typically, the price ranges from $1,000 to $8,000 for a single-user system, and it can go higher for a multi-user system. Examples include such microcomputers as IBM Personal Computers (IBM PC, XT, AT, System/2), the AT&T 6300 series, Apple Computers, and Zenith or Compaq computers. 
At the low end of the microcomputer spectrum, a typical configuration includes an 8-bit or 16-bit microprocessor, 64K (or 128K) bytes of memory, a CRT terminal, a printer, and dual disk drive for 5'/4-inch floppy disks. The floppy disk is a magnetic medium similar to a cassette tape except that it is round in shape, like a record. Information recorded on these disks can be accessed randomly using disk drives, while information stored on a cassette tape is accessed serially. In order to read information at the end of the tape, the user must run the entire tape through the machine. Floppy disks are used to store such programs as compilers, interpreters, system programs, user programs, and data. Whenever the user needs to write a program, the necessary software is transferred from the floppy disk to the system's memory. At the high end of the microcomputer spectrum, the basic configuration remains essentially similar. It may include a 16-bit or 32-bit microprocessor, a hard disk with megabytes of storage, two floppy disks, an expensive terminal, and a printer. 
FIGURE 1.4 
Miciocomputer with Disk Storage; IBM Personal System/2 
SOURCE: Photograph courtesy of IBM Corpo
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HOME COMPUTERS 
Home computers are differentiated from business microcomputers in terms of their memory storage. Typically, these computers have an 8-bit microprocessor, a CRT terminal with an ASCII typewriter, 16K to 64K memory, and a cassette tape as a storage medium. Some of these computers can be used with television as a video monitor. The prices of these computers may range from less than $200 to $500. Typical examples include Commodore 64, Tandy 100, and Atari 1.30XE. These microcomputers are used primarily for playing video games, learning simple programming, and running some instructional programs. 
SINGLE-BOARD MICROCOMPUTERS 
These microcomputers are used primarily in college laboratories and industries for instructional purposes or for evaluating the performance of a given microprocessor. They can also be part of some larger systems. Typically, these microcomputers include an 8-bit microprocessor, from 2.56 to 2K bytes of user memory, a Hex keyboard, and seven-segment LEDs for display. The system monitor programs of these computers are generally small; 
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        FIGURE 1.5 
Single-Board Microcomputer; Micro-Trainer 
SOURCE: Photograph courtesy of CAMI Research, Inc 
they are stored in less than 2K bytes of ROM. The pi ices of these single-board computers range from $100 to $800, with the average price being about $300. 
Examples of these computers include such systems as Intel SDK-85, Motorola Evaluation Kit, and CAMl Research Micro-Trainer (Figure 1.5). These are generally used to write and execute assembly language programs and to perform interfacing experiments. 
SINGLE-CHIP MICROCOMPUTERS 
These microcomputers are designed on a single chip, which typically includes a microprocessor, 64 bytes of R/W memory, from IK to 2K bytes of ROM, and several signal lines to connect I/Os. These are complete microcomputers on a chip; they are also known as microcontrollers. They are used primarily for such functions as controlling appliances and traffic lights. Typical examples of these microcomputers include the Zilog Z8, Intel MCS 51 and 96 series, Fairchild F8, and Motorola 6802. 
The entire spectrum of computer applications is shown in Figure 1.6, and various applications and categories of the microcomputer are listed in Table 1.1. 
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Application.s: 
o o 
• Scientific Calculations 
• Large Business Data Processing 
■ Real-Time Applications (guidance control) 
• Instructional Systems in Universities 
■ Multiuser Business Systems ' Instrumentation 
• Manufacturing Processes 
• Hospital Patient-Care Systems ' Applications in Legal Fields 
' Instructional Systems in Colleges 
' Office Automation 
' Word Processing 
' Small-Business Systems 
• Entertainment (Video Games) ' Personal Computing 
Subsystems 
Microprocessor Evaluation 
Control Applications 
(Machine Control, Traffic Control) 
FIGURE 1.6 
Applications: From Large Computers to Single-Chip Microcomputers 
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TABLE 1.1 
Microcomputer Applications 
Types 
Microcomputer Microcomputer 
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	with Cassette 
	Single-Board 
	Single-Chip 

	Characteristics 
	Storage 
	Tape Storage 
	Microcomputer 
	Microcomputer 

	Price range 
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	I/O 
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	Keyboard LEDs 

	
	CRT 
	CRT 
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	Languages 
	Various Types of 
	High-Level, Gener
	Assembly 
	Assembly 

	Used 
	High-Level Languages, Assembly 
	ally BASIC 
	
	

	Applications 
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	Industrial Control 
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        MICROPROCESSOR INSTRUCTION SET AND COMPUTER LANGUAGES 
Microprocessors recognize and operate in binary numbers. However, each microprocessor has its own binary words, instructions, meanings, and language. The words are formed by combining a number of bits for a given machine. The word (or word length), as defined earlier, is the number of bits the microprocessor recognizes and processes at a time. The word length ranges from 4 bits for small, microprocessor-based computers, to 32 bits for such large computers as the IBM 3800 series. Another term commonly used to express word length is byte. The byte is defined as a group of eight bits. For example, a 16-bit microprocessor has a word length equal to two bytes. The term "nibble," which stands for a group of four bits, is also found in popular computer magazines and books. (A byte has two nibbles.) 
The instruction is defined as a complete task (such as Add) the microprocessor can perform; it can be made up of one or more words. Each machine has its own set of instructions based on the design of its CPU or its microprocessor. To be intelligible to the microprocessor, instructions must be written in binary language, also known as machine language. However, it is difficult for human beings to write programs in sets of Os and Is. Therefore, microprocessor manufacturers have devised Englishlike words to represent the binary instructions of a machine, and programmers can write programs using these words. 
These are called assembly language programs. Because an assembly language is specific to a given machine, programs written in assembly language are not transferable from one machine to another. To circumvent this limitation, such general-purpose languages as BASIC and FORTRAN have been devised so that a program written in these languages can be machine-independent. These languages are called high-level languages. This section deals with various aspects of these three types of languages: machine, assembly, and high-level. The machine and assembly languages are discussed in the context of the Z80 microprocessor. 
1.31 Machine Language 
The number of bits in a word for a given machine is fixed, and words are formed through various combinations of these bits. For example, a machine with a word length of eight bits can have 256 (2*) combinations of eight bits—thus a language of 256 words. However, not all of these words need to be used in the machine. The microprocessor design engineer selects combinations of bit patterns and gives a specific meaning to each combination by using electronic logic circuits; this is called an instruction. The set of instructions designed into the machine makes up what is called the machine language, a binary language composed of Os and Is. Its words, its instructions, and their meanings are specific to each computer. In this book, we are concerned with the language of the Z80 microprocessor from Zilog Corporation, a widely used microprocessor in industrial applications. The primary focus here is on the microprocessor, because it is the microprocessor that determines the machine language and the operations of a microcomputer. 
1.32 Z80 Machine Language 
The Z80 is a microprocessor with 8-bit word length. Its instruction set (or language) is upward compatible with that of the 8080; the Z80 has 159 instructions that include the entire 8080 set of 72 instructions. An instruction, as discussed earlier, is a binary pattern entered through an input device to command the microprocessor to perform a specific function. For example: 
0011    1100 is an instruction that increments the number in the reg
ister called the accumulator by one. 
1000   0000 is an instruction which adds the number in the register 
called B to the number in the accumulator, and keeps the sum in the accumulator. 
The Z80 microprocessor has a variety of such bit patterns resulting in its 159 instructions for performing different operations, called the instruction set. The Z80 microprocessor also accepts data in 8-bit words as input from input devices, processes data according to the instructions written by the user, and sends out data in 8-bit words to output devices. This binary language with a predetermined instruction set is called the Z80 machine language. 
However, it is tedious and conducive to error for human beings to recognize and 
write instnictions in binary language. Therefore, for convenience, these instructions are written in hexadecimal (or octal) code and entered into a single-board microcomputer by using Hex keys. 
For example, the binary instruction 00111100 (mentioned previously) is equivalent to 3C in hexadecimal. This instruction can be entered into a singleboard microcomputer system with Hex keyboard by pressing two keys: 3 and C. The monitor program of the system translates these keys into their equivalent binary pattern. 
1.33  Z80 Assembly Language 
Even though the instructions can be written in hexadecimal code, it is still not easy to understand such a program. Therefore, each manufacturer of microprocessors has devised a symbolic code for each instruction, called a mnemonic. (The word mnemonic is based on the Greek word related to memory aid.) The mnemonic for a particular instruction consists of letters that suggest the operation to be performed by that instruction. 
For example, the binary code 0011 1100 (SCig or 3Ch* in hexadecimal) of the Z80 microprocessor is represented by the mnemonic INC A: 
INC A       INC stands for increment, and A represents the accumulator. This symbol suggests the operation of incrementing the accumulator content by one. 
Similarly, the binary code 1000 0000 (80)6 or BOh*) is represented as follows: 
ADD A, B ADD stands for addition, and A and B represent the contents in the 
accumulator and register B respectively. This symbol suggests the addition of the contents in register B and the accumulator. 
Even though these symbols do not specify the complete operations, they suggest the significant portions. The complete description of each instruction must be supplied by the manufacturer. The complete set of Z80 mnemonics is called the Z80 assembly language, and a program written in these mnemonics is called an assembly language program. Again, the assembly language is specific to each microprocessor. For example, the Motorola 6800 microprocessor has an entirely different set of binary codes and mnemonics from that of the Z80. An assembly language program written for one microprocessor is not transferable to a computer with another microprocessor unless the two microprocessors are compatible in their machine codes. 
The machine language and the assembly language are microprocessor-specific, and both are considered low-level languages. The machine language is in binary, and the assembly language is in English-like words; however, the microprocessor understands only the binary. How, then, are the assembly language mnemonics entered into a microprocessor system and translated into binary code? In a microcomputer, the mnemonics are entered as ASCII code (explained in the next section) using the keyboard as an input device, and the translation is performed by a program called an assembler. In a single
*Hexadecimal numbers are shown with the subscript H in the text. 
board microcomputer, the user translates mnemonics into Hex digits by looking up the code manually in the instruction set and enters them into the system through the Hex keyboard. This is called hand assembly. 
1.34 Alphanumeric Codes 
A computer is a binary machine; in order to communicate with the computer in alphabetic letters and decimal numbers, translation codes are necessary. The commonly used code is known as ASCII—-American Standard Code for Information Interchange. It is a 7-bit code with 128 (2") combinations, and each combination from OOh to 7Fh is assigned to either a letter, a decimal number, a symbol, or a machine command (See Appendix C). For example, hexadecimal 30h to 39h represent 0 to 9, decimal digits; 41h to 5Ah represent capital letters A through Z; 20h to 2Fh represent various symbols; and the initial codes OOh to IFh represent such machine commands as carriage return and line feed. Devices which use ASCII characters include ASCII teiminals, teletype machines (TTY), and printers. When the key 9 is pressed on an ASCII terminal, the computer receives 39h in binary, and the system program translates ASCII characters into appropriate binary or BCD numbers. 
Another code, called EBCDIC (Extended Binary Coded Decimal Interchange Code) is widely used in IBM computers (except in IBM Personal Computers or microcomputers). This is an 8-bit code representing 256 combinations; however, several combinations are not used. 
1.35 Writing and Executing an Assembly Language Program 
As explained earlier, a program is a set of logically related instructions written in a specific sequence to accomplish a task. To write and execute an assembly language program manually on a single-board computer, with a Hex keyboard for input and LEDs for output, the following steps are necessary: 
1. Write the instructions in mnemonics obtained from the instruction set supplied by the manufacturer. 
2. Find the hexadecimal machine code for each instruction by searching through the set of instructions. 
3. Enter (load) the program in the user memory in a sequential order by using the Hex keyboard as the input device. 
4. Execute the program by pressing the Execute key. The answer will be displayed by the LEDs. 
When the user program is entered by the keys, each entry is interpreted and converted into its binary equivalent by the monitor program, and the machine code is stored as eight bits in each memory location in a sequence. When the Execute command is given, the microprocessor fetches each instruction, decodes it, and executes it in a sequence until the end of the program. 
The manual assembly procedure is commonly used in single-board microcomputers and is suited for small programs. However, the steps of looking up the machine codes and 
entering the program, which are tedious and subject to errors, can be avoided by using an assembler on a microcomputer system. 
The assembler is a program that translates the mnemonics entered by the ASCII keyboard into the corresponding binary machine codes of the microprocessor. Each microprocessor has its own assembler because the mnemonics and machine codes are specific to the microprocessor being used, and each assembler has certain rules which must be learned by the programmer. Assemblers are discussed in detail in Chapter 7. 
1.36  High-Level Languages 
Programming languages that are intended to be machine-independent are called high-level languages. The list includes such languages as C, FORTRAN, BASIC, PASCAL, and COBOL. These languages have certain sets of rules and draw on symbols and conventions from English. Instructions written in these languages are known as statements rather than mnemonics. A program written in BASIC for a microcomputer with the Z80 microprocessor can generally run on another microcomputer with a different microprocessor. 
Now the question is: How do words in English get converted into the binary languages of different microprocessors? The answer lies with another program called either a compiler or an interpreter. These programs accept English-like statements as their input, called the source code. The compiler or interpreter then translates the source code into the machine language compatible with the microprocessor being used in the system. This translation into the machine language is called the object code (Figure 1.7). Each microprocessor needs its own compiler or interpreter for each high-level language. The primary difference between a compiler and an interpreter is in the process of generating machine code. The compiler reads the entire program first and then generates the object code, while the interpreter reads one instruction at a time, produces its object code, and executes the instruction before reading the next instruction. M-Basic is a common example of an interpreter for the BASIC language. Compilers are generally used in such languages as FORTRAN, COBOL, and PASCAL. 
Compilers and interpreters require large memory space because each instruction in English requires several machine codes to translate that instruction into binary. On the other hand, there is a one-to-one correspondence between the assembly language mnemonics and the machine code. Thus, assembly language programs are compact and require less memory space; they are more efficient than the high-level language programs. The primary advantage of high-level languages is in troubleshooting programs, also known as debugging. It is much easier to find errors in a program written in a high-level language than to find them in a program written in assembly language. 
In certain applications such as traffic control and appliance control, where programs are small and compact, assembly language is suitable. Similarly, in such real-time appli
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Block Diagram: Translation of High-Level Language Program into Machine Code 
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cations as converting a high frequency waveform into digital data, program efficiency is critical. In real-time applications, events and time should closely match with each other without significant delay. Therefore, assembly language is highly desirable in these applications. On the other hand, for applications in which programs are large and memory is not a limitation, high-level languages may be desirable. The advantage of time saved in debugging a large program may outweigh the disadvantages of large memory requirements and inefficiency. 
SUMMARY 
The various concepts and terms discussed in this chapter are summarized below: Computer Structure 
□ Digital Computer—a programmable machine that processes binary data. It includes four components: CPU (ALU plus control unit), memory, input, and output. 
□ CPU—the Central Processing Unit. The group of circuits that processes data and provides control signals and timing. It includes the arithmetic/logic unit, registers, instruction decoder, and the control unit. 
□ ALU—the group of circuits that performs arithmetic and logic operations. The ALU is a part of the CPU. 
□ Control Unit—The group of circuits that provides timing and signals to all operations in the computer and controls data flow. 
□ Memory—a medium that stores binary information (instructions and data). 
□ Input—a device that transfers information from the outside world to the computer. 
□ Output—a device that transfers information from the computer to the outside world. 
Scale of Integration 
□ SSI—Small-Scale Integration. The process of designing a few circuits on a single chip. The term refers to the technology used to fabricate discrete logic gates on a chip. 
□ MSI—Medium-Scale Integration. The process of designing more than 100 gates on a single chip. 
□ LSI—Large-Scale Integration. The process of designing more than 1,000 gates on a single chip. Similarly, the terms VLSI (Very-Large-Scale Integration) and SLSI (Super-Large-Scale Integration) are used to indicate the scale of integration. 
Microcomputers 
□ Microprocessor—a semiconductor device (integrated circuit) that is manufactured by using the large-scale integration technique. It includes the ALU, register arrays, and control circuits on a single chip. 
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□ Microcomputer—a computer that uses a microprocessor as its CPU. It includes four components: microprocessor, memory, input, and output. 
□ Bus—a group of lines used to transfer bits between the microprocessor and other components of the computer system. 
o ROM—Read-Only Memory. A memory that stores binary information permanently. The information can be read from this memory but cannot be altered. 
□ R/WM—Read/Write Memory. A memory that stores binary information during the operation of the computer. This memory is used as a writing pad to write user programs and data. The information stored in this memory can be easily read and altered. 
Computer Languages 
□ Bit—a binary digit, 0 or 1. 
□ Byte—a group of eight bits. 
□ Nibble—a group of four bits. 
□ Word—a group of bits the computer recognizes and processes as a whole. 
□ Instruction—a command in binary that is recognized and executed by the computer in order to accomplish a task. Some instructions are designed with one word, and some require multiple words. 
□ Mnemonic—a combination of letters to suggest the operation of an instruction. 
□ Program—a set of instructions written in a specific sequence for the computer to accomplish a given task. 
□ Macliine Language—the binary medium of communication with a computer through a designed set of instructions specific to each computer. 
o Assembly Language—a medium of communication with a computer in which programs are written in mnemonics. An assembly language is specific to a given computer. 
□ Low-Level Language—a medium of communication that is machine-dependent, or specific to a given computer. The machine and the assembly languages of a computer are considered low-level languages. Programs written in these languages are not transferable to different types of machines. 
□ High-Level Language—a medium of communication independent of a given computer. Programs are written in English-like words, and they can be executed on a machine using a translator (a compiler or an intepreter). 
□ Compiler—a program that translates English-like words of a high-level language into the machine language of a computer. A compiler reads a given program, called a source code, in its entirety, and then translates the program into the machine language, which is called an object code. 
□ Interpreter—a program that translates the English-like statements of a high-level language into the machine language of a computer. An interpreter translates one statement at a time from a source code to an object code. 
□ Assembler—a computer program that translates an assembly language program from mnemonics to the binary machine code of a computer. 
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□ Manual Assembly—a procedure of looking up the machine code manually from the instruction set of a computer and entering those codes into the computer through a keyboard. 
□ Monitor Program—a program that interprets the input from a keyboard and converts the input into its binary equivalent. 
LOOKING AHEAD 
This chapter has given a brief introduction to computer organization and computer languages, with emphasis on the Z80 microprocessor and its assembly language. The chapter has given an overview of the entire spectrum of computers, including their salient features and applications. The primary focus of this book is on the architectural details of the Z80 microprocessor and its industrial applications, and on assembly language programming in the context of these applications. In the microcomputer field, there is hardly any separation between hardware and software, especially in applications where assembly language is necessary. In designing a microprocessor-based product, hardware and software tasks are carried out concurrently because a decision in one area affects the planning of the other area. There are various functions that can be performed through either hardware or software, and a designer needs to consider both approaches. This book focuses on trade-off between the two approaches as a design philosophy. 
ASSIGNMENTS 
1. List the components of a computer. 
2. Explain the functions of each component of a computer. 
3. What is a microprocessor? What is the difference between a microprocessor and a CPU? 
4. Explain the difference between a microprocessor and a microcomputer. 
5. Explain the following terms: SSI, MSI, and LSI. 
6. Define: bit, byte, word, and instruction. 
7. How many bytes make a word of 32 bits? 
8. Explain the difference between the machine language and the assembly language of the Z80 microprocessor. 
9. What is an assembler? 
10. What are low- and high-level languages? 
11. Explain the difference between a compiler and an interpreter. 
12. What are the advantages of an assembly language in comparison with high-level languages? 
Microcomputer System: MPU, Memory, and I/O 
A microcomputer system consists primarily of three components—the microprocessor unit (MPU), memory, and I/O (input/output). The MPU is the central player; it communicates with memory and I/O devices, processes data, and controls timing of all its operations. In this chapter, we will examine what the MPU does and what its requirements are. We then design a model for a generalized MPU that expands on the bus concept discussed in the previous chapter and shows signals necessary for the MPU to communicate with other devices. The model also describes the requirements for processing data and shows registers and logic circuits the MPU needs. 
Memory and I/Os are integral parts of a microcomputer system. We will discuss memory in terms of its basic elements—latches and registers—and specify the requirements for a memory chip to store information and communicate with the MPU. Based on those requirements, we then develop the concepts of memory addressing and memory maps. We also discuss how the MPU addresses and communicates with I/Os. 
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OBJECTIVES 
a List the four program-initiated operations performed by the MPIJ. 
□ Define the functions of the address bus, data bus, and control signals. 
□ List the externally initiated operations the MPU should respond to. 
□ Draw the model of a generalized MPU showing the necessary signals. 
□ List the types of registers the MPU needs to process data internally. 
□ Explain the internal organization of memory and 
the requirements of a memory chip to store information and communicate with the MPU. 
□ Explain Jie functions of the control signals: Chip Select (CS), Read (RD), and Write (WR). 
□ Explain how memory addresses are assigned to a memory chip and recognize the memory map of a given chip. 
□ List the two techniques of addressing I/O devices. 
□ Draw a block diagram of a microcomputer system showing the MPU, memory, I/Os, and buses. 
GENERALIZED MICROPROCESSOR UNIT (MPU) 
The Microprocessor Unit (MPU) is a programmable logic device with a designed set of instructions. In this section, we will examine the functions and requirements of the MPU and derive a generalized model. From the previous chapter, we can recall what the MPU does. It reads or fetches each instruction, one at a time, from memory and performs data manipulation specified by the instruction; it also reads data from input devices, and writes (or sends) data to output devices. 
When the MPU is executing a program, it communicates frequently with memory and I/O devices; the process consists of fetch, decode, and execute operations. However, the question is: Can it respond to unexpected events? For example, while printing a long program, can it stop printing temporarily and read any critical data that may arrive at the input? Can it be "interrupted"? Can it wait until a peripheral is ready? For example, when memory response is too slow, can the MPU wait until memory is ready? The answer to all these questions must be affirmative. 
In addition to processing data according to the instnictions written in memory, the MPU needs to respond to various situations described above. External devices should be able to interrupt and request the attention of the MPU. This communication process and related operations between the MPU and the external devices (memory, I/Os) can be classified into two main categories: 
□ Program-initiated operations 
□ Peripheral (or externally) initiated operations. 
To perform these operations, the MPU requires a group of logic circuits, a set of signals to transfer information and control signals for timing, and clock circuitry; these constitute the architecture. Early microprocessors did not have the necessary circuitry on one chip; the complete units were made up of more than one chip. Therefore, we define here the term Microprocessor Unit (MPU) as a group of devices that can perform opera
tions similar to those of the Central Processing Unit (CPU). For example, the 8080A MPU requires three chips to make it a functional unit. However, since later microprocessors include most of the necessary circuitry on a single chip, the terms MPU and microprocessor are often used synonymously. 
2.11   Program-Initiated Operations and Buses 
To communicate with memory and I/Os, the MPU performs four operations: 
1. Memory Read: Reads instructions or data from memory. 
2. Memory Write: Writes instructions or data into memory. 
3. I/O Read: Accepts data from input devices. 
4. I/O Write: Sends data to output devices. 
Now the question is: how does the MPU identify a memory register or an I/O device? It does so the same way we identify a house; we give a number. Because it understands only the binary numbers, the MPU identifies each memory register or I/O by a binary number called an address. The next question is: how does the MPU inform the peripherals when it is ready to read or write data? It does so by sending out appropriate timing signals called control signals before it transfers data. 
The steps in performing these MPU operations can be summarized as follows (not necessarily in the order listed): 
1. Identify the memory location or the peripheral with its address. 
2. Transfer binary data. 
3. Provide timing or synchronization signal. 
Therefore, the MPU requires three sets of communication lines called buses: the first group of lines, called the address bus, to identify the memory location; the second group, called the data bus, to transfer data; and the third group, called the control lines, for timing signals. In the previous chapter (Figure 1.3), all these different signal lines were grouped together and shown as the system bus. Now we shall describe them individually. 
ADDRESS BUS 
As mentioned earlier, the MPU identifies each peripheral or memory location with a binary address. Now the question is: how large is this address? The answer depends upon the internal design of the microprocessor and available pins on a chip; it can be eight, 16, 20, or more bits. If the address size is 12 bits, the microprocessor can identify 4,096 (2'-) different memory locations. The addressing is simply a numbering scheme to identify memory registers. For example, a two-digit decimal numbering scheme can identify only 100 items, from 00 to 99. On the other hand, a four-digit numbering scheme can identify 10,000 items, from 0000 to 9999. Thus, the number of bits (address lines) used for addressing by the MPU clearly determines the number of memory registers it can identify. 
Figure 2.1 shows one group of lines as the address bus for our generalized MPU. 
The arrow suggests that these lines are unidirectional—the signals flow from the MPU to peripherals because only the MPU sends out an address. The address lines are generally identified as Aq to A„„ where m is the size of the address bus. Typically, earlier microprocessors such as the 8085, the Z80, and the 6800 have 16 address lines which are capable of addressing 6.5 ,.5.36 (2'^) memory locations, commonly known as 64K memory. However, recent microprocessors such as the 8086 have 20 address lines, and the 68000 has 23 address lines. 
DATA BUS 
The second group of lines shown in Figure 2.1 is the data bus. These lines are used to transfer data and are bidirectional—data can flow either direction. These lines are identified as Do to D„, where n signifies the size of the data bus. Again, the size of the data bus determines how large a binary number can be transferred and processed at a time and thus influences the microprocessor architecture considerably. The 8085, the Z80, and the 6800 have eight data lines and are thus called 8-bit microprocessors. On the other hand, the 8086, the Z8000, and the 68000 have 16 data lines and are called 16-bit microprocessors. 
CONTROL SIGNALS (MPU INITIATED) 
These are individual signal lines generated by the MPU to indicate its operations. The MPU generates a specific signal for each of its four operations—Memory Read, Memory Write, I/O Read, and I/O Write. These are timing signals that are used to enable, or activate, peripherals. For example, to fetch (or read) an instruction from a memory location, the MPU sends a timing pulse called Memory Read to enable the memory chip. 
2.12  Externally Initiated Operations 
There are various occasions when ongoing MPU operations need to be interrupted. For the MPU we are designing, we can classify these types of external interruptions or delays into four categories. 
o Reset: Start again from the beginning. For example, if we are using a microprocessor as a timer, we should be able to reset the timer after each operation or in the middle of an operation and start again. 
□ Interrupt: Stop the ongoing process temporarily; do something now which is more critical, and then go back to the original process. For example, we should be able to stop printing temporarily and read data from a keyboard; then, when the MPU finishes reading that data, it can go back to printing. 
□ Wait: When memory response time is too slow to respond to the speed of the MPU, this signal can be used to delay the MPU operations. 
□ Bus Request: When the MPU operations are too slow compared to the speed of a peripheral, the peripheral can request the use of the buses. For example, when large amounts of data are to be transferred to memory, DMA (Direct Memory Access) controllers can transfer data much faster than can the MPU. 
In our generalized MPU nmodel (Figure 2.1), these externally initiated signals are shown as External Requests. To indicate its response to some of these external requests, the MPU needs additional signal lines shown as Request Acknowledge. 
2.13  Clock Signals and Power 
The MPU can be viewed as a complex timer. The timing is very critical in all its operations. The bits of a binary instruction are associated with the microprograms inside the chip; when the MPU executes an instruction, it releases a series of microprograms at precise time intervals. Therefore, the MPU needs circuits that generate clock signals. In addition, it needs electrical power to run all the operations. 
Figure 2.1 shows all the signals necessary for our generalized MPU. Presently, because of LSI technology, most of the MPU requirements can be satisfied by single-chip microprocessors with slight variations. For example, the Z80 microprocessor has all the signals of the MPU except clock-generating circuitry, and some of its control signals need to be logically ANDed to generate the specific control signals shown in Figure 2.1. 
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Generalized Microprocessor Unit (MPU) 
However, the present microprocessors include all the data processing and timing circuitry on one chip; therefore, they can be viewed as MPUs. Now we shall examine what is inside the microprocessor to understand how it processes data. 
2.14 Microprocessor as a Processing Unit 
When the microprocessor executes instructions, it does so in a continuous sequence of fetch, decode, and execute operations. After examining these operations in more detail, we can describe the requirements of the internal architecture of our generalized microprocessor. 
FETCHING AN INSTRUCTION 
To fetch an instruction, the microprocessor places a memory address on the address bus and reads binary information using the data bus. Therefore, it needs a register that can hold memory addresses and increment these addresses after the fetching is completed, a sort of memory pointer. 
DECODING AN INSTRUCTION 
Once an instruction byte is fetched, it needs to be decoded to answer the following: 
□ Is it a complete instruction? If not, how many more bytes need to be fetched? 
□ What type of operation is required and on what data? 
To perform these functions, the microprocessor needs an instruction decoder that can interpret the fetched binary information. 
EXECUTING AN INSTRUCTION 
The type of data manipulation the microprocessor can perform depends on its internal microprograms, that is, on its instmction set. These operations can be classified as data copy (transfer), arithmetic/logic operations, and decision making. For example, to subtract two numbers, both numbers must be loaded into registers. After the subtraction, it is necessary to indicate whether the result is positive, negative, or zero. This can be indicated by setting or resetting flip-flops called flags. To perform these arithmetic and logic operations, the microprocessor needs a group of logic circuits called Arithmetic/Logic Unit (ALU). 
This description of the requirements of the microprocessor to process data can be summarized in a simplified block diagram shown in Figure 2.2. From this block diagram, we can derive a programming model for a specific microprocessor. 
2.15 Review of Important Concepts 
The description and the requirements of a generalized microprocessor unit can be summarized as follows (see Figure 2.3): 
To communicate with memory and I/O devices, the MPU should have the following: 1. Address bus to send the address of a memory register or an I/O. 
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2. Data bus to transfer data between the MPU and memory and I/O devices. 
3. Control signals to identify its operations and provide timing. 
4. External Request signal lines to interrupt the MPU operations. 
5. Request Acknowledge signals to respond to the requests by peripherals. 
6. Clock signals to provide timing and power to operate circuits. 
MICROPROCESSOR ARCHITECTURE AND INTERFACING 
To process data internally, the MPU should include the following: 
1. Instruction Decoder to decode the fetched binary information. 
2. Registers to store binary data. 
3. Registers as memory pointers for addressing memory registers. 
4. ALU to perform arithmetic and logic operations. 
5. Flags (flip-flops) to indicate data conditions for decision making. 
MEMORY 
Memory is an essential component of a microcomputer system; it stores binary instructions and data for the microprocessor. There are various types of memory, and they can be classified in two groups: prime (or main) memory and storage memory. In the last chapter, we saw two examples of prime memory: Read/Write Memory (R/WM) and Read-Only Memory (ROM). Magnetic tapes and disks can be cited as examples of storage memory. First, we will focus on prime memory and then briefly discuss storage memory when we examine various types of memory. 
The R/W memory is made up of registers, and each register has a group of flip-flops or field-effect transistors that store bits of information. The user can use this memory to hold programs and store data. On the other hand, the ROM stores information permanently in the form of diodes; the group of diodes can be viewed as a register. In a memory chip, all registers are arranged in a sequence and identified by binary numbers called memory addresses. The MPU uses its address bus to send the address of a memory register and uses data and control buses to read from or write into that register. In the following sections, we examine the basic concepts related to memory—its structure, its addresses, and its requirements for communication with the MPU^—^and build a model for R/W memory. However, the discussion is equally applicable to ROM except for slight differences in Read/Write control signals. 
2.21  Flip-Flop or Latch as a Storage Element 
What is memory? It is a circuit that can store bits—generally high or low voltage levels representing 1 and 0. A flip-flop or a latch is a basic element of memory. To write or store a bit in the latch, we need an input data bit and an enable signal (Figure 2.4(a)). In this latch, the stored bit is always available on the output line. If a tri-state buffer is connected to the output of the latch (as shown in Figure 2.4(b)), the stored bit can be read only when the buffer is enabled. Similarly, we can also use a tri-state buffer on the input of the latch. Now we can write into the latch (Figure 2.4(c)) by enabling the input buffer and read from it by enabling the output buffer. This latch, which can store one binary bit, is called a memory cell. Figure 2.5(a) shows four such cells or latches grouped together to form a register which has four input lines and four output lines and can store four bits. The size of this register is specified as either 4-bit or 1 x 4 bit, which indicates one register with four cells or four I/O lines. The number of bits stored in a register is called a memory word. Figures 2..5(b) and (c) show simplified block diagrams of the 4-bit register. 
MICROCOMPUTER SYSTEM: MPU, MEMORY, AND I/O 
33 
	
	D 
Q 
EN 
	

	

	

	


EN
	D 
	Q 

	EN 
	


Y WR 1 
RD
WREN
RD
	D 
	Q 

	EN 
	


(a) 
(b) 
(c) 
FIGURE 2.4 
Latches as Storage Elements 
In Figure 2.6(a), four registers with eight cells (or 8-bit memory word) are ananged in a sequence. To write into or read from any one of the registers, a specific register should be identified or enabled. This is a simple decoding function; a 2-to-4 decoder can perform that function. However, two more input lines A, and Aq, called address lines, are required to the decoder. These two input lines can caixy four different bit combinations (00,01, 10, 11), and each combination can identify or enable one of the registers named as Register 0 through Register 3. 
In Figure 2.6(a), the chip has an 8-bit memory word, and its size can be specified as 32 bits, 4x8 bits, or 4 bytes. If we have a memory chip with a 4-bit memory word, we can combine two such chips in parallel to make an 8-bit memory word as shown in Figure 2.6(b). The address lines and RD/WR control signals (^ indicates active low) will be connected in parallel, but the memory word will consist of 4 bits from each chip as shown. 
Now we can expand the number of registers. If we have eight registers on one chip, we need three address lines and a 3-to-8 decoder. An interesting problem is how to deal with two chips with four registers each. We have a total of eight registers; therefore, we need three address lines. One address line. A?, is used to select a chip, and the address lines Ai and Aq are connected to both chips. Figure 2.7(b) shows that the Chip Select signal CS is active low, so that when A2 is 0 (low). Chip Mi is selected and when A2 is 1 (high). Chip M2 is selected. The addresses on Ar and Aq will determine the registers to be selected; thus, by combining the logic on A2, Ai, and Aq, the memory addresses range from 000 to 111. The concept of the Chip Select signal gives us more flexibility in designing chips and allows us to expand memory size by using multiple chips. 
Now let us examine the problem from a different perspective. Assume that we have available four address lines and two memory chips with four registers each as before. Four address lines are capable of identifying sixteen (2^*) registers; however, we need only three address lines to identify eight registers. What should we do with the fourth line? One of the solutions is shown in Figure 2.8. Memory chip Mi is selected when A3 and A2 are both 0; therefore, registers in this chip are identified with the addresses ranging from 0000 to 0011 (0 to 3). Similarly, the addresses of memory chip M2 range from 1000 to 1011 (8 to B); this chip is selected only when A3 is 1 and A2 is 0. In this example, we need three lines to 
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Addressing Eight Registers with Four Address Lines 
identify eight registers, two for registers and one for Chip Select. However, we used also the fourth line for Chip Select. This is called complete or absolute decoding. Another option is to leave the fourth line as "don't care"; we will further explore this concept later. 
After reviewing the above explanation, we can summarize the requirements of a memory chip as follows: 
1. A memory chip requires address lines to identify a memory register, a Chip Select CS signal to enable the chip, and control signals to read from and write into memory registers. 
2. The number of address lines required is determined by the number of registers in a chip (2" = Number of registers where n is the number of address lines). 
3. If additional address lines are available in a system, they are used to enable the Chip Select CS signal. The memory address of a register is determined by^the logic levels (0/1) of all the address lines (including the address lines used for CS). 
4. The control signal Read (RD) enables the output buffer, and data from the selected register are made available on the output lines. Similarly, the control signal Write (WR) enables the input buffer, and data on the input lines are written into memory cells. 
A model of a typical memory chip representing the requirements just stated is shown in Figure 2.9. Figure 2.9(a) represents the R/W memory and Figure 2.9(b) represents the Read-Only Memory; the only difference between the two as far as addressing is concerned is that ROM does not need a WR signal. Internally, the memory cells are arranged in a matrix format (in rows and columns), because as the size increases the internal decoding scheme we discussed becomes impractical. For example, a memory chip with 1024 registers would require a lO-to-1024 decoder. If the cells are arranged in six rows and four columns, however, the internal decoding circuitry can be designed with two decoders, one for selecting a row and the other for selecting a column. The internal row and column arrangement does not affect our external interfacing logic. 
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2.22  Memory Map 
Typically, in an 8-bit microprocessor system, 16 address lines are available for memory. This means it is a numbering system of 16 binary bits and is capable of identifying 2"^ (65,536) memory registers, each register with a 16-bit address. The entire memory addresses can range from 0000 to FFFF in Hex. Memory map is like a pictorial representation in which memory devices are located in the entire range of addresses. Memory addresses provide the locations of various memory devices in the system, and the interfacing logic defines the range of memory addresses for each memory device. 
Now let us assume that we have a memory chip with 256 registers which needs only eight address lines (2* = 256). How can we assign 16-bit addresses to 256 registers? This can be accomplished by using the remaining eight lines for the Chip Select through appropriate logic gates as illustrated in the next example. 
Example 2.1 
Solution 
Illustrate the memory map of the chip with 256 bytes of memory, shown in Figure 2.10(a), and explain how the memory map can be changed by modifying the hardware of the Chip Select CS line in Figure 2.10(b). 
Figure 2.10(a) shows a memory chip with 256 registers with 8 I/O lines; the memory size of the chip is expressed as 256 x 8. It has eight address lines A7-A0, one Chip Select CS signal (active low) and two control signals Read (RD) and Write (WR). The eight address lines (A7-A0) of the microprocessor are required to identify 256 memory registers. The remaining eight lines (Ajs-Ag) are connected to the Chip Select (CS) line through inverters and the NAND gate. The memory chip is enabled or selected when CS goes low. Therefore, to select the chip, the address lines Aij-Ag should be at logic 0, which will cause the output of the NAND gate to go low. No other logic levels on the lines Au-Ag can select the chip. Once the chip is selected (enabled), the remaining address lines A7-A0 
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can assume any combination from OOh to FFh, and identify any of the 256 memory registers through its decoder. Therefore, the memory addresses of the chip in Figure 2.10(a) will range from OOOOh to OOFFh as shown below. 
Ai5 Ai4 Ai3 Ai2 All Aio Ag Ag      Ay As As A4 A3 A2 A, Aq 0     0     0     0     0     000       00000000 = OOOOh 
,       I I 
11111111 = OOFFh Chip Enable or Chip Select Register Select 
The entire range of the memory addresses from OOOOh to OOFFh is known as the memory map of the chip in Figure 2.10(a). The Chip Select addresses are determined by the hardware (the inverters and NAND gate); therefore, the memory map of the chip can be changed by modifying the hardware. For example, if the inverter on line A,5 is removed as shown in Figure 2.10(b), the address required on Ajs-Ag to enable the chip will be as follows: 
Ai5      Ai4      Ai3      A12      All      Aio      Ag Ag 1 0        0        0         0        0        00= 80h 
The memory map for Figure 2.10(b) will be 8000h to SOFFh
The memory chips in Figures 2.10(a) and (b) are the same chips. However, by changing the hardware of the Chip Select logic, the location of the memory in the map can be changed, and memory can be assigned addresses in various locations over the entire range of 0000 to FFFFh. 
In a memory system, a 16-bit address can be conceptually organized into two groups of Hex numbers. With two Hex digits, 256 registers can be numbered from OOh to FFh as shown in the previous example. This is defined as a page with 256 lines (registers) to read from or write on. Similarly, high-order Hex digits in an address can be used to number the pages from OOh to FFh; thus the total range of 64K can be conceptually divided into 256 pages with each page having 256 lines. For example, the memory address 020Fh represents line (register) 15 on page 2, and the address 07FFh, represents register 255 on page 7. A memory chip with IK (1,024) byte can be viewed as a chip with four pages. This is just a convenient way of thinking memory maps. 
Another way of viewing a memory address is in terms of high-order and low-order addresses. The lines used for chip select are called high-order address lines, and the lines connected to memory address lines are called low-order address lines. Let us use an example of a four-digit (decimal) numbering system in a high-rise apartment building. Generally, the first two digits (high-order) represent a floor and the last two digits (loworder) represent an apartment number. To locate apartment 1241, we go first to the twelfth floor (similar to Chip Select in memory addressing), and then we look for the apartment 41 (similar to selecting a register). Now let us use the example of an apartment complex. Let 
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US assume the complex is divided into sections 1 to 9 and each section has up to 999 apartments. In this situation, the number 2451 would represent Section 2 and apartment number 451; the digit 2 is a high-order address and 451 is a low-order address. This is similar to memory addresses of IK memory. The IK memory chip will requjre 10 address lines, and the remaining six lines of the address bus will be used for the CS. Thus, the group of six address lines will be high-order, and the remaining ten address lines will be low-order. The memory addresses will be determined by combining the logic levels of these address lines. If the number of address lines in a microprocessor is larger than 16, we will use a five-digit Hex numbering scheme. 
2.23  How the MPU Writes into and Reads from Memory 
To store (write) a byte into a memory location (Figure 2.11), the MPU 
1. places the 16-bit address on the address bus of the memory location where a byte is to be stored. This address is decoded to select the memory chip, and the memory register is identified. 
2. places the byte on the data bus. 
3. sends the control signal Memory Write to enable the input buffers of the memory and then stores the byte. 
To read from memory, the steps are similar. 
1. The MPU places the 16-bit address on the address bus and sends the control signal Memory Read to enable the output buffer of the memory chip. 
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Memory Write Operation 
2. The interfacing logic of the memory chip decodes the address and selects the appropriate memory register. 
3. The memory chip places the data byte on the data bus, and the MPU reads the data byte. 
2.24  Memory Classification 
Memory can be classified into two groups: prime (or main) memory and storage memory. The R/WM and ROM discussed in the last section are examples of prime memory; this is the memory the microcomputer uses in executing and storing programs. This memory should be able to respond fast enough to keep up with the execution speed of the microprocessor. Therefore, it should be Random-Access Memory, meaning that the microprocessor should be able to access information from any register with the same speed (independent of its place in the chip). 
Storage memory includes examples such as magnetic disks and tapes (see Figure 2.12). This memory is used to store programs and results after the completion of program execution. Information stored in these memories is nonvolatile, meaning information remains intact even if the system is turned off. Generally, these memory devices are not a part of any system; they are made part of the system only when stored programs need to be accessed. The microprocessor cannot execute or directly process programs stored in these devices; programs must be copied into the prime memory first. Therefore, the size of the prime memory (e.g., 64K or 128K) determines how large a program the system can process. The size of the storage memory is unlimited; when one disk or tape is full, another can be used. 
Figure 2.12 shows two subdivisions of storage memory: secondary storage and backup storage. The secondary storage is similar to what you put on your shelf in your study, and the backup is similar to what you store in your attic. Storage memory includes such devices as disks, magnetic tapes, magnetic bubble memory, and charged-coupled devices (CCD). The primary features of all these devices are high capacity, low cost, and slow access. A disk is similar to a record; the access to the stored information in the disk is semi-random. The remaining devices shown in Figure 2.12 are serial: if information is stored in the middle of the tape, it can be accessed only after running half the tape. We will discuss some of these memory storage devices again in Chapter 7. In this chapter, we will focus on various types of prime memory. 
Figure 2.12 shows that the prime memory is divided into two main groups: Read/ Write Memory (R/WM) and Read-Only Memory (ROM), and each group includes several different types of memory. 
R/WM (READ/WRITE MEMORY) 
As the name suggests, the microprocessor can write into or read from this memory, and it is popularly known as Random-Access Memory (RAM). It is used primarily for information that is likely to be altered, such as writing programs or receiving data. This memory is volatile, meaning that when the power is turned off, all its contents are destroyed. 
Two types of R/W memories—static and dynamic—are available. Static memory is 
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made up of flip-flops, and it stores the bit as a voltage. Dynamic memory is made up of MOS transistor gates, and it stores the bit as a charge. The advantages of the dynamic memory are that it has higher density, lower power consumption, and is cheaper than the static memory. The disadvantage is that the charge (bit information) leaks; therefore, stored information needs to be read and written again every few milliseconds. This is called refreshing the memory, and it requires extra circuitry, which adds to the cost of the system. It is generally economical to use dynamic memory when the system memory size is larger than 16K; for smaller systems, the static memory is appropriate. 
ROM (READ-ONLY MEMORY) 
The ROM is a nonvolatile memory; it retains stored information even if the power is turned off. This memory is used for programs and data that need not be altered because, as the 
name suggests, the information can be read only so that once a bit pattern is stored, it is permanent or at least semi-permanent. The permanent group includes two types of memory: masked ROM and PROM, and the semi-permanent group also includes two types of memory: EPROM and EE-PROM as shown in Figure 2.12. 
MASKED ROM 
In this ROM, a bit pattern is permanently recorded by the masking and metallization process, which memory manufacturers are generally equipped to do. It is an expensive and specialized process, but economical for large production quantities. 
PROM (PROGRAMMABLE READ-ONLY MEMORY) 
This memory has nichrome or poly silicon wires arranged in a matrix; these wires can be functionally viewed as diodes or fuses. This memory can be programmed by the user with a special PROM programmer that selectively bums the fuses according to the bit pattern to be stored. The process is known as "burning the PROM," and the information stored is permanent. 
EPROM (ERASABLE PROGRAMMABLE READ-ONLY MEMORY) 
This memory stores a bit by charging the floating gate of a FET. Information is stored by using an EPROM programmer, which applies high voltages to charge the gate. All the information can be erased by exposing the chip to ultraviolet light through its quartz window, and the chip can be reprogrammed. Because the chip can be reused many times, this memory is ideally suited for product development, experimental projects, and college laboratories. 
EE-PROM (ELECTRICALLY ERASABLE PROM) 
This memory is functionally similar to EPROM, except that information can be altered by using electrical signals at the register level rather than erasing all the information. This has an advantage in field and remote control applications. In microprocessor systems, software update is a common occurrence. If EE-PROMs are used in the systems, they can be updated from a central computer by using a remote link via telephone lines. Similarly, in a process control in which timing information has to be changed, it can be done by sending electrical signals from a central place. This memory also includes a chip-erase mode whereby the entire chip can be erased in 10 ms as opposed to 15 to 20 minutes for an EPROM. 
RECENT ADVANCES IN MEMORY TECHNOLOGY 
Memory technology has advanced considerably in recent years. In addition to static and dynamic R/W memory, there are now more options available in memory devices. Recent examples include Zero Power RAM from MOSTEK, Non-Volatile RAM from Intel, and Integrated RAM from several manufacturers. 
The Zero Power RAM is a CMOS Read/Write memory with battery backup built internally. It includes lithium cells and voltage-sensing circuitry. When the external power supply voltage falls below +3 V, the power switching circuitry connects the lithium 
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battery; thus, this memory provides the advantages of both R/W and Read-Only Memory. 
The Non-Volatile RAM is a high speed static R/W Memory array backed up, bit for bit, by an EE-PROM array for nonvolatile storage. When the power is about to go off, the contents of R/W memory are quickly stored in the EE-PROM by activating a STORE signal on the memory chip, and the stored data can be read into the R/W memory segment when the power is turned on again. This memory chip combines the flexibility of static R/W memory with the non volatility of EE-PROM. 
The Integrated RAM (iRAM) is a dynamic memory with the refreshed circuitry built on the chip. For the user, it is similar to the static R/W memory. The user can derive the advantages of the dynamic memory without having to build the external refreshing circuitry. At present, this memory is economical for a system with medium-sized memory (between 8K and 64K). 
INPUT AND OUTPUT (I/O) DEVICES 
Input/Output devices are the means through which the MPU communicates with "the outside world." The MPU accepts binary data as input from devices such as keyboards and A/D converters and sends data to output devices such as LEDs or printers. There are two different methods by which an MPU can identify I/O devices: one uses an 8-bit address and the other a 16-bit address. These methods are described briefly in the following sections. 
2.31  I/Os with 8-Bit Addresses (Peripheral-Mapped I/O) 
In this type of I/O, the MPU uses eight address lines to identify an input or an output device; this is also known as peripheral-mapped I/O. The eight address lines can have 2.56 (2^ combinations) addresses; thus, the MPU can identify 2.56 input devices and 256 output devices with addresses ranging from OOh to FFh- The input and output devices are differentiated by the control signals I/O Read for input devices and I/O Write for output devices. The entire range of I/O addresses from OOh to FFh is also known as I/O map, and individual addresses are also referred to as I/O device addresses or I/O port numbers. 
If we use LEDs as output or switches as input, we need to resolve two issues: how to assign addresses and how to connect these I/O devices to the data bus. In a bus architecture, these devices cannot be connected directly to the data bus or the address bus; all connections must be made through tri-state interfacing devices so they will be enabled and connected to the buses only when the MPU chooses to communicate with them. In the case of memory, we did not have to be concerned with these problems because of the internal address decoding, Read/Write buffers, and availability of CS and control signals of the memory chip. In the case of I/O devices, we need to use external interfacing devices. 
The steps in communicating with an I/O device are similar to those in communicating with memory and can be summarized as follows: 
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1. The MPU places an 8-bit address on the address bus, which is decoded by the external decode logic (explained in Chapter 5). 
2. The MPU sends a control signal (I/O Read or I/O Write) to enable the I/O device. 
3. Data are transferred on the data bus. 
2.32  I/Os with 16-bit Addresses (Memory-Mapped I/O) 
In this type of I/O, the MPU uses 16 address lines to identify an I/O device; an I/O is connected as if it is a memory register. In memory-mapped I/O, the MPU uses the same control signals (Memory Read or Memory Write) and instructions as those of memory and follows the same steps as when it is accessing a memory register. In some microprocessors, such as the Motorola 6800, all I/Os have 16-bit addresses so that I/Os and memory share the same memory map (64K). 
The peripheral- and memory-mapped I/O techniques will be discussed in detail in the context of interfacing I/O devices (see Chapter 5). 
EXAMPLE OF A MICROCOMPUTER SYSTEM 
2.4 
In the last three sections, we discussed a generalized MPU model, prime memory and its organization model, and I/Os. The discussion can be summarized in the block diagram of a microcomputer system as shown in Figure 2.13. It includes a generalized MPU, two types of prime memory, and two I/O devices. 
All address lines are used to address memory, and only the low-order address bus is used to identify I/O devices, indicating that they are connected as peripheral-mapped I/O (the details of Chip Select decoding are omitted here). The data bus is bidirectional and 
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common to all devices. The four control signals generated by the MPU are connected to different peripherals, as shown in Figure 2.13. 
HOW DOES THE SYSTEM WORK? 
Let us assume that a simple program with three instructions is already written and stored in binary in R/W memory. Those instnictions are 
1. Read Input Port No. 20h. 
2. Display the Data at the Output Port 80h. 
3. Stop. 
To execute these instructions, the MPU does the following: 
1. Places the memory address bus of the instruction 1 and fetches the instruction using the control signal Memory Read (MEMRD). (The MPU may have to fetch instruction codes more than once if the instruction has more than one byte.) It decodes the instruction. 
□ Reads the input port by placing the address bus 20h, reads data using the control signal I/O Read (lORD), and stores the data in one of the registers. 
2. Fetches the next instruction by placing the memory address of that instruction and the control signal MEMRD. Then, it decodes the instruction. 
□ Places the port address 80h and transfers the data using the control signal I/O Write (lOWR). 
3. Again fetches the last instruction from memory as before, decodes it, and stops. 
This is a simplified description of how the system works; it excludes the details about multi-byte instructions, machine cycles, and timing. 
SUMMARY 
In this chapter, we examined the requirements of the Microprocessor Unit (MPU) to communicate with memory and I/O devices and to process binary data. Based on those requirements, we designed a generalized model of the MPU. We discussed memory in terms of its storage elements, namely, latches and registers and techniques of assigning addresses. The steps required for the MPU to communicate with memory and I/Os were briefly described. The important concepts are summarized as follows. 
□ The MPU performs four primary operations: Memory Read, Memory Write, I/O Read, and I/O Write. 
□ To communicate with memory and I/Os, the MPU needs three types of buses: the unidirectional address bus to send memory and I/O addresses, the bidirectional data bus to transfer data, and control signals to enable the devices. 
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□ The MPU should have signal lines to accept and to acknowledge external requests. These requests are Reset (go back to beginning), interrupt (stop the ongoing process and attend to something urgent), wait to synchronize with slow memory, and allow the use of buses to an external device because the MPU response time is slower than that of the external device. 
□ To process data, the MPU should include registers to store data, memory pointers to hold memory addresses, ALU to perform arithmetic and logic operations, and flags to indicate data conditions. 
□ Memory is a group of registers, arranged in a sequence, to store bits. The number of cells (latches) in a register determines the size of the memory word in a chip. 
□ A memory chip requires address lines to identify a memory register. Chip Select signal to select the chip, and control signals to read from and write into memory registers. 
□ The range of memory addresses assigned to a memory chip in a system is called the memory map. The assignment of memory addresses is done through the Chip Select logic. 
□ An I/O device can be identified either with an 8-bit address called the peripheralmapped I/O or with a 16-bit address called the memory-mapped I/O. 
□ To communicate with memory or I/O, the MPU places the address of the device on the address bus, places data on the data bus, and sends the appropriate control signal. 
LOOKING AHEAD 
In this chapter, we examined the microprocesser as a programmable logic device and developed a generalized model. Similarly, we discussed memory as a storage element and constructed a memory model. We examined briefly the role of I/Os as channels of communication with "the outside world." These three elements were interconnected through a bus architecture to form a model of a microcomputer system. Then we discussed how the MPU communicates with memory and I/Os. 
In the next three chapters, we will explore each component and its communication process separately with details and specific examples. In Chapter 3, we will examine the Z80 microprocessor in the context of our generalized model of a programmable logic device. Chapter 4 discusses memory and its interfacing, and Chapter 5 is devoted to interfacing I/O devices. 
ASSIGNMENTS 
1. List the four operations commonly performed by the MPU. 
2. What is a bus? 
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3. What is the function of the address bus? 
4. How many memory locations can be addressed by the MPU with thirteen address lines? 
5. How many address lines are necessary to address two megabytes (2048K) of memory? 
6. What is the function of the interrupt signal and when is it used? 
7. When is the bus request signal used? 
8. Specify the number of registers and memory cells in a 128 X 4 memory chip. 
9. How many bits are stored by a 256 X 4 memory chip? Can this chip be specified as 128-byte memory? 
10. If the memory size is 1024 X 4 bits, how many chips are required to make up IK-byte memory? 
11. If the memory chip size is 1024 x 1 bits, how many chips are necessary to make up 4K (4,096) bytes of memory? 
12. What is the function of the WR signal on the memory chip? 
13. How many address lines are necessary for the memory chip with 2048 x 8 size? 
FIGURE 2.14 +5 V 
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14. How many address lines are necessary for the memory chip with 2048 x 4 size? 
15. The memory map of a 4K(4,096)-byte memory chip begins at the location SOOOhSpecify the entire memory map and the number of pages in the map. 
16. The memory address of the last location of an 8K-byte memory chip is FFFFh- Find the starting address. 
17. Identify the memory map in Figure 2.14. List the high-order and low-order address lines. How many pages of memory does the chip include? 
18. In Figure 2.14, identify the memory map if the inverter of the address line A15 is eliminated and A15 is connected directly to the NAND gate. 
19. Figure 2.15 shows an MPU with the address bus containing 12 address lines and the data bus with four data lines; it is interfaced with the IK-byte memory chip. Find the memory map. 
20. Specify the size of the memory word shown in Figure 2.15. 
FIGURE 2.15 I 
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Microprocessor: Programming Model and Hardware Model 
The Z80 is one of the most versatile and widely used 8-bit microprocessors, and many microcomputer systems are designed around the Z80. The Z80 chip includes most of the logic circuitry for performing computing tasks and necessary bus signals. This chapter discusses the Z80 architecture in terms of two models: the programming model and the hardware model derived from the generalized MPU discussed in the previous chapter. 
We will describe the programming model first because it provides the overview of the Z80 architecture. This information is essential to hardware designers as well as programmers. The model describes the accumulator, internal 8-bit and 16-bit registers, and their functions during the execution of a program. The description also includes the details of the flags and data conditions under which they are set or reset, information very critical to the programmer. 
The hardware model shows logic pinout of the chip and classifies the signals in various groups according to their functions. The model lists the operations the Z80 frequently performs and describes how the Z80 communicates with memory and I/Os by using various buses. These operations are illustrated in terms of machine cycles and logic levels of the buses in relation to the system clock. 
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        Finally, the chapter includes the discussion of other contemporary 8-bit microprocessors in terms of the generalized model developed in the last chapter and compares them with the Z80. 
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OBJECTIVES 
□ Draw the Z80 programming model and identify the registers. 
□ Explain the functions of the accumulator, generalpurpose registers, and alternate registers. 
□ Explain the functions of 16-bit registers and special-purpose registers. 
□ List the flags and explain the data conditions under which they are set or reset. 
□ List the functional groups of the Z80 signals. 
□ Define the address bus, the data bus, and the control signals, and explain their functions. 
□ List the types of external signals and explain their purposes. 
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        THE Z80 PROGRAMMING MODEL 
In the last chapter, we developed a model to represent the internal structure of the MPU shown in Figure 2.3. We will now describe a similar model of the Z80 microprocessor; however, we will include only those components necessary for the programmer. Figure 3.1 shows such a model, which includes an accumulator and a flag register, generalpurpose register arrays, registers used as memory pointers, and special-purpose registers. These registers and their functions are described in the following sections. 
3.11 Accumulator 
The accumulator is an 8-bit register that is part of the Arithmetic/Logic unit (ALU) and is also identified as register A. This register is used to store 8-bit data and to perform arithmetic and logic operations. The result of an operation performed in the ALU is also stored in the accumulator. For example, in an 8-bit addition, the instruction ADD always assumes that one of the numbers is the byte in the accumulator, and the result of the addition is stored in the accumulator by replacing the previous byte. 
Figure 3.1 shows an additional accumulator called A' in the alternate register set. A' is not directly accessible to store a byte or perform an ALU operation, but the contents of A' are accessible by exchanging its contents with the contents of the accumulator A. 
3.12 Flag Register 
The ALU includes six flip-flops that are set or reset according to data conditions after an ALU operation, and the status of each flip-flop, also known as flags, is shown in the flag register F. The status of each of the six flags is stored in the 8-bit flag register so that they 
□ List three categories of the Z80's operations. 
□ Explain the terms instruction cycle, machine cycle, and T-state. 
□ List the steps the Z80 performs to execute the Opcode Fetch, the Memory Read, and the Memory Write cycles, and explain their functions. 
□ Show the bus contents and the appropriate control signals in reference to the system clock when these machine cycles are executed. 
□ Describe the 808.5, the NSC800, and the 6800 microprocessors in terms of the generalized MPU and compare them with the Z80. 
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can be examined if necessary. The bit position of each flag is shown in Figure 3.2; bits D5 and D3 are unused. 
Among the six flags, the H (Half-Carry) and N (Add/Subtract) flags are used internally by the microprocessor for BCD (Binary Coded Decimal) operations. These two flags cannot be tested by any instruction and are not available to the programmer for decision making. The remaining four flags—S (Sign), Z (Zero), P/V (Parity/Overflow), and C (Carry)*—can be tested in conjunction with Conditional Jump or Call instructions. 
*To avoid confusion between C as a register and C as the Carry flag, we will refer to the Carry flag as CY when it does not refer specifically to bit Do in the flag register. 
Each of these four flags has two Jumps or Call instructions associated with it: one when the flag is set and the other when the flag is reset.These flags have critical importance in the decision making process; all decisions are based on the status of these flags. For example, the instruction JP C, 2050H (Jump on Carry to memory location 2050h) is implemented to change the sequence of a program when the Carry flag is set. 
The details of these flags are described below in the order of frequency of use. They will be discussed again in the context of illustrative programs. At the outset, the descriptions of these flags may appear quite complex. However, when we begin to write programs, we will see that, in general, most flags are ignored except one or two depending upon the operations being performed. For the time being, to understand their function, you should focus on three flags: C (Carry), Z (Zero), and S (Sign). 
n C—Carry flag: If an arithmetic operation generates a carry (in addition) or a borrow (in subtraction), the Carry flag is set; otherwise it is reset. 
It is important to remember that when an arithmetic operation does not generate a carry (or borrow), the flag is reset. 
The flag is also affected by such other instructions as logic and shift instnictions. The details will be discussed when specific instructions are explained. The Z80 includes instructions SCF—Set Carry Flag—and CCF—Complement Carry Flag—that can set or complement this flag independent of the previous ALU operation. 
□ Z—Zero flag: If an 8-bit operation results in zero, the Z flag is set; otherwise it is reset. 
In a bit testing operation, if the bit is zero, this flag is set; otherwise it is reset. 
In comparing two numbers, the Z flag is set when they are equal; otherwise it is 
reset. 
The Z flag is also affected by special input instruction, block I/O instructions, and counting instructions. 
□ S—Sign flag: After an ALU operation, if the most significant bit D7 is 1, the sign flag is set; otherwise it is reset. When the flag is set, you do not necessarily have a negative result. The interpretation of the Sign flag depends upon the number system (unsigned number, signed magnitude, or 2's complement) being used by the programmer. This flag can, of course, be used to indicate negative numbers, but its usage can be confusing. Therefore, it is discussed in detail in the context of the appropriate instructions. This flag is also affected by special input instructions in the Z80 set. 
□ P/V—Parity/Overflow flag: This flag is used for two purposes: to check the parity (the number of Is in a byte) and to check an overflow in dealing with signed numbers. In the case of parity check after an operation, if the number of Is in the result is even (even parity), this flag is set, and if the number of 1 s is odd (odd parity), the flag is reset. For example, if the result, of ANDing two bytes is 0 0 0 0 0 0 1 1, the parity flag is set to indicate even parity (two Is). In this example, the magnitude base-ten (310) is odd; however, the odd or even number has no relationship with the odd or the even parity. 
In arithmetic operations of signed numbers where bit D7 is used to indicate sign, this flag is set to indicate an overflow condition. For example, when bit D7 is reserved for a sign, the magnitude of a number is represented by the remaining seven bits, the maximum being 0 1 1 1 1 1 1 1 (+ 12710). After an addition, if the sum goes beyond +127, bit D7 changes to 1, a change that would indicate a negative result. In fact, this is an overflow condition and it is indicated by the overflow (V) flag. This flag is also used for other functions such as block transfer, search, and interrupt. 
□ H—Half-Carry flag: In an arithmetic operation, this flag is affected by the carry or borrow between bits D3 and D4. In addition, when there is a carry from bit D3 to D4, the Half-Carry flag (H) is set; otherwise, it is reset. In a subtraction, when there is a borrow from bit D4 to D3, this flag is set; otherwise, it is reset. 
The flag is used internally for BCD (Binary Coded Decimal) operations, and there are no Jump or Call instructions associated with this flag. 
□ N—Add/Subtract flag: This flag is also used internally for BCD operations to distinguish between addition and subtraction. For BCD addition, this flag is 0 and for subtraction it is set to 1. 
The alternate flag register F' is associated with the alternate accumulator A' as shown in Figure 3.1. The contents of this register can be accessed by using the exchange instruction. 
3.13 General-Purpose and Alternate Registers 
The Z80 microprocessor has six programmable general-purpose registers named B, C, D, E, H, and L, as shown in Figure 3.1. These are 8-bit registers used for storing data during the program execution. They can be combined as register pairs—BC, DE, HL—to perform 16-bit operations or to hold memory addresses. 
The programmer can use these registers to load or copy data. For example, the instruction LD B, C copies the data from register C into register B. Conceptually, these registers can be viewed as memory locations, except that they are built inside the microprocessor and identified by specific names. Some microprocessors do not have this type of register; instead, they use memory as their registers. 
In addition to the general-purpose registers, the Z80 includes a similar set of six alternate registers designated as B', C, D', E', H', and L'. These are 8-bit registers used for exchanging data with the general-purpose registers. They are not directly available to the programmer, except through the exchange instructions. 
3.14 16-Bit Registers as Memory Pointers 
The Z80 microprocessor includes four 16-bit registers used to hold memory addresses; they are classified here as memory pointers. The primary function of memory is to store instructions and data, and the microprocessor needs to access memory registers to read these instructions and data. To access a memory register, the microprocessor identifies the register by using the addresses in these memory pointers. 
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INDEX REGISTERS (DC AND lY) 
The Z80 has two 16~bit index registers called IX and lY. Each register is used to specify a memory address by the 16-bit address it holds and a displacement count. For example, if the IX register holds 2050h, a higher memory address such as 2060h can be specified by adding the displacement count of IOh. Similarly, a lower memory address such as 2040h can be specified by adding the negative of IOh in 2's complement. 
In addition to the index registers, the HL pair is frequently used as a memory pointer. Similarly, the BC and DE pairs can be used also as memory pointers in a limited way. However, no displacement byte can be added to the contents of these pairs. 
STACK POINTER (SP) 
The stack pointer is also a 16-bit register used to point to the memory location called the stack. The stack is a defined area of memory locations in R/W memory, and the beginning of the stack is defined by loading a 16-bit address into the stack pointer. 
We will discuss the concept of the stack memory in detail when we introduce the topic of subroutines. 
PROGRAM COUNTER (PC) 
This register functions as a 16-bit counter. The microprocessor uses this register to sequence the execution of instructions. The program counter points to the memory address from which the next byte is to be fetched, and when the microprocessor places an address on the address bus to fetch the byte from memory, it then increments the program counter by one to point to the next memory location. 
3.15  Special-Purpose Registers 
The Z80 microprocessor includes two special-purpose registers generally not found in other 8-bit microprocessors. These registers are shown in Figure 3.1 as interrupt vector register (I) and the memory refresh register (R). 
INTERRUPT VECTOR REGISTER (I) 
This is an 8-bit register used in the interrupt process. When an external device interrupts the microprocessor with a request to do something else, the microprocessor should be directed to a 16-bit address in memory where it can find what to do next. The I register is used to store the high-order eight bits of the 16-bit address; the low-order eight bits must be supplied by the interrupting device. We will discuss the details and applications of this register in Chapter 12. 
MEMORY REFRESH REGISTER (R) 
The memory refresh register (R) is also an 8-bit register which is used as a 7-bit counter to provide an address of memory cells to be refreshed in dynamic memory. As mentioned in the previous chapter, information stored as a capacitive charge in dynamic memory leaks; therefore, bit information should be refreshed, meaning it should be read and stored again 
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every few milliseconds. Applications of the memory refresh register (R) will be discussed in detail with the topic of Interfacing Dynamic Memory. 
3.16  Using the Programming Model 
In this section, we will illustrate what happens to the contents of some of the registers in the microprocessor when a series of instructions is executed as shown in Example 3.1. 
Write instructions in English-like statements to load the two data bytes 53h and C9h into registers A and B respectively. Add the two bytes. Illustrate the contents of registers affected in the programming model after the execution of each instruction and the status of the Carry and Zero flags. 
Example 3.1 
Solution 
	53 
	X 

	C9 
	X 

	(a) 

	IC 
	C= 1, z = o 

	C9 
	X 


1. Load A with 53h. 
2. Load B with C9h. 
3. Add registers A and B. 
(b) 
FIGURE 3.3 
Register Contents 
Figure 3.3(a) shows the contents of registers A and B after the execution of the first two instructions. The next instruction adds the contents of registers A and B; the sum is 1 IChFigure 3.3(b) shows the accumulator with ICh and the CY flag set in the flag register. Please note that the flags are not affected by the Load or Copy instructions. 
Z80 HARDWARE MODEL 
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        The Z80 hardware model described in this section represents the microprocessor unit (MPU) as defined in Chapter 2. The Z80 microprocessor almost qualifies as an MPU, except that an external oscillator circuit is required to provide the operating frequency and appropriate control signals need to be generated to communicate with memory and I/O. In 
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the following sections, we describe the Z80 microprocessor in relation to the model we developed in the previous chapter. Then we examine the timing involved in reading an instruction from memory and generate the necessary control signals by using appropriate logic gates. 
3.21   The Z80 Microprocessor 
The Z80 is a general-purpose 8-bit microprocessor with 16 address lines and requires a single -I-.5 V power supply. It is housed in a 40-pin dual-in-line (DIP) package. The different versions of Z80 microprocessors such as Z80, Z80A, Z80B, and Z80H are rated to operate at various frequencies ranging from 2.5 MHz to 8 MHz. Even though the Z80 instruction set is upward compatible with the Intel 8080 set, neither of these microprocessors are pin compatible. 
Figure 3.4 shows pin configuration of the Z80 microprocessor and its hardware model with logic signals. All the signals can be classified into six groups: (1) address bus, (2) data bus, (3) control signals, (4) external requests, (5) request acknowledge and special 
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signals, and (6) power and frequency signals. This Z80 hardware model matches the hardware model of the generalized MPU described in Chapter 2. The specific details of these signals follow. 
ADDRESS BUS 
The Z80 has 16 tri-state signal lines, A15-A0, known as the address bus. These lines are unidirectional and capable of addressing 64K (2'^) memory. The address bus is used to send (or place) the addresses of memory registers and I/O devices. 
DATA BUS 
The data bus consists of eight tri-state bidirectional lines D7-D0 and is used for data transfer. On these lines, data can flow in either direction—from the microprocessor to memory and I/Os or vice versa. 
CONTROL SIGNALS 
This group consists of five individual output lines: three can be classified as status signals indicating the nature of the operation being performed, and two as control signals to read from and write into memory or I/Os. 
□ Ml—Machine Cycle One: This is an active low signal indicating that an opcode is being fetched from memory. This signal is also used in an interrupt operation to generate an interrupt acknowledge signal, which will be explained in Chapter 12. 
□ MREQ—Memory Request: This is an active low tri-state line. This signal indicates that the address bus holds a valid address for a memory read or write operation. 
□ lORQ—I/O Request: This is an active low tri-state line. This signal indicates that the low-order address bus (A7-A0) holds a valid address for an I/O read or write operation. This signal is also generated for an interrupt operation. 
□ RD—Read: This is an active low tri-state line. This signal indicates that the microprocessor is ready to read data from memory or an I/O device. This signal should be used in conjunction with MREQ for the Memory Read (MEMRD) operation and with lORQ for the I/O Read (lORD) operation. 
□ WR^—Write: This is an active low tri-state line. This signal indicates that the microprocessor has already placed a data byte on the data bus and is ready to write into memory or an I/O device. This signal should be used in conjunction with MREQ for the Memory Write (MEMWR) operation and with lORQ for the I/O Write (lOWR) operation. 
EXTERNAL REQUESTS 
This group includes five different input signals to the microprocessor from external sources. These signals are used to interrupt an ongoing process and to request the microprocessor to do something else. 
□ RESET—Reset: This is an active low signal used to reset the microprocessor. When RESET is activated, the program counter (PC), the interrupt register (I), and the memory refresh register (R) are all cleared to 0. During the reset time, the address bus and 
the data bus are in high impedance state, and all control signals become inactive. This signal also disables interrupt and refresh. The RESET signal can be initiated by an external key or switch and must be active at least for three clock periods to complete the reset operation. 
□ INT—Interrupt Request: This is an active low signal, initiated by an I/O device to interrupt the microprocessor operation. When the microprocessor accepts the interrupt request, it acknowledges by activating the lORQ signal during the M] cycle. The INT signal is maskable, meaning it can be disabled through a software instruction. The interrupt process will be fully discussed in Chapter 12. 
□ NMI—Nonmaskable Interrupt: This is a nonmaskable interrupt; it cannot be disabled. It is activated by a negative edge-triggered signal from an external source. This signal is used primarily for implementing emergency procedures. There is no signal or pin to acknowledge this signal; it is accepted provided the Bus Request signal is inactive. 
□ BUSRQ—Bus Request: This is an active low signal initiated by external I/O devices such as the DMA (Direct Memory Access) controller. An I/O device can send a low signal to BUSRQ to request the use of the address bus, the data bus, and the control signals. The external device can use the buses, and when its operations are complete, it returns the control to the microprocessor. This signal is used primarily for the direct memory access technique to be discussed in Chapter 16. 
□ WAIT—Wait: This is an active low signal and can be used by memory or I/O devices to add clock cycles to extend the Z80 operations. This signal is used when the response time of memory or I/O devices is slower than that of the Z80. When this signal goes low, it indicates to the microprocessor that the addressed memory or I/O device is not yet ready for data transfer. As long as this signal is low, the Z80 keeps adding cycles to its operation. 
REQUEST ACKNOWLEDGE AND SPECIAL SIGNALS 
Among the five external requests described above, only two of the requests need acknowledgement: Bus Request and Interrupt. The interrupt is acknowledged by the lORQ signal in conjunction with the Mi signal. The Bus Request is acknowledged by a BUSAK (Bus Acknowledge). In addition, the Z80 has two special signals: HALT and RFSH. 
□ BUSAK—Bus Acknowledge: This is an active low output signal initiated by the Z80 in response to the Bus Request signal. This signal indicates to the requesting device that the address bus, the data bus, and the control signals (RD, WR, MREQ, and lORQ) have entered into the high impedance state and can be used by the requesting device. 
□ HALT—Halt: This is an active low output signal used to indicate that the MPU has executed the HALT instruction. 
□ RFSH—Refresh: This is an active low signal indicating that the address bus Ae-Ao (low-order seven bits) holds a refresh address of dynamic memory; it should be used in conjunction with MREQ to refresh memory contents. 
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POWER AND FREQUENCY SIGNALS 
This group includes three signals as follows: 
□ ^—Clock: This pin is used to connect a single phase frequency source. The Z80 does not include a clock circuit on its chip; the circuit must be built separately. 
□ +5 V and GND—These pins are for a power supply and ground reference; the Z80 requires one +5 V power source. 
MACHINE CYCLES AND BUS TIMINGS 
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        The Z80 microprocessor is designed to execute 158 different instructions. Each instruction has two parts: operation code (known as opcode) and operand. The opcode is a command such as Add, and the operand is an object to be operated on, such as a byte or the contents of a register. Some instructions are 1-byte instructions and some are multi-byte instructions. To execute an instruction, the Z80 needs to perform various operations such as Memory Read/Write and I/O Read/Write. However, there is no direct relationship between the number of bytes of an instruction and the number of operations the Z80 has to perform. For example, the instruction to send the contents of the accumulator to the output port IOh is a 2-byte instruction: OUT (lOH), A. 
□ Byte 1: OUT —> This is the opcode to output data. 
□ Byte 2: (lOH*), A -» This is the operand to specify that the byte should be sent from the accumulator to Port IOh. 
But the Z80 has to perform three operations: (1) read Byte 1 from memory, (2) read Byte 2 from memory, (3) send data to port IOh. 
In the previous section, numerous Z80 signals and their functions were described. Now we need to examine these signals in conjunction with execution of individual instructions and their operations. This task may appear overwhelming at the beginning; fortunately, all instructions are divided into a few basic operations called machine cycles, and these machine cycles are divided into precise system clock periods. 
The microprocessor external communication functions can be divided into three basic categories: 
1. Memory Read and Write. 
2. I/O Read and Write. 
3. Request Acknowledge. 
These functions are further divided into various operations (machine cycles) as 
*A hexadecimal number in an instruction is shown as a number followed by the letter H. 
shown in Table 3.1. Each instruction consists of one or more of these machine cycles, and each machine cycle is divided into T-states. 
To understand various operations, we need to define three terms: instruction cycle, machine cycle, and T-state. 
Instruction cycle is defined as the time required to complete the execution of an instruction. The Z80 instruction cycle consists of one to six machine cycles or one to six operations. 
Machine cycle is defined as the time required to complete one operation of accessing memory, accessing I/O, or acknowledging an external request. This cycle may consist of three to six T-states. 
T-state is defined as one subdivision of the operation performed in one clock period. These subdivisions are internal states synchronized with the system clock, and each T-state is precisely equal to one clock period. The terms T-state and clock period are often used synonymously. 
In this chapter, we focus on the first three operations listed in Table 3.1—Opcode Fetch, Memory Read, and Memory Write—and examine the signals on various buses in relation to the system clock. In the next chapter, we will use these timing diagrams to interface memory with the Z80 microprocessor. Similarly, we will discuss timings of other machine cycles in later chapters in the context of their applications. For example, I/O Read/Write machine cycles will be discussed in Chapter 5 and Interrupt Acknowledge will be discussed in Chapter 12. 
3.31  Opcode Fetch Machine Cycle (Mi) 
The first operation in any instruction is opcode fetch. The microprocessor needs to get (fetch) this machine code from the memory register where it is stored before the microprocessor can begin to execute the instruction. The opcode fetch operation and its timing signals are illustrated in the example below. 
TABLE 3.1 
The Z80 Machine Cycles and Control Signals 
Machine Cycle Mi 
Opcode Fetch (Mi) 0 
Memory Read 1 
Memory Write 1 
I/O Read 1 
I/O Write I 
Interrupt Acknowledge 0 
Non-maskable Interrupt 0 
Bus Acknowledge (BUSAK = 0) 1 
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The accumulator of the Z80 microprocessor holds the data byte 9Fh, and the code for Example instruction LD B, A (opcode) 0 1 0 0 0 1 1 1 (47h) is stored in memory location 2002h. ^-^ This is a 1-byte instruction, and when this opcode is executed, the contents of the accumulator will be copied into register B. List the sequence of events that takes place to execute this machine code and illustrate the signals on various buses in relation to the system clock. 
Before the Z80 can execute the opcode, it needs to fetch the code from the memory Solution location. To fetch the opcode, the Z80 performs the following steps: 
1. The Z80 places the contents of the program counter (2002h) on the address bus, and increments the program counter to the next address, 2003h. The program counter always points to next byte to be executed. 
2. The address is decoded by the external decoding circuit and the register 2002h is identified. 
3. The Z80 sends the control signals (MREQ and RD) to enable the memory output buffer. 
4. The contents of the memory register (opcode 47h) are placed on the data bus and brought into the instruction decoder of the microprocessor. 
5. The Z80 decodes the opcode and executes the instruction, meaning it copies the contents of the accumulator into register B. 
Figure 3.5 shows how the Z80 fetches the opcode using the address and the data buses and the control signal. Figure 3.6 shows the timing of the Opcode Fetch machine cycle in relation to the system's clock. The address bus in Figure 3.6 is shown as two parallel lines. This is a commonly used practice to represent logic levels of groups of lines; some lines are high and others are low, and the crossover of the lines indicates that a new address is being placed on the address bus. The high impedance state is shown by a straight line as in the data bus (D7-D0). The timing details of these signals are given below. 
1. Figure 3.6 shows that the Opcode Fetch cycle is completed in four clock periods or T-states. This machine cycle is also identified as the Mi cycle. 
2. At the beginning of the first clock period Ti, the control signal Mi goes low and the contents of the program counter (2002h) are placed on the address bus. 
3. After the falling edge of Ti, the Z80 asserts two control signals—MREQ and RD, both active low. The MREQ indicates that it is a memory related operation and RD suggests that it is a Read operation. Both signals are necessary to read from memory. 
4. The internal decoder of the memory and the Chip Select circuit (not shown in Figure 3.6) decode the address and identify register 2002h. The control signals MREQ and RD are used to enable the memory output buffer. The data bus, which was in high impedance state, is activated as an input bus (to the microprocessor) shortly after the leading edge of T2. After the falling edge of T2, memory places its register contents (47h) on the data bus. 
Data Bus 
Internal Data Bus 

        
        [image: Picture #25]
        

        Instruction Decoder 
Control Logic 

        
        [image: Picture #26]
        

        	B 
	
	C 

	D 
	
	E 

	H 
	
	L 

	IX 

	lY 

	SP 

	
	PC 
	

	
	2003 
	


2002 
Memory 
2002 
Address Bus 
	
	

	
	

	
	47 

	
	

	/ 
	

	
	

	
	


2000 
2002 
2004 2005 
MREQ 
RD 
47 
FIGURE 3.5 
Z80 Memory Read Operation 
5. At the leading edge of T3, the data on the data bus are read, and the control signals become inactive. 
6. During T3 and T4, the instruction decoder in the microprocessor decodes and executes the opcode. These are internal operations and cannot be observed on the data bus. 
The following two steps are irrelevant to the present problem; however, they are included here as part of the M] cycle. 
7. During T3 and T4, when the Z80 is performing internal operations, the low-order address bus is used to supply a 7-bit address for refreshing dynamic memory. If the system includes dynamic memory, this operation simplifies its interfacing hardware. This aspect of the Mi cycle will be discussed again when we illustrate interfacing of dynamic memory (Chapter 16). 
8. Figure 3.6 shows the signal called WAIT. The Z80 samples the Wait line during T2, and if it is forced low by an external device (such as memory or I/O), the Z80 adds Wait states (clock cycles) to extend the machine cycle and continues to add clock cycles until the Wait signal goes high again. This technique is used to interface memories with slow response time and will be discussed again in Chapter 16. 
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FIGURE 3.6 
Z80 Opcode Fetch (Mi) and Bus Timings 
SOURCE: Courtesy of Zilog Inc (adapted) 
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3.32  Memory Read Machine Cycle 
The second machine cycle we want to illustrate is Memory Read. As explained in the next example, this cycle is quite similar to the Opcode Fetch cycle. 
Two machine codes—0 0 111110 (3Eh) and 1 0 0 1 1 1 1 1 (9Fh)—are stored in memory locations 2G00h and 200 1h respectively, as shown below. The first machine code (3Eh) represents the opcode to load a data byte into the accumulator, and the second code (9Fh) represents the data byte to be loaded into the accumulator. Illustrate the bus timings as these machine codes are executed, and calculate the time required to execute the Opcode Fetch and the Memory Read cycles and the entire instruction cycle if the clock frequency is 4 MHz. 
Example 3.3 
Address 
Machine Code 
Instruction 
Comment 
2000h 200 1h 
0 0 1 1 1 1 1 O 
I 00 I I I 1 1 
3E 9F 
LD A, 9FH   ;Load 9FH in the accumulator 
This instruction consists of two bytes; the first is the opcode and the second is the data byte. The Z80 must first read these bytes from memory and thus requires at least two machine cycles. The first machine cycle is Opcode Fetch and the second machine cycle is 
Solution 
Memory Read, as shown in Figure 3.7. These cycles are described in the following list. 
1. The first machine cycle (Opcode Fetch) is identical in bus timings with the machine cycle illustrated in Example 3.2, except for the bus contents. The address bus contains 2000h and the data bus contains the opcode 3Eh. When the Z80 decodes the opcode during the T3 state, it realizes that a second byte must be read. 
2. After the completion of the Opcode Fetch cycle, the Z80 places the address 2001h on the address bus and increments the program counter to the next address, 2002h. To differentiate the second cycle from the Opcode Fetch cycle, the Mi signal remains inactive (high). 
3. After the falling edge of Ti of the Memory Read cycle, the control signals MREQ and RD are asserted. These signals along with the memory address are used to identify the register 200 1h and enable the memory chip. 
4. After the leading edge of T3, the Z80 activates the data bus as an input bus; memory places the data byte 9Fh on the data bus, and the Z80 reads and stores the byte in the accumulator during T3. 
5. After the falling edge of T3, both control signals become inactive (high), and at the end of T3, the next machine cycle begins. 
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Memory Read Machine Cycle and Its Timings 
SOURCE: Courtesy of Zilog Inc (adapted). 
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The execution times of the Memory Read machine cycle and the instraction cycle are calculated as follows: 
Clock Frequency f = 4 MHz 
T-state = Clock Period (1/f) = 0.25 jjls 
Execution Time for Opcode Fetch: (4 T) X 0.25 = 1.0 |xs 
Execution Time for Memory Read: (3 T) X 0.25 = 0.75 |xs 
Execution Time for Instruction: (7 T) x 0.25 = 1.75 |jls. 
3.33  Memory Write Cycle 
Now we want to illustrate the third machine cycle: Memory Write. This machine cycle writes or stores data in a specified memory register as shown in the following example. 
The HL register holds the address 2350h, and the accumulator has the data byte 9Fh. The instruction code 01110111 (77h) is stored in memory location 2003h. When this code is executed, it stores the contents of the accumulator in the memory location indicated by the address in the HL register. Illustrate the bus contents and timings as this instruction is being executed. 
Instruction: LD (HL), A ;Copy contents of the accumulator 
into memory location, the address of which is stored in HL register. 
This is a one-byte instruction with two machine cycles: Opcode Fetch and Memory Write. Solution In the first machine cycle, the Z80 fetches the code (77h), and in the second machine cycle, it copies the byte 9Fh from the accumulator into the memory location 2350h. The timings of these machine cycles are shown in Figure 3.8 and explained below. 
1. In the Opcode Fetch machine cycle, the Z80 places the address 2003h on the address bus and gets the code 77h by using the control signals MREQ and RD as in the previous examples. The program counter is also incremented to the next address, 2004h. 
2. During the T3 and T4 states, the Z80 decodes the machine code 77h and prepares for the memory write operation. 
3. At the beginning of the next machine cycle (Memory Write), it places the contents (2350h) of the HL register on the address bus. At the falling edge of Ti, MREQ goes low and the data byte 9Fh from the accumulator is placed on the data bus. 
4. After allowing one T-state (after MREQ) to stabilize the address, the Z80 asserts the control signal Write (WR), which is used to write the data byte at the address shown on the address bus. 
5. After the falling edge of T3, both control signals become inactive, and one-half T-state later, the data bus goes into high impedance state. 
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3.34 Review of Important Concepts 
1. In each instruction cycle, the first operation is always Opcode Fetch, and it is indicated by the active low Mi signal. This cycle can be four to six T-states in duration. 
2. The Memory Read cycle is in many ways^similar to the Opcode Fetch cycle. Both use the same control signals (MREQ and RD) and read contents from memory. However, the Opcode Fetch reads opcodes and the Memory^ad reads 8-bit data or addresses; the two machine cycles are differentiated by the Mj signal. 
3. The control signals MREQ and RD, are both necessary to read from memory. 
4. In the Memory Write cycle, the Z80 writes (stores) data in memory using the control signals MREQ and WR. 
5. In the Memory Read cycle, the Z80 asserts the MREQ and RD signals to enable memory, and then the addressed memory places data on the data bus; on the other hand, in the Memory Write cycle, the Z80 asserts the MREQ, places data byte on the data bus, and then asserts the WR signal to write into the addressed memory. 
6. Generally, the Memory Read and Write cycles consist of three T-states; however, they can take four T-states in some instructions. The Memory Read and Write cycles will not be asserted simultaneously; the microprocessor cannot read and write at the same time. 
3.35 Generating Control Signals 
After examining the concepts summarized at the end of the previous section, we may need to generate additional control signals. 
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Generating Memoiy Control Signals 
1. To read from memory, the MREQ and the RD signals are necessary, and to read from an input device, the lORQ and the RD are necessary; all these signals are active low. As a design practice, the MREQ is generally combined with a decoded address (discussed in Chapter 4) and RD is connected directly to the memory chip. However, control signals RD and WR can also be combined with MREQ and lORQ to generate additional signals. We can generate active low Memory Read (MEMRD) signal either by ANDing these signals in a negative NAND gate as shown in Figure 3.9(a) or by using a 2-to-4 decoder as shown in Figure 3.9(b). The decoder is enabled by the MREQ and has RD and WR signals as input. Both inputs cannot be active at the same time; when one is low, the other will remain high. When RD is active low, the input is 0 1, and the output Oi goes active as MEMRD. 
2. To write into memory, the MREQ and the WR signals are necessary, and to write a data byte to an output device the lORQ and WR signals are necessary; all these signals are active low. If necessary, we can generate active low Memory Write (MEMWR) signal by ANDing MREQ and WR signals in a negative NAND gate as shown in Figure 3.9(a) or by using the decoder as shown in Figure 3.9(b"). Similarly, lORD (I/O Read) and 10WR (I/O Write) signals can be generated; this is discussed in Chapter 5. 
SOME PUZZLING QUESTIONS AND THEIR ANSWERS 
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        After reading the previous sections, the reader may have many unanswered questions. One of the primary reasons for this predicament is that the microprocessor is a programmable and complex device. It interacts with external devices such as memory and I/Os, and some questions cannot be answered until we discuss these other devices. Similaily, some questions will remain unanswered until we start using instructions and writing programs. However, there are some questions which we should answer immediately. 
1. How does the Z80 microprocessor know where to begin after the power is turned on? 
Most microcomputer systems have built-in power-on reset circuits, meaning that when the power is turned on, the microprocessor is reset and its program counter is cleared to the address OOOOh- The address OOOOh is placed on the address bus, and the instruction stored at that location determines what happens next. 
2. How does the Z80 know what operation to perform first (Memory Read/Write or I/O Read/Write)? 
The first operation is always an Opcode Fetch. 
3. How does the microprocessor differentiate between an opcode and a data byte? 
When the first opcode is fetched and decoded in the instruction register, the microprocessor recognizes the number of bytes that must be read from memory for the complete instruction. The instructions can range from 1-byte to 4-byte in length. Figure 3.7, for example, contains a 2-byte instruction (3E and Data), and the second byte is always considered Data. If that second byte is omitted by mistake, the Z80 will interpret whatever is in that memory location as Data. The byte after the Data will be treated as the next instruction. The microprocessor is a sequential machine; it goes from one memory location to the next unless instructed to do otherwise. 
4. What is the use of the M, signal? It looks as if it will not be connected to any device. 
This signal serves two purposes: (1) it differentiates the Opcode Fetch cycle from other operations, and (2) it can be used to generate the Interrupt Acknowledge signal. 
5. If flags are individual flip-flops, can they be observed on an oscilloscope? 
No, they cannot be observed on an oscilloscope; these flip-flops are internal and not connected to any of the external pins. However, they can be examined by storing them on the stack memory (see Chapter 10). 
6. Is the number of T-states required for a given machine cycle constant? 
No. But most Opcode Fetch machine cycles require four T-states, and Memory Read/Write and I/O Read/Write machine cycles, generally, take three or four T-states. However, there are some exceptions. 
7. How does one recognize the machine cycles in a given instruction? 
The number of machine cycles and the T-states required for those machine cycles are listed in the instruction set. There is a repetitive pattern, and one can use the following guidelines. 
□ The number of machine cycles in an instruction indicates how many times the microprocessor must access memory or I/O. 
□ The first machine cycle in an instruction is always Opcode Fetch. 
□ The microprocessor must read all the bytes (codes) from memory before it can execute an instruction. 
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For example, a 3-byte instruction requires at least three machine cycles. The unconditional Jump instruction is a 3-byte instruction with 10 (4, 3, 3) T-states; it consists of one opcode and a 16-bit address of the jump location. Therefore, by examining the number of T-states, we can easily classify the machine cycles of the Jump instruction as one Opcode Fetch and two Memory Read. 
Another example is ADD A, 32H (add a byte 32h to the contents of the accumulator). This is a 2-byte instruction with 7 (4, 3) T-states. By examining the number of bytes and the number of T-states, we can conclude that it must have two machine cycles—the first is Opcode Fetch and the second is Memory Read. The addition is performed inside the processor, and it does not need any additional information from memory or I/O. 
8. How does one recognize machine cycles in an instruction when the number of bytes is not the same as the number of machine cycles? 
One has to examine the number of bytes, T-states, and the operation being performed. For example, the instraction LD (2050H), A has three bytes and 13 (4, 3, 3, 3) T-states; it copies the contents of the accumulator into the memory location 2050h. The processor must read the entire instruction first; therefore, the first must be Opcode Fetch, followed by two Memory Read cycles. This accounts for ten T-states. In the remaining three states, the processor must write (copy) the contents of the accumulator into the memory location 2050h; therefore, it must be the Memory Write cycle. 
ARCHITECTURE OF CONTEMPORARY 8-BIT 
MICROPROCESSORS 
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        The primary reasons to discuss other 8-bit contemporary microprocessors are to examine how the MPU model developed in the last chapter matches with various microprocessors and to confirm that the underlying basic concepts remain similar even though specific details may vary from one chip to another. At present, a large number of 8-bit generalpurpose microprocessors is available in the market. We will focus on three: the Intel 8085, the National Semiconductor NSC 800, and the Motorola 6800. These microprocessors are selected to illustrate various strategies used in designing the microprocessor. The recent trend in 8-bit microprocessors can be illustrated by so-called 8-bit super chips, such as the Hitachi HD64180 and the Zilog Z280. These are discussed in Chapter 18. 
3.51   The Intel 8085 
The Intel 8085 and its predecessor the 8080 are the most widely used 8-bit microprocessors. The 8080 MPU is composed of three chips—the 8080 microprocessor, the clock generator, and the system driver—and it needs three power supplies ( -I- 5 V, - 5 V, +12 V). The 8085 is an upgraded version of the 8080; it operates with one -I- 5 V power supply, and one chip replaces the 8080's three chips. The 8085 is upward software compatible with the 8080; it has only two more instructions than the 8080. The programming models of both microprocessors are identical; however, the 8085 hardware model differs 
significantly not only from the 8080 but also from other contemporary 8-bit microprocessors. The 8085 has a multiplexed bus (8 lines), which is used as both the 8-bit data bus and the low-order address bus. This feature allows Intel to provide additional interrupt lines. 
THE 8085 HARDWARE MODEL 
Figure 3.10 represents the hardware model with the logic pinout of the 8085. The six categories of the signals are address bus, data bus, control (and status) signals, external requests, request acknowledge, and power and frequency signals. In addition, the 8085 has two signals for serial I/O. 
The 8085 has a 16-bit address bus; however, its low-order address bus is multiplexed with the data bus. These eight lines are time-shared by two functions; in the earlier part of a machine cycle, they are used for a low-order address, and in the later part for data. To 
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interface this chip with memory (without any special features), these Hnes need to be demuhiplexed (separated). The 8085 has a signal called ALE (Address Latch Enable), which can be used to demultiplex the bus, as shown in Figure 3.11. The ALE is asserted at the beginning of each machine cycle, when the bus has an address. Figure 3.11 shows that the ALE is used to latch the address, thus creating a separate low-order bus A7-A0. The Z80 does not need this signal because it has separate lines for the data and the address buses. 
_The 8085 has two status signals So and Si to identify various machine cycles, and an lO/M signal to differentiate between an I/O operation and a memory operation. In contrast, the Z80 identifies the Opcode Fetch cycle by asserting Mi and has two separate signals (MREQ and lORQ) to identify memory and I/O operations. In the 8085, the control 
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Demultiplexing the 8085 Bus 
signals Memory Read/Write and I/O Read/Write are generated by ANDing lO/M and control signals RD and WR. 
Figure 3.10 shows that the 8085 provides five interrupt lines as external requests, out of which the TRAP is equivalent to the Z80 non-maskable interrupt. The Z80 provides various additional interrupt modes through software. 
THE 8085 SOFTWARE MODEL 
Figure 3.10 also shows the software model of the 8085. It includes one accumulator, a flag register, a general-purpose register array, and two 16-bit registers as memory pointers (program counter and stack pointer). This model matches very well with the requirements of the microprocessor as a processing unit (Figure 2.2). The Z80 includes all the 8085 registers in addition to an alternate set of registers, index registers, and special-purpose registers. 
3.52 The National Semiconductor NSC800 
The NSC800 is an 8-bit microprocessor manufactured by National Semiconductor. It is a low-power CMOS device that combines features of the 8085 and the Z80. Because its power consumption is 5 percent of that of NMOS devices, it is ideally suited for lowpower or battery-operated applications. 
The NSC800 has a bus structure similar to that of the 8085: a multiplexed bus with the status signals So, Si, and lO/M. It has a powerful interrupt scheme that combines the 8085 signals and the Z80 interrupt modes. Its software model, instmction set, and mnemonics are identical with those of the Z80. 
In summary, the NSC800 combines the software capability of the Z80 with the bus structure of the 8085; its hardware and software models match with the generalized model we developed in the previous chapter. 
3.53 The Motorola MC6800 
The MC6800 was developed at about the same time as the Intel 8080. The hardware model of this processor is similar to any other processor we have discussed, but it has a different internal architecture. 
Figure 3.12 represents the 6800's architecture. It has 16 address lines, 8 data lines and fewer control (and status) signals than the Z80. The fewer control signals result from not having peripheral-mapped I/O; all I/Os are interfaced as memory-mapped I/Os. Therefore, the control signals in this processor need not differentiate between memory and I/O operations. 
The other significant difference is in its internal architecture; it has two accumulators, one flag register shown as the Condition Code Register, but no general-purpose registers. This processor uses external memory for storing interim calculations and data bytes; it makes extensive use of memory referencing in its operations. The 6800 has simple timing and control signals; the clock period is the same as the machine cycle. 
The 6809 is the latest improved version of the 6800 family; however, its machine code is not compatible with that of the 6800. Its internal architecture is similar to that of the 
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        6800, except it has an additional stack pointer, an additional index register, and a register to be used for referencing memory. The basic design philosophy is the same as that of the 6800, but it has eliminated some limitations of the 6800. 
3.54  Review of 8-bit Microprocessors 
In the last section, we examined the architectures of three microprocessors and occasionally compared them with the Z80. Now we can easily conclude that the architectures of various 8-bit microprocessors have similar patterns and can be represented by the hardware and the software models developed in the last chapter. We can classify these processors into two categories: one group, including the Z80, the 8085, NSC800, is register-oriented; the group including the 6800 and the 6809 is memory-reference-oriented. 
SUMMARY 
□ The Z80 microprocessor has six general-purpose 8-bit registers (B, C, D, E, H, and L) as a primary set. In addition, it includes the alternate set of these registers, 
all of which can be used to exchange information with the primary set. The registers B and C, D and E, and H and L can be combined to perform some 16-bit operations. 
□ The ALU section of the Z80 includes accumulator A and the flag register to indicate six different data conditions. It also includes the alternate accumulator A' and flag register F', which can be used to exchange information with A and F respectively. 
□ Four flags—Sign, Zero, Carry, and Parity/Overflow—can be used for decision making and tested in conjunction with Jump, Call and Return instructions. Two flags—Half-Carry and Add/Subtract—are used internally for BCD operations and not available for the programmer. 
□ The Z80 has four 16-bit registers^—IX, lY, SP, and PC—used as memory pointers. Two index registers IX and lY can be used to point to any memory location, and an address and the direction (backward or forward) can be specified with a displacement byte. The stack pointer (SP) is used to specify memory locations in a defined R/W memory segment called the stack. The program counter (PC) is used to sequence the program execution; it points to the next memory address from which the machine code is to be fetched. 
□ The Z80 includes two 8-bit special-purpose registers: Interrupt Vector (I) and Memory Refresh (R). The I register provides the high-order 8 bits of a 16-bit address to which the program is to be directed after an interrupt. The R register is a 7-bit counter and supplies an address for refreshing memory cells of a dynamic memory. 
□ The Z80 signals can be classified into six groups: address bus, data bus, control signals, external requests, request acknowledge, and power and frequency signals (see Section .3.2 for definitions of these signals). 
□ The Z80 is designed to execute 158 instructions, and each instruction can be divided into a few basic operations called machine cycles. 
□ The frequently used machine cycles are Opcode Fetch, Memory Read and Write, and I/O Read and Write. 
□ The Opcode Fetch and Memory Read are operationally similar; the Z80 reads from memory in both machine cycles. However, the Z80 reads opcode during the Opcode Fetch cycle, and it reads 8-bit data during the Memory Read cycle. In the Memory Write cycle, the Z80 writes data into memory. 
□ The memory operations are differentiated from I/O operations_by two control signals: MREQ and lORQ. The signal MREQ is combined with RD and WR signals to generate MEMRD and MEMWR control signals. 
□ The Z80 performs three basic steps in any of these machine cycles: It places an address on the address bus, sends appropriate control signals, and transfers data via the data bus. 
□ The contemporary 8-bit microprocessors can be classified into two categories: One group is register-oriented, and the other is memory-reference-oriented. 
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ASSIGNMENTS 
1. How is the accumulator different from the 8-bit general-purpose registers of the Z80 microprocessor? 
2. Explain the function of the alternate registers. 
3. What is a flag and what is its function? 
4. If the Z80 adds 87h and 79h, specify the contents of the accumulator and the status of the S, Z, and CY flags. 
5. If the Z80 is an 8-bit microprocessor, why are the program counter and the stack pointer 16-bit registers? 
6. If the Z80 has fetched the machine code located at the memory location 205Fh, specify the contents of the program counter. 
7. The index register IX holds the address 2058h. Specify the value of the displacement byte needed to make the effective address 2097h. 
8. The index register lY holds the address 2070h. Specify the value of the displacement byte in 2's complement needed to make the effective address 2050h. 
9. The MOS Technology 6501 microprocessor chip has 13 address lines. Specify the memory registers it is capable of addressing. 
10. If the Intel 8086 microprocessor has 20 address lines, what is its capacity of memory addressing? 
11. If the clock frequency is 4 MHz, how much time is required to execute an instruction of 21 T-states? 
12. The instruction LD IX, (2050h) loads 2050h into the index register. Specify the number of bytes, machine cycles, and T-states of this instruction by checking the instruction set. Calculate the time required to execute the instraction if the system clock frequency is 6 MHz. 
13. List the sequence of events that occurs when the Z80 reads from memory. 
14. In the Opcode Fetch cycle, what are the control signals required to enable the memory buffer? 
15. When is the data byte placed on the data bus in the Memory Write cycle? 
16. The memory location 2065h holds the opcode F9h. If the Z80 begins the Opcode Fetch cycle by placing the address 2065h on the address bus, specify the contents of the data bus after the falling edge of the T2 state. 
17. The instruction LD B, (HL) copies the contents of the memory location specified by the 16-bit contents in tlie HL register. It is a 1-byte instruction with two machine cycles. Identify the second machine cycle and its control signals. 
18. Figure 3.13 shows a 3-to-8 decoder with MREQ, RD, and WR as input signals. Identify the control signals that can be generated at the outputs of the decoder. 
19. Figure 3.14 shows the timings of three machine cycles. Identify the types of operations. 
MICROPROCESSOR ARCHITECTURE AND INTERFACING 
FIGURE 3.13 
Generating Control Signals Using a 3-to-8 Decoder: Assignment 18 
RD
MSB 
WR
MREQ
O7 74LS138 , 
3-to-8 Decoder 
E, E, E3O0 
I 
zir-        +5 V 
20. Do the three machine cycles in Figure 3.14 represent a complete instruction? Explain. 
21. Examine the machine cycle Mb in Figure 3.14 and specify the memory being accessed and its contents. 
22. Does the byte on the data bus in the machine cycle Ma in Figure 3.14 represent an opcode? 
23. Explain what is being done in machine cycle Mc (Figure 3.14). 
24. Identify the machine cycles Ma and Mb in Figure 3.15. 
25. Identify the machine cycles in the following instructions: 
SUB B : 1-byte, 4 T-states 
: Subtract the contents of register B from the accumulator AND 47H       : 2-byte, 7 (4, 3) T-states 
: Logically AND 47H with the contents of the accumulator LD A, (2050H) : 3-byte, 13 (4, 3, 3, 3) T-states 
: copy the contents of the memory location 2050H into the accumulator PUSH BC       : 1-byte, 10 (4, 3, 3) T-states 
: copy the contents of BC register into two stack memory locations 
Z80 MICROPROCESSOR: PROGRAMMING MODEL AND HARDWARE MODEL 
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Memory Interfacing 
Memory is an intergral part of a microcomputer system, and in this chapter our focus will be on how to interface a memory chip with the microprocessor. We will examine memory structure and requirements to read from it and write into it. We then compare those requirements with those of the Z80 Memory Read and Write machine cycles. From that comparison, we will derive the basic steps necessary to interface memory. 
This chapter illustrates two examples of interfacing memory chips, one EPROM and the other static R/W memory. The discussion includes analyses of the following: decoding circuits, memory maps, the concept of foldback memory, and linear decoding versus absolute decoding. Finally, an example of memory design is illustrated to synthesize the interfacing concepts. 
OBJECTIVES 
□ List the requirements to read from memory. 
□ List the steps initiated by the Z80 to read from and write into memory. 
□ List the steps required to interface a memory chip with the Z80. 
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        □ Analyze given EPROM and static R/W memory interfacing circuits and specify their memory maps. 
□ Explain the terms absolute decoding, linear decoding, and foldback memory. 
□ Design a circuit to interface EPROM and R/W memory with the Z80 for given memory maps. 
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        INTERFACING MEMORY 
While executing a program, the microprocessor needs to access memory frequently to read instruction codes and data stored in memory, and the interfacing circuit enables that access. Memory has certain signal requirements for writing into and reading from its registers. Similarly, the microprocessor initiates a set of signals when it wants to communicate with memory. The interfacing process involves designing a circuit that will match the memory requirements with the microprocessor signals. In the following section, we examine memory structure and its requirements and also the Z80 Memory Read and Write machine cycles. Then we derive the basic steps necessary to interface memory with the Z80. 
4.11  Memory Structure and Its Requirements 
Read/Write Memory (R/WM) is a group of registers to store binary information. Figure 4.1 shows a typical R/W memory chip; it has 1024 registers, each of which can store eight bits indicated by eight I/O lines.JThe chip has ten address lines A9-A0, one Chip Select CS, and two control lines: Read (RD) to enable the output buffer and Write (WR) to enable the input buffer. Figure 4.1 also shows the internal decoder to decode the address lines. We may recall from Chapter 2 that to read from or write into one of the memory registers certain requirements have to be met. They are as follows: 
1. An address should be placed on the address lines. The low-order address lines are decoded by the internal decoder of the memory chip, and the addressed register is identified. 
FIGURE 4.1 
Logic Diagram: A Typical IK Memory Chip 
A9Ag-ArK— A5A4A3
CS RD WR 
1024 X 8 
2. The high-order address should be decoded to generate a Chip Select signal, and the memory chip is selected by asserting the Chip Select CS low. 
3. To read from the addressed register, the RD should be asserted low to enable the output buffer, and then the data byte from the register will be placed on the I/O lines. 
4. To write into the addressed register, the WR should be asserted low to enable the input buffer, and then data bits from the data lines are stored into the register. 
To interface this memory with the Z80 microprocessor, we need to examine the signals the microprocessor asserts when it attempts to communicate with memory. 
4.12  How does the Z80 Read from or Write into Memory? 
In Chapter 3, we showed the timing diagrams and the Z80 bus contents when an opcode or a data byte is fetched from memory. To read from memory, the Z80 performs the following steps, as shown in Figure 4.2(a): 
1. places a 16-bit address on its address bus (shown as high- and low-order addresses). 
2. asserts the MREQ to indicate that the address bus holds a valid address. 
3. asserts the RD signal low to indicate that it wants to read. 
To write into memory, the Z80 performs the following steps, as shown in Figure 4.3: 
1. places a 16-bit address on the address bus. 
2. asserts MREQ and places data on the data bus. 
3. asserts WR signal. 
To understand and design an interface circuit, we need to match the memory requirements with the Z80 read/write operations. 
4.13  Basic Concepts in Memory Interfacing 
The primary function of memory interfacing is to allow the microprocessor to read from and write into a given register of a memory chip. To perform these operations, the microprocessor should 
1. be able to select the chip. 
2. identify the register. 
3. enable the appropriate buffer. 
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Let us examine the timing diagram of the Memory Read operation—Figure 4.2(a)— in order to understand how the Z80 can read from memory. In Figure 4.2(a), the address bus is divided into two segments, low-order and high-order, to explain the decoding concepts. 
1. The Z80 places a 16-bit address on the address bus, and with this address only one 
register should be selected. For the memory chip in Figure 4.1, only ten address lines are required to identify 1,024 registers. Therefore, we can connect the low-order address lines Ag-Ao of the Z80 address bus to the memory chip. The internal decoder of the memory chip will identify and select the register, as shown in Figure 4.2(b). 
2. The remaining Z80 address lines (A15-A10) should be decoded to generate a ChipSelect (CS) signal unique to that combination of address logic. 
3. The Z80 provides two sjgnals: MREQ and RD. The MREQ can be combined with the decoded address pulse (CS) to generate a Memory Select (MSEL) to select the memory chip. 
4. The microprocessor asserts the control signal RD, enables the output buffer of memory, and reads the data byte. Figure 4.2(a) also shows that memory must place the data byte on the data bus at the beginning of T3. 
To write into a register, the microprocessor performs similar steps. Figure 4.3 shows the Memory Write cycle. In the Write operation, the Z80 places the address and data, and asserts the MREQ signal. After allowing sufficient time for data to become stable, it asserts the Write (WR) signal. The WR signal enables the input buffer of the memory chip and stores the byte in the selected register. 
An alternative to generating the MSEL signal (Step 3 in Memory Read) to select the memory chip is to generate the control signals MEMRD and MEMWR by combining the MREQ, RD, and WR as shown in Figure 4.4(a). The MEMRD can be used to enable the output buffer to read from memory; the MEMWR can be used to enable the input buffer to write into memory, and the decoded address pulse (CS) can be used to select the chip as shown in Figure 4.4(b). 
To interface memory with the microprocessor, we can summarize the above steps as follows: 
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1. Connect the required address lines of the address bus to the address hnes of the memory chip. 
2. Decode the remaining address lines of the address bus to generate the Chip Select signal, as discussed in the next section (4.14). 
3. Generate the signal Memory Select (MSEL) by combining the decoded address pulse CS and the MREQ, and use the MSEL to select the memory chip. 
4. Connect the Z80 RD and WR control signals to the RD and WR memory signals to enable memory buffers. 
5. An alternative procedure is to generate control signals MEMRD and MEMWR by combining RD and WR signals with the MREQ and to use them to enable appropriate buffers. The decoded address pulse (CS) is used to select the memory chip. 
4.14  Address Decoding 
The process of address decoding should result in identifying a register with a given address; we should be able to generate a unique pulse for that address. For example, in Figure 4.5(a), the output of the NAND gate goes low (active) only when the address on the address lines is F7h; no other address can cause the output of the gate to go low. This process is called decoding the address. We can also use a decoder for address decoding, as discussed below, or a PROM (Programmable Read-Only-Memory), as discussed in Chapter 16. 
Figure 4.5(b) shows a 3-to-8 decoder and a 4-input NAND gate._The decoder has three enable lines—one active high and two active low. The enable line Ej is connected to address line A3, and E2 is connected to address lines A4-A7 through the NAND gate. Address lines A2, Ai, and Ao are inputs to the decoder, and the enable line E3 is tied high and is not being used here for decoding. 
In this decoder circuit, three input lines can have eight different logic combinations 
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87 
from 000 to 111; each input combination can be identified by the corresponding output line if enable lines are active. For example, if the input is 0 0 0, Oq goes low (others remain high), and if the inputjs 1 1 0, Oe goes low. To activate the enable line Ei, A3 should be low, and to activate E2, address lines A7-A4 should be high causing the output of the NAND gate to go low. If the input to the decoder is 1 1 1, the output line O7 of the decoder will go low, thus decoding the address F7h. 
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Enable Input 
This 3-to-8 decoder can identify or decode eight addresses from FOh to F7h as shown in Figure 4.5(b). We will use this address decoding scheme for interfacing memory chips in the following illustrations (Sections 4.2 and 4.3). 
ILLUSTRATIVE EXAMPLE 1: INTERFACING 2732 
EPROM 
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        In this secion we illustrate memory interfacing with the Z80 microprocessor by using an actual chip: 2732 EPROM (Erasable Programmable Read-Only Memory). This is a memory chip commonly used in industry to develop microprocessor-based products. In this illustration, we assume that the chip has been already programmed—that is, the binary patterns representing Z80 instructions are stored in it—and we only read from it. We focus only on the interfacing concepts, interfacing logic circuit, and memory maps. 
4.21   2732 EPROM 
This is a 4K (4096 x 8) memory chip with eight data lines housed in a 24-pin package; Figure 4.6 shows the logic pinout and the pin configuration. It has twelve address lines Ai i-Ao to identify 4096 registers, one Chip Select signal shown as Chip Enable (CE), and one Output Enable (OE) signal to enable the output buffer. It operates from a single -f-5 V power supply in the Read mode and requires a +25 V pulse Vpp to program it. The signals OE and Vpp are multiplexed at pin 20; in the Read mode, pin 20 is used as OE and in the programming mode, it is used as Vpp. 
The chip has a quartz window, and the information stored in this memory can be erased by exposing the window to ultraviolet light for 15 to 20 minutes. To avoid accidental erasures from direct sunlight or fluorescent lights, the window should be covered with an opaque label. Once it is erased, the chip can be used again to store a new program. The programming is done by using a circuit called EPROM programmer, which can store bits in memory registers by providing a 25 V pulse to Vpp. 
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FIGURE 4.6 
2732 EPROM: Pin Configuration and Logic Symbol 
SOURCE: Courtesy of Intel Corporation 
4.22  Interfacing Circuit 
Figure 4.7 shows a complete schematic of interfacing the 2732 with the Z80 microprocessor. We will describe this circuit in terms of the four steps required for interfacing as listed in the previous section. 
Step 1: Connect the necessary address lines to the memory chip. 
Figure 4.7 shows that the address lines Ah-Aq are connected to the memory chip to identify 4,096 registers. 
Step 2: Decode the remaining address lines and combine the MREQ with the decoded 
&     pulse to generate the Memory Select (MSEL) pulse. Step 3: 
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Schematic of Interfacing 2732 EPROM 
In this schematic, two steps—the decoding of the address and generating of the Memory Select (MSEL)—are combined by using the 74LS138 3-to-8 decoder. The decoder has three inputs, three enable lines, and eight output lines. Two enable lines are active low and one is active high. Once the decoder is enabled, only one output line, corresponding to the input combination, goes active (low). 
In Figure 4.7, the output Oq of the decoder is shown as Memory Select (MSELq), which is connected to the Chip Enable (CE) of the memory, and Oo goes active low when the address lines A15-A12 and the MREQ are all at logic 0. The address line A15 and the MREQ are used to enable the decoder (active low); the address lines A14, A13, and A12 are used as input to the decoder, and the enable line E3 is connected to +5 V. No other logic level on these address lines can assert the MSELq signal. 
Step 4: Connect the Z80 control signal to enable an appropriate buffer. 
Figure 4.7 shows that the Z80 Read (RD) is connected to the OE signal of the memory chip. When the RD signal is asserted, the output buffer is enabled and the data byte from the selected register is placed on the data bus. 
4.23  Memory Map 
We can obtain the address range of this memory chip by analyzing the possible logic levels on the 16 address lines. The logic levels on the address lines A15-A12 have to be 0 to assert the Chip Enable, and the address lines Ai i-Aq can assume any combinations from all Os to all Is. Therefore, the memory map of this chip ranges from OOOOh to OFFFh. 
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We can verify the memory map in terms of our analogy of page and line numbers. The chip's 4,096 bytes of memory can be viewed as 16 pages with 256 lines each. Let us examine the high order Hex digits of the map; they range from 00 to OF, indicating 16 pages—-0000 to OOFF and 0100 to OlFF, for example. 
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        ILLUSTRATIVE EXAMPLE 2: INTERFACING STATIC WW MEMORY 
In this example, we will use the MOSTEK MK4802 memory chip to demonstrate both Read and Write operations. To simplify the discussion, we will use the same decoding circuit as in Figure 4.7, except that the MSEL4 signal is used as the Chip Enable. This chip has 2K memory; therefore, one address line (An) will be left as "don't care" in order to use the previous circuit. Because of the "don't care" address line, the memory registers will have multiple addresses, and the memory chip will occupy more memory space than necessary, as explained later. 
4.31 MOSTEK MK4802 Static R/W Memory 
This is a 2K static R/W memory chip, organized in a 2048 x 8 format. It has eleven address lines (Ajo-Aq), eight data lines, and three control signals: CE, OE, and WE. We are already familiar with the first two control signals; the third signal WE (Write Enable) is active low and used to enable the input buffer of the memory. The logic pinout and the pin configuration are shown in Figure 4.8. 
4.32 Interfacing Circuit 
Figure 4.9 shows the interfacing circuit using the MK4802 memory chip. The decoding circuit is the same as in Figure 4.7. We will analyze this circuit in terms of the same four steps outlined previously. 
Step 1: The Z80 address lines Aio-Ao are connected to pins Aio-Ao of the memory chip to address 2048 registers; the address line An is not necessary for the chip. The address line An can be connected to the decoder by modifying the circuit, but we have left it "don't care" to observe its effects on the memory map. 
Step 2: The Memory Select MSEL4 line (the output O4 of the decoder) is used as the &     Chip Enable (CE). The CE is asserted only when the address on A15-A12 is Step 3: 0 1 0 0. 
Step 4: In the case of a R/W memory, we need two control signals: Read (RD) and Write (WR), both active low. The RD is connected to OB, as in the previous illustration, to enable the output buffer. The WR is connected to WE (Write Enable) of the memory chip, and when WR is asserted low, the input buffer of the memory chip is enabled, allowing data to be written into the selected memory register. 
Pin Connections 
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FIGURE 4.8 
MK4802 Static R/W Memory Pin Configuiation and Logic Symbol 
SOURCE: Courtesy of Mostek Corporation 
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FIGURE 4.9 
Schematic of Interfacing Static R/W Memory MK4802 
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4.33  Memory Map 
Assuming the "don't care" address line An at logic 0, the memory map of this memory chip ranges from 4000h to 47FFh. 
Ai5 Ai4 Ai3 Ai2      An Aio Ag As Ay Ae A5 A4 A3 A2 Ai Aq 0     100        XOOOOOOOOOOO =4000h 
i i 
MSEL4 X     1     1    1    1    1    1    1    1    1    1    1 =47FFh 
If we assume An at logic 1, the memory map ranges from 4800h to 4FFFh as shown below: 
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4i 4 
The entire memory map appears to be from 4000h to 4FFFh (4K memory). In reality, we have only 2K memory occupying the memory space of 4K. Because of the one "don't care" line, each register can have two addresses. For example, the addresses 4000h and 4800h will select the same register. The duplicate or redundant range of the memory addresses (4800h to 4FFFh) is generally known as the foldback memory; this memory space cannot be used by any other memory chip. 
4.34  Absolute versus Linear Decoding 
In Illustrative Example 1 (Figure 4.7), all the high-order address lines Ais-An were decoded to select the memory chip, and the memory chip is selected only for the specified logic levels (all Os) on these high-order address lines; no other logic levels can select the chip. This is called absolute decoding, a desirable design practice commonly used in large memory systems. In Illustrative Example 2 (Figure 4.9), high-order address lines were partially decoded, resulting in multiple addresses. In small systems, hardware for the decoding logic can be eliminated by using individual high-order address lines to select memory chips. For example, in Figure 4.9, Ai5 can be directly connected to the memory chip, thus eliminating the decoder, and the chip is selected whenever A15 = 0. This is called linear decoding. The scheme can reduce cost, but has the drawback of multiple addresses. The linear decoding can be used in small systems, such as a microwave oven, where memory requirements are limited and further expansion is unlikely. 
ILLUSTRATIVE EXAMPLE 3: DESIGNING MEMORY 
In this section, we will approach the question of memory interfacing from a design pointof-view. In the previous examples, we analyzed the given schematics of memory interfacing; now we will design an interfacing circuit for given specifications. 
4.41 Problem Statement 
Given a 2K R/W (2048 x 8) static memory chip and one 3-to-8 decoder, design memory for the beginning address 2800h. Use the MREQ signal to enable one of the decoder lines, and the RD and WR control signals can be directly connected to the memory chip. 
4.42 Problem Analysis 
1. The 2K memory requires 11 address lines (Ajo-Ao), and the remaining five address lines Ai5-An can be used to generate the Memory Select signal. 
2. The 74LS138 decoder has three input lines and three enable lines: two active low and one active high. Out of the five address lines, three lines can be used as input to the decoder, and two address lines and the MREQ can be used to enable the decoder. 
3. The Z80 control signals RD and WR should be connected to the Output Enable (OE) and Write Enable (WE) of the memory chip, respectively. 
4. To assign the starting address 2800h. The address lines should have the following logic levels: 
Ai5 A,4 Ai3 Ai2 All 0     0     10 1 
Alo A9 As A^ Ae A5 A4 A3 A2 Ai Aq 0    0000000000 =2800h 
MSEL 
1 
These logic level requirements dictate that A13 and An should be I, and that A15, Ai4, and A12, should beO.We can connect_Ai3 to the active high enable line (E3), and A15 and MREQ to the active low enable lines (Eijind E2) of the decoder, respectively, and by connecting the output Oi of the decoder to CE, we can ensure that the memory chip is selected when An = 1. 
4.43  Circuit Analysis 
Figure 4.10 shows the schematic of the interfacing circuit based on the problem analysis. 
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1. The output line Oi of the decoder is connected to the Chip Enable (CE) of the memory chip. The decoder is enabled when A15 = 0, A13 = 1, and MREQ is asserted low. The output line Oi of the decoder is asserted only when input lines are at logic 0 0 1. The logic levels on these address lines will assign the starting address as 2800h
2. In this design example, the MREQ is used to enable the decoder. The output of the decoder goes low only when the MREQ is asserted; thus, the chip is enabled when the MREQ is low. The output and the input buffers of the memory chip are enabled directly by the control signals RD and WR. 
In the last section, we discussed how to design or interface memory for a given address. The next step is to test and verify that we can store a byte at a memory location within the address range of the memory chip and read the byte. At this point, we need to make an assumption that we have a working microcomputer system, and the memory design is an expansion of the existing system. If we are designing a system, we may need to use an in-circuit emulator to test the memory; this is discussed in Chapter 17. 
To test the memory, we can simply access an address such as 2800h through the system keyboard, store a byte, and check the address location again to verify the byte. If there is any fault in the interfacing circuit, the system is likely to show an error message, or a different byte from the one we stored will be displayed. Now we need to troubleshoot the interfacing circuit. The question is: Where do we begin? The obvious step is to check the wiring and the pin connections. After this preliminary check, most traditional methods used in checking analog circuits (such as an amplifier) are ineffective because the logic levels on the buses are dynamic; they constantly change depending upon the operation being performed at a given instant by the microprocessor. In troubleshooting analog circuits, a commonly used technique is signal injection, whereby a known signal is injected at the input, and the output signal is verified against the expected outcome. To use this concept, we need to generate a constant and identifiable signal and check various points in relation to that signal. We can generate such a signal by asking the processor to execute a continuous loop, called a diagnostic routine, as shown. 
Diagnostic Routine 
START: LD A, F7H        ;Load F7H into the accumulator 
This routine has three instructions. The first instruction loads F7h into the accumulator, and the second instruction stores the byte in the memory location 2800h. The third instruction is a Jump instruction that takes the program control at the beginning, and these three instructions are repeated continuously. Now we need to examine the machine cycles of these instnictions to find an identifiable signal that is repeated at a certain interval. We 
4.5 
TESTING AND TROUBLESHOOTING INTERFACING CIRCUITS 
LD (2800H), A   ;Store accumulator contents in location 2800H 
JP START 
;Jump back to beginning and repeat 
can analyze the loop in the machine cycles as follows (it will be helpful to have read Chapter 6 to understand the diagnostic routine): 
Machine Cycles 
	Instruction 
	Bytes 
	T-states 
	M, 
	M2 
	M3 
	M4 

	LD A, F7H 
	2 
	7 (4, 3) 
	Opcode Fetch 
	Memory Read 
	
	

	LD (2800H), A 
	3 
	13 (4, 3, 3, 3) 
	Opcode Fetch 
	Memory Read 
	Memory Read 
	Memory Write 

	JP START 
	3 
	10 (4, 3, 3) 
	Opcode Fetch 
	Memory Read 
	Memory Read 
	


This loop has 30 T-states and nine operations. To execute the loop once, the microprocessor asserts the RD signal eight times (the Opcode Fetch is also a Read operation) and the WR signal once. Assuming the system clock frequency is 2 MHz, the loop is executed in 15(xs, and the WR signal, repeated every 15 |xs, can be observed on a scope. If we sync the scope on the WR pulse from the Z80, we can check Mj, the output of the decoder MSELi and memory signals CE, WR, and RD; three of these signals are in Figure 4.11. 
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        FIGURE 4.11 
Timing Signals of Diagnostic Routine 
SOURCE: Photograph by Gregg Texido 
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When the Z80 asserts the WR signal, the high-order address A15-A11 must be 0 0 1 0 1, and MSELi must be asserted low. If MSELi is high, it indicates that the address lines Ai5-An or MREQ are improperly connected or the decoder chip is faulty. 
If MSELi is low, it confirms that the decoding circuit is functioning properly. Now if we check the entire address bus and the data bus in relation to the WR signal, one line at a time, we must read the address 2800h and the data F7h. If we check the RD signal, it must be high when the WR is asserted, and we will observe eight RD signals between every two WR signals, as shown in Figure 4.11. 
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        SOME QUESTIONS AND ANSWERS 
In the above discussion of memory interfacing, we focused on certain aspects of the communication process between the Z80 and memory. However, in order to avoid distraction from basic concepts, we did not address several important issues. Now we will attempt to answer those questions briefly or provide references for them. 
1. How do you determine whether a memory chip is too slow for a given 7.80 system? 
The response time of a memory chip is defined in terms of Access Time. This is the time delay between when the microprocessor places a memory address on the address bus and when memory places a data byte on the data bus. Typically, Access Time is 50-450 ns for static R/W memory. Similarly, the microprocessor has a timing specification: the time delay after the Z80 places an address on the address bus to when it begins to read data on the data bus. The memory access time must be less than this microprocessor time delay. This will be discussed when we consider advanced topics in memory interfacing. 
2. How do you interface a memory chip with slow response time? 
If the memory response time is slower than the microprocessor read time, the Memory Read cycle can be extended by using the WAIT signal. During the T2 state of the Memory Read cycle, the Z80 samples the WAIT signal, and if it is low, the Z80 adds Wait states until the signal goes high again. Typically, one Wait state (one clock cycle) provides sufficient time for memory to place data on the data bus. Extra circuitry is necessary for adding Wait states; this is discussed in Chapter 16. 
3. Why did you not include an illustrative example of dynamic memory? 
The dynamic memory stores information as a capacitive charge; therefore, information needs to be refreshed every few milliseconds. In the latter part of the Opcode Fetch 
cycle, the Z80 uses the low-order bus for refresh addresses. To interface the dynamic memory, additional refresh circuits that can use the refresh addresses from the Opcode Fetch cycle are necessary. This will also be discussed in Chapter 16. 
SUMMARY 
□ To read from memory, the address of the register to be read from should be placed on the address lines, and the Chip Enable CE and RD signals must be asserted low to enable the output buffer. 
□ To write into memory, the address of the register to be written into should be placed on the address lines; a data byte should be placed on the data lines, and the Chip Enable CE and WR signals must be asserted low to enable the input buffer. 
□ The Z80 identifies memory operations by initiating the MREQ signal. This signal is combined with the decoded address pulse (CS) to generate Memory Select (MSEL), which is connected to Chip Enable (CE) signal of the memory chip. Another alternative is to use the decoded address pulse CS to enable the memory chip and generate Memory Read (MEMRD) and Memory Write (MEMWR) signals by combining MREQ, RD, and WR signals. 
□ To interface a memory chip with the Z80, the necessary low-order address lines of the Z80 address bus are connected to the address lines of the memory chip. The high-order address lines and th£MREQ are used to generate the MSEL signal, which enables the chip. The RD signal is used to enable the output buffer, and the WR signal is used to write into memory by enabling the input buffer. 
□ In the absolute decoding technique, all the address lines not used by a memory chip to identify a memory register must be decoded; thus, the Chip Select can be asserted by only one address. In the linear decoding technique, one address line can be used for CS, and others can be left "don't care." This technique saves on hardware, but generates multiple addresses, which result in foldback memory space. 
□ To troubleshoot an interfacing circuit, a constant and identifiable signal must be generated by writing a continuous loop. 
ASSIGNMENTS 
1. If a memory chip is organized in a 4096 x 1 format, specify the number of registers in the chip and the number of bits stored by each register. 
2. If 16K X 1 memory chips are used in a memory design, how many chips are required to design 64K-byte memory? 
3. Specify the number of chips necessary to design 8K-byte memory with 1024 X 4 memory chips. 
MICROPROCESSOR ARCHITECTURE AND INTERFACING 
4. In Figure 4.7, generate the Chip Select (CS) signal by using a 4-input NAND gate (and inverters) to decode the address lines A15-A12 and combine CS with the MREQ using an appropriate gate to generate the equivalent MSEL signal. 
5. Generate the signal equivalent to the MSEL signal in Figure 4.7 using the 74LS1.39, which has two 2-to-4 decoders in the package. 
6. If the first address of the 8K x 8 memory chip is OSOOh, what is the address of the last register? 
7. In Figure 4.7, if we connect the output line O4 (instead of Oq) of the decoder to the CE signal, what will be the memory map of the circuit? 
8. In Figure 4.7, if we use all the output lines (O7-O0) of the decoder to select 8 memory chips of the same size as the 27.32, what is the total range of the memory map? 
9. In Figure 4.9, replace the address line A15 with Al 1 and find the range of the foldback memory. 
10. In Figure 4.9, replace the MK4802 with a IK x 8 memory chip and leave address lines All and Aio as "don't care." Find the memory map of the chip and the range of the foldback memory. 
11. By examining the range of the foldback memory in Figure 4.9, and in Assignment 10, specify the relationship between the range of foldback memory and the number of "don't care" lines. 
12. In Figure 4.12, the control signals RD, MREQ, and WR are used as inputs to the 3-to-8 decoder, and the decoder is enabled. Specify the output lines that can be used as MEMRD and MEMWR control signals. 
13. In Figure 4.12, explain why the output line Oq cannot be asserted low. 
14. In Figure 4.13, specify the memory maps of ROMl, R0M2 and R/WMl. 
15. Is there a foldback memory for any one of the chips in Figure 4.13? 
16. Sketch the memory map in Figure 4.13. 
17. Figure 4.14 illustrates an example of linear decoding. Specify the memory map of each chip without accessing more than one chip at a time. 
18. Given a IK (1024 X 8) EPROM memory chip and one 3-to-8 decoder, design an interfacing circuit to assign the beginning address at 0400h. Use the 74LS32 OR gate to generate the control signal MEMRD. 
19. You are given the 74LS139 (two 2-to-4 decoders) and 8K static R/W memory. 
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Generating Control Signals Using the 3-to-8 Decoder 
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Memoiy Map with Linear Decoding 
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Use one decoder to assign the memory map with the starting address at 8000h and use the other decoder to generate the MEMRD and MEMWR control signals. 
20.   In Section 4.5, if the diagnostic routine is executed on a system with the clock frequency 4 MHz, specify the time interval between two WR pulses. 
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21. In the diagnostic routine, how many times is the MREQ signal asserted in one loop? 
22. Specify the logic levels of the address lines A15 and      and the data lines D7 and D3 when the WR signal is asserted during the diagnostic routine. 
23. How many times is the Mi signal asserted during the execution of the diagnostic routine? 
24. Sketch the waveforms of MSELi signals in one loop. 
Interfacing I/O Devices 
The I/O (Input/Output) is the third component of a microcomputer system. I/O devices, such as keyboards and displays, are the ears and eyes of the MRUs; they are the communication channels to the ' 'outside world.'' Data can enter or exit in groups of eight bits using the entire data bus; this is called the parallel I/O mode. The other mode is the serial I/O, whereby one bit is transferred using one data line; typical examples include peripherals such as CRT terminals or cassette tapes. In this chapter, we focus on interfacing I/O devices in the parallel mode; the serial mode will be discussed in Chapter 15. 
In the parallel I/O mode, devices can be interfaced using two techniques: peripheral-mapped I/O and memory-mapped I/O. In peripheral-mapped I/O, a device is identified with an 8-bit address and enabled by I/O-related control signals. In memorymapped I/O, a device is identified with a 16-bit address and enabled by memory-related control signals. The process of data transfer in both is identical. Each device is assigned a binary address through its interfacing circuit. When the Z80 is programmed to transfer data, it places the appropriate address on the address bus, sends the control signals, enables the interfacing device, and transfers data. The interfacing device is like a gate for data bits, which is opened by the MPU whenever it intends to transfer data. 
To grasp the essence of interfacing techniques, 
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        we first examine the machine cycles of I/O instructions to determine the timings for I/O data arriving on the data bus, and then latch (or catch) that information. We derive the basic concepts of peripheralmapped and memory-mapped I/O from the machine cycles. The peripheral-mapped I/O concepts are illustrated with two examples: interfacing LEDs as an output device and switches as input device. The memory-mapped I/O technique is illustrated with an example of appliance control. The chapter also includes additional interfacing examples that occur frequently in microprocessor-based products. 
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OBJECTIVES 
□ Illustrate the Z80 bus contents and control signals when OUT and IN instructions are executed. 
□ Explain the necessity of Wait states in I/O machine cycles. 
□ Recognize the device (port) address of a peripheral-mapped I/O by analyzing the associated logic circuit. 
□ Recognize the device (port) address of a memory
mapped I/O by analyzing the associated logic circuit. 
□ Explain the differences between the peripheralmapped and memory-mapped I/O techniques. 
□ Interface an I/O device to a microcomputer for a specified device address by using logic gates and such MSI chips as decoders, latches, and buffers. 
□ Explain the concepts in interfacing analog devices such as sensors and motors. 
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        INTERFACING OUTPUT DEVICES 
In peripheral-mapped I/O, a device is identified with an 8-bit address, and I/O-related control signals are used to enable the device. The process of data transfer is in many ways similar to that of reading from or writing into a memory register. The Z80 uses the instruction IN to read (input) data from an input device and uses the instruction OUT to write (send) data to an output device. To understand interfacing of I/O devices, we need to examine the execution and machine cycles of these input/output instructions. In the next section, we will examine the execution of the OUT instruction and discuss the interfacing of output devices, and in Section 5..3, we will examine the IN instruction and discuss the interfacing of input devices. 
5.11   OUT Instruction 
The Z80 microprocessor has several output instructions to send (copy or write) data to an output device. It can send data from the accumulator, internal general-purpose registers, or memory registers to an output device. The Out instructions include the 8-bit address of a device as an operand. Therefore, the address can be any of the 256 8-bit binary combinations from OOh to FFh- Thus, an output device can be assigned any 8-bit address between OOh and FFh through an appropriate interfacing circuit. The address range from OOh to FFh is called the I/O or peripheral map, and an address can be referred to as a device address, port address, or port number. Among the several Out instructions, we will examine the machine cycles and timing of the following instruction. 
Opcode     Operand Description 
OUT       (8-bit), A     This is a 2-byte instruction with the hexadecimal opcode D.3, and the second byte is the port address of an output device. 
This instruction transfers (copies) data from the accumulator to the output device. 
Typically, to display the contents of the accumulator at an output device (such as 
LEDs) with the address, for example, 07h, the instruction will be written and stored in memory as follows: 
Memory Address 
2050 2051 
Machine Code 
D3 07 
Mnemonics 
OUT (07H), A 
2050 2051 
Memory Contents 
1 I 0 1 00 1 1 
00000 1 1 1 
= D3h = 07h 
NOTE: The memory locations arc chosen here arbitrarily for the illustration. 
When the microprocessor reads and executes the machine codes written at memory registers 2050h and 205 1h, it will transfer (copy) the byte from the accumulator to the LED port with address 07h and display the byte. Now the question remains: How is the address 07h assigned to the output port? To answer that question, we need to examine the machine cycles of this instruction, as shown in the next section. 
5.12  Execution of OUT Instruction and Timing 
The OUT instruction has three machine cycles: Opcode Fetch, Memory Read, and I/O Write. The Z80 reads the opcode and the port address from memory in the first two machine cycles and writes into the port in the third cycle. Figure 5.1 shows the timing of the OUT instruction with the port address 07h illustrated in the previous section. 
The first two machine cycles—Opcode Fetch and Memory Read—are similar to the machine cycles shown in Figure 3.7; however, in Figure 5.1, the low-order and high-order address buses are shown separately to illustrate the contents of the low-order bus in the third cycle. In the Opcode Fetch cycle, the Z80 places the address 2050h on the address bus and fetches the opcode D3h (1 1 0 1 O 0 1 1) via the data bus. When the Z80 decodes the opcode, it realizes that the instruction consists of two bytes, and that it must read the second byte. In the second machine cycle, the Z80 places the next address, 205 1h, on the address bus and reads the port address 07h. 
In the third machine cycle, M3 (I/O Write), the following events occur: 
1. The Z80 places the port address 07h on the low-order address bus and the contents of the accumulator on the data bus. 
2. During T2, it asserts the lORQ and WR control signals; the assertion of lORQ indicates that it is an I/O operation. 
3. The Z80 automatically inserts a single Wait state Tw after T2 to allow sufficient response time for an I/O device; this Wait state is added regardless of the WAIT signal status. 
4. During T3, the control signals lORQ and WR become inactive. 
To interface an output device, the information on the buses during the M3 cycle is critical. From the beginning of T2 until the end of T3, we have the port address (07h) on the low-order address bus and the data byte to be displayed on the data bus. The availability of this information is indicated by the control signals. Now what we must do is to latch 
104 
MICROPROCESSOR ARCHITECTURE AND INTERFACING 

        
        [image: Picture #44]
        

        FIGURE 5.1 
Z80 Timing for Execution of OUT Instruction 
(catch) this information using the control signals before it disappears from the buses; we need to open the gate at that precise moment to let the data flow to the "outside world." This is the essence of interfacing. 
5.13  Basic Concepts in Interfacing Output Devices 
The concepts in interfacing output devices are similar to those in interfacing memory. The steps can be listed as follows: 
1. Decode the low-order address bus to generate a unique pulse corresponding to the port address on the bus; this is called the I/O address (lOADR) pulse^ 
2. Combine (AND) the I/O address pulse (lOADR), lORQ, and WR to generate the lOSEL (I/O select) pulse (Figure 5.2(a)). Another approach is to generate the lOWR (I/O Write) by combining lORQ and WR, and then combine lOWR with the lOADR (I/O Address) pulse to generate the lOSEL pulse (Figure 5.2(b)). The critical concept here is that the decoded address, lORQ, and WR are all necessary to latch the data at 
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Block Diagram: Output Interfacing 
the appropriate time; how these signals are combined is often dictated by availability of decoding devices (chips) in the system. 3. Use the lOSEL pulse to enable (activate) the output device. 
Let us examine the significance of the I/O select pulse. This pulse is generated by ANDing the decoded address, lORQ, and WR signals as shown in Figure 5.2(a); all these signals are active low. The assertion of this pulse indicates two pieces of information: (1) the low-order address bus has the port address (07h), and (2) the data byte from the accumulator is on the data bus. Thus, this is the appropriate time to enable the latch (or open the gate for data). Figure 5.2(b) shows how these control signals are generally ANDed in a typical interfacing circuit to generate the lOSEL pulse and how the I/O select pulse is used to enable the output latch. 
ILLUSTRATIVE EXAMPLE 1: INTERFACING LEDS 
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        In this section, we will analyze an actual interfacing circuit with the port address 07h to display binary data. A group of 8 LEDs will be used to indicate binary Is and Os and will be connected to the data bus using the 7475 latches. 
5.21 Hardware 
Figure 5.3 shows the logic symbols of the 7475 latch. It has four bistable latches controlled by the active high enable signals; E|„2 enables the first two latches and E3_4 enables 
FIGUEE 5.3 
Logic Symbol. 7475 Latch 
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the remaining two. When E is high, data enter the latch and appear at the Q outputs, and Q outputs correspond to the input data. When E goes from high to low, data will be latched and will remain stable until E goes high again. 
When Q output is high, it can supply (source) 400 |jlA, and when it is low, it can sink 16 mA current. Since most LEDs require a 10-15 mA current to be properly illuminated, they are connected to Q output of the latch so that when the input is high, Q output is low and the LED is turned on. 
5.22  Interfacing Circuit 
Figure .5.4 shows an interfacing circuit for the LED output port with the address 07h. We will analyze this circuit in terms of the three steps for interfacing output devices as outlined in Section 5.1.3. 
1. An 8-input NAND gate with five inverters is used to decode the low-order address bus A7-A0. The output of the NAND gate is asserted when the address is O O O 0 0 1 1 1 (07h); thus, the NAND gate performs the decoding function to generate the I/O address (10ADR) pulse. 
2. The control signals lORQ and WR are ANDed in a negative AND gate (physically, an OR gate) to generate the control signal 10WR (active low). The lOWR is again ANDed (through a NOR gate) with the I/O address pulse to generate the I/O select pulse (active high). This pulse is asserted only when the address is 07h and the control signals lORQ and WR are low. 
3. The I/O select pulse is used to enable the latches 7475. The data bus D7-D0 is connected to the D input and the LED cathodes are connected to the Q output of the latch. The LED anodes are connected to the power supply + 5 V through the current-limiting resistors. 
At the beginning of T2 in the third machine cycle shown in Figure 5.1, the control signals lORQ and WR are asserted, and the I/O select pulse (Figure 5.4) goes high if the address is 07h. When the I/O select pulse goes high, the data on the data bus enters the 
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Schematic: Interfacing LED Output Port 
latches. During T3, when the control signals become inactive, the I/O select pulse goes low, and the data are latched. The logic Is_on the data lines turn on the corresponding LEDs because when a data bit is high, the Q ouput is low and the LED is turned on. 
INSTRUCTIONS 
To display data, for example 97h, at this LED port, instructions are as follows: 
LD A, 97H       ; Load accumulator with the specified byte 
OUT (07H), A   ; Display the accumulator contents at port 07H 
The first instruction (LD A) stores the second byte 97h in the accumulator, and the OUT instruction sends the byte (97h) from the accumulator to the LED port 07h. When the I/O select pulse is asserted, the byte 97h enters the latch and is displayed by the LEDs. When it goes low (inactive), the byte is latched and continues to be displayed by the LEDs. 
INTERFACING INPUT DEVICES 
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        The interfacing of input devices is almost identical to that of interfacing output devices, but with some differences in bus signals and circuit components. In this discussion, we will assume that you are familiar with the basic concepts of interfacing (Section 5.13) and 
describe only the additional details. First, we examine the execution and timing of the IN instruction and discuss the interfacing of input devices in relation to the timing diagram. 
5.31  IN Instruction 
The Z80 instruction set includes several instructions to read (copy) data from such input devices as switches, keyboards, and A/D data converters. These instructions can read an input device and place the data into the accumulator, Z80 registers, or memory registers. These are two-byte instructions; the first byte is the opcode, and the second byte specifies port address. Although there are numerous ways of specifying the port address, it is always eight bits long. Thus, the addresses for input devices can range from OOh to FFh- Among the several Input instructions available, we will examine the machine cycles and timing of the following instruction. 
Opcode      Operand Description 
IN A, (8-bit)      This is a two-byte instruction with the hexadecimal opcode 
DB, and the second byte is the port address of an Input device. 
This instruction reads (copies) data from an input device and places the data byte into the accumulator. 
To read switch positions, for example, from an input port with the address 84h, the instructions will be written and stored in memory as follows: 
Memory Address 
2065 2066 
Machine Code 
DB 
84 
Mnemonics 
IN A, (84H) 
Memory Contents 
2065 2066 
110 110 11 
10 0 0 0 10 0 
= DBh = 84h 
NOTE: The memory locations 2065h and 2066h are selected arbitrarily for tiie illustration. 
When the microprocessor is asked to execute these instructions, it will first read the machine codes (or bytes) stored at locations 2065h and 2066h, then read the switch positions at port 84h by enabling the interfacing device of the port. The data byte indicating switch positions from the input port will be placed in the accumulator. To design an interfacing circuit with the port address 84h, we now need to examine the machine cycles and execution timing of the IN instruction. 
5.32  Execution of IN Instruction and Its Timing 
The IN instruction has three machine cycles: Opcode Fetch, Memory Read, and I/O Read. In the first two machine cycles, the Z80 reads the opcode DB and the port address 84h (see example in previous section). These cycles are identical to the first two machine cycles of 
the OUT instruction shown in Figure 5.1. In the third machine cycle, the Z80 reads a data byte from the input port as follows (Figure 5.5): 
1. The port address 84h is placed on the low-order address bus at the beginning of the machine cycle M3 (I/O Read). 
2. During T2, the control signals lORQ and RD are asserted, and one Wait state is inserted automatically after T2. 
3. During T3, the Z80 reads the data bus and then causes the control signals (lORQ and RD) to go inactive. 
5.33 Basic Concepts in Interfacing Input Devices 
To interface an input port with the address 84h, we need to logically AND the information on the address bus with the control signals and enable the input port. The steps are as follows: 
1. Decode the low-order bus to generate the I/O address pulse. 
2. Combine the I/O address pulse with the control signals lORQ and RD to generate the signal I/O Select (lOSEL, Figure 5.5). Another approach is to combine lORQ and RD to generate an lORD signal and then to combine the lORD with the I/O address pulse to generate the I/O select pulse. 
3. Enable the input interfacing device using the I/O select pulse. 
These steps are identical to those listed for interfacing output devices; the only differences are (1) the control signal is RD instead of WR, and (2) data flow from an input port to the accumulator rather than from the accumulator to an output port. 
HGURE 5.5 
Z80 Timing for Execution of IN Instruction 
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        ILLUSTRATIVE EXAMPLE 2: INTERFACING INPUT SWITCHES 
In this section, we will analyze the circuit used for interfacing eight DIP switches as shown in Figure 5.6. The circuit includes the 74LS138 3-to-8 decoder to decode the low-order bus and the tri-state octal buffer (74LS244) to interface the switches to the data bus. The port can be accessed with the address 84h; however, it also has multiple addresses. 
5.41 Hardware 
Figure 5.6 shows the 74LS244 tri-state octal buffer used as an interfacing device. The device has two groups of four buffers each, and they are controlled by the active low signal OE. When OE is low, the input data appear on the output lines, and when OE is high, the output lines assume high impedance state. 
5.42 Interfacing Circuit 
Figure 5.6 shows that the low-order address bus (with the exception of lines A4 and A3) is connected to the decoder 74LS1.38; the address lines A4 and A3 are left in "don't care" state. The output line O4 of the decoder goes low when the address bus has the following address (we assume the "don't care" lines are at logic 0): 
110 
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Schematic: Interfacing Input Switches 
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The control signal I/O Read (lORD) is generated by ANDing the lORQ and RD in a negative NAND gate, and the I/O select pulse is geneirated by ANDing the output of the decoder with the control signal lORD. When the address is 84h and the control signals lORQ and RD are asserted, the I/O select pulse enables the tri-state buffer, and the logic levels of the switches are placed on the data bus. The Z80 then reads switch positions during T3 (Figure 5.5) and places the data byte into the accumulator. When a switch is closed, it has logic 0, and when it is open, it is tied to +5 V, representing logic 1. Figure 5.6 shows that the switches S7-S3 are open and S2-S0 are closed; thus, the input reading will be FSh
5.43 Multiple Port Addresses 
In Figure 5.6, the address lines A4 and A3 are not used by the decoding circuit; the logic levels on these lines can be either 0 or 1. Therefore, this input port can be accessed by four different addresses, as shown. 
A7   Ae   A5   A4   A3 A2   Ai Ao 
1     0     0     0     0 1     0    0 = 84h 
0     1 = 8Ch 
10 = 94h 
11 = 9Ch 
5.44 Instructions to Read Input Port 
To read data from the input port shown in Figure 5.6, the instruction IN A, (84H) can be used. When this instruction is executed, the Z80 places the address 84h on the low-order bus, asserts the control signals, and reads the switch positions. 
MEMORY-MAPPED I/O 5. 
In memory-mapped I/O , the input and output devices are assigned and identified by 16-bit addresses. To transfer data between the microprocessor and I/O devices, memory-related instructions (such as LD A, (16-bit)) and memory control signals (such as MREQ) are used. The microprocessor communicates with an I/O device as if it were one of the memory locations. 
MICROPROCESSOR ARCHITECTURE AND INTERFACING 
5.51 Memory-Related Data Transfer Instructions 
To understand the memory-mapped I/O technique, we need to examine how a data byte is transferred from the Z80 to a memory location or vice versa. For example, the following instruction will transfer (copy) the contents of the accumulator to the memory location SOOOh- It is assumed here that the instruction is stored in memory locations 2050h, 51h, and 52h. 
Memory Machine 
Address        Code Mnemonics Comments 
2050 32 LD (SOOOH), A   ;Store contents of accumulator 
2051 00 in memory location SOOOh 
2052 80 
This is a 3-byte instruction; the first byte is the opcode, and the second and the third byte specify the memory address. However, the 16-bit address SOOOh is entered in the reverse order; the low-order byte 00 is stored in location 2051, followed by the high-order address SOh (the reason for the reversed order will be explained in Section 5.7). In this example, if an output device instead of a memory register is connected at this address, the accumulator contents will be transferred to the output device. This is called the memorymapped I/O technique. 
Similarly, the instruction LD A, (4000H) will transfer the contents of the memory location 4000h to the accumulator. To assign this address for a memory-mapped input port, we can interface an input device (for example, a keyboard) instead of memory by using the memory-related control signals (MREQ and RD). When the processor executes the instruction, the accumulator receives data from the input device rather than from a memory register 4000h. 
5.52 Execution of Memory-Related Data Transfer Instructions 
The execution of memory-related instructions discussed in the previous section is similar to the execution of I/O instructions (Sections 5.1 and 5.3), except that the memory-related instructions have 16-bit addresses. 
Figure 5.7 shows the execution of the instruction LD (SOOOH), A. It has four machine cycles; in the first three machine cycles, the Z80 reads the three bytes. The fourth machine cycle M4 (Memory Write) is similar to the machine cycle M3 of the OUT instruction. In this machine cycle, the ZSO places the 16-bit address SOOOh on the address bus and the accumulator contents on the data bus. This is followed by the assertion of the control signals MREQ and WR. The information available during M4 can be used to interface a memory-mapped output port with the 16-bit address SOOOh. 
In memory-mapped I/O, I/O selection and data transfer require steps similar to those required in peripheral-mapped I/O: 
1. Decode the entire address bus A15-A0 (rather than just A7-A0). 
2. Combine the control signals MREQ, WR, and the decoded pulse from Step 1 to gen
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Z80 Timing for Execution of Instmction LD (8000H), A 
erate a pulse sinmilar to the MSEL pulse, which will be used to select an I/O rather than memory. 
3. Use the I/O select pulse (actually MSEL) to enable the I/O port. 
To interface a memory-mapped input port, the steps are similar to those of the memory-mapped output port. We can use the instruction LD A, (16-bit), which reads data from an input port with the 16-bit address and places it in the accumulator. The instruction has four machine cycles; only the fourth machine cycle differs from M4 in Figure 5.7. The control signal will be RD rather than WR, and data flow from the input port to the microprocessor. 
ILLUSTRATIVE EXAMPLE 3: APPLIANCE CONTROL USING MEMORY-MAPPED I/O TECHNIQUE 
5.6 
Figure 5.8 shows a schematic of interfacing I/O devices using the memory-mapped I/O technique. The circuit includes one input port with eight DIP switches and one output port 
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Schematic: Interfacing I/O Devices with Memory-Mapped I/O 
to control the appliances. The appliances are turned on and off by the microprocessor according to the corresponding switch positions. For example, the switch S7 controls the air conditioner and the switch So controls Light 4. All switch inputs are tied high; therefore, when a switch is open (off), it has +5 V, and when a switch is closed (on), it has logic 0. The circuit includes two .3-to-8 decoders and one 8-input NAND gate to decode the address bus and generate the control signals. The eight switches are interfaced using a tri-state buffer 74LS244, and the appliances are interfaced using an octal latch (74LS.37.3) with tri-state output. 
5.61 Control Signals 
In a memory-mapped I/O circuit, the control signals required are MREQ (Memory Request) and Read (RD) or Write (WR). In this circuit (Figure 5.8), they are used as inputs to a 3-to-8 decoder (labelled #2) to generate additional control signals. The enable lines of the decoder are controlled by the address lines. Assuming the decoder is enabled by the appropriate address, we need to analyze the input and identify the output lines of the 
decoder that can be used as control signals. 
To assert the Memory Write (MEMWR) signal, the input should be MREQ = 0, 
WR = 0, and RD = 1 (RD and WR cannot be active at the same time). With this input, the 
output line O4 goes active and generates the MEMWR signal. 
To assert the Memory Read (MEMRD) signal, the input should be MREQ = 0, 
WR = 1, and RD = 0. With this input to the decoder, the output O2 goes active and generates the MEMRD signal. 
5.62 Output Port and Its Address 
The appliances are connected to the data bus through the latch 74LS373 and solid state relays. If an output bit of the 74LS373 is high, it activates the corresponding relay and turns on the appliance, which remains on as long as the bit stays high. Therefore, to control the appliances, we need to supply the appropriate bit pattern to the latch. 
The 74LS373 is a latch followed by a tri-state buffer, as shown in Figure 5.9. The latch and the buffer are controlled independently by Latch Enable (LE) and Output Enable (OE). When LE is high, the data enter the latch, and when LE goes low, data are latched. The latched data are available on the output lines of the 74LS373 if the buffer is enabled by OE (active low). If OE is high, the output lines go into high impedance state. 
Figure 5.8 shows that the OE is connected to the ground; thus, the latched data will keep the relays on or off according to the bit pattern. The LE is connected to the device select pulse, which is asserted when the output Oq of decoder #1 and the control signal MEMWR go low. Therefore, to assert the I/O select pulse, the output port address should be 82FFh. 
FIGURE 5.9 
Logic Symbol: 74LS373 Octal Latch d. 
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5.63 Input Port and Its Address 
The DIP switches are interfaced with the Z80 using the tri-state buffer 74LS244. The switches are tied high and are turned on by grounding as shown in Figure 5.8. The switch positions can be read by enabling the signal OE, which is asserted when both the output Oi of decoder #1 and the control signal MEMRD go low. Therefore, to read the input port, the port address should be 86FFh. 
Ai5 Ai4 Ai3 A12 A,,  Aio A9 As A7 Ag A5 A4 A3 A2 Ai Aq lOOOOllOlIllllii =86FFh ill i 
Enable Lines Input        Enable To 8-Input 
Decoder #1 To #1       Lines #2 NAND Gate 
5.64 Instructions 
To control the appliances according to switch positions, the microprocessor should read the bit pattern at the input port and send that bit pattern to the output port. The following instructions can accomplish this task. 
;Read the switches 
;Complement switch reading, convert "on" switch (logic 0) into logic 1 to turn on appliances 
;Send switch positions to output port and turn appliances on or off 
;Go back and read again 
When this program is executed, the first instruction reads the bit pattern 10 110 111 (B7h) at the input port 86FFh and places that reading in the accumulator; this bit pattern represents the "on" position of switches Se and S3. The second instruction complements the reading; this instruction is necessary because the "on" position has logic 0, and logic 1 is necessary to turn on solid state relays. The third instruction sends the complemented accumulator contents (01001000 = 48h) to the output port 82FFh. The 74LS373 latches the data byte 0 1 0 0 1 0 0 0 and turns on the space heater and Light 1. The last instruction, JP READ, takes the program back to the beginning and repeats the loop continuously in order to monitor the switches. 
READ: LD A, (86FFH) CPL 
LD (82FF), A JP READ 
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ADDITIONAL ILLUSTRATIVE EXAMPLES: INTERFACING SENSORS AND MOTORS 
5.7 
In previous examples, we illustrated the interfacing of I/O devices that were primarily binary devices (on/off). We now extend the concepts to interface analog devices such as temperature sensors and motors. In interfacing analog devices, the basic procedure remains similar to that of interfacing binary devices; the MPU identifies the device through a binary port address and enables it with an appropriate control signal. However, we need to find a way to detect and to convert the analog signal into the binary format and vice versa. The analog signal is generally handled in two ways: one is to detect the signal when it reaches a predetermined level, and the other is to convert it into binary format proportional to its magnitude. The predetermined level of the analog signal can be detected by using a comparator circuit, and the binary equivalent can be obtained by using an A/D (Analog-to-Digital) data converter. In this section, we will focus on interfacing circuits that can detect the predetermined level of analog signals and defer the discussion of interfacing data converters to Chapter 13. 
Figure 5.10 shows the interfacing of a temperature sensor. This circuit is designed to detect (through an input port) whether the temperature has risen to 100°C, and at that temperature it turns on the dc motor of a water pump. The dc motor is interfaced with the MPU through an output port. 
5.71 Hardware: Temperature Sensor LM135 and Comparator LM311 
Figure 5.10 shows the LM135 used as a temperature sensor, and its output is connected as one of the inputs to the comparator LM311. The LM135 is an integrated circuit, designed to sense changes in temperature; its output voltage changes 10 mV/°C. It is rated to operate over a temperature range from —55°C to + 150°C, and the current range 400|xA to 5 mA. At 25°C, the output of the sensor is typically 2.98 V, and it increases 10mV/C; therefore, at 100°C, it can reach 3.73 V (2.98 V + 750 mV). 
The LM311 is a voltage comparator that can be operated from a + 5 V power supply. The comparator compares two voltages at its input terminals, and if the difference between the two voltages is less than or equal to -10 mV, its output remains at the saturation voltage of about 0.75 V; otherwise, the output is near the power supply voltage. 
The output of the sensor is connected to the positive terminal of the comparator, and its negative terminal is set to 3.73 V. At temperatures lower than 100°C the output voltage of the sensor is less than 3.73 V; thus, the comparator output remains at 0.75 V (logic 0). When the temperature reaches 100°C, the output of the sensor is 3.73 V, and the comparator output goes to +4.5 V (logic 1). The output of the comparator is connected to the tri-state buffer 74LS244, which serves as an input port to the MPU. 
5.72 Interfacing Circuit for the Sensor 
Figure 5.10 shows that the 74LS138 (3-to-8) decoder is used for address decoding. This decoding circuit is identical to the circuit shown in Figure 5.6; thus, the outputs of the decoder are asserted for port addresses ranging from 80h to 87h ("don't care" lines are 
MICROPROCESSOR ARCHITECTURE AND INtTERFACING 
+5 V 

        
        [image: Picture #54]
        

        A7 
A2' 
A, 
An 
	6 
	
	

	5 
	
	
	

	MSB 
	E, E2 E3 74LS138 

	^2 

	
	3-to-8 
	

	
	Decoder 

	0 
	
	
	Oo 


lORQ— 
RDWR
	
	E 
	O3 

	MSB 
	A, 
	O2 

	
	Ao 
	0, Oo 


74LS139 2-to-4 Decoder 

        
        [image: Picture #55]
        

        FIGURE 5.10 
Interfacing Analog Signals 
assumed to be at logic 0). The control signals lORD (I/O Read) and lOWR (I/O Write) are generated by using the 74LS139 (2-to-4) decoder; which is enabled by the lORQ signal. When the MRU intends to read, it asserts the lORQ and RD signals. The input of the 2-to-4 decoder becomes 0 1, and the output Oi goes active low to assert the lORD (I/O Read) control signal. The lORD is logically ANDed with the decoded address 80h to generate the 
lOSELsoH (I/O Select) signal, which enables the input buffer 74LS244 to read the output of the comparator. The output voltage of the comparator is connected to the data line Do through the buffer, and the MPU can monitor the temperature by monitoring the data line Do. 
5.73 Interfacing Circuit for the DC Motor 
The dc motor is interfaced with the MPU through the latch 74LS373; the output bit Oo of the latch can drive the dc motor by turning on the transistor (Darlington pair). The logic level of bit Oq of the latch is controlled by the data line Dq. The port address of the latch (87h) is determined by the 3-to-8 decoder; the output line O7 of the decoder is ANDed with the control signal 10WR to generate the IOSEL87H, which enables the latch 74LS373. When the temperature reaches 100°C, the MPU sends logic 1 to the latch (port 87h) to turn on the motor, and when the temperature is less than 100°C, the motor is turned off by the logic 0. 
5.74 Instructions 
START: IN A, (BOH)       ;Read the output of the comparator 
AND 0000000IB ;Save logic of Do and eliminate D, through D7 OUT (87H), A ;Turn on motor if Do = 1 or turn off if Dq = 0 JP START ;Go back and read the output of the comparator 
5.75 Program and Circuit Description 
The first instruction IN A, (80H) enables the buffer 74LS244, reads the entire data bus D7-D0, and places the byte in the accumulator. However, we are interested in the logic level of only bit Do; it has the output of the comparator. Therefore, the next instruction ANDs the contents of the accumulator with the byte OIh in order to eliminate bits Di-De and save the logic level of bit Dq. When the temperature exceeds 100°C, the output of the comparator is about +5 V, and the MPU reads logic 1 on the data line Dq. When the temperature is lower than 100°C, the comparator output is about 0.7 V, and the MPU reads logic 0 on the data line Dq. The next instruction OUT turns on the transistor if Do = 1 or turns off the transistor if Dq = 0. When the transistor is on, it supplies the necessary current for the motor to run, and when the transistor is off, the motor is turned off. The last instruction JP takes the program back to the beginning and continuously monitors the changes in the output of the comparator. 
5.76 Additional Sensors and Output Devices 
Figure 5.10 illustrates one example of interfacing a sensor and driving a dc motor. We can extend the same concepts to other sensing and output devices. In Figure 5.10, we used only one data line Do to monitor the output of the comparator. We can connect additional sensors such as light detectors, level detectors, and smoke detectors to the remaining data 
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lines, and instructions can monitor all the sensors in a sequence. Similarly, we can connect output devices such as speakers, alarms, and lights by using solid state relays to the remaining output lines of the latch. 
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        TROUBLESHOOTING I/O INTERFACING CIRCUITS 
In the last several sections, we discussed the interfacing of I/O devices and instructions to test them. In Illustrative Example 1 (Figure 5.4), the test program includes two instructions that load the byte 97h into the accumulator and output the byte to port 07h. If we execute these instructions and no change is observed at the output port, we must implement the troubleshooting technique similar to that which we used for troubleshooting memory interfacing circuits in the last chapter. After checking the wiring and the pin connections, we can write a diagnostic routine and execute it in a continuous loop to generate a constant and identifiable signal, and then check various points in relation to that signal. 
DIAGNOSTIC ROUTINE AND MACHINE CYCLES 
We can use the same instructions for the diagnostic routine that we used in Illustrative Example 1; however, to generate a continuous signal, we need to add a Jump instruction, as shown. 
	Instruction 
	Bytes 
	T-states 
	
	
	Machine Cycles 

	
	
	
	
	M, 
	M2 
	M3 

	START: LD A, 97H 
	2 
	7 (4, 3) 
	
	Opcode 
	Memory 
	

	
	
	
	
	Fetch 
	Read 
	

	OUT (07H), A 
	.3 
	11 (4, 3, 
	4) 
	Opcode 
	Memory 
	I/O 

	
	
	
	
	Fetch 
	Read 
	Write 

	JP START 
	3 
	10 (4, 3, 
	3) 
	Opcode 
	Memory 
	Memory 

	
	
	
	
	Fetch 
	Read 
	Read 


This loop has 28 T-states and eight operations (machine cycles). To execute the loop once, the microprocessor asserts the RD signal seven times (the Opcode Fetch is also a Read operation) and the WR signal once. Assuming the system clock frequency is 2 MHz, the loop is executed in 14 (xs, and the WR signal, repeated every 14 fjus, can be observed on a scope. If we sync the scope on the WR pulse from the Z80, we can check the output of the 8-input NAND gate (lOADR), lOWR, and lOSEL signals; WR and lOSEL signals of a working circuit are shown in Figure .5.11. 
When the Z80 asserts the WR signal, the port address 07H must be on the address bus A7-A0, and the output of the NAND gate must be low. Similarly, the lOWR must be low and the lOSEL must be high. Now if we check the data bus in relation to WR signal, one line at a time, we must read the data byte 97H. 
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FIGURE 5.11 
Timing Signals of Diagnostic Routine 
SOME QUESTIONS AND ANSWERS 
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        During the discussion of interfacing I/O devices, we focused on tiie basic concepts and avoided some details in order to simplify the presentation. We will now attempt to answer some of those questions. 
1. What are the other I/O instructions in the Z80 instruction set, and how do they differ from the I/O instructions discussed here? 
The Z80 instruction set includes six output instructions of which we discussed only one. The remaining five instructions perform various types of output functions: for example, output a byte from any of the registers or from a memory location, or output a block of memory. In these instructions, register C is used to specify the port address and register B can be used as a counter. 
2. What are the contents of the high-order bus (Ais-Aff) during the Mj cycle of the IN/OUT instructions? 
The contents of the high-order bus during the M3 cycle of the I/O instructions, illustrated in Sections 5.1 and 5.3, are generally inelevant to the interfacing of I/O devices. For the I/O instructions discussed, the contents of the accumulator are placed on 
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the Ais-Ag bus. However, in other I/O instructions where the contents of register C are used to specify a port address, the contents of register B are placed on the high-order bus. 
3. Why is one Wait state automatically inserted when an I/O instruction is executed? 
When an I/O instruction is being executed, the control signal lORQ is asserted during Ti of the M3 cycle. This does not leave sufficient time for the Z80 to sample the WAIT line. Therefore, a slow-responding I/O device would not be able to decode its address and activate the WAIT line if necessary. Adding one Wait cycle allows the device to activate the WAIT signal for additional Wait states. 
4. In a memory-mapped I/O, what is the reason for not automatically inserting a Wait state? 
In the Memory Read/Write cycles, the MREQ is asserted during T,; therefore, there is sufficient time to sample the WAIT line during Tj state. 
5. In a memory-mapped I/O, how does the microprocessor differentiate between I/O and memory, and can an I/O device have the same address as a memory register? 
In the memory-mapped I/O, the microprocessor cannot differentiate between an I/O device and memory; it treats an I/O device as if it is memory. Therefore, an I/O device and memory register cannot have the same address; the entire memory map (64K) of the system has to be shared between memory and I/O. 
6. Why is a 16-bit address (data) stored in memory in the reversed order—the low-order byte first, followed by the high-order byte? 
In the Z80 microprocessor, the instruction decoder and the associated microprogram are designed to recognize the second byte as the low-order byte in a 3-byte instruction. 
SUMMARY 
In this chapter, we have examined the machine cycles of the OUT and IN instructions and derived the basic concepts for interfacing peripheral-mapped I/Os. Similarly, we examined the machine cycles of memory-related data transfer instructions and derived the basic concepts for interfacing memory-mapped 1/0%. These concepts were illustrated with three examples of interfacing I/O devices and one example of interfacing an analog signal. The interfacing concepts can be summarized as follows. 
Peripheral-Mapped I/O 
o The OUT is a 2-byte instruction and copies (transfers or sends) data from the accumulator to the addressed port. □ When the Z80 executes the OUT instruction, in the third machine cycle it places the 
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output port address on the low-order bus, places data on the data bus, and asserts the control signals lORQ and WR. 
□ A latch is generally used to interface output devices. 
□ The IN instruction is a two-byte instruction and copies (transfers or reads) data from an input port and places the data into the accumulator. 
□ When the Z80 executes the IN instruction, in the third machine cycle it places the input port address on the low-order bus, asserts the control signals lORQ and RD, and transfers data from the port to the accumulator. 
□ A tri-state buffer is generally used to interface input devices. 
□ To interface an output or an input device, the low-order address bus needs to be decoded to generate the device address pulse, which must be combined with control signals lORQ and RD (or WR) to select the device. 
Memory-Mapped 1/0 
□ Memory-related instmctions are used to transfer data. 
□ To interface I/O devices, the entire bus must be decoded to generate the device address pulse, which must be combined with the control signals MREQ and WR or RD to generate the I/O select pulse. Data are transferred by using this pulse to enable the I/O device. 
ASSIGNMENTS 
1. Explain why the number of output ports in peripheral-mapped I/O is restricted to 256 ports? 
2. In peripheral-mapped I/O, can an input port and an output port have the same port address? 
3. If an output and input port can have the same 8-bit address, how does the Z80 differentiate between the ports? 
4. Specify the two control signals required to latch data in an output port. 
5. Specify the type of pulse required to latch data in the 7475. 
6. Are data latched in the 7475 at the leading edge, during the level, or at the trailing edge of the enable (E) signal? 
7. If the control signals WR and lORQ are asserted at the same time, can data be latched using only the control signal WR? 
8. If the answer to the previous question is yes, what are potential problems with the interfacing circuit? 
9. In Figure 5.4, explain why the LED cathodes rather than anodes are connected to the latch. 
10. Specify the control signals required to enable an input port. 
11. Explain why a latch is used for an output port, but a tri-state buffer can be used for an input port. 
12. What are the control signals necessary in memory-mapped I/O? 
13. Can the microprocessor differentiate whether it is reading from a memorymapped input port or from memory? 
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In Figure 5.10, connect the output of the comparator to data line D7 and also drive the transistor with bit D7. Make the necessary changes in the instructions. Identify the port address in Figure 5.12. 
In Figure 5.12, if OE is connected directly to the WR signal and the output of the decoder is connected to the latch enable (through an inverter), can you display a byte at the output port? Explain your answer. 
In Figure 5.13, determine whether it is the memory-mapped or the peripheralmapped I/O. 
In Figure 5.1.3, what is the port address if all the "don't care" address lines are assumed to be at logic 0? 
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Schematic foi Assignments 19-20 
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19. In Figure 5.14, are ports A and B input or output ports? 
20. In Figure 5.14, what are the addresses of ports A and B? 
21. In Figure 5.15, identify two output lines of decoder #2 that can be used as control signals and explain their functions. Explain why other output lines cannot be used as control signals. 
22. In Figure 5.15, specify the I/O addresses. 
23. In Figure 5.16, the decoder 74LS155 and an 8-input NAND gate are used to decode the address bus and generate the control signals. The decoder has two input lines Ai and Aq and four enable lines (pins 1, 2, 14, and 15). When pins 14 and 15 (active low) are enabled, the four output lines of the "b" group decode the input signal, and when pins 1 (active high) and 2 (active low) are enabled, the four output lines of "a" group decode the input signals. Identify the addresses that can assert the output lines of the decoder and specify their I/O functions. 
24. Sketch the waveforms of the Mi cycles in the diagnostic routine (Section 5.8). 
25. Write a similar diagnostic routine to test the circuit in Figure 5.6. 
26. Is there a WR pulse in your diagnostic routine of 25? If the answer is no, what is the unique identifiable signal that can be used to sync the scope? 
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CHAPTER 6 
Introduction to Z80 Assembly Language Programming 
CHAPTER 1 
Software Development Systems and Assemblers 
CHAPTER 8 
Introduction to Z80 Instructions and Programming Techniques 
CHAPTER 9 
Logic and Bit Manipulation Instructions 
CHAPTER 10 
Stack and Subroutines 
CHAPTER 11 
Application Programs and Software Design 
Part II of this book is an introduction to Z80 assembly language programming. It explains commonly used instructions, elementary programming techniques and their applications, and the modular approach to software design. 
The content is presented in a format similar to one for learning a foreign language. One approach to learning a foreign language is to begin with a few words that can form simple, meaningful, and interactive sentences. After learning a few sentences, one begins writing paragraphs that can convey ideas in a coherent fashion; then, by sequencing a few paragraphs, one can compose a letter. Chapters 6 to 11 are ananged in similar fashion—from simple instructions to applications. 
Chapter 6 provides an overview of the Z80 instruction set and its capability, and Chapter 7 presents software development systems and Z80 assemblers. Chapters 8 and 9 are concerned primarily with the Z80 instructions that occur most frequently. The instructions are not introduced according to the six groups as classified in Chapter 6; instead, a few instructions that can perform simple tasks are selected from each group. Chapter 8 
II 
Assembly Language Programming: The Z80 
ASSEMBLY LANGUAGE PROGRAMMING: THE Z80 
includes the discussion of instructions from three groups—data copy, arithmetic and branch—and their various applications. Chapter 9 introduces logic and bit manipulation instructions and their applications. Chapter 10 introduces the concepts of subroutine and stack, which provide flexibility and variety for program design. Chapter 11 synthesizes the programming concepts presented in earlier chapters by illustrating application programs and demonstrates the modular approach to software design. 
PREREQUISITES 
The reader is expected to know the following topics: 
□ The Z80 architecture, especially the programming registers. 
□ The concepts related to memory and I/Os. 
□ Logic operations, and binary and hexadecimal arithmetic. 
Introduction to Z80 
Assembly 
Language 
Programming 
An assembly language program is a set of instructions, written in the mnemonics of a given microprocessor, and in a sequence appropriate to a specified task. To write such programs, we should be familiar with the capabilities of the microprocessor and its instruction set. This chapter provides such an overview of the Z80 microprocessor. 
The Z80 instruction set is classified into six categories, and each category is explained with examples. The chapter also discusses the instruction format and various addressing modes. Writing, assembling, and executing a program are illustrated by a simple problem of adding two Hex numbers. The flowcharting technique and symbols are discussed in the context of the illustrative program. The chapter concludes with a list of selected Z80 instructions. 
OBJECTIVES 
□ Explain the terms operation code (opcode) and operand, and illustrate these terms by writing instructions. 
□ Classify the instructions in terms of their word size and specify the number of memory registers required to store the instructions in memory. 
□ List the six categories of the Z80 instruction set. 
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        □ Define and explain the term addressing mode. 
□ Write logical steps needed to solve a simple programming problem. 
□ Draw a flowchart from the logical steps of a given programming problem. 
□ Write mnemonics from the flowchart and convert the mnemonics into Hex code for a given programming problem. 
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6.1 
OVERVIEW: Z80 INSTRUCTION SET 
The instruction set of a microprocessor determines the capabihty of its operations, the power of its data manipulation, and the ease of programming it. For example, the Z80 instruction set includes an instruction that can copy contents from one block of memory locations to another. For most other 8-bit microprocessors, the programmer needs to write a program to perform the same function. Although it is necessary to have an overall view of the instruction set, our intent here is merely to acquaint you with the overall operations and capability of the Z80 microprocessor. As you progress through the chapters of Part II, you will be exposed to various instructions in more detail along with their applications. 
The Z80 microprocessor has 1.58 instruction types; it includes all the instructions of the Intel 8080 microprocessor and all but two of the 808.5. As discussed in Chapter 1, each instruction has two parts: one is the task to be performed (such as Load, Add, and Jump), called the operation code (opcode); and the second identifies the data to be operated on, called the operand. First, we will examine various formats of these instructions in terms of number of bytes and then their classification according to their function. 
6.11   Instruction Format 
An instruction is a command to the microprocessor to perform a given task on specified data. The size of Z80 instructions ranges from one to four bytes; thus, the number of memory registers (locations) required to write (or store) them varies. For example, to write a 3-byte instruction into memory requires three memory locations. Most opcodes (operation codes) are specified in one byte; however, some specialized opcodes require two bytes. The operand (or data) can be specified in the following ways: 8-bit data, 16-bit data, registers, register pairs, and memory addresses. The Z80 instruction set can be classified into four groups according to the length of an instruction: 1-byte to 4-byte instructions. Because the Z80 is an 8-bit microprocessor, the terms "byte" and "word" are used synonymously. 
1-BYTE INSTRUCTIONS 
In a 1-byte instruction, the opcode and the operand are included in the same byte as shown in the following examples. 
Task 
Opcode 
Operand 
Binary Code 
Copy the contents of register B into the accumulator A. 
LD 
A, B 
01 111 000 (78H) 
Add the contents of register B to the contents of A. 
ADD 
A, B 
10000 000 (80H) 
These are 1-byte instructions performing two different tasks. In the first instruction, the opcode LD is specified by the first two bits (01) and the operand registers A and B are 
specified by the remaining six bits. (The accumulator A is represented by 111 and register B by 000.) In the second instruction, the ADD is a 5-bit (10000) opcode, and the operand B is specified by the remaining three bits (000). These bits are associated with the internal microoperations of the microprocessor. 
2-BYTE INSTRUCTIONS 
In a 2-byte instruction, the first byte specifies the opcode and the second byte specifies the operand (with exceptions of some Z80 two-opcode instructions). 
Binary Code 
0000 0110 (06H) Byte 1 0011 0010 (32H)   Byte 2 
Task Opcode Operand 
Load register B with the LD B, 32H* 
hexadecimal number 32. (Opcode for LD B is 06H) 
3-BYTE INSTUCTIONS 
In a 3-byte instruction, the first byte specifies the opcode, and the following two bytes specify the 16-bit address or data in a reversed order: low-order byte followed by the high-order byte. For example: 
Task Opcode Operand 
Copy data from memory LD A, (2080H) 
address 2080h into the accumulator. 
Binary Code 
0011 1010 (3AH) 1000 0000 (BOH) 0010 0000 (20H) 
Byte 1 Byte 2 Byte 3 
4-BYTE INSTRUCTIONS 
The descriptions given above for 2- and 3-byte instructions are valid for the instructions compatible with the 8080 instructions. The Z80 instruction set, however, includes numerous special-purpose instructions that are not compatible with the 8080 instruction set. An 8-bit microprocessor can have a maximum of 256 bit combinations; thus its instruction set is limited to 256 operation codes. The 8080 has already used 242 combinations for its 72 different instructions leaving only 14 combinations unused. However, the Z80 microprocessor needs many more combinations to use its additional registers (two index registers, alternate registers, interrupt vector, and refresh). This problem was resolved by designing 2-byte opcodes: unused opcodes combined with instruction opcodes. Z80 4-byte instructions are generally associated with index registers, as is the following example. 
Task Opcode Operand 
Load index register IX LD IX, 2000H 
with 16-bit address 
2000h. 
Binary Code 
1101 1101 (DDH) Byte 1 
0010 0001 (21H) Byte 2 
0000 0000 (OOH) Byte 3 
0010 0000 (20H) Byte 4 
Now we can discuss various instructions according to their functional classification. 
*In an instruction, hexadecimal number is shown as the number followed by capital H, and in the text, the number is shown with the subscript h
6.12  Z80 Instruction Set 
The Z80 instruction set can be divided into six major categories as follows: 
1. Data Copy (Transfer) or Load Operations 
2. Arithmetic Operations 
3. Logic Operations 
4. Bit Manipulation 
5. Branch Operations 
6. Machine Control Operations. 
DATA COPY OR LOAD OPERATIONS 
Copying data is one of the major functions the microprocessor needs to perform. The Z80 has numerous instructions that copy data from one location, called source, to another location, called destination, without modifying the contents of the source. In technical manuals, this function is quite often referred to as data transfer. However, since the term data transfer creates the impression that the contents of the source are destroyed, we prefer the term data copy. In this text, we have also used the terms Load, Read, and Write, all of which are data copy operations. 
Figure 6.1 shows various categories of data copy operations. The Z80 has several instructions associated with each category, each of which, with its subdivisions, is listed below with examples of instructions. 
Direct Data 
Input Devices 
ROM 
Microprocessor 
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Types of Data Copy Operations 
Data Copy Operations 
1. From one register into another register. 
2. (a) Specific data byte into a register or 
a memory location. 
(b) Specific 16-bit data into a register pair. 
3. From a memory location into a register or vice versa. 
4. (a) From an input port into the accu
mulator. 
(b) From the accumulator into an output port. 
5. From microprocessor registers into stack memory locations and vice versa. 
6. Exchange contents between registers. (This is a slightly different operation from  data  copy;   this   is  a data exchange.) 
Examples 
Copy the contents of register B into the accumulator. 
LD A, B; LD means Load 
Load register B with the hexadecimal 
number 32. 
LD   B,32H 
Load register pair HL with hexadecimal number 2050. 
LD   HL, 2050H 
Copy data from memory location 2080h into the accumulator. 
LD   A, (2080H) 
Read data from input port 01 h and copy into the accumulator. 
IN A, (OIH) 
Write (send) the contents of the accumulator into port 07h. 
OUT   (07H), A 
Copy the contents of register pair BC into defined stack memory locations. 
PUSH BC 
Exchange the contents of general purpose registers (BC, DE, HL) with alternate registers. 
EXX 
General characteristics of these data copy instractions can be listed as follows: 
1. In data copy operations, the contents of the source are copied into the destination without affecting the contents of the source (except in Exchange instructions). 
2. In an operand, the destination is specified first, followed by the source. For example, in the instruction LD A, B the source is register B and the destination is the accumulator. This may appear backward because the flow is generally assumed to be from left to right. 
3. The memory and I/O addresses are enclosed in parentheses. 
4. In some instructions, operand is implicit (for example, EXX). 
5. These instructions do not affect flags. 
ARITHMETIC OPERATIONS 
The Z80 instruction set includes four types of arithmetic operations: addition, subtraction, increment/decrement, and I's and 2's complement. In 8-bit arithmetic operations, the 
accumulator is generally assumed to be one of the operands (with the exception of increment/decrement instructions). 
□ Addition. Any 8-bit number, or the contents of a register, or the contents of a memory location can be added to the contents of the accumulator. The result of the addition is stored in the accumulator, and the flags are affected by the result. No two other 8-bit registers can be added directly; for example, the contents of register B cannot be added directly to the contents of register C. 
Examples: Add the contents of register B to the contents of the —» ADD A, B accumulator. 
Add the byte 97h to the contents of the accumula- -» ADD A, 97H tor. 
□ Subtraction. Any 8-bit number, or the contents of a register, or the contents of a memory location can be subtracted from the contents of the accumulator. The subtraction is performed in 2's complement, and the result is stored in the accumulator. The result modifies the flags, and if the result is negative, it is expressed in 2's complement. The following mnemonics indicate that the accumulator is implicitly assumed as one of the operands. 
Examples: Subtract the contents of register C from the contents       -» SUB C of the accumulator. 
Subtract the byte 47h from the contents of the accu-       --> SUB 47H mulator. 
□ Increment/Decrement. The 8-bit contents of a register (including the accumulator) or a memory location can be incremented or decremented by 1. Similarly, the 16-bit contents of a register pair (such as HL) can be incremented or decremented by 1. Unlike Add and Subtract, these operations can be performed in any of the registers. The instructions related to 8-bit contents affect flags (except Carry); on the other hand, instructions related to 16-bit contents do not affect any flags. 
Examples: Increment the contents of register B. —> INC B 
Decrement the contents of register pair BC.      DEC BC 
□ I's and 2's Complement. The contents of the accumulator can be complemented (I's or 2's complement), and the result is stored in the accumulator. Some flags are affected by the result. These instructions assume that the operand is the accumulator. 
Examples: Complement the contents of the accumulator CPL (this is equivalent to I's complement). Subtract the contents of the accumulator from zero —> NEG (this is equivalent to 2's complement). 
LOGIC OPERATIONS 
The instructions related to logic operations can be divided into three groups: logic functions (AND, OR, etc), bit rotations or shifts, and comparisons (less than, greater than, and equal to) of data bytes. 
□ Logic Functions. Any 8-bit number, the contents of a register, or the contents of a memory location can be ANDed, ORed, or Exclusive ORed with the contents of the accumulator. The result is stored in the accumulator, and the flags are affected by the result. 
Examples: Logically AND the contents of register B with the     AND B contents of the accumulator. 
Exclusive OR the contents of register B with the   -» XOR B contents of the accumulator. 
□ Shift and Rotate. Each bit in the accumulator, in the registers, or in memory can be shifted either left or right by one position. 
Examples: Rotate the contents of the accumulator RRA right through Carry flag. 
Rotate left the contents of register B.   -> RLC B 
□ Compare. Any 8-bit number, the contents of a register, or memory can be compared for equality, greater than, or less than with the contents of the accumulator. The result of the comparison is indicated by appropriate flags. 
Examples: Compare the contents of register B with the       CP B contents of the accumulator. 
Compare the data byte 97h with the contents -» CP 97H of the accumulator. 
BIT MANIPULATION 
The bit manipulation instructions can be classified into two groups: bit test and bit set/ reset. 
□ Bit Test—Any one of the eight bits in a register, accumulator, or memory can be verified as 0 or 1, and the Z flag will be modified accordingly. 
Example: Check bit D7 in register B.      BIT 7, B 
□ Bit Set/Reset—Any one of the eight bits in a register, accumulator, or memory can be set or reset. 
Examples: Set bit D5 in the accumulator.      SET 5, A Reset bit D2 in register B.      -» RES 2, B 
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BRANCHING OPERATIONS 
This group of instructions alters the sequence of program execution either conditionally or unconditionally. 
□ Jump. The sequence of program execution can be altered either conditionally or unconditionally. When a conditional Jump instruction is used, the microprocessor checks the specified flag, and if the condition is true, the execution sequence is altered; otherwise, the next instniction is executed. The destination location to which the program should be directed can be specified directly or relative to the contents of the program counter. These instructions are critical to the decision making process in programming. 
Examples: After an operation (such as an addition),       JP C, 2050H if CY flag is set, jump to location 2050h. If Zero flag is not set, jump forward JR NZ, OFH 
by 1.5 locations. 
□ Call/Return. These instructions change the sequence of a program by calling a subroutine or returning from a subroutine. The conditional Call and Return instructions check for appropriate flags. 
Examples: Go to subroutine located at 20.50h.      CALL 2050H 
Go to Subroutine located at 2070h -» CALL Z, 2070H if Z flag is set. 
□ Restart. These instructions are used to change the program sequence to one of eight restart locations on memory page 00. The instructions are generally used with interrupts. 
Example: Call location 0028h.      RST 28H MACHINE CONTROL OPERATIONS 
These instructions control microprocessor operations such as Halt and Interrupt. 
Examples: Suspend execution of instruction. -» HALT Disable interrupts by resetting the -> DI Interrupt Enable flip-flops. 
6.13  Review of Important Concepts 
Our intent here is to give you an overall view of the instruction set and the capability of the Z80 microprocessor. The Z80 has 1.58 instructions with 694 opcodes. These numbers can be overwhelming and intimidating to a beginner. Fortunately, as you begin to use instructions, a logical pattern will begin to emerge. At this point, the important concepts to remember are as follows: 
1. Each instruction has two parts: opcode and operand. The opcode specifies the task, and the operand specifies either data or where data are located. 
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2. Instructions can be classified into four groups according to their word length: one to four bytes. 
3. In an instruction, when the data source and the destination are explicitly specified, the destination is shown first and the source second. 
4. When an operand is a 16-bit address (or data), it is stored in memory in a reversed order: the low-order byte first, followed by the high-order byte. 
5. Instructions are stored in memory in binary format; the microprocessor neither reads nor understands mnemonics or hexadecimal numbers. 
6. The number of memory locations required to store an instruction is determined by the word length. For example, a 3-byte instruction would require three memory locations. 
ADDRESSING MODES 
6.2 
The addressing mode is a way of specifying an operand or pointing to a data location. The Z80 microprocessor has ten addressing modes, as shown in Table 6.1. The first three are explained here as illustrations, and the others will be explained in later chapters. 
In Section 6.12, we listed various categories of data copy operations. Data can be loaded directly into registers (or memory) or can be copied from registers and memory, including I/O ports. Here are the addressing modes of these data copy operations. 
Addressing Modes 
1. Immediate 
Immediate Extended 
3. Register 
Examples 
In this mode, the byte following the opcode is the operand. Example: LD A, 32H      Load 32h into the accumulator 
3E Opcode 
32 Operand 
In this mode, two bytes following the opcode constitute the operand; the second byte is low-order and the third byte is high-order. 
Example: LD HL, 2050H     Load 2050h into the HL pair. 21 Opcode 50        Operand: Low-order 20        Operand: High-order 
In this mode, a data byte is copied from one register to another register, and both registers are spcified in the instruction. 
Example: LD A, B     Copy the contents of register B into A. 
At this point, you are not familiar with the instructions set; therefore, you should avoid the details of the addressing modes given in Table 6.1. As we begin to use various 
TABLE 6.1 
Z80 Addressing Modes Explanation Example 
	1. 
	Immediate : 
	The byte following the opcode is the operand. This mode is used to load 8-bit data into a register. 
Load 97h into register B 
	LD B, 97H 

	2. 
	Immediate : Extended 
	The two bytes following the opcode are the operands. This mode is used to load 16-bit data or address into a register pair. 
Load 8045h into register pair BC 
	LD BC, 804.5H 

	3. 
	Register : 
	The operand register is included as a part of the opcode. This mode is used to copy data from one Z80 register into another register. 
Copy data from register A into B 
	LD B, A 

	4. 
	Implied : 
	This refers to operations in which the opcode implies one or more Z80 registers as containing the operands. For example, instructions for logic operations imply that the accumulator is one of the operands and that the result is stored in the accumulator. 
Logically AND register B with A 
	AND B 

	5. 
	Register : Indirect 
	This mode is used to copy data between the MPU and memory; the 16bit contents in a register pair are used as a memory pointer. 
Copy the contents of memory location 2060h into register B. Register HL contains the address 2060h. 
	LD, B, (HL) 

	6. 
	Extended : 
	The two bytes following the opcode specify the jump location. Jump to location 2080h. 
	JP 2080H. 

	7. 
	Relative : 
	In this mode, the second byte specifies the displacement value in a signed 2's complement for a jump location. 
Jump forward 20 locations from the address of the next instruction. 
	JR 14H 

	8. 
	Indexed : 
	In this mode, the byte following the opcode specifies a displacement value that is added to one of the index registers to form a memory pointer. 
The index register IX contains 2060h; increment the contents of memory location 2070h
	INC (IX -1- lOH) 

	9. 
	Bit : 
	This mode is used for bit operation (manipulation). In this mode, instruction specifies a bit from a register or a memory location using one of the three addressing modes (register, register indirect, or indexed). 
Set hit Ot in repistpr R 
	SET 7, B 

	10. 
	Page Zero : 
	The instruction set includes eight restart (one-byte call) instructions on memory page zero. In this mode, the memory location can be specified by using the low-order byte, and the high-order byte is assumed to be OOh. 
Call restart memory location 0028h. 
	RST 28H 


instructions in following chapters, we will discuss the appropriate addressing modes. As you become more familiar with the instruction set, you will be able to choose an appropriate addressing mode for a given task. 
HOW TO WRITE, ASSEMBLE AND EXECUTE A SIMPLE ASSEMBLY LANGUAGE PROGRAM 
An assembly language program is a sequence of instructions written in mnemonics to perform a specific task. These instructions are selected from the instruction set of the microprocessor being used. To write a program, we need to divide a given problem into small steps and translate these steps into the operations the Z80 can perform. For example, the Z80 does not have an instruction that can multiply two binary numbers, but it can add. Therefore, the multiplication problem can be written as a series of additions. 
After writing the instructions in mnemonics, you should translate them into binary machine code; this process of translation is called assembling the code. Quite often, this process involves intermediate steps, such as translating mnemonics into Hex code and then into binary code. The code assembly can be done manually, as described in this chapter, or using an assembler (a program that translates mnemonics into machine code), as described in the next chapter. 
To execute a program, the binary code should be entered and stored in the R/W memory of a microcomputer so that the microprocessor can read and execute the binary instructions written in memory. In a single-board microcomputer the instructions are, generally, entered using a Hex keyboard. This is one of the reasons why we translate mnemonics into Hex code as an intermediate step rather than into binary code directly. When the Hex code is entered, the keyboard program, residing in the microcomputer system, translates the Hex code into binary code. The steps required to write, assemble, and execute a program are illustrated in the next section. 
6.31   Illustrative Program: Adding Two Hexadecimal Numbers PROBLEM STATEMENT 
Write instuctions to load the two hexadecimal numbers 32h and A2h into registers B and C respectively. Add the numbers, and display the sum at the LED output port PORTl. 
PROBLEM ANALYSIS 
Even though this is a simple problem, it is necessary to divide the problem into small steps in order to examine the process of writing programs. The wording of the problem provides sufficient clues for the necessary steps. They are as follows: 
1. Load the numbers into the registers. 
2. Add the numbers. 
3. Display the sum at the output port PORTl. 
FLOWCHART 
The steps listed in the problem analysis and the sequence can be represented in a block diagram, called a flowchart. Figure 6.2 shows such a flowchart representing those steps. This is a simple flowchart, and the steps are self-explanatory. We will discuss flowcharting in the next section. 
ASSEMBLY LANGUAGE PROGRAM 
To write an assembly language program, we need to translate the blocks shown in the flowchart into Z80 operations and then into mnemonics. By examining the blocks, we can classify them into three types of Z80 operations: Blocks 1 and 3 are copy operations; Block 2 is an arithmetic operation; and Block 4 is a machine control operation. The translation of each block into mnemonics with comments is shown below. 
Block 1: 
Block 2 Block 3 Block 4 
LD B, 32H LD C, A2H LD A, C 
ADD A, B OUT (OIH), A HALT 
;Load register B with 32H. ;Load register C with A2H. 
;Copy contents of C into accumulator to perform addition. B and C cannot be added directly. Add two bytes and save the sum in A. Display accumulator contents at port OIH. End 
FROM ASSEMBLY LANGUAGE TO HEX CODE 
To convert the mnemonics into Hex code, we need to look up the code in the Z80 instruction set; this is called either manual or hand assembly. The Hex code is as follows: 
FIGURE 6.2 (--^ 
Flowchart for Adding Two Numbers  1— 
Load 1 Hex Numbers 
Add " Numbers 
Display Sum 
(    End 4) 
Mnemonics       Hex Code 
LD B, 32H              06 2-byte instruction 32 
LD C, A2H             OE 2-byte instruction A2 
LD A, C                 79 1-byte instruction 
ADD A, B                80 1-byte instruction 
OUT (OIH), A D3 2-byte instruction 
01 
HALT 76 1-byte instruction 
STORING IN MEMORY AND CONVERTING FROM HEX CODE TO BINARY CODE 
To store the program in R/W memory of a single-board microcomputer and display the output, we need to know the memory map and the output port address. Let us assume that R/W memory ranges from 2000h to 20FFh, and the system has an LED output port with the address 01 h- To enter the program, the following steps are necessary: 
1. Reset the system by pushing the RESET key. 
2. Using Hex keys, enter the first memory address at which the program should be stored. Let us assume it is 2000h. 
3. Enter each machine code by pushing Hex keys. For example, to enter the first machine code push O, 6, and STORE keys. (The STORE key may be labelled differently in different systems.) When you push the STORE key, the program will store the machine code in memory location 2000h and upgrade the memory address to 2001h. 
4. Repeat Step 3 until the last machine code 76h. 
5. Reset the system. 
Now the question is: How does the Hex code get converted into binary code? The answer lies with the Monitor program stored in the Read-Only Memory (or EPROM) of the microcomputer system. An important function of the Monitor program is to check the keys and convert Hex code into binary code. The entire process of manual assembly is shown in Figure 6.3. 
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FIGURE 6.3 
Assembling the Code 
In this illustrative example, the program will be stored in memory as shown: 
	Mnemonics 
	Hex Code 
	Memory Contents 
	Memory Address 

	LD B, 32H 
	06 
	0 0 0 0 0 1 10 
	2000 

	
	32 
	0 0 1 10 0 1 0 
	2001 

	LD C, A2H 
	OE 
	0 0 0 0 1 1 1 0 
	2002 

	
	A2 
	10 10 0 0 10 
	2003 

	LD A, C 
	79 
	0 11110 0 1 
	2004 

	ADD A, B 
	80 
	10 0 0 0 0 0 0 
	2005 

	OUT (OIH), A 
	D3 
	110 10 0 11 
	2006 

	
	01 
	0000000 1 
	2007 

	HALT 
	76 
	0 1110 110 
	2008 


This program has nine machine codes and will require nine memory locations to store the program. The critical concept to be emphasized here is that the microprocessor can understand and execute only the binary instructions (or data); everything else (mnemonics, Hex code, comments) are for the convenience of those who write and use the assembly language programs. 
EXECUTING THE PROGRAM 
To execute the program, we need to tell the microprocessor where the program begins by entering the memory address 2000h. Then, we can push the Execute key (or the key with a similar label) to begin the execution. As soon as the Execute function key is pushed, Z80 loads 2000h into the program counter, and the program control is transferred from the Monitor program to our program. 
The microprocessor begins to read one machine code at a time, and when it fetches the complete instruction, it executes that instruction. For example, it will fetch the machine codes stored in memory locations 2000h and 2001h and execute the instruction LD B, 32H; thus it will load 32h into register B. It continues to execute instructions until it fetches the HALT instruction. 
6.32  Program Documentation Or Writing Format 
'Program documentation is an important aspect of writing programs. The documentation should be able to communicate what the program does and the logic underlying the program, so that it can be debugged and modified if necessary. For our illustrative program, a writing format based on assembler files (discussed in the next chapter) is shown here. 
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Memory   Hex Instruction 
Address   Code    Label    (Opcode)   (Operand) Comments 
	2000 
	06 START: 
	LD 
	B, 32H 
	; Load first byte 

	2001 
	32 
	
	

	2002 
	OE 
	LD 
	C, A2H 
	; Load second byte to be added 

	2003 
	A2 
	
	

	2004 
	79 
	LD 
	A, C 
	; Copy one of the bytes into A 

	2005 
	80 
	ADD 
	A, B 
	; Add two bytes 

	2006 
	D3 
	OUT 
	(OIH), A 
	; Display the result 

	2007 
	01 
	
	
	

	2008 
	76 
	HALT 
	
	; End 


This writing format has five columns: Memory Address, Hex Code, Label, Instruction (Opcode and Operand), and Comments. Each column is described below in the context of a single-board computer. 
Memory Addresses These are 16-bit addresses of the system's R/W memory in which the binary code of the user program is stored. In the illustration, we assumed that the R/W memory in our system begins at the address 2000h, and we chose to store the program starting at the location 2000h; we could have chosen any other available memory block to store our program. 
Hex Codes These are the hexadecimal codes of the Z80 mnemonics we looked up in the instruction set; they were entered in memory using the Hex keyboard of the single-board microcomputer system. The key monitor program of the system translates these Hex codes and stores the binary equivalents in the proper memory locations. 
Labels They are used to identify a memory location. The program has one label: START. This label is used for documentation; it indicates the beginning of the program. The labels are used to identify memory locations and will be especially useful for Jump instructions when we use assemblers to write programs (discussed in the next chapter). 
Instructions These are the Z80 mnemonics representing the microprocessor operations. Each instruction is divided into two parts: opcode and operand. 
Comments The comments are written as a part of the proper documentation of a program to explain or elaborate the purpose of the instruction used. They thus play a critical role in the user's understanding of the logic behind a program. Because the illustrative program is very simple, the comments shown are either redundant or trivial, but in general comments should not merely describe the meaning of mnemonics. 
FLOWCHARTING 
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        A flowchart is a graphic representation of the logic and sequence of tasks to be performed. A flowchart should assist in clarifying one's thinking process and communicate the programmer's approach and logic in writing the program. 
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Symbol Meaning 
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        Oval: Indicates the beginning or end of a program. 
Arrow: Indicates the direction 
of the program execution. 
Rectangle: Represents a process or an operation. 
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        Diamond: Represents a decision-making block. 
Double-sided 
Rectangle: Represents a predefined 
process such as a subroutine. 
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        Circle with an Arrow: Represents continuation (an entry or exit) to a different page. 
FIGURE 6.4 
Flowcharting Symbols 
Flowcharting is an art; how much detail it should include requires a subjective decision. At one level, the flowchart includes only the functions to be performed without any reference to a particular microprocessor; at another level the functions of registers being used are specified in detail. However, it should not duplicate the instructions in the program in a graphic format; this would defeat the whole purpose of drawing the flowchart. It should simply represent a logical approach and sequence of steps in solving the problem. 
The six symbols commonly used in flowcharting are shown in Figure 6.4. We have already used three symbols in Figure 6.2. The fourth symbol, shown by the diamond shape, represents the decision-making block. It is used when data conditions need to be checked and the program sequence has to be altered. This symbol is illustrated in Figure 
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FIGURE 6.5 
Flowchart: Adding Two Hex Numbers and Checking Carry 
Q     Start ^ 
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Step 2 
Step 3 
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	Lo Num in Re] 
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        Get Ready to Display OlH 
Step 5 I     Display I ^ End ^ 
Step 6 
6.5. The fifth symbol, a double-sided rectangle, represents a predetermined process such as a subroutine (discussed in Chapter 10). The last symbol, a circle with an arrow, is used to show continuation of the flowchart to a different column or to a different page. 
Draw a flowchart to represent the following problem. Load two Hex bytes into Z80 Example 
registers and add the bytes. If the sum is larger than 8 bits, display OIh as the overload  6J. 
condition at port P0RT7; otherwise, display the sum at the output port. 
The problem can be divided into the following steps. Solution 
1. Load bytes into Z80 registers. 
2. Add the bytes. 
3. Check the sum. 
4. If the sum > FFh, display OIh at the output port. 
5. If the sum < FFh, display the sum at the outport port. 
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The steps listed in Example 6.1 and the sequence can be represented by the flowchart shown in Figure 6.5. The first two blocks can be easily understood. The third block, shown by the diamond shape, is a decision-making block. In this block the result is checked by examining the CY flag, and the program execution is altered accordingly. If the CY flag is set, the result is larger than FFh and the program execution goes to the next block. It loads OIh and displays it at the output port. If the answer to the question in the decision block is "No," the sum is less than FF. The program sequence is then altered; it bypasses Block 4 and displays the sum at the output port. 
An interesting question is: Can we interchange the answers "Yes" and "No" at the decision-making block? That is, can the program sequence be changed if CY is set? This is given as a problem at the end of the chapter; you may find that the resulting flowchart will have two end points. 
The Z80 instruction set includes 1.58 instructions resulting in 694 machine codes. The following list is a representative sample of each group described in Section 6.1. The purpose of the list is to show you the overall capability of the Z80 and some logical patterns in its instruction. You should not study these instructions in detail; instead, you should search for logical patterns. Once you recognize logical patterns, you will be able to recognize the function of an instruction even if you have not seen it before. 
Most instructions are compatible with the 8080 instruction set, with a few exceptions. Notations used in the description of the instructions include 
6.5 
LIST OF SELECTED Z80 INSTRUCTIONS 
r = Z80 8-bit Register rp rs = Register Source rx rd = Register Destination d m = Memory b ( ) = contents of 16-bit Memory 
= Register Pair = Index Registers = Displacement Byte = Bit Address 
or 8-bit I/O Address 
1. Data Copy (Load) Instructions 
Mnemonics 
Bytes 
Tasks 
Data (8 bits and 16 bits) copy or load in registers 
LD rd, r, LD r, 8-bit LD rp, 16-bit LD rx, 16-bit 
4 
2 
.3 
Copy data from source register r, into destination register rdLoad 8-bit into a register. Load 16-bit into register pair. Load 16-bit data into index register. 
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Data copy between registers and memory LD A, (16-bit) 3 
LD (16-bit), A LD A, (rp) LD (rp), A LD r, (HL) LD (HL), r LD r, (rx -h d) LD (rx + d), r 
2. Arithmetic Instructions'^ 
ADD A, r ADD A, 8-bit ADD A, (HL) 
SUB r SUB 8-bit SUB (HL) 
INC r INC (HL) 
INC rp DEC r DEC (HL) 
DEC rp 
Load accumulator from memory; the address is specified by 16-bit operand. 
Load memory from accumulator; the memory address is specified by 16-bit operand. 
Load accumulator from memory; the memory address is specified by contents of register pair. 
Load memory from accumulator; the memory address is given by the contents of register pair. 
Load register from memory; the address is specified by 16-bit contents in HL. 
Load memory from register; the address is specified by 16 bit contents in HL. 
Copy memory contents into register r; the memory address is obtained by adding the contents of index register and the displacement byte d. 
Copy register contents into memory address shown by index register and the displacement (rx -I- d) 
Add register contents to accumulator. Add 8-bit data to accumulator. 
Add memory contents to accumulator; the memory address is specified by the contents in HL. 
Subtract contents of register from accumulator. Subtract 8-bit data from accumulator. 
Subtract memory contents from accumulator; the memory address is specified by the contents of HL. 
Increment the contents of a register. 
Increment the contents of memory; the memory address is specified by the contents of HL. 
Increment 16-bit contents in a register pair. Decrement the contents of a register. 
Decrement the contents of memory; the memory address is specified by the contents of HL. 
Decrement 16-bit contents in a register pair. 
♦Instructions used for 16-bit addition and subtraction are not shown here. 
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3. Logic Instructions* 
AND r 1 
AND 8-bit 2 
AND (HL) 1 
CPr 1 
CP 8-bit 1 
CP (HL) 1 
4. Bit Rotation 
RLCA RLA 
RRCA RRA 
5. Brancli Instructionsf 
JP 16-bit 3 
JP Z, 16-bit 3 
JP NZ, 16-bit 3 
JP C, 16-bit 3 
JP NC, 16-bit 3 
CALL 16-bit 3 
RET 1 
Logically AND the contents of a register with the accumulator. 
Logically AND 8-bit data with accumulator. 
Logically AND the contents of memory with accumulator; the memory address is specified by the contents of HL. 
Compare the contents of register with accumulator for less than, equal to, or greater than. 
Compare 8-bit data with accumulator for less than, equal to, or greater than. 
Compare the contents of memory with accumulator for less than, equal to, or greater than. The memory address is specified by the contents of HL. 
Rotate each bit in the accumulator to the left position. 
Rotate each bit in the accumulator including the carry C to the left position. 
Rotate each bit in the accumulator to the right position. 
Rotate each bit in the accumulator including the carry C to the right position. 
Change the program sequence (Jump) to memory location specified by the 16-bit address. 
Change the program sequence (Jump) to memory location specified by the 16-bit address if the Zero (Z) flag is set. 
Change the program sequence (Jump) to memory location specified by the 16-bit address if the Zero (Z) flag is reset. 
Change the program sequence (Jump) to memory location specified by the 16-bit address if the Carry (C) flag is set. 
Change the program sequence (Jump) to memory location specified by the 16-bit address if the Carry (C) flag is reset. 
Change the program sequence to the location of the subroutine. 
Return to the calling program after completing the subroutine sequence. 
*The Z80 instruction set includes similar instructions for logically ORing and Exclusive ORing with mnemonics OR and XOR respectively. 
tThe Z80 set also includes conditional Call and Return instructions. 
INTRODUCTION TO Z80 ASSEMBLY LANGUAGE PROGRAMMING 
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6. Machine Control Instructions 
HALT NOP 
7. Bit Rotation* 
RLC r RL r SLA r 
8. Bit Manipuiationt 
BIT b, r 2 
SET b, r 2 
RES b, r 2 
Suspend execution and wait. Do not perform any operation. 
Rotate each bit in register r to the left. 
Rotate each bit in register r to the left, including Carry flag. 
Shift each bit in register r to the left. 
Test bit b in register r, affecting the Z flag. 
Set bit b in register r. ("b" represents bit position 0 to 7) 
Reset bit b in register r. 
9. Z80 Special (Conditional) Repetitive Instructions. The Z80 instruction set includes several instructions that are automatically repeated until a specified register becomes zero. These instructions are quite efficient in dealing with block transfer or counter applications. Some of these instructions are as follows: 
CPDR 
DJNZ d INDR 
OTDR 
2        Compare memory contents specified by HL with the accumulator. Increment HL, decrement BC, and repeat until BC = 0. or A = contents of memory specified by HL. 
2 Decrement B, and if Bt^O, jump to memory address obtained by add
ing displacement byte to the program counter. 
2        Read input port indicated by the C register, and store the byte in 
memory specified by HL register. Decrement B and HL, and continue until B = 0. 
2        Output the contents of memory specified by HL to port indicated by the C register. Decrement B and HL, and continue until B = 0. 
SUMMARY 
This chapter has provided an overview of the Z80 instruction set and the capability of the Z80 microprocessor. The important concepts and topics discussed in this chapter can be summarized as follows: 
*The Z80 set includes similar instructions to shift right as well as to rotate bits in any memory location. tSimilarly, any bit in a memory location can be set or reset. 
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□ The Z80 microprocessor operations are classified into six major groups: data copy (load), arithmetic, logic, bit manipulation, branch and machine control. 
□ An instruction has two parts: opcode (operation to be performed) and operand (data to be operated on). The operand can be 8- or 16-bit data, an address, register, register pair, or it can be implicit. 
□ The method of specifying an operand is called the addressing mode. 
□ The instruction set is classified into four groups according to the word size: 1-, 2-, 3-, and 4-byte instructions. 
□ To write a simple assembly language program, the problem should be divided into small steps in terms of microprocessor operations, and these steps should be translated into Z80 mnemonics. Then, the Hex code is assembled by looking up the code in the instruction list; this is called either hand or manual assembly. 
□ To enter a program in memory of a single-board microcomputer, Hex keys are used to enter the code, which is converted into binary code by the Key Monitor program of the system and stored in R/W memory. This binary code can then be read and executed by the microprocessor. 
ASSIGNMENTS 
1. List the six types of operations the Z80 performs. 
2. Define opcode and operand, and specify the opcode and the operand in the instruction LD A, B. 
3. Explain the instniction LD A, B. Specify the data source and destination. 
4. If the instruction LD A, B is stored in memory location 2005h, what are the contents of the memory register? 
5. Explain the instruction SUB H. List the operand implicit in the instruction. 
6. Write mnemonics to load F8h into register C and show the Hex codes with the memory address starting at 1800h. 
7. Write logical steps to load the following three Hex numbers (2F, 47, and 7A) into Z80 registers B, C, and D, respectively. Add the numbers and save the sum in register H. 
8. Translate the steps in the previous question into Z80 assembly language. 
9. Redraw the flowchart in Figure 6.5 by interchanging the answers of the decision block. For example, the program sequence will be altered if the answer is "Yes." (Hint: The flowchart can have two End statements.) 
10.   Draw a flowchart to represent the following problem. Load two numbers into 
Z80 registers, and subtract the second number from the first number. If the result generates a borrow, display FFh at the output port of the system; otherwise display the second number. 
Software Development Systems and Assemblers 
A software development system is a computer that enables the user to develop programs (software) with the assistance of other programs. The development process includes writing, modifying, testing, and debugging of the user programs. In the previous chapter, we discussed how to write a simple assembly language program and translate its mnemonics into Hex code manually. In this chapter, we will develop assembly language programs with the help of four other programs: Editor, Assembler, Linking Loader, and Debugger. These programs enable the user to write programs in mnemonics, translate mnemonics into Hex and binary code, and debug the code. All the activities of the computer—hardware and software—are directed by another program, called the operating system. 
This chapter describes a microprocessor-based software development system, its hardware, and related programs. It also describes such widely used operating systems as CP/M and MS-DOS, and illustrates the use of the assembler to write assembly language programs. 
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OBJECTIVES 
□ Describe the components of a software development system. 
0 List various types of floppy disks, and explain how information is accessed from the disk. 
o Define the operating system of a microcomputer, and explain its function. 
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        MICROPROCESSOR-BASEI DEVELOPMENT SYSTEMS 
□ Explain the functions of these programs: Editor, Assembler, Linking Loader, and Debugger. 
□ List the advantages of the assembler over manual assembly. 
□ List the assembler directives, and explain their functions. 
□ Write assembly language programs with appropriate directives. 
SOFTWARE 
A software development system is simply a computer that enables the user to write, modify, debug, and test programs. In a microprocessor-based development system, a microcomputer is used to develop software for a particular microprocessor. Generally, the microcomputer has a large R/W memory (64K or higher), disk storage, and a video terminal with a typewriter-like keyboard. The keyboard enables the user to write programs in alphanumeric (alphabet and number) characters, which are translated into ASCII (American Standard Code for Information Interchange) binary code; the keyboard (or the terminal) is known as ASCII keyboard (or terminal). The system includes programs that enable the user to develop software in either assembly language or high-level languages. This text will focus on developing programs in the Z80 assembly language. 
Conceptually, this type of microcomputer is similar to a single-board microcomputer except that it has additional features that can assist in developing large programs. Programs are accessed and stored under a file name (title), and they are written by using such other programs as text editors and assemblers. The system (I/Os, files, programs, etc.) is managed by a program called the operating system. The various hardware and software features of a typical software development system are described in the next sections. 
7.11  System Hardware and Storage Memory 
Figure 7.1 shows a typical software development system; it includes an ASCII keyboard, a CRT terminal, an MPU board with at least 64K R/W memory and disk controllers, and two disk drives. The disk controller is an interfacing circuit through which the MPU can access a disk and provide Read/Write control signals. The disk drives have Read/Write elements that are responsible for reading and writing data on the disk. Three types of floppy disks are in use: 8-inch, .5'/4-inch, and .3'/2-inch; at present, systems with 5'/4-inch disks seem to be the most commonly used. A .5'/4-inch single-density disk can store about 90K bytes of data; the storage capacity can be doubled by using double-density disks, and quadrupled (to 360K) by using both sides of the disks. Recently, manufacturers have improved on storage density, and now 5'/4-inch high-density disks with 1.2 megabyte storage capacity are available. 
FIGURE 7.1 
A Typical Software Development System: AT&T PC 6300 Plus 
SOURCE: Photograph Courtesy of AT&T 
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        FLOPPY DISK 
A floppy disk—Figure 7.2 (a)—is made of a tiiin magnetic material (iron oxide) that can store logic Os and Is in the form of magnetic directions. The surface of the disk is divided into a number of concentric tracks, each track divided into sectors, as shown in Figure 7.2(b). The large hole in the center of the disk is locked by the disk drive when it spins the disk. The small hole shown in Figure 7.2(a) is known as the indexing hole. The disk drive uses this hole as a reference to count the sectors. The oblong cutout, called the head slot, is the reading/recording segment; this is the only segment of the surface that comes in contact with the R/W head. At the edge of the disk, near the head slot, is a notch called the Write Protect notch. In the 5'/4-inch disk, if this notch is covered, data cannot be written on the disk; the disk is then "Write Protected." 
Floppy disks are further classified as either soft-sectored or hard-sectored. The disk shown in Figure 7.2(b) is a soft-sectored disk; it has one hole as a reference to the first sector, and the other sectors are formatted by using software. In the hard-sectored disk, now almost obsolete, each sector is identified with a separate hole. 
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FIGURE 7.2 
(a) A Typical 5'/4-Inch Floppy Disk and (b) Its Sectors and Tracks 
Each sector and track is assigned a binary addresss. The MPU can access any information on the disk with the sector and the track addresses; however, the access is semi-random. To go from one track to another, the access is random. Once the track is found, the system waits for the index hole and then locates the sector serially by counting the sectors. Once data bytes are located, they are transferred to the system's R/W memory. These data transfer functions between a floppy disk and the system are performed by the disk controller and controlled by the operating system, also known as the Disk Operating System (DOS), described in Section 7.12. 
HARD DISK 
Another type of storage memory used with computers is called a hard disk or Winchester disk. The hard disk is similar to the floppy disk except that the magnetic material is coated on a rigid aluminum base and enclosed in a sealed container. While it is highly precise and reliable, the hard disk requires sophisticated controller circuitry; it is thus relatively expensive. However, its storage capacity is quite large. Hard disks are available in various sizes; .3'/2-inch, 5'/4-inch, 8-inch, and 14-inch. Storage capacity can range from several megabytes to several gigabytes. 
7.12  Operating Systems and CP/M 
The operating system of a computer is a group of programs that manages or oversees all the operations of the computer. The computer transfers information constantly among such peripherals as a floppy disk, printer, keyboard, and video monitor. It also stores user programs under file names on a disk. (A file is defined as related instructions or records stored as a single entity.) The operating system is responsible primarily for managing the files on the disk and the communication between the computer and its peripherals. The functional relationship between the operating system and the computer's various subsystems is shown in Figure 7.3. 
Each computer has its own operating system. CP/M (Control Program/Monitor for Microcomputers) is by far the most widely used operating system for the microcomputers designed around the Z80 and the 8085/8080 microprocessors. The CP/M design is, for the most part, independent of the machine, so that microcomputer manufacturers can adapt it to their own designs with minimum changes. To illustrate the operation of a software development system, CP/M is briefly described here in reference to a system with 64K R/W memory. 
CP/M 
This operating system is divided into three components: BIOS (Basic Input/Output System), BDOS (Basic Disk Operating System), and CCP (Console Command Processor). 
BIOS This program consists of input/output routines; it manages data transfer between the microprocessor and various peripherals. This section of CP/M is accessible to the user. Each manufacturer writes a BIOS specifically to the hardware design in a particular system. 
BDOS This program directs the activities of the disk controller and manages the file allocation on the disk. The BDOS program allocates memory space under a file name. 
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        CCP This program reads and interprets the CP/M commands from the keyboard. These commands include such operations as listing the programs on the disk, copying, erasing, and renaming a file. CCP also transfers the program control from CP/M to user or other programs. 
When CP/M is loaded into a system's R/W memory, it occupies 6K to 12K of memory at the highest available locations, as shown in Figure 7.4. In addition, the first 256 locations (from 0000 to OOFFh) are reserved for system parameters. The rest of the R/W memory (approximately 52K to 58K) is available for the user. Once the operating system is loaded into R/W memory, the user can write, assemble, test, and debug programs by using utility programs, which are described in the next section. 
7.13  Tools for Developing Assembly Language Programs 
The CP/M operating system includes programs called utility programs. These programs can be classified in two categories: (1) file management utilities, and (2) program development utilities. The file management utilities are programs that enable the user to perform such functions as copying, printing, erasing, and renaming files. The program development utilities enable the user to write, assemble, and test assembly language programs; they include programs such as Editor, Assembler, Linking Loader, and Debugger. 
EDITOR 
The Editor is a program that allows the user to enter, modify, and store a group of instructions or text under a file name. To write text, the user must call the Editor under CP/M control. As soon as the Editor program is transferred from the disk to the system memory, the program control is transferred from CP/M to the Editor program. The Editor 
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has its own commands, with which the user can enter and modify text. Some Editor programs such as "Word Star," "Word Perfect," and "Tele Write" are easy to use. At the completion of writing a program, the exit command of the editor will save the program on the disk under the file name, and will transfer the program control back to CP/M. This file is known as a source file or a source program. 
The Editor program is not concerned with whether one is writing a letter or an assembly language program. If the source file is intended to be a program in the Z80 assembly language, the user should follow the syntax of the assembly language and the rules of the assembler. 
Z80 ASSEMBLER 
Several Assemblers are available commercially as Z80 Assemblers. The following description is accurate for the Microsoft M80 Assembler. The assembler is a program that translates the source file into modules of the Z80 code and generates two files: one is called the print (PRN) or listing file and the other is called the relocatable (REL) file. In addition to translating mnemonics, the Assembler performs such functions as error checking and memory allocations. 
The print file includes the source file plus the memory addresses and the Hex code of each instruction. This file is used primarily for documentation and may look like the hand-assembled file shown in the last chapter. The relocatable file is an intermediate file, generated to create two more files: a Hex file and an object file, which is necessary to combine different modules (or programs) and relocate the modules from one block of memory to another. The Assembler is described in more detail in Section 7.2. 
LINKING LOADER 
The Linking Loader is a program that uses the REL file generated by the Assembler to generate a binary code file called the COM file or object code; it can also generate a Hex file. The COM file is the only file that can be executed by the microcomputer. To execute the program, the COM file is called under CP/M control and executed. The HEX file is used for debugging the code and transferring files from one system to another. This transfer of files among different systems is called either downloading or uploading of files. 
DEBUGGER 
The Debugger is a program that allows the user to test and debug the object file. The user can employ this program to perform the following functions: 
□ Make changes in the object code. 
□ Examine and modify the contents of memory. 
□ Set breakpoints, execute a segment of the program, and display register contents after the execution. 
□ Trace the execution of the specified segment of the program, and display the register and memory contents after the execution of each instruction. 
□ Disassemble a section of the program; for example, convert the object code into the source code or mnemonics. 
In the M80 Assembler, translating mnemonics into binary code is a two-step process: first, the source file is converted into the REL (Relocatable) file by the Assembler program; then, the REL file is converted into the binary object (COM) file by the Linking Loader program. This is called program assembly. Additional files, such as Hex and PRN files, can be also generated using these programs. In addition, the Editor generates the back-up (BAK) file. The BAK file is generated when the user calls the source file for reediting; the BAK file is the copy of the previous file before the user begins to reedit. The BAK file is generated as a precautionary measure, in the event that the user may wish to go back to the previous file. At the completion of the assembly process, the CP/M user will have the following files: 
□ Source File: This is the source file written by the user. Under CP/M, a filename can be one to eight characters long with an extension of a maximum three characters. The filename and the extension are separated by a dot. For example, the file name can be DELAY 1.ASM; the extension ASM suggests that it names an assembly language file. 
□ REL File: This is a relocatable binary file generated by the assembler without any specific reference to the user memory. This file is used to generate a COM file and relocate the entire program for storage to specified memory locations. 
□ PRN File: This is the print file generated by the assembler program for documentation purposes. It contains memory locations, Hex code, mnemonics, and comments. 
□ HEX File: this is generated by the loader program and contains program code in hexadecimal notations. This file can be used for debugging the program and transferring files from one system to another. 
□ COM File: This is the executable file generated by the linking loader program, and it contains binary code. 
□ BAK File: When the source file is called for reediting, the previous file is saved as the BAK file. 
7.14  MS-DOS Operating System 
The CP/M operating system is designed for 8-bit microprocessors; however, recent diskbased microcomputers, such as the IBM PC, XT, and AT, are designed around 16-bit microprocessors. In these microcomputers, the MS-DOS (Microsoft Disk Operating System) is so widely used that it has become the industry standard. The MS-DOS is in many ways similar to the CP/M, except that it is capable of handling 16-bit data words and large size (1 Megabyte) system memory. Similarly, it is designed to handle disks with quad (high) density disk format with memory capacity of 720K and 1,200K. The latest version of MS-DOS is geared towards handling communication between multi-user systems. 
The MS-DOS operating system, installed on IBM PCs, is divided into four components: ROM-BIOS, IBMBIO, IBMDOS, and COMMAND; these are COM files. In a typical 1Mbyte (1,024K-byte) system, the memory space is divided into 16 blocks from 0 to F, each being 64K memory; the Hex address ranges from 00000 to FFFFFh. Generally, the lowest addresses in the 0 block are reserved for system software, the highest block F is 
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used for ROM-BIOS, and approximately ten blocks (640K) are reserved as the user memory. The remaining blocks are used for such varied purposes as video display and BIOS extensions. 
ROM-BIOS This program is functionally similar to BIOS in the CP/M; it is called ROM-BIOS because it is generally installed in Read-Only Memory. The primary function of this program is to communicate with I/O devices when it receives commands from a user's program. The IBMBIO program is an extension of the ROM-BIOS; the IBMBIO program allows modifications in the BIOS programs and additions of new peripherals. 
IBMDOS This program directs the activities of the disk controller and also contains DOS service routines; these service routines include such programs as DIR (Directory), FORMAT (Formatting disk), and COPY (Copying files). These programs are also included in CP/M, but they are generally stored on a disk, and are not part of the system. 
COMMAND This program reads and interprets the commands from the keyboard and differentiates between the DOS services (such as COPY) and the utility programs such as DEBUG. 
In summary, the DOS operating system is conceptually similar to the CP/M operating system, but it is capable of handling large memory size, large word size, and many more functions than the CP/M. 
MS-DOS AND CROSS-ASSEMBLERS 
The MS-DOS is an operating system designed primarily for 16-bit microprocessors. Now the question is: Why are we discussing it in the context of an 8-bit microprocessor such as the Z80? The answer lies with the widespread use of IBM PCs or their compatibles on college campuses. A 16-bit microprocessor is not ideally suited for learning about microprocessors; they are too complex for the control type applications. But we can use these 16-bit machines to develop (write) Z80 assembly language programs by using a program called cross-assembler. This program translates Z80 mnemonics into appropriate Z80 machine codes. From the user's point of view, it makes no difference whether he/she uses a Z80-based system or any other system with a Z80 cross-assembler. After assembling a program, the Hex fiile can be directly transferred to R/W memory of your Z80 single-board microcomputer by using a download program. Thus, hardware related laboratory experiments can be easily performed. 
ASSEMBLERS 
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        The assembler, as defiined before, is a program that translates assembly language mnemonics or source code into binary executable code. Here, we are using the term assembler to include all the utility programs (such as Assembler, Linker Loader) necessary for the 
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assembly process. This translation process requires that the source program be written strictly according to the specified syntax of the assembler. The assembly language source program includes three types of statements: 
1. The program statements in Z80 mnemonics, which are to be translated into binary code. 
2. Comments, which are reproduced as a part of the program documentation. 
3. Directives to the assembler that specify such items as starting memory locations, label definitions, and required memory spaces for data. 
The first two types of statements have been used in the program of adding two Hex numbers in the last chapter. The format of these statements as they appear in an assembly language source program is identical to the format used here. The third type—directives— and their functions will be described in Section 7.22. 
7.21  Assembly Language Format 
A typical assembly language programming statement is divided into four parts, called fields: label, operation code (opcode), operand, and comments. These fields are separated by delimiters for the CP/M assembler, as shown in Table 7.1. 
Placement 
After label 
Between an opcode and an operand Between two operands* Before the beginning of a comment 
*Some assemblers may not tolerate space between comma and the operand 
The assembler statements have a free-field format, which means that any number of blanks can be left between fields. Comments are optional but are generally included for good documentation. A label for an instruction is also optional, but its use greatly facilitates specifying jump locations. As an example, a typical assembly language statement is written as follows: 
TABLE 7.1 . 
Delimiters Used in Assembler 
Statements Colon 
Space Comma Semicolon 
Label       Opcode     Operand Comments 
START:        LD B, 32H      ; Load the first data byte 
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        Delimiters 
Delimiters include the colon following START, the space following LD, the comma following B, and the semicolon preceding the comment. 
7.22  Assembler Directives 
The assembler directives are the instructions to the assembler concerning the program being assembled; they are also called pseudo operations ox pseudo-ops. These instructions are neither translated into machine code nor assigned any memory locations in the object file. Some of the important assembler directives for the Z80 assembler are listed and described here. 
Assembler Example Description 
Directives 
1. ORG 
(Origin) 
2. END 
ORG 
END 
OlOOH 
3. EQU 
(Equate) 
PORTl       EQU OIH 
INBUF       EQU 2099H 
OUTBUF    EQU   INBUF + 4 
4. DB 
(Define Byte) 
DATA:       DB     A2H, 9FH 
5. DW 
(Define Word) 
DW 2050H 
The next block of instructions should be stored in memory locations starting from OIOOh. 
End of assembly. The HALT instruction suggests the end of a program, but that does not necessarily mean the end of assembly. The value of the term PORTl is equal to OIh- Generally, this means the PORTl has the port address OIhThe value of the term INBUF is 2099h. This may be the memory location used as input buffer. 
The equate can be expressed by using the label of another equate. This example defines the OUTBUF memory location in terms of INBUF. Initializes an area byte by byte. Assembled bytes of data are stored in successive memory locations until all values are stored. This is a convenient way of writing a data string. The label is optional. 
Initializes an area of two bytes at a time. This statement reserves two locations for 2050h. 
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6. DS 
OUTBUF: DS 
4 
Reserves a specified number of memory locations. In this example, four memory locations are reserved for OUTBUF. 
(Define Storage) 
7.23  Advantages of the Assembler 
The assembler is a tool for developing programs with the assistance of the computer. Assemblers are absolutely essential for writing industry-standard software; manual assembly is quite time-consuming for programs larger than 50 instructions. The assembler performs many functions in addition to translating mnemonics, and it has several advantages over manual assembly. The salient features of the assembler are as follows: 
1. The assembler translates mnemonics into binary code with speed and accuracy, thus eliminating human errors in looking up the codes. 
2. The assembler assigns appropriate values to the symbols used in a program. This facilitates specifying jump locations. 
3. It is easy to insert or delete instructions in a program; the assembler can quickly reassemble the entire program with new memory locations and modified addresses for jump locations. This avoids rewriting the program manually. 
4. The assembler checks syntax errors, such as wrong labels and expressions, and provides error messages. However, it cannot check logic errors in a program. 
5. The assembler can reserve memory locations for data or results. 
6. The assembler can provide files for documentation. 
7. A Debugger program can be used in conjunction with the assembler to test and debug an assembly language program. 
This section deals primarily with writing programs using an assembler. The illustrative example is simple and has been selected to demonstrate the use of assemblers. An assembler source program is identical to a program the user writes with paper and pencil, except that the assembler source program includes assembler directives. 
To illustrate how to write a source program, we selected the Z80 assembler called MACRO~80 (M80), developed by Microsoft. The example is taken from the last chapter, where it was assembled using manual assembly. The source program is written using an Editor under the file name PROGRAMl.MAC. To assemble the program using the assembler M80, the file name must have the extension .MAC and it should include the pseudo-op .Z80 at the beginning. 
7.31   Illustrative Program: Addition of Two Hexadecimal Numbers 
This illustrative program is the same one we discussed in the last chapter. The problem statement is repeated here for convenience; refer to Section 6..31 for analysis. 
7.3 
WRITING PROGRAMS USING AN ASSEMBLER 
PROBLEM STATEMENT 
Write instructions to load the two hexadecimal numbers 32h and A2h into registers B and C, respectively. Add the numbers, and display the sum at the LED output port PORTl. 
SOURCE PROGRAM 
;This program adds two Hex bytes and displays the sum. 
.Z80 
ORG 2000H PORTl       EQU OIH START:      LD B, 32H 
LD C, 0A2H* 
LD A, C 
ADD A, B 
OUT (PORTl), A 
HALT 
END 
;Begin assembly at 2000H ;Output port address ;Load first byte 
;Load second byte to be added ;Copy one of the bytes into A ;Add two bytes ;Display the result ;End 
This program illustrates the following assembler directives: 
□ ORG 
The object code will be stored starting at the location 2000h. 
□ EQU 
The program defines one equate: PORTl. In this program it would have been easier to write the port address directly with the instructions. However, equates are essential in development projects where hardware and software design are done concurrently, and they are also useful in long programs because they make it easy to change or redefine port addresses. 
□ Label 
The program illustrates one label: START. This label represents the memory location 2000h. In this illustration, the label is not particularly useful; generally, labels are used to specify Jump and Call addresses. In writing assembly language programs, it is convenient to identify a Jump or Call address by a label because absolute addresses are not known in the beginning. This is especially true when programmers in a team are assigned various tasks. Also, if any changes (deletions and additions) are made in the source program, the assembler will reassign all label addresses when it is reassembled. In manual assembly, the entire program must be rewritten with new addresses if any changes are to be made. 
□ End 
The end of assembly. 
*Any Hex number that begins with A through F must be preceded by zero. 
TWO-PASS ASSEMBLER 
To assemble the program, the assembler scans through the program twice; this is known as a two-pass assembler. In the first pass, the first memory location is determined from the ORG statement, and the counter known as the location counter is initialized. Then the assembler scans each instruction and records locations in the address column of the first byte of each instruction; the location counter keeps track of the bytes in the program. The assembler also generates a symbol table during the first pass. When it comes across a label, it records the label and its location. In the second pass, each instruction is examined, and mnemonics and labels are replaced by their machine codes. 
ASSEMBLED PRINT FILE 
To create the REL file and the PRN file from a source file, the following command format is necessary when the prompt * appears after calling M80: 
RELFILE, PRNFILE = SOURCE FILE 
Therefore, to generate the relocatable object file and the print file from the source file PROGRAM I.MAC, the command is 
PROGR AMI, PROGRAM 1 = PROGRAM 1 
I Source file 
I Generates PROGRAM 1. PRN file 
Generates PROGRAMl.REL file 
In this command, any file names can be given to the REL and the PRN files. For example, if we were to substitute TESTl for the first word PROGR AMI, the assembler will generate a TESTl.REL file from the PROGRAM 1 source file. 
The PRN file generated from the source program has five columns: memory addresses. Hex codes, labels, mnemonics and comments. It lists the memory addresses of the first byte of each instruction with its Hex codes on the same line. For example, the listing shows that the first memory address is 2000 and the first two Hex codes are 06 32; the next address is 2002. The memory address 2001, then, holds the Hex byte 32. In addition to the program listing, the PRN file includes the list of symbols, equates, and error messages. 
Error Messages In addition to translating the mnemonics into object code, the assembler also gives error messages. These messages are of two types: terminal error messages and source program error messages. In the first case, the assembler is not able to complete the assembly. In the second case, the assembler lists the errors, but it is able to complete the assembly. 
PRINT (PRN) FILE 
;This program adds two Hex bytes and displays the sum. 
.Z80 ORG 
2000H OIH B, 32H 
Begin assembly at 2000H Output port address Load first byte 
Load second byte to be added Copy one of the bytes into A Add two bytes Display the result End 
0001 
2000' 
2002' 
2004' 
2005' 
2006' 
2008' 
D3 01 76 
06 32 OE A2 79 
80 
PORTl EQU START: LD 
LD 
LD 
ADD 
OUT 
HALT 
END 
(PORTl), A 
C, 0A2H 
A, C A, B 
Macros: Symbols: 
PORTl   0001   START 2000' No Fatal error(s) 
GENERATING COM AND HEX FILES 
The Linking Loader program (L80) generates COM and HEX files. To create the COM file and the HEX file from the PROGRAMl.REL file, the following command format must be used after calling L80: 
PROGRAM 1, PROGRAM 1/N/X/E 
This command will generate PROGRAMl .COM and PROGRAMl .HEX files, save them on the disk, and exit to the operating system. 
Precautions in Writing Programs Assembler programs are available from various software companies, and for the most part, they follow a similar format. However, we suggest the following precautions in writing assembly language programs. 
1. The M80 Assembler allows the free format in writing the source code; however, some assemblers (especially cross-assemblers) do not allow free format, meaning the unnecessary spaces are not tolerated. 
2. The letter following a number specifies the type of a number. A hexadecimal number is followed by the letter "H," an octal by letter "O," a binary by letter "B." A number without a letter is interpreted as a decimal number. 
3. Any Hex number that begins with A through F must be preceded by zero; otherwise, the assembler interprets the number as a mnemonic and gives an error message because it does not understand the mnemonic. 
4. Some assemblers require a colon after a label. 
5. When a 16-bit address is used in a mnemonic (such as Jump to 2050H), the M80 prints the address as 2050; however, it is stored in the reversed order in memory. Some assemblers print the address as 50 20. 
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SUMMARY 
A software development system and an assembler are essential tools for writing large assembly language programs. These tools facilitate the writing, assembling, testing, and debugging of assembly language programs. 
A disk-based microcomputer, its operating system, and assembler programs can serve as a development system. All the operations of the computer are managed and directed by the operating system of the computer. The Assembler and other utility programs assist the user in developing software. The Editor allows the user to enter text, and the Assembler translates mnemonics into machine code and provides error messages. The Debugger assists in debugging the program. 
The program thus assembled is in many ways similar to that of the hand assembly program except that the program written for the assembler includes assembler directives, which are instructions concerning how to assemble the program. The assembler has many advantages over manual assembly; without the assembler, it would be extremely difficult to develop industry-standard software. 
ASSIGNMENTS 
Check the appropriate answer in 1-10. 
1. The process of accessing information on a floppy disk is 
a. random. 
b. serial. 
c. semi-random. 
2. The operating system of a computer is defined as 
a. hardware that operates the floppy disk. 
b. a program that manages files on the disk. 
c. a group of programs that manages and directs hardware and software in the system. 
3. The Editor is 
a. an assembly language program that reads and writes information on the disk. 
b. a high-level language program that allows the user to edit programs. 
c. a program that allows the user to write, modify, and store text in the computer system. 
4. The Assembler is 
a. a compiler that translates statements from high-level language into assembly language. 
b. a program that translates mnemonics into binary code. 
c. an operating system that manages all the programs in the system. 
SOFTWARE DEVELOPMENT SYSTEMS AND ASSEMBLERS 
5. A file is 
a. a group of related records stored as a single entity. 
b. a program that transfers information between the system and the floppy disk 
c. a program that stores data. 
6. The COM file 
a. consists of Hex digits and is used for communication. 
b. is the only file that can be interpreted and executed by the microprocessor. 
c. consists of Z80 mnemonics. 
7. The Hex file generated by the M80 Assembler is used primarily 
a. to reduce the memory requirement for storing files. 
b. to transfer a file from one system to another. 
c. to transfer a file between a floppy disk and the system's R/W memory. 
8. A hard-sectored disk is 
a. a floppy disk in which each sector is identified with a hole. 
b. a hard disk that stores information on an aluminum-based magnetic surface. 
c. a double-density, double-sided floppy disk. 
9. A disk controller is 
a. a program that manages the files on the disk. 
b. a circuit that interfaces the disk with the microcomputer system. 
c. a mechanism that controls the spinning of the disk. 
10. The MS-DOS is 
a. an operating system that is designed primarily to handle the communication between the 16-bit microprocessor and its peripherals. 
b. an updated version of the CP/M operating system. 
c. an application program that handles communication between various systems 
11. Assemble the following program with the starting address OIOOh, and print the PRN file. The address of the output port PORT? is 07h. 
START: 
LD B,32H 
;Load B with first data byte 
LD C, 0A2H 
;Load C with second data byte 
LD A, C 
;Copy (C) into A for addition 
ADD A, B 
;Add two bytes 
JP NC, DSPLAY 
;If sum < FFH, display sum at P0RT7 
LD A,OIH 
;If sum > FFH, load 01 to display 
; as over load 
;Display result at P0RT7 
DSPLAY: 
OUT (P0RT7), A 
HALT 
END 
Introduction to Z80 Instructions and Programming Techniques 
When a microcomputer is asked to execute a program stored in its memory, it reads one instruction at a time and performs the task specified by the instruction. Each instruction in the program is a command, in binary, to the microprocessor to perform an operation. In Chapter 6, we examined briefly the Z80 instruction set and its capability. In this chapter, we will introduce a few selected instructions and illustrate them with examples. These instructions are selected from three groups: data copy, arithmetic, and branch operations. 
A computer is at its best, relative to human capability, when it is asked to repeat such simple tasks as adding or copying. The programming techniques—such as looping, indexing, and counting—necessary to perform such tasks are introduced and illustrated with two programs. This chapter also includes a brief discussion of debugging programs. 
Finally, a group of special Z80 instructions that perform multiple tasks are introduced with illustrative examples. 
OBJECTIVES 
□ Explain the functions of data copy instructions and how the contents of the source register and the destination registers are affected. 
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        □ List four types of data copy operations and 
explain the term addressing mode, a Explain how a memory address is specified to 
copy data from and to a memory register. 
170 
ASSEMBLY LANGUAGE PROGRAMMING: THE Z80 
□ Explain how data are transferred from and to I/O devices. 
□ Explain the functions of arithmetic instructions (ADD, SUB, INC, DEC) and how flags are affected by these instructions. 
□ Write a set of commands using data copy and arithmetic instructions to perform a given task. 
□ Explain the functions of unconditional and conditional jump instructions and how they are used for decision making. 
□ Draw a flowchart of a conditional loop to illustrate the indexing and counting techniques. 
□ Eist the seven blocks of a generalized flowchart illustrating data acquisitions and data processing. 
n Write a program to copy data from one block of memory to another block including the case of overlapping blocks. 
□ Write a program to perform arithmetic operations on given data stored in memory. 
□ List the types of errors that frequently occur in writing assembly language programs and in hand assembling the code. Recognize the errors in a given program. 
□ List Z80 special instructions and explain how they provide more flexibility and improve efficiency in writing Z80 programs. 
□ Modify the previously written programs using the Z80 special instructions. 
8.1 
DATA COPY (LOAD) OPERATIONS 
In this section, we focus on three types of data copy operations: data copy related to internal registers, memory, and I/Os. Instructions frequently used are illustrated below, and the Z80 block transfer instruction will be discussed later in the chapter. In addition, one machine control instruction—HALT—is introduced; this instruction is necessary to indicate the end of a program. 
8.11  Data Copy (Load) among Registers 
In this group, we have three types of instructions: data copy from one register to another, loading 8-bit data into a register and loading 16-bit data into a register pair.* 
Opcode Operand 
LD rd, rs 
Addressing Bytes Mode 
1 
LD 
r, 8-bit 
Register 
Immediate 
Description 
Copy data from source register rs to destination register rd. In this mode, the operand is a part of the opcode. 
Load 8-bit data of the second byte into the specified register. In this mode, the second byte is the operand. 
*Appenclix A includes complete descriptions of tliese instructions in alphabetical order with illustrative examples. 
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LD 
rp, 16-bit 3 
LD rx, 16-bit 4 
HALT 1 
Immediate Load 16 bits into the specified Extended register pair. In this mode, two 
bytes following the opcode are 
the operands. 
Immediate Load 16 bits into the specified Extended index register. 
This is a machine control instruction. The processor stops executing and enters into Wait state. 
General Characteristics 
1. Copy (Load) instructions do not affect flags. 
2. The operands of copy instructions specify a destination register first, followed by a source register; they are separated by a comma. 
3. The data byte is copied without modifying the contents of a source register. 
4. A 16-bit operand is stored in two consecutive memory locations in the reversed order: the low-order byte first, followed by the high-order byte. 
5. The instructions related to the index registers IX and lY have two-byte opcodes. 
Write instructions to load 97h into the accumulator, 2050h into HL registers, and 2075h into the index register IX. Copy the contents of the accumulator into register C and the contents of register H into register B. Write the HALT instruction at the end of the sequence. Enter the machine codes of these instructions in R/W memory starting from 2000h, and show the contents of each register after the execution. 
	Memory 
	Hex 
	Opcode 

	Address 
	Code 
	

	2000 
	3E 
	LD 

	2001 
	97 
	

	2002 
	21 
	LD 

	2003 
	50 
	

	2004 
	20 
	

	2005 
	DD 
	LD 

	2006 
	21 
	

	2007 
	75 
	

	2008 
	20 
	

	2009 
	79 
	LD 

	200A 
	44 
	LD 

	200B 
	76 
	HALT 


Operand 
A, 97H — HL, 2050H
IX, 2075H 
C, A B, h' 
Register Contents 
	97h~-. 
	

	
	

	
	

	^20h 
	50h y 

	C          2075H / 

	

	
	


20h 
97h 
]C 
Example 8.1 
Solution 
(b) 
FIGURE 8.1 
Instiuctions and Registei Contents 
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Description 
1. The first instruction LD A, 97h is a 2-byte instruction; the opcode 3E and the operand 97 are stored in the first two memory locations. This instruction loads 97h into the accumulator (Figure 8.1(a)). 
2. The second instruction is a 3-byte instruction that loads 16-bit data (20.50h) into the HL registers (Figure 8.1(a)). The low-order byte (50h) is stored first in memory location 2003h, followed by the high-order byte (20h). 
3. The third instruction (IX, 2075H) is a 4-byte instruction; it has a 2-byte opcode (DD and 21). This instruction loads 16-bit data (2075h) into the index register IX. 
4. The remaining two instructions are 1-byte instructions; they copy data from one register to another as shown in Figure 8.1(b). It is important to note that the copy operations do not destroy the contents of the source registers. Figure 8.1 shows that registers A and H retain their contents after the copy operations. 
5. The last instruction (HALT) is a machine control instruction; it forces the machine into the Wait state. 
8.12  Data Copy Between Z80 Registers and Memory 
To copy data from and into memory, the 16-bit address of a selected memory register must be specified, and this memory address can be specified in various ways: for example, using the HL register, register pairs, or a direct 16-bit address. Methods using index registers are discussed after the discussion of 2's complement arithmetic because the index registers include a displacement byte, which is expressed as a signed 2's complement number. In Z80 mnemonics, the memory address is enclosed in parentheses, as shown in the following list. 
Opcode Operand 
LD 
r, (HL) 
Bytes 1 
Addressing Modes 
Description 
Register Indirect 
1 
Copy contents of memory into register r. The memory address is specified indirectly by the number in the HL register; therefore, this is called register indirect addressing. Copy contents of register r into memory. 
Copy 8-bit data into memory. This mode is combination of indirect and immediate addressing. 
Note: In these three instructions, the memory address is specified by the contents of register HL, and register r can be any one of the general-purpose registers. 
LD 
LD 
(HL), r (HL), 8-bit 
Register Indirect Register Indirect & Immediate 
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LD A, (rp) 1 Register Copy contents of memory into 
Indirect accumulator. 
LD (rp), A 1 Register Copy contents of accumulator 
Indirect into memory. 
Note: In the preceding two instructions, the memory address is shown by the contents of a register pair (BC or DE). However, these instructions can copy data from and into the accumulator only. 
LD A, (16-bit) 3 Extended        Copy contents of memory into 
accumulator. 
LD (16-bit), A 3 Extended        Copy contents of accumulator 
into memory. 
Note: In these instructions, the memory address is the 16-bit operand, and these instructions can copy data from and into the accumulator only. 
General Characteristics 
1. No flags are affected by these data copy operations. 
2. Memory-related data copy operations can be recognized by the parentheses around the operand. 
3. Register HL is a versatile memory pointer; a data byte can be copied from any memory location to any general-purpose register and vice versa. In addition, HL can be used to load a byte directly into memory. 
4. A 16-bit direct address and other register pairs (BC and DE) can be used as memory pointers to copy data from a memory location into the accumulator and vice versa. However, these memory pointers cannot be used to copy data between general-purpose registers and memory. 
The memory location 2050h contains the data byte 37h . Write instructions to copy the byte Example 
from the memory location into the accumulator. Illustrate three different ways of trans-  ^ 
fening the byte from memory to the microprocessor and list the associated machine codes. 
Solution 
1. The first method of copying a byte from memory into the microprocessor is by using HL register as a memory pointer; this is an illustration of indirect addressing. First, we need to load the memory address into the HL register and then use the contents of HL as a memory pointer (Figure 8.2(a)). 
2. The second method of copying a byte from memory into the microprocessor is by using BC or DE as a memory pointer; this is also the indirect addressing (Figure 8.2(b)). 
3. The third technique is to use the direct extended addressing (Figure 8.2(c)). 
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LD A, (HL) Memory 
Code Instruction 
21 LD  HL, 2050H 
50 20 
7E LD  A, (HL) 
FIGURE 8.2 
(a) Indirect Addressing Using HL 
LD  A, (BC) 
Code 
01 50 20 OA 
FIGURE 8.2 
(b) Indirect Addressing Using BC 
LD A, (2050H) 
Code Instruction 
3A LD  A, (2050H) 
50 
20 
HGUEE 8.2 
(c) Extended Addressing 
37h 
	
	Flags 

	
	

	
	

	20h 
	50h 


■ 2050 
37h 
Instruction 
LD  BC, 2050H 
LD  A, (BC) 
37h 
	A 
	20h 
	Flags 50h 
	F 

	B 
	
	
	
	——■- 2050 

	D 
	
	
	E 

	H 
	
	
	L 
	


37h 
2050 
37h 
Flags 
Example 8.3 
Solution 
The memory location 2040h contains the data byte F2h. Copy the data byte F2h from the memory location 2040h into 2070h using memory pointers. Then, clear the memory location 2040h. Enter the machine codes of these instructions in memory locations starting from 2000h. Describe how data copy operations are performed. 
Memory Address 
2000 2001 2002 
Hex Code 
21 40 20 
Opcode       Operand Comments 
LD HL, 2040H     ; Set up HL as memory pointer 
for 2040H 
	2003 
	01 
	LD 
	BC, 2070H 
	; Set up BC as memory pointer 

	2004 
	70 
	
	
	for 2070H 

	2005 
	20 
	
	
	

	2006 
	7E 
	LD 
	A, (HL) 
	; Copy data (F2H) into accumulator 

	2007 
	02 
	LD 
	(BC), A 
	; Copy data into memory (2070H) 

	2008 
	36 
	LD 
	(HL), 00 
	; Clear- location 2040H 

	2009 
	00 
	
	
	

	200A 
	76 
	HALT 
	
	


Description 
1- The first two instructions load registers HL and BC with the numbers 2040h and 2070h respectively. These are not memory-related data copy instructions because the operands do not have any parentheses. 
2. The next two instructions copy the data byte (F2h) stored in memory location 2040h into the accumulator and from the accumulator into location 2070h (see Figure 8.3). 
3. The next instruction LD (HL), 00 is a 2-byte instuction; it clears the memory location 2040h by loading 00 into the memory location pointed to by the HL register. 
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        FIGURE 8.3 
Data Copy between Microprocessoi and Memory 
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8.13  Data Copy Between Accumulator and I/Os 
In the Z80 instruction set, input and output devices are identified by 8-bit addresses. The set includes several instructions that can read data from an input device (also known as input port) and write data into an output device (or output port). Two of these I/O instructions are described here: 
Opcode      Operand      Bytes Description 
IN A, (8-bit) 2         Read data from an input port into the accumula
tor. 
OUT        (8-bit), A 2 Write data to an output port from the accumula
tor. 
General Characteristics 
1. These I/O instructions do not affect flags. (Some Z80 I/O instructions do affect flags; they are discussed later.) 
2. The I/O instructions have 8-bit operands; thus, the Z80 is capable of addressing 2.56 input and 2.56 output ports. 
3. The 8-bit I/O addresses are enclosed in parentheses similar to those of memory addresses. 
Example 8.4 
Solution 
Read the switches connected to the input port OIh (Figure 8.4). Display the reading at the LED output port 07h and store it in memory location 2060h
Instructions are as follows: Opcode Operand 
IN 
OUT LD 
HALT 
A, (OIH) (07H), A (2060H), A 
Comments 
; Read input switches 
; Display switch reading at output port 
; Store switch reading in memory 
Description 
1. Figure 8.4 shows that the switch positions at the input port OIh provide the reading 0 10 0 1111 (4Fh). The first instruction reads the switch positions and places the reading in the accumulator. 
2. The OUT instruction sends the accumulator contents to the output port 07h and displays the corresponding LEDs (Figure 8.4). 
3. The last instruction stores the accumulator contents in memory location 2060h. 
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        S, OFF 0 
Se ON 1 S5 OFF 0 
S4 OFF 0 
S3  ON 1 
S2  ON 1 
Si  ON I 
So ON 1 
Tri-State Buffer 
Input Port 
OlH 
EN 
Data Bus 
4F
Input Enable 
	4F 
	Flags 

	
	

	
	

	
	


4F 
Output Enable 
FIGURE 8.4 
Reading Data at Input Port and Sending Data to Output Port 
	0 
	

	1 
	

	0 0 
	Output 

	Port 

	1 
	07h 

	1 
	

	1 
	

	1 
	EN 


OFF ON OFF OFF ON ON ON ON 
LEDs 
ARITHMETIC OPERATIONS 
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        The Z80 microprocessor performs various arithmetic operations such as addition, subtraction, incrementidecrement, and I's and 2's complement. Most of these operations are concerned with 8-bit operands. The instruction set also includes some 16-bit operations which will be discussed in later chapters. (See Appendix A for complete alphabetical listing of the Z80 instruction set and how flags are affected by the instructions.) 
8.21  Addition and Subtraction 
The addition and subtraction operations are performed in relation to contents of the accumulator. We focus here on three types of operands: register contents, 8-bit data, and memory contents. 
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Opcode     Operand Bytes 
ADD        A, r 1 
ADD ADD SUB 
SUB SUB 
A, 8-bit A, (HL) r 
8-bit (HL) 
General Characteristics: These Arithmetic Instructions 
Description 
Add contents of register r to the contents of the accumulator, and store the result in the accumulator. 
Add 8-bit data directly to the accumulator. Add memory contents to the accumulator. Subtract contents of register r from the accumulator. 
Subtract 8-bit data from the accumulator. Subtract memory contents from the accumulator. 
1. assume that the accumulator is one of the operands. 
2. modify all the flags according to the result of the operation. 
3. place the result in the accumulator. 
4. do not affect the contents of the operand register or memory. 
8.22  Increment/Decrement Instructions 
The following instructions are a special type of arithmetic instructions; they increment or decrement the contents of the operand by one. These instructions are generally used in counting and indexing. 
	Opcode 
	Operand 
	Bytes 
	Description 

	INC 
	r 
	1 
	Increment the contents of register r. 

	INC 
	(HL) 
	1 
	Increment the contents of memory. 

	INC 
	rp 
	1 
	Increment the contents of register pair rp (Regis 

	
	
	
	ter pairs are EC, DE, HL, and SP). 

	DEC 
	r 
	1 
	Decrement the contents of register r. 

	DEC 
	(HL) 
	1 
	Decrement the contents of memory. 

	DEC 
	rp 
	1 
	Decrement the contents of register pair rp. 


General Characteristics 
1. In these instructions, the operand can be any of the 8-bit registers r, memory, or register pairs rp. The result is stored back into the same operand register. 
2. The instructions dealing with 8-bit registers affect all the flags except the Carry (CY) flag. 
3. The instructions dealing with register pairs do not affect any flags. This is important to remember when a register pair is used as a 16-bit counter. 
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8.23   I's and 2's Complement Instructions 
The Z80 instruction set includes the following instructions that perform complement operations with the contents of the accumulator. The addressing mode is implied; the accumulator is implied as the operand. 
Opcode Operand 
CPL 
NEG 
Bytes Description 
1 Invert each bit of the accumulator. This can also be classified as the NOT function. No flags (except H and N) are affected. 
2 Subtract the contents of the accumulator from 00; this is equivalent to taking 2's complement of the number in the accumulator. This instruction affects all the flags. 
Load two unsigned numbers F2h and 68h in registers B and C respectively, and store A2h in memory location 2065h, using the HL register as a memory pointer. Subtract 68h from F2h, complement the result, and add A2h from memory. Store the final answer in memory location 2066h. Show register contents and the status of S (Sign), Z (Zero), and CY (Carry) flags as each instruction is being executed. 
Instructions 
Mnemonics 
1. LD BC, F268H 
2. LD HL, 2065H 
3. LD (HL), A2H 
4. LD A, B 
SUB C (F2 - 68) CPL (Invert 8A) 
A2 
2065 
ADD A, (HL) (75 + A2) INC HL LD (HL) HALT 
A 
17 
2066 
Register Contents 
A     B     C     H L 
F2 68 
X X X F2 8A 75 17 
17    F2 68 
X 20 
X 65 
20 20 
66 i 
66 
Flags 
S Z CY No change 
1 0 0 No change 
0 0 1 No change 
4'    4' -i 
0    0 1 
Example 8.5 
Solution 
Description 
1. The first instruction loads register BC with the given bytes. This could be achieved by using two separate load instructions for each register, but loading a register pair is slightly more efficient. 
2. The second instruction sets up HL as a memory pointer for location 2065h, and the third instruction loads A2h into the memory location indicated by HL. 
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3. To subtract C from B, it is necessary to copy the contents of B into tlie accumulator (Instruction 4). 
4. Instructions 1 through 4 are all data copy instructions; they do not affect flags. All the flags will remain in their initial conditions before the program is executed. 
5. Instruction 5 performs the subtraction in 2's complement and places 8Ah in the accumulator as shown below. The subtraction method using 2's complement involves three steps: (1) Find 2's complement of the subtrahend, (2) Add the 2's complement to the minuend, and (3) Complement CY. (Refer to Appendix B if you are unfamiliar with the technique.) 
Register C = 68h-^        0110   1000 Subtrahend 2's Com. of 68h 1 0 0 1   1 0 0 01    2's Complement of Subtrahend 
Accumulator = F2h -> +1111   0 0 101 Minuend 
1   1 0 0 0   1 0 1 0 Sum Complement CY        0   1 0 0 0   1 0 1 0 -» 8Ah Final Result Flags: S = 1, Z = 0, andCY = 0 
The result of this subtraction sets the Sign flag and resets the Zero and Carry flags. However, the result is not a negative number. After an arithmetic operation, if bit Dy = 1, the Sign flag is set. In this subtraction, the Sign flag should be ignored because data bytes are not signed numbers (see further discussion in Section 8.24). 6. The instruction CPL inverts the contents of the accumulator 8Ah; the result is 7.5h. This instruction does not affect any flags, so the flags set by the previous instruction are preserved. 
7. Instruction 7 adds A2h from the memory location pointed to by HL to the accumulator contents (7.5h). The result is 117h. The instruction places 17h into the accumulator, sets the CY flag, and resets the S and Z flags. 
8. Instruction 8 increments HL to point to the next location 2066h, and the next instruction stores the result in the memory location 2066h. 
8.24  Flags and Decision Making 
As described in Chapter 3, the Z80 architecture includes six flags, which are flip-flops that are set or reset after the execution of arithmetic and logic operations, with some exceptions. Four of the flags (S, Z, P/V, CY) can be used by the programmer for decision 
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        1 0 0 0 1 0 1 0 (8Ah) -» 0 1 1 1   0 10 1 (75h) 
Accumulator = 7.5h -»     0 111   0 10 1 Memory (206.5h) = A2h -> + 1 0 1 0   0 0 1 0 C      1 000 1   0 1 1 1 
117, 
H 
Flags: S = 0, Z = 0, CY = 1 
making in conjunction with Jump and Call instractions; the remaining two (H, N) are used internally by the microprocessor for BCD arithmetic. The thorough understanding of flags is critical to writing assembly language programs. 
In many ways the flags are like signs on an interstate highway that help drivers in decision making. A driver sees one or more signs at a time, but continues along the highway ignoring the signs until the appropriate sign is found, and then he or she changes direction or takes an exit. Flags function similarly as signs of data conditions. After an operation, one or more flags is set (or reset) and can be used to change the direction of program sequence by using Jump instructions (discussed in the next section). The following illustrations from Example 8.5 may clarify some of the critical issues. 
1. In Example 8.5, Instruction 5 sets the Sign flag and resets the other flags. However, the sign flag can be ignored because the numbers loaded into registers are unsigned numbers. The Sign flag should be considered only when the programmer is dealing with signed numbers. 
2. Instruction 7 sets the Cany flag and resets the other flags. If the programmer is adding numbers and is interested in finding the total, the Cany flag must be used to test for a sum larger than an 8-bit number. 
3. Another important observation that can be made after the execution of Instruction 7 is that the flags set by Instruction 5 are altered by Instruction 7. Thus, if the programmer is interested in making a decision based on the Sign flag, it should be made before that flag is altered by another operation. 
8.2S  Signed Numbers and Flags 
The microprocessor is incapable of understanding a -I- or - sign unless the sign is represented in the form of binary digits. Therefore, in 8-bit microprocessors, bit Dy is reserved for the sign by the user when signed numbers are used in arithmetic operations. For a positive number, bit D7 is 0, and for a negative number, D7 is set to 1; the remaining seven bits represent the magnitude of a number. If a number is negative, it is represented in 2's complement. In an 8-bit microprocessor, the largest positive number is 0111 1111 (7Fh = + 127io), and the largest negative number is 1000 0000 (SOh = -12810). 
The Z80 microprocessor has two flags to indicate the status of the arithmetic results in signed numbers: Sign and Overflow. After an arithmetic (or logical) operation, if bit D7 = 1, the Sign flag is set, and if D7 = 0, the Sign flag is reset. However, this flag can be misleading when the result of an addition exceeds the magnitude 7Fh or that of the subtraction exceeds 80h. These conditions are known as overflow and are indicated by the P/V flag. 
The P/V flag is a dual-puipose flag; in logical operations it indicates the parity, and in arithmetic operations it indicates the overflow (we have discussed this flag in Chapter 3). In arithmetic operations, the P/V flag is used to indicate an overflow. If the sum of an addition of two positive numbers exceeds 7F, bit D7 becomes 1, indicating a negative number. However, the Z80 sets the P/V flag to indicate the error in the result. The critical point to remember is that the Z80 does not know whether the numbers are signed, unsigned, or just individual digits. The interpretation of the flags is the responsibility of the user. 
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Example Add two signed numbers: + 29h and + 76h. Indicate the status of the flags S, P/V, and 
^  CY if the operation is performed by the Z80 microprocessor. Explain how the flags are 
affected if the numbers are unsigned. 
Solution 
+ 29h =    0 0 1 0   1 0 0 1 
+ 
+ 76h = 0 111 0 110 + 9Fh =    10 0 1 1111 
CY = 0 because the sum is less than FFh, 
S    =1 because Dy = 1, and 
P/V = 1 because the sum exceeds 7Fh. 
In this addition of two positive numbers, the sign flag erroneously indicates that the sum is negative; however, the overflow flag (P/V) suggests that the result has an overflow from bit De and that the result is therefore inaccurate. The user must check the P/V flag and correct the sum. 
If these numbers were unsigned numbers, the result and the status of the flags would not be altered. The interpretation of the result would therefore be different; the user should ignore the S and P/V flags and check for the CY flag. In this example, the sum is 9Fh with no carry. 
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        BRANCH OPERATIONS 
The branch instructions and their associated flags are the key to the power of a computer or its microprocessor. These instnictions can change the sequence of execution based on certain data conditions indicated by the flags; thus, they are decision-making instructions. 
The branch instructions are classified into three categories, as listed in Chapter 6: (1) Jump instructions, (2) Call and Return instructions, and (3) Restart instructions. In this chapter, we concentrate on Jump instructions. 
8.31  Jump Instructions 
The Jump instructions can be divided into two groups: absolute jump and relative jump. In case of absolute jump, the operand specifies the 16-bit address to which the program sequence should be transferred; these are 3-byte instructions. The relative jump instruc
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tions are 2-byte instructions and contain an operand that specifies 8-bit displacement, forward or backward (in 2's complement), in relation to the address of the Jump instruction; these instructions are discussed in the next Section. 
The absolute jump instructions can be further classified into two groups: unconditional and conditional jump. The conditional jump instructions are implemented based on the status of four flags: S (Sign), Z (Zero), CY (Carry), and P/V (Parity/Overflow). Two instructions are associated with each flag: one for when the flag is set and the other for when it is reset. The list of Jump instructions is as follows: 
	Opcode 
	Operand 
	Bytes 
	Description 

	JP 
	16-bit 
	3 
	Jump unconditional to memory location 

	
	
	
	specified by the 16-bit operand. 

	JP 
	C, 16-bit 
	3 
	Jump on carry to 16-bit address (CY = 1). 

	JP 
	NC, 16-bit 
	3 
	Jump on no carry to 16-bit address 

	
	
	
	(CY = 0). 

	JP 
	Z, 16-bit 
	3 
	Jump on zero to 16-bit address (Z = 1). 

	JP 
	NZ, 16-bit 
	3 
	Jump on no zero to 16-bit address (Z = 0), 

	JP 
	M, 16-bit 
	3 
	Jump on minus to 16-bit address (S = 1). 

	JP 
	P, 16-bit 
	3 
	Jump on positive to 16-bit address (S = 0) 

	JP 
	PE, 16-bit 
	3 
	Jump on parity even to 16-bit address 

	
	
	
	(P/V = 1). 

	JP 
	PO, 16-bit 
	3 
	Jump on parity odd to 16-bit address 


(P/V = 0). 
General Characteristics 
1. The Jump (JP) instructions are 3-byte instructions. The second byte specifies the low-order address and the third byte specifies the high-order address. 
2. A conditional jump instruction checks for the appropriate flag. If the condition is true, the program sequence is changed to the memory location specified by the operand; otherwise, the execution continues to the next instruction. 
3. The Jump instructions do not affect any flags. 
Write instructions to load two Hex bytes BYTEl and BYTE2 into registers B and C, Example 
respectively, and add the bytes. If the sum is larger than 8 bits, display OOH as the overload 
condition at output port PORTl and cleai the memory location OUTBUF; otherwise, store the sum in memory location OUTBUF. Draw a flowchart and assemble the program starting at location 2000h. The data bytes and the labels are defined as follows: 
BYTEl = 9Ah, BYTE2 = A7h, PORTl = OIh, and OUTBUF = 2050h 
This problem is similiar to Example 6.1 with some variations in display and data storage. Solution A flowchart and instructions are as follows: 
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(   Start ) 
Block 1 
Block 2 
	
	

	Load Data Bytes 

	
	

	Add Data Bytes 


Mnemonics 
LD B, BYTEl 
LD C, BYTE2 
LD A, C ADD A, B 
Hex Code 
06 9A OE A7 79 80 
Memory Address 
2000 2001 2002 2003 2004 2005 

        
        [image: Picture #84]
        

        Get Ready to Display Overload 
JP NC, STORE 
LD A, OOH OUT (PORTl), A 
D2 
LOW 
HIGH 
3E 00 D3 01 
2006 2007 2008 
2009 200A 200B 200C 
Block 5 
FIGURE 8.5 
Flowchart 
Store Result in Memory 
C    End ) 
STORE: LD (OUTBUF), A 
HALT 
32 50 20 76 
200D 200E 200F 2010 
Program Description 
1. The first four instructions (Block 1 and 2) are similar to those we used previously and do not need any additional explanation. 
2. Block 3 is concerned with decision making, and it is important to understand how this block is translated into Hex code. Initially, to assemble the decision-making block (JP NC, STORE), we do not know the address of the jump location. Therefore, we just label the address as STORE and leave the two memory locations (2007h and 2008h) for the address to be filled in later. 
3. Now we can assemble the staight line segment of the flowchart (Block 4 and Block 5), the instructions shown in these blocks are self-explanatory. The critical point to remember in entering memory addresses is that the 16-bit number is entered in the reversed order—-low-order byte first, followed by the high-order byte. 
4. After completing the translation of Blocks 4 and 5, we can specify the address of the Jump location STORE (200DH), and fill in the blanks for LOW and HIGH bytes; ODh is entered in location 2007h and 20h in location 2008h. 
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Write instructions to read incoming data from input port IMPORT, count the number of Example readings, and add the readings. When the sum exceeds FFh, stop reading the port, store 8.8 the number of readings added in memory location OUTBUF, and display 01 at the output port OUTLED to indicate the overload. 
Solution 
(    Start ) 
Clear Registers to Save Sutn and Set up Counter 
Read Input Port 
Update Count 
« Add Data and Save 
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        Go Back and Read Data 
Save Count Display Overload 
C   End ") 
FIGURE 8.6 
Flowchart 
Mnemonics 
LD BC, OOOOH 
READ:   IN A, (INPORT) 
INC C ADD A, B LD B, A 
JP C, OVRLD 
JP READ 
OVRLD: LD HL, OUTBUF LD (OUTBUF), C LD A, OIH OUT (OUTLED), A HALT 
Comments 
;Clear B to save the sum and C to ; count the number of readings 
;Read data 
Add count 
;Add new data to previous sum ;Save the sum 
;Check for overload 
;Go back to read next data 
;Set up HL as memory pointer ;Save the count in memory ;Load 01 as overload indicator ;Display overload indicator ;End of program 
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Program Description 
1. This program uses two labels—READ AND OVRLD—to specify jump memory locations. Similarly, I/O ports are shown with labels: IMPORT and OUTLED. To assemble this program, these labels must be replaced by appropriate addresses. 
2. Register B is used to save the sum and register C is used to count the number of readings added. 
3. Initially, registers B and C are cleared. If they are not cleared in the first operation the sum and the count will have the residual contents of registers B and C. 
4. The IN instruction reads the input port, and register C counts the number of data bytes read. The two following instructions add the data bytes and save the result in register B. 
5. If the addition does not generate a carry, the READ loop is repeated. When the addition generates a carry, the microprocessor sets the CY flag to indicate an overload. The program jumps to location OVRLD, whereby the count is saved in memory location OUTBUF, and the overload is indicated by displaying OIh at the output port. 
8.32  Relative Jump Instructions 
The Z80 instruction set includes two types of relative jump instructions: unconditional and conditional. The new address to which the program sequence is redirected is specified by an 8-bit offset (displacement) value relative to the Jump instruction. The displacement can be positive (forward jump), specified by the seven bits Dg-Do (the MSB D7 = 0), or negative (backward jump) specified in 2's complement. The total offset values range from —126 to +129 bytes (explained in Example 8.9). The list of relative Jump instructions is as follows (d = displacement). 
Mnemonics Bytes 
JR d 2 
JR Z, d 2 
JR NZ, d 2 
JR C, d 2 
JR NC, d 2 
Description 
;Jump relative unconditionally ;Jump relative if Z = 1 ;Jump relative if Z = 0 ;Jump relative if CY = 1 :Jump relative if CY = 0 
Note: There are no Relative Jump instructions based on Sign and Parity flags. 
General Characteristics 
1. These are 2-byte instructions, therefore more efficient than 3-byte absolute jump instructions in terms of memory space and, in some situations, execution time. 
2. Relative jumps are limited to 256 memory locations. 
3. No flags are affected by these instructions. 
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The unconditional relative jump instruction is stored in memory locations 2100 and 2101h> as shown below. Find the memory address of the forward jump location if the displacement byte is 7Fh, and find the memory address for the backward jump if the displacement byte is 9Ch. 
2100 18 JR d ;Jump relative to given offset 
2101 Offset d 
2102 Next Opcode 
Solution 
1. When the jump instruction is executed, the program counter (PC) contains the address 2102 (PC always points to the next machine code to be fetched). By adding the displacement byte to the program counter, the address of the jump location becomes (2102h + 7Fh = 2181h. 
For an 8-bit displacement byte, 7Fh is the largest offset value for a forward jump. Therefore, relative to the memory location of the first code of the jump instruction, the maximum displacement is 7Fh plus two memory locations of the instruction. The decimal equivalent of 81h (7F + 2) is 129; thus, the positive range extends to 129 memory locations. 
2. If the displacement byte is 9Ch, it must be in 2's complement because D7 = 1. The memory address for the jump location is calculated by adding the displacement byte to the program counter using the 2's complement procedure. 
Program Counter: 2   1       0 2 
Displacement Byte -I- 9 C 
in 2's Complement: 
9 E 
Complement Cy and           1       9 E 
subtract from 21h:          2   0       9 e" 
Memory address of the jump location is 209Eh • 
Example 8.9 
ZBO Instructions Related To Index Registers 
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        The Z80 microprocessor includes two 16-bit index registers IX and lY, and they are used primarily as memory pointers. In the previous sections, we discussed instructions concerning data copy, arithmetic, and branch operations. The Z80 can perform these operations with the contents of memory registers using the index registers. 
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The following group shows data copy, arithmetic, and unconditional jump instructions related to the IX registers; there is an identical set for the lY register. 
	Opcode 
	Operand 
	Byies 
	Description 

	LD 
	IX, 16-bit 
	4 
	Load 16-bit data into IX register (this instruction was discussed in Section 8.11) 

	LD 
	(IX + d), 8-bit 
	4 
	Load 8-bit into memory location IX -1- d* 

	LD 
	r, (IX -1- d) 
	3 
	Copy from memory IX -t- d into register r 

	LD 
	(IX -1- d), r 
	3 
	Copy from register r into memory IX -1- d 

	ADD 
	A, (IX -1- d) 
	3 
	Add contents of memory IX -(- d to A 

	SUB 
	(IX + d) 
	3 
	Subtract contents of memory IX -1- d from A 

	INC 
	IX 
	2 
	Increment 16-bit contents of IX 

	INC 
	(IX -1- d) 
	3 
	Increment contents of memory IX H- d 

	DEC 
	IX 
	2 
	Decrement 16-bit contents of IX 

	DEC 
	(IX + d) 
	3 
	Decrement contents of memory IX -1- d 


General Characteristics 
1. Index registers IX and lY are used as memory pointers. The memory address is calculated by adding the displacement byte (also known as offset) to the contents of the index register. The displacement byte is an 8-bit number; it can be either positive or negative. The magnitude of a positive offset is specified by the seven bits De-Do, and the positive sign is indicated by bit D? being 0. For a negative offset, the displacement byte is expressed in 2's complement (illustrated in Example 8.10). The total offset ranges from + 127 to - 128 memory locations. 
2. When the operand is memory, it is specified by enclosing the memory address in the parentheses (as in any other memory-related instructions), and when the operand is the index register, it is written without parentheses. 
3. The instructions listed above follow the same pattern as discussed in the previous sections. 
4. These instructions have 2-byte opcodes; therefore, the number of bytes in index-related instnictions ranges from two to four bytes. 
Example 8.10 
Solution 
Set up index registers IX and lY as memory pointers to locations 2050h and 2150h respectively. Load data bytes 32h into location 2090h and 91 h into 21 IOh using the index registers. Add the bytes and save the sum in the accumulator. 
Mnemonics 
LD IX, 20.50H LD lY, 21.50H 
Descriptions 
;Point index IX to location 20.50H ;Point index lY to location 21.50H 
*d is an offset value added to the contents of the index register to obtain in the memory location (see Example 8.10) 
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LD (IX + 40H), 32H        ;Load byte into location (2050H + 40H) = 2090H 
LD (lY + COH), 97H      ;Load byte into location 21 lOH 
Offset is (211 OH - 2150H) 40H locations backward. 2's complement of 40H = COH. 
LD A, (IX + 40H) ;Copy first byte (32H) into A 
ADD A, (lY + COH)      ;Add second byte 
HALT 
The memory addresses are calculated by adding the offset to the low-order byte of the index register. 
IX+ 40 = 20     50 IY + C0 = 21 50 
+40 + CO 
90h     2090h 1   IOh -» 2110h 
Because the second operation is a 2's complement addition, the carry is complemented. 
PROGRAMMING TECHNIQUES: LOOPING, COUNTING, AND INDEXING 
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        The examples illustrated in the previous sections are simple and can be solved manually. However, a computer is at its best, surpassing human capability, when it has to repeat such tasks as adding a large set of numbers or copying bytes from one block of memory locations to another. It is fast and accurate. 
To perform a given repetitive task, commonly used techniques are looping, counting, and indexing. To add data bytes stored in memory, for example, the following steps are necessary. 
1. Define the task to be repeated: looping. 
A loop is set up by using either a conditional Jump or an unconditional Jump as illustrated in Examples 8.7 and 8.8. 
2. Specify how many times the task is to be repeated: Counting. 
The counter is set by loading a count (number of times the task is to be repeated) into a register or a register pair, and the counting is done by decrementing the count every time the loop is repeated. The counter can also be set up to count from O to the final count using increment instructions. 
3. Specify the location of the data: Indexing. 
The starting location of the data can be specified by loading the memory address into a register pair and using the register pair as a memory pointer or index. 
4. Indicate the end of the repetitive task: Setting Flags. 
The end of repetition is indicated by the flag of the conditional jump instruction. When the condition is true, the loop is repeated, and when the condition is false, the loop execution is terminated, and the execution goes to the next instruction in memory. 
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Example Draw a general flowchart to add ten bytes of data stored in memory starting at a given 
8-11 location, and display the sum. Explain the blocks in the flowchart. 
Solution To draw a flowchart, the problem must be divided into steps as follows: 
1. Set up a counter to count the number of bytes. 
Set up a memory pointer (index) to locate where data bytes are stored. 
Clear a register if necessary (either to store partial results or count the number of 
carries). 
2. Transfer data from memory to the microprocessor. 
3. Perform addition, checking for carry. 
4. Save the partial result. 
5. Update the counter and the memory pointer for the next operation. 
6. Check the flag to indicate the completion of the task. If the condition is true, repeat the task; otherwise go to the next instruction. 
7. Display or store the result. 
These steps and their sequence can be represented in the form of a flowchart as shown in Figure 8.7. 
Blocks 
1. Initialization 
This is a planning stage where all initial conditions and requirements are defined. In our example, this block should set up a counter, memory index (pointer), carry register, and temporary storage register. 
2. Data Acquisition 
Data are generally stored in memory or read from an input port. This step is concerned with bringing data into the microprocessor. 
3. Data Processing 
This step involves data manipulation, such as arithmetic or logical operations. In the example, we add a data byte, check for a carry, and update carry register if necessary. 
4. Temporary Storage 
This step involves storing of partial results so that the previous result will not be destroyed by the next data processing operation. 
FIGURE 8.7 
Generalized Programming Flowchart 
CjED 
Initialization 
Data Acquisition 
Data Processing 
Temporary Storage of Partial Results 
Block I 
Block 2 
Block 3 
Block 4 
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5. Getting Ready for Next Operation 
Before we can check whether the task is completed, we need to update the initial conditions; the index and the counter should be incremented or decremented. 
6. Decision Maldng 
In this step, the flag is checked, if the condition is true, the loop is repeated; otherwise, the program goes to the next block to display the result. 
7. Output 
In this Block, the result is either sent to an output port or stored in memory. 
© 
Getting Ready for 
Next Operation 
Decision No    / Malcing. 
	Output 

	
	


(     Stop ^ 
Bloclc 5 
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        ^Are All Operations^   Block 6 Complete? 
Block 7 
LOOKING AHEAD 
In the previous sections, we introduced three groups of instructions: data copy, arithmetic, and branching. These instructions were illustrated with examples. In the last section, we discussed the programming techniques with the generalized flowchart (Figure 8.7). Now we will illustrate two programs using the instructions and the programming techniques that were introduced and discussed. We will attempt to analyze the programming problems in terms of the blocks shown in Figure 8.7 and modify these blocks if necessary. 
ILLUSTRATIVE PROGRAM 1: BLOCK TRANSFER OF 
DATA BYTES 
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        In practical applications, data transfer from one memory block to another is a common occurrence. This illustrative program demonstrates how to copy data bytes from one block of memory to another using the instructions discussed previously. 
8.61 Problem Statement 
One hundred bytes of data are stored in a block of memory with the starting location labelled as SOURCE. Transfer all data to a new block starting with the location labelled as OUTBUF (Output Buffer). When the data transfer is complete, display 01 at the output port PORTO. 
8.62 Problem Analysis 
We can analyze this problem in terms of the generalized flowchart (Figure 8.7). 
1. Initialization: In this problem, we need one counter to count 100 bytes and two memory pointers: one for SOURCE memory and the other for OUTBUF memory. 
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2. Data Acquisition: In this problem, when a data byte is transferred from memory to the microprocessor, it is immediately transferred to a new memory location. There is no data processing; thus, we can eliminate Blocks 3 and 4. 
The flowchart is shown in Figure 8.8; Blocks 5, 6 and 7 are identical to the blocks shown in Figure 8.7. 
c 
8.63  Program and Flowchart 
Label 
Start 
J 
Mnemonics 
Comments 
' Set Up Memory Pointers Ibr .SOURCE and OUTBUF 
' Set up Byte Counter 
START:   LD HL, SOURCE      ;Set up HL as pointer for Source 
memory 
LD DE, OUTBUF      ;Set up DE as pointer for Output 
Buffer memory LD B, 64H ;Set register B to count 100 bytes 
• Get Data Byte Irom SOURCE 
• Store It in OUTBUF 
NEXT: 
' Update Memory Pointers 
' Count = Count - 1 
No 
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        End 
HGURE 8.8 
Flowchart: Block Transfer of Data Bytes 
LD A, (HL) LD (DE), A 
INC HL INC DE 
DEC B 
JP NZ, NEXT 
LD A, OIH OUT (PORTO), A HALT 
;Get byte from Source ;Store byte in Output Buffer 
;Point to next Source location ;Point to next Output Buffer 
location ;Decrement count 
;If counter is not zero, go back to get next byte 
;Load display indicator ;Display end of data transfer ;End of program 
8.64  Program Description and Execution 
In this program, several labels are used to specify memory locations and I/O ports; this is a common industrial practice. When an assembler is used to write programs, labeling provides convenience and flexibility. In manual assembly, labels make it easy to read a 
program. In this problem, we need to specify or define absolute values of the labels SOURCE, OUTBUF, AND PORTO, as well as the label START, the location where the program begins. The memory address of the label NEXT depends on the starting address of the program, and in manual assembly, it can be calculated by counting the number of bytes of each instruction written before NEXT. If we assume the starting address of the program is 2000h, the memory address of NEXT will be 2008h. 
The flowchart in Figure 8.8 is similar to the generalized flowchart of Figure 8.7. In the first block, registers HL and DE are used as memory pointers and register B as a counter to count 100 bytes. In the next block, a byte is transferred from SOURCE memory to the accumulator using HL as the memory pointer, and the same byte is stored in OUTBUF memory using DE as the memory pointer. 
The statements shown in the next block update the memory pointers and the counter. These statements may appear strange as algebraic equations; in fact, they are not algebraic statements but value assignments. The statement Count = Count - 1 means the new value is obtained by decrementing the previous value at the completion of one loop. It is important to remember that updating should be done before the decision making because once the Jump instruction finds the Zero flag not set, the program execution will go back to location NEXT. This loop is repeated until the counter B = 0, and then the data transfer is indicated by displaying 01 at PORTO: this is shown as End in the flowchart. 
When you execute the program on a single-board system, the successful completion of data transfer can be checked by verifying the contents of some locations in SOURCE memory and the conesponding memory locations in OUTBUF memory. 
ILLUSTRATIVE PROGRAM 2: ADDITION WITH CARRY 
The following program adds the number of bytes stored in memory and counts the number of carries generated. The maximum sum can be up to 16-bit. 
8.71 Problem Statement 
Add the following ten data bytes stored in memory with the starting address INBUF (Input Buffer). Store the sum in two memory locations; the low-order byte of the sum should be stored in OUTBUF and the high-order byte in OUTBUF -I- 1. Data (H): A2, 37, 4F, 97, 22, 6B, 75, 8E, 9A, C7. 
8.72 Problem Analysis 
This problem is similar to Example 8.11 and can be very easily analyzed in terms of the blocks shown in the generalized flowchart in Figure 8.7. 
1. In the initialization block, we need to set up a counter to count ten bytes, a memory pointer for INBUF, and registers to save the partial sum and carries. We use the accumulator for addition. The memory pointer for OUTBUF is not necessary until the data processing is completed; thus, the memory pointer used for INBUF can be also used for OUTBUF. 
Mnemonics and Flowchart 
Comments 
Block 1 
	LD 
	A, OOH 

	LD 
	C, A 

	LD 
	HL, INBUF 

	LD 
	B, OAH 


Block 2 
NXTBYT:    LD  D, (HL) 
ADD A, D 
Block 3 and 4 
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        Block 5 
SKIPCY: 
	INC C 

	
	

	

	INC DEC 
	HL B 


Block 6 
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        Block 7 
	
	

	LD  HL, OUTBUF LD  (HL), A INC HL LD  (HL), C 

	
	


;Clear accumulator for addition 
;Clear register C to save carry 
;Set up HL as input buffer memory pointer 
;Set up register B as a counter 
;Get data byte from input buffer 
;Add data byte 
;If no carry, do not increment CY register 
;Save carry bit 
;Point to next memory location 
;One addition complete, decrement counter 
;If all bytes are not added, go back to get next byte 
( HALT ) 
;Set up HL as output buffer memory pointer ;Store low-order byte of the sum ;Point to memory OUTBUF + 1 ;Store high-order byte in OUTBUF -I- 1 
;End of program 
FIGURE 8.9 
Adding Ten Bytes: Program and Flowchart 
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2. In this problem, the data processing block needs to be expanded because of the carries. Whenever a carry is generated after an addition, the carry register will be incremented; thus, the high-order byte of the sum will be saved in the carry register and the low-order byte will be in the accumulator. 
8.73  Program Description and Execution 
The comments written in the program (see Figure 8.9) explain the function of each instruction, and the flowchart drawn around the instructions shows the sequence of execution. 
In the initialization block, the accumulator and register C are cleared for use in arithmetic operations; otherwise, residual data would cause erroneous results. However, register D need not be specifically cleared because the first load instruction replaces its residual data. 
This program has two types of loops; one loop repeats the addition-related instructions if the counter is not zero, and the second loop skips the cany counter if there is no carry. The instruction ADC (Add with Carry) is inappropriate for this problem; this instruction can be used for 16-bit addition (See Appendix A). 
In the output block, the HL register is used again as a memory pointer for the output buffer memory. After all bytes have been added, the low-order byte of the result, which is in the accumulator, is stored in the memory location OUTBUF, and the high-order byte (carries) in register C is stored in the next memory location OUTBUF + 1. 
DEBUGGING A PROGRAM 
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        Debugging a program is similar to troubleshooting hardware, but is much more difficult and cumbersome. When a program does not work, very few clues alert you to what exactly went wrong. Therefore, it is essential to search carefully for the errors in the program logic, machine code, and execution. 
The debugging procedure can be divided into two parts: static debugging and dynamic debugging. Static debugging is similar to visual inspection of a circuit board; it is the paper-and-pencil check of a flowchart and machine code. Dynamic debugging involves observing outputs, register contents, and flags following the execution of either instruction (the single-step technique) or a group of instructions (the breakpoint technique). 
8.81  Static Debugging of Machine Code 
Translating the assembly language into the machine code is similar to building a circuit from a schematic, in that the machine code will have errors just as would the circuit board. If an assembler is used to translate the code, most of the errors involved in hand assembly can be eliminated. The following errors are common in manual assembly: 
1. Selecting a wrong code. 
2. Forgetting the second byte or third byte of an instruction. 
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3. Specifying the wrong jump location. 
4. Not reversing the order of high and low bytes in a Jump instruction. 
5. Writing memory addresses in decimal, thus specifying wrong jump locations. 
The debugging problems given in the Assignments section at the end of the chapter will illustrate some of these errors. 
8.82  Dynamic Debugging 
Dynamic debugging is concerned with observations of data after executing an instruction or set of instructions. These observations may include verifying output displays, checking flags, examination of register contents, and tracing execution flow. The process is similar to that of the signal-injection technique in troubleshooting hardware, which involves injecting a signal into a hardware system and checking signals at various points against the expected outputs. Similarly, in debugging programs, we execute a few instructions and check register contents or outputs against the expected results. The commonly used techniques and tools are (1) Single Step, (2) Register Examine, and (.3) Breakpoint. 
SINGLE STEP 
The single step technique allows us to execute one instruction at a time and to observe the results following each instruction. As we advance through each instruction, we will be able to observe memory addresses and codes as they are executed. With the single step technique, we can spot 
□ Incorrect addresses. 
□ Incorrect jump locations for loops. 
□ Incorrect data or missing codes. 
This technique is generally used in conjunction with the Register Examine facility (described below), and it is very useful for short programs (.50-100 machine codes). For larger programs, the technique is cumbersome and time consuming. 
REGISTER EXAMINE 
The Register Examine facility allows us to examine the contents of the microprocessor registers and the flags. We can examine registers after the execution of each instruction or after the execution of a group of instructions and compare the contents with the expected outcomes. 
BREAKPOINT 
The breakpoint technique allows us to check the program in segments. We can set a breakpoint at the end of a program segment or multiple breakpoints at various memory locations. When the microprocessor is asked to execute the program, it executes the codes until it comes across the first breakpoint, where it returns the control to the breakpoint subroutine in the system. At this point, we can examine the registers for expected results. If the segment of the program is found satisfactory, the program can be executed up to the next breakpoint. With the breakpoint technique, we can isolate the segments of the pro
grams with errors and debug those segments with the single step technique. The breakpoint technique is generally used to check out timing loops, I/O sections, and interrupts. 
COMMON SOURCES OF ERRORS 
In addition to the errors mentioned in Section 8.81, here is a list of errors of common occurrence in the types of programs discussed in this chapter. 
□ Failure to clear the accumulator when it is used to add data. 
□ Failure to clear registers when they are used to store partial results or carries. 
□ Failure to update an index or a counter. 
o Failure to set a flag before using a conditional Jump instruction or use of an inappropriate flag. 
o Inadvertently changing a flag before using a Jump instruction. 
The Z80 instruction set includes some instructions that perform more than one task. These instructions improve programming efficiency considerably. Some of these instructions are as follows: 
Z80 SPECIAL INSTRUCTIONS 
8. 
Mnemonics 
Description 
DJNZ d 
Decrement B and Jump Relative on no zero (Z = 0) 
LDI 
The instruction decrements register B, and if B o, it jumps to memory address specified by the offset value d. 
Load and Increment 
The instruction copies a data byte from the memory location shown by HL into the memory location pointed to by DE. Registers HL and DE are incremented and BC is decremented. 
LDIR 
Load, Increment, and Repeat 
This is similar to the instruction LDI, except that it is repeated until 
BC = 0. 
LDD 
Load and Decrement 
LDDR 
The instruction copies a data byte from the memory location shown by HL into the memory location pointed to by DE. Registers HL, DE, and BC are decremented. 
Load, Decrement, and Repeat 
This instruction is similar to LDD, except that it is repeated until 
BC = 0. 
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Example Modify the illustrative program Addition With Carry (Section 8.7) using the instruction 
8-12  DJNZ and the offset value. 
Solution The following mnemonics are repeated from a segment of the program in Figure 8.9; we 
assume that the segment is stored in memory locations starting from 2008h. 
Location 
2008 2009 200A 200D 200E 200F 
Label 
NXTBYT: 
SKIPCY: 
Mnemonics 
LD D, (HL) ADD A, D JP NC, SKIPCY INC C INC HL DJNZ F7H 
Comments 
;Get data byte from input buffer ;Add data byte ;lf no carry, do not save CY ;Save carry bit 
;Point to next memory location iDecrement counter B, and if B ¥= 
0, jump to location 2008 to get 
the next byte 
Program Description and Calculation of the Offset Value In this program, the instruction DJNZ replaces two instructions—DEC B and JP NZ, NXTBYT—from the program in Figure 8,9. The instruction DJNZ assumes that register B is used as a counter. When the Z80 executes the 2-byte instruction DJNZ, the program counter holds the address 201 Ih- The offset value for the jump location NXTBYT (2G08h) is obtained as follows: 
Program Counter:   2 0 Jump Location:   2 0 
2's Complement of 09h: 
0 8 
0 9h (0 0 0 0 1 0 0 1) F 7h (1 1 1 1 0 1 1 i) 
81 n ILLUSTRATIVE PROGRAM 3: BLOCK TRANSFER OF . 1U      DATA BYTES USING ZBO SPECIAL INSTRUCTIONS 
This program transfers data from one memory block to another using the Z80 instruction LDIR
8.101   Problem Statement 
Modify the illustrative program (Section 8.63) using the instruction LDIR. The problem statement from the previous program is as follows: Transfer 100 bytes from the memory block SOURCE to the memory block OUTBUF and indicate the end of data transfer by displaying 01 at PORTO. 
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8.102  Problem Analysis 
To use the instruction LDIR, the HL register should be used to point to memory SOURCE and the DE register to the destination OUTBUF. Even if the total number of bytes to be transferred is an S-bit number (64h), the register BC should be used as the counter with the 16-bit count (0064h). 
8.103 Program 
Label Mnemonics 
START:      LD HL, SOURCE LD DE, OUTBUF LD BC, 0064H LDIR 
LD A, OIH OUT (PORTO), A HALT 
Comments 
;Set up HL as pointer for SOURCE memory ;Set up DE as pointer for OUTBUF memory ;Specify the number of bytes in BC ;Transfer data byte from SOURCE to OUTBUF 
and repeat until BC = 0 ;Load display indicator ;Display end of data transfer ;End of program 
8.104  Program Description 
In this program, the instruction LDIR is the workhorse; it replaces several instructions from the illustrative program in Section 8.63. The instruction performs three operations: (1) copies a data byte from the memory location pointed to by the HL register into the memory location indicated by the DE register, (2) updates memory pointers (HL and DE) and the counter (BC), and (3) makes the decision to repeat or terminate the loop based on the count in the BC register. When all 100 bytes are copied into new locations, the counter BC becomes zero, and the program goes on to display 01 at PORTO. 
SUMMARY 
In this chapter, we illustrated a group of instructions from the Z80 set frequently used in writing programs. Instructions were selected from three groups: data copy, arithmetic, and branch. These instructions range from 1-byte to 4-byte in length. General characteristics of these instructions are as follows: 
1. The data copy and load instructions copy the contents of the source into the destination without affecting the source contents. They do not affect the flags. 
2. The arithmetic instructions (with some exceptions) assume one of the operands is the accumulator, and the result of an operation is usually stored in the accumulator Most of these instructions affect the flags. 
3. The conditional Jump instructions are decision-making instructions and executed according to the status of the flags. Not all instructions affect the flags; in particu
lar, the data copy instructions and 16-bit increment/decrement instructions do not affect the flags. 
4. The Z80 microprocessor includes two index registers (IX and lY), which are used primarily as memory pointers. The instructions related to index registers have 2byte opcodes and perform data copy and arithmetic operations with the contents of memory registers. 
Programming techniques such as looping, counting, and indexing were discussed and a generalized flowchart was illustrated. Two illustrative programs were discussed in the context of this generalized flowchart. 
Finally, some Z80 special instructions were introduced. These instructions perform multiple tasks; thus, they improve programming efficiency. 
ASSIGNMENTS 
Note: In the following assignments use your own data if data are not given. 
Section 8.1 
1. Write mnemonics to load .39h into register B and 92h into register D. Save the contents of B in register L and display the contents of D at PORTl. 
2. Write instructions to load 47h into register B and F2h into register C using one instruction. Store the contents of C in memory location 2080h and display the contents of B at PORTl. Assemble the Hex code and store the code in memory locations starting from 2000h. 
3. Write instructions to load A2h into register D and 2080h into register HL. Copy the contents of D into memory location 2080h. 
4. Write instructions to load A7h into register D and 20.5.5h into register BC. Copy the contents of D using BC as a memory pointer. 
5. The memory location 2040h contains 98h and 2070h contains F7h. Write instructions to exchange the contents of these memory locations and assemble the Hex code. 
6. Specify the register contents and the flag statuses after execution of the following instructions (show only changes): 
Registers Flags 
A    B    C    H    L        Z CY 
34   7F   FF   01   00       0        1 (Initial Conditions) 
LD A, OOH LD BC, 80.58H LD B, A LD HL, 2040H LD L, C LD (HL), A HALT 
7. Write instructions to read the input port 80h and output the reading to the port 05 h (See Figure 8.10). What appliances will be turned on with this output? 
8. Write comments to explain the functions of the following instructions: 
LD HL, 2065H LD (HL), OOH HALT 
Section 8.2 
9. What are the contents of the accumulator after the execution of the instruction SUB A? Specify the status of the Z and CY flags. 
10. Write the instructions to load FF,., into the accumulator and increment A. Specify the status of the S, Z, and CY flags after the execution of the increment instruction. 
11. In the previous assignment (#10), replace the increment instruction with the instruction ADD A, OIH and explain how the flags S, Z, and CY are affected after the addition. 
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Appliance Control 
12. Specify the register contents and the flag status after the execution of the following instructions. What is being displayed at PORTl? 
SUB A LD B, A ADD A, A9H LD C, 57H ADD A, C DEC A 
OUT (PORTl), A HALT 
13. Write instructions to load 40FFh into register HL and increment HL. Specify the contents of register HL. 
14. Register HL contains 20FFh. What are the contents of register HL if the byte 01 h is added (not incremented) to register L? What are the statuses of the S, Z, and CY flags after the addition? 
15. Write instructions to perform the operations listed in 14, and assemble the code showing memory addresses. 
16. Show the contents of the registers and the memory locations that are affected after the execution of the following instructions. Explain the difference between the two INC instructions shown below. 
17. Find the results of the following operations and explain the difference between the two results. 
Register Contents 
ABC FF   77 89 
S Z 1 0 
Flags 
CY 
1 (Initial Conditions) 
LD (209FH), FFH LD HL, 209FH INC (HL) INC HL HALT 
SUB A 
LD HL, 971FH LD BC, 8F9CH ADD A, L ADD A, C ADD A, B SUB H HALT 
SUB A 
LD HL, 971FH LD BC, 8F9CH ADD A, L ADD A, C SUB H ADD A, B HALT 
Section 8.3 
18. Load 48A2h into register BC. Subtract the contents of C from B. If the answer is in 2's complement, display OIh at PORTl; otherwise, display the result. Assemble the code and execute the program. 
19. Execute the program in 18 by loading F247h in register BC. 
20. Three data bytes are stored in memory locations 2050, 2051, and 2052h. Write instructions to subtract the bytes stored in memory locations 2050 and 2051 from the byte stored in location 2052h. If the answer is in 2's complement, display FFh at PORTl; otherwise, display the answer. Execute the instructions with the following set of data in Hex. 
Set 1: 2050 = 32, 2051 = 78, 2052 = F9 Set 2: 2050 = 67, 2051 = 98, 2052 = F9 
21. The Relative Jump instruction JR NZ, 68H is stored in memory locations 20A7h and 20A8h. Calculate the jump location. 
22. If the opcode of the Relative Jump instruction JR NC, 8FH is located at memory location 2050h, calculate the jump location. 
23. Assemble the code in Illustrative Program 1 (Section 8.63) and replace the instruction JP NZ, NEXT with the appropriate Relative Jump instruction and offset. 
24. In Illustrative Program 2 (Figure 8.9), assemble the code and replace the Jump instructions JP NC, SKIPCY; and JP NZ, NXTBYT with the appropriate Relative Jump instructions and their offsets. 
Section 8.4 
25. Rewrite the instructions in Figures 8.2 (a), (b), and (c) using the index registers IX and lY as memory pointers. 
26. Write instructions to load 2070h into the lY index register. Using the register lY as a memory pointer with appropriate offsets, store the bytes A2h and 32h in memory locations 204Fh and 209Fh, respectively. 
27. Calculate the value of the memory pointer if register IX contains 2000h with the displacement byte 80h. 
28. Calculate the values of two memory pointers if register lY contains 20FFh and it is combined with the displacement bytes 7Fh and 8Fh. 
29. Assuming the index register IX contains 2050h, explain the difference between the instructions INC IX and INC (IX + 0). 
30. Rewrite Illustrative Program 1 (Section 8.6), Block Transfer of Data Bytes, using the index registers as memory pointers. 
Section 8.5 
31. Draw a flowchart to add the numbers stored in memory location INBUF (Input Buffer). When the result generates a carry, subtract the last byte and display the sum. 
32. Modify the above program to count and display the number of bytes added (excluding the last one). 
33. You are given a long grocery list and asked to buy the items from number 20 to 47. Any item that costs more than $10.00 should be excluded. Add up the total cost and show the total expenses. Draw a flowchart for performing these tasks. 
34. Modify the above flowchart to include a ceiling of $100 on total expenses. 
35. Draw a flowchart to add the string of numbers stored in memory locations BUFFER. The end of the string is indicated by the number 00. Display the sum. 
Section 8.6 
36. The following block of data is stored in memory locations INBUF. Transfer the data to the locations OUTBUF in the reverse order. 
Data (H)  47, 97, F2, 9C, A2, 98 
37. Ten bytes are stored in memory locations starting from INBUF. To insert an additional five bytes at the beginning locations, it is necessary to shift the first ten bytes by five locations. Write a program to shift the data string by five memory locations. 
38. Ten 16-bit readings are stored in memory locations SOURCE; the low-order byte is stored first, followed by the high-order byte. Write a program to copy the loworder bytes only to a new location BUFFER. 
39. Given the initial conditions in 38, eliminate the high-order readings and store the low-order readings in consecutive memory locations SOURCE. 
Section 8.7 
40. Draw a flowchart to modify Illustrative Program 2 (Section 8.7) to include the instruction Jump On Carry instead of Jump On No Carry (JP NC, SKIPCY). You may have to use an additional Jump instruction, and the flowchart may have to be altered significantly. 
41. Modify Illustrative Program 2 (Section 8.7) using the DE register as a memory pointer instead of HL. 
42. Modify Illustrative Program 2 (Section 8.7) using the DE register as a memory pointer and a memory location as a counter (instead of register B). 
43. Write a program to add the following string of data bytes until a carry is generated. When the Carry flag is set, subtract the last byte added and display the sum at PORTl. 
Data (H)   89, .32, 2B, 7A, B5, 68, 2F, . . . 
44. Modify the previous program to count the number of bytes added (excluding the byte that generates the carry) and display the count at PORT2. 
45. Ten 16-bit readings are stored in memory locations SOURCE; the low-order byte first, followed by the high-order byte. Write a program to add the low-order bytes. Display the sum at two different ports and store the sum in two memory locations OUTBUF and OUTBUF + 1. 
46. Two sets of data, ten bytes each, are stored in memory locations INBUFl and 
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INBUF2. Subtract each data byte stored at INBUF2 from the corresponding data byte at INBUFl. Add the remainders, and if the sum of the remainders generates a carry, display FFH at PORTl; otherwise, display the sum at PORTl. 
Section 8.8 
47.   Find the errors in the following instructions. 
a. The following instructions add two Hex bytes (06 and 52) and display the sum at P0RT7. 
	2000 
	06 
	LD B, 06H 
	;Load data bytes 

	2001 
	06 
	
	

	2002 
	OE 
	LD C, 52H 
	

	2003 
	52 
	
	

	2004 
	80 
	ADD A, B 
	;Add data bytes 

	2005 
	81 
	ADD A, C 
	

	2006 
	D3 
	OUT (07H), A 
	;Display the sum 

	2007 
	76 
	HALT 
	


b. The following instructions add five bytes stored in memory locations starting 
	from 2050h. 
	The sum will be less than FFi 
	-I

	2000 
	9F 
	SUB A 
	;Clear A 

	2001 
	21 
	LD HL, 2050H 
	;Set up HL as memory index 

	2002 
	20 
	
	

	2003 
	50 
	
	

	2004 
	78 
	LD B, 05H 
	;Set up B as a counter 

	2005 
	05 
	
	

	2006 
	86 
	ADD A, (HL) 
	;Add byte 

	2007 
	23 
	INC HL 
	;Point to next byte 

	2008 
	05 
	DECB 
	;Reduce count 

	2009 
	D2 
	JP NZ, 2004H 
	;If B + / 0, get next byte 

	2010 
	04 
	
	

	2011 
	20 
	
	

	2012 
	76 
	HALT 
	;End of program 


c. The following program transfers a IOOh bytes of data starting from the memory location 2IOOh to a new location starting from 2800h. 
LD HL, 2IOOH      ;Set up HL as index for Source 
LD BC, 2800H      ;Set up BC as index for new memory 
LD DE, OlOOH      ;Set up DE as counter 
NEXT:   LD A, (HL) 
;Get byte 
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LD (BC), A 
;Transfer byte to new memory 
INC HL 
;Update indexes and counter 
INC BC 
DECDE 
JP NZ, NEXT 
;If transfer is not complete, go back and get next byte ;End of data transfer 
HALT 
Section 8.9 
48. A data set with 512 bytes is stored in memory locations with the starting address INBUFl (2100h). Shift the entire data set by 256 locations with the starting address INBUF2 on the next page (2200h). Use the instruction LDDR. 
49. Rewrite Illustrative Program 2 (Section 8.7) using the instructions DJNZ and JR NC. 
50. Rewrite Illustrative Program 1 (Section 8.6) using the index registers IX and lY as memory pointers and the instruction DJNZ. 
Logic and Bit Manipulation Instructions 
The microprocessor is a programmable logic device; it can perform all the logic functions of hardware gates, such as AND, OR, and Ex-OR (exclusiveOR). It can compare two bytes and indicate the comparison (less than, equal to, or greater than) by setting appropriate flags. In addition, it can rotate and shift bytes, and manipulate individual bits. 
In this chapter, Z80 instructions related to logic and compare operations and bit manipulation are introduced. These instructions are illustrated with examples, and their applications are shown in two illustrative programs, one of which demonstrates how to design time delays using software instructions. This chapter also includes a section on debugging, which lists errors that commonly occur in writing these types of programs and suggests debugging techniques using a counter program. 
Finally, this chapter introduces Z80 special instructions related to the compare operations. These special instructions perform multiple tasks such as comparing two bytes, updating registers that are used as memory pointers and a counter, and making a decision to change the program sequence. For example, one of the Compare instructions can search for a specific byte in a given memory block. 
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OBJECTIVES 
□ Explain how logic instructions (AND, OR, and XOR) perform their operations and how flags are affected by these instructions. 
□ Write a set of instructions to illustrate logic operations and explain how these instructions are used in masking, setting, and resetting bits. 
□ Explain how the Compare instructions perform a comparison and modify flags to indicate the comparison of two bytes. 
□ Explain the Rotate instructions and their effects on the contents of the accumulator and the CY flag. 
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        LOGIC AND COMPARE 
□ Write a set of instructions (programs) to illustrate the use of Compare and Rotate instructions. 
□ Explain how a specific bit in a register or memory can be checked and set or reset by using bit manipulation instructions. 
□ Write a program to set/reset specific bits at a given interval. 
□ Explain the Z80 special instructions related to search and compare operations. 
□ Write a set of instructions to illustrate these Z80 special instructions and explain their advantages. 
The microprocessor is basically a programmable logic chip. It can perform all the logic functions of the hard-wired logic through its instruction set. However, the logic operations are slightly different from the hard-wired logic. The AND gate shown in Figure 9.1(a) has two inputs and one output. On the other hand, in an 8-bit microprocessor, the AND instruction simulates eight 2-input AND gates. Figure 9.1(b) shows ANDing the contents of register B with the contents of the accumulator. Register B contains 77h and the accumulator has Sin- After ANDing, the result (OIh) is stored back into the accumulator. The other logic functions are performed similarly. In the following sections, we discuss instructions related to AND, OR, and XOR logic functions; the instruction related to the NOT function was discussed as I's complement in the last chapter. 
Input 
(a) 
Output 
(b) 
	(B) = 
	0 
	1 
	1 
	1 
	0 
	1 
	1 
	1 

	
	
	
	
	
	
	
	
	
	

	(A) = 
	
	1 
	
	0 
	
	0 
	
	0 
	
	0 
	
	0 
	
	0 
	
	I 

	AND B 
	[ 
	
	
	
	
	
	
	
	

	(A) = 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 


FIGURE 9.1 
(a) AND Gate, and (b) a Simulated AND Instruction 
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9.11   Logic AND, OR, and XOR Instructions 
Logic instructions are examples of implied addressing; tlie implied operand is the 8-bit word of the accumulator. The other operand can be an 8- bit data word or the contents of a register or memory. When the second operand is a memory location, it can be specified either by the 16-bit number in the HL register or the 16-bit number in an index register with an offset byte. (See Appendix A for complete descriptions with examples of these instruc
	tions.) 
	
	
	

	Opcode 
	viperano 
	Hytes 
	T)Aerrintinfi 

	AND 
	r 
	1 
	AND contents of a register with the accumulator 

	AND 
	8-bit 
	2 
	AND 8-bit data with the accumulator 

	AND 
	(HL) 
	SI 
	AND contents of memory with the accumulator 

	AND 
	(IX + d)* 
	

	OR 
	r 
	1 
	OR contents of a register with the accumulator 

	OR 
	8-bit 
	2 
	OR 8-bit data with the accumulator 

	OR 
	(HL) 
	
	OR contents of memory with the accumulator 

	OR 
	(IX + d)* 
	

	XOR 
	r 
	1 
	Exclusive OR contents of a register with the ac

	
	
	
	cumulator 

	XOR 
	8-bit 
	2 
	Exclusive OR 8-bit data with the accumulator 

	XOR 
	(HL) 
	
	Exclusive OR contents of memory with the ac

	XOR 
	(IX -1- d)* 
	
	cumulator 


General Characteristics 
These logic instructions 
1. implicitly assume that the accumulator is one of the operands. 
2. reset (clear) Carry (CY) flag and modify S, Z, and P/V flags according to the data conditions of the result. 
3. place the result in the accumulator. 
4. do not affect the contents of the operand register or memory. 
Figure 9.2 shows an input port (PORTl) with three switches connected to data lines Do, Example 
Di, and D2; when a switch is on, it provides logic 1 to the respective data line. Write  9^1 
instructions to read the port and save the reading in memory location INBUF. 
Solution 
IN A, (PORTl)       ;Read the switch positions 
AND 07H ;Mask data bits D3-D7 
LD (INBUF), A      ;Store the reading in memory INBUF 
HALT 
*The similar instnictions related to the index register lY are not shown here. 
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FIGURE 9.2 
Reading Switches from an Input Port 
+5 V 
	On 1 
	Input Port 
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	1 

	Off 0 
	0 

	On 1 
	1 

	
	EN 
	

	
	


READ Control Signal 
-D7 -D6 -D5 -D4 -D3 -D, -D, -Dn 
Data Bus 
The first instruction reads the switch positions at PORTl. Even if only three switches are connected, the reading will be 8-bit data; bits D3-D7 will be random. Therefore, bits D3-D7 should be masked or eliminated without affecting the switch positions. This is accomplished by ANDing the input reading with an appropriate masking byte (07h). The masking byte is obtained by placing Os in bit positions that are to be masked and by placing 1 's in bit positions where switches are connected. The masking is performed as follows, and the switch positions (1 0 1) are stored in memory INBUF. 
Input Reading in Accumulator: Masking Byte (07h): Result in Accumulator: Flag Status: 
AND 
	D7 
	D6 
	D5 D4 
	D3 
	D2 
	D, 
	D 

	X 
	X 
	X X 
	X 
	1 
	0 
	1 

	0 
	0 
	0 0 
	0 
	1 
	1 
	1 

	0 
	0 
	0 0 
	0 
	1 
	0 
	1 

	s = 
	0, z 
	= 0, CY 
	= 0 
	
	
	


Example A microcomputer with two input ports and one output port is designed to monitor various 
^  processes (conveyor belts) on the floor of a manufacturing plant (Figure 9..3). The input 
port FIh with seven switches is located at the north end of the floor, and the input port F2h, also with seven switches, is located at the south end of the floor. The port Fl h is used to start and stop the conveyor belts in a normal situation, and if necessary, a belt can be stopped or prevented from starting by sending logic 1 through the corresponding switch at port F2h. (The data line D7 of the output port is connected to an emergency signal and is not a part of this example.) Write instructions to 
1. Turn on and off the seven conveyor belts according to ON/OFF positions of switches Se-So at port FIh. 
2. Stop the conveyor belt if the corresponding switch is on at port F2h. 
3. Monitor the switches continuously. 
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        •READ 
FIGURE 9.3 
Micropiocessoi-ControUed Conveyor Belts 
WRITE
Solution 
START: IN A, (FIH) 
AND A, 7FH LD B, A 
IN A, (F2H) 
AND A, 7FH XOR B 
OUT (F3H), A 
;Read switches at FIH 
;Mask bit D7 ;Save reading 
from FIH ;Read switches 
atF2H 
;Mask bit D7 
;Check switches that are on at Fland F2 
;Tum on/off appropriate conveyor belts 
AND 
AND 
XOR 
X 0 0 0 0 1 1 1 (A) 
0 1111111 
0 0 0 0 0 1 1 1 (A) 
X 0 0 0 0 0 0 1 (A) 
0 1111111 
0 0 0 0 0 0 0 1 (A) 
0 0 0 0 0 1 1 1 (B) 
(B) 
0 0 0 0 0 1 1 0 (A) 
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JP START ;Go back and 
read switches again 
The three switches So, Si, and S2 at port FIh are turned on as shown in Figure 9.3. Initially, these switch positions are read, bit D7 is masked, and the reading is saved in register B. In port F2h, the switch So' is on, which means somebody from the south end of the floor wants to stop the belt connected to line Dq. This reading, after bit D7 is masked again, is Exclusive-ORed with the reading from the port FIh- Because the switch So' is on, the output at port F3h is 0 0 0 0 0 1 1 0, which turns off the first conveyor belt. 
9.12  Compare Instructions 
The Compare instructions test a byte for less than, equal to, or greater than the contents of the accumulator, and the comparison is indicated by the flags without affecting the operands. The instructions can test the contents of a register, memory, or 8-bit data against the contents of the accumulator. The instructions are as follows: 
Opcode     Operand     Bytes Description 
CP r 1 Compare the contents of a register with the accu
mulator 
CP 8-bit 2 Compare 8-bit data with the accumulator 
CP (HL) ll        Compare the contents of memory with the accu
CP (IX-^d) 3J mulator 
General Description These instructions compare the operand (data byte, register contents, or memory contents) with the contents of the accumulator by subtracting the operand from the accumulator. However, no contents are modified; the comparison is indicated by setting the flags. 
1. If (A) < operand, the Carry flag is set and the Zero flag is reset. 
2. If (A) = operand, the Zero flag is set and the Carry flag is reset. 
3. If (A) > operand, the Carry and Zero flags are reset. 
4. Other flags are also affected according to the result of the subtraction. 
5. When the operand is memory, the address is specified by the contents of HL register or index registers with an offset byte. 
Example Write instructions to compare the byte in memory location 2050h with 80h. If the byte is 
^  equal to 80h, jump to location CHECK, and if it is higher than 80h, jump to OVRLD to 
indicate the circuit overload. 
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Solution 
	LD 
	HL, 2050H 
	;Set up HL as memory pointer 

	LD 
	A, 80H 
	;Load comparison byte 

	CP 
	(HL) 
	;Compare memory byte with BOH 

	JR 
	Z, CHECK 
	;If memory byte = 80H, begin CHECK procedures 

	JR 
	C, OVRLD 
	;Indicate overload 


A Relative Jump instruction can be used with a label; the assembler will automatically calculate the offset value. However, in manual assembly, the magnitude of the offset must be calculated by the user. 
ROTATE (SHIFT) OPERATIONS AND BIT 
MANIPULATION 
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        The rotate instructions shift each bit either to the right or to the left. These instructions are used primarily for mathematical operations and serial I/O, where one bit is transmitted over a single line. The Z80 has a set of rotate instructions that can rotate bits not only in the accumulator but in any register and memory location. 
Another group of instructions that makes the Z80 one of the most attractive microprocessors in control applications is bit manipulation. The Z80 can test, set, or reset any bit in an 8-bit register or memory. In other microprocessors, the user must write a set of instructions to test a bit in a register or memory. 
In this section, we first introduce the Rotate instructions dealing with the accumulator bits and then discuss the Rotate instructions dealing with registers and memory. Finally, we examine the bit manipulation instructions. 
9.21  Rotate Instructions (Accumulator) 
The following Rotate instructions deal with the bits in the accumulator. The rotate operations can be classified into two groups: Rotate Left and Rotate Right. Each group can be further classified into (1) 8-bit rotation and (2) 9-bit rotation through Carry. In 8-bit rotation, each bit of the accumulator is shifted to the adjacent position. In this operation, the Carry flag is affected by the rotation, but it is not a part of the rotation. On the other hand, in 9-bit rotation, the C flag is one of the bits in the rotation. These instructions are shown in Figure 9.4. 
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RLCA :Rotate accumulator left. Carry is affected by D7. 
RLA : Rotate accumulator left through Carry. 
RRCA :Rotate accumulator right. 
Carry is determined by Dg. 
RRA :Rotate accumulator right through Carry. 
FIGURE 9.4 
Rotate Instructions 
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	D5 
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Example 9.4 
Solution 
The accumulator contains 81h with the Carry flag reset. Illustrate the contents of the accumulator and the status of the Carry flag after the execution of each rotate instruction. 
CY 
	D6 
	D5 
	D4 
	D3 
	D2 
	

	

	0 
	0 
	0 
	0 
	0 
	0 


	1—1' 
	0 
	0 
	0 
	0 
	0 
	0 
	

	
	


	
	

	h 
	L-hT 0 0 
	0 
	0 
	0 
	0 
	'H 


RLCA
RLA
RRCA
□ 
	D7 
	D6 
	D5 
	D4 
	D, 
	D, 
	D, 
	Do 

	
	0 
	0 
	0 
	0 
	0 
	1 
	l|-0.3„ 


-Co}
	
	0 
	0 
	0 
	0 
	0 
	0 
	

	1—!■ 
	'f 


RRA- □ 
	
	0 
	0 
	0 
	0 
	0 
	1 
	o| 

	

	■ 
	1 
	0 
	0 
	0 
	0 
	0 
	

	

	
	1 
	0 
	0 
	0 
	0 
	0 
	


40„ 
FIGURE 9.5 
Rotate Instructions and Accumulator Contents 
Figure 9.5 shows how the byte 81h in the accumulator is changed after various rotate instructions. The first two instructions rotate bits to the left; however, RLCA is an 8-bit rotation and RLA is a 9-bit rotation. In instruction RLCA, bit D7 is rotated into bit Dq; yet, in instruction RLA, CY is rotated into bit Dq. Both instructions modify the CY flag according to bit D7. Similarly, RRCA is an 8-bit and RRA a 9-bit rotate right instruction. 
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The memory location 2050h contains a 4-bit number. Write instructions to multiply the number by ten and store the result in the same memory location. 
LD HL, 2050H LD A, (HL) RLCA LD B, A RLCA RLCA ADD A, B LD (HL), A HALT 
Set up memory pointer ;Get the number ;Multiply by 2 Save result to use it later Multiply by 4 ;Multiply by 8 
;To multiply by 10, add multiply-by-2 iSave result in memory 
Rotating bits to the left by one position is equivalent to multiplying the number by two, and rotating to the right is equivalent to dividing by two. For example, if the number is OIh, the instruction Rotate Left makes it 02h. This technique is valid until bit D? does not rotate 1 into bit Do. For example, rotating the number 80h left makes it OIh- However, this number can be divided by two by rotating it right. 
In the above instructions, the number is multiplied by eight by rotating the accumulator contents three times. Adding the result of multiply-by-two to the result of multiply-by-eight is equivalent to multiply-by-ten. 
Example 9.5 
Solution 
9.22  Rotate and Shift Instructions (Registers and Memory) 
The Z80 instruction set has several rotate instructions; these instructions can rotate bits in a register or memory. This is unlike the 8080 set, which restricts rotation to the accumulator. In addition, the Z80 has shift instructions which shift bits in a given direction. In the following instructions, r represents any register (A, B, C, D, E, H, or L), and m stands for a memory locatiop in R/W memory. In these instructions, a memory location can be specified by HL or an index register. The instructions are as follows: 
	Opcode 
	Operand 
	Description 

	RLC 
	r or m 
	Rotate bits left in a register or memory. 

	RL 
	r or m 
	Rotate bits left through Carry in a register or memory. 

	RRC 
	r or m 
	Rotate bits right in a register or memory. 

	RR 
	r or m 
	Rotate bits right through Carry in a register or memory. 

	SLA 
	r or m 
	Shift bits left through CY in a register or memory and in

	
	
	sert 0 in bit position Dq. 

	SRL 
	r or m 
	Shift bits right through CY in a register or memory and in 


sert 0 in bit position D7. 
The set also includes the instructions SRA, RLD, and RRD. (See Appendix A for their complete description.) 
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General Characteristics 
1. In these instructions, the memory address can be specified either by using the HL register or an index register with an offset. 
2. Flags S, Z, and P/V are modified according to data conditions. The CY flag is determined by D7 in left rotation (or shift) and by Do in right rotation (or shift). 
3. The Shift instructions (SLA and SRA) differ from the rotate instructions in their operations. In Shift instructions, bits are shifted into the next position and Os are inserted from the other direction. (See Appendix A for complete discription of these instructions.) 
Example In a Key Monitor program, register B is used to store binary codes of data keys of the Hex 
^  keyboard. When a key is pressed, the accumulator receives the 4-bit binary code, and it is 
stored as the low-order four bits in register B. When a new key is pressed, the previous 4-bit code in register B is shifted to the left and the new key code is stored as the low-order four bits. Write instructions to store a new key code in register B. 
Solution 
SLA B      ;Shift low-order key code to left SLA B      ;and clear bit positions D3-D0 in B SLA B SLA B 
OR B      ;Store new key code as low-order bits LD B, A 
9.23  Bit Manipulation 
The bit manipulation group has three types of instructions: Bit Test, Bit Set, and Bit Reset. These instructions can test, set, or reset a bit in a register or memory. The instructions are as follows: 
Opcode BIT 
SET RES 
Operand 
b, r or m 
b, r or m b, r or m 
Description 
Test bit b in register or memory. If bit is 0, set Z flag, and 
if it is 1, reset Z flag. 
Set bit b in register or memory. 
Reset bit b in register or memory. 
General Characteristics 
1. The operand "b" represents any bit from D7 to Do; it is specified as a number between 0 and 7. 
2. The memory address can be specified by using either the HL register or an index register. 
3. The Set/Reset instructions do not affect any flags. 
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Write instructions to read a byte from PORTl, reset bit Dy and store the reading in memory 
INBUF. 
Example 9.7 
Solution 
IN A, (PORTl) 
RES 7, A 
LD (INBUF), A 
;Read PORTl ;Eliminate the parity bit ;Store reading in memory 
To cite a practical use for these instructions, bit D7 is used to indicate the parity in ASCII characters; therefore, to process these characters, bit D7 must be eliminated (this will be discussed in Chapter 15). 
This program searches for a maximum number in a given set of data bytes stored in memory. It compares two numbers at a time, saves the higher number, and continues the process until the end of the data set. 
9.31 Problem Statement 
A set of ten readings is stored in memory locations starting from INBUF. Write a program to find the highest reading in the set, and store that reading in memory OUTBUF. 
9.32 Problem Analysis 
1. Initialization: In this problem, we need one counter to count ten readings and a memory pointer for the INBUF memory. In addition, we need one register and the accumulator for comparison. 
2. Data Processing: This block involves comparing two numbers and saving the larger one for the next comparison. This process is continued until the counter is zero. 
ILLUSTRATIVE PROGRAM 1: SEARCHING FOR A 
MAXIMUM NUMBER 
9.3 
9.33 Program 
START: 
XOR A LD B, OAH LD HL, INBUF CP (HL) JP NC, SKIP LD A, (HL) INC HL DEC B 
JP NZ, NEXT 
;Begin with minimum reading (00) 
;Set up register B as a counter 
;Set up HL as memory pointer for INBUF 
;Compare memory reading with accumulator 
;If reading is lower, do not save 
;Save reading 
;Point to next memory location 
;One comparison complete, decrement count 
;Get next reading if counter i= 0 
NEXT: 
SKIP: 
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LD HL, OUTBUF      ;Set up HL as memory pointer for OUTBUF LD (HL), A ;Save the highest reading 
HALT ;End of program 
9.34  Program Description 
In this program, the new concept is a comparison of two numbers; otherwise, the remaining program is similar to the programs in the previous chapter. 
This program begins by clearing the accumulator and then compares the reading in memory INBUF with the accumulator. If the data byte in the accumulator (A) is larger than the data byte in memory (HL), the CY flag is reset, and the program does not save the byte. If the data byte in memory is larger than (A), the CY flag is set, and the byte is saved for the next comparison. This process is continued until all the readings are compared. 
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        ILLUSTRATIVE PROGRAM 2: GENERATING SQUARE WAVE PULSES 
The microprocessor can be used as a function generator to produce various types of waveforms using time delays and appropriate hardware. This program generates a square wave for a given frequency by turning a bit of an output port on or off at the specified time interval. 
9.41 Problem Statement 
Write a program to generate a square wave with period of .500 |xs if the system frequency is 2 MHz. Use bit Do of the output port PORTl to display the waveform. 
9.42 Problem Analysis 
This problem is somewhat different from the previous data transfer or arithmetic programs. It involves turning bit Do on or off every 250 ]is; Figure 9.6 shows the flowchart. 
The initialization block is simple; it includes the loading of bit pattern into the accumulator, but does not even require a counter or a memory pointer. The bit manipulation block is similar to the data processing block; it gets ready appropriate bits for an output, and the output block turns bit Do on or off. The time delay block provides appropriate delay for the output pulse. 
TIME DELAYS 
A time delay is generated by loading a general-purpose register with an appropriate count and setting up a loop to decrement the count until it reaches zero. The delay is determined by the clock period of the system, the number of instructions in the loop, and the number of times the loop is repeated. A typical set of instructions representing the time delay is shown here, and Figure 9.7 shows the flowchart for these instructions. 
(   Start ) 
Load Bit Pattern 
Get Bit Pattern Bit Manipulation 
Output to Turn On/Off Pulse 
Delay Loop 
Go Back to Change Pulse 
FIGURE 9.6 
Flowchart: Square Wave Generation 
Load Delay Count in Register 
No 
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        FIGURE 9.7 
Flowchart: Time Delay 
Mnemonics T-states Comments 
LD B, 64H 7 ;Delay Count 
LOOP:DEC B 4 ;Delay Loop 
JP NZ, LOOP 10 
To calculate the time delay in this loop, we need to examine the T-states in the loop; one T-state is equivalent to one clock period of the system. For example, the instruction DEC B has four T-states, so the Z80 executes the instruction in four clock periods. The loop includes two instructions with 14 T-states, and the loop is repeated 100 (64h = 100) times; the first instruction LD B, 64H is not part of the loop. Therefore, the loop delay, Tl, is calculated by the formula Tl = (Tc x Lr x Nio). In our example. 
Tc = System clock period (f = 2 MHz; T = 1/f = Lt = Loop T-states (14) Nio = Count in decimal (64h = 100) Tl = (0.5 X 10-^ X 14 X 100) = 700 (JLS. 
0.5 |JLs) 
To calculate the total delay, we need to include the execution time outside the loop. In this example, one instruction (LD B, 64H) is outside the loop. It has seven T-states and will require 3.5 |xs. 
Total Delay Td = To + Tl 
where To = Delay outside the loop Tl. = Loop delay Td = 700 |.is + .3-5 |xs = 703.5 |xs 
In most applications, the delay outside the loop is insignificant and can be ignored. However, in our illustrative program, the delay outside the loop is quite significant, as discussed in Section 9.44. We can now write the program for generating square wave. 
	9.43 Program 
	
	

	Mnemonics 
	T-states 
	Comments 

	1.    START: LD C, OlOlOlOlB 
	
	;Load bit pattern 

	2. ROTATE: LD A, C 
	(4) 
	;Place bit pattern in A 

	3. RLCA 
	(4) 
	;Change bit pattern for next 

	
	
	output 

	4.              LD C, A 
	(4) 
	;Save bit pattern 

	5.              AND OIH 
	(7) 
	;Mask bits D7-D1 

	6.              OUT (PORTD.A 
	(11) 
	;Change pulse voltage 

	7.               LD B, COUNT 
	(7) 
	;Load register B with a delay 

	
	
	count 

	8.     LOOP: DEC B 
	(4) 
	;Set up delay loop 

	9.               JP NZ, LOOP 
	(10) 
	

	10.               JP ROTATE 
	(10) 
	;Go back to change pulse 


voltage 
9.44  Program Description 
The bit pattern is selected for this program in such way that when it is rotated, it provides logic 0 and 1 alternately at bit Dq. The bit pattern is masked by ANDing with the byte 01 to eliminate bits D7-D1. Bit Do is turned on and off at the interval of 250 |xs to generate a square wave with the period of 500 (jls. In this program, we are concerned with the delay between two consecutive outputs and not just the delay in the loop. The loop count for the total delay of 250 jjls is calculated as follows: 
1. The delay loop consists of two instructions (8 and 9) with a total of 14 T-states; however, the number of times the loop is repeated (COUNT) needs to be calculated. 
Delay in the loop Tl = (0.5 x 10^^ X 14 x Count) = 7 X lO""^ X Count 
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2. In this problem, we are concerned with not just the delay in the loop, but how long the pulse stays on. After the execution of the OUT instruction (6), all the delay caused by the instructions in addition to the delay loop should be accounted for until the OUT instruction is executed again. The instructions that are executed once are 2 through 7 and 10. Therefore, 
T-states outside the loop =47. 
Delay outside the loopTo = (0.5 x 10"^ x 47) = 23.5 [xs 
3. Total delay To = To + Tl 
250 |xs = 23.5 + 7 X 10~^ X Count Count = (250 - 23.5)/7 « 32 
In this program, the delay outside the loop is quite significant, ten percent of the total delay. The loop will be repeated 32 (20h) times. 
DEBUGGING PROGRAMS 
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        The debugging techniques discussed in the previous chapter can be used to check errors in programs similar to those discussed in this chapter. Common sources of enors in these types of programs are as follows: 
1. Failure to update a memory pointer or a counter. 
2. Failure to set a flag before using a conditional Jump instruction. This is especially true with 16-bit increment/decrement instructions. 
3. Failure to save partial results. 
4. Specifying Jump instruction on a wrong flag. This error occurs frequently with the Compare instructions. 
5. Use of wrong Rotate instruction or improper combination of Rotate instructions. 
6. Enors in counting T-states in a delay loop. Typically, the first instruction—to load a delay register—^is mistakenly included in the loop. 
7. Errors in recognizing how many times a loop is repeated. 
8. Failure to convert a delay count from a decimal number into its hexadecimal equivalent or vice versa. 
9. Conversion error from decimal to hexadecimal number or vice versa. 
10. Specifying wrong jump location, thus possibly setting up an infinite loop. 
9.51   Illustrative Program for Debugging 
The following program is designed as a Hex counter to 
1. Count from 00 to 20h continuously. 
2. Provide 450 ms delay between two consecutive counts. 
3. Illustrate the loop within the loop technique. The inner loop LOOPl provides 2.25 ms of delay. 
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The program includes several errors. Recognize the errors by answering the questions below. After correcting those errors, execute the program. If the program still does not give you the expected output, debug the program using the single-step and the break point techniques. For delay calculations, the system's clock is assumed to be 2 MHz. 
	
	Mnemonics 
	T-states 
	Comments 

	1. 
	START: LD A, OOH 
	
	;Load initial count 

	2. 
	DSPLAY: OUT (PORTl), A 
	(11) 
	;Display count 

	3. 
	LOOP2: LD B, C7H 
	(7) 
	;Load count for outer loop 

	4. 
	LD C, COUNT 1 
	(7) 
	;Load count for inner loop 

	5. 
	LOOP!: DEC C 
	(4) 
	;Decrement COUNT 1 

	6. 
	NOP 
	(4) 
	;Add T-states for delay 

	7. 
	JP NZ, LOOPl 
	(10) 
	;Repeat LOOPl until C = 0 

	8. 
	DEC B 
	(4) 
	;Decrement count in outer loop 

	9. 
	JP Z, LOOP2 
	(10) 
	;Repeat L00P2 until B = 0 

	10. 
	INC A 
	(4) 
	;Next Hex count 

	11. 
	CP 20H 
	(7) 
	;Is Hex count = 20h? 

	12. 
	JP NC, DSPLAY 
	(10) 
	;Go back to display count 

	13. 
	JP DSPLAY 
	
	;Start again 


DEBUGGING QUESTIONS 
1. Is the jump location for instruction 7 appropriate? 
2. The COUNTl for LOOPl is as follows: 
Til = Tc X (T-states) x COUNTl 2.2.5 ms = 0..5 ixs x 25 x COUNTl COUNTl = 180 
Find the error in the calculations, and recalculate COUNTl. 
3. The total delay (T) between two consecutive outputs is the sum of the initial delay (T|), the outer loop delay (Tql), and the inner loop delay (Tu). The inner loop (LOOPl) is repeated 199 (C7h) times because of the outer loop. Thus: 
Tu = 199 x 2.2-5 ms = 447.75ms 
The instructions in the outer loop are 3, 4, 8, and 9, which require a total of 28 T-states. Since these instructions are repeated 199 times: 
ToL = (0.5 |xs) X 28 X 199 = 2.78 ms 
The instructions executed once before the next display are 2, 3,10,11, and 12— a total of 39 T-states. 
Tj = 0.5 |xs X 39 = 19 |xs Is there any error in these calculations, assuming the appropriate COUNTl? 
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4. Is the jump location for instruction 9 appropriate? What is the effect of the present location on LOOP2? 
5. Execute the program, and obsei-ve the output. Write your educated guesses about the output. 
6. Set up a breakpoint after instruction 8 and execute the program. Examine the registers. 
7. Single-step the remaining instructions and examine the contents of registers if necessary. Explain your observations. 
8. Correct the enors and run the program again. 
Z80 SPECIAL INSTRUCTIONS 
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        In this section, we introduce additional Z80 special instructions. The Z80 has Compare instructions that are capable of searching for a given byte in memory; some instructions can search through 64K bytes of memory. 
Instructions 
CPI Compare and Increment 
This instruction compares the contents of the memory location specified by register HL with the contents of the accumulator. Register HL is incremented and register BC is decremented. 
CPIR       Compare, Increment, and Repeat 
This instruction is similar to the previous instruction CPI, except that the instruction is repeated until BC = 0 or the contents of memory are equal to the contents of the accumulator. 
CPD        Compare and Decrement 
This instruction compares the contents of the memory location specified by register HL with the contents of the accumulator. Registers HL and BC are decremented. 
CPDR      Compare, Decrement, and Repeat 
This instruction is similar to the previous instruction CPD, except that the instruction is repeated until BC = 0 or the contents of memory are equal to the contents of the accumulator. 
General Characteristics 
1. These are 2-byte instructions. 
2. The Zero (Z) flag is set when a match is found, meaning the memory byte is the same as the accumulator byte. 
3. The Sign (S) flag is set if the memory byte is larger than the accumulator byte. 
4. The Parity/Overflow (P/V) flag is reset when BC = 0. 
5. The Carry flag is not affected. 
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Example 9.8 
The input buffer memory (INBUF) contains 256 bytes of data. Search for the byte (character) 24H in the input buffer. If it is found, jump to location START; otherwise, jump to location ERROR. 
Solution 
LD HL, INBUF LD EC, OlOOH LD A, 24H CPIR 
JR Z, START JR ERROR 
;Set up HL as memory pointer ;Set up EC as a counter ;Load the byte to be searched ;Search for 24H in the input buffer ;Character found, start the process ;Display error message 
The instruction CPIR will be repeated until it finds the character 24h. When it finds the character, the Z flag is set, the loop is terminated, and the program jumps to location START. If there is no match, the instruction is repeated until EC = 0, and the P/V flag is reset. This flag can be used for decision making if necessary. (The P/V flag is not used in this example.) 

        
        [image: Picture #101]
        

        ILLUSTRATIVE PROGRAM 3: SEARCHING FOR A MAXIMUM NUMBER USING THE INSTRUCTION CPI 
This program searches for a maximum number in a given set of data bytes stored in memory; this is similar to Illustrative Program 1 in Section 9.3. It compares two numbers at a time using the instruction CPI and saves the higher number, and the process is continued until the end of the data set. 
9.71 Problem Statement 
A set of ten readings is stored in memory locations starting from INEUF. Write a program to find the highest reading in the set, and store that reading in memory OUTEUF. 
9.72 Problem Analysis 
1. Initialization: To use the multi-tasking instruction CPI (Compare and Increment), EC should be used as a 16-bit counter even if the number of readings is not higher than 2.5.5, and HL should be used as the memory pointer for the INEUF memory. 
2. Data Processing: This block involves comparing two numbers and saving the larger one for the next comparison. This process is continued until the counter is zero. 
9.73 Program 
START:   XOR A ;Begin with minimum reading (00) 
LD EC, 000AH ;Set up register E as a counter 
LD HL, INBUF ;Set up HL as memory pointer for INBUF 
NEXT: CPI 
SKIP:   JP PE, NEXT 
JP P, SKIP LD A, (HL) 
LD HL, OUTBUF LD (HL), A HALT 
;Compare memory reading with accumulator 
;If new reading is lower, do not save 
;Save this reading for next comparison 
;Get next reading if counter + 0 
;Set up HL as memory pointer for OUTBUF 
;Save the highest reading 
;End of program 
9.74  Program Description 
This program is similar to the program given in Section 9.3, except that it uses the instruction CPI, which eliminates the need to update the memory pointer and the counter. The other significant differences are in flags. The S flag is used to jump to location SKIP (JP P, SKIP) instead of the Carry flag (JP NC), and the P/V flag is used to go to location NEXT instead of the Z flag. These changes are necessary because the CPI instruction does not affect the Carry flag, and it sets the Z flag when a match is found in comparing two bytes. 
To compare two bytes, the instruction CPI subtracts the contents of the memory location pointed to by the HL register from the accumulator. If the number in the accumulator is smaller than the number in the memory location, it sets the S (Sign) flag to indicate the negative result; otherwise, it resets the S flag to indicate the positive result. The contents of the accumulator or memory are not affected in this comparison. The jump instructions associated with the Sign flags are JP M (Jump On Minus, S = 1) and JP P (Jump On Positive, S = 0). In our illustration, if the number in the accumulator is larger than the number in the memory location, S = 0, and the instruction JP P, SKIP does not save the new byte from memory. 
In this chapter, instructions related to logic (AND, OR, XOR) operations, compare operations, bit rotation, and bit manipulation were introduced. The chapter is concluded with the illustrations of Z80 special instructions related to compare operations. General characteristics of these instructions are as follow: 
1. Logic operations can be performed with the contents of the accumulator and the contents of a register, memory, or 8-bit data. The AND, OR, and XOR instructions reset the CY flag and modify other flags according to the result of an operation. 
2. A byte can be compared with the contents of the accumulator; the byte can be direct 8-bit data or from a register or memory. The Compare instructions perform the comparison by subtracting the byte from the accumulator, and the comparison is indicated by setting appropriate flags without affecting the contents. When (A) < the byte, the CY flag is set; when (A) = the byte, the Z flag is set, 
SUMMARY 
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and when (A) > the byte, the CY and Z flags are reset. All other flags are affected according to the result of the subtraction. 
3. The rotate instructions can rotate bits in the accumulator, register, or memory either left or right by one position. Bit rotations can be performed either for eight bits or for nine bits including the CY flag. In either rotation, the status of the CY flag is determined by D7 in the left rotation and by Do in the right rotation. 
4. The shift instructions can shift each bit in the accumulator, register, or memory either left or right by one position. When bits are shifted to the left, bit D7 is placed into the CY flag and 0 is inserted into bit Dq. When bits are shifted to the right, bit Do is placed into the CY flag and 0 is inserted into bit D7. 
5. Bit manipulation instructions can test, set, or reset any bit in a register or memory. 
Two applications programs—searching for a maximum number in a data set and generating a square wave—were illustrated. The square wave program also illustrated how to design time delays. Errors that commonly occur in writing these programs were listed, and debugging techniques were suggested in the context of a counter program. 
Finally, the Z80 special instructions related to block compare operations were illustrated. These Compare instructions can be used for searching a byte in memory. 
ASSIGNMENTS 
Section 9.1 
1. Write instructions to load 80h and 7Fh into registers B and C respectively. Logically AND the bytes and save the answer in memory INBUF. Specify the status of the S, Z, and CY flags after ANDing the bytes. 
2. If the bytes in 1 are ORed instead of ANDed, specify the contents of the accumulator and the flag statuses (S, Z, CY). 
3. Specify the contents of the accumulator and the flag statuses (S, Z, CY) after executing the instruction XOR A. 
4. Write instructions to read FORTl. If the reading is OOh, set the Z flag and jump back to read the port again. What is the reason to set the Z flag when the input reading is OOh? Specify a 1-byte logic instruction that can set the Z flag without affecting the input reading. 
5. In 4, is AND A an appropriate instruction to set the Z flag? Explain your answer. 
6. Write instructions to read the input port (INPORT) and mask bit Dy. 
7. Load bit pattern 97h into register D and mask high-order bits D7-D4. 
8. Write instructions to load BYTEl and BYTE2 into registers D and E respectively. Check bit Do in both bytes, and if either one is at logic 1, turn on the indicator connected to bit Do at the output port OUTl. 
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9.   Eight lights are connected to output port OUTl. These can be turned on from the corresponding switches from either of the input ports INPUT 1 or INPUT2. Write instructions to read INPUT 1 and INPUT2. If all the switches are off in both ports, continue to read the input ports. When a switch (or switches) is on in either port, turn on the corresponding light(s) at OUTl. 
10. Write instructions to load 37h into the accumulator and 6Fh into register B. Compare the two bytes and specify the statuses of the S, Z, and CY flags. 
11. When BYTE2 in register B is compared with BYTEl in the accumulator, the CY flag is reset. Explain the significance of the CY flag status. 
12. The following instructions read the switches S7-S0 from port INPUT 1 and Sy'-So' from port INPUT2. When a switch is ON, it provides logic 1 to the corresponding data line (for example, S7 to D7). The readings are processed and used for decision making. Read the instructions, and answer the questions following. 
START: LD HL, 2065H LD (HL), 80H READ: IN A, (INPUT!) LD B, A IN A, (INPUT2) AND B JP Z, READ LD B, A AND 80H CP (HL) JP Z, URGENT OUT (OUTl), A Continue— 
a. What is the output at OUTl when switches So, Si, S3', and S7' are turned ON? Explain your answer. 
b. Does the program jump to location URGENT when switches 87, 87', and 80 are ON, or does it go back to READ? 
c. Specify the output if switches 87, 85, S5, S|, So from INPUTl and 85', 84', S,', and So' from INPUT2 are ON. 
Section 9.2 
13. The accumulator contains the byte 11What is the byte in the accumulator and the CY flag status after the execution of the instruction RRCA? 
14. The accumulator contains the data byte CIh, and the CY flag is 0. Specify the contents of the accumulator and the status of the CY flag if the instruction RLCA is executed twice. 
15. In 14, specify the contents of the accumulator and the status of the CY flag if the instruction RLA is used instead of the instruction RLCA. 
16. What is in the accumulator and the CY flag after the execution of the following instructions? 
LD A, F3H 
OR A 
RLA 
RRCA 
17.   Register B holds the byte 3Fh, representing the values of two Hex keys, 3 and F. The accumulator holds 02h, representing a new key. Specify the contents of register B after the execution of the following instructions and explain the function of the instruction OR A. 
18. Write instructions using the masking technique and four RLCA instructions to perform the same shift function as in 17. 
19. Write instructions to shift high-order bits D7-D4 of the byte in the accumulator into low-order position D3-D0, and multiply the bits by eight. 
20. In 19, mask the low-order bits D3-D0 and shift the remaining bits to the right by one position. Is the result the same as in 19? 
21. Mask the high-order bits D7-D4 of the accumulator and add the remaining bits D3-D0 four times using the instruction ADD A, A. Explain the result. 
22. Can you achieve the same result as in 21 by using the shift instruction? 
23. Write instructions to reset the bit D7 in the accumulator and check whether the number is odd. If it is odd, jump to the REJECT routine; otherwise continue. 
24. Write instructions to check bits D7 and Dq in the acumulator, and if both bits are high, jump to the URGNCY routine. 
Section 9.3 
25. Rewrite Illustrative Program 1 (Section 9.3) to find the minimum number in a given data set. 
Data (H) 32, F8, 6A, 47, IF, AF, 97, 20, 2F, C2 
26. A set of ten readings is stored in memory DATA. Write a program to check whether the byte 30h exists in the set. If it does, stop checking, and display its memory location; otherwise output FFH. 
Data (H) 48, 8F, C7, 68, 9F, 9C, 30, 33, B8, D9 
27. A set of ten readings, representing the power consumption in watts of each 
SHIFT:   OR A 
RLA 
DEC C 
JP NZ, SHIFT OR L LD B, A 
LD L, A LD C, 04H LD A, B 
;Save new key in register L 
;Set up C as a counter 
;Get previous two keys 
;The next four instructions shift low-order 
;four bits of register B (now in A) into high
;order positions D7-D4 and clear D3-D0 
;Place bits of new key into D3-D0 ;Save key bits in B 
house in the area, is stored in memory INBUF. The limit on consumption per house is set at 200lo watts. Check each reading and count all the readings that exceed the limit and display the number. Data (H) A9, B3, 98, C8, C7, F5, C8, 89, D2, E7 
28. A set of eight cunent readings is stored in memory INBUF. The readings are expected to be positive (<128io). Write a program to check each reading, reject the negative readings, and add the positive readings. Display the answer at the output port or store it in the output buffer memory OUTBUF. 
Data (H) 74, 6F, Al, 7F, 76, 87, 5B, 8C 
29. In 28, modify the program to add the positive readings until the sum exceeds FFH. If the addition generates a carry, stop the addition and display OIH at the output port; otherwise, display the sum. 
Data (H) 27, Al, 2A, IF, 38, 81, 19, 9A Data (H) 87, 22, 5F, 3A, 47, 52, 35, 81 
30. A data string is stored in memory INBUF, and the end of data string is indicated by the data byte OOh. Copy the data string into new memory OUTBUF. 
Data (H) 67, 89, 7F, F5, C8, 9A, 4B, 00, F8, F8 
Section 9.4 
31. Calculate the period of the square wave in Illustrative Program 2 if the COUNT in the delay loop is changed to 44h. 
32. Write a program to generate a square wave with the period of 750 |xs. Use bit Dy to output the square wave. 
33. Write a program to generate a rectangular wave with a 300 |jls on-period and 500 (IS off-period. 
34. In the following instructions, calculate the delay in LOOP2, LOOPl (exclusive of LOOP2), and the total delay if the system clock is 4 MHz. 
	Instructions 
	T-states 

	START: 
	LD B,64H 
	7 

	LOOPl: 
	LD C, FAH 
	7 

	L00P2: 
	NOP 
	4 

	
	NOP 
	4 

	
	DEC C 
	4 

	
	JP NZ, L00P2 
	10 

	
	DEC B 
	4 

	
	JP NZ, LOOPl 
	10 


35.   The following instructions use two memory locations MEMl and MEMl + 1 as counters to set up delay loops. Calculate the delay in LOOPl, L00P2 (exclusive of LOOPl), and the total delay (clock period = 0.5 jjls). 
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Instructions 
T-states 
Comments 
START 
LOOPl 
L00P2 
LD HL, MEMl 
LD (HL), 32H 
INC HL 
LD (HL), F8H 
DEC (HL) 
JP NZ, L00P2 
DEC HL 
JP NZ, LOOPl 
6 10 11 10 
6 10 
;Set up HL as memory pointer 
;Load MEMl with count for LOOPl 
;Point to MEMl + 1 
;Load count for L00P2 
;Begin LOOP2 
;Go back if MEMl + 1+0 
;Point to MEMl 
;Go back if MEMl ¥= 0 
Section 9.5 
36.   The following program checks eight numbers stored in memory INBUF, rejects the negative numbers, and adds the positive numbers. If the sum generates a carry, it displays OIh for an overload condition; otherwise, it displays the sum. However, it appears that the program works only for certain data sets. Debug the program and execute it for the given three data sets. After debugging the program, when it works for Set 2, make sure that it also works for Set 3. 
Set 1 (H) 77, 8F, 68, 32, 47, 92, 89, 6C Set 2 (H) .32, 10, 2A, 8A, A2, B.5, 22, 15 Set 3 (H) 87, 2C, 19, 22, CF, F2, 41, D3 
Expected Output: OIh Expected Output: A3h Expected Output: A8h 
PROGRAM 
START: 
NEXT: 
REJECT: 
OVRLOD: 
LD HL, INBUF LD C, 08H LD B,OOH LD A, (HL) RLA 
JP C, REJECT 
RRCA 
ADD A, B 
JP C, OVRLOD 
LD B, A 
INC HL 
DEC C 
JP NZ, NEXT 
OUT (PORTl), A HALT LD A, OIH OUT (PORTl), A HALT 
;Set up HL as memory pointer 
;Set up register C as a counter 
;Clear B to save partial results 
;Get the byte 
;Place D7 in CY 
;If D7 = 1, reject number 
;If number is positive, restore it 
;Add the previous sum 
;If sum > FFH, it is overload 
;Save the sum 
;Point to the next number 
;Update counter 
;If all numbers are not checked, 
go back and get the next number ;Display the sum ;End 
;Load overload indicator ;Display overload signal ;End 
LOGIC AND BIT MANIPULATION INSTRUCTIONS 
Sections 9.6 and 9.7 
37. Write a program to transfer a block of data from memory INBUF to new memory locations OUTBUF. The end of the data string is indicated by OOh- The suggested Z80 special instructions to be used are LDI (Load and Increment) and JR (Jump Relative). 
38. Rewrite Illustrative Program 3 to find the minimum number in a given data set of ten readings. 
Stacks and Subroutines 
The stack is a group of memory locations in a system's R/W memory that is used to store register contents and memory addresses temporarily during the execution of a program. The starting location of the stack is defined by loading a 16-bit address into the stack pointer, and space is reserved, usually at the high end of the memory map. This method of information storage resembles the process of stacking books, one above another, so that information is always retrieved from the top of the stack; hence, the particular group of memory locations is called the stack. In this chapter, the processes of information storage into the stack and retrieval from the stack and associated instructions are introduced. An illustrative program demonstrates how to use these instructions to examine ana manipulate the flags. 
The latter part of the chapter deals with the subroutine technique. A subroutine is a group of instructions that performs a subtask (for example, time delay) that is required repeatedly in a program. The subroutine is written as a separate unit, apart from the main program, and can be called whenever it is necessary. When a main program calls a subroutine, the program execution is transferred to the subroutine, and after the completion of the subroutine, the program execution returns to the main program. The microprocessor uses the stack to store the return address. 

        
        [image: Picture #102]
        

        The subroutine and the stack offer a great deal of flexibility in writing programs. The subroutine technique eliminates the need to repeat the instructions for a subtask; thus, memory is used efficiently and programs can be written concisely. The use of a stack can provide a practically unlimited number of microprocessor registers. When a subroutine is written, the contents of the registers being used by the calling program can be stored on the stack, and the registers can be reused in the subroutine to perform 
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the subtask. At the end of the routine, the register contents of the calling program can be retrieved. The illustrative program, Traffic Signal Controller, demonstrates the use of the subroutine technique. 
In the industrial environment, a large software project is generally divided into subtasks called modules. These modules can be developed and 
OBJECTIVES 
□ Define the stack and initialize it at a given memory location using the stack pointer (register). 
□ Explain how information is stored and retrieved from the stack using the instructions PUSH and POP and the stack pointer (register). 
□ Demonstrate how the contents of the flag register can be examined and how a given flag can be set or reset. 
□ Define the subroutine and explain its uses. 
□ Explain the sequence of program execution when a subroutine is called and executed. 
□ Explain how information is exchanged between 
tested independently as subroutines by different programmers. This modular approach to software design provides flexibility and ease in writing programs. The modular approach is demonstrated by designing a BCD counter and its seven-segment display, and techniques are suggested for debugging modular programs. 
the program counter and the stack, and identify the contents of the stack pointer (register) when the CALL and RET (Return) instructions are executed. 
□ Write a subroutine for a given task. 
□ List and explain conditional Call and Return instructions. 
□ Explain multiple call, nested, and multiple ending subroutines. 
□ Explain the modular programming technique and demonstrate the technique by writing a program. 
STACK 
The stack is a group of memory locations in R/W memory, defined by loading a memory address into the stack pointer (register).* The stack is used to store binary information temporarily during the execution of a program. Theoretically, the size of the stack is unlimited, restricted only by the available R/W memory in a microcomputer system. 
In Z80 systems, the beginning of the stack is defined in the program by using the instruction LD SP, 16-bit (Load Stack Pointer), which loads the 16-bit address into the stack pointer (register). The contents of register pairs (BC, HL, for example, but not just a single register) can be stored in two consecutive stack memory locations by using the instruction PUSH and can be retrieved from the stack into register pairs by using the instruction POP. The microprocessor keeps track of the stack by incrementing or decrementing the address in the stack pointer (register). The address in the stack pointer (register) always points to the top of the stack and indicates that the next memory location (SP -1) is available to store information. 
Once the stack pointer is loaded with a 16-bit address—for example, 2099h—the storing of information begins at the next location SP -1 (2098h) in the decreasing order. The contents of a register pair are stored at SP-1 and SP-2 (2098h and 2097h), and the 
■''Initially, we are using the term stack pointer (register) to emphasize the difference between the stack as memory and the stack pointer as a 16-bit register 
Stack pointer is decremented by two from 2099h to 2097h. The storing of information can continue in the reversed numerical order (decreasing memory addresses). Therefore, as a general practice, the stack is initialized at the highest possible memory location to prevent the user program from being destroyed by the stack information. The process of information retrieval from the stack is opposite to the storing process; it begins at the location pointed to by the stack pointer whenever a POP instruction is executed, and the stack pointer is incremented twice. This process will be further clarified in Example 10.1. 
The stack is shared by the programmer and the microprocessor to store information. The programmer can store and retrieve the contents of register pairs by using PUSH and POP instructions. Similarly, the microprocessor can automatically store and retrieve the contents of the program counter when a subroutine is called (discussed later in the chapter). 
10.11  Stack Instructions 
The instructions used to store and retrieve information to and from the stack are listed here. 
Opcode       Operand Description 
LD SP, 16-bit       Load 16-bit address into the stack pointer register. This is 
a load instruction, similar to other 16-bit load instructions discussed previously. 
	PUSH 
	rp 
	This is a 1- or 2-byte instruction and copies the contents 

	PUSH 
	rx 
	of the specified register pair or index register onto the 

	
	
	stack as described below. Instructions for four register pairs 

	
	
	and index registers are listed here. 

	PUSH 
	AF 
	The instruction first decrements the stack pointer (regis

	PUSH 
	BC 
	ter) and copies the high-order byte of the register pair or 

	PUSH 
	DE 
	the index register on the stack location SP — 1. 

	PUSH 
	HL 
	Then it again decrements the stack pointer and copies the 

	PUSH 
	IX 
	low-order byte of the register pair or the index register 

	PUSH 
	lY 
	onto the stack location SP -2. 

	POP 
	rp 
	This is a 1- or 2-byte instruction and copies the contents 

	POP 
	rx 
	of the top two locations of the stack into the specified 

	
	
	register pair. 

	POP 
	AF 
	First, the instruction copies the contents of the stack 

	POP 
	BC 
	pointed to by SP into the low-order register (for example. 

	POP 
	DE 
	register C of the BC pair) or as a low-order byte into the 

	POP 
	HL 
	index register and then increments the stack pointer to 

	POP 
	IX 
	SP +1. 

	POP 
	lY 
	It copies the contents of the SP -1- 1 location into the 


high-order register (for example, register B of the BC pair) or as a high-order byte into the index register and increments the stack pointer to SP -I- 2. 
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The Z80 instruction set includes six PUSH and six POP instructions associated with six register pairs (AF, BC, DE, HL, IX, and lY), and these instructions belong to the data copy group; thus, the contents of the stack (source) are not modified, and no flags are affected, but the stack pointer is adjusted according to the instructions. 
Example The R/W Memory of the system ranges from 2000h to 23FFh. A program is stored in 
10-1 memory locations from 2000h to 2055h, and the stack is initialized at the location 2400h. 
Two segments of the program are shown below. 
1. Explain why the stack is initialized at 2400h when, in fact, the R/W memory extends up to 2.3FFh
2. Explain the data transfer between the registers and the stack when PUSH and POP instructions are executed. 
3. Modify the instructions to exchange the contents of BC and HL when the contents are retrieved from the stack. 
PROGRAM 
2000 LD SP, 2400H 
2003 LD HL, 22A2H 
2006 LDBC, 2110H 
2009 LD A, (HL) 
200A OR A 200B 
2010 PUSH BC 
2011 PUSH HL 
2012 PUSHAF 
203.5      POP AF 
2036 POP HL 
2037 POP BC 
20.5.5 
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1. Because the stack pointer is initialized at 2400h, tlie first available stack memory Solution location for storage is 23FFh; the location 2400h will never be used to store information with a PUSH instmction. This is an efficient way of using R/W memory. 
2. The first three instructions load the contents as shown in Figure 10.1. The instruction at location 201 OH (PUSH BC) decrements the stack pointer to SP-1 and stores the contents of B (21h) in location 23FFH. It then decrements the stack pointer to SP-2 (23FEh) and stores the contents of C (IOh) in the location 23FEh. Figure 10.2 shows 
FIGURE 10.1 A 
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FIGURE 10.2 
Contents of Stack Pointer and Stack After Execution of PUSH Instiuctions 
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Stack Pointer 
Contents After Memory Memory 
Each Pop Instruction Addresses Contents 
Initial 
23FA 
23FC 
23FE 
I     2400 "I 
POP AF 
POP HL 
POP BC 
	23FA 
	Flags 

	23FB 
	(A) 

	23FC 
	A2 

	23FD 
	22 

	23FE 
	10 

	23FF 
	21 

	2400 
	


Register Contents After POP Instructions 
POP AF - A 
POP HL -» H 
POP BC - B 
(A) 
22 
21 
Flags 
A2 
10 
FIGURE 10.3 
Register Contents After Execution of POP Instructions 
the stack contents after the execution of three PUSH instructions; the stack pointer is at location 23FAh. 
3. Figure 10.3 shows how the contents are retrieved to their respective registers by POP instructions in the Last-In-First-Out (LIFO) sequence. By examining the sequence of PUSH and POP instructions, you may notice that the contents are placed on the stack in BC, HL, and AF sequence and retrieved in reversed order: AF, HL, and BC. This retrieval sequence is necessary to retrieve the original register contents. 
The last two bytes placed on the stack by the instruction PUSH AF are on the top of the stack, and the stack pointer points to the top location (23FAh). The instruction POP AF places the contents of the top location into the flag register, increments the stack pointer to 23FBh, places the contents of 23FBh into the accumulator, and again increments the stack pointer to 23FCh- The process is repeated for the next two POP instructions, and the stack pointer returns to its original address, 2400h. 
4. To exchange the contents of BC and HL registers during the retrieval of information from the stack is a simple task that can be accomplished by exchanging the positions of POP BC with the POP HL in the program. The critical aspect to remember about the POP instructions is that they copy the top of the stack into the specified register pair irrespective of how the bytes were stored on the stack. 
10.12  Review of Important Concepts 
The following points can be summarized from the above example: 
1. Memory locations in R/W Memory can be employed as temporary storage during the execution of a program by loading a 16-bit address (initializing) into the stack pointer (register). The contents of register pairs can be stored beginning from the next location (SP- 1). 
2. The stack space grows upward in the numerically decreasing order of memory addresses. 
3. The stack can be initialized anywhere in the user memory map. However, as a general 
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practice, the stack is initialized at the highest user memory location so that it will be less likely to interfere with a program. 
4. The PUSH instructions are used to store contents of register pairs on the stack, and the POP instructions are used to retrieve the information from the stack. The address in the stack pointer (register) always points to the top of the stack, and the address is decremented or incremented as information is stored or retrieved, respectively. 
5. The storage and retrieval of data bytes on the stack should follow the LIFO (LastIn-First-Out) sequence. 
6. Information in the stack locations is not destroyed until new information is stored in those locations. 
10.13  Additional Instructions: Exchange 
The Z80 includes an alternate set of registers, and these registers can be used to store the contents of general-purpose registers, the accumulator, and the flags. The contents can be saved by using Exchange instructions. The alternate registers serve a function similar to that of the stack. The following list also includes exchange instructions that exchange contents between an index register or the HL register and the stack. 
Instruction Description 
EXX Exchange the contents of general-purpose registers (BC, DE, HL) 
with the contents of their corresponding alternate registers. 
EX AF, AF'       Exchange contents of the accumulator and the flag register with the contents of the corresponding alternate registers. 
EX (SP), IX       Exchange the contents of an index register or HL register with the 
EX (SP), lY contents of the two top locations of the stack. 
EX (SP), HL 
EX DE, HL       Exchange the contents of the DE register with the contents of HL register. 
General Characteristics 
1. These are 1-byte instructions (except instructions EX (SP), IX and EX (SP), lY) and are similar to copy instructions, except that the copying is performed both ways—from the source to destination and vice versa. 
2. These instructions do not affect the flags. 
3. The Exchange instructions related to the alternate registers can be used in place of PUSH and POP instructions for efficient execution. 
ILLUSTRATIVE PROGRAM 1: EXAMINING AND 
MANIPULATING FLAGS 
10.2 
The following program demonstrates that the flags can be examined and manipulated if necessary. The program clears all the flags and shows that the increment instruction does not set the CY flag but does affect the other flags. 
10.21 Problem Statement 
Write a program to perform the following functions: 
1. Clear the accumulator and all the flags. 
2. Load FFh into the accumulator, increment the contents of the accumulator, and display how the S, Z, and CY flags are affected by the increment instruction. 
10.22 Problem Analysis 
The problem is concerned with clearing the flags and examining the flags after the increment instructions. There are no instructions in the set that can change the contents of the flag register directly. However, the flags can be examined and modified by storing the flags on the stack and retrieving them in any one of the general-purpose registers. 
10.23 Program 
START: LD SP, STACK initialize the stack 
LD DE, OOOOH ;Load register DE with 00 to clear A and F registers 
PUSH DE ;Place (DE) on stack 
POP AF ;Clear accumulator and flags 
LD A, FFH ;Load the given byte in A 
INC A ;Increase (A) beyond FFH 
PUSH AF ;Place flags on stack 
POP DE ;Retrieve flags in register E 
LD A, E AND 1100000 IB OUT (PORTl), A HALT 
Mask all flags except S, Z, and CY Display flags End of program 
10.24   Program Description 
After initializing the stack, register DE is cleared and the contents of DE placed on the stack. Assuming the stack is initialized at 2099h, the instruction PUSH DE clears the locations 2098h and 2097h, and the stack pointer points to 2097h. The next instruction POP AF copies the top of the stack into the flag register and clears the accumulator and the flags. (In this problem, we are not particularly interested in the contents of registers D and A.) 
After loading the byte FFh into the accumulator and incrementing it, the flags are placed on the stack and retrieved in register E. The masking instruction saves the status of S, Z, and CY flags and eliminates the others. The increment instruction increases the accumulator contents to 00; however, it does not affect the CY flag. Therefore, the output will be 40h, indicating Z flag set and S and CY reset as shown: 
S Z H       P/V N CY 
Flags              O 1   0 0 0     1 0 0 AND 
Masking             1 1   0 0 0    0 0    1 (CIh) 
^y'^               0 10 0 0    0 0    0 (40h) 
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SUBROUTINE 
10.3 
A subroutine is a group of instructions written separately from the main program to perform a function that can be used repeatedly in the main program. For example, if a time delay is required between three successive events, a time delay subroutine can be written once, instead of three times. The subroutine is written separately from the main program, and is called by the main program when needed. The subroutine technique enables an efficient use of memory. 
A subroutine is implemented with two associated instructions: Call (call a subroutine) and Return (return from the subroutine). The Call instruction is written in the main program (except in the nested subroutines) to call a subroutine, and the Return instruction is written in the subroutine to return to the main program. 
When a subroutine is called, the contents of the program counter, which is the address of the instruction following the Call instruction, are stored on the stack, and the program execution is transferred to the subroutine address. When the Return instruction is executed at the end of the subroutine, the memory address stored in the stack is retrieved and the sequence of execution is resumed in the main program. The procedure is demonstrated in Examples 10.2 and 10.3. 
10.31  Subroutine Instructions 
The Z80 microprocessor has two groups of instructions to implement the subroutine technique: unconditional and conditional. 
Opcode      Operand Description 
CALL       16-bit Call subroutine unconditionally located at the memory 
address specified by 16-bit operand. 
This instruction places the address of the next instruction on the stack and transfers the program execution to the subroutine address. 
Return unconditionally from the subroutine. 
This instruction locates the return address on the top of the stack and transfers the program execution back to the calling program. 
	RET 
	

	Conditional Call and Return 

	CALL 
	Z, 16-bit 

	CALL 
	NZ, 16-bit 

	CALL 
	C, 16-bit 

	CALL 
	NC, 16-bit 

	CALL 
	M, 16-bit 

	CALL 
	P, 16-bit 

	CALL 
	PE, 16-bit 

	CALL 
	PO, 16-bit 


Call subroutine if Z flag is set (Z = 1) 
Call subroutine if Z flag is reset (Z = 0) 
Call subroutine if CY flag is set (C = 1) 
Call subroutine if CY flag is reset (C = 0) 
Call (On Minus) if S flag is set (S = 1) 
Call (On Plus) if S flag is reset (S = 0) 
Call (On Parity Even) if P/V flag is set (P/V=l) 
Call (On Parity Odd) if P/V flag is reset (P/V=0) 
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	RET 
	Z 
	Return if Z flag is set (Z = 1) 

	RET 
	NZ 
	Return if Z flag is reset (Z = 0) 

	RET 
	C 
	Return if CY flag is set (C = 1) 

	RET 
	NC 
	Return if CY flag is reset (C = 0) 

	RET 
	M 
	Return (On Minus) if S flag is set (S = 1) 

	RET 
	P 
	Return (On Plus) if S flag is reset (S = 0) 

	RET 
	PE 
	Return (On Parity Even) if P/V flag is set (P/V = 

	RET 
	PO 
	Return (On Parity Odd) if P/V flag is reset (P/V = 


General Characteristics 
1. The Call instructions are 3-byte instructions; the second byte specifies the low-order byte and the third byte specifies the high-order byte of the subroutine address. 
2. The Return instructions are 1-byte instructions. 
3. A Call instruction must be used in conjunction with a Return instruction (conditional or unconditional) in the subroutine. 
The main program begins at 2000h and has a Call instruction at location 202.5h. The subroutine is located at 20.50h; it ends at location 206.5h with a Return instruction. Explain the flow of program execution. 
The Call instruction is a 3-byte instruction and is stored in locations 2025h, 2026h, and 2027h, and the subroutine is located from 2050h to 206.5h (Figure 10.4). 
Memory        Machine Mnemonics Address Code 
2025 CD CALL 2050H 

        
        [image: Picture #103]
        

        (Return) 
FIGURE 10.4 
Program Flow in Call Execution 
When the Z80 fetches the complete 3-byte instruction, the program counter holds 2028h, always one address ahead of the execution. When the instruction is decoded, the Z80 recognizes that it is a Call instruction. It places the contents of the program counter (2028h) onto the stack then transfers the program execution to location 2050h as shown in Figure 10.4. At the end of the subroutine, when the Z80 decodes the Return instruction, it retrieves the address (2028h) from the top of the stack and returns the execution back to the main program at 2028h. The Return instruction can be functionally interpreted as Jump to a memory location, the address of which is stored on the top of the stack; however, the Jump instruction would not increment the address in the stack pointer. 
Assuming the stack is initialized at 2099h, explain the machine cycles showing the bus and register contents during the execution of the CALL instruction in Example 10.2. 
The CALL instruction, located at 2025-27h, has five machine cycles with 17 T-states. Because it is a 3-byte instruction, the first three machine cycles are concerned with fetching or reading the three machine codes of the Call instruction. Before the program is transferred to the subroutine location, the Z80 writes the contents of the program counter onto the stack; thus, the remaining two machine cycles deal with Memory Write operations. The sequence of events in each machine cycle is as follows: 
1. Ml—Opcode Fetch: In this machine cycle, the contents of the program counter (2025h) are placed on the address bus; the program counter is incremented to 2026h, and the instruction code CD is fetched using the data bus. After the instruction is decoded and executed, the stack pointer is decremented by one to 2098h (see Figure 10.5). 
2. Ma and M3—Memory Read: These are two Memory Read operations during which the 16-bit address of the subroutine (2050h) is fetched. The low-order address (50h) is fetched during Mo and placed into the internal register Z. The high-order address (20h) is fetched during M3 and placed into register W. The program counter is incremented once each machine cycle, to 2027h and then to 2028h, pointing to the next instruction (Figure 10.5). 
3. M4 and M5—Storing of Program Counter: Because this is a Call instruction, the contents of the stack pointer (2098h) are placed onto the address bus in M4. The high-order byte of the program counter (PCH = 20) is placed onto the data bus and stored in the stack location 2098h, and the stack pointer is decremented to 2097h. 
During machine cycle M5, the address (2097h) from the stack pointer is placed onto the address bus, and the low-order byte (28h) of the program counter is placed onto the data bus and stored on the stack at 2097h. At the same time, the contents (2050h) of the W and Z registers are placed onto the address bus, and the program execution is transferred to the subroutine. Figure 10.5 shows the bus and register contents during the execution of these five machine cycles. 
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Instruction: CALL 2025h 
Memory Code Mnemonics Address 
2025 CD CALL 2050H 
2026 50 
2027 20 
	Machine Cycles 
	Stack Pointer 2099 
	Address Bus (AB) 
	Program counter (PCH) (PCL) 
	Data Bus (DB) 
	Internal Registers (W) (Z) 

	M, Opcode Fetch 
	20 (SP 
	38 -1) 
	2025 
	2026 
	CD Opcode 
	

	Memory Read 
	
	
	2026 
	2027 
	50 
Operand 
	<-(5 
	0) 

	M, Memory Read 
	20 
	98 
	2027 
	202 
	8 
	26 
Operand 
	^(2 
	3) 
	

	M4 Memory Write 
	
	2098 
	
	
	
	
	
	

	/u (SP 
	
	
	
	>- 20 
(PCH) 

	M5 Memory Write 
	
	
	2097 
	
	
	28 
(PCL) 
	(2 
	0) (5 
	0) 

	M| 
Opcode Fetch of Next Instruction 
	
	
	2050 
	2051 
	
	2050 

	
	(W) (Z) *
	
	
	


FIGURE 10.5 
Register and Bus Contents During Execution of CALL Instruction 
Example Explain the machine cycles of the Return instruction located at 2065H in Example 10.2. 
10-4 Show the bus and register contents. 
Solution In Example 10.2, the RET instruction is stored at the end of the subroutine in memory 
206.5h. This is a 1-byte instruction and has three machine cycles. The contents of registers and buses during the execution of these machine cycles are shown in Figure 10.6. 
Ml is a normal Opcode Fetch cycle that fetches the code C9 and increments the program counter to 2066h. However, during M2 the normal operation is suspended, and the address in the stack pointer (2097h) is placed onto the address bus in place of the 
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Instruction: RET 
Memory Code Mnemonics Staclt Contents of 
Address Pointer Stack Memory 
2065 09 RET | 2097  | ^ 2097 28 
•— 2098 20 
	Machine Cycles 
	Stacic Pointer 
	Address Bus (AB) 
	Program Counter 
	Data Bus (DB) 
	Internal Registers (W) (Z) 

	M, Opcode Fetch 
	2097 
	2065 
	2066 
	C9 Opcode 
	

	M, Memory Read 
	2098 
	2097 
	
	28 
(Stack) 
	" 28 

	Mj Memory Read 
	2099 
	2098 
	
	20 
(Stack-1) 
	^-20 

	M, 
Opcode Fetch of Next Instruction 
	
	2028 
	2029 
	
	2028 (W) (Z) 

	(W) (Z) — 
	
	
	


FIGURE 10.6 
Register and Bus Contents Duiing Execution of RET Instraction 
contents of the program counter. At the top of the stack, the return address (2028h) is stored. During M2 the low-order byte (28h) is fetched and placed into the internal register Z, and during M3 the high-order byte (20h) is fetched and placed in register W. The stack pointer returns to its original address, 2099h. 
In the first cycle of the next instruction, the contents of the W and Z registers (2028h) are placed onto the address bus, and the program sequence is transferred back to the main program at 2028h. 
ILLUSTRATIVE PROGRAM 2: TRAFFIC SIGNAL IDA 
CONTROLLER iU-T 
This program controls the traffic signal lights by turning them on or off at a specified interval. The subroutine technique is used to write the delay routine, and a register pair is used as a delay register. The significance of using the register pair is that the increment/ decrement instructions do not affect any flags. Thus, a procedure needs to be built in to set the zero flag when the delay count in the register pair reaches zero. 
10.41   Problem Statement 
Write a program to provide the specified on/off time to three traffic lights (Green, Yellow, and Red) and two pedestrian signs (WALK and DON'T WALK). The signal lights and signs are turned on and off by the data bits of an output port as shown. 
	
	Lights 
	Bit 
	Time 

	1. 
	Green 
	Do 
	15 seconds 

	2. 
	Yellow 
	Dj 
	5 seconds 

	3. 
	Red 
	D4 
	20 seconds 

	4. 
	WALK 
	De 
	15 seconds 

	5. 
	DON'T WALK 
	D7 
	25 seconds 


The traffic and pedestrian flow are in the same direction; the pedestrian should cross the road only when the Green light is on. 
10.42  Problem Analysis 
The problem is primarily concerned with providing various time delays for a complete sequence of 40 seconds. The lights and signs can be turned on by providing logic Is and turned off by providing logic Os to appropriate data bits of the output port. The on/off times for the traffic signals and pedestrian signs are as follows: 
Time 
Sequence    DON'T Hex in Seconds    WALK WALK D7 Dfi 
0 
(15) i 0 ^1 0        0        0 0 0^1=41H 
15 ^ (5) i l'^ 0 
20 I (20) I 1 0 
40 
	
	Red D4 
	D3 
	Yellow 
	D, 
	Green Do 

	0 
	0 
	0 
	0 
	0 
	

	0 
	0 
	0 
	
	0 
	0 

	0 
	1 *" 
	
	0 
	0 
	0 


The output needs three different codes at three different intervals as shown above. Three different delays (15, 5, and 20 seconds) can be conveniently obtained by writing a half-second delay subroutine and specifying the delay instructions as necessary. This is known as parameter passing (discussed in Section 10.5). 
10.43 Program 
LD SP, STACK START:   LD A, OlOOOOOlB 
OUT (PORTl), A 
initialize stack pointer 
;Load bit pattern for Green light 
;and WALK sign 
;Tum on Green light and WALK sign 
	LD B, 30 
	;Set up B to count 15 seconds 

	
	;Pass this information to DELAY routine 

	CALL DELAY 
	;Wait for 15 seconds 

	LD A, lOOOOlOOB 
	;Load bit pattern for Yellow light and 

	
	;DON'T WALK sign 

	OUT (PORTl), A 
	;Tum on Yellow and DON'T WALK and turn 

	
	;off Green and WALK 

	LD B, 10 
	;Set up B to count 5 seconds 

	CALL DELAY 
	;Wait for 5 seconds 

	LD A, lOOlOOOOB 
	;Load bit pattern for Red and DON'T WALK 

	OUT (PORTl), A 
	;Turn on Red, keep DON'T WALK on, and turn 

	
	;off Yellow light 

	LD B, 40 
	;Set up B to count 20 seconds 

	CALL DELAY 
	;Wait for 20 seconds 

	JP START 
	;Go back to repeat the sequence 


DELAY 
WAIT: LOOP: 
;This is 0.5 second delay routine and provides delay ;according to the count in register B 
;Input:   Appropriate delay count is specified in B; it is twice the number of 
desired seconds ;Output: None ;Registers Modified: B 
	PUSH DE 
	;Save contents of DE and AF 

	PUSH AF 
	

	LD 
	DE, COUNT 
	;Load DE for 0.5 second delay 

	DEC 
	DE 
	

	LD 
	A, D 
	;Place (D) in A for flag checking 

	OR 
	E 
	;Set Z flag if (D) and (E) are both zero 

	JP 
	NZ, LOOP 
	;Repeat if COUNT + 0 

	DEC 
	B 
	;End of 0.5 second delay, decrement B 

	JR 
	NZ, WAIT 
	;Is it sufficient delay? If not, go back 

	
	
	to WAIT 

	POP 
	AF 
	;Retrieve contents of saved registers 

	POP 
	DE 
	

	RET 
	
	;Go back to main program 


10.44  Program Description 
Figure 10.7 shows the flowchart of this program; it includes the symbol of the predetermined process used for the delay subroutine. As shown in the flowchart (Figure 10.7), the main program turns on the specified lights and calls the delay routine. The program begins with loading the stack pointer; the initialization of the stack is essential to use Call instructions. The program loads the appropriate bit pattern into the accumulator, sends it to the output port, specifies the total delay in register B, and calls the delay routine. Register B is 
Q     Start ^ 
Turn on Green Light and Walk Sign 
Call Delay for 15 Seconds 
i: 
Turn off Green and Walk Sign Turn on Yellow and Don't Walk Sign 
Call Delay for 5 Seconds 
Turn off Yellow Turn on Red 
Call Delay for 20 Seconds 
Go Back to Start Again 
Subroutine 
^   DELAY ^ 
Load Number in Delay Counter 
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        FIGURE 10.7 
Flowchart for Traffic Signal Controller 
loaded with a delay count in the main program, but the information in B is used in the subroutine.* This is called parameter passing. 
The DELAY subroutine is similar to delays discussed in the previous chapter. However, this routine has four additional features: 
1. At the beginning of the subroutine, the registers being used (A, D, and E) for the delay loop are saved on the stack and retrieved before the end of the routine. 
2. The subroutine ends with the Return instruction. 
3. The delay loop uses register pair DE; however, the decrement instruction for register pairs does not affect any flags. When COUNT is decremented to 0, the Z flag needs to 
*In this program, the delay counts are shown in decimal and the bit patterns are shown in binary; these numbers must be converted into Hex numbers for manual assembly. This is a standard industrial practice if you are using an assembler. 
FIGURE 10.8 
Multiple Call Subroutine 
Main Memory Program 
XXOO 
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        Subroutine XX50    PUSH D 
RET 
be set. To set the flag, the contents of register D are placed in A and logically ORed with the contents of E. The OR instruction sets the Z flag when both bytes, in D and E, are equal to 0; otherwise, the loop is repeated. 4. The WAIT loop includes a conditional relative Jump instruction, which requires 12 T-states if the specified condition is met; otherwise it takes seven Testates. In this example, when the Z flag is not set, the Jump instruction takes 12 T-states and the loop is repeated. When register B goes to zero, the Z flag is set and the Jump instruction takes seven T-states and the program proceeds to the next instruction. In general, the difference in execution time of these two conditions is insignificant. 
The main program calls the subroutine three times as shown in Figure 10.8; this is known as a multiple call subroutine. In this subroutine, only two memory locations are needed for the stack. When a subroutine is called, the stack pointer is decremented by two, and when the program returns, the stack pointer is incremented by two; thus, the stack pointer returns to the initialization address. 
SUBROUTINE DOCUMENTATION AND PARAMETER 
PASSING 
In a large program, subroutines are scattered all over the memory map and are called from many locations. Information may be passed between a calling program and a subroutine, a 
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procedure called parameter passing. Typically, software design and implementation are performed by a team. Since subroutines and calls may be written by different team members, it is important to document a subroutine clearly so that the team members will know the consequences of using a subroutine. The documentation should include at least 
1. Functions of a subroutine 
2. Input/Output parameters 
3. Registers modified—often called "destroyed" 
4. List of other subroutines called by this subroutine. 
The DELAY subroutine in Traffic Signal Controller shows one example of subroutine documentation. 
FUNCTIONS OF THE SUBROUTINE 
This is a brief summary of the purpose of the subroutine and what functions it performs. The user should be able to understand whether it is an appropriate subroutine without going through its instructions. 
INPUT/OUTPUT PARAMETERS 
The parameters (information) passed on to a subroutine are listed as inputs, and the parameters returned to the calling program are listed as outputs. For example, in the DELAY subroutine, how many times the loop is repeated is dependent on the count in register B. This parameter is supplied by the main program and used by the subroutine. Therefore, the count in register B becomes an input to the subroutine. However, this subroutine passes no information back to the main program, so there is no output. 
When many parameters must be passed, R/W Memory locations are frequently used to store them, and memory pointers (HL or index registers) are used to point to those locations. The stack can also be used to store and pass parameters. 
REGISTERS MODIFIED OR DESTROYED 
Registers used in a subroutine may have been used by the calling program. Therefore, it is necessary to save the register contents of the calling program on the stack at the beginning of the subroutine and to retrieve the contents before returning to the calling program. 
In the DELAY routine, the contents of DE and AF registers are saved on the stack at the beginning of the routine because these registers are used in the delay loop. Their contents are restored at the end of the routine using the LIFO method. 
LIST OF SUBROUTINES CALLED 
If a subroutine is calling other subroutines, the user should be provided with that information. This enables the user to check what parameters need to be passed to various subroutines and what registers are modified in the process. 
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iUDVANCED SUBROUTINE CONCEPTS 
10.6 
Subroutines can be classified into various categories; conmmonly used categories include 
1. Multiple Call 
2. Nested 
3. Multiple Ending 
MULTIPLE CALL SUBROUTINE 
This is a subroutine called from many locations in the main program. For example, the DELAY routine in Section 10.43 is a multiple call subroutine. These types of routines are easy to trace and need minimal stack space. 
NESTED SUBROUTINE 
A subroutine called by another subroutine is said to be nested. The extent of nesting is limited only by the number of available stack locations. When a subroutine calls another subroutine, all return addresses are stored on the stack. 
Nested subroutines are shown in Figure 10.9. The main program calls Subroutine I from location 2050h. The address of the next instruction, 2053h, is placed on the stack, and the program is transferred to Subroutine I at 2090h. Subroutine I calls Subroutine II from location 209Ah. The address 209Dh is placed onto the stack, and the program is transferred to Subroutine II. Figure 10.9 shows how the sequence of execution returns to the main program. 
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        FIGURE 10.9 
Nested Subroutines 
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FIGURE 10.10 
Multiple Ending Subroutine 
Subroutine 
2050 
RET Z 
2058 
RET C 
/ 
2070 
RET 
MULTIPLE ENDING SUBROUTINE 
A subroutine that can be terminated at more than one place is called a multiple ending subroutine as shown in Figure 10.10. The subroutine has two conditional returns (RET Z—Return On Zero—and RET C—Return On Carry) and one unconditional return (RET). If the Z flag is set, the subroutine returns from location 2050h, and if the CY flag is set, it returns from location 20.58h. If neither flag is set, the subroutine returns from location 2070h. 
ILLUSTRATIVE PROGRAM 3: BCD COUNTER AND ITS SEVEN-SEGMENT LED DISPLAY 
This program is concerned with designing a BCD (Binary Coded Decimal) counter that counts in BCD and displays BCD digits at seven-segment LED output ports. This program demonstrates 
1. How to adjust a binary number to a decimal number using the instruction DAA. 
2. Table look-up technique to get seven-segment codes. 
3. Nested and multiple ending subroutines. 
10.71   Problem Statement 
Design a BCD counter to count from O to 60bcd and display each two-digit BCD count at two seven-segment LED ports (PORTO, PORTl); the time interval between each count 
should be one second. The display should go up to 59, and when the count reaches 60, the counter should be reset to 00. The output ports have common cathode seven-segment LEDs, and the appropriate codes to display digits from 0 to 9 are stored in memory locations labelled as CODE. 
10.72  Problem Analysis 
This problem can be divided into three segments: (1) counting in BCD, (2) getting sevensegment LED code, and (3) creating a one-second delay. (See Section 11.5 for additional explanation on BCD numbers.) 
COUNTING IN BCD 
The designing of a binary (or Hex) counter using software instructions is a simple process; it involves clearing a register and incrementing the count at a given interval until the final count is reached. However, to count in BCD some adjustment is necessary; this is done by using the instruction DAA. The concepts underlying the DAA instruction are explained in the following paragraph. 
The microprocessor is a binary machine; it does not recognize BCD numbers. In BCD, any number from A through F is invalid. When the count goes from digit 9 to A, it should be adjusted to 10 by adding 6 in binary as shown. 
OA=00001010 + 0 6 = 0 0 0 0 0 1 1 0 
000 10000 = 10 
The microprocessor interprets this number as equivalent to 10 in Hex; however, we view the low-order four bits as 0 and the high-order four bits as 1, stored side by side in an 8-bit register. This is called packed BCD. To display IObcd, the low-order and high-order bits need to be separated (called unpacking) and displayed by two seven-segment LEDs. Now let us see how we can adjust a larger number by using the same technique of adding 6 when the digit goes beyond 9. For example, when the count goes from 99 to 9A, in BCD, it should be 100. 
9 A = 1 0 0 1    10 10 
The value of low-order 
four bits > 9; add 6  +0110 
1    0 0 0 0 
Because of CY, the value 
of high-order bits > 9; add +0110 
6 and CY to high order bits.    1    0000   0000=10 Obcd 
CY CY 
As expected, this becomes a three-digit BCD number requiring three LEDs. The above steps are performed internally by the DAA instruction. 
INSTRUCTION 
DAA : Decimal Adjust Accumulator 
1. This is a 1-byte instruction. After an arithmetic operation, this instruction adjusts an 8-bit number in the accumulator to form two paciced BCD numbers by using the process described above. 
2. It uses the H and C flags to perform the adjustment. 
3. In arithmetic addition, if there is a carry from bit D3 to bit D4, the Half Carry flag (H) is set. Similarly, in subtraction, if there is a borrow from bit D4, the H flag is set. The DAA instruction uses the H and CY flags internally to adjust the result to BCD digits. The CY flag is used in 16-bit addition; this is discussed in the next chapter. 
It must be emphasized that the instruction DAA 
□ Adjusts the result of a BCD addition or subtraction. 
□ Does not convert a binary number into BCD numbers. 
GETTING SEVEN-SEGMENT LED CODES 
When a BCD number is to be displayed by a seven-segment LED, it should be converted into its seven-segment code. The code is determined by hardware considerations such as common cathode versus common anode LED. For example, to display 0 in the common anode LED, six elements are turned on by supplying logic 0 and the center element is turned off by supplying logic I. (See Section 13.54 for hardware details of seven-segment LEDS and related codes.) 
The code has no direct relationship to binary numbers. The codes of BCD digits (0-9) are stored sequentially in memory and obtained using the table look-up technique. To use the technique, the BCD number must be unpacked. For example, the BCD number 28 must be converted into binary equivalents of 02bcd and OBbcd- Then, the conversion program locates the code of a digit based on its magnitude and copies the code into the accumulator (or register) to send out to the seven-segment LED port. 
ONE-SECOND DELAY 
A one-second delay can be generated by using a register pair, similar to the DELAY subroutine in Traffic Signal Controller (Section 10.4). However, there is no need to pass a parameter to repeat the delay loop from the main program; it can be written into the routine itself. 
10.73 Program 
This program consists of a main program and five subroutines: UNPACK, DSPLAY, LOOKUP, DELAY, and UPDATE. 
MAIN: LD SP, STACK ;Initialize the stack 
LD B, OGH ;Load initial BCD count 
NEXT: CALL UNPACK ;Unpack BCD number and store digits 
CALL DSPLAY CALL DELAY CALL UPDATE JP NEXT 
in output buffer ;Get codes and display at ports ;Wait for one second ;Go to next count and adjust for BCD ;Continue 
UNPACK: 
This subroutine unpacks the BCD number from the accumulator and stores two unpacked BCD digits in memory output buffers BUFFI and BUFF2. 
Input: Packed BCD number in register B 
Output: BCD, in BUFFI and BCD2 in BUFF2 
Registers modified: Accumulator and HL 
HL, BUFFI A, B 
;Set up HL as memory pointer for BUFFI 
;Get BCD number 
;Keep low-order 4 bits (BCDO 
;Store BCD, in BUFFI 
;Point to BUFF2 
;Shift BCD2 to D3-D0 and insert 0 from left 
;Store BCD, in BUFF2 
LD LD AND OFH LD   (HL), t INC HL LD A, B SRL A SRL A SRL A SRL A LD (HL), A RET 
DSPLAY: ;This subroutine gets BCD digits from the output buffer, calls the LOOKUP routine, and displays digits at the output ports with appropriate codes. 
;Input: Memory pointer to BUFF2 in HL registers ;Output: None 
;Registers modified: HL registers ;Calls LOOKUP subroutine 
LD A, (HL) CALL LOOKUP OUT (P0RT2), A DEC HL LD A, (HL) CALL LOOKUP OUT (PORTl), A RET 
Get BCD, from BUFF2 Get seven-segment code Display BCD2 at P0RT2 Move memory pointer to BUFFI Get BCD, from BUFFI Get seven-segment code Display BCD, at PORTl Go back to main program 
LOOKUP: ;This subroutine takes an unpacked BCD digit, updates the memory pointer, and gets the seven-segment code of the digit from memory. 
;Input: Unpacked BCD digit in the accumulator ;Output: Seven-segment code in the accumulator ;Registers modified: Accumulator PUSH HL :Save (HL) on the stack 
LD    HL, CODE ;Set up HL as memory pointer to LED code 
ASSEMBLY LANGUAGE PROGRAMMING: THE Z80 
ADD A, L LD    L, A LD    A, (HL) POP HL RET 
CODE: DB CODEO CODEl C0DE2 CODE3 CODE4 CODE.5 C0DE6 CODE? CODES C0DE9 
;Add memory pointer to digit to be displayed 
;Update memory pointer to locate LED code 
;Get LED code 
;Retrieve from the stack 
;Return to the calling program 
;The following ten locations store 
; seven-segment LED codes from 0 to 9 
UPDATE: ;This subroutine updates the BCD count and adjusts for BCD ;number. When the BCD count reaches 60, it resets the ;counter. 
;Input: Count in register B 
;0utput: Updated and BCD adjusted count in B 
;Registers modified: Accumulator and register B 
LD   A, B ;Get the last count 
ADD A, OIH ;Update the count 
DAA ;Adjust for BCD 
LD   B, A ;Save the count 
CP    60H ;Is count 60? 
RET NZ ;If not, go back to main program 
LD   B, OOH ;Reset the counter 
RET 
DELAY: ;This is a one-second delay routine 
;Input/0utput: None ;Registers Modified: None PUSH DE PUSH AF PUSH BC 
LD 
WAIT: LD LOOP: DEC LD OR 
B, 10 
DE, COUNT DE 
A, D E 
;Save contents of DE, AF, BC 
;Load B to repeat loop ten times ;Load DE for 100 ms delay 
;Place (D) in A for flag checking 
;Set Z flag if (D) and (E) are both zero 
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JP NZ, LOOP ;Repeat if COUNT + 0 
DEC B ;End of 100 ms delay, decrement B 
JP NZ, WAIT ;Is it one-second delay? If not, go back to WAIT 
POP BC ;Retrieve contents of saved registers 
POP AF 
POP DE 
RET ;Go back to the calling program 
10.74  Program Description 
In this program, the problem is divided into various small tasks, each of which is assigned to a subroutine. The main program initializes the stack and the counter and calls subroutines in a sequence. 
The first subroutine unpacks the BCD number and stores the unpacked digits in the output buffer BUFFI and BUFF2. The unpacking is performed by separating the two digits and shifting the high-order digit into low-order bit positions D3-D0. For example, if the BCD number is 27, the digit 07 will be stored in BUFFI and 02 will be stored in BUFF2, both in binary format. 
The next subroutine DSPLAY is an example of the nested routines. It gets the BCD digits from the output buffer and calls the LOOKUP subroutine. In the LOOKUP routine, the seven-segment codes are stored sequentially from 0 to 9, and the HL register points to the first code. The DSPLAY subroutine supplies a digit in the accumulator which is added to register L, and the sum is saved in L. In effect, the memory pointer is moved to the location where the code of the digit is stored. For example, if the memory pointer is initially at the starting code location 2050h and the digit is 02, the pointer is shifted after addition to 2052h, where the code for the digit 2 is stored. Then the code is moved to the accumulator and passed back to the subroutine DSPLAY, which displays the code at the output port P0RT2. The same process is repeated for BCD|. However, this technique will work properly only if the code is stored on the same memory page (see Assignment 13). 
The UPDATE subroutine is an example of a multiple ending subroutine. This subroutine adds one to the previous count and adjusts for BCD using the instruction DAA. It compares the count with 60 and uses the conditional Return instruction to check for the Z flag. If Z is reset, the subroutine returns to the main program, and if it is set, it clears the register B to start the counter again. 
MODULAR PROGRAMMING AND DEBUGGING 
The program discussed in the last section is an example of industry-standard software even though it is a small program. The problem is divided into small tasks, and a subroutine is written for each task. The main program consists primarily of calling these subroutines. This is known as the modular approach. 
10.8 
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The modular approach has several advantages. The approach provides flexibility in writing and modifying programs, especially in a team project. It is also easy to debug individual modules; each module can be tested separately for the expected outputs because each module has a specific task to perform. For example, the UNPACK subroutine is expected to accept a packed BCD number, unpack it, and store the digits in the output buffer. This can be written and tested separately independent of any other modules. Similar tests can be performed for the other modules. In addition, when all the modules are combined, the entire program can be debugged by setting breakpoints at the end of each module. 
DEBUGGING MODULAR PROGRAMS 
At the outset, it appears that if each module is tested individually, the whole program should work perfectly when they are combined, and the programmer can live happily ever after. But this almost never happens. As soon as the modules are combined, the interaction between the modules can cause quite a few trouble spots. Following is a list of common errors. 
1. Mismatch between PUSH and POP instructions, the number of PUSH instructions being different from the number of POP instructions. 
2. Improper sequence of PUSH and POP instructions (not following the LIFO sequence). 
3. Destroying the contents in other modules. 
4. Passing on wrong parameters or failure to pass parameters. 
5. Failure to initialize the stack. 
6. Failure to end a subroutine with a Return instruction. 
7. Using a wrong flag for a conditional Call and Return instruction. 
SUMMARY 
□ The stack is a group of memory locations in the system's R/W memory that is defined by loading an address into the stack pointer register. 
□ The programmer uses the stack to store and retrieve the contents of register pairs temporarily during the execution of a program, and the microprocessor uses the stack to store and retrieve the return address when a subroutine is called. 
□ The contents of register pairs are stored on the stack by using PUSH instructions, and retrieved by using POP instructions. The stack pointer tracks the storing and retrieving process by adjusting its address. 
□ When a PUSH instruction is executed, the stack pointer register is decremented once and the high-order byte stored; then the stack pointer is decremented again and low-order byte stored. 
□ When a POP instruction is executed, the byte at the top of the stack is retrieved in the low-order register and the stack pointer incremented; the next byte is retrieved in the high-order register and the stack pointer incremented again. 
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□ The Exchange instructions (EXX and EX AF, AF') are used to exchange contents between general-purpose registers and alternate registers; these instructions can be used instead of PUSH and POP instructions for temporary storage. 
□ A subroutine is a group of instructions that performs a subtaslc of repeated occurrence; it is written separately from the main program. 
□ The program is transfeited to a subroutine by using a Call instruction (conditional or unconditional) and returned to the calling program by using a Return (conditional or unconditional) instruction. A Call instruction should always be used in conjunction with a Return instruction. 
□ When a Call instruction is executed, the return address is stored on the stack before the program execution is transferred to the subroutine. 
□ When a Return instruction is executed, the program is transferred to the address stored at the top two locations of the stack. 
□ The DAA instruction adjusts a binary number in the accumulator to its BCD digits by using the Half-Carry (H) and the Carry (CY) flags. When a group of 4 bits (high or low) exceeds the magnitude 9io, the instruction adds 6 and adjusts digits to their BCD values. 
□ In a seven-segment LED display, the codes required to display digits are unrelated to the binary values and dependent on hardware configuration. Therefore, the table look-up technique is used to display these digits. 
□ Modular programming is a software design process whereby the programming problem is divided into subtasks (or modules) with definite functions to perform, and each module is written and tested separately as a subroutine. This approach provides flexibility in writing and ease in debugging the program. 
ASSIGNMENTS 
1. Specify the contents of the BC registers and the stack pointer after the execution of the following instructions. 
LD SP, 20F5H LD HL, 2055H PUSH HL POP BC 
2. Specify the address in the stack pointer and the contents of memory locations 2090h-2099h after the execution of the following instructions. 
LD SP, 219AH XOR A LD H, A LD L, A LD B, 05H 
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LOOP: PUSH HL DEC B 
JP NZ, LOOP 
3. 
Read 
the following program and answer the questions. 
No. 
Instructions 
	1. 
	LD SP, 84F9H 

	2. 
	LD HL, 8138H 

	3. 
	LD BC, OOOIH 

	4. 
	LD DE, 235AH 

	5. 
	LD A, D 

	6. 
	OR A 

	7. 
	PUSH HL 

	8. 
	PUSH AF 

	9. 
	PUSH BC 


20.       POP AF 
a. What is stored in the stack pointer after the execution of instruction 1? 
b. What are the contents of locations 84F8h and 84F7h after the execution of instruction 7 (PUSH HL)? 
c. Specify the bytes in the accumulator and the flag register after the execution of the instruction OR A. 
d. What is the address in the stack pointer when instruction 9 is executed and what are the contents of the two top locations of the stack? 
e. Specify the status of the S, Z, and C flags after the execution of instruction 20 (POP AF). 
4. If the stack pointer is initialized at 20C8h and the Call instruction located at 20.52h calls the subroutine at 2075h, specify the contents of the stack locations 20C7h and 20C6h and the contents of the stack pointer after the execution of the Call instruction. 
5. The following program has a delay subroutine located at 2060h. Read the program and answer the questions following. 
Memory Addresses 
Instructions 
Comments 
2000 2003 2006 2009 200C 
LD SP, 2100H LD HL, 2050H LD BC, OOOAH CALL 2060H 
;Main Program 
OUT (PORTl), A 
STACKS AND SUBROUTDNIES 
2060 2061 2062 
PUSH HL PUSH BC LD HL, A2FFH 
;Delay Subroutine 
2072 2073 2074 
POP BC POP HL RET 
a. When the Call instruction located at 2009h is executed, specify the contents of the stack location 20FEh and the address in the stack pointer. 
b. List the stack locations and their contents after the execution of the instructions PUSH HL and PUSH BC in the subroutine. 
c. List the address in the stack pointer and the contents of the BC registers after the execution of the instruction POP BC. 
d. Where does the program return after the execution of the instruction RET at the end of the subroutine? 
e. Specify the contents of the stack pointer after the execution of the RET instruction. 
6.   The following program is a continuous Hex counter with an appropriate delay between two counts. Read the program and answer the questions. 
Memory Addresses 
Instructions 
Comments 
2000 2003 2006 2009 200B 200D 2010 2011 
JP 200BH 
LD SP, 20FAH LD HL, 2065H LD BC, OOlOH LD A, OOH 
OUT (PORTl), A 
CALL 2065H INC A 
;Main program 
2065 2066 2067 206A 
PUSH HL PUSH BC 
LD HL, lOFFH DEC HL 
;Delay Subroutine 
2070 2071 
POP BC RET 
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a. List the stack locations and their contents after the instruction PUSH BC is executed. 
b. Where does the program return after the execution of the RET instruction and what are the contents of the stack pointer? 
c. What is being displayed at PORTl? Explain your answer. 
7. Write a program to add the two Hex numbers 8A and 93. Store the sum at location OUTBUF and the flag status at location OUTBUF - 1. Initialize the stack at an appropriate memory address. 
8. Write a program to initialize the stack pointer at memory location STACK, add two Hex numbers (97 and Al), and store the flag status in location STACK -2 and the accumulator contents in location STACK -1. 
9. Write a program to meet the following specifications. 
□ Initialize the stack pointer at XX99h. 
□ Clear the memory locations starting from XX90h to XX9Fh. 
□ Load register pairs BC, DE, and HL with data 024Fh, 4835h, and 2050h, respectively. 
□ Store the contents of the registers BC, DE, and HL on the stack. 
□ Execute the program and verify the memory locations from XX90h to XX9Fh. Note: For XX substitute high-order memory address (page number) of your system. 
10. Write a program to clear the initial flags, load the data FFFFh into register BC, and increment the register pair BC. Display the flag status at an output port or store it on the stack. Explain your results. 
11. Write a 20 ms time delay subroutine using register pair BC. Clear the Z flag without affecting any other flags in the flag register and return to the main program. 
12. Write a program to simulate a flashing yellow light with a 750 ms period. Use bit D7 to control the light. (Hint: To simulate flashing, the light must be turned on and off.) 
13. Modify the subroutine LOOKUP to include the situation when the code is stored in a sequence but crosses the memory page boundary (for example, when the seven-segment code is stored from 20FAh to 2103h). 
Application Programs and Software Design 
In the last three chapters, most of the Z80 instructions were introduced and illustrated with examples and application programs, such as block transfer, time delays, bit manipulations, and some arithmetic operations. The subroutine technique, discussed in Chapter 10, provides us with the most powerful features of programming: modularity and flexibility. 
In this chapter we first introduce the Z80 instructions dealing primarily with 16-bit operations (copy, exchange, and arithmetic) and illustrate them using the subroutine technique. The illustrations will include examples such as rnultiprecision addition, multiplication, division, and code conversions. 
In computer applications, various number systems and codes are used to input data or to display results. The ASCII (American Standard Code for Information Interchange) terminal is a standard Input/Output device in disk-based microcomputer systems. The code conversion subroutines demonstrated in this chapter are commonly used to exchange alphanumeric (letters and numbers) information between the microprocessor and peripherals such as terminals and printers. 
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OBJECTIVES 
o Explain and illustrate the instructions used to copy    □ Write subroutines to perform arithmetic opera
or exchange 16-bit data between registers and tions such as multiplying, dividing, and adding 
memory locations. numbers larger than 8 bits. 
□ Explain and illustrate the instructions that perform    □ Write subroutines to perform code conversions for 
addition or subtraction with carry. BCD, binary, and ASCII characters. 
□ Write  a program  to  illustrate  the modular approach in software design. 
11,1 
16-BIT OPERATIONS 
Most of the instructions discussed in the last several chapters deal primarily with 8-bit data. However, there are instances when we need to manipulate data larger than eight bits, especially in arithmetic manipulations and stack operations. Even though the Z80 is an 8-bit microprocessor, its architecture allows specific combinations of 8-bit registers to form 16-bit registers. There are several instructions in the set to manipulate data larger than 8 bits. These instructions will be introduced in this section and illustrated with examples. 
11.11   16-Bit Data Copy and Data Exchange Group 
Opcode       Operand       Bytes Description 
LD HL, (16-bit) .3 Load HL register from the contents of mem
ory specified by 16-bit operand and the next memory location. 
LD (16-bit), HL        3 Load the contents of HL register into memory 
location specified by 16-bit operand and the next memory location. 
LD SP, HL 1 Load the contents of HL register into the 
stack pointer register. 
JP (HL) 1 Load the contents of HL register into the pro
gram counter. This instruction is equivalent to LD PC, HL. 
EX DE, HL 1 Exchange the contents of DE and HL. 
EX (SP), HL 1 Exchange the contents of HL register and the 
contents of the top two locations of the 
stack. 
General Characteristics 
1. The first four instructions copy 16-bit data between the HL register pair and memory, the stack pointer, and the program counter. 
2. The Exchange instructions exchange (copy both ways) 16-bit data. 
3. These instructions do not affect the flags. 
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The memory locations 2050h and 205 1h contain 3Fh and 42h respectively, and the register pair DE contains 856Fh. Write instructions to exchange the contents of DE with the contents of the memory locations. 
Example 11.1 
Before Instructions: 
D 
85 
6F 
Memory Contents 2050 
2051 
3F 
42 
	LD HL, (2050H) ; 
	H 
	42 
	3F 
	L 
	2050 
	3F 

	
	
	
	
	
	2051 
	42 

	EX DE, HL ; 
	D 
	42 
	3F 
	E 
	
	

	
	H 
	85 
	6F 
	L 
	
	

	LD (2050H), HL ; 
	
	
	
	
	2050 
	6F 

	
	
	
	
	
	2051 
	85 


Solution 
11.12  Arithmetic Instructions: Addition With Carry 
ADC      A, r These instructions add the contents of the oper
ADC      A, 8-bit      and, the carry, and the accumulator, and the ADC      A, (HL)      result is placed in the accumulator. 
Generally, these instructions are used to add 
numbers larger than 8 bits, as shown in Example 11.2. 
Registers BC contain 2793h, and registers DE contain 3182h. Add these two 16-bit numbers, and place the sum in memory locations 2050h and 205Ih
	Before Instructions: 
	B 
	27 
	93 

	
	D 
	31 
	82 


C E 
Example 11.2 
Solution 
	LD A, C 
	A 
	93 
	X 
	F 

	ADD A, E 
	A 
	15 
	C = 1 
	F 


LD L, A 
H 
15 L 
93h + 82h 
Tish 
1 15h 
(A) (E) 
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	LD A, D 
	A 
	31 
	C= 1 
	F 
	
	
	

	ADC A, B 
	
	
	
	
	31h + 27h 1 
	
	(A) (B) 
(Carry) 

	LD H, A 
	H 
	59 
	15 
	L 
	59h 
	A 
	


LD (2050H), HL 
The 16-bit addition is performed in two stages: add low-order bytes (93h + 82h), and then add high-order bytes (27h + 31h). These two stages are necessary because the addition is performed with the contents of the accumulator, which can hold only eight bits. If the addition of the low-order eight bits generates a carry, it should be added to the ninth bit position of the 16-bit numbers. 
In this example, the addition of 93h and 82h generates the sum 15h and a carry. The sum (15h) is stored in register L, and the carry is added as a ninth bit to the high-order bytes 27h and 31h by the instruction ADC A, B. The result 59h is saved in register H. Finally, the sum of the two 16-bit numbers (contents of HL) is stored in memory locations 20.50h and 205Ih
11.13  Arithmetic Instructions: Subtraction With Carry 
SBC      A, r These instructions subtract the contents of the operand 
SBC A, 8-bit and the borrow from the contents of the accumulator, SBC      A, (HL)      and the result is placed in the accumulator. 
Example Registers BC contain 8538h and registers DE contain 62A5h. Subtract the contents of DE 
11-3 from the contents of BC, and place the result in BC. 
Solution 
85 38 62       - A5 
22 93 
This is a 16-bit subtraction performed in two stages similar to that of 16-bit addition in the previous example. The low-order byte A5h is first subtracted from 38h. The result (93h) is saved in register C, and the borrow generated by this operation is subtracted as a ninth bit 
LD A, C SUB E LD C, A LD A, B SBC D LD B, A 
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from the high-order byte 85h (S5h - 62h - 1 Borrow = 22h). Finally, the result is saved in register B. 
11.14  Arithmeticlnstnxctions: 16-bit Addition 
ADD HL, rp :    Add register pair to register HL 
ADD HL, BC :   This instruction adds the contents of the operand (register ADD HL, DE    pair or stack pointer) to the contents of the HL register, and ADD HL, HL     the result is placed in the HL register. ADD HL, SP     The Carry flag is altered to reflect the result of the 16-bit 
addition. No other flags are affected. 
These instructions use HL as a 16-bit accumulator. 
The register HL contains a 16-bit number (4 Hex digits). Write instructions to shift all the digits by four positions to the left and clear bits D3-D0. For example, if the register contains 1231h, it should have 2310h after the instructions are executed. 
The solution to this problem lies in the fact that a binary number added to itself shifts the number to the left by one position. To shift the number by four positions, we need to add the number four times. This is equivalent to shifting Hex digits to the left by one position. This is illustrated below in the comment section, beginning with the number 1231h in HL register. 
ADD HL, HL ADD HL, HL ADD HL, HL ADD HL, HL 
1231 -I- 1231 = 2462-1- 2462 = 48C4 + 48C4 = 91889188 = 
2462h 
48C4h 
9188h 
231 Oh 
HL HL HL HL 
A practical example of this problem is entering a 16-bit address in a single-board microcomputer using the Hex keyboard. When a new key is pressed, the display drops off the most significant Hex digit, shifts the three remaining digits to the left, and places the new key as the least significant digit. 
11.15  Miscellaneous Instructions 
These instructions are used in a bit manipulation, usually in conjunction with rotate instnictions. (See Appendix A for illustrative examples.) 
CCF: 
SCF: 
Complement the carry flag 
If C = 1, the CY flag is reset, and 
if C = 0, the CY flag is set. 
Set the Carry Flag. C is set to logic 1. 
Example 1L4 
Solution 
ILLUSTRATIVE PROGRAM: MULTIPRECISION ADDITION 
Even though the Z80 has an 8-bit accumulator, it can be used to add multibyte numbers. The instruction set includes several instructions specifying arithmetic operations with carry (for example, add with carry or subtract with carry). Descriptions of these instructions convey an impression that these instructions can be used to add (or subtract) 8-bit numbers when the addition generates carries. In fact, when a carry is generated, it is added to bit Do of the accumulator in the next operation. Therefore, these instructions are used primarily in multibyte addition and subtraction as illustrated in this program, which adds two 32-bit numbers and stores the result in memory locations of the first number. 
11.21 Problem Statement 
Two 32-bit numbers, each occupying four memory locations starting with the low-order byte, are stored in locations BUFl and BUF2. Write a subroutine to add the numbers and store the result in BUFl. Pass the following parameters from the main program to the subroutine: the addresses of BUFl and BUF2 and the number of bytes in a number. 
11.22 Problem Analysis 
To add multibyte numbers, two issues need to be resolved: (1) how to add a carry generated by the addition of low-order bytes to the next order bytes, and (2) how to save multibyte results. The first issue can be resolved by using the instruction ADC (Add With Carry), and multibyte results can be stored in memory by assigning appropriate memory locations. 
In this problem, we need to set up one counter to count the number of bytes to be added and two memory pointers to point to BUFl and BUF2. 
11.23 Program 
MAIN: LD HL, BUFl LD DE, BUF2 LD B, 04H 
;Initialize memory pointers 
Set up register B as a counter to specify the size of number to be added Call subroutine to add multibyte numbers 
ADBYTE: 
START: NEXT: 
CALL ADBYTE HALT 
This subroutine adds any two multibyte numbers and saves 
result in memory by replacing the first number. 
Input: Addresses of numbers to be added in HL and DE registers : The size of the number in bytes in register B 
Output: None, the result is stored in memory 
Modifies registers: B, DE, and HL XOR A ;Clear carry 
LD A, (DE)      ;Get byte from BUF2 
the 
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ADC A, (HL)   ;Add byte from BUFl LD (HL), A      ;Save partial result INC HL ;Update memory pointers 
INC DE 
DEC B ;Update counter for next addition 
JR NZ, NEXT   ;If counter i=0, get next-order byte RET 
11.24  Program Description 
The main program initializes the memory pointers DE and HL, sets up register B to count four bytes (32 bits), and calls the subroutine ADBYTE. The subroutine begins by clearing the CY flag; if a carry has been generated by the calling program in the previous operation, it must be cleared. The program adds the low-order bytes from BUFl and BUF2 by using the memory pointers and the instruction ADC and saves the partial result in the first memory location of BUFl. In the following instructions, the pointers are upgraded to point to the next bytes, and the counter is decremented. The loop is repeated until all four bytes are added, and the complete result, starting from the low-order byte, is stored in four memory locations of BUFl. 
This subroutine can be used to add numbers of any size specified by the calling program in register B; however, it does not account for a carry generated by the last addition. For example, in this program, if the sum is larger than 32 bits, the result will have an error. To subtract multibyte numbers, this subroutine can be used by replacing the instruction ADC with SBC. 
BINARY MULTIPLICATION 
1 2 5 XI 0 1 
Step 1: (125x1)= 125 
Step 2: Shift left and add (125 X 0)    -t- 000 Step 3: Shift left and add (125 x 1)    -H 2 5 
1 2 62 5 
In this example, the multiplier multiplies each digit of the multiplicand, starting from the right, and adds the product by shifting to the left. When the multiplier digit is 1, we add multiplicand (125), and when the multiplier digit is 0, we add 0 (or nothing). The 
11.3 
Multiplication can be viewed as repeated addition. For example, the product of 20 and 5 (20 x 5) can be obtained by adding 20 five times. To write a program, we can set up a counter for five and add 20 until the counter is zero. It is, however, a rather inefficient technique for a large multiplier. A more efficient technique can be devised by following the model of manual multiplication of decimal numbers. 
same process can be applied in binary multiplication. The binary multiplier has only two digits, 0 and 1. Therefore, we can set up the algorithm to check each digit of the multiplier; if the digit is 1, we will add the multiplicand, and if it is 0, we will skip the addition. 
11.31 Problem Statement 
A multiplicand is stored in memory location BUFl and a multiplier is stored in location BUFl + 1. Write a main program to 
1. Transfer the two numbers from memory locations to the H and L registers. 
2. Store the product in the output buffer OUTBUF. 
Write a subroutine to 
1. Multiply two unsigned numbers placed in registers H and L. 
2. Return the result into the HL pair. 
11.32 Problem Analysis 
The problem is concerned with multiplying two unsigned 8-bit numbers. Since the result will be larger than 8 bits; it will require a 16-bit register for storage. To implement the algorithm discussed above, we need to set up a counter to check eight bits of the multiplier. When the multiplier bit is 1, the multiplicand can be added to itself by using the instruction (ADD HL, HL) for 16-bit addition. 
11.33 Program 
MAIN: 
MLTPLY: 
NXTBIT: 
LD SP, STACK LD HL, (BUFl) EX DE, HL CALL MLTPLY LD (OUTBUF), HL HALT 
;This subroutine multiplies two 8-bit unsigned numbers. ;Input: Multiplicand in register E and multiplier in register D ;Output: Result in HL register ;Modifies registers: A, B, D, E, H, and L 
;Initialize the stackpointer ;Place multiplicand in L and multiplier in H ;Place multiplicand in E and multiplier in D ;Multiply two numbers ;Store the product in the output buffer 
LD A, D LD D, 0 LD HL, 0 LD B, 08H RRA 
JR NC, NO ADD ADD HL, DE 
Transfer multiplier to accumulator Clear D to save partial result Clear HL 
Set up register B to count eight rotations 
Check if multiplier bit is 1 
If not, skip adding multiplicand 
If multiplier is 1, add multiplicand to HL 
and place partial result in HL 
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NOADD:   EX DE, HL ;Place multiplicand in HL 
ADD HL, HL ;and shift left 
EX DE, HL ;Retrieve shifted multiplicand 
DEC B ;One operation is complete, decrement counter 
JR NZ, NXTBIT       ;Go back to next bit if not done RET 
11.34  Program Description 
1. The objective of the main program is to demonstrate uses of 16-bit data copy and exchange instructions. The main program transfers the two bytes—multiplier and multiplicand—from memory locations to the HL registers and places them in the DE registers by using the exchange instruction. It calls the MLTPLY routine and places the result in the output buffer. 
2. The multiplier routine follows the format—add and shift to the left—illustrated earlier. The routine places the multiplier into the accumulator and rotates it eight times until the counter (B) becomes zero. Register D is cleared to use it for 16-bit addition (ADD HL, DE). 
3. After each rotation, when a multiplier bit is 1, the instruction ADD HL, DE performs the addition, and ADD HL, HL performs the shifting of bits to the left. When a bit is 0, the subroutine skips the instruction ADD HL, DE and just performs the shifting. 
BINARY DnnSION 11,4 
The division of two numbers can be performed by subtracting the divisor repeatedly from the dividend (the number to be divided) until the remainder becomes smaller than the divisor; the number of times the subtraction is repeated then becomes the quotient. For example, to divide 19 by 5, we can subtract 5 three times from 19 until the remainder is 4, and the quotient is equal to 3. Conceptually, this procedure is simple, but it can be time-consuming. An efficient algorithm that imitates the manual division of two decimal numbers can be devised. For example, to divide 203 by 5, we perform the following steps. 
Divisor      Dividend Quotient 
Step 1: Take the most significant digit 
(MSD) from the dividend and divide it by the divisor. If the divisor > MSD, place the quotient as 0; otherwise find the remainder. 
5 5 
2 0 3 
I ^ 
R = 2 
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Step 2: Take the next digit from the dividend and combine it with the remainder of Step 1 and divide the new number by the divisor. Find quotient and remainder. 
Step 3: Take the last digit from the dividend and combine it with the remainder of Step 2. Divide it by the divisor. If the divisor > partial dividend, the quotient is 0. Find the remainder. 
In this example, the quotient is 40 and the remainder is 3. From this illustration, two critical points need to be emphasized: (1) when the divisor is larger than the partial dividend, the quotient is 0, and (2) the quotients of successive steps are not added but combined with the previous result in appropriate columns. 
In Step 2, integer 20 is divided by .5 to obtain the quotient 4, and then the remainder is obtained by subtracting the product of .5 and 4 from 20. This algorithm appears to be complicated; however, in binary numbers, it can be performed simply by subtraction because the quotient can only be either 1 or 0. Similarly, the remainder is obtained by subtracting the divisor from the dividend; the product of the divisor and the quotient is the same as the divisor when the quotient is 1. 
11.41 Problem Statement 
Write necessary subroutines to divide two unsigned 8-bit numbers. The calling program places the dividend in register E and the divisor in register D. The subroutine should place the quotient in register L and the remainder in register C. 
11.42 Problem Analysis 
To implement the algorithm suggested in the above example, the following steps are necessary. 
1. In Step 1, the MSD is separated from the dividend and divided by the divisor. In case of the binary number, the MSB can be isolated by rotating bit D7 into the Carry flag and from the Carry flag into bit Dq of the accumulator (or of any other register). Now, the MSB can be divided by subtracting the divisor; in binary numbers, the quotient can be either 0 or 1. If the Carry flag is set after the subtraction, the divisor is larger than the MSB; thus, the quotient is 0 and the MSB should be retained as a remainder. If the divisor can be subtracted from the MSB, the quotient is 1 and the remainder should be passed on to the next operation. 
2. In the next operation, bit of the dividend is combined with the remainder by rotating the bits, and the above process is repeated until the dividend is rotated left eight times. 
I   2 0 -2 0 R = 00 
04 
I 0 0 .3 R = 3 
0 4 0 4 0 
11.43 Program 
DIVIDE: 
NXTBIT: 
DIV8: 
RESULT: 
;This subroutine divides two 8-bit integers. 
;Input: Dividend in register D and divisor in register E 
;Output: Quotient in register L and remainder in register C 
;Registers modified: B, C, and L 
;CalIs two subroutines: DIV8 and RESULT 
LD B, 08H LD L, 0 LD C, L CALL DIV8 CALL RESULT DEC B 
JR NZ NXTBIT 
;Set up register B to count eight rotations 
;Clear L to save quotient 
;Clear C to save partial remainder 
;Call routine to divide two numbers 
;Call routine to save results 
.Decrement bit-count 
;If all bits are not checked, get next bit 
RET 
;This subroutine gets one bit at a time from the dividend to form a 
;partial dividend and subtracts the divisor from it and passes the 
;status of CY flag and the remainder to the subroutine RESULT 
;Input : Dividend in register D and divisor in register E 
;       : Partial reminder in register C 
;Output: Remainder in accumulator and CY flag status 
;Registers modified: A, C, 
LD A, D RLCA LD D, A LD A, C RLA 
;Get dividend 
;Shift bit into CY 
;Save remaining dividend 
;Place partial remainder in A 
;Combine CY bit with remainder to form partial 
;dividend 
;Check if divisor > partial dividend ;Retum if CY = 1, divisor > partial dividend ;Subtract divisor from partial dividend 
CPE RET C SUB E RET 
;This subroutine saves the remainder and adjusts the quotient accord 
;ing to the result of the previous routine. 
;Input : Remainder in the accumulator and CY status 
;Output: Quotient in register L and remainder in register C 
LD C, A CCF LD A, L RLA LD L, A RET 
Save partial remainder 
Set CY to 1 or 0 as a quotient 
Get previous quotient 
Add quotient from CY flag 
Save partial quotient 
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11.44  Program Description 
The subroutine DIVIDE initializes register B to count 8-bit rotation; for a 16-bit division, the counter would be set up to count 16. Register L is cleared to save the quotient and register C to save the partial dividend. This routine calls the subroutines DIV8 and RESULT eight times until the counter = 0. 
The primary function of the subroutine DIV8 is to take bit D7 from the dividend (register D) and place the bit as Do into register C using the accumulator. This is similar to the procedure shown in the example—taking one digit from the dividend and combining it with the remainder from the previous step. The dividend from register D is copied into A and D7 is shifted into CY flag. Then the accumulator contents are replaced by the partial remainder from register C, and the CY flag is shifted into the accumulator to form the partial dividend. The divisor (register E) is compared with the new partial dividend. If the divisor is larger than the dividend, the CY flag is set and the program returns; otherwise, the divisor is subtracted from the partial dividend before returning. 
In the subroutine RESULT, the remainder is saved in register C, and the CY flag is complemented. When the divisor is larger than the partial dividend, the CY flag is set, but the quotient is zero. On the other hand, when the divisor can be subtracted from the partial dividend, the Carry is reset, but the quotient is 1. Thus the CY flag needs to be complemented before placing it as Do into register L. 
In most microprocessor-based products, data are entered and recorded in decimal numbers. For example, in an instrumentation laboratory, readings such as voltage and current are maintained in decimal numbers, and data entry may be done through a decimal keyboard. The system monitor program of the instrument converts each key into an equivalent 4-bit binary number, and stores two BCD numbers in an 8-bit register or a memory location as a packed BCD. Even if data are entered in decimal digits, it is inefficient to process data in BCD numbers because, in each 4-bit combination, the digits A through F are unused. Therefore, BCD numbers are generally converted into binary numbers for data processing. 
The conversion of a BCD number into its binary equivalent employs the principle of positional weighting in a given number. For example, 72,0 = 7 x 10-1-2. 
The digit 7 represents 70, based on its second position from the right. Therefore, to convert 72bcd into its binary equivalent requires multiplying the second digit by 10, and adding the first digit. 
Converting a two-digit BCD number into its binary equivalent requires the following 
steps: 
11.5 
ILLUSTRATIVE PROGRAM: BCD TO BINARY CONVERSION 
1. Separate an 8-bit packed BCD number into two 4-bit unpacked BCD digits: BCD; and BCD2. 
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2. Convert each digit into its binary value according to its position. 
3. Add botii binary numbers to obtain the binary equivalent of the BCD number. 
Convert 72bcd into its binary equivalent. 
Example 11.5 
72,0 = 0111 OOIObcd 
Step 1: 0111 0010 -> 0000 0010 Unpacked BCD, 0000 0111 Unpacked BCD, Step 2: Multiply BCD, by 10 (7 x 10) Step 3: Add BCD, to the answer in Step 2. 
The multiplication of BCD2 by 10 can be performed by various methods. One method is multiplication with repeated addition: add 7 ten times. This technique is illustrated in the next program. 
Solution 
11.51  Problem Statement 
A two-digit BCD number between 0 and 99 is stored in an R/W memory location called the Input Buffer (INBUF). Write a program that utilizes an unpacking subroutine (UNPACK) and a conversion subroutine (BCDBIN) to convert the BCD number into its equivalent binary number. Store the result in a memory location defined as the Output Buffer (OUTBUF). 
11.52 Program 
START:      LD SP, STACK LD HL, INBUF 
LD BC, OUTBUF 
LD A, (HL) LD HL, BUFFI CALL UNPACK CALL BCDBIN LD (BC), A HALT 
;Initialize stack pointer 
;Point HL index to the Input Buffer memory 
;Iocation where BCD number is stored 
;Point BC index to the Output Buffer memory 
;where binary number will be stored 
;Get BCD number 
;Set up HL as memory pointer for BUFFI ;Call routine to unpack BCD number ;Call BCD to binary conversion routine ;Store binary number in the Output Buffer ;End of program 
UNPACK:      ;This subroutine unpacks the BCD number from the accumulator ;and stores two unpacked BCD digits in output buffer ;memory BUFFI and BUFFI + 1 
;Input: Packed BCD number in the accumulator, and storage address 
;for unpacked BCD in HL 
;Output: None, but stores unpacked BCD in BUFFI and BUFFI + 1 ;Registers modified: Accumulator and HL 
PUSH BC 
LD B, A ;Save BCD number temporarily 
AND OFH ;Keep low-order 4 bits BCDl 
LD (HL), A ;Store BCD, in BUFFI 
INC HL ;Point to BUFFI + 1 
SRL B ;Shift BCDz to right to get it into bits D3-D0 
SRL B SRL B SRLB 
LD (HL), B iStore BCD2 in BUFFI + 1 
RET 
FOP BC 
BCDBIN:      ;This subroutine converts an unpacked BCD number into ;its binary equivalent. 
;Input: Two unpacked BCD numbers in BUFFI and BUFFI + 1, ;        low-order BCD, in BUFFI and BCD2 in BUFFI + 1 ;Output: A binary number in the accumulator. ;Registers modified: A, E, H, and L 
LD HL, (BUFFI) XOR A LD E, 10 SUM:      ADD A, E 
DEC H JR NZ SUM ADD A, L RET 
;Get BCD] in L and BCD2 in H registers 
;Clear accumulator 
;Set register E as multiplier of ten 
;Add ten to accumulator and continue adding 
;as many times as the value of BCD2 
;Reduce BCD2 by one 
;Is multiplication complete? If not repeat 
;Add BCD, 
11.53  Program Description 
1. In modular programming, the main program is concerned primarily with initializations and passing parameters on to subroutines. In this illustration, the main program initializes the stack pointer and two memory indexes. It brings the BCD number into the accumulator, initializes location BUFFI, and passes these parameters to the subroutine. It calls two subroutines: UNPACK and BCDBIN. 
2. After the return from the subroutines, the main program stores the binary equivalent in the Output Buffer memory. 
3. The conversion from BCD to binary involves multiplying BCD2 by its positional weighting factor (10) and adding BCDi as explained in the example. 
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The illustrated multiplication routine is easy to understand; however, it is rather long and inefficient. Another method is to multiply BCD2 by shifting, as illustrated in Assignment 19 at the end of this chapter. We could have used also the MLTPLY (Section 11.33) subroutine with a few modifications. 
In most microprocessor-based products, numbers are displayed in decimal. However, since data processing inside the microprocessor is performed in binary, it is necessary to convert the binary results into their equivalent BCD numbers just before the display. 
The conversion of Binary to BCD is performed by dividing the number by the powers of ten; the division can be performed either by the subtraction method or the algorithm shown in the subroutine DIVIDE (Section 11.43). 
For example, assume the binary number is 
To represent this number in BCD requires 12 bits or three BCD digits, labelled here as BCD3 (MSB), BCD2, and BCD, (LSB). 
ILLUSTRATIVE PROGRAM: BINARY TO BCD 
CONVERSION 
11.6 
1111   1 1 1 I2 (FFh) = 255 
0   0 10 BDC3 
0   10 1 
BCD2 
0   10 1 BCD, 
The conversion can be performed as follows: 
Example Quotient 
Step 1: If the number is less than 100, go to Step 2; otherwise, subtract 100 repeatedly until the remainder is less than 100. The quotient is the most significant BCD digit BCD3. 
-100 =155 1 -100 = 55 1 
255 
BCD3 = 2 
Step 2: If the number is less than 10, go to Step 3; otherwise subtract 10 repeatedly until the remainder is less than 10. The quotient is BCD2. 
-10 = 45 -10 = 35 -10 = 25 -10 = 15 -10 = 05 
55 
BCD2 = 5 
Step 3: The remainder from step 2 is BCD,. 
BCD 
= 5 
These steps can be converted into a program as illustrated below. 
11.61 Problem Statement 
An 8-bit binary number is stored in the memory location BINBYT. Convert the number into BCD, and store each BCD as unpacked BCD digits in an output buffer. 
11.62 Problem Analysis 
The problem can be divided into three tasks. 
1. The first task is to get the byte from memory. This can be part of the main program. 
2. After getting the byte, it has to be divided by 100 and 10. These divisors need to be supplied. 
3. Convert the binary number into BCD numbers and store them in the output buffer. 
11.63 Program 
This program converts an 8-bit binary number into a BCD number, so it requires 12 bits to represent three BCD digits. The result is stored as three unpacked BCD digits in three output buffer memory locations. 
START:   LD SP, STACK LD HL, BINBYT LD A, (HL) CALL BINBCD HALT 
; Initialize stack pointer 
; Point HL index to where binary number is stored. 
; Transfer byte 
; Call conversion subroutine 
BINBCD: 
;This subroutine supplies the powers of ten in register B ;and calls the BCD conversion routine. 
;Input: Binary number in the accumulator. 
;Output: Powers of ten and stores BCD| in the first output buffer. ;Calls BCD routine and modifies register B. LD HL, OUTBUF LD B, 100 
CALL BCD LD B, 10 CALL BCD LD (HL), A RET 
Point HL index to output-buffer memory 
Load 100 into register B (in manual assembly 100 should be converted to 64H) 
Call conversion 
Load 10 into register B 
Store BCD, 
BCD: 
;This subroutine converts a binary number into 
;BCD and stores BCDj and BCD3 in the output buffer. 
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;Input:Binary number in accumulator and powers of ten in B. ;Output: None, but stores BCD2 and BCD3 in output buffer. ;Modifies accumulator content. LD (HL), OFFH ;Load buffer with (zero minus one) 
STORE:   INC (HL) SUB B 
JR NC, STORE 
ADD A, B INC HL RET 
Clear buffer and increment for each subtraction 
Subtract power of ten from binary number 
Is number larger than power of ten? If yes, go back and add 1 to buffer 
If no, add power of ten to get back remainder 
Go to next buffer location 
11.64  Program Descriptioii 
This program illustrates the concepts of the nested subroutine and multiple call subroutine. The main program calls the subroutine BINBCD; in turn, the BINBCD calls the BCD subroutine twice. 
1. The main program transfers the byte to be converted to the accumulator, and calls the BINBCD subroutine. 
2. The subroutine BINBCD supplies the powers of ten by loading register B and the address of the first output buffer memory location, and calls the conversion routine BCD. 
3. In the BCD conversion routine, the output buffer memory is used as a register whose contents are incremented in each subtraction loop. This step can also be achieved by using a register in the microprocessor. The BCD routine is called twice, once after loading register B with 100, and again after loading register B with 10. 
4. During the first Call of BCD, the subroutine clears the output buffer, stores BCD3, and points the HL registers to the next output buffer location. The instruction ADD A, B is necessary to restore the remainder because one extra subtraction is performed to check the borrow. 
5. During the second Call of BCD, the subroutine again clears the output buffer, stores BCD2, and points to the next buffer location. BCD, is already in the accumulator after the ADD instruction, which is stored in the third output buffer by the instruction LD (HL), A in the BINBCD subroutine. 
ILLUSTRATIVE PROGRAM: ASCII TO BINARY CODE 
CONVERSION 
11.7 
A computer is a binary machine; it understands and communicates in binary language. However, human beings communicate using alphanumeric symbols (letters and numbers). 
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Therefore, we need to translate between alphanumeric symbols and the binary language; ASCII (The American Standard Code for Information Interchange) is a commonly used code for such translation. It is a seven-bit code with 128 (2') combinations. In the 8-bit word format, the ASCII code ranges from OOh to 7Fh, bit D7 being 0. Each combination is assigned to a letter, a decimal number, or a machine command (see Appendix C). For example, hexadecimals 30h to 39h represent numerals 0 to 9, and 41h to 5Ah represent capital letters from A to Z. 
The ASCII keyboard is a standard input device for most microcomputers. When an ASCII character is entered, the microprocessor receives the binary equivalent of the ASCII Hex number. For example, when the ASCII key for digit 9 is pressed, the microprocessor receives the code 0 0 1 1 10 0 1 (39h), which must be converted to the binary equivalent of 09 (0 0 0 0 1 0 0 1) for arithmetic operations. Similarly, to display digit 9 at the video terminal, the microprocessor must send out the ASCII code 39h. In some systems, bit D7 of the ASCII code is used for the parity check. The parity check conveys the information whether the number of Is in a transmitted ASCII byte is odd or even (see Chapter 15 for details). For example, in a system with the odd parity check, ASCII 9 will be transmitted with D7 as 1 to keep the number of Is odd in the byte; ASCII 9 will be B9h. At this point, we do not need to know the details of parity check except that bit D7 should be masked to translate from ASCII to binary code. 
11.71 Problem Statement 
Write a subroutine to convert an ASCII Hex digit (0 to F) into its binary equivalent. A calling program places the ASCII Hex digit including the parity bit into the accumulator. 
11.72 Problem Analysis 
The ASCII codes for digits 0 to 9 range from 30h to 39h, and for digits A to F, they range from 41h to 46h; there is a break in the range. Therefore, to set up a conversion routine, we need to check two ranges. If the digit is between 0 and 9, it can be obtained by subtracting 30h from the ASCII code. If it is between A to F, we need to subtract an additional 07h from the remainder because there are seven ASCII codes between the code of 9 (39h) and code of A (41h). 
11.73 Program 
ASCBIN:   ;This subroutine takes an ASCII Hex digit, strips the parity bit, and 
; converts it into its binary equivalent. In the comment section, the routine ; is explained assuming ASCII F (46H) as an illustration. 
;Input: ASCII Hex digit (with parity bit) in the accumulator 
;Output: Binary equivalent in the accumulator 
;Modifies the contents of the accumulator 
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Example AlOOlO   01101 46H 
	AND 7FH 
	;Mask parity bit 
	10111 mil 

	SUB 30H 
	;Subtract 0 bias from the digit 
	4 6 H 

	CP 10 
	-3 0 H 

	;Is the digit between 0 and 9? 
	1 6 H 

	RET C 
	;If yes, conversion done 
	

	SUB 7 
	;If not, subtract 7 to find digit 
	1 6 H 

	
	; between A and F 
	07H 

	RET 
	
	OFH 


11.74  Program Description 
This is an illustration of the multiple ending subroutine. If the digit is between 0 and 9, its comparison with 10 results in a return on the Carry flag. Otherwise, the subroutine returns after subtracting an additional 7. However, this routine does not check whether the ASCII character is beyond the range of Hex digits. 
ILLUSTRATIVE PROGRAM: BINARY TO ASCII CODE 
CONVERSION 
The binary to ASCII code conversion is necessary to display text or numbers at an ASCII terminal (or print at a printer). For example, to display digit 9 at the terminal, the microprocessor should send out 39h. The following subroutine illustrates binary to ASCII conversion. 
11.81 Problem Statement 
Wiite a subroutine to convert a byte in the accumulator into two ASCII characters and store them in output buffer OUTBUF and OUTBUF + 1. 
11.82 Problem Analysis 
A byte in the accumulator is equivalent to 2 Hex digits. Therefore, the byte should be unpacked. The conversion process is opposite to that of the previous subroutine ASCBIN. If the digit is between 0 to 9, it is converted by adding 30h, and if the digit is between A to F, an additional 07h must be added to the digit. 
11.83 Program 
BINASC:      ;This subroutine converts the byte in the accumulator into two ASCII ;characters and saves them in memory OUTBUF and OUTBUF + 1 ;Input: Byte in the accumulator and the memory pointer for OUTBUF ;in BC 
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11.9 
;Output: None; two ASCII characters are stored in OUTBUF ;Registers modified: A, B, C, H, and L ;Calls two subroutines: UNPACK and ASCII 
CALL, UNPACK 
;Unpack the byte from the accumulator and ;place nibbles as low-order 4-bit in BUFFI and ;BUFF1 + I 
;Place unpacked nibbles into HL register ;Place digit from BUFFI into A for conversion ;Convert into ASCII character ;Store first ASCII in OUTBUF ;Memory pointer to OUTBUF + 1 ;Place digit from BUFFI H- 1 into A for conver;sion 
;Convert second digit into ASCII character ;Place second ASCII into OUTBUF -I- 1 ;End 
LD HL, (BUFFI) LD A, L CALL ASCII LD (BC), A INC BC LD A, H 
CALL ASCII LD (BC), A HALT 
UNPACK:      ;This subroutine is written in Section 11.53. 
ASCII:      ;This subroutine converts low-order 4-bit into ASCII Hex code 
;Input : Binary digit from 0 to F as low-order 4-bit in the accumulator ;Output: ASCII Hex code in the accumulator ;Modifies accumulator contents CP 10 
JR C, BASE ADD A, 07H BASE:      ADD A, .30H RET 
SOFTWARE DESIGN 
Is digit less than 10? 
If yes, go to add ASCII base of 30H 
Add 7H to get code for digits between A and F 
Add ASCII base 30H 
In previous sections of this chapter, we illustrated various subroutines related to 16-bit arithmetic operations and code conversions. These subroutines are written as independent modules dealing with a simple task. We can now combine these independent modules to design a simple project. The following project can be viewed as part of a communication process between the microcomputer and its terminal. The project is concerned with how to process ASCII characters after they have been received, how to form binary numbers for arithmetic operations, and how to convert any arithmetic results into ASCII characters for display. 
11.91   Project Statement 
Four ASCII characters are stored sequentially in the input buffer INBUF. The first two characters represent an 8-bit multiplicand and the remaining two represent an 8-bit multiplier. Each number is stored low-order digit first, followed by the high-order digit. 
Convert the ASCII characters into binary digits, multiply the numbers, and store the result in the output buffer OUTBUF as ASCII characters. 
11.92  Project Analysis 
This is a simple software design project, and it can be divided into various segments. To clarify the analysis, the steps are illustrated with the example of the following four ASCII characters: 32h, 41h, 46h and 35h (Figure 11.1). 
1. First, we need to convert ASCII characters into their binary equivalents. Foui ASCII characters will have four binary digits; thus, they can be placed as unpacked binary digits (02, OA, OF, 05) back into INBUF. (See Appendix C for ASCII table to obtain Hex equivalent for ASCII characters.) 
2. The first two represent a multiplicand (A2h) and the remaining two represent a multiplier (5Fh). These four digits need to be packed as two binary numbers (Figure 11.1(b)). 
3. When these two 8-bit numbers are multiplied, the result can be as large as a 16-bit number (or four Hex digits). In our example, the result is 3C1Eh. 
4. To convert the result into ASCII characters, all four digits should be converted into unpacked digits as OE, 01, OC, and 03 (Figure 11.1(c)). 
5. Now the unpacked digits can be converted into ASCII characters as 45h, 31h, 43h, and 33h and stored sequentially in the output buffer OUTBUF (Figure 11.1(d)). 
11.93 Program 
START: 
CHAR: 
	LD SP, STACK 
	;Initialize the stack 

	LD HL, INBUF 
	;Set up HL as memory pointer to ASCII 

	
	;characters 

	LD B, 04H 
	;Set up register B to count ASCII characters 

	LD A, (HL) 
	;Get ASCII character 

	CALL ASCBIN 
	;Convert into binary 

	LD (HL), A 
	;Place unpacked binary digit into INBUF 

	INC HL 
	;Next buffer memory location 

	DEC B 
	;One conversion complete 

	JR NZ, CHAR 
	;If all characters are not yet converted, get 

	
	;next one 

	LD HL, INBUF 
	;Set up HL as memory pointer for unpacked 

	
	;digits 

	CALL PACK 
	;Pack digits of the multiplicand 

	LD E, A 
	;Place the multiplicand in register E 

	CALL PACK 
	;Pack digits for the multiplier 

	LD D, A 
	;Place the multiplier in register D 

	CALL MLTPLY 
	;Multiply two numbers and place result in 

	
	;HL 

	EX DE, HL 
	;Save the result in DE 
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DIGIT: 
PACK: 
LD HL, OUTBUF LD A, E CALL UNPACK 
;Set up HL as memory pointer for OUTBUF ;Get low-order byte of the result ;Unpack the low-order byte and store in ;OUTBUF 
;Update memory pointer ;Get high-order byte of the result ;Unpack high-order byte and store in ;OUTBUF 
;Set up HL as memory pointer for OUTBUF ;Set up register B to count four digits ;Get binary digit 
;Convert binary digit into ASCII character ;Save ASCII character in OUTBUF ;Next buffer memory location ;One conversion complete ;If all digits are not yet converted, get next ;digit 
HALT 
;This subroutine takes two unpacked digits from memory and packs 
;them into an 8-bit number in the accumulator. 
;Input: Memory address in HL 
;Output: Packed number in the accumulator 
;Modifies registers: A, B, H, and L 
LD HL, OUTBUF + 2 LD A, D CALL UNPACK 
LD HL, OUTBUF LD B, 04H LD A, (HL) CALL ASCII LD (HL), A INC HL DEC B 
JR NZ, DIGIT 
	LD B, (HL) 
	;Get low-order unpacked digit 

	INC HL 
	;Point to the next digit 

	LD A, (HL) 
	;Get high-order unpacked digit 

	SLA A 
	;Place digit into bit positions D7-D4 

	SLA A 
	;and clear Dj-Dq. 

	SLA A 
	

	SLA A 
	

	OR B 
	;Pack both digits 

	INC HL 
	;Point to the next memory location 

	RET 
	


11.94  Program Description and Debugging 
This program is made up of several subroutines written previously, and the comments explain the functions of each subroutine. This is a demonstration of how a problem can be divided into small modules and how these modules can be written as subroutines and combined into a program. 
The program begins by initializing a memory pointer for ASCII characters stored in INBUF and the counter to get these characters into the microprocessor. The program segment starting with the label CHAR gets these characters and converts them into 
unpacked digits using the subroutine ASCBIN. Figure 11.1(a) shows the process with the four specific ASCII characters as examples. The subroutine PACK converts them into binary numbers—a multiplicand and a multiplier—and stores them in registers E and D, respectively. The next subroutine MLTPLY multiplies these numbers and places the product 3C1 Eh into register HL (Figure 11.1 (c)). The product is again unpacked and stored as four unpacked digits in memory OUTBUF. Finally, these digits are converted into ASCII characters by the subroutine ASCII (Figure 11.1(d)). We could have used the subroutine BINASC, with some modifications, instead of the last two subroutines. 
The subroutines used in this project are taken from the previous programs, except PACK, which is included at the end of the program. In troubleshooting this program, you have to be careful in checking the parameters that are passed from one module to another. However, this type of program is easy to debug. The programmer can set up breakpoints at the end of a module and check register contents and parameters being passed. For example, a breakpoint can be set up just before the subroutine PACK is called, and the contents of memory INBUF can be verified. If unexpected results are found, you can examine the initialization instructions or the subroutine ASCBIN. On the other hand, if the expected results are found, you can proceed to check the output after the subroutine PACK. The keys to troubleshooting software are modularity and knowledge of the expected outputs at critical junctures. 
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SUMMARY 
This chapter illustrated subroutines dealing with arithmetic operations such as multiprecision addition, multiplication, and division, and code conversions for BCD and ASCII. The programs were written as independent modules, and the design of a simple software project was illustrated using these modules. The project demonstrated how to break down a given problem into small manageable modules, and how these modules can be written as subroutines and combined in a program to accomplish a given task. 
However, single-board microcomputer systems are unsuitable for writing, coding, and debugging programs larger than fifty instructions. To write a large program, it is necessary to have access to an assembler and a disk-based system, as discussed in Chapter 7. 
ASSIGNMENTS 
Section 11.1 
1. Register BC contains the 16-bit number 72F2h. Add F5h to the number and save the result in BC. 
2. Two 16-bit numbers (82F7h and 24A2h) are stored in memory locations 20.50h to 20.53h, low-order byte first followed by the high-order byte. For example, the location 20.50h holds F7h and 20.5 1h holds 82h. Add the numbers. If the sum is larger than 16-bit, call the ERROR routine; otherwise, store the sum in memory locations 2060h and 206 1h. 
3. Register BC contains A7F2h and register DE contains .5F18h. Add the numbers. If the sum is larger than 16-bit, call the OVRLOD routine; otherwise, save the result in register BC. 
4. Register BC contains 87A9h. Subtract the byte F8h and save the result in register BC. 
5. Register BC holds F5.38h and register DE holds A279h. Subtract the contents of DE from the contents of BC and save the result in BC. 
6. Register D holds the number C4h. Shift the entire number to the left by four positions and clear bits D3-D0 (the result should be 40h). 
7. Write instructions to get the address from the stack pointer and save it on the stack. 
8. Assuming the HL register holds 2088h, write a 1-byte instruction to transfer the program execution to 2088h
Section 11.2 
9. Two 24-bit numbers, each occupying three memory locations, are stored in addresses starting with 20.50h and 2060h. The numbers are stored with high-order 
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byte first; locations 2050h and 2060h hold the high-order byte of each number. Write a subroutine to add the numbers and store the result in memory locations starting with the low-order byte at 2070h. The calling program should pass the memory addresses to the subroutine. 
10. A string of 16-bit numbers is stored in memory locations starting at BUFl; the numbers are stored with low-order byte first. Write a subroutine to add the string and save the result in the output buffer OUTBUF; the result is limited to 24 bits. The calling program should supply the memory addresses and the length of the string. 
11. Modify the program in 10 to increase the limit of the result to 32 bits. 
12. In 10, save the contents of the stack pointer from the main program, point the stack pointer to the location BUFl, and transfer the readings to registers by using the POP instruction. Add the readings as in 10; however, the original contents of the stack pointer should be retrieved after the addition is completed. 
13. Assume that the monitor program stores a memory address in the DE registers. When a Hex key is pressed to enter a new memory address, the keyboard subroutine places the 4-bit binary code of the key pressed into the accumulator. Write a subroutine to shift out the most significant four bits of the old address, and to insert the new code from the accumulator as the least significant four bits in register E. 
Hints: See Example 11.4 to shift the four low-order bits in a 16-bit register. 
Sections 11.3 and 11.4 
14. Rewrite the MLTPLY subroutine to multiply two 16-bit unsigned numbers; the multiplier is given in register DE and the multiplicand in register HL. 
15. Rewrite the MLTPLY subroutine using the technique of successive addition for two 8-bit unsigned numbers. 
16. Write a subroutine to divide two unsigned 8-bit numbers using the technique of successive subtraction. The calling program passes the dividend in register D and the divisor in register E. 
17. Write a subroutine to divide two unsigned 16-bit numbers using the technique shown in Section 1L4. The calling program passes the dividend in register HL and the divisor in register DE. 
Section 11.5 
18. Modify the Illustrative Program: BCD to Binary Conversion as follows. The number of BCD digits to be converted is specified by the main program in register D and passed on as a parameter to the subroutine. 
19. Rewrite the multiplication section of the BCDBIN routine using the RLCA (Rotate Left) instruction. 
Hints: Rotating left once is equivalent to multiplying by two. To multiply a digit by ten, rotate left three times and add the result of the first rotation (times 10 = times 8 + times 2). 
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20. An 8-bit packed BCD is in the accumulator. Save BCD| in one of the registers and delete BCD] from the accumulator, leaving BCD2 in high-order positions D7-D4. Clear the CY flag and shift BCD2 to the right by one position. Explain that by rotating BCD2 to the right once from the high-order position is equivalent to multiplying it by eight from the low-order position. 
Section 11.6 
21. Assume the STACK is defined as 20B8h in the illustrative program. Specify the stack addresses and their (symbolic) contents when the BCD subroutine is called the second time. 
22. Rewrite the main program to supply the powers of ten in registers B and C, and to store converted BCD numbers in the output buffer. Modify the subroutine BCD to accommodate the changes in the main program, and eliminate the subroutine BINBCD. 
23. Rewrite the program to convert a given number of binary data bytes into their BCD equivalent, and store them as unpacked BCDs in the output buffer. The number of data bytes is specified in register D in the main program. The converted numbers should be stored in groups of three consecutive memory locations. If the number is not large enough to occupy all three locations, zeros should be loaded into those locations. 
24. A set of ten BCD readings is stored in the input buffer. Convert the numbers into binary, and add the numbers. Store the sum in the output buffer; the sum can be larger than FFh
Sections 11.7, 11.8 and 11.9 
25. Rewrite the subroutine PACK using an appropriate Rotate instruction. 
26. A set of ASCII Hex digits is stored in the input buffer. Write a program to convert these numbers into binary. Add these numbers in binary, and store the result in the output buffer. 
27. Extend the program in 26 to convert the result from binary to ASCII Hex code. 
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Part III of this book is concerned with the interfacing of peripherals using programmable I/O devices and design processes of microcomputer-based systems. The primary objectives of Part III are 
1. To examine the concepts and processes of various data transfers between the microprocessor and peripherals. 
2. To illustrate applications of programmable I/O interface devices. 
3. To synthesize the concepts of microprocessor architecture, software, and interfacing by designing a simple microprocessor-based system. The primary function of the microprocessor (MPU) is to accept data from such input devices as keyboards and A/D converters, read instructions from memory, process data according to the instructions, and send the results to such output devices as LEDs, printers, and video monitors. These input and output devices are called either peripherals or I/Os; memory can be viewed as a special type of I/O. The designing of logic circuits (hardware) and the writing of instmctions (software) to enable the microprocessor to 
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Transmission Format 
Modes of Data Transfer 
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With BUSRQ Signal (Direct Memory Access) 
Status Check Inteiiupt Process of Data Transfer between the Z80 Microprocessor and Peripherals 
communicate with these peripherals is called interfacing, and the logic circuits are called I/O ports or interfacing devices. 
The microprocessor (MPU) communicates with the peripherals in either the asynchronous or synclironous format. Similarly, it can transfer data in one of two modes: parallel I/O or serial I/O. The Z80 identifies peripherals either as memory-mapped I/O or peripheral I/O based on their interfacing logic circuits (see Chapter 5). Data transfer between the microprocessor and peripherals can take place under various conditions, as shown in the chart. The modes, techniques, instructions, and conditions of data transfer are briefly described in the following paragraphs. 
FORMATS OF DATA TRANSFER: SYNCHRONOUS AND ASYNCHRONOUS 
Synchronous means at the same time; transmitter and receiver are synchronized with the same clock. Asynchronous means at irregular intervals. The synchronous format is used in high-speed data transmission, and the asynchronous format is used for lowspeed data transmission. Data transfer between the microprocessor and peripherals is primarily asynchronous. 
MODES OF DATA TRANSFER: PARALLEL AND SERIAL 
The microprocessor receives (or transmits) binary data in either of two modes: parallel or serial. In the parallel mode, the entire word (4-bit, 8-bit, or 16
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bit) is transferred at the same time. In the Z80, an 8-bit word is transferred simultaneously over the eight data lines as illustrated in Chapter 5. The peripherals commonly used for parallel data transfer are keyboards, seven-segment LEDs, data converters, and memory. 
In the serial mode, data are transferred one bit at a time over a single line between the microprocessor and a peripheral. For data transmission from the microprocessor to a peripheral, a word is converted into a stream of eight bits; this is called parallelto-serial conversion. For reception, a stream of eight bits is converted into a parallel word; this is called serial-to-parallel conversion. The serial I/O mode is commonly used with such peripherals as a teletype (TTY), CRT terminals, printers, and cassette tapes. 
TYPES OF I/O: PERIPHERAL RND MEMORY-MAPPED 
In ZBO-based systems, I/O devices can be classified in two categories: peripheral I/Os or memorymapped I/Os. In peripheral I/O, a peripheral is identified with an 8-bit address, and I/O related control signals are used for data transfer. In memorymapped I/O, a peripheral is connected as if it were a memory location, and it is identified with a 16-bit address. Data transfer is implemented by using memory-related control signals. 
CONDITIONS OF DATA TRANSFER 
The process of data transfer between the microprocessor and peripherals is controlled either by the microprocessor or by the peripherals. Data transfer is generally implemented under the microprocessor control when the peripheral response is slow relative to that of the microprocessor. 
MICROPROCESSOR-CONTROLLED DATA TRANSFER 
Most peripherals respond slowly in comparison to the speed of the microprocessor. Therefore, it is necessary to set up conditions for data transfer so that data will not be lost during the transfer. Micropro
cessor-controlled data transfer can take place under five different conditions: (1) unconditional, (2) status check (also known as polling), (3) intenupt, (4) with WAIT signal, and (5) with handshake signals. These conditions are described briefly. 
Unconditional Data Transfer In this form of data transfer, the microprocessor assumes that a peripheral is always available. For example, to display data at an LED port, the microprocessor simply enables the port, transfers data, and goes on to execute the next instruction. 
Data Transfer with Status Check (Polling) In 
this form of data transfer, the microprocessor is kept in a loop to check the status of a peripheral; this is also called polling. When the status condition is satisfied, data transfer is implemented. For example, to read data from an input keyboard in a single-board microcomputer, the microprocessor can keep polling the port until a key is pressed. 
Data Transfer with Interrupt In this form of data transfer, when a peripheral is ready to transfer data, it sends an interrupt signal to the microprocessor. The microprocessor stops the execution of the program, accepts the data from the peripheral, and then returns to the program. The advantage of the interrupt technique is that the processor is free to perforai other tasks rather than waiting in a status check or polling loop. 
Data Transfer with WAIT Signal When peripheral response time is slower than the execution time of the microprocessor, the WAIT signal can be used to add T-states, thus extending the execution time. This technique provides sufficient time for the peripheral to complete the data transfer and is commonly used in a system with slow memory chips. 
Data Transfer with Handshake Signals In this form of data transfer, signals are exchanged between the microprocessor and a peripheral prior to actual data transfer; these signals are called handshake 
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signals. The function of these signals is to ensure the readiness of the peripheral and to synchronize the timing of the data transfer. For example, when an A/D converter is used as an input device, the microprocessor needs to wait because of the slow conversion time of the converter. At the end of the conversion, the A/D converter sends the Data Ready (DR), also known as End of Conversion, signal to the microprocessor. Upon receiving the DR signal, the microprocessor reads the data and acknowledges by sending a signal to the converter that the data have been read. During the conversion period, the microprocessor keeps checking the DR signal; this technique is called the status check with handshake signals and is functionally similar to the polling method. 
Rather than using the handshake signals for the status check, the signals can be used to implement data transfer with interrupt. In the above example of the A/D converter, the DR signal can be used to interrupt the microprocessor. 
Handshake signals prevent the microprocessor from reading the same data more than once from a slow device and from writing new data before the device has accepted the previous data. 
PERIPHERAL-CONTROLLED DATA TRANSFER 
The last category of data transfer is peripheral-controlled I/O. This type of data transfer is employed when the peripheral is much faster than the microprocessor. For example, in the case of Direct Memory Access (DMA), the DMA controller sends a BUSRQ (Bus Request) signal to the microprocessor; the microprocessor acknowledges the request and releases its data bus, address bus, and control signals to the DMA controller; and data are transferred at high speed without the intervention of the microprocessor. 
CHAPTER TOPICS 
Chapter 12 is concerned with the Z80 interrupt I/O process, whereby an external peripheral can interrupt the processor and indicate its readiness for data 
communication. The chapter discusses various modes of the Z80 interrupt and illustrates them with applications. 
Chapter 13 deals with the programmable interface devices: the Z80 PIO and the Intel 82.5.5A. These devices can be set up to perform various I/O tasks by instructions written in their control registers; they are thus called programmable devices. The chapter explains the basic concepts underlying the devices and illustrates various operational modes of these devices with examples. 
Chapter 14 describes two programmable timers: the Z80 CTC and the Intel 82.5.3. While time delays and counters were designed using software instructions in earlier chapters, this chapter illustrates the hardware approach. 
Chapter 15 focuses on serial data communication, whereby data bits are transferred one bit at a time over one line. First, the chapter discusses the basic concepts in serial I/O and the software approach to serial data transfer. Then it illustrates how the concepts can be implemented using programmable serial interface devices such as the Z80 SIO and the Intel 8251 A. 
Chapter 16 is concerned with advanced topics in memory interfacing and concepts in the direct memory access (DMA). The topics include the need for Wait states, interfacing of dynamic memory, and data transfer using DMA techniques. 
Chapter 17 discusses the design processes in a microprocessor-based product. The primary objective of this chapter is to synthesize the various concepts, both hardware and software, discussed in all the previous chapters; it includes the design of a single-board microcomputer. 
Chapter 18 reviews various 8-bit, 16-bit, and 32-bit microprocessors and single-chip controllers and suggests trends in microprocessor technology. 
PREREQUISITES 
□ Basic concepts of microprocessor architecture, memory, and I/Os (Part I). 
□ Familiarity with the Z80 instruction set and programming techniques (Part II). 
Interrupts 
In the introduction to Part III, we classified the processes of data transfer between the microprocessor and peripherals into five categories: unconditional, polling, interrupt, using Wait states and handshake signals. In this chapter, we focus on the interrupt process. The interrupt I/O is a process of data transfer whereby an external device or a peripheral can inform the processor that it is ready for communication and requests attention. The process is initiated by an external device, and is asynchronous, meaning that it can be initiated at any time without reference to the system clock. However, the response to an interrupt request is directed or controlled by the microprocessor. 
The interrupt requests are classified in two categories: maskable interrupt and nonmaskable interrupt. A maskable interrupt request can be ignored or delayed by the microprocessor if it is performing some critical task; however, it has to respond to a nonmaskable request immediately. The maskable interrupt is somewhat like a telephone that can be kept off the hook if one is not interested in receiving any calls. The nonmaskable interrupt is like a smoke detector requiring immediate attention if set off. 
The interrupt process allows the microprocessor to respond to these external requests for its attention or service on a demand basis and leaves the microprocessor free to perform other tasks. On the other hand, in the program controlled (or polled) 

        
        [image: Picture #107]
        

        I/O, the microprocessor remains in a loop, continuously checking the I/O device and doing nothing else, until the device is ready for data transfer. 
This chapter describes the basic concepts in the interrupt process and provides an overview of the Z80 nonmaskable interrupt and three modes of the maskable interrupt: Modes 0, 1, and 2. The interrupts are illustrated with examples and industrial applications, such as the interfacing of an A/D data converter. Finally, it includes discussion of how multiple interrupts are implemented with one interrupt line and how priorities are determined. 
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OBJECTIVES 
□ Explain an interrupt process and the difference between a nonmaskable and a maskable internipt. 
o List the modes of the maskable interrupt and differences among them. 
□ Explain the instructions EI, DI, and RST, and their functions in the Z80 interrupt process. 
□ List the eight steps to initiate and implement an interrupt in Z80. 
□ Design and implement an interrupt with a given RST instruction in Mode 0. 
□ Design and implement an interrupt in Mode 2 for a given memory address as a restart location. 
□ Interface an external device such as an A/D converter with the interrupt I/O. 
□ Explain how to connect multiple-interrupting peripherals with the INT interrupt line and how to determine their priorities using logic circuits. 
□ Explain how to use a RST instruction to implement a software breakpoint. 
12.1 
BASIC CONCEPTS IN INTERRUPT I/O 
The interrupt I/O is a communication process through which the MPU can be interrupted by using one of the external request signals. In Chapter 3, we discussed briefly five such request signals (pins): Reset, Interrupt (INT), Nonmaskable Interrupt (NMI), Wait (WAIT), and Bus Request (BUSRQ) in the context of the Z80 architecture, and they are shown in Figure 12.1(a). In this chapter, we focus primarily on two external request signals, INT and NMI (Figure 12.1(b)), and their functions in the I/O communication process. 
The interrupt signal can be compared with a telephone in a office; a person in the office can continue to work until interrupted by a phone ring. After answering the phone, the person can go back to work. In a microcomputer system, an external device can interrupt the microprocessor by using the interrupt signal. For example, let us assume the microcomputer is executing a program and occasionally needs to read data from a data converter whenever a new reading is available. The data converter can be interfaced with 
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the microprocessor using the inteiTupt line, so that it can interrupt the processor whenever a new data byte is available. The processor can then read the data byte and go back to executing the program. The interrupt I/O allows the processor to execute the program and also attend to various peripherals on a demand basis. Otherwise, in our example, the processor would be kept busy just reading data from the data converter input port. 
What happens in the office of busy or high-powered executives when the phone rings? Generally, the secretary or the administrative assistant answers the phone, then transfers the call to the person you asked for; you may even have to go through one more secretary. When the Z80 microprocessor is interrupted, the program execution is transfened to specific locations in memory to get further instructions for what to do next; this group of instructions is called a service routine. In our example, the service routine may consist of reading a data byte. The Z80 microprocessor has various processes for transferring the program execution to these specific locations in memory similar to the various office protocols for answering telephones. These processes are called interrupt modes and are described in the next section. 
12.11   Overview of Z80 Interrupts 
The Z80 intenupts are divided into two gioups: nonmaskable interrupt (NMI, pin 17) and maskable interrupt (INT, pin 16). The maskable interrupt is the interrupt that can be masked, meaning it can be disabled or enabled. On the other hand, the nonmaskable interrupt cannot be disabled. The maskable interrupt has three different modes (Modes 0, 1, and 2), as shown in Figure 12.2, and they are explained in the following sections. 
MASKABLE INTERRUPT 
The Z80 maskable intenupt is controlled by the Interrupt Enable flip-flops (IFFl and IFF2), which are internal to the processor. These flip-flops are set to logic 1 by using the 
Z80 Interrupts 
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0066H 
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0038H 
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software instruction EI to enable the interrupt process. The maskable interrupt can be disabled by using the instruction DI; this instruction resets the flip-flops IFF! and IFF2. 
Instruction: EI—Enable Interrapt 
□ This is a 1-byte instruction. 
□ The instruction sets the Interrupt Enable flip-flops IFFl and IFF2 and enables the interrupt process. 
□ The interrupt process is disabled by the instruction DI, an interrupt acknowledgment by the Z80, or system Reset. 
Instruction: DI—Disable Interrupt 
□ This is a 1-byte instruction. 
□ The instruction resets the Interrrupt Enable flip-flops and disables the maskable interrupt. 
□ This instruction should be included in a program segment where an interrupt from an outside source cannot be tolerated. 
The Z80 microprocessor can be interrupted from whatever it is doing if 
□ the flip-flops IFFl and IFF2 are set (through software). 
□ the input to the interrupt signal INT (pin 16) is caused to go low by a signal from an external device or a peripheral until the microprocessor has time to sample the INT. The n?r signal is level sensitive, meaning it is not accepted (or stored) immediately on transition from high to low (see the details in Mode 0). 
What happens after the Z80 is interrupted is dependent on the mode it has been programmed for by the programmer. The Z80 instruction set has three instructions to set the interrupt mode: IM 0 (Mode 0), IM 1 (Mode 1), and IM 2 (Mode 2). 
Mode 0: The program execution can be transferred to one of the eight memory locations from OOOOh to 00.38h shown in Table 12.1 by using additional hardware (Refer to Section 12.2 for details). 
Mode 1: The program execution is directly transferred to memory location 0038h without any additional hardware. 
Mode 2: The program execution can be transferred to any memory location by using external hardware and the address in the interrupt vector register I. 
The next step is dependent on what is written at these memory locations; this is similar to what happens to your phone call when the secretary transfers it to the appropriate person. In the following sections, we discuss the hardware and software details of how to transfer the program execution to these memory locations and how to get back to the 
TABLE 12.1 
Restart Instiuctions 
Mnemonics Binary Code Hex Code     Call Location (Hex) 
	
	D7   Dfi D5 
	D4 
	D3   D2   D, Do 
	
	

	RST OOH 
	1     1 0 
	0 
	0 111 
	C7 
	0000 

	RST 08H 
	1     1 0 
	0 
	11     1 1 
	CF 
	0008 

	RST lOH 
	1     1 0 
	1 
	0 111 
	D7 
	0010 

	RST 18H 
	1     1 0 
	1 
	1111 
	DF 
	0018 

	RST 20H 
	1     1 1 
	0 
	0 111 
	E7 
	0020 

	RST 28H 
	1     1 1 
	0 
	1111 
	EF 
	0028 

	RST 30H 
	1     1 1 
	1 
	0 111 
	F7 
	0030 

	RST 38H 
	1     1 1 
	1 
	1111 
	FF 
	0038 


program execution prior to the interrupt. Remember that the person you called has to get back to work after the phone call. 
NONMASKABLE INTERRUPT 
This interrupt is not controlled through the Interrupt Enable flip-flops. The instruction DI therefore has no effect on this inteirupt, and the instruction EI is not necessary to enable it. This interrupt can be compared to the smoke detector in an office, rather than a telephone. When the smoke detector sets off the alarm, it has to be responded to immediately. 
The NMI (pin 17) is an active low, edge-sensitive interrupt. When the NMI goes low, the Z80 completes the execution of the current instruction and transfers the execution to memory location 0066h without any external hardware. The details of this interrupt process are discussed later in the chapter. 
12.12  Restart (RST) Instructions and Mode 0 
In the previous discussion, we mentioned that if the Z80 is programmed for Mode 0, the program execution can be transfened after an interrupt to one of the eight memory locations shown in Table 12.1. These memory locations are diiectly related to eight Restart (RST) instructions in the Z80 instmction set. 
RESTART (RST) INSTRUCTIONS 
These are 1-byte call instructions that transfer the program execution to a specific location on the page OOh, as listed in Table 12.1. These instructions implicitly specify a 16-bit address in one opcode; this is called the Modified Page Zero Addressing mode. Let us recall, from Chapter 9, how the Call instructions are executed. When a Call instruction is executed, the Z80 first stores the address of the next instruction on the top of the stack, then transfers the program to the Call location. The RST instructions are executed similarly, as illustrated in Example 12.1. 
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Example 12.1 
Specify the contents of the stack and the stack pointer after the execution of the instruction RST 30H. Where will the program execution be transferred? 
Instructions 
2000 2003 
2040 2041 
LD 
RST 
SP, 
2399H 
30H 
Solution The stack pointer is initialized at 2399h. The RST 30H is a 1-byte call instruction to 
location 0030h- When the RST instruction is executed, the Z80 places the contents of the program counter 2041h (which is the address of the instruction following the RST instruction) on the stack, the stack pointer is decremented to 2397h, and the program execution is transferred to location 0030h- The contents of the stack and the stack pointer are as follows: 
Stack 
2397     I 41„ I      Stack Pointer ■ 
2398 
41h 20h 
2397h 
We can now use these RST instructions in conjunction with the interrupt Mode 0. We can insert one of the RST instructions into the microprocessor using external hardware. Figure 12.3 shows such a circuit. The input to the tri-state buffer is F7h, which is the code for the RST 30H instruction (see Table 12.1). When this buffer is enabled, the instruction RST 30H will be placed onto the data bus and brought into the microprocessor. When it is executed, the program will be transferred to the memory location 0030h. We now need to know how and when to enable the buffer. The buffer is enabled by the INTA signal, which is issued by the Z80 when it acknowledges an interrupt (this is explained in Section 12.14). 
12.13  Interrupt Process in Mode 0 
The interrupt in Mode 0 is compatible to the interrupt (INT) in the 8080 and (INTR) in the 8085 microprocessors. We selected Mode 0 to describe the interrupt process because it includes all the basic concepts in the interrupt I/O; other modes can be described as special cases of Mode 0. 
One way to describe the Z80 interrupt process is with the analogy of the telephone in an office, this time with a blinking light instead of a ring. Assume that the office has one telephone serving eight engineers, and it is monitored by the secretary. The secretary is generally busy typing, and when the phone begins to blink, he or she stops typing to answer the phone. In order for the secretary to receive and respond to a telephone call, typically, the following activities take place: 
FIGURE 12.3 
A Circuit to Implement the Instruction RST 30H 
h5 V 
• 10 k 
	

	
	Tri-state Buffer 
	i 

	
	1 

	
	1 

	
	
	
	1 

	
	
	
	0 

	
	

	
	
	
	1 

	
	
	1 

	
	1 

	
	

	Enable 
	i 


To Data Bus F7h 
> 
INTA   From Z80 
1. The telephone system is enabled, meaning that the receiver is on the hook. 
2. The secretary glances at the light at certain intervals to check whether someone is calling. 
3. When the light begins to blink, the secretary completes the sentence being typed, answers the phone, and waits for a response. Once the phone is picked up, the line is busy, and no more calls can be received on that line until the the receiver is placed back on the hook. 
4. The caller specifies the message; for our example, assume the caller is the manager of the group and wants to cancel the scheduled meeting with one of the engineers, Ms. Peterson. The secretary performs the following steps: 
5. makes a pencil mark at the beginning of the next sentence on the typing draft as a reminder to start typing at that point later on. 
6. places the receiver back on the hook. 
7. informs Ms. Peterson about the cancellation of the meeting. 
8. goes back to the pencil mark on the typing draft and starts typing again. 
In some instances, steps 6 and 7 are interchanged, depending on the urgency of the request. If the request is critical and the secretary does not want to be interrupted again while attending to the request, step 7 will be performed first. 
The Z80 interrupt process can be described in terms of these eight steps. 
Step 1: The interrupt process should be enabled by writing the instruction EI, and the interrupt Mode 0 should be specified by the instruction IM 0 in the main program. This is similar to keeping the phone receiver on the hook. 
Step 2: When the microprocessor is executing a program, it checks the INT line in the last T-state of each instruction. 
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Step 3: If the interrupt flip-flop is enabled and the INT signal goes active (low) and remains active until the end of the instruction being executed, the microprocessor samples the INT signal, completes the instruction, disables the interrupt flip-flop and sends a signal called INTA—Interrupt Acknowledge (active low). The processor cannot accept any further interrupt requests until the interrupt flip-flops are enabled again. 
Step 4: The signal INTA is used to insert an instniction, preferably a restart (RST) instruction, through additional hardware, as shown in Figure 12..3. 
Step 5: If the instruction is one of the RST instructions, the microprocessor saves the memory address of the next instruction on the stack and transfers the program to the memory location of the RST instruction. This is similar to the secretary's making a mark on the draft before walking to the engineer to relay the message. 
Step 6: Assuming that the task to be performed is written as a subroutine at the specified location, the processor performs the task. This subroutine is known as a service routine. 
Step 7: The service routine should include the instruction EI to enable the interrupt again. This is similar to putting the receiver back on the hook. 
Step 8: At the end of the subroutine, the RET instruction retrieves the memory address where the program was interrupted and continues the execution. This is similar to finding the mark made on the typing draft after the secretary was interrupted by the phone call and continuing to type. 
12.14  Interrupt Request/Acknowledge Machine Cycles 
In Figure 12.3, the instruction RST 30H is built using resistors and a tri-state buffer. Figure 12.4(a) shows the timing of the Z80 Interrupt Request and Acknowledge. The interrupt signal (INT) is sampled by the Z80 with the rising edge of the last clock at the end of every instruction. If the Interrupt Enable flip-flop is already enabled by the EI instruction and the INT is low, the Z80 acknowledges the interrupt by generating the lORQ signal during the M, (Opcode Fetch) cycle. Normally, the MREQ control signal goes low during the Ml cycle to read an opcode from memory. Thus, the interrupt is recognized when Mi and lORQ are active (Figure 12.4(a)). By logically ANDing these two signals in a negative NAND gate (De Morgan's equivalent of an OR gate), we can generate the Interrapt Acknowledge (INTA) control signal. The INTA signal can be used to place an 8-bit instruction (such as RST) onto the data bus. Figure 12.4(a) shows that the Z80 adds two wait states during the interrupt Mi cycle; these wait states allow sufficient time to determine priorities in multiple interrupts (this will be discussed later). Once the Z80 recognizes that the instruction received is a RST (Call) instniction, it issues two more machine cycles M2 and M3 to store the program counter on the stack. During Mi, the program counter holds the memory address of the next instruction, which should be stored on the stack so that the program can continue after the service routine. During M2 (Figure 12.4(b)), the address of the stack pointer minus one (SP-1) location is placed onto the address bus, and the high-order address of the program counter is stored on the stack. During M3, the 
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low-order address of the program counter is stored in the next location (SP-2) of the stack. Figure 12.4(b) shows that the machine cycles M2 and M3 are Memory Write cycles. 
In the next instruction cycle, the program is transferred to location 0030h, assuming we use the circuit shown in Figure 12.3 to insert the RST instruction. However, there is a space of eight memory locations between any two RST instructions; RST 38H, the next restart instruction, begins at 0038h. If the service routine requires more than eight locations, the routine is written somewhere in memory, and the jump instruction is written at 0030h to specify the address of the service routine. All these steps are illustrated in the next section. 
2ILLUSTRATION: AN IMPLEMENTATION OF THE Z80 INTERRUPT IN MODE 0 
The following example is concerned primarily with demonstrating the basic concepts in the interrupt I/O, rather than illustrating an industrial application. Hardware circuitry is kept to a minimum so that it can be easily built and tested in a laboratory. Similarly, programs are chosen for the ease of the implementation of the interrupt. 
In this example, the Z80 MPU is kept busy counting in binary, and when it is interrupted, it flashes FFh at one of the output ports. The program is illustrated with specific memory locations starting at 2000h to explain the details of the interrupt process. 
12.21   Problem Statement 
The main program counts continuously in binary with a one-second delay between each count and displays the count at PORTO. A service routine is written at 2070h to flash FFh five times when the program is intemipted, with some appropriate delay between each flash. 
1. Design a circuit to insert the instruction RST 30H when the MPU is interrupted by a push-button key. 
2. Explain the interrupt process. 
PROGRAM Memory 
Address Mnemonics Comments 
PORTO    EQU 07H ;Output port address 
STACK    EQU 2099H ;Initial stack address 
2000 LD SP, STACK initialize stack pointer 
2003 IM 0 ;Set up interrupt in Mode 0 
2004 EI ;Enable interrupt flip-flops 200.5                      LD A, OOH ;Stait counter 
2007        NXTCNT: OUT (PORTO), A ;Display count 
	2009 
	CALL DELAY 
	;Wait one second 

	200C 
	INC A 
	;Next count 

	200D 
	JP NXTCNT 
	;Continue 

	DELAY: ;Use delay subroutine illustrated in 
	Chapter 10 (Section 10.7). 

	FI ASH
	;Service routine to display FFH five times. 

	2070 
	PUSH BC 
	;Save register contents 

	2071 
	PUSH AF 
	

	2072 
	LD B, OAH 
	;Load register B for five flashes 

	
	
	;and five blanks 

	2074 
	LD C, OIH 
	;Parameter for one second delay 

	2076 
	LD A, OOH 
	;Load 00 to blank display 

	2078 
	DSPLAY: OUT (PORTO), A 
	;Output 00 and FFH alternately 

	207A 
	CALL DELAY 
	;Wait one second 

	207D 
	CPL 
	;Complement display byte 

	207E 
	DEC B 
	;Reduce count 

	207F 
	JP NZ, DISPLAY 
	

	2082 
	POP AF 
	;Restore register contents 

	2083 
	POP BC 
	

	2084 
	EI 
	;Enable interrupt process 

	2085 
	RET 
	;Service is complete, go back to main 

	
	
	;program 


12.22 Circuit Design 
The circuit is concerned with designing the instruction RST 30H. The machine code for the instruction is F7h. We can design such an instruction by using the 74LS244, a tri-state buffer, as shown in Figure 12.5. All the input lines are tied high to represent logic 1 except line DI3, which is grounded to insert logic 0. The output lines of the buffer are connected to the data bus of the Z80 MPU. When the Enable signal of the buffer goes active (low), 
the input of the buffer, 11110 111 (F7h), is placed onto the data bus. 
The Interrupt Acknowledge (INTA) signal from the Z80 is generated by ANDing Mj and lORQ in a negative NAND gate, and it is connected to the Enable line of the buffer. The INT line of the Z80 is pulled high through a 10 k resistor, and an interrupt is asserted by grounding the INT through the push button key as shown in Figure 12.5. 
12.23 Interrupt Operation 
1. The main program initializes the stack pointer at 2099h and enables the interrupts. The program will count continuously from OOh to FFh with a delay of one second between each count. 
2. When the key is pushed to interrupt the processor, the INT line goes low. 
3. Assuming the key is pushed when the processor is executing the instruction OUT at memory location 2007H, the following sequence of events occurs. 
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FIGURE 12.5 
Schematic to Implement Mode 0 Interrupt 
The Z80 
□ samples the INT line in the last T-state of the OUT instruction. 
□ senses that the INT is low, and the interrupt is enabled. 
□ completes the execution of the instruction OUT. 
□ disables the interrupt, and sends out two signals: M| and lORQ. 
4. The INTA (Interrupt Acknowledge) signal goes active at the output of the negative NAND gate. 
5. The INTA enables the buffer, and the code F7h is placed onto the data bus. 
6. The Z80 recognizes the instruction as one of the RST instructions. It saves the address 2009h of the next instruction (CALL DELAY) on the stack at locations 2098h and 2097h. 
7. The program is transferred to memory location 0030h. The locations 0030, 0031, and 0032h should have the following Jump instruction to transfer the program to the service routine: JP 2070H. 
(Let us assume that this Jump instruction is already written at 0030h by the system designer. Otherwise, you do not have access to write at 0030h. Generally, in a system, ROM (or EPROM) is mapped into the initial memory locations. See the next section.) 
8. The program jumps to the service routine at 2070h. 
9. The service routine saves the registers being used in the subroutine and loads the count ten into register B to output five flashes and also five blanks. 
10. The service routine enables the interrupt before returning to the main program. 
11. When the service routine executes the RET instruction, the microprocessor retrieves the memory address 2009h from the top of the stack and continues the binary counting in the main program. 
12.24 Testing Interrupts on a Single-Board Microcomputer System 
Step 7 in the preceding description assumes that you are designing the system and have access to locations in EPROM or ROM on page OOh. In reality, you have no direct access to restart locations if the system has already been designed. Then how do you transfer the program control from a restart location to the service routine? 
In single-board microcomputers, some restart locations are usually reserved for users, and the system designer provides a Jump instruction at a restart location to jump somewhere in R/W memory. By writing one more Jump instruction at this location in R/W memory, we can transfer the program to location 2070h. 
12.25 Issues in Implementing Interrupts 
In the above illustration, we deliberately avoided some of the complex issues in the interrupt I/O to maintain clarity in the discussion. These issues are discussed here. 
1. Is there a minimum pulse width required for the INT signal? 
The interrupt in Mode 0 is level sensitive, meaning the pulse has to be active until the Z80 has time to sample it. The Z80 samples the INT signal on the rising edge of the last clock cycle of every instruction, and the longest instmction in the Z80 set is 23 T-states. In the worst case, if the INT goes active in the last cycle of an instruction, it may have to stay on for 23 clock periods. 
2. How long can the INT pulse stay low? 
The INT pulse can remain low until the interrupt flip-flops are set by the EI instruction in the service routine. If it remains low after the execution of the EI instruction, the processor will be intemapted again, as if it were a new interrupt. 
3. How can we keep the pulse long enough to interrupt the processor but not so long that it can be misinterpreted as a new interrupt? 
One of the solutions to this dilemma is to latch the INT pulse in a flip-flop and clear the flip-flop before enabling the intenxipt again. This can be accomplished by interfacing the flip-flop as an output port and sending an OUT instruction to clear the flip-flop, as shown in Figure 12.6. In this case, the port address is irrelevant because any OUT instruction will reset the flip-flop. 
4. Can the microprocessor be interrupted again before the completion of the first interrupt service routine? 
The answer to this question is determined by the programmer. After the first interrupt, the interrupt process is automatically disabled. In our illustration, the service routine enables the interrupt at the end of the service routine; in this case, the microprocessor 
cannot be interrupted before the completion of this routine. If the instruction EI were written at the beginning of the routine, the microprocessor could be interrupted again during the service routine. 
5. Is there any problem in connecting the key to interrupt the processor as shown in Figure 12.5? 
Yes. When a mechanical push-button key is pressed or released, the metal contacts of the key momentarily bounce before giving a steady-state reading, as shown in Figure 12.7(a). The bounce can last foi;,more than 20 ms, and if the interrupt service routine clears the flip-flop before the bounce is settled, the key bounce will be interpreted as a new interrupt. 
The key bounce can be eliminated from the INT signal by connecting the key through a pair of NAND gates, as shown in Figure 12.7(b). Initially, the output ofgateG, is logic 1 and that of gate G2 is logic 0. When the key is pushed, and when it loses its contact with terminal A, the input Aj to the gate d goes high, but the input A2 is still low. Thus, the output does not change. When the key makes the contact with terminal B, the input Bi to gate G2 goes low and the output of G2 changes from logic 0 to logic 1. This changes the input A2 from logic 0 to logic 1. Thus, the output of Gi changes to logic 0. 
The key bounce is eliminated because when the key bounces, meaning it bounces from no-contact to contact with the same terminal, the output will not change. In our illustration, the problems of the key bounce and the duration of the INT pulse are avoided by keeping the service routine unusually long. 
6. What is the reason to have two flip-flops IFFl and IFF2 to enable the interrupt? 
In Mode 0, it does not make any difference. In the nonmaskable interrupt, the status of IFFl is copied into IFF2 when the Z80 is interrupted, and the status is copied back into IFFl at the end of the service routine (see Section 12.5). 
FIGURE 12.6 
Latching and Clearing Interrupt Request 
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FIGURE 12.7 
(a) Key Bounce (b) Key Debounce Using Two NAND Gates 
7. What is the difference between RET (Return) andRETI (Return from Interrupt) instruc
The RET instruction is used to return from a subroutine. The RETI is a specially designed instruction to reset the Z80 daisy-chain interrupt logic (see Section 13.35). 
8. When does EI in the service routine (memory location 2084h) become effective? 
The EI instruction becomes effective immediately after the execution of the next instruction. In the service routine, the processor will not be prematurely interrupted until after the execution of the RET instruction. 
9. If the Interrupt Enable flip-flops are set and the INT is low long enough, will an interrupt request always be acknowledged? 
The interrupt request will not be acknowledged if the BUSRQ (Bus Request) is active or if the Z80 is servicing a higher priority request (see Section 12.6). 
The interrupt Mode 1 is a special case of the interrupt Mode 0; all the basic concepts of the interrupt I/O discussed in the previous section are applicable in this mode. However, the implementation is simple because most of the external circuitry required for Mode 0 is already built into the Z80. After reviewing the interrupt I/O in Mode 1, we will discuss briefly the basic concepts in the A/D conversion and illustrate the intenupt Mode 1 by interfacing the ADC0801, an A/D converter on a chip manufactured by National Semi
tions? 
ILLUSTRATION: INTERFACING A/D CONVERTER IN 
INTERRUPT MODE 1 
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        conductor. This A/D converter is specially designed to be compatible with the microprocessor control signals. 
12.31 Interrapt Process in Mode 1 
The initial requirements of Mode 1 to interrupt the Z80 processor are similar to those of Mode 0: 
□ The Interrupt Enable flip-flops should be set by the instruction EI. 
□ The mode should be specified. 
□ The INT signal should go low and stay low until the Z80 can sample it. After the Z80 acknowledges the interrupt, it 
n resets the Interrupt Enable flip-flops, thus disabling further interrupts. 
□ places the address of the next instruction (the contents of the program counter) on the stack. 
□ transfers the program execution to location 0038h (without any external hardware). 
The primary difference between Mode 0 and Mode 1 is that in Mode 1, the external hardware to insert the RST instruction is not necessary; it is already built into the processor, and it is activated by setting the Mode. The other difference is that the program can be transferred to only one location, unlike the eight RST instructions in Mode 0; Mode 1 uses the memory location of RST .38H. 
12.32 Basic Concepts in A/D Conversion 
The analog-to-digital (A/D) conversion is a process whereby an analog signal is represented by equivalent binary states. The relationship between the binary representation and the analog signal is dependent on the design of a converter. For example, we can determine that a 0-1 V siguai can be represented by binary three digits; 1 V will be equivalent to all Is and 0 will be represented by all three Os. We can divide the entire range 0-1 V into eight different combinations of three bits and each combination can represent one level (1/8 V), called resolution, as shown in Figure 12.8. When the input analog signal is 0..5 V, the binary output will be 1 0 0, as shown in Figure 12.8(b). 
One of the common design techniques used to convert an analog signal into its binary equivalent is called successive approximation.* To begin the process, a clock pulse, called the START pulse, is required. An A/D converter can take a few hundred microseconds to milliseconds to convert the analog signal into its binary equivalent; the time it takes to complete the conversion is called the conversion time. At the end of the conversion, the A/D converter generates a pulse called END OF CONVERSION or DATA READY. 
To interface such a converter with the microprocessor, the following conditions need to be satisfied. The Z80 should 
*You need not be familiar with data converter design technique to interface a data converter with the microprocessor. 
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□ Provide a START pulse to initialize the conversion process by writing to the device as an output port. 
□ Wait until the end of the conversion. 
□ Read the binary equivalent when the DATA READY signal goes active. 
We need to interpret these conditions in terms of circuitry and control signals. The microprocessor can communicate with any external device through a port address and its Read and Write control signals. To meet the above requirements we need to build 
n one output port to send a START pulse, 
□ one input port with a latch so that the Z80 can read the binary data, 
□ a circuit to sense the end of the conversion. 
Fortunately, manufacturers have begun to include latches, buffers, and control logic on the same chip with data converters so that data converters can be easily interfaced with the microprocessor. For our illustration, we selected the National Semiconductor ADC0801 because it has all the necessary interfacing circuitry built in. 
THE ADC0801 
This is an 8-bit A/D converter (Figure 12.9(a)) available as an integrated circuit on a chip. The analog signal is connected to Vin(+), and the binary output is available on eight data lines DB7-DB0. The maximum input signal can be +5 V or it can be connected as a differential input by using the pin Vin(-). The signal Vref is used to limit the maximum input voltage; if it is not connected externally, it is set for +5 V internally. The internal clock is determined by the RC network connectged to pins 10 and 4. 
To interface the A/D converter with the microprocessor requires three signals: CS, 
WR, and RD. To start the conversion, the chip should be selected and WR asserted low. When WR goes low, the chip is reset, and when it goes high, the conversion begins. At the end of the conversion, it initiates the signal INTR; this can be used to interrupt the microprocessor. When the microprocessor reads the output, the INTR is reset (see the timing waveforms in Figure 12.9(b)). The ADC0801 is ideally suited for interfacing as an interrupt I/O not only because it generates the INTR pulse, but also because it is turned off after the data byte is read. This eliminates our concern about the INT pulse width for the Z80 microprocessor. 
12.33 Interfacing Circuit 
To interface the ADC0801, three signals are necessary: WR, RD, and CS. Figure 12.9(a) shows such a circuit. The output line Oq of the 3-to-8 decoder is connected to the CS signal of the converter. The converter is selected when the address on the address lines from A7Ao is F8h; thus, the converter is assigned the port address F8h. To start the conversion, the Z80 should write to port F8h; however, we are interested not in writing anything, but in asserting the WR signal. At the end of the conversion, the converter asserts the INTR, which is connected to the INT signal of the Z80. 
Assuming the Z80 interrupt is enabled and is set for Mode 1, the program will be transferred to memory location 0038h. If the system is being designed, the service routine to read data can be written at 00.38h. Otherwise, a Jump instruction should have already been written here to give access to the service routine in system's R/W memory. When the service routine reads the data byte, the RD signal will remove the interrupt. 
12.34 Program 
The following program is set up to collect a number of readings from the data converter, and the readings are stored in memory labelled as BUFFER. The number of readings to be recorded is defined by the term BYTE. To verify this illustration in a laboratory, the terms STACK, BUFFER, and BYTE need to be defined. The program has three segments: main program to initialize the parameters, the restart segment, and the service routine to record data. 
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MAIN PROGRAM 
START:      LD SP, STACK IM 1 
LD HL, BUFFER LD B, BYTE EI 
OUT (F8H), A WAIT: NOP 
JP NZ, WAIT 
HALT 0038 JP ADC 
;Initialize stack pointer 
;Set up interrupt Mode 1 
;Set up HL as memory pointer 
;Set up counter to count the number of readings 
;Enable interrupt flip-flops 
;Start conversion 
;If aO data readings are not yet recorded, wait 
;This is Mode 1 restart location; go to data ; converter service routine 
SERVICE ROUTINE 
ADC: ;This service routine reads data from the A/D converter, saves data in ;memory, and starts conversion for the next reading. ;Input: Address of memory pointer in HL and the number of readings to be ;recorded in register B. ;Modifies registers A, B, and HL 
IN A, (F8H) ;Read data byte from the converter 
EI ;Enable the interrupt 
LD (HL), A ;Save data in memory 
INC HL ;Next memory location 
DEC B ;One reading is recorded, decrement counter 
OUT (F8H), A ;Start conversion for the next reading 
RET 
PROGRAM DESCRIPTION 
The main program initializes the stack pointer, the memory pointer, and the counter. It enables the interrupt, starts the conversion by writing to port F8h, and waits in the loop. In a real industrial application, the main program would have continued to monitor other activities. 
When the conversion is complete, the data converter causes INTR to go low, which interrupts the processor. Because the interrupt is set up in Mode 1, the Z80 disables the interrupt, stores the contents of the program counter on the stack, and transfers the program to 00.38h automatically. The Jump instruction at 0038h transfers the program to the service routine. 
The service routine first reads the output of the data converter, and the Read signal removes the interrupt from the INT pin. This logic is built inside the ADC0801; in the previous illustration, we needed to use a flip-flop to turn off the interrupt (see Figure 12.6). The routine enables the interrupt so that the subsequent interrupts can be accepted, then 
313 
upgrades the memory pointer, decrements the counter, and initiates the conversion for the next reading. The final instruction in the service routine (RET) is critical; when the RET instruction is executed, the Z80 gets the address from the top of the stack and returns to the main program. The main program has the instruction Jump On No Zero; the Zero flag is set in the service routine when the register B goes to zero. 
In Mode 0 and Mode 1, once the interrupt request is acknowledged, the program is transferred to specific locations on memory page 00. This is quite a limitation because these locations are, generally, reserved for ROM (or EPROM) and can be used for only eight interrupts. On the other hand, in Mode 2, the program control can be transferred to any memory location in the memory map. This is one of the powerful features of the Z80 microprocessor. 
The process of interrupt request and acknowledge in Mode 2 is similar to that of Mode 0. However, the response to the interrupt request is quite different. 
12.41  Interrupt Process in Mode 2 
Assuming that the interrupt is enabled and set up to operate in Mode 2 by the instructions EI and IM 2, and thatjhe INT signal goes low, the Z80 acknowledges the interrupt by asserting two signals Mi and lORQ. The INTA signal, generated by ANDing Mi with lORQ, is used to place a byte onto the data bus. The Z80 disables the interrupt and places the contents of the program counter onto the stack. This is similar to Mode 0. 
However, in Mode 2, the Z80 interprets the eight bits from external hardware as the low-order byte of a 16-bit memory address rather than an instruction as in Mode 0. The Z80 takes the eight bits from the interrupt register (I) as the high-order byte and combines it with the external byte to form a 16-bit vector address or a pointer. The program is then transferred to the memory location pointed to by the 16-bit address. Let us assume it is 20F8h. Then the contents of the two memory locations 20F8h and 20F9h are interpreted as the 16-bit memory address of the service routine; the byte in 20F8h is the low-order byte and the byte in 20F9h the high-order byte. This process is demonstrated in the next example. 
1. Write initialization instructions to set up the Z80 interrupt in Mode 2 and the interrupt Example vector with 20h as the high-order byte. 12.2 
2. Design a circuit to place the byte F8h onto the data bus using the INTA signal. 
3. Specify the contents of the vectored memory locations if the service routine is located 
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        at 23A7h. 
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Solution 
1. Initialization Instructions 
M0DE2: LD SP, STACK LD A, 20H LD I, A IM 2 EI 
initialize stack pointer ;L-oad high-order byte of interrupt vector ;Load register I with high-order byte ;Set up Z80 interrupt in Mode 2 ;Enable interrupt flip-flops 
2. Circuit for the Byte F8h 
Figure 12.10 shows the circuit to place the byte F8h onto the data bus. The input lines DI0-DI2 of the tri-state buffer are grounded and the remaining lines are tied high. When the buffer is enabled by the interrupt acknowledge (INTA) signal, the byte FBh is placed onto the data bus. 
3. Memory Vector and Service Routine Addresses 
When the Z80 acknowledges an interrupt request, it fomis the memory vector by combining the contents of the interrupt register I (20h) and the data byte (F8h); thus, the address of the vector becomes 20F8h. To transfer the program control to the service routine located at 23A7h, the low-order byte A7h must be stored at location 20F8h and the high-order byte 23h at location 20F9h. 
20F8 20F9 
A7h 23h 
At this point, it is necessary to clarify the potential confusion in implementing Mode 2 interrupt. The 16-bit address formed by combining the byte in interrupt register I and the byte placed on the data bus is the vector address (or the memory pointer) and not the address of the service routine. The address of the service routine is located at memory 
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locations pointed to by the vector. Thus, on one page of memory (256 bytes), a table of 128 vectors pointing to service routines can be stored. Another puzzling question is how to design multiple interrupts using only one INT signal; this question is discussed in Section 12.6. 
NONMASKABLE INTERRUPT 
The Z80 has a separate input (pin 17) for the nonmaskable interrupt. As mentioned before, this interrupt cannot be disabled and has the highest priority among the interrupts. When the Z80 acknowledges the NMI, it transfers the program to memory location 0066h. The NMI is used, generally, for emergency situations such as power failure or activities with high priority, such as a system clock. 
12.51   Nonmaskable Interrupt Process 
The nonmaskable intenupt differs from the maskable interrupts in the following ways. 
□ It cannot be disabled by the DI instruction and need not be enabled by the EI instruction; it is independent of the EI and DI instructions. 
□ It is edge sensitive, meaning it does not have to be active until the Z80 samples it. 
o It has a higher priority than the maskable interrupts, meaning it will always be acknowledged at the end of the current instruction being executed if BUSRQ (Bus Request) is inactive. 
The steps in the nonmaskable interrupt are as follows. 
1. When the NMI is caused to go low by an external device, the interrupt request is latched internally on the falling edge of the NMI. 
2. When the Z80 samples the NMI (as well as INT) in the last T-state of the instruction being executed, it accepts the NMI request after completing the current instruction if BUSRQ is inactive. 
3. Once the NMI is accepted, the Z80 places the contents of the program counter on the stack. 
4. The Z80 copies the status of the interrupt enable flip-flop IFFl, determined by the previously executed instructions El (or DI), into IFF2 and resets IFFl to prevent any inteiTuptions from maskable intenupts. 
5. The program is transfened to location 0066h without any external hardware; this is similar to Mode 1 in the maskable interrupt. 
If the service routine is terminated by the special instruction RETN (Return from Nonmaskable Interrupt), the Z80 
6. copies IFF2 into IFFl to restore the status of the maskable interrupt. 
7. copies the contents of the top two locations of the stack into the program counter, and the program returns to the instruction where it was interrupted. 
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Example 12.3 
Solution 
Design a five-minute timer using a 60Hz power line as an interrupting source. The output ports should display minutes and seconds in BCD. At the end of the five-minute period, the display should be cleared, and the timer should continue into the next five-minute period. 
This is a five-minute timer designed with a 60Hz AC line. The circuit uses a step-down transformer, a wave-shaping network, and the nonmaskable interrupt (pin 17)—see Figure 12.11. 
The AC line has a_60Hz frequency which interrupts the microprocessor every l/60th of a second using the NMI. After the interrupt, program control is transferred first to memory location 0066h in the monitor program and then to the service routine TIMER. The NMI responds to a negative-edged trigger; thus, the interrupt need not be turned off even if the AC source has an eight millisecond pulse width. In this case, the service routine is completed in a few microseconds, but the next interrupt is recognized only when there is a pulse transition from positive to negative. 
Monitor Program 
0066 
Main Program 
JP RWM 
LD SP, RAMTOP LD BC, OOOOH 
DSPLAY: 
RWM: 
LD D, 60 
LD A, B OUT (OIH), LD A, C OUT (02H), JP DSPLAY JP TIMER 
A 
;This is NMI request, go to location in user ;memory 
;Initialize stack pointer 
;Set up registers B for minutes and C for sec;onds 
;Set up register D to count 60 interrupts—in ;hand assembly the number 60 must be con;verted into a Hex number. 
;Display minutes at PORT 1 
;Display seconds at PORT 2 
Interrupt Service Routine TIMER:      ; Section I DEC D JRNZ,END 
;Section II LD D, 60 
LD A, C ADD A, 01 DAA LDC, A CP60H 
;This is NMI, go to TIMER routine to upgrade ;the clock 
;One interrupt occurred, reduce count by one ;Is one second elapsed? If not, go back to main ;program 
;One second is complete, load register D again ;to count 60 interrupts 
;Increment "Second" register ;Decimal adjust "Seconds" ;Save "Seconds" 
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JRNZ,END 
;Section III LD C, OOH 
INC B LD A, B CP 05H JRNZ.END LD EC, OOOOH END: RETN 
;Is time = 60 seconds? If not, go back to main ;program 
;60 Seconds complete, clear "Second" regis;ter 
;Increment "Minutes" 
Is it five minutes? 
If not, return to main program 
If it is, clear minute and second registers 
Program Description The main program clears registers B and C to store minutes and seconds respectively, enables the interrupts, sets up register D to count 60 interrupts, and displays the starting time in minutes (00) and seconds (00). When the first pulse interrupts the processor, program control is transferred to memory location 0066h, as mentioned earlier, and the Jump instmction at this location, provided by the system designer, will locate the service routine labelled as "TIMER." 
In the service routine (Section I), register D is decremented every l/60th of a second and the program is returned to the main routine. This is repeated 60 times. After the 60th interrupt, the counter D goes to zero and the program enters Section II. In this section, counter D is reloaded, the "Second" register is incremented and adjusted for BCD, and the program is returned to the main routine. For the next 60 interrupts, the program remains in Section I. When Section II is repeated 60 times, the program goes to Section III, where the "Minute" register is incremented and the "Second" register is cleared. If the Minute register has not reached the five-minute period, the routine returns to the main program. When the minute register reaches a five-minute period, register pair BC is cleared and the next period begins. In this particular program, the service routine does not save any register contents by using PUSH instructions before starting the service routine. In most service routines, register contents must be saved because the interrupt is asynchronous and can occur at any time. 
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MULTIPLE INTERRUPTS AND PRIORITIES 
The Z80 microprocessor has one INT pin for the maskable interrupt. However, Mode 0 suggests that at least eight different peripherals can be connected, and their requests can be transferred to eight restart locations. Mode 2 suggests almost unlimited possibilities to vector interrupt requests anywhere in memory. This raises two questions: 
1. How do we connect more than one interrupting device to one interrupt line? 
2. What happens if multiple interrupting devices request service simultaneously? 
The method of connecting multiple devices to the INT line of the Z80 is determined by the process of identifying an interrupting device. After the acknowledgment of an interrupt, the interrupting device can be identified either by the polling method (software technique) or by the interrupt vector method (hardware technique). In the polling method, the microprocessor queries each device using software instructions, identifies the device, and transfers the program to the appropriate service routine. On the other hand, in the interrupt vector method, the device identifies itself by supplying either an instruction or an address. 
The next question is: What happens when devices request the service at the same time? In the polling technique, software determines the priority among the requesting devices and serves those devices in the sequence specified in the program. In the interrupt vector technique, priority is determined by the hardware. We will illustrate these techniques in the next two sections. 
12.61  Polling Technique 
Figure 12.12 shows an example in which two A/D converters are interfaced with the Z80 in interrupt Mode 1. The INTR lines from the ADC0801 are logically ORed, and the output of the gate is connected to the INT line of the Z80; either one or both converters can interrupt the processor. Figure 12.12 does not include any circuitry to turn off the INT because the INTR line of the ADC0801 goes inactive when the microprocessor reads the output. 
To identify the interrupting data converters, an additional input port with the tri-state inverter (74LS366) is designed, and the INTR lines of both converters are connected to the data bus lines (D, and Do) through the 74LS.366. The following subroutine identifies the interrupting devices and determines the priority between the two converters if they request the service simultaneously. 
SERVICE ROUTINE 
MODEl:       ;This is an interrupt service routine, written at location 0038h to ;respond to Mode 1 interrupt requests. It determines the priority ;between the two data converters and identifies them. In this ;routine Device 1 has higher priority than Device 2. After 
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;identifying the interrupting converter(s), it reads and stores data ;received from the converter(s), and initiates the next conversion. 
PUSH AF 
IN A, (STATUS) 
AND OOOOOOllB 
RRA 
CALL C, DVICEl RRA 
CALL C, DVICE2 
POP AF 
EI 
RET 
;Save register contents 
;Read tri-state inverter port 
;Mask data lines D7-D2 
;Place Do in CY flag 
;If Do = 1, go to DVICEl to read data 
;Place Di in CY flag 
;If Di = 1, go to DVICE2 to read data 
;Retrieve register contents 
;Enable interrupt 
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DVICEl:      PUSH AF 
IN A, (ADCl) LD (HL), A OUT (ADCl), A POP AF RET 
DVICE2:      PUSH AF 
IN A, (ADC2) LD (DE), A OUT (ADC2), A POP AF RET 
;Save interrupt status 
;Read data from Device 1 and turn off INT ;Save data in memory ;Start next conversion ;Retrieve register contents 
;Save interrupt status 
;Read data from Device 2 and turn off INT ;Save data in memory ;Start next conversion ;Retrieve register contents 
PROGRAM DESCRIPTION 
This service routine assumes that the main program sets up the interrupt mode and initializes memory pointers (HL and DE) to store data. Data converters are assigned port addresses ADCl and ADC2 for both input and output, and the tri-state buffer is assigned the address STATUS as an input port. 
To identify the intemipting device, the service routine reads the tri-state buffer and saves bits Dj and Dq. The routine checks first whether Dq is at logic 1 (the 74LS.366 inverts the interrupt request) by rotating Dq into the CY flag because Device 1 has higher priority than Device 2. If Do is high, the routine calls DVICEl to read data. To check whether Device 2 has also requested the service, the input reading from the STATUS port is rotated again to the right to place Di into the CY flag. If the CY is 1, the routine calls DVICE2; otherwise, it returns control to the main program. 
Figure 12.12 shows only two interrupting devices; however, the polling technique and the circuit shown can be extended to include many devices. In place of the negative OR gate in Fig. 12.12, interrupt requests from many devices can be tied together using open collector logic devices. The disadvantage of the polling technique is the delayed response in servicing requests. 
12.62  Interrupt Vector Technique 
The schematic shown in Figure 12.1.3 implements multiple interrupting devices using the 8-to-3 priority encoder 74LS148. The encoder has eight input lines and three output lines; the output ranges from 000 to 111, thus encoding the eight inputs. However, the output is inverted. For example, when the input I7 is active, the output is 000, and when the input Iq is active, the output is 111. In addition to encoding the input, the encoder also determines the priorities among interrupting devices; the higher input signal has higher priority. For example, if le and I4 are active at the same time, it ignores I4 and places the code of le on the output lines. The encoder provides appropriate combinations on its output lines Aq, Ai, and A2, which are connected to data lines Do, Di and D2, respectively; other data lines are tied high. Even though the encoder has eight input lines, we will use only the even input lines le, I4, I2, and lo, and they will be connected to four different interrupting devices. The reason to use only the even lines is that the Z80 expects the vector address to be even (this will be explained later). 
When an interrupting device requests service, one of the input lines goes low, which makes the line GS low and interrupts the microprocessor. When the intenupt is acknowledged and the signal INTA enables the buffer 74LS366, the code corresponding to the input is placed on lines D2, Di, and Dq. For example, if the interrupting device on line lo goes low, the output of the encoder will be 111. This code is inverted by the buffer 74LS366 and placed onto data lines D2, Di, and Dq. Other data lines are high; thus, the byte 1111 1000 (F8h) is placed onto the data lines. Assuming that the Z80 is set up for interrupt Mode 2, and the interrupt register I is loaded with the byte 20h, the Z80 forms a vector address 20F8h for the interrupting device connected to Iq. The program is transferred to location 20F8h to get the 16-bit address of the service routine stored in memory locations 20F8h and 20F9h. If the input h goes low, the byte 1111 1010 is placed onto the data bus, and the program is transferred to location 20FAh. The Z80 expects the interrupt 
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vector to be an even memory address and uses two consecutive memory locations to obtain tlie address of a service routine; thus, we were unable to use the odd inputs to the encoder. 
If there are simultaneous requests, the priorities are determined by the encoder; it responds to a higher level input, ignoring a lower level input. One of the drawbacks of this scheme is that the interrupting device connected to the input Ig always has the highest priority. 
The interrupt scheme, similar to that illustrated in Figure 12.13, can also be implemented by using devices such as the Parallel Input/Output (PIO) controller, to be discussed in the next chapter. A programmable interrupt controller, such as the AMD AM9519A can also be used in implementing interrupts. This is quite a versatile device; it can accept interrupts from eight different devices, hold the requests, resolve priorities, and process them according to their priorities. It is also programmable, meaning its various operating modes can be determined by writing instructions into its internal registers. 
In Mode 0, external hardware is necessary to insert an RST instruction when an intemjpt is acknowledged. However, the fact that RST is a software instruction is quite often overlooked or misunderstood. The RST instructions are commonly used to set up software breakpoints as a debugging technique. A breakpoint is a Restart (RST) instruction in a program where the execution of the program stops temporarily, and program control is transferred to the RST location. The program should be transferred from the RST location to a breakpoint service routine, which should allow the user to examine register or memory contents when specified keys are pressed. After the breakpoint routine, the program should return to the execution of the main program, where the breakpoint is set. 
The breakpoint procedure allows the user to test programs in segments. For example, if RST .30H is written in a program, the program execution is transferred to location OOBOh; it is equivalent to a 1-byte call instruction. This can be used to write a software breakpoint routine, as illustrated in the next problem. 
12.71  Problem Statement 
Implement a breakpoint facility at RST 30H for the user. When the user writes RST 30H in the program, the program should 
1. be interrupted at the instruction RST 30H. 
2. display the accumulator contents and the flags when the Hex key A (1010)2 is pressed, 
3. exit the breakpoint routine and continue execution when the Zero key (0000)2 is 
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pressed. 
INTERRUPTS 
Assume that the system includes a Hex keyboard and the keyboard routine KBRD is available. When it is called, it returns the binary key code of the key pressed in the accumulator. For example, if key 7 is pressed, the KBRD routine places 0111 in the accumulator. 
12.72 Problem Analysis 
The breakpoint routine is concerned with displaying the accumulator contents and the flags when the user writes the RST instruction in a program. The microprocessor executes the program until it fetches the RST instruction. Then the program is transferred to location 0030h and from 0030h to the breakpoint routine. The technique used to display register contents after executing a segment of the user's program is as follows: 
1. Store the register contents on the stack and call the KBRD routine. 
2. When the Hex key A is pressed, retrieve the contents of the accumulator and the flags from the stack by manipulating the stack pointer. 
3. When the Zero key is pressed, return to the user's program. 
12.73 Program: Breakpoint Subroutine 
BRKPNT: This is a breakpoint subroutine; it can be implemented with the 
instruction RST 30H. It displays the accumulator and the flags when the A key is pressed, and returns to the calling program when the Zero key is pressed. 
Input : None 
Output : None 
Does not modify any register contents. 
Calls:      KBRD subroutine. The KBRD is a keyboard subroutine which checks a key pressed. The routine identifies the key and places its binary code into the accumulator. 
BRKPNT: 
KYCHK: 
	PUSH AF 
	;Save registers 

	PUSH BC 
	

	PUSH DE 
	

	PUSH HL 
	

	CALL KBRD 
	;Check for a key 

	CP OAH 
	;Is it key A? 

	JP NZ, RETKY 
	;If not, check Zero key 

	LD HL, 0007H 
	;Load stack pointer displacement count; see 

	
	;program description 

	ADD HL, SP 
	;Place memory address in HL, where (A) is 

	
	;stored 

	LD A, (HL) 
	;Get contents of A from stack 

	OUT (PORTl), A 
	;Display accumulator contents 
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RETKY: 
DEC HL LD A, (HL) OUT (P0RT2), A JP KYCHK CP OOH 
JP NZ.KYCHK 
;Point HL to the location of the flags ;Get flags ;Display flags 
;Go back and check next key ;Is it Zero key? 
;If not, go and check key program ;Retrieve registers 
POP HL POP DE POP BC POP AF RET 
12.74  Program Description 
The breakpoint routine saves all the registers on the stack, and the address in the stack pointer is decremented accordingly. (In this particular problem registers BC and DE need not be saved. These registers are saved to allow modifications in the program as given in the Assignments.) The accumulator contents are stored in the seventh memory location from the top of the stack, and the flags in the sixth memory location. 
When key A is pressed, the HL register adds seven to the stack pointer contents and places that address in HL register (ADD HL, SP), without modifying the contents of the stack pointer. This is a critical point, because if the stack pointer is varied, appropriate contents may not be retrieved with POP and RET instructions. Finally, the subroutine displays the accumulator and the flags at the two output ports and returns to the main program. 
□ The interrupt is an asynchronous process of communication with the microprocessor, and is initiated by an external peripheral. 
□ The Z80 has two active low interrupt signals: maskable intemipt and nonmaskable interrupt (NMI). The maskable interrupt is level sensitive, and the nonmaskable is edge sensitive. 
□ The maskable interrupt can be enabled or disabled through the program control instructions EI and DI, and it has three operating modes: Modes 0, 1, and 2. The nonmaskable interrupt cannot be disabled. 
□ The Z80 instruction set includes eight RST instructions, which are equivalent to 1byte calls to specific locations on memory page OOh. These can be used as software instructions to transfer the program control to their vectored locations on memory page OOh or can be inserted through external hardware in interrupt Mode 0. 
□ When the Z80 accepts a request in maskable interrupt I/O, it acknowledges the request by issuing a specialJvli cycle. During M,, the I/O Request (lORQ) signal goes active. The signals (Mj and lORQ) are logically ANDed to generate the Inter
SUMMARY 
	INTEREUPTS 
	
	
	
	325 

	TABLE 12.2 
Summaiy of Z80 Interiupt Process 
	
	
	

	Interrupts 
	Conditions to Accept Interrupt Requests 
	Software Instruction 
	External Hardware 
	Restart Locations 

	Nonmaskable Intenupt (NMI) o Edge Sensitive O Pin 17 (NMI) 
	BUSRQ Inactive NMI Active Low 
	No Effect of EI orDI 
	Not Required 
	0066h 

	Maskable Interrupt 
□ Level Sensitive 
□ Pin 16 (INT) ModeO 
Mode 1 Mode 2 
	BUSRO Inactive 
NMI Inactive INT Active Low 
	Must Be Enabled by EI and Can Be Disabled 
Uses I Register for High-order Byte 
	RST Instruction 
Not Required Low-order Byte 
	Eight locations: See Table 12.1 
0038h 
Any Memory Location 


rupt Acknowledge (INTA) signal, which can be used to insert a hardware instruction or a byte. 
□ The general steps in the interrupt process are as follows. The Z80 
1. disables the interrupt. 
2. stores the contents of the program counter on the stack. 
3. transfers the program to the memory location specified either by the external hardware or by the mode operation. 
4. services the inten-upt request. 
5. fetches one of the return instructions, gets the address from the top of the stack, and returns to the program where the program was interrupted. 
The operational details are summarized in Table 12.2. 
ASSIGNMENTS 
1.   Answer the following questions. 
a. What is difference between the nonmaskable and the maskable interrupt? 
b. When does the Z80 check the INT and NMI signals? 
c. How is the Interrupt Acknowledge cycle differentiated from the Opcode Fetch and the I/O Read machine cycles? 
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2. 
d. How is the INTA (Interrupt Acknowledge) signal generated? 
e. Specify the three conditions that are necessary to acknowledge the INT. 
f. Assuming the system's clock frequency is 2 MHz, and if the INT goes low in the first T-state of the OUT instruction (11 T-states), specify the period for which the INT has to remain active to be acknowledged. 
g. In a system with the clock frequency of 1 MHz, the Z80 begins to execute an instruction with ten T-states. If at the beginning of the instruction, the NMI goes active for 0.5 \xs, will the NMI be accepted, and if the answer is yes, when will it be accepted? 
h. The instruction CALL 2085H is written at memory locations 2017-18"19h. If it is interrupted during its execution, what is the address that is stored on the stack? 
i. The execution of the unconditional Call instruction requires 17 T-states. In a system with 2 MHz clock frequency, if the INT (set up in Mode 1) goes active at the beginning of the Call instruction and stays on for 8.5 |xs, and if the NMI goes active 2 j.JLS later than the INT and stays on for 1 (xs, where will the program be transferred? 
j. Does the system Reset disable the maskable interrupt? 
k. If the Z80 is initialized in the interrupt Mode 1, what is the status of the interrupt flip-flop IFF2 when the Z80 acknowledges the NMI? 
1. If the instruction RST 20H is written in a program at location 205 1h, where will the program be transferred and what will be stored on the stack when the instruction is executed? 
Identify the RST instruction shown in Figure 12.14 and answer the following 
questions. 
a. Specify the Restart memory location when the microprocessor is interrupted. 
b. If the instruction in the monitor program at 00.30 is CALL 20BFh and the service routine is written at 20BFh, what instruction is necessary at location 003.3h? 
FIGURE 12.14 
RST Instruction for Assignment 2 
+5 V 
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3.   The main program is stored beginning at OIOOh. The main program has called the subroutine at 0150h, and when the microprocessor is executing the instruction at location 0151h (LD), it is interrupted. Read the program and then answer the questions that follow. 
	0100 
	LD SP, 0400H 

	0103 
	IM 1 

	0104 
	EI 

	i 
	i 

	0120 
	CALL 0150H 

	i 
	i 

	0150 
	PUSH BC 

	0151 
	LD BC, lOFFH 

	0154 
	LD C, A 

	i 
	I 

	015E 
	POP BC 

	015F 
	RET 


a. Specify the contents of the stack location 03FFh. 
b. Specify the stack locations where the contents of registers BC are stored. 
c. When the program is interrupted, what is the memoiy address stored on the stack? 
4.   In 3, if the program is changed as follows and the circuit in Figure 12.10 is used to supply the byte, specify the location to which the program will be transferred when it is interrupted and the location of the service routine. 
	0100 
	LD SP, 2400H 

	0103 
	IM 2 

	0104 
	LD A, OIH 

	0106 
	LD I, A 

	0107 
	LD HL, 01F8H 

	OlOA 
	LD (HL), 80H 

	OlOC 
	INC HL 

	OlOD 
	LD (HL), 23H 

	OlOF 
	EI 

	0110 
	


5. In Figure 12.13, if the input I4 goes active, specify the location to which the program will be transferred. 
6. In Figure 12.13, if the inputs I4 and le go active simultaneously, specify the location to which the program will be transferred. 
7. In Figure 12.13, connect the output lines A2, A,, and Aq of the encoder (through the buffer 74LS366) to the data bus D5, D4, and D3 and tie the remaining data lines high. If the Z80 is set up in the interrupt Mode 0, and if the input I4 goes active, where will the program be transferred? 
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8. A program is stored in memory from 2000h to 205Fh. To check the first segment of the program up to location 2025h, a breakpoint routine call is inserted at location 2026h. (Refer to the breakpoint routine—Section 12.73.) If the stack pointer is initialized at 2099h, answer the following questions. 
a. Specify the contents of the memory locations 2098h and 2097h. 
b. Specify the memory locations where the accumulator content and the flags are stored when the microprocessor executes the instruction PUSH AF in the breakpoint routine. 
c. Specify the memory locations where HL register contents are stored after execution of the instruction PUSH HL. 
d. Specify the contents of the stack pointer when the breakpoint routine returns from the KBRD routine. 
e. What address is placed in the program counter when the instruction RET is executed? 
9. Modify the breakpoint routine (Section 12.7) to display the memory location at which the breakpoint is inserted into a program. 
10. Modify the breakpoint routine to display the contents of BC, DE, and HL registers when user pushes the Hex Keys 1,2, and 3. (The respective Hex codes are 01, 02, and 03.) 
Programmable Interface Devices 
A programmable interface device is designed to perform various input/output functions, and these functions can be programmed into the device by writing an instruction (or instructions) in its internal register, called the control register. Functions can also be changed by writing a new instruction in the control register. These devices are flexible, versatile, and economical; they are widely used in microprocessor-based products. 
In Chapter 5, we used simple integrated circuits, such as latches and tri-state buffers for I/O functions. However, they are limited in their capabilities; each device can perform only one function, and they are hardwired. In this chapter, we first discuss the basic concepts in programmable devices and then examine the Z80 Parallel Input Output (PIO) device in the context of these concepts. The PIO is an I/O device specially designed to function with the Z80, and it is commonly used in Z80-based systems. The PIO has two I/O ports, and it can be programmed in various modes ranging from bit mode to bidirectional data transfer mode. These modes are illustrated with several interfacing applications, such as keyboard and seven-segment display, and bidirec
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        tional data transfer between two microcomputers. Finally, another widely used peripheral device, the Intel 8255, is described and compared with the Z80 PIO. 
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OBJECTIVES 
□ List elements and characteristics of a typical programmable device. 
□ Explain the functions of handshake signals. 
□ List the elements of the Z80 PIO (Parallel Input Output) and explain its various operating modes. 
□ Write initialization instructions to set up the PIO in a given mode. 
□ Design an interfacing circuit to set up the PIO in a 
handshake mode, and write instructions to transfer data using the interrupt I/O. 
□ List the elements of the Intel 82.55 Programmable Peripheral Interface and its various operating modes. 
□ Write initialization instructions to set up the 8255 in a given mode. 
□ Compare the features of the Z80 PIO and the 8255. 
BASIC CONCEPTS IN PROGRAMMABLE DEVICES 
In Chapter 5, we discussed the interfacing of simple input (switches) and output (LEDs) devices. In the illustrations, we assumed that the I/O devices were always ready for data transfer. In fact, that assumption may not be valid in many data transfer situations. The MPU needs to check whether a peripheral is ready before it reads from or writes into a device because the execution speed of the microprocessor is much faster than the response of a peripheral such as a printer. For example, when the MPU sends data bytes (characters) to a printer, the microprocessor can execute the instmctions to transfer a byte in microseconds, but the printer can take 10-25 ms to print a character. After transferring a character to the printer, the MPU should wait until the printer is ready for the next character; otherwise data will be lost. To prevent the loss of data or the MPU's reading the same data more than once, signals are exchanged between the MPU and a peripheral prior to actual data transfer; these signals are called handshake signals. To provide such signals in the illustrations of Chapter 5, we need to build additional logic circuitry. 
In Chapter 12, we interfaced an A/D converter using the interrupt I/O; however, the interrupt signal was generated by the internal logic of the data converter. Many peripherals may not have that capability; such signals may have to be provided by the interfacing circuitry. In some applications, data flow is bidirectional (such as data transfer between two computers). In such a situation, the interfacing device should be capable of handling bidirectional data flow. Based on the above discussion and the illustrations of Chapters 5 and 12, we can summarize the requirements for a programmable interfacing device as follows. The device should include the following: 
1. Input and output registers (a group of latches to hold data). 
2. Tri-state buffers. 
3. Capability for bidirectional data flow. 
4. Handshake and interrupt signals. 
5. Control logic. 
6. Chip Select logic. 
7. Interrupt control logic. 
To understand the programmability of such a device, we illustrate a simple example of building a programmable device using a transreceiver (bidirectional buffer) in the next section. 
13.11  Making the 74LS245 Transreceiver Programmable 
The 74LS245 is a bidirectional tri-state octal buffer, and the direction of the data flow is determined by the signal DIR. Figure 13.1 shows the logic diagram of the 74LS245; it shows one buffer (rather than eight) in each direction. The buffer is enabled when G is active low; however, the direction of the data flow is determined by the DIR signal. When the DIR is high, data flow from A to B, and when it is low, data flow from B to A. In fact, this is a hardwired programmable device; the direction of the data flow is programmed through DIR. However, we are interested in a device that can be programmed by writing an instruction through the MPU. This can be accomplished by adding a register called the control register, as shown in Figure 13.2, and by connecting the DIR signal to bit Do of the control register. When Do = 1, data flow from A to B as output, and when Do = 0, data flow in the opposite direction as input. 
Now the question is: How would the MPU write into the control register? It does so the same way it would with any other I/O port, through a port address. Figure 13.2 shows that the address lines A7-A1 are used to select the chip through a NAND gate and Aq is used to differentiate between the control register and the transreceiver. When Ao is high, the control register is enabled, and when Aq is low, the transreceiver is enabled. Thus, the MPU could access the control register through the port address FFh; and the transreceiver through FEh. To set up the transreceiver as an output device, the control word would be 01H, and to set it up as an input device the control word would be OOh. 
FIGURE 13.1 74LS245 Logic Symbol of 74LS245 Bidiiectional Buffer iv. 
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FIGURE 13.2 
Making 74LS245 Programmable 
Example 13.1 
Solution 
Write instructions to initialize the hypothetical chip (Figure 13.2) as an output buffer and send a byte. 
Instructions 
LD A, OIH OUT (FFH), A LD A, BYTEl OUT (FEH), A 
;Set Do = 1, Di through D7 are ;Write in the control register ;Load data byte ;Send data out 
'don't care" lines 
In the last example, we used the 74LS24.5 as a tri-state buffer. However, in microprocessor applications, we often need registers that can be used as I/O ports. We can build a latch with a buffer, and by controlling the enable signal of the latch, we can program it to function as an input port or an output port. Figure 1.3.3 shows two latches (representing eight latches in each direction); the enable signals of these latches are controlled by bit Dq in the control register. If bit Do is 0, it enables the output latch, and if Dq is 1, it enables the input latch. Thus, by programming bit Dq, we can make the device function as an input port or an output port. When the device is programmed as an output device, the MPU can write to the port by using the WR control signal to enable the tri-state buffer and to send out a byte. When bit Do = 1, the input latch is enabled and the output latch is disabled, and the MPU can read by enabling the input buffer. If we have additional registers (or I/O ports), 
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        FIGURE 13.3 
Piogtammable I/O Ports 
we can use othei' bits of the control register to define the functions of these registers. Similarly, we can build an interrupt logic and control it through a flip-flop that can in turn be enabled or disabled by a bit in the control register. Thus, we can build a programmable device to meet the requirements specified in the previous section. 
Z80 PARALLEL INPUT/OUTPUT DEVICE (PIO) 
13.2 
The Z80 PIO is a programmable I/O interfacing device, specially designed for the Z80. It has two 8-bit I/O ports, A and B, and its signals are divided into six groups as shown in Figure 13.4; they are described in the next section. Ports A and B can be used in three different modes: byte output (Mode 0), byte input (Mode 1), and bit input/output (Mode 3) as shown in Figure 13.5. In addition, Port A can be configured in the bidirectional mode (Mode 2). 
□ Modes 0 and 1. Mode 0 is for output and Mode 1 is for input. In these modes. Ports A and B can be used in two ways: simple I/O without handshake signals or interrupt I/O with handshake signals. Each port has two handshake signals: Strobe and Ready. 
□ Mode 2. This mode specifies the bidirectional data flow. Only Port A can be configured in this mode, and it uses all four handshake signals. 
□ Mode 3. This is a bit mode whereby each bit of Port A and Port B can be configured as input or output. The handshake signals cannot be used in this mode. 
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FIGURE 13.4 
Z80 PIO Logic Pinout 
SOURCE: Courtesy of Zilog, Inc. 
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FIGURE 13.5 
Z80 PIO Modes 
13.21  Z80 PIO Signals 
As shown in Figure 13.4, the PIO signals are grouped in six categories. 
1. Data bus—D7-D0: This is an 8-bit bidirectional, tri-state data bus, used to transfer information between the Z80 MPU and the PIO. 
2. I/O lines—A7-A0: These are bidirectional tri-state I/O lines of Port A, used to transfer information between the PIO and a peripheral. These lines can source 250 fxA in logic 1 state and sink 2 mA in logic 0 state. 
B7-B0: These are Port B I/O lines similar to those of Port A. These lines can supply i.5 mA at 1.5 V to drive Darlington transistors. 
3. Handshake signals: The PIO has four handshake signals, two for each port. However, all of them are used for Poit A when it is configured in the bidirectional mode. 
□ ASTB—This is an active low Port A input signal from a peripheral to the PIO. When Port A is configured as an output port, this signal indicates the acknowledgment of the byte received by the peripheral. When Port A is configured as an input port, this signal indicates that a byte has been placed in Port A by a peripheral. 
□ ARDY^—This is an active high Port A output signal from the PIO to a peripheral. In the output mode, the signal indicates that a byte has been placed in the Port A register and is ready for data transfer. In the input mode, it indicates that the Port A register is empty and ready to accept the next byte from the peripheral. 
□ BSTB and BRDY—These are handshake signals for Port B similar to those of Port A. However, these are used by Port A when Port A is configured in the bidirectional mode. 
4. Power and clock: The PIO operates with a single power supply with + 5 V and uses a single phase system clock as an input for internal operations. 
5. InteiTupt control logic: The PIO has three signals to handle the intenupt I/O. 
□ INT—Interrupt: This is an active low open collector output signal from the PIO; it is used to interrupt the Z80 MPU. 
□ lEI—Interrupt Enable In; This is an active high input signal used to form a priority interrupt daisy chain when multiple peripherals are connected in the intenupt I/O (see Section 13.35 for the discussion of daisy chain priority interrupts). The high on this pin indicates that no other peripherals with higher priority are being serviced. 
□ lEO—Interrupt Enable Out: This is an active high output signal used in daisy chain priority interrupts. This signal goes high when lEI is high and the Z80 is not servicing an interrupt from this PIO. This signal blocks lower priority devices from interrupting when a higher priority device is being serviced. 
6. Control signals: The PIO has six control signals. The first three signals (CE, B/A, and C/D) determine the port addresses of the I/O registers A and B and their control registers. The remaining three signals define the type of the operation (Read or Write) being performed. 
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TABLE 13.1 
Z80 PIO Port Selection 
	CE 
	C/D 
	B/A 
	Selected Port 

	0 
	0 
	0 
	Data Port A 

	0 
	0 
	1 
	Data Port B 

	0 
	1 
	0 
	Control Register A 

	0 
	1 
	1 
	Control Register B 

	1 
	X 
	X 
	PIO Not Selected 


□ CE—Chip Enable: This is an active low signal and is connected to a decoded address bus of the Z80. 
□ B/A—Port B or A Select: When this signal is high, Port B is selected, and when it is low, Port A is selected. This signal is generally connected to address line Aq of the MPU. 
□ C/D—Control or Data Select. When this signal is high, the control register is selected to write a command, and when it is low, the I/O register is selected to transfer data between the MPU and the PIO. This signal is generally connected to address line Ai of the MPU. The port selection is summarized in Table 13.1. 
□ Ml, RD, and lORQ—All these signals are connected to the corresponding control signals of the Z80. The Mi signal synchronizes the internal operation and the interrupt logic of the PIO and performs various functions in conjunction with the other two control signals as described below. 
a. Read: When the RD and lORQ signals are active low, the MPU reads from the selected register. 
b. Write: When the lORQ is active, but the RD is inactive, the MPU writes into the selected register. There is no specific control signal to write into register; it is a default condition. 
c. Interrupt Acknowledge: When Mi and lORQ are active, the MPU acknowledges the interrupt from the PIO. 
d. Reset: When Mi is active and both RD and lORQ are inactive, the PIO is reset. 
Example Figure 1.3.6 shows a circuit interfacing the PIO with the Z80 microprocessor. Identify the 
13.2 port addresses of Ports A and B and control registers. 
Solution In Figure 13.6, the output line Oo of the 74LS138 decoder is connected to the Chip Enable 
of the PIO. To assert the output line Oo of the decoder, the address line A7 should be at logic 1 and the remaining lines at logic 0. By combining these address lines with address lines Ai and Aq, the port addresses are as follows (refer to Table 13.1). 
Z80 PIO 
MSB 
74LS138 
C 
3-to-8 ^ Decoder 
Or 
CS 
Address Decode Pulse 
FIGURE 13.6 
Interfacing PIO 
-c CE 
C/D SEL B/A SEL 
A7   Ae   As   A4   A3   A2    Ai Ao 
	C/D 
	B/A 
	
	

	1     0     0     0    0    0 0 
	0 
	= 80h 
	Data Port A 

	0 
	1 
	= 81h 
	Data Port B 

	1 
	0 
	= 82h 
	Control Register A 

	1 
	1 
	= 83h 
	Control Register B 


13.22  Control Word 
Figure 13.5 shows that the PIO can operate in four different modes. To set up an operating mode, the appropriate control word must be written in the control register of the port being used. The control word is determined by the internal logic (as discussed in Section 13.1), and it is specified by the manufacturer. The control word for the PIO to specify the modes is shown in Figure 13.7, and how to initialize a port is illustrated in Example 13.3. 
D,   De   D5   D4   D3   D,   D, Do 
Mode 
Byte Output Mode 0: 0 0 Byte Input -* Mode 1; 0 1 Bidirectional —> Mode 2: 1 0 (Port A only) 
Bit I/O -»       Mode 3: 1 1 
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        Don't Identifies Mode Care       Control Word 
FIGURE 13.7 
Z80 PIO Mode Word 
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Example 13.3 
Solution 
In Figure 13.8, eight DIP switches are connected to Port A and eight LEDS are connected to Port B (the buffer is necessary to supply sufficient current to the LEDs). Write instructions to initialize Port A as an input port and Port B as an output port. Read Port A and turn on the corresponding LEDs in Port B. Assume that the decoding logic is the same as in Figure 13.6. 
To initialize Port A as an input port, D7 = 0 and Dg = 1, and to initialize Port B as an output port, D7 and De should be both 0. Thus the control words are 
Port A as Input Port: 0 1 0 0 1 1 1 1 = 4Fh 
Mode 1 
Port B as Output Port: 0 0 0 0 1 1 1 1 = OFh 
Mode 0 
Instructions 
; The following port 
PORTA   EQU 80H 
PORTB   EQU 81H 
CNTRLA EQU 82H 
CNTRLB EQU 83H 
LD A, 0100111IB OUT (CNTRLA), A LD A, 0000111 IB OUT (CNTRLB), A IN A, (PORTA) OUT (PORTB), A HALT 
addresses refer to Figure 13.6 ;Port A address ;Port B address ;Control Register A ;Control Register B ;Control word 4FH for Port A ;Write in control register A ;Control word OFH for Port B ;Write in control register B ;Read DIP switches ;Tum on corresponding LEDs 
Description Initially, all ports are defined by writing equates; these port addresses are from Figure 13.6. Then, Ports A and B are initialized by writing control words into their respective control registers. The remaining two instructions are simple I/O instructions. Note that in Figure 13.8, the handshake signal ASTB of the input Port A is grounded in order to prevent the input port from waiting for a strobe signal. 
In Example 13.3, switches and LEDs are connected as simple I/O devices, similar to illustrations in Chapter 5. The only difference in writing instructions is the initialization instructions. The next section shows how to interface peripherals using the handshake signals and the interrupt I/O. 
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As described earlier, the PIO has two handshake signals, Strobe and Ready (STB and RDY), associated with each port and one interrupt (INT) signal. The handshake signals are used to indicate the readiness of the peripheral. The interpretation of the handshake signals is somewhat dependent on the mode being used; therefore, they will be explained separately. 
The interrupt signal is used to request service from the MPU. To generate an INT signal, the interrupt flip-flop of the port being used must be enabled; each port has its interrupt enable flip-flop. (These flip-flops should not be confused with the Z80 interrupt flip-flops, IFFl and IFF2.) 
13.31   Input Mode 1 and Handshake Signals 
Figure 13.9 shows the sequence of events and timing when the selected port is configured as an input port and a byte is transferred from the peripheral to the PIO and then to the MPU. 
1. The peripheral causes the STB (Strobe) to go low and informs the PIO that a data byte has been placed in the input register. 
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FIGURE 13.9 
PIO Input Mode 1: Timing Waveforms 
SOURCE: Courtesy of Zilog, Inc. 
2. The rising edge of the STB activates the interrupt (INT), and the other handshake signal RDY (Ready) goes inactive, indicating that the input register is full. 
3. Let us assume that the Z80 and the PIO interrupt flip-flops are enabled, and that the Z80 MPU is set up in the interrupt Mode 2. When the Z80 acknowledges the interrupt request, a preprogrammed 8-bit vector is placed onto the data bus (see Section 1.3.3.3 for interrupt vector definition). This vector is combined with the byte in the interrupt register, IR, of the Z80 to form a 16-bit address, and the program is transferred to this memory address to get the address of the service routine. These interrupt activities are not shown in the timing diagram. 
4. When the service routine reads the byte from the port, the RDY goes active on the rising edge of the RD signal, indicating that the PIO is ready for the next byte. 
13.32  Output Mode 0 and Handshake Signals 
Figure 13.10 shows the sequence of events and the timing when the port is configured as an output port and a data byte is transferred from the MPU to the PIO and then to the 
1. When the Z80 executes the OUT instruction, it places the byte in the PIO register and activates the RDY signal, indicating to the peripheral that a byte is available in the 
2. The RDY signal stays high until the peripheral sends the STB signal. The rising edge of the STB activates the interrupt, indicating to the MPU that the byte has been received by the peripheral, and that it is ready for the next byte. 
3. When the INT is acknowledged, the program is transferred to the service routine as described in step 3 of Mode 1. 
In Figure 13.10, the WR signal needs clarification because the PIO does not have a WR pin.JThis signal is generated internally by the PIO when CE, C/D, and lORQ are active, but RD is inactive. 
peripheral. 
register. 
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        FIGURE 13.10 
PIO Output Mode 0: Timing Waveforms 
SOURCE: Courtesy of Zilog, Inc. 
13.33  Interrupt Enable Word and Interrupt Vector 
To set up the PIO ports in the intenaipt I/O, the interrupt flip-flop of the port being used must be enabled by writing an instiTiction in the control register. In addition, the low-order byte must be programmed to form the interrupt vector to locate the address of the service routine. The definitions of the interrupt enable word and the interrupt vector are shown in Figure 13.11. To set up the PIO ports in the interrupt I/O, we need to write three instructions (control words) in the control register of the port being used: mode word, interrupt enable word, and interrupt vector. This is illustrated in the next example. 
Interrupt Enable Word     D^ De 
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        1 = Enable Port Interrupt 
0 = Disable Port Interrupt 
Dj      D4 D3      D,      D, Do 
X Xj |0        0        1 1 
Used For Interrupt Mode 3 Enable Word 
a) 
Interrupt Vector: 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D, 
	0 


Do = 0 identifies interrupt vector D7 - D] = user defined bits 
D7 - Do specify the low-order byte of the interrupt vector (b) 
FIGURE 13.11 
Definitions of: (a) Intermpt Enable Word (b) Interrupt Vector 
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Example Assuming the same Chip Select logic as in Figure 13.6, write instructions to set up the Z80 
}^  MPU and the PIO for the interrupt I/O. Initialize Port A as an input port and Port B as an 
output port. The addresses of the service routines for Port A and Port B are stored in 
locations 2096h and 2098h, respectively. 
Solution 
Initialization Instructions 
;Setting up Port A as input port with interrupt I/O 
START: 
LD A, 4FH 
OUT (CNTRLA), A 
LD A, 8.3H 
OUT (CNTRLA), A 
LD A, 96H 
OUT (CNTRLA), A 
;Control word for Mode 1 ;Initialize Port A as input port ;Interrupt enable control word ;Enable Port A interrupt flip-flop ;Low-order byte of the interrupt vector for ;Port A 
;Specify interrupt vector for Port A 
;Setting up Port B as output port with intemipt I/O 
I ,n A   OFH rnntrnl «;nrH fr>r Mr.Ho fl 
LD A, OFH OUT (CNTRLB), A LD A, 83H OUT (CNTRLB), A LD A, 98H 
OUT (CNTRLB), A 
;Control word for Mode 0 ;Initialize Port B as output port interrupt enable control word ;Enable Port B interrupt flip flop ;Low-order byte of the interrupt vector for ;Port B 
;Specify interrupt vector for Port B 
;Setting up Z80 MPU in intemipt Mode 2 
LD SP, STACK LD A, 20H LD I, A IM 2 EI 
;Initialize stack pointer ;High-order address for interrupt vector ;Initialize Z80 interrupt register ;Set up Z80 in interrupt Mode 2 ;Enable Z80 intemipt 
Description The above instructions are divided into three groups: initialization of Port A, Port B, and Z80. To initialize Port A and Port B for the interrupt I/O and in Mode 0 and 1, three control words are necessary: Mode Word, Intemipt Enable, and Intemipt Vector. These words can be executed in any sequence; however, we have used a certain sequence to clarify the concepts. Now the question is: How does the PIO differentiate these words, especially when they are written in the same control register? These words are differentiated by identifying certain bit patterns. For example, a mode word is recognized when D3-D0 are all Is, and an interrupt vector is recognized when bit Dq = 0. 
The instructions in the third group set up the Z80 MPU in the interrupt Mode 2, and specify the high-order byte (20h) of the interrupt vector in register I. By keeping the 
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instruction EI at the end, the initialization of the PIO will not be disturbed even if an interrupt were to occur in the system. 
When the Z80 acknowledges an interrupt from Port A, the byte (20h) in register I is combined with the low-order byte 96h, specified as the interrupt vector for Port A, to form the 16-bit memory addresses 2096h. The program is then transferred to location 2096h. The byte stored in memory location 2096h provides the low-order address and the byte in location 97h the high-order address of the service routine for Port A. For Port B interrupt, the program is transferred to location 2098h in a similar manner. 
13.34 Mode 2: Bidirectional Data Transfer 
Port A of the PIO can be set up as a bidirectional input and output port. This is called Mode 2, which is the combination of Mode 0 and Mode 1. In Mode 2, Port A uses all four handshake lines; thus Port B cannot be used as an I/O port with an interrupt-generating capability. Port B must be set in Mode 3 without its logic checking capability (Mode 3 is discussed in Section 13.4). In bidirectional data transfer (Mode 2), when Port A functions as the output port, the handshake signals of Port A (ASTB and ARDY) are used, and when it functions as an input port, the handshake signals for Port B (BSTB and BRDY) are used. Similarly, the interrupt vector for the output is programmed in the control register of Port A, and the interrupt vector for the input is programmed in the control register of Port B. In this mode, the process of data transfer is as follows: 
1. Output Mode. When the Z80 writes a byte in Port A, ARDY goes high. When the peripheral asserts ASTB and reads the byte, an interrupt is generated (if enabled) to signal the Z80 that the next byte can be sent. This is identical to Mode 0 except that a data byte is allowed onto the data bus of Port A when ASTB is active. 
2. Input Mode. When the peripheral places a data byte on the data lines and asserts the BSTB signal, an interrupt (if enabled) is generated to indicate that the byte is placed in Port A. When the Z80 reads the byte, the BRDY goes active to indicate to the peripheral that the Z80 is ready for the next byte. 
The timing and additional details of Mode 2 are further explained in Section 
13.6. 
13.35 Interrupt Priority 
When multiple peripherals are interfaced with the interrupt I/O, it is essential to have a priority scheme built into the system. The PIO can be used to set the daisy chain priority scheme, whereby the first PIO connected to Z80 has the highest priority. Figure 13.12 shows four PIOs connected in the daisy chain format; PIO-1 has the highest priority and PIO-4 has the lowest priority. The design of the daisy chain priority scheme is based on two PIO signals lEI and lEO and the Z80 instmction RETI. 
□ lEI—Interrupt Enable In: This is an active high input signal to the PIO. When this signal is high, it indicates that no other PIOs of higher priority are being serviced by the 
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FIGURE 13.12 
Daisy Chain Interrupt Priority 
Z80. When it is low, it indicates that a higher priority PIO is being serviced and no interrupt can be generated from this PIO. 
□ lEO—Intemipt Enable Out: This is an active high output signal. This remains high if lEI is high and remains low if lEI is low. When lEI is high and lEO is low, it indicates that either the PIO is being serviced or an interrupt is pending from this PIO. 
□ RETI—Return From Interrupt: This is a 2-byte (ED 4D) instruction, and the PIO logic can recognize it. When the PIO reads this instruction, it sets lEO high; thus indicating the end of the service routine and allowing lower priority PIOs to interrupt the processor. 
To further explain the daisy chain interrupt operation, let us assume that all lEI and lEO signals in Figure 13.12 are high. When PIO-2 generates an interrupt and it is accepted, the IEO2 goes low; thus causing IEI3 to go low. The signal ripples through PIO-3 and PIO-4 and disables these devices. Let us assume that when PIO-2 is being serviced, it is interrupted by PIO-1, causing IEI2 to go low. At the end of the service routine, PIO-1 reads the instruction RETI and sets the IEI2 high; thus the service routine of PIO-2 can continue. 
This daisy chain using the PIO has two drawbacks: (1) it is limited to four PIOs (it can be extended to include more PIOs by using additional logic), and (2) the priority is fixed. 
13.4 
MODE 3: BIT MODE 
Mode 3 is a bit mode whereby each bit of Port A and Port B can be individually assigned input or output function. The features of this mode are as follows: 
1. Each individual line of the port can be assigned either input or output function by writing a control word in the control register of the port. 
2. The handshake signals are not used; Ready is kept low, and Strobe is disabled. 
3. Bits are read or written into by use of the normal Read and Write functions of the I/O ports. 
4. Individual bits can be masked by writing a mask word in the control register. 
5. An interrupt can be generated if a predefined logical combination occurs in the input lines. The logical combination (AND/OR) can be defined by writing an interrupt control word in the control register, and the logic level can be active low or active high. For example, we can specify that bits D0-D7 be inputs and two bits, D7 and De, be active low with AND function.With this specification, when the PIO reads both bits D7 and De low, an intemipt signal is generated. In OR logic function, when one of the input lines (D7 or De) is active, the interrupt is activated. 
To set up the PIO in Mode 3 with the interrupt capability, four different words should be written in the control register of the port being used. 
1. Mode control word for Mode 3. 
2. I/O register control word to assign input or output function to individual bits. 
3. Interrupt control word to define the logic conditions to generate the interrupt. 
4. Mask control word to specify a mask word. 
The Mode control word is already defined in Figure 13.7, and the remaining three words are defined in Figure 13.13. The use of these words is illustrated in Example 13.5. 
	
	D6 
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 


1 = Input 
(a) I/O Register Control Word 
D7 
D5 
0 = Interrupt 
Disabled 
1 = Interrupt 
Enabled 
0 = OR Function 
1 = AND Function 
(b) Interrupt Control Word 
	0 = No Mask Word 
1 = Mask Word Follows 

	
	

	0 = Active Level Low 
1 = Active Level High 
	


	
	D6 
	D5 
	D4 
	D3 
	
	D, 
	Do 


Bit is monitored if it is set to 0 for input readings. 
(c) Mask Control Word 
FIGURE 13.13 
Word Definitions for Mode 3 
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Example Port A of the Z80 PIO is set up in Mode 3 to read input switches (active low) and control the 
13^5  relays (Figure 13.14). Input switches are connected to bits A5, A3, and A,, and corre
sponding output relays are connected to bits A4, A2, and Aq. Bits A7 and Ae are used as emergency input switches, and when both are on (active low), an interrupt is generated to turn off the entire process. Write instructions to initialize the PIO and monitor the process. Port addresses are the same as defined in Example 13.2. 
Solution To initialize the PIO as specified in the problem statement, we need to define the four 
words as follows: 
Mode Word (refer to Figure 13.7) 
	D7 
	De 
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 

	1 
	1 
	X 
	X 
	1 
	1 
	1 
	1 


Mode 3 
I/O Register Word (refer to Figure 13.13(a)): 
D7 De Ds D4 D3 D2 D, Do 
	1 
	1 
	1 
	0 
	1 
	0 
	1 
	0 


EAh 
Emergency Input 
Output 
Output 
Output 
Input    Input Input Interrupt Control Word (refer to Figure 13.13(b)) 
D7 D6 D5 D4 D3 D2 D, Do 
	1    1    0    1    0    1    1    1 =D7h 

	i 
Interrupt Enabled 
	i 
Active Low 
	


AND Mask Logic Follows 
Mask Control Word (refer to Figure 13.13(c)) 
D7 Dfi D5 D4 D3 D2 Di Do 
	0 
	0 
	1 
	1 
	1 
	1 
	1 
	1 


= 3F,. 
Bits to be monitored 
From Address Decoder 
Mr 
lORQRDAoA,
CS
Data Bus 
Z80 PIO 
Dp M, 
lORQ 
RD 
B/A C/D 
CE 
To Z80 
FIGURE 13.14 
Inteifacing PIO in Mode 3 
A7 
A6 
SW, 
INT 
INT
Solid State Relays 
Instructions 
initialization of Port A in Mode 3 
START:      LD A, OCFH 
OUT (CTRLA), A 
LD A, OEAH OUT (CTRLA), A LD A, 20H LD I, A LD A, 72H OUT (CTRLA), A LD A, 0D7H OUT (CTRLA), A LD A,3FH OUT (CTRLA), A READ:       IN A, (PORTA) CPL RRCA 
OUT (PORTA), A JP READ 
Mode control word Write in control register A Control word to set up I/O functions for bits D7-D0 of port A 
;High-order address of interrupt vector ;Initialize interrupt register I in Z80 ;Low-order address of interrupt vector 
;Enabie interrupt with AND logic 
;Mask to check D7 and Dg 
;Read Port A switches 
;Coniplement logic levels 
;Rotate right switch readings to turn on relays 
;Turn on relays 
;Go back to monitor switches 
Program Description The control words are already explained, and they are written in the control register of port A. The interrupt vector is specified as 2072h. The interrupt control word 110 10 111 (D7h) sets up the PIO to check for active low AND logic. This 
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is followed by the masking word 0 0 111111 (3Fh); this word specifies that bits D7 and Dg should be monitored for active low AND logic. This masking word specifies that if bits D7 and De are both logic 0, the PIO will generate an interrupt. Then the program will be transferred to location 2072h to find the address of the service routine. 
After the initialization, the instructions continuously read switches of Port A. When a switch is turned on, it provides logic 0; therefore, the reading is complemented to turn on the relays. Each switch and its corresponding relay are next to each other; therefore, rotating the reading right by one position turns on appropriate relays. When the switches connected to bits D7 and De are turned on (logic 0), the PIO logic checks for that condition and generates an interrupt. Then the service routine can take an appropriate action. 
This illustration is concerned with interfacing a push-button keyboard and a seven-segment LED display using the PIO. The PIO is connected as a peripheral I/O as in Example 13.2, with the same port addresses. The emphasis in this illustration is not particularly on the features of PIO but on how to integrate hardware and software. When a key is pressed, the binary reading of the key has almost no relationship to what we intend to represent. Similarly, to display a number at a seven-segment LED, the binary value of the number needs to be converted into the seven-segment code, which is primarily decided by the hardware consideration. This illustration demonstrates how the microprocessor monitors the changes in hardware reading, and how we can convert the reading into appropriate binary format using the Z80 instructions. 
13.51 Problem Statement 
A push-button keyboard is connected to Port A and a seven-segment LED is connected to Port B of the PIO, as shown in Figure 13.15. Port A should be configured in the input Mode 1 and Port B in the output Mode 0; this is a simple I/O configuration without the use of handshake signals or the interrupt. 
Write a program to monitor the keyboard to sense a key pressed and display the number of the key at the seven-segment LED. For example, when the key K7 is pressed, the digit 7 should be displayed at Port B. 
13.52 Problem Analysis 
In this problem, the address decoding circuit and the port addresses are the same as in Example 13.2, and the initialization instructions for the PIO are same as in Example 13.3; therefore, these aspects of the problem will not be discussed here. 
The keyboard circuit shown in Figure 13.1.5 is similar to that in Figure 5.6 except that the DIP switches are replaced by push-button keys and the buffer is replaced by the PIO. When a push-button key is pressed, it bounces (makes and breaks contact) a few 
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FIGURE 13.15 
Interfacing a Keyboaid and a Seven-Segment LED 
times before it makes a firm contact. To prevent the multiple readings of the same key, it is necessary to debounce the key. We have already discussed the hardware solution to this problem in Chapter 12. The software solution to this problem is to wait for 10-20 ms until the key is settled and then check the key again. The display circuit in Figure 13.15 uses a common anode seven-segment LED, connected to Port B of the PIO. To display a digit, it is necessary to turn on the appropriate segments of the LED. The appropriate binary code can be obtained by using the table look-up technique, described in Section 13.54. The programming of this problem can be divided into the following categories: 
1. Check whether a key is pressed. 
2. Debounce the key. 
3. Identify and encode the key in appropriate binary format. 
4. Obtain the seven-segment code and display it. 
The instructions for these steps can be written in separate modules, as shown in the next section. 
13.53 Keyboard 
The keys K7-K0 are tied high through 10 k resistors, and when a key is pressed, the corresponding line is grounded. When all keys are open and if the Z80 reads Port A, the reading on the data bus will be FFh. When any key is pressed, the reading will be less than FFh. For example, if K7 is pressed, the output of Port A will be 0111 1111 (7Fh). This reading should be encoded into the binary equivalent of the digit 7 (0 1 1 1) by using software routines. The following subroutines—KYCHK and KYCODE—accomplish the tasks of checking a key pressed and encoding the key in appropriate binary format. 
;KYCHK: This subroutine first checks whether all keys are open. 
;Then, it checks for a key closure, debounces the key, and places ;the reading in the accumulator. See Figure 13.16 for flowchart. KYCHK:  IN A, (PORTA)    ;Read keyboard 
CP OFFH JP NZ, KYCHK CALL DBONCE KYPUSH: IN A, (PORTA) CP OFFH JP Z, KYPUSH CALL DBONCE CPL OR A 
JP Z, KYPUSH RET 
;Are all keys open? ;If not, wait in loop ;If yes, wait 20 ms ;Read keyboard ;Is key pressed? ;If not, wait in loop ;If yes, wait 20 ms ;Set 1 for key closure ;Set 0 flag for an error ;It is error, check again 
Description This subroutine is based on hardware; when all keys are open the keyboard reading is FFh, and when a key is pressed, the reading is less than FFh- The routine begins with the loop to check whether all keys are open, and it stays in the loop until all keys are open. This prevents a reading of the same key repeatedly if someone were to hold the key for a long time. When it finds that a key has been released, it waits for 20 ms for a key debounce. 
The loop starting at KYPUSH checks whether a key is pressed. When a key is pressed, the reading is less than FFh; thus, the compare instruction does not set the Z flag and the program goes to the next instruction for a key debounce. The CPL instniction complements the accumulator reading; thus, the reading of the key pressed is set to 1, and other bits are set to 0. The next two instructions check for an error. If it is momentary contact (false alarm), all bits are Os. The OR instruction sets the Z flag, and the Jump instruction takes the program back to checking keys. 
FIGURE 13.16 
Flowchart: Key Check Subroutine 
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Return ) 
KYCODE: ;This routine converts (encodes) the binary hardware reading of the key ; pressed into appropriate binary format according to the number of the ; key. 
LD C, 08H      ;Set code counter NEXT: DEC C ;Adjust key code 
RLCA ;Place MSB in CY 
JP NC, NEXT ;If bit = 0, go back to check next bit LD A, C ;Place key code into the accumulator 
RET 
Description Conceptually, this is an important routine; it establishes the relationship between the hardware and the number of the key. For example, if key Ky is pressed, the reading from the routine KYCHK in the accumulator will be 10000000 (the reading is already complemented). The KYCODE routine sets register C for the count of eight and immediately decrements the count to seven. The instruction RLCA places bit D7 into the CY flag, and the next instruction checks for the CY flag. If it is set, the key K7 must be pressed, and the key code (digit 7) is in register C. If CY = 0, the program loops back to check the next bit (De). The loop is repeated until 1 is found in CY, and at every iteration of the loop, the key code in register C is adjusted for the next key. If more than one key is pressed, this routine ignores the low-order key. Finally, the subroutine places the key code into the accumulator and returns. 
DBONCE: ;This is a 20 ms delay routine. 
;The delay COUNT should be calculated based on system frequency. ;This does not destroy any register contents. ;Input and Output = None PUSH BC ;Save register contents 
LD BC, COUNT   ;Load delay count LOOP: NOP ;Add delay 
DEC C ;Repeat until C = 0 
JR NZ, LOOP 
DJNZ LOOP        ;Loop until B = 0 
POP BC ;Restore register contents 
RET 
Description This is a simple delay routine similar to the delay routines discussed in Chapter 9. The first instruction loads the BC register with a 16-bit number, and the DJNZ instruction decrements the number in B and repeats the loop until B = 0. The NOP instruction is included in the loop to increase the delay. The inner loop is repeated until C = 0. In this routine, the 16-bit number (COUNT) should be calculated based on the clock frequency of the system and the T-states in the loop (see Chapter 9 for details). 
13.54  Seven-Segment Display 
Figure 13.15 shows that a common anode seven-segment LED is connected to Port B through the driver 74LS244. The driver is necessary to increase the current capacity of Port B; each LED segment requires 15-20 mA of current. 
A seven-segment LED consists of seven light-emitting diodes (A through G) and one diode (DP) for the decimal point; these LEDs are physically arranged as shown in Figure 13.17(a). A common anode LED can be logically represented as shown in Figure 13.17(b), and a common cathode LED as in Figure 13.17(c). The segments, A through G, are usually connected to data lines Do through De, respectively. If the decimal point is being used, data line D7 is connected to DP; otherwise it is left open. The binary code required to display a digit is determined by the type of the seven-segment LED (common cathode or common anode) and the connections of the data lines. For example, to display digit 7 at Port B (Figure 13.15), segments A, B, and C should be turned on, and in a 
common anode LED, these segments are turned on with logic 0. Therefore, the binary code should be 78h as follows: 
	Data Lines 
	
	
	
	D4 
	D3 
	Dn 
	D, 
	Do 

	Logic 
	X 
	1 
	1 
	1 
	1 
	0 
	0 
	0 

	Segments 
	NC 
	1 
G 
	1 
F 
	1 
E 
	I 
D 
	1 
C 
	1 
B 
	1 
A 


78. 
The code for each Hex digit from 0 to F can be determined by examining the connections of the data lines to the segments and their logic requirements. 
The driver 74LS244 (Figure 13.15) is an octal noninverting driver with tri-state output and the current sinking capacity of 24 mA. It has two active low enable lines, and the driver is permanently enabled by grounding these lines. In this circuit, the driver functions simply as a current amplifier; whatever logic is at Port B will be at the output of the driver. 
To display the number of the key pressed, a routine is necessary that will send an appropriate code to Port B. The routine KYCODE supplies the binary number of the key pressed; however, there is no relationship between the binary value of a digit and its seven-segment code. Therefore, the table look-up technique (Section 10.7) will have to be used to find the code for the digit supplied by KYCODE; this is shown in the next routine, DSPLAY. 
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FIGURE 13.17 
Seven-Segment LED; (a) LED segments (b) Common Anode LED (c) Common Cathode LED 
DSPLAY: ;This routine takes the binary number and converts it into its common ;anode seven-segment LED code. The codes are stored in memory ;sequentially starting from the address CACODE. ;Input: Binary number in accumulator ;Output: None 
;Modifies contents of HL and A 
LD HL, CACODE   ;Load starting address of code table in HL 
ADD A, L ;Add digit to low-order address in L 
LD L, A ;Place code address in L 
LD A, (HL) ;Get code from memory 
OUT (PORTB), A   ;Send code to Port B 
RET 
CACODE: ;Common anode seven-segment codes are stored sequentially in memory DB 40H, 79H, 24H, 30H, 19H, 12H ;Codes for digits from 0 to 5 DB 02H, 78H, OOH, 18H, 08H, 03H ;Codes for digits from 6 to B DB 46H, 21H, 06H, OEH ;Codes for digits from C to F 
Description In this routine the HL register is used as a memory pointer to code location. The digit to be displayed is in the accumulator, supplied by the routine KYCODE, and the seven-segment code is stored sequentially in memory starting from location CACODE. The basic concept in this routine is to modify the memory pointer by adding the value of the digit to the base address and get the code location. For example, let us assume that the starting address of CACODE is 20.50h and the digit 7 is in the accumulator. The code for digit 0 is in location 2050h; consequently, the code for digit 7 is in location 20.57h. Therefore, to display digit 7, the routine adds the contents of the accumulator (7) to the low-order byte 50h in register L, resulting in the sum 57h. Thus, the memory pointer in HL is modified to 2057h, and the code for digit 7 is obtained by using this memory pointer. 
13.55 Program 
To monitor the keyboard and display the key pressed, we need to initialize the PIO ports and combine the software modules discussed previously. 
KYBORD: 
This program first initializes the PIO ports; Port A in Mode 1 and 
Port B in Mode 0 and then, calls the subroutine modules discussed previously to monitor the keyboard. 
	PORTA 
	EQU 80H 
	;Port A address 

	PORTB 
	EQU 81H 
	;Port B address 

	CNTRLA 
	EQU 82H 
	;Control register A 

	CNTRLB 
	EQU 83H 
	;Control register B 

	WORDA 
	EQU 4FH 
	;Mode 1 control word 

	WORDB 
	EQU OFH 
	;Mode 0 control word 

	STACK 
	EQU 20A7H 
	;Beginning stack address 


LD SP, STACK PIO:      LD A, WORDA 
OUT (CNTRLA), A      ;Set up Port A in Mode 1 
LD A, WORDB OUT (CNTRLB), A NEXTKY:      CALL KYCHK CALL KYCODE CALL DSPLAY JP NEXTKY 
Set up Port B in Mode 0 Check if a key is pressed Encode the key Display key pressed Check the next key pressed 
Description This is the main program, which involves the initialization of the PIO and the stack pointer. The port addresses defined here are from Example 13.3 (Figure 13.8), and the address of STACK (stack pointer initialization) is shown as an illustration; it has no specific significance. Because the problem is divided into small modules, the main program consists primarily of calling these modules. 
13.56 Comments and Alternative Approaches 
The interfacing of the push-button keyboard and seven-segment display is a simplified illustration of industrial applications. The illustration is deliberately kept simple to emphasize the conceptual framework between hardware and software. However, as an application, it has several limitations. 
1. This method of connecting the keyboard limits the number of keys in proportion to the number of I/O ports; only eight keys can be connected to an 8-bit port. Generally, keys are connected in a matrix format (Section 13.57). For example, in the matrix format, 16 keys can be connected to one 8-bit port or 64 keys can be connected to two 8-bit ports. 
2. This method of connecting a seven-segment LED needs excessive hardware, one port and a driver per seven-segment LED. Furthermore, it consumes large current (100-150 mA per display). To minimize hardware and power consumption, the technique of multiplexing is generally used (Section 13.58). 
In this illustration, the primary emphasis is on software. For example, in the keyboard, the debouncing and encoding is performed by using instructions. However, interfacing chips that can sense a key closure, debounce the key, and encode the key are cunently available commercially. These chips can also generate an intenupt signal when a key is pressed. Similarly, in the seven-segment display, the table look-up can be replaced by a decoder/driver. However, the hardware approach increases unit price. On the other hand, the software approach involves considerable labor (programming and debugging) cost. The choice is generally determined by the production volume and the total unit price. 
13.57 Matrix Keyboard 
In a matrix keyboard, keys are arranged in a matrix form, as shown in Figure 13.18. It has 20 keys, ananged in four rows and five columns. When a key is pressed, it shorts one row 
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FIGURE 13.18 
Interfacing a Matrix Keyboard 
and one column; otherwise, the row and column do not have any contact. This keyboard requires nine data lines instead of the 20 required if the keys are connected as in Figure 13.15. 
The interfacing of a matrix keyboard requires two I/O ports, one output port and one input port. Rows are connected to the output port, and the columns are connected to the input port. To sense a key closure, we can use either the software approach or the hardware approach. 
A software technique called matrix scan is used to sense a key closure. In this technique, rows are grounded by sending Os to all the rows through the output port, and a key closure is checked by reading the data on columns through the input port. If no key is pressed, all bits of the input reading are high, and if a key is pressed, one of the bits will be 0. Then the program grounds one row at a time, locates the key pressed, and encodes the 
key. The basic concepts in interfacing a matrix keyboard are similar to those discussed in the above illustration, except that the software is somewhat complex. An illustration of interfacing a matrix keyboard is discussed in Chapter 17. 
The hardware approach is to use a commercially available chip, as shown in Figure 13.19 (National Semiconductor MM54/74C923); this is a key encoder for a 20-key matrix. Figure 13.19 shows the block diagram of the key encoder including the connections to a keyboard. In this circuit, when a key is pressed, the internal circuit senses a key closure, debounces and encodes the key, and generates an interrupt to inform the MPU that a key has been pressed. For example, when the "A" key is pressed, the output of the key encoder will be 0 1 0 1 0. The task for software is to read the code. 
13.58  Multiplexing and Scanned Display 
The display technique in the above illustration is quite limited. It needs one I/O port and a driver for one seven-segment LED; this technique can be quite costly for multiple-digit display. The number of hardware chips needed for multiple-digit display can be minimized by using the technique called multiplexing, whereby the data lines are time-shared by various seven-segment LEDS. 
Figure 13.20 shows a block diagram for a multiplexed display. The diagram has two output ports: one port Pa to drive LED segments, and a second port Pb to turn on the coiresponding cathodes. The output lines of port Pa are connected to seven segments of each LED, and the output lines of poit Pb are connected to the cathodes of each LED. To display a digit, the code is sent to the segments through port Pa, and a LED is turned on by sending a bit to the appropriate cathode through port Pb. To display a four-digit number. 
Data Bus 
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FIGURE 13.19 
Logic Diagram of MM74C923 20-Key Encoder Interfacing a Matrix Keyboard 
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        FIGURE 13.20 
Block Diagram of Multiplexed Output Display 
each seven-segment LED is turned on and off sequentially. For example, to display 1987, the code for digit 7 is sent first and LED-1 is turned on. Next, the code for digit 8 is placed on the segment data lines; simultaneously, LED-1 is turned off and LED-2 turned on. The cycle is repeated fast enough that the display appears stable. This multiplexing technique reduces the power consumption and the number of chips. 
Two ports shown in Figure 1.3.20 are not capable of driving eight seven-segment LEDs. In a common cathode seven-segment LED, all segments are driven by the output lines, which should supply at least 10-1.5 mA of current to each segment. The cathode should sink seven or eight times that current. The I/O ports of the PIO are limited in current capacity; therefore, additional transistors or ICs, called segment and digit drivers, are required, as shown in Figure 1.3.20. An illustration of multiplexed scanned display is shown in Chapter 17. Another approach is to replace software by hardware, as shown in Figure 13.21. It has two types of displays; Port A is connected to a HP .5082/7340 and Port B has seven-segment L-EDs with a Hex decoder/driver. The HP 5082/7340 display has an internal decoder/driver; thus, two digits per port can be displayed. Port B has a separate decoder/driver; however, both ports are functionally similar. In this approach, the task of the software instructions is reduced simply to outputting the byte to be displayed to the port. For example, to display 87h, the Z80 needs only to output 87h to that port. Replacing software with hardware can increase the unit price of a display; for example, in Figure 13.21 we can connect only four LEDS. In addition, this technique increases the power consumption. 
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Hardware Alternatives to Multiplexed Display 
ILLUSTRATION: BIDIRECTIONAL DATA TRANSFER BETWEEN TWO MICROCOMPUTERS USING PIO IN MODE 2 
The bidirectional data transfer is a common occurrence in the computer world. Typical examples include data transfer between two microcomputers or between a floppy disk and 
13.6 
a microcomputer. The bidirectional communication between two microcomputers can be accomplished using the PIO in Mode 2. 
13.61 Problem Statement 
Design an interfacing circuit to set up bidirectional data communication between two Z80 microcomputers: Micro-1 and Micro-2. Use the PIO in Mode 2 as the interfacing device with Micro-1, and the intemipt technique for data transfer. Set up Micro-2 using a tri-state buffer as the interfacing device and implement data transfer under program control (status check). Write necessary software to transfer a block of data from Micro-1 to Micro-2. 
13.62 Problem Analysis 
Figure 1.3.22 shows a block diagram to set up the bidirectional communication between two microcomputers. The block diagram shows two bidirectional data buses—system data bus and I/O data bus—interconnected through the PIO, which serves as the interfacing device of Micro-1. Port A of the PIO is used for bidirectional data transfer. Micro-1 uses the handshake signals of Port A (ASTB and ARDY) for output control, and the handshake signals of Port B (BSTB and BRDY) for input control. The communication process is the combination of Mode 0 and Mode 1. 
Both microcomputers require I/O ports to read and write data and to check the status of handshake signals. Therefore, it is necessary to analyze carefully these I/O functions between the MPUs. Data transfer for Micro-2 is to be accomplished under program control with the status check and through the interrupt process for Micro-1. The steps in the data transfer operations between the two MPUs and the timing are as follows. 
Data Output from Micro-1 to Micro-2. 
1. The Micro-1 writes data into Port A and causes the signal ARDY to go high, indicating to Micro-2 that a byte is available to be read (Figure 13.23). This is an output function for Micro-1. 
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Block Diagram: Bidirectional Communication between Two Microcomputers Using PIO 
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        FIGURE 13.23 
Timing Waveforms for Bidirectional Data Transfer 
2. The Micro-2 continues to check ARDY, and when it goes high, it asserts the ASTB signal low. This places the data byte onto the data bus (Figure 13.23). For Micro-2, checking ARDY is an input function. 
3. Once the data byte is on the bus, it can be latched or read by Micro-2 on the rising edge of the ASTB signal. Therefore, the asserting of ASTB low and reading the byte can be performed by a Read operation of Micro-2. Thus, asserting the ASTB is an input operation of Micro-2. 
4. When the byte is read by the Micro-2, ARDY goes low and the INT is generated to indicate to Micro-1 that a next byte can be sent. 
Data Input to Micro-1 from Micro-2 
1. Micro-2 places a data byte onto the I/O data bus as it asserts the BSTB signal. This is an output function for Micro-2. 
2. On the rising edge of the BSTB, the INT is generated to inform Micro-1 that a byte is available in Port A to be read. Similarly, when BSTB goes high, it causes BRDY to go low, indicating to Micro-2 to wait until a byte is read, so Micro-2 continues to read BRDY. This is an input function for Micro-2. 
3. When an interrupt is generated, Micro-1 reads the byte, and the RD signal causes the BRDY to go high, indicating to Micro-2 that next byte can be sent. 
This analysis leads to certain hardware requirements, which are discussed in the next section. 
13.63  Hardware Description 
To clarify the hardware requirements, we can summarize the bidirectional data transfer operations as follows. 
1. To send a byte from Micro-1 and to receive it in Micro-2: 
□ Micro-1 writes a byte into Port A of the PIO whenever an interrupt is generated. 
□ Micro-2 reads ARDY until it goes high, and then reads the byte by asserting the ASTB. 
2. To receive a data byte by Micro-1: 
□ Micro-1 performs an input operation whenever an interrupt is generated. 
□ Micro-2 performs two operations: one input operation to monitor BRDY and one output operation to write a data byte and assert the BSTB. 
Thus, for Micro-1, Port A of the PIO needs to be set up in the bidirectional mode, and the Z80 in the interrupt Mode 2. Micro-2 needs one input port to monitor ARDY and BRDY, another input port to read a byte and assert ASTB, and one output port to send a byte and assert BSTB. 
Figure 13.24 shows the complete schematic of the necessary ports and their decoding logic. The decoding logic for Port A of the PIO is the same as in Example 13.2; thus, port addresses range from 80h to 83h. All the handshake signals are being used for bidirectional data transfer by Port A; the INT signal of the PIO is connected to the INT signal of the Z80 MPU of Micro-1, and Port B is not being used in this illustration. 
The two handshake signals—ARDY and BRDY—are tied, respectively, to bits D7 and Do of the I/O data bus through a tri-state buffer so that they can be monitored by Micro-2; this port is labeled as input port STATUS. The signal ASTB is asserted by reading PORTIN, and the signal BSTB is asserted by writing in PRTOUT. The decode logic for these ports is generated by using the 74LS138 (3-to-8) decoder. Assuming the "don't care" address lines (A4 and A3) are at logic 0, the port addresses are as follows: 
A7 Afi A5 A4 A3 A2 Ai Ao 
Status Port:     0   1   0   X  X   1    1 1 = 47h -> STATUS 
Input Port:                              10 1 = 4.5h -> PORTIN 
Output Port:                          0   0 0 = 40h PRTOUT 
Two output lines of the decoder are combined with the lORD control signal of Micro-2 to generate two input device select pulses (4.5h and 47h). Port 47h is used to read status on the data lines D7 and Do, and Port 4.5h is used to assert the ASTB signal. The decoder line with the address 40h is combined with the 10WR signal of Micro-2 to generate the BSTB signal. 
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FIGURE 13.24 
Interfacing Schematic for Bidirectional Data Transfer between Two Microcomputers 
13.64 Program 
This illustration requires two programs: one for Micro-1 to send a block of data bytes and another for Micro-2 to receive those data bytes. These programs will be similar, but will vary in details because Micro-1 uses the PIO with the interrupt I/O while Micro-2 transfers data under program control. To transfer data from Micro-2 to Micro-1 is not included in the problem statement; it is left as an assignment. 
Micro-1 Program 
;This program initializes Z80 in interrupt Mode 2 and the PIO in the 
;   bidirectional data transfer Mode 2 and sends out a block of data bytes to Micro-2. 
;The interrupt vector for Port A is 2090H and for Port B is 2092H. 
MICRO 1: 
LOOP: SEND: 
LD A, 1000111 IB OUT (CNTRLA), A LD A, 1000001 IB OUT (CNTRLA), A OUT (CNTRLB), A LD A, 90H OUT (CNTRLA), A LD A, 92H OUT (CNTRLB), A LD SP, STACKl IM 2 
LD HL, DATA 
LD B, BYTES CALLSEND JP LOOP 
Control word (8FH) for Mode 2 
Set up Port A for bidirectional data transfer 
Interrupt enable word (83H)—Figure 13.11(a) 
Enable interrupt for Port A 
Enable interrupt for Port B 
Interrupt vector for Port A 
Write interrupt vector to Port A 
Interrupt vector for Port B 
Write interrupt vector to Port B 
Initialize stack for Z80 of Micro-1 
Set up Z80 in interrupt Mode 2 
Set up HL as memory pointer where data 
bytes are located Load number for bytes to be transferred Send first to get things started 
Wait for an interrupt This is a service routine for Port A to send data to Micro-2. The routine outputs one byte at a time to PIO Port A until all bytes are transmitted. 
LD A, (HL) OUT (PORTA), A INC HL DEC B EI 
RET NZ JP END 
;Get byte from memory ;Send byte to Port A of PIO ;Next byte location ;Decrement byte counter ;Enable Z80 interrupt ;Retum if byte counter # 0 ;Jump to End message subroutine 
Micro- 2 Program (See Figure 13.2.5) 
;This program receives the block of data from Micro-1 under program control. ;It checks the status of ARDY. When ARDY is high, it reads PORTIN. 
RECIVE: 
ARDY: 
LD SP, STACK 2 LD HL, STORE 
LD B, BYTES IN A, (PORTIN) IN A, (STATUS) RLA 
JP NC, ARDY IN A, (PORTIN) LD (HL), A INC HL 
DJNZ NZ, ARDY HALT 
;Initialize stack pointer for Micro-2 
;Point index to first memory location where data 
;   bytes should be stored 
;Specify number of bytes to be received 
;This is dummy read to generate interrupt for PIO 
;Check ARDY 
;Place bit D7 into Carry 
;If ARDY is low, wait in loop 
;Read data 
;Store data byte 
;Next memory location 
;Go back to read next byte if all bytes are not ;   yet received 
FIGURE 13.2S 
Flowchart: Progiam to Receive Data Bytes by Micro-2 
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        PROGRAM DESCRIPTION 
1. To transfer a block of data from Micro-1 to Micro-2, both programs need to be executed at the same time. 
2. The program for Micro-1 waits in a loop after the initialization; ordinarily, in real application, the program would continue to perform other tasks until an interrupt is generated. 
3. The program RECIVE for Micro-2 performs a dummy read operation to start the data transfer and continues to check ARDY. When Micro-2 reads FORTIN the first time, the ASTB signal goes low and an interrupt is generated for Micro-1. 
INTERFACING PERIPHERALS PROGRAMMABLE I/O DEVICES, APPLICATIONS, AND DESIGN 
4. In Micro-1, because of the interrupt the program is transferred to the service routine. It writes a byte in the PIO, causing ARDY to go high; decrements the byte counter; and if the counter is not zero, returns to the main program to wait in the loop. 
5. When ARDY goes high, bit Dy goes high because the ARDY is tied to data line D7. The program RECIVE reads the byte; this causes ASTB to go low, and an interrupt is generated for the next byte. 
6. Every time a byte is transferred by Micro-1 and received by Micro-2, the respective counters (registers B) are decremented, and the data transfer continues until the counters go to 0. In Micro-1, when the byte counter is 0, the program control jumps to an End message routine. It is expected that the message routine will include the instructions EI and RET. 
7. The programs given can transfer a block of data from Micro-1 to Micro-2, but not vice versa. To transfer a block of data from Micro-2 to Micro-1, additional routines are necessary (see Assignment 24), The service routine for Micro-1 will involve reading PORTA whenever an interrupt is generated. For Micro-2, an additional set of instructions is necessary. These instructions will monitor the BRDY signal. When the BRDY goes high, it means PORTA is ready to receive a byte. Then Micro-2 can write a byte causing BSTB to go low; an interrupt will be generated and Micro-1 can read the byte. 
THE 8255A PROGRAMMABLE PERIPHERAL INTERFACE 
The Intel 8255A is another widely used, programmable, parallel I/O device, similar to the Z80 PIO. It is the revised version of Intel's 8255 and is commonly referred to as the 8255 rather than the 8255A. It can be programmed to transfer data under various conditions— from simple I/O to interrupt I/O. It is flexible, versatile, and economical, but somewhat complex. It is a general purpose I/O device and can be used with almost any microprocessor. Because of its wide use in industry it is discussed here briefly. (See Gaonkar, Microprocessor Architecture, 1984, for a full description.) 
The 8255A has 24 I/O pins, and they can be grouped into two 8-bit parallel ports, A and B, and an 8-bit port C. The eight-bits of port C can be used as individual bits or grouped into two 4-bit ports: Cu and Cl (Figure 1.3.26(a)). Ports A and B of the 8255A are similar to ports A and B of the Z80 PIO, and port C is similar to the bit mode of the PIO. The functions of these ports are defined by writing a control word in the control register. 
Figure 13.26(b) shows all the functions of the 8255A. They are classified according to two modes: the Bit Set/Reset (BSR) mode and the I/O mode (byte mode). The BSR mode is used to set or reset the bits in port C. The I/O mode is further divided into three modes: Mode 0, Mode 1, and Mode 2. In Mode 0, all ports function as simple I/O ports. Mode 1 is a handshake mode, whereby Ports A and/or B use bits from Port C as handshake signals. In the handshake mode, two types of I/O data transfer can be implemented: 
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(a) 
FIGURE 13.26 
(a) 8255A I/O Ports and (b) Their Modes 
Control Word D, D, D3   D,   D, D„ 
0/1 
BSR Mode (Bit Set/Reset) 
For Port C 
No effect or I/O Mode 
Mode 0 
Simple I/O for ports A, B, and C 
(b) 
I/O Mode 
Model 
Handshake I/O for ports A and/or B 
Port C bits are used for handshake 
Mode 2 
Bidirectional data bus for port A 
Port B: either in Mode 0 or 1 
Port C bits are used for handshake 
Status check under program control and interrupt. In Mode 2, port A can be set up for bidirectional data transfer using handshake signals from port C, and port B can be set up in either Mode 0 or Mode 1. The definitions of Mode 0 and Mode 1 in the 8255A are quite different from those in the PIO and should not be confused. 
13.71  Block Diagram of the 8255A 
The block diagram in Figure 13.27(a) shows two 8-bit ports (A and B), two 4-bit ports (Cu and Cl), the data bus buffer, and control logic. Figure 13.27(b) shows a simplified but expanded version of the internal structure, which includes a control register. This block diagram includes all the elements of a programmable device; Port C perfoims functions similar to that of the status register. 
CONTROL LOGIC 
The control section has six lines. Their functions and connections are as follows: 
o RD—Read: This control signal enables the Read operation. When the signal is low, the 
MPU reads data from a selected I/O port of the 8255A. o WR—Write: This control signal enables the Write operation. When the signal goes 
low, the MPU writes into a selected I/O port or the control register. □ RESET—Reset: This is an active high signal and clears all the registers of the 
8255A. 
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□ CS, Ao, and Ai—^Chip Select Signals: These signals are used for selecting the device. CS is connected to a decoded address, and Aq and A] are generally connected to the system address lines Aq and Ai, respectively. 
The CS signal is the master Chip Select, and Aq and Ai specify one of the I/O ports or the control register as shown. 
	CS 
	Ai 
	Ao 
	Selected 

	0 
	0 
	0 
	Port A 

	0 
	0 
	1 
	Port B 

	0 
	1 
	0 
	Port C 

	0 
	1 
	1 
	Control Register 

	1 
	X 
	X 
	8255 is not selected. 


As an example, the port addresses in Figure 13.28 are determined by the CS, Aq, and Ai lines. The CS line goes low when A7=l and Ae through A2 are at logic 0. Combining these signals with Aq and Ai yields port addresses ranging from 80h to 83h, as shown in Figure 13.28(b). 
CONTROL WORD 
The 8255A has one control register, and the contents of this register, called the control word, specify an I/O function for each port. This register can be assessed to write a control word when Aq and Ai are at logic 1, as mentioned previously. The register is not accessible for a Read operation. 
Bit D7 of the control register specifies either the I/O function or the Bit Set/Reset function, as shown in Figure 13.26(b). If bit D7 = 1, bits Do-Dg detennine I/O functions in various modes, as shown in Figure 13.29. If bit D7 = 0, port C operates in the Bit Set/Reset (BSR) mode. The BSR control word does not affect the functions of ports A and B; the BSR mode will be described later. 
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(b) 
FIGURE 13.28 
(a) 8255A Chip Select Logic and (b) I/O Port Addresses 
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Control Word 
	
	Da 
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 


Group B 
\ 
	Port C (Lower—PC3 
	-PCo) 

	1 - Input 
	

	0 = Output 
	

	Port B 
	

	1 = Input 
	

	0 = Output 
	

	Mode Selection 
	

	0 = Mode 0 
	

	1 = Mode 1 
	

	

	/          Group A 
	\ 

	Port C (Upper—PC7
	-PC4) 

	1 = Input 
	

	0 = Output 
	

	Port A 
	

	1 = Input 
	

	0 = Output 
	

	Mode Selection 
	

	00 = Mode 0 
	

	01 = Mode 1 
	

	IX = Mode 2 
	

	

	1 = I/O Mode 
	

	0 = BSR Mode 
	


FIGURE 13.29 
8255A Control Word Format for I/O Mode 
SOURCE: Adapted from Intel Corporation, copyright 1981
To communicate with peripherals through the 8255A, the following three steps are necessary: 
1. Determine the addresses of ports A, B, and C and of the control register according to the Chip Select logic and the address lines Ao and Ai. 
2. Write a control word in the control register. 
3. Write I/O instructions to communicate with peripherals through ports A, B, and C. 13.72  Mode 0: Simple Input or Output 
In this mode, ports A and B function as two 8-bit I/O ports and port C as two 4-bit ports. Each port (or half port, in the case of C) can be programmed to function as simply an input 
or output port. The input/output features in Mode 0 are as follows: 
1. Outputs are latched. 
2. Inputs are not latched. 
3. Ports do not have handshake intenupt capability. 
13.73 BSR (Bit Set/Reset) Mode 
The BSR mode is concerned only with the 8 bits of port C, which can be set or reset by writing an appropriate control word in the control register. A control word with bit D7 = 0 is recognized as a BSR control word, and it does not alter any previously transmitted control word with bit D7 = 1; thus the I/O operations of ports A and B are not affected by a BSR control word. In the BSR mode, individual bits of port C can be used for applications such as an on/off switch. 
BSR CONTROL WORD 
This control word, when written in the control register, sets or resets one bit at a time, as shown in Figure 13.30. 
13.74 Illustration: Interfacing an A/D Converter Using the 8255A in Mode 0 and BSR Mode. 
PROBLEM STATEMENT 
Design an interfacing circuit to read data from an A/D converter, using the 8255 in the peripheral-mapped I/O. 
D7   Df.   D5   D4   Dj      D,    D, Do 
	0 
	X 
	X 
	X 
	BIT SELECT 
	S/R 


BSR Mode 
Not Used Generally Set = 0 
	000 = 
	Bit 0 

	001 = 
	Bit 1 

	010 = 
	Bit 2 

	oil = 
	Bit 3 

	100 = 
	Bit 4 

	101 = 
	Bit 5 

	110 = 
	Bit 6 

	111 = 
	Bit 7 


SET= 1 RESET = 0 
FIGURE 13.30 
8255A Control Word Foimat in the BSR Mode 
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1. Set up port A to read data. 
2. Set up bit PCq to start conversion and bit PCy to read the ready status of the converter. 
PROBLEM ANALYSIS 
The Chip Select logic in Figure 13.31 is similar to that in the previous examples. The port addresses can be obtained by examining the decoding logic of the CS signal and combining that with the Ai and Aq signals. The port addresses range from 20h to 23h, as shown. 
	Ay 
	
	As 
	A4 
	A3 
	A2 
	A, 
	Ao 
	
	

	0 
	0 
	1 
	0 
	0 
	0 
	0 
	0 
	= 20h 
	Port A 

	
	
	
	
	
	
	0 
	1 
	= 21h 
	Port B 

	
	
	
	
	
	
	1 
	0 
	= 22h 
	Port C 

	
	
	
	
	
	
	1 
	1 
	= 23h 
	Control 
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Schematic: Interfacing the A/D Converter ADC0801 Using the 8255A in Mode 0 and BSR Mode 
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MODE 0 CONTROL WORD 
The configuration of the ports is specified as follows: 
□ Port A as an input port. 
□ Port Cl as an output port because bit PCq is being used to start conversion. 
□ Port Cu as an input port to read the status at PCy. 
□ Port B not being used. 
Therefore, the control word necessary to meet the requirements is 98h as shown. 
1 
I/O 
Function
ModeO for Port A 
D4 
1 
i 
Port A Input 
D3 
1 
i 
PortCu Input 
D2 0 
D, 0 , 
"1 Port B 
Not Used 
Do 0 
\ 
Port Cl Output 
98h 
BSR CONTROL WORD FOR START PULSE 
Bit PCo is being used as a start pulse. To set and reset PCq, the BSR control word is follows (Refer to Figure 13.30): 
D7 0 
i 
BSR Mode 
De 
,0 
Ds 0 
I 
'Don't Care" 
D4 0, 
D3 0 
D2 
0 
D, 0 , 
Bit 0 
Do 1/0 
i 
Set/ Reset 
= OIh to Set 
= 00 to Reset 
SUBROUTINE 
	PORTA 
	EQU 20H 
	;Port A address 

	PORTC 
	EQU 22H 
	;Port C address 

	CNTRL 
	EQU 23H 
	;Control register address 

	AID: 
	LD C, 23H 
	;Set up Z80 C register as pointer to 8255A 

	
	
	control register 

	
	LD A, IGOllOOOB 
	;Load the mode 0 control word (98H) 

	
	OUT (C), A 
	;Write in the control register to set up A and 

	
	
	Cu as inputs 

	
	LD A, OOH 
	;Load BSR control word to reset PCq 

	
	OUT (C), A 
	;Send WR pulse 

	
	CALL DELAY 
	;Wait for sufficient pulse width 

	
	LD A, OIH 
	;Load BSR control word to set PCq 

	
	OUT (C), A 
	;Start conversion 

	READ: 
	IN A, (C) 
	;Read bit PC7 

	
	RLA 
	;Place PC7 in the carry 

	
	JP C, READ 
	;Wait in the loop until the end of conversion 

	
	IN A, (20H) 
	;Read A/D converter 

	
	RET 
	


PROGRAM DESCRIPTION 
The 8255A ports are initialized by placing the control word 98h into the control register. To provide a start pulse to the converter, logic 0 is sent to bit PCo in port C, and after a sufficient delay, bit PCo is set to start the conversion. The end of conversion is checked by verifying the status of line PC7. When PC7 goes low, the instruction LD A, (20H) reads and places data into the accumulator. 
13.75  Mode 1: Input or Output with Handshake 
In Mode 1, handshake signals are exchanged between the MPU and peripherals prior to data transfer. The features of this mode are as follows: 
1. Two ports—A and B—function as 8-bit I/O ports. They can be configured either as input or output ports. 
2. Each port uses three lines from port C as handshake signals. The remaining two lines of port C can be used for simple I/O functions. 
3. Input and output data are latched. 
4. Interrupt logic is supported. 
In the 82.5.5A, the specific lines used from port C for handshake signals vary according to the I/O function of a port. Therefore, input and output functions in Mode 1 are discussed separately. 
MODE 1: INPUT CONTROL SIGNALS 
Figure 13.32(a) shows the associated control signals used for handshaking when ports A and B are configured as input ports. Port A uses the upper three signals—PC3, PC4, and PC5—while Port B uses PC2, PC], and PCq. The functions of these signals are: 
□ STB (Strobe Input): This signal (active low) is generated by a peripheral device to indicate that it has transmitted a data byte. The 825.5A, in response to STB, generates IBF and INTR, as shown in Figure 13.33. 
□ IBF (Input Buffer Full): This signal is an acknowledgment by the 82.5.5A to indicate that the input latch has received the data byte. This is reset when the MPU reads the data (Figure 13.33). 
□ INTR (Interrupt Request): This is an output signal that may be used to interrupt the MPU. This signal is generated if STB, IBF^nd INTE (internal flip-flop) are all at logic 1, and is reset by the falling edge of the RD signal (Figure 13.33). 
□ INTE (Interrupt Enable): This is an internal flip-flop used to enable or disable the generation of the INTR signal. The two flip-flops INTEa and INTEb are set/reset through the BSR mode. The INTEa is enabled/disabled through PC4, and INTEb is enabled/disabled through PC2. 
CONTROL AND STATUS WORDS 
Figure 13.32(b) uses control words derived from Figure 13.29 to set up port A and port B as input ports in Mode 1. Similarly, Figure 13.32(c) shows the status word, which will be placed into the accumulator if port C is read. 
8255 
Control Word—Mode 1 Input 
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FIGURE 13.32 
8255A Mode 1: Input Configmation 
SOURCE: Adapted from Intel Corporation, copyright 1981. 
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        FIGURE 13.33 
8255A Mode 0: Timing Waveforms for Strobed Input (with Handshake) 
SOURCE: Adapted from Intel Corporation, copyright 1981, 
INTERFACING PERIPHERALS PROGRAMMABLE I/O DEVICES, APPLICATIONS, AND DESIGN 
PROGRAMMING THE 8255A IN MODE 1 
The 8255A can be programmed to function using either status check I/O or interrupt I/O. Figure 13.34(a) shows a flowchart for the status check I/O. In this flowchart, the MPU continues to check data status through the IBF line until it goes high. This is a simplified flowchart and does not show how to handle data transfer if two ports are being used. The technique is similar to that of Mode 0 combined with the BSR mode. The disadvantage of the status check I/O with handshake is that the MPU is tied up in the loop. 
The flowchart in Figure 13.34(b) shows the steps required for the interrupt I/O, assuming that vectored interrupts are available. The confusing step in the interrupt I/O is to set INTE for either port A or port B. Figure 13.33(a) shows that the STB signal is connected to pin PC4 and the INTEa is also controlled by the pin PC4. (In port B, the pin PC2 is used for the same purposes.) However, the INTEa is set or reset in the BSR mode and the BSR control word has no effect when ports A and B are set in Mode 1. 
In case the INTR line is used to implement the interrupt, it may be necessary to read the status of INTRa and INTRb to identify the port requesting an interrupt service and to determine the priority through software, if necessary. 
MODE 1: OUTPUT CONTROL SIGNALS 
Figure 13.35 shows the control signals when ports A and B are configured as output ports. These signals are defined as follows: 
□ OBF (Output Buffer Full): This is an output signal that goes low when the MPU writes data into the output latch of the 8255A. This signal indicates to an output peripheral that new data are ready to be read (Figure 13.36). It goes high again after the 8255A receives an ACK (Acknowledge) from the peripheral. 
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8255A Mode 1: Output Configuiation 
SOURCE: Adapted from Intel Corporation, copyright 1981. 
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        FIGURE 13.36 
8255A Mode 1; Timing Waveforms foi Strobed Input (with Handshake) 
SOURCE: Adapted from Intel Corporation, copyright 1981, 
□ ACK (Acknowledge): This is an input signal to the 8255A from a peripheral, which must output a low when the peripheral receives the data from the 8255A ports (Figure 13.36). 
o INTR (Interrupt Request): This is an output signal, and it is set by the rising edge of the ACK signal. This signal can be used to interrupt the MPU to request the next data byte 
378 
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for output. The INTR is set when OBF, ACK and INTE are all one (Figure 1.3.36) and reset by the falling edge of WR. 
□ INTE (Interrupt Enable): This is an internal flip-flop to a port and needs to be set to generate the INTR signal. The two flip-flops INTEa and INTEb are controlled by bits PCe and PCi, respectively, through the BSR mode. 
□ PC4 and PC5: These lines can be set up as either input or output. 
CONTROL AND STATUS WORDS 
Figure 13.35(b) shows the control word needed to set up port A and port B as output ports in Mode 1. Similarly, Figure 13.35(c) also shows the status word, which will be placed into the accumulator if port C is read. 
13.76 Mode 2: Bidirectional Data Transfer 
This mode is used primarily in applications such as data transfer between two microcomputers or floppy disk controller interface. In this mode, port A can be configured as the bidirectional port and port B in either Mode 0 or Mode 1. Port A uses five signals from port C as controls signals for data transfer. The remaining three signals from port C can be used either as simple I/O or as handshake signals for port B. Figure 13.37 shows two configurations of Mode 2. 
13.77 Comparison of the Z80 PIO and the 8255 
The Z80 PIO and the Intel 8255A are two widely used peripheral interface devices, and they are designed to serve similar functions. However, the 8255A is a general-purpose 
Mode 2 and Mode 0 (Input) 
Mode 2 and Mode 1 (Output) 
Control Word 
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8255A Mode 2: Bidirectional Input/Output 
SOURCE: Adapted from Intel Corporation, copyright 1981 
TABLE 13.2 
Comparison of the Z80 PIO and the 8255 
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	Ports A and B 

	3. 
	Handshake and Interrupt 
	Ports A and B 
	Ports A and B 

	
	Signals 
	Separate 4 Lines 
	Uses Lines of Port C 

	4. 
	Bidirectional Mode 
	Port A 
	Port A 

	5. 
	Status Check of Handshake 
	Not Available 
	Available tlirough Port C 

	
	Signals 
	
	

	6. 
	Intenupt I/O 
	Ports A and B 
	Ports A and B 

	7. 
	Logic Check and Interrupt 
	Bit Mode 
	Not Available 

	8. 
	Daisy Chain Interrupt 
	Available 
	Not Available 

	
	Priority 
	
	


device and can be used with any microprocessor. On the other hand, the PIO is specifically designed to work with the Z80 microprocessor. Therefore, the PIO can offer some special features, such as daisy chain intenupt priority, based on its ability to recognize the instruction RETL The PIO has some other attractive features, such as its ability to recognize predefined logic conditions in the bit mode. The advantages of the 8255A over the PIO are that the 8255A has three I/O ports and the status of the handshake signals can be monitored by reading port C. In the 8255A, data transfer can be set up under the program control or the interrupt control; the PIO is better suited for the interrupt control. The comparison of these two devices is shown in Table 13.2. 
SUMMARY 
This chapter has been concerned with the basic concepts (such as control register, control logic, and handshake signals) underlying a programmable device. Based on these concepts, the Z80 PIO (Programmable Input/Output) device was discussed in details with illustrative applications. Finally, another widely used peripheral interfacing device, the Intel 8255A, was discussed and compared with the PIO. The important points can be summarized as follows: 
□ A programmable interface device is designed to perform various I/O functions, and these functions can be specified by writing an appropriate control word (or words) into its control registers. 
□ A programmable I/O device generally includes multiple I/O ports, control register(s), handshake signals, and interrupt capability. 
o The signals that are exchanged between the MPU and peripherals prior to data transfer are called handshake signals. These signals check whether a peripheral is ready for data transfer and inform the MPU accordingly. 
□ The Z80 PIO is a programmable I/O device with two I/O ports (A and B), and it has four operating modes: Mode 0 (output). Mode 1 (input), Mode 2 (bidirectional), and Mode .3 (bit mode). 
□ Each PIO port has two handshake signals, and each port can be used to transfer data under interrupt control. 
□ In PIO, only Port A can be used for bidirectional data transfer, and all handshake lines are used for this data transfer. Port A handshake lines are used for output control and Port B handshake lines for input control. 
□ Both PIO ports can be set up in the bit mode, whereby each line can be assigned either input or output function. For input lines, AND or OR logic function can be specified in the control register, and an interrupt can be generated when the conditions exist. 
□ The PIO has two signals—lEI and lEO—which are used to set up daisy chain priority. 
□ The Intel 825.5A is a general purpose programmable interfacing device, and it has three ports. It can also operate in various modes similar to the PIO. 
ASSIGNMENTS 
1. List the internal components found in a typical programmable device. 
2. Explain the functions of handshake signals. 
3. List the operating modes of the PIO and their features. 
4. If the PIO does not include the Write signal, specify the control signals necessary to perform a Write operation. 
5. Write instractions to set up Port A in Mode 0 and Port B in Mode 1. 
6. In Figure 13.6, identify the addresses of Port A and Port B and their control registers if the output line O7 of the decoder is connected to the CE signal of the PIO. 
7. In Figure 13.6, identify the addresses of ports A and B and their control registers if the address lines Aq and Ai are interchanged. 
8. In Figure 13.6, exchange the address lines Ay and A5 of the decoder, and identify port addresses. 
9. In Figure 13.38, address lines Ae and A5 are "don't care." Specify the multiple addresses that can access ports A and B. 
10. Identify the addresses of ports A and B and their control registers in Figure 13.39, assuming all "don't care" lines at logic 0. 
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        FIGURE 13.38 
PIO Interfacing for Assignment 9 

        
        [image: Picture #163]
        

        FIGUIE 13.39 
PIO Interfacing for Assignment 10 
11. Port A of the PIO is initialized in Mode 3 with bits D7-D5 as input and D4-D0 as output. The PIO generates an interrupt when bits D? and De are both at logic 0. Write initialization instructions. 
12. Explain the functions of the handshake signals ASTB and ARDY if PIO Port A is initialized as an input port. 
13. List the control words that need to be written into the control register to set up PIO Port B in Mode 1 for interrupt control I/O. 
14. If PIO Port B is initialized as an output port, list the sequence of events that occurs when a data byte is transferred to a peripheral under inteiTupt I/O. 
15. The PIO ports A and B are initialized as output ports to transfer data under interrupt control. Write instructions for the Z80 MPU to initialize the stack at 20A7h and the interrupt register at 20h. Assume that the service routine for Port A is at 2072h and for port B at 2097h, and that the interrupt vectors are located at 2048h and 204Ah for port A and B, respectively. 
16. Write a service routine to output a byte to the peripheral in Assignment 15. Show the memory addresses where the service routine is to be stored. 
17. In 15, an interrupt occurs from Port A when the Z80 MPU is executing a 3-byte instruction located at 2022h-2024h. List the stack addresses and their contents when the interrupt is acknowledged and the program control is transferred to the service routine. 
18. In Figure 13.12, if PIO-3 is being serviced, specify the status of the pins lEI and lEO of PIO-2 and PIO-3. 
19. The keyboard routine for Figure 13.15 gives the priority from key K7 to key Kq in that sequence. Modify the subroutine to change the priority sequence so that key Ko has the highest priority. 
20. When two keys are pressed simultaneously (Figure 13.15), the subroutine recognizes only the higher priority key. Modify the subroutine to recognize both keys. 
21. Redraw Figure 13.15 to replace the PIO with an octal buffer (such as the 74LS240) and an octal latch (such as the 74LS373). 
INTERFACING PERIPHERALS PROGRAMMABLE I/O DEVICES, APPLICATIONS, AND DESIGN 
22. Modify Figure 13.18 to show how a 4 X 4 matrix keyboard can be connected to Port A of the PIO. Write initialization instructions to set up Port A in Mode 3 to generate an interrupt whenever a key is pressed. 
23. Write initialization instructions to set up Port A in the bidirectional mode and Port B in Mode 3. Assign lines B7-B4 as input and B3-B0 as output. Can you write the control word to generate an interrupt when the lines By and Bg are at logic 1 ? Explain your answer. 
24. Write necessary software to transfer 100 bytes of data from Micro-2 to Micro-1 (Figure 13.24). 
25. List the operating modes of the 82.5.5A Programmable Peripheral Interface. 
26. Specify the bit of a control word for the 825.5A that differentiates between the I/O mode and the BSR mode. 
27. Write initialization instructions for the 8255A to set up Ports A and B in the handshake mode with the interrupt I/O. 
28. Figure 13.40 shows an interfacing of the data converter ADC0801 using Port A of the Z80 PIO; Port A is set up in Mode 1. The handshake signal ARDY is used to start the conversion by connecting it to WR through the one-shot multivibrator 74121, and ASTB is used to detect the end of the conversion by monitoring the line INTR of the converter. To start the conversion, one dummy Read instruction IN A, (PIOA) is executed. Explain the need for the one-shot multivibrator. (Hint: The data converter needs a pulse transition low-to-high to start the conversion.) 
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FIGURE 13.40 
Interfacing the ADC0801 Using the Z80 PIO in Mode 1 with Handshake 
PROGRAMMABLE INTERFACE DEVICES 
29. Write instructions to set up the Z80 PIO Port A in Mode 1 and the Z80 in interrupt Mode 2 with the interrupt vector 2070h. Initialize the memory pointer at 2050h to store data and the counter to record ten readings, and start the conversion. Write also an interrupt service routine to read the port, store data in memory (for ten readings), start the conversion again, and enable the interrupt. 
30. In Figure 13.41, Port A of the Z80 PIO is initialized in Mode 0, and its handshake signals ARDY and ASTB are tied together. When we execute the instruction OUT (PIOA), A, a pulse equal to one system clock period is generated at the output of ARDY that can be used as a strobe to start a process at a peripheral. Explain the output pulse of ARDY. (Hint: In Mode 0, the transition low-tohigh of the STB signal turns off the RDY signal—see Figure 13.10.) 
FIGURE 13.41 
Generating a Stiobe Pulse Using PIO Handshake Lines 
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        Programmable Timers and Counters 
A programmable timer/counter device is designed to generate accurate time delays using the system's clock and to count occurrences of external events. It can be used for applications such as a real-time clock, an event counter, and a signal generator. 
This chapter is concerned primarily with the Z80 CTC—Counter/Timer Circuit—and its applications. The CTC has four timer/counter channels and can be programmed to function as timers or counters by the user's writing control words into appropriate internal registers. The CTC is also capable of generating interrupt signals at a specified time delay or count. The CTC is widely used as a timer/counter and has become an integral part of Z80-based microprocessor systems. This chapter also includes the description of another widely used timer/counter— the Intel 8253—and its features are compared with those of the CTC. 
OBJECTIVES 
□ List the elements of the block diagram of the Z80 CTC (Counter/Timer Circuit) and explain functions of each element. 
□ List the operating modes of the CTC and explain the differences in these modes. 
□ Explain how the CTC operates as a counter and a timer and its interrupt capability. 
□ Identify port addresses of each counter channel in a given circuit. 
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        □ Write initialization instructions to set up the CTC in either the counter or the timer mode. 
□ Design a circuit to interface the CTC for given port addresses and write instructions to set up the CTC as a timer or a counter. 
□ List the elements of the Intel 8253 Programmable Interval Timer and its operating modes. 
□ Design a circuit to interface the 8253 for given port addresses and write instructions to set up the device for a given mode. 
INTERFACING PERIPHERALS PROGRAMMABLE VO DEVICES, APPLICATIONS, AND DESIGN 
Z80 CTC—COUNTER/TIMER CIRCUIT 
The Z80 CTC (Counter/Timer Circuit) is a 28-pin programmable chip, specially designed to work with the Z80 microprocessor. The block diagram (Figure 14.1) shows that the chip includes four counter/timer channels, control logic, interrupt control, and the system data bus. The CTC requires +5 V power supply and the Z80 system clock (CLK). 
The system data bus, D7-D0, consists of bidirectional tri-state lines and is connected to the data bus of the Z80 microprocessor. These bus lines transfer all data and commands between the Z80 and the CTC. 
The four channels can be independently programmed in either the timer or the counter mode. An 8-bit number (time constant) is loaded into the register of a channel, and is decremented on every clock pulse. At the end of the count, it generates a pulse at the ZC/TO (Zero Count/Time Out) pin; reloads the time constant into the register, and begins the next operation. If the CTC is programmed to use the interrupt, it generates an interrupt pulse at the end of the count, and its lEI and lEO signals can be used to set up the daisy chain interrupt priorities. 
14.11   Interfacing the CTC 
The CTC has an 8-bit bidirectional data bus, one output signal per channel (except Channel 3), and seven control signals including the chip enable signal, as shown in Figure 14.1. These signals are connected to the appropriate signals of the Z80 microprocessor. 
□ D0-D7 (Data Bus): This is a tri-state bidirectional data bus that transfers data and commands between the Z80 and the CTC. 
□ CLK (Clock): This is an input from the Z80 system clock. 
□ CLK/TRG (Clock/Trigger): This is an external input signal. In the counter mode, it is used to count external events, and its active level (high or low) is specified in the control word. In the timer mode, an active edge starts the timer. 
□ ZC/TO (Zero Count/Time-Out): This is an active high output, generated when the down-counter has been decremented to zero. 
□ lORQ (I/O Request), Mi (Machine Cycle I), and RD (Read): These are three active low signals and perform Read/Write/Interrupt Acknowledge operations as described below. 
□ Read: This operation is performed when lORQ and RD are active low and mT is high. In this operation, the contents of the counter of the selected channel can be read. 
□ Write: There is no separate signal for the Write operation. When RD is high, the CTC generates the Write signal internally. In this operation, control word and time constant can be written in the selected channel. 
n Interrupt Acknowledge: The Z80 acknowledges the interrupt by asserting two control signals (lORQ and Ml) low, and the highest priority interrupting channel places its interrupt vector on the data bus. (This operation is discussed in detail later in Section 14.13 and 14.14). 
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FIGURE 14.1 
Z80 CTC: Block Diagram and Logic Pinout 
SOURCE: Courtesy of Zilog, Inc 
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INTERFACING PERIPHERRLS PROGRAMMABLE I/O DEVICES, APPLICATIONS, AND DESIGN 
TABLE 14.1 
Control Operations and Signals 
	Operations 
	lORQ 
	RD 
	Ml 

	Read 
	Low 
	Low 
	High 

	Write 
	Low 
	High 
	High 

	Intemipt 
	Low 
	High 
	Low 


Acknowledge 
□ The control operations and the active level of the associated control signals are summarized in Table 14.1. 
□ RESET (Reset): This is an active low signal that terminates the counting operation and disables the interrupts; all outputs go inactive and the data bus D7-D0 goes to the high impedance state. 
□ CE (Chip Enable): This is an active low signal connected to the decoded low-order address bus of the Z80. When this signal is active, the CYC is selected. 
□ CSo and CS, (Channel Select): These two lines are generally connected to the address lines Ao and A,, respectively, and the logic combination of these Unes (as shown in the following list) selects one of the four channels of the CTC to vvrite into or read from. The decoded address of the Chip Enable and the logic levels of CSq and CS, determine the port address of the selected counter channel. 
	
	
	
	Selected 

	CE 
	CSi 
	CSo 
	Channel 

	0 
	0 
	0 
	Channel 0 

	0 
	0 
	1 
	Channel 1 

	0 
	1 
	0 
	Channel 2 

	0 
	1 
	1 
	Channel 3 


Example 14.1 illustrates the use of these signals in interfacing the CTC. 
Example Determine the port addresses of the CTC channels shown in Figure 14.2. 
14.1 
Solution To select the CTC, the output line    of the decoder should go low. Therefore the logic 
levels of the address lines A7-A2 should be as shown. Combining the logic levels of A7-A2 with those of A, and Ao gives us port addresses of the counter channels ranging from 24h to 27 u
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A4A3
MSB 
74LS138 
3-to-8 Decoder 
CS 
FIGURE 14.2 
Interfacing the CTC 
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cl 
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	Data Bus 
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	1 

	
	1 

	
	1 

	
	

	


Ch. 0 24h 
Ch. 1 ( 25h 26h 
Ch. 3 27h 
A7 0 
Ae 0 
Decoder Enable 
A5 1 1 
A4 
10 
A3 0 
Decoder Input 
A2 1 I 
	A, Ao 
	
	

	0 0 
	= 24h 
	Channel 0 

	0 1 
	= 25h 
	Channel 1 

	1 0 
	= 26h 
	Channel 2 

	1 1 
	= 27h 
	Channel 3 

	Channel 
	
	

	Select 
	
	


14.12  Programming the CTC 
The CTC can be programmed to operate in either the timer mode or the counter mode. Each channel consists of channel control logic, time constant register, and the downcounter, as shown in Figure 14.3. To program the CTC, a control word should be written into the channel, and it must be followed by an 8-bit time constant value loaded into the time constant register. The control word determines such parameters as the operating mode, the active trigger level (falling or rising edge), and the interrupt logic (see Figure 14.4). The time constant (count), which can be from 1 to 256 (0 = 256), is loaded into the down-counter and decremented according to the specified mode operation. When the count reaches zero, it is automatically reloaded into the register. Figure 14.3 also shows a block called prescaler. This is used only in the timer mode; it divides the system clock frequency by either 16 or 256. The output of the prescaler decrements the down-counter in the timer mode. 
The channel control word is shown in Figure 14.4 and is illustrated in Example 
14.2. 
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FIGURE 14.3 
Internal Architecture of a Channel 
SOURCE: Courtesy of Zilog, Inc., 
Internal Bus 
CL,K/TRG Clock 
hi 
Prescaler 
Channel Control Logic 
Time Constant Register 
8-Bit DownCounter 
-ZC/TO 
	
	D6 
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 


Interrupt 
0 = Disable 
1 = Enable 
Mode 
0 = Timer 
1 = Counter 
Prescaler 0= 16 1 = 256 
Clock Trigger 
0 = Falling Edge 
1 = Rising Edge 
Word Type 
0 = Vector 
1 = Control 
Operation 
0 = Continuous 
1 = Software Reset 
Time Constant 
0 = No Constant 
1 = Constant Follows 
Timer Trigger 
0 = Automatic: 
Count begins wlien time constant is loaded 
1 = CLK/TRG Pulse starts 
timer 
FIGURE 14.4 
Channel Control Word 
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Write instructions to program Ciiannel 0 of the CTC (Figure 14.2) in the timer mode to provide a pulse every 20 ms if the system clock is 1 MHz. 
Channel 0 of the CTC in Figure 14.2 has the port address 24h. To program the channel in the timer mode, we need to send two words to the channel port: a channel control word and a proper count to provide 20 ms delay. Assuming the prescaler is 256, the system clock frequency will be divided by 256; in other words, the clock period will be multiplied by 256. Therefore the total delay between two consecutive outputs is 
Td = Tc X PS X TC 
where Tc = System clock PS = Prescaler TC = Time constant (Count). 
The system has a 1 |xs clock period; therefore, the number in the time constant register will be decremented every 256 |xs. The count necessary to obtain a 20 ms delay is 
20 ms = 1 fxs X 256 x TC (Count) 
TC =      '"^ = 78.125 s 78 = 4Eh. 256 |JLS " 
Example 14.2 
Solution 
Assuming the counter will begin at the rising edge of the system clock as soon as the count is loaded into the register, the control word is as follows: 
Disable Interrupt 
Timer Mode 
	
	De 
	Ds 
	D4 
	D3 
	D2 
	D, 
	Do 

	0 
	0 
	1 
	1 
	0 
	1 
	1 
	1 


Prescaler Value = 256' 
Triggered 
On Rising Edge 
Control Word • Reset and Start 
^ Next Word Is 
Time Constant 
_ Automatic Trigger 
Instructions The following instructions will set up the CTC in the timer mode with the specified parameters. 
CNTRL COUNT PORTO 
EQU 37H EQU 4EH EQU 24H 
;Deflnes channel control word 
;Time constant 
;Port address of Channel 0 
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SETUP: LD A, CNTRL 
OUT (PORTO), A LD A, COUNT OUT (PORTO), A HALT 
;Channel control word 
;Send control word to Channel 0 
;Time constant 
;Load time constant in Channel 0 
Description The first instruction writes the channel control word in Channel 0 (Port 24h), and it is followed by the time constant (COUNT = 4Eh). As soon as the time constant is loaded into the channel, the down-counter begins. Because the prescaler divides the system clock by 256, the count is decremented every 256 |xs. The countdown continues until the time constant (4Eh) goes to zero, and at the end of the count, a high pulse, approximately 1.5 times the system clock period in width, is generated at the output (ZC/TO = Zero Count/Time Out) of Channel 0. The channel word has specified continuous operation; therefore, the time constant is automatically loaded again into the channel register and the down-counter continues generating a pulse every 20 ms. 
The CTC architecture includes the interrupt control logic shown in the block diagram (Figure 14.1). This logic is used to generate an interrupt request pulse and to determine the priorities among the four channels as well as among various CTC devices if the system includes more than one CTC. The CTC has three signals associated with the interrupt: INT, lEL and lEO. These signals are functionally similar to those of the Z80 PIO described in the last chapter. The INT signal is again described here, and the other two are described in Section 14.14. 
□ Int (Interrupt Request): This is an active low output signal, and if the interrupt is enabled in the channel control word, it goes low when the down-counter reaches zero. 
To use the interrupt process, the Z80 should be set in the interrupt Mode 2, and the CTC should be programmed to supply the low-order byte of the interrupt vector. The CTC generates an interrupt request (INT) when the down-counter of a channel reaches zero. When the Z80 acknowledges the interrupt request, the Interrupt register I of the Z80 supplies the high-order byte and the CTC supplies the low-order byte of the interrupt vector address. The low-order byte of the interrupt vector and the identification of the channel requesting the interrupt are defined as shown in Figure 14.5. Bits D7-D3 are defined by the user; bits D2-D1 are supplied by the CTC to identify the channel that has reached the count of zero, and bit Do must be zero to differentiate the intemipt vector from the control word. To form the interrupt vector, initially, bits D2 and Di can be at any logic level; they are specified by the CTC when a channel requests an interrupt. Once the interrupt vector address of Channel 0 is defined, the remaining vector addresses are automatically defined; they are consecutive addresses with two memory locations for each channel. 
14.13  Using the CTC Interrupts 
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	0 


Defined by User «
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0 1 Channel 1 
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FIGURE 14.5 
Bit Definition of Interrupt Vector 
Modify the instructions in Example 14.2 to program Channel 0 of the CTC (Figure 14.2) in Example 
the timer mode to provide a pulse and generate an interrupt every 20 ms. The address of the 
interrupt service routine is at memory locations 2050h and 205 1h
To program the CTC, we need to load three words into Channel 0. Solution 
1. Channel control word: The word is similar to the word in Example 14.2 except that bit D7 should be 1 to enable the interrupt. Therefore, the word should be changed from 37h to 67^. 
2. Time constant: It is the same as in Example 14.2. 
3. Interrupt vector for location 2050h: The high-order byte should be loaded into the interrupt vector register I of the Z80 and the low-order byte into Channel O. 
	Instructions 
	
	

	CNTRL 
	EQU B7H 
	;Channel control word 

	COUNT 
	EQU 4EH 
	;Time constant 

	PORTO 
	EQU 24H 
	;Channel 0 port address 

	SETUP: 
	DI 
	;Disable interrupt 

	
	IM 2 
	;Set up Z80 in interrupt Mode 2 

	
	LD A, 20H 
	;High-order byte of interrupt vector 

	
	LD I, A 
	;Load interrupt register with high-order byte 

	
	LD A, CNTRL 
	;Channel control word = B7H 

	
	OUT (PORTO), A 
	;Initialize Channel 0 

	
	LD A, COUNT 
	;Time constant = 4EH as in Example 14.2 

	
	OUT (PORTO), A 
	;Load time constant into Channel 0 

	
	LD A, 50H 
	;Low-order byte of interrupt vector 

	
	OUT (PORTO), A 
	;Load interrupt vector in CTC 

	
	EI 
	;Enable Z80 interrupt 

	
	i 
	;Continue with program 
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Description The first instruction DI disables, and the last instruction EI enables, the Z80 interrupt. This is necessary to avoid any false interrupts when the CTC is being initialized. The interrupt vector for Channel 0 is initialized at 2050h; therefore, the interrupt service routine address for Channel 0 must be stored in locations 2050h and 205!». The interrupt vector addresses for Channels 1 through .3 are automatically defined; they range from 2052h to 20.57h. The interrupt service routine should be terminated by the instruction RETI (Return from Interrupt). The CTC is designed to recognize the RETI instruction, and when it does so, the interrupt request is automatically removed. 
14.14 Interrupt Priorities 
Among the four CTC channels, Channel 0 has the highest priority and Channel 3 has the lowest priority. When multiple CTC devices are used in a system, they can be connected in the daisy chain format; the CTC has two signals (lEI and lEO) to set up the daisy chain priorities among CTC devices. 
□ lEI (Interrupt Enable In): This is an active high input signal, used to set up daisy chain interrupt priorities. A high level on this pin indicates that no other interrupting devices of higher priority in the daisy chain are being serviced by the Z80. 
o lEO (Interrupt Enable Out): This is an output signal, used in conjunction with the lEI signal to set up the daisy chain priority in a system. The lEO signal remains high if the lEI is high and the Z80 is not servicing any interrupt from any CTC channel. This signal blocks lower priority devices from interrupting while a higher priority interrupting device is being serviced. 
Figure 14.6 shows three CTC devices connected in the daisy chain format. The lEI of Device #1 is tied to +.5 V, and its lEO signal is fed to Device #2. In this schematic, Device #1 has the highest priority, and Device #3 has the lowest priority, and within each device, the priority goes from Channel 0 to Channel 3. 
14.15 Counter and Timer Applications 
The CTC operations in the counter mode and the timer mode appear to be similar; this apparent similarity can cause confusion in applications. For example, either of the modes can be used to design a clock. Therefore, it is necessary to discuss the differences between these two operations. 
FIGURE 14.6 
CTCs Connected in Daisy Chain Format 
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The counter mode is used to count external events indicated by the CLK/TRG pulse. When an external circuit causes the CLK/TRG pin to go active, the down-counter in the CTC is decremented. Thus, the down-counter continues to count the events until it reaches zero, and then the output (ZC/TO) pulsed high indicates the end of the count. The downcounter is automatically loaded again, and the next cycle of counting continues. 
On the other hand, the timer mode is used to provide time delays and is based on the internal clock (CLK). However, the clock frequency is divided by a number called prescaler (16 or 256), which is specified in the control word. Thus the down-counter is decremented every 16th or 256th clock pulse. When the down-counter reaches zero, an output pulse is generated, similar to that in the counter mode, and the counter is loaded again for the next time delay. 
The CTC can be used in the timer mode to design a clock to indicate the time of the day; the accuracy is determined primarily by the system clock. Similarly, the CTC can be used in the counter mode to count pulses from a 60 Hz power line, and a clock can be designed as illustrated in Section 14.3. 
ILLUSTRATION: DESIGNING A BAUD (RATE) GENERATOR USING THE CTC IN THE TIMER MODE 
A typical application of the CTC in the timer mode is a programmable baud (rate) generator for serial I/O data communication (see Chapter 15). The baud generator is a frequency generator that provides a pulse at a predetermined frequency. In serial I/O, data bits are generally transmitted from 110 bits to 9,600 bits per second. For example, to send data over telephone lines, the transmission rate ranges from 300 to 2,400 bits per second. The clock frequency for serial I/O circuitry is generally 16 to 64 times the transmission rate. This illustration is concerned with designing a baud generator using the CTC. 
14.21 Problem Statement 
Design a programmable baud (frequency) generator using the CTC to provide two frequencies: 300 X 16 (= 4.8 kHz) and 1200 x 16 (= 19.2 kHz); the system clock is 3.6864 MHz. Identify the port addresses of Channels 1 and 2 and program Channel 1 to generate 4.8 kHz and Channel 2 for 19.2 kHz. 
14.22 Problem Analysis 
The port addresses of the channels can be obtained by analyzing the decoding logic in Figure 14.7. The circuit uses the 74LS139 2-to-4 decoder; it has address lines A7 and Ae as inputs, A5 as the enable line (active low), and lines A4, A3, and A2 as "don't care." The address lines Ai and Aq are connected to the CTC, and they determine the channel selection. Assuming the "don't care" lines at logic 0, Channel 1 can be accessed with the port address 91h and Channel 2 with the port address 92h, as shown. 
14.2 
Ay   Ae   As   A4   A3   A2   Ai Aq 
I 1     01 (OJ [0    0 OJ   0     1 =91h     Channel 1 
I       T I' 1     0 = 92h      Channel 2 
Decoder Enable   "Don't Channel Input Care" Select 
To program the channels for the specified frequencies, we need to initialize the channels in the timer mode and calculate the time constant; this step is similar to Example 14.2. Let us assume the prescaler is 16; for Channel 1, the output or the baud (rate) should be 4.8 kHz. 
System Clock Frequency fs 
Baud = = 
Prescaler x Time Constant     16 x Tc 
3.6864 MHz 
4.8 kHz =  Tc = 48 
16 X Tc 
Similarly, the time constant for 19.2 kHz = 12. 
+5 V 
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        HGURE 14.7 
Schematic: Baud Generator Using CTC in the Timer Mode 
The channel control word for both channels is 17h as shown in the following diagram; this is a continuous operation without the interrupt capability. 
Disable Interrupt*
Timer Mode*
	
	D6 
	Ds 
	D4 
	D3 
	D2 
	D, 
	Do 

	0 
	0 
	0 
	1 
	0 
	1 
	1 
	1 


Prescaler Value = I6< 
17h 
■ Control Word 
-»Reset and Start 
Next Word Is >Time Constant 
Automatic -^Trigger 
Triggered 
on Rising Edge 
Instructions The following instructions will set up the CTC in the timer mode: Channel 1 for 4.8 kHz output and Channel 2 for 19.2 kHz. 
;Defines channel control word ;Time constant 48 for Channel 1 ;Time constant 12 for Channel 2 ;Port address of Channel 1 ;Port address of Channel 2 ;Channel control word ;Send control word to Channel 1 ;Time constant for Channel 1 ;Load time constant into Channel 1 ;Channel control word ;Send control word to Channel 2 ;Time constant for Channel 2 ;Load time constant into Channel 2 
	CNTRL 
	EQU 17H 

	COUNT 1 
	EQU 30H 

	C0UNT2 
	EQU OCH 

	CTCl 
	EQU 91H 

	CTC2 
	EQU 92H 

	SETUP: 
	LD A, CNTRL 

	
	OUT (CTCl), A 

	
	LD A, COUNTl 

	
	OUT (CTCl), A 

	
	LD A, CNTRL 

	
	OUT (CTC2), A 

	
	LD A, COUNT2 

	
	OUT (CTC2), A 

	
	HALT 


Description The first two instructions write the channel control word into Channel 1 (Port 91h), and it must be followed by the time constant (COUNTl = 30h). This operation is repeated for Channel 2 by the subsequent instructions. When the time constant is loaded, it resets the channel and begins the countdown at the rising edge of the system clock. When the count reaches zero, a high pulse equal to 1.5 times (0.41 |xs) the system clock period is generated at the output (ZC/TO = Zero Count/Time Out) of the channel; thus, Channel 1 provides a 4.8 kHz clock and Channel 2 provides a 19.2 kHz clock. 
ILLUSTRATION: USING THE CTC IN THE COUNTER MODE WITH INTERRUPT 
In the counter mode, the CTC counts external events whenever the input signal at the CLK/TRG pin of a channel goes active. The CLK/TRG pin can be activated by either a leading edge or trailing edge pulse input; it is specified by the channel control word. The channel operation is similar to that in the timer mode; an 8-bit count is loaded into the channel register, and the count is decremented whenever the CLK/TRG input goes active. When the count reaches zero, the output ZC/TO goes active for approximately 1..5 times the clock period and the count is reloaded into the register. 
This illustration concerns designing a clock by counting a 60 Hz power line, which provides an accurate time base. 
14.31   Problem Statement 
Design a minute timer using a 60 Hz powerline as an external trigger to the CLK/TRG pin of Channel .3 as shown in Figure 14.8. The CTC should interrupt the Z80 MPU every second to update the seconds display, and at the end of 60 minutes the clock should be reset and start again. The vector address for Channel .3=20.56h. 
Z80 
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Z80 
Same Control as in * 
Fig, 14.7 CS
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FIGURE 14.8 
Schematic: CTC in the Counter Mode 
14.32 Problem Analysis 
This problem has three parts: 
1. Getting an appropriate pulse from the 60 Hz power line. 
2. Setting up the CTC in the counter mode with the intemipt capability. 
3. Writing subroutines to upgrade the displays of seconds and minutes. 
The AC power line provides 120 V (RMS) with 60 Hz frequency. Thus, it can provide a signal with a 16.6 ms period; however, the voltage should be converted into a 5 V pulse to be compatible with TTL logic. Figure 14.8 shows a step-down transformer with a rectifier; the output of the rectifier will be approximately + 10 V, and the resistor divider network adjusts the output to + 5 V. The inverters are used as a wave-shaping circuit to convert the sine wave into a square wave pulse. The output of the inverters will be a 5 V square wave with a 16.6 ms period, connected to the CLK/TRG pin of the CTC Channel 3. This pulse triggers the CTC channel 60 times per second. 
The CTC channel counter should be set up to count these pulses, and at the end of the count, the CTC should generate an intenupt. Thus, the interrupts are generated every second, and the interrupt service subroutine should upgrade the seconds display. 
14.33 Initializing the CTC in the Counter Mode 
To initialize the CTC in the counter mode with interrupt capability, we need to send three words: channel control word and count (time constant) to Channel 3, and interrupt vector to Channel 0. 
The channel control word is as follows (assuming "don't care" bits at logic 0): 
	
	De 
	Ds 
	D4 
	D3 
	D2 
	D, 
	Do 

	1 
	1 
	X 
	0 
	X 
	1 
	1 
	1 


Enable Interrupt. 
Counter Mode «— 
Used in Timer Mode 
^Control Word 
* Reset and Start 
Next Word Is > Time Constant 
Used in -»Timer Mode 
Count on Rising Edge 
The time constant = 3Ch to count 60 pulses. The low-order vector address = 50h for Channel 0; the high-order address is supplied by the interrupt register I (see Figure 14.5). 
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14.34 Program 
In this illustration, the program can be divided into three sections: CTC initialization, the main program to display minutes and seconds, and the interrupt service routine to update the timer registers. 
CTC Initialization The following instructions are written as a subroutine to set up the CTC Channel 3 in the counter mode with interrupt enable. 
;Defines channel control word ;Time constant 60 for 1 second ;Low-order address of interrupt vector ;Port address of Channel 3 ;Port address of Channel 0. ;Channel control word ;Send control word to Channel 3 ;Time constant to count 60 pulses ;Load time constant into Channel 3 ;Low-order interrupt vector ;Load interrupt vector address into Channel 0 
	CNTRL 
	EQU C7H 

	C0UNT3 
	EQU 3CH 

	LOVECT 
	EQU 50H 

	CTC3 
	EQU 93H 

	CTCO 
	EQU 90H 

	SETCTC: 
	LD A, CNTRL 

	
	OUT (CTC3), A 

	
	LD A, C0UNT3 

	
	OUT (CTC3), A 

	
	LD A, LOVECT 

	
	OUT (CTCO), A 

	
	RET 


Main Program The main program initializes the stack pointer, the interrupt register, and registers for minutes and seconds. It calls the SETCTC subroutine, enables the Z80 interrupt, and stays in the display loop. 
START: 
DSPLAY: 
LD SP, STACK IM 2 
LD A, 20H LD I, A CALL SETCTC LD BC, 0000 EI 
LD A, B 
OUT (PORTl), A LD A, C 
OUT (P0RT2), A JP DSPLAY 
;Initialize stack pointer 
;Set up Z80 in interrupt Mode 2 
;Load high-order byte of interrupt vector 
;Load interrupt register 
initialize CTC 
;Set B for minutes and C for seconds ;Enable Z80 interrupts 
;Display minutes 
;Display seconds 
Interrupt Service Routine This routine is concerned primarily with updating the registers for seconds and minutes and decimal adjusting the values in the registers for BCD display. When register C reaches 60 seconds, it clears the register and increments register B. Register B is incremented until it reaches 60 minutes, and then the timer is reset to start again. 
401 
TIMER: PUSHAF LD A, C ADD OIH DAA LD C, A CP 60H 
JR NZ, GOEND LD C, 00 LD A, B ADD A, OIH DAA LD B, A CP 60H 
JR NZ, GOEND LD B, 00 GOEND: POP AF EI 
RETI 
;Save(A)(F) 
;Get previous reading 
;Update seconds 
;Decimal adjust seconds 
;Save BCD value of seconds 
;Is time = 60 seconds? 
;If not, go to end and return 
;If yes, clear seconds 
;Get previous minutes 
;Update minutes 
;Decimal adjust minutes 
;Save BCD value of minutes 
;Are minutes = 60? 
;If not, go to end and return 
;If yes, clear minutes 
PROGRAM DESCRIPTION 
The main program initializes the CTC Channel 3 and remains in the DSPLAY loop displaying the contents of registers B and C at output ports. The CTC channel register is loaded with the count 60, and whenever the powerline source triggers the CLK/TRG pin, the CTC register is decremented. When the register reaches zero, the interrupt request (INT) goes active and interrupts the Z80; thus, the Z80 is interrupted every second. Channel 3 does not have a ZC/TO output signal; therefore, the interrupt request INT must be used to indicate that the register has reached zero. 
When the Z80 acknowledges the interrupt request, the CTC supplies the low-order address (56h) of the interrupt vector, and it is combined with the high-order address (20h) from the Z80 intenupt register. The program execution is transferred to location 2056h, where the address of the service routine is stored in two consecutive memory locations (2056h and 2057h), and then the program is transferred to the service routine TIMER. 
The service routine increments the seconds in register C, adjusts the value for BCD, and checks whether the number has reached 60. If it has not, the routine jumps to the end to enable the interrupt and returns to the main program. When the instruction RETI (Return from Interrupt) is executed, it is recognized by the CTC, which clears the INT signal. When register C does eventually reach 60, the routine clears register C and increments the minutes in register B. When register B reaches the count of 60 minutes, register B is cleared, and the timer is reset to start all over. 
THE 8253 PROGRAMMABLE INTERVAL TIMER 
14i4 
The Intel 8253 is another widely used general purpose programmable interval timer/ counter, and it is in many ways similar to the Z80 CTC. The 8253 includes three identical 
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16-bit counters which can operate independently in any one of six modes (described later). It is packaged in a 24-pin DIP and requires a single +5 V power supply. For operation as a counter, a 16-bit count is loaded in its register, and on command, it begins to decrement the count until it reaches zero. At the end of the count, it generates a pulse which can be used to interrupt the MPU. The counter can count in either binary or BCD. In addition, a count can be read by the MPU while the counter is decrementing. 
14.41  Block Diagram of the 8253 
Figure 14.9 shows the block diagram of the 82.53; it includes three 16-bit counters (0, 1, and 2). Each counter has two input signals—clock (CLK) and GATE—and one output signal—OUT. GATE can be used to initiate, enable, or disable counting. The diagram also shows three blocks: data bus buffer, Read/Write control logic, and a control word register. 
Data Bus Buffer This is a tri-state 8-bit, bidirectional buffer connected to the data bus of the MPU. 
Pin Configuration 
Block Diagram 
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        Pin Names 
	D7-D0 
	Data Bus (8 Bit) 

	CLK N 
	Counter Clock Inputs 

	GATEN 
	Counter Gate Inputs 

	OUT N 
	Counter Outputs 

	RD 
	Read Counter 

	WR 
	Write Command or Data 

	CS 
	Chip Select 

	Ao-A, 
	Counter Select 

	Vcc 
	+ 5 Volts 

	GND 
	Ground 


FIGURE 14.9 
8253 Block Diagram 
SOURCE: Reprinted by permission of Intel Corporation, copyright 1979, 
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        Internal Bus' 
Control Logic This control section has five signals: RD (Read), WR (Write), CS (Chip Select), and the address lines Aq and A). In the peripheral I/O mode, the RD and WR signals are connected to lORD and lOWR, respectively. In memory-mapped I/O, these are connected to MEMRD (Memory Read) and MEMWR (Memory Write). Address lines Aq and Ai of the MPU are usually connected to lines Aq and Ai of the 8253, and CS is tied to a decoded address. 
The control word register and counters are selected according to the signals on lines Aq and Aj, as shown. 
Ai     Ao Selection 
0       0      Counter 0 
0 1       Counter 1 
1 0      Counter 2 
1        1       Control Word Register 
Control Word Register This register is accessed when lines Aq and Ai are at logic 1. It is used to write a command word which specifies the counter to be used, its mode, and either Read or Write operation. However, the control word register is not available for a Read operation. The control word format is shown in Figure 14.10. 
Mode The 8253 can operate in six different modes, as shown in Figure 14.11. The gate of a counter is used either to disable or enable counting, as shown in Figure 14.12. 
14.42  Programming the 8253 
The 8253 can be programmed to provide various types of outputs (Figure 14.11) through Write operations, or to check a count while counting through Read operations. The details of these operations are given below. 
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	Select 

	
	
	Counter 

	0 
	0 
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	1 
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	D5 
	D4 
	Read/Load 

	0 
	0 
	Latch 

	
	
	Counter 

	0 
	1 
	LSB Only 

	1 
	0 
	MSB Only 

	1 
	1 
	LSB First 
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M 
Do 
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	D3 
	D 
	Mode* 

	0 
	0 
	0 
	ModeO 

	0 
	0 
	! 
	Mode 1 

	X 
	1 
	0 
	Mode 2 

	X 
	1 
	1 
	Mode 3 

	1 
	0 
	0 
	Mode 4 

	1 
	0 
	1 
	Mode 5 


Code 
0 = Binary 
1 = BCD 
FIGURE 14.10 
8253 Control Word Format 
SOURCE: Adapted from Intel Corporation, copyrigiit 1978 
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Mode 0: Intenipt on Terminal Count 
Mode 1: Programmable One-Shot 
Clock -JT-ruxruaruxnjTJTJTJTJi. 
WR n 
Output (Interrupt) 
4 3 2 1 0 —i r 
(n = 4) Ki—n
WR m -1      I \ 
Gate 
Output (Interrupt) 
iL. 
5 4 
i 2 1 0 
(m = 5) 
A B A + B = m 
Clock JTJTJTJTJXrUTJTJTXUajTXL WR n  1 I 
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FIGURE 14.11 
8253 Operating Modes 
SOURCE: Reprinted by permission of Intel Corporation, copyright 1981. 
Write Operations   To initialize a counter, the following steps are necessary. 
1. Write a control word into the control register. 
2. Load the low-order byte of a count into the counter register. 
3. Load the high-order byte of a count into the counter register. 
With a clock and an appropriate gate signal to one of the counters, the above instructions should be able to start the counter and provide appropriate output according to the control word. 
Read Operations In some applications, especially in event counters, it is necessary to read the value of the count in progress. This can be done by one of two methods. One 
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FIGURE 14.12 
Gate Settings of a Counter 
SOURCE: Reprinted by permission of Intel Corporation, copyright 1981 
method involves reading a count after inhibiting (stopping) the counter to be read. The second method involves reading a count while counting is in progress (reading on the fly). 
In the first method, counting is stopped (or inhibited) by controlling the gate input or the clock input of the selected counter, and two I/O Read operations are performed by the MPU. The first I/O operation reads the low-order byte, and the second reads the high-order byte. 
In the second method, an appropriate control word is written into the control register to latch a count in the output latch, and two I/O Read operations are performed by the MPU. 
14.43  The 8253 as a Square Wave Generator 
One of the attractive features of the 8253 is that it has several modes that can be used for various purposes whereas the CTC is primarily restricted to two modes: counter and timer. The following example illustrates how to set up the 8253 as a square wave generator. 
1. Identify the port addresses of the control register and the counter 2 in Figure 14.13. 
2. Calculate the count necessary to obtain a 20 kHz square wave if the clock frequency is 1 MHz and the counter is set up in Mode 3. 
3. Write instructions to initialize Counter 2 in Mode 3 to obtain a 20 kHz square wave. 
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Schematic; Interfacing the 8253 
1. Port Addresses 
The Chip Select is enabled when Ay = 1 (see Figure 14.13), and the control register is selected when Ai and Aq = 1. Similarly, Counter 2 is selected when A, = 1 and Ao = 0. Assuming that the unused address lines Ag to A2 are at logic 0, the port addresses will be as follows: 
Control Register = 83h Counter 2         = 82h. 
2. Count to Generate 20 kHz in Mode 3 
The system clock frequency is 2 MHz, which is divided by 2 using a D flip-flop. The output of the flip-flop changes on the rising edge; therefore, the output frequency fed to CLK 2 is 1 MHz, with the period of 1 |xs (see Figure 14.14). 
In Mode 3, the output remains high for half the count and low for the remaining half of the count. This is accomplished by decrementing the count by two at every falling edge of the clock. Therefore, with 1 MHz clock frequency, the count will be decremented by two every microsecond. To obtain the square wave with 20 kHz frequency (50 |xs period), the output should remain high for 25 |xs and low for 25 (xs. 
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3. Control Word and Instructions to Initialize the Counter 
To initialize the 8253 for Counter 2 in Mode 3, the following control word is necessary. 
D7 
lL 
Select Counter 
De   D5 D4 
0 
J L 
1 
Read or Write 16-Bit Count 
D3 D2 D, XI      1 I 
Mode 3 
Do 
lOj= B6, 
Count in Binary 
Instructions 
COUNTR: 
LD A, lOllOllOB OUT (83H), A LD A, 50 OUT (82H), A LD A, 00 OUT (82H), A 
Control word (B6H) to initialize Counter 2. Write control word in control register Low-order byte (50 = 32h) of the count Load Counter 2 with the low-order byte High-order byte of the count Load Counter 2 with the high-order byte 
Description The first instruction loads the control word into the control register of the 8253 to set up Counter 2 in Mode 3. The subsequent instructions load the count 0032H (50io) to obtain a 20 kHz square wave. In Figure 14.13, the gate is tied high; therefore, the counter begins as soon as the count is loaded. 
14.44  Comparison of Z80 CTC and Intel 8253 
The Intel 8253 is a general purpose programmable timer/counter. It includes three 16-bit counters. Its control logic requires RD/WR control signals and the decoded address. Each counter can have its own independent clock, and the counter operation can be controlled using the gate input. The 8253 can operate in six different modes to provide various types of outputs, such as a single pulse at the end of the count or a square wave output. 
On the other hand, the CTC is specially_designed to work with the Z80; it requires 
Ml and lORQ control signals in addition to RD signal. The CTC has four independent channels with an 8-bit time constant register. The counting is initiated by software instructions; it does not have a gate input signal. It can operate only in two modes: counter and timer. However, the CTC has a very powerful interrupt scheme; it can generate an interrupt request signal at the end of the count and set up the daisy chain priority scheme. 
INTERFACING PERIPHERALS PROGRAMMABLE I/O DEVICES, APPLICATIONS, AND DESIGN 
SUMMARY 
Programmable timer/counter circuits are designed to provide accurate time delays and to count external events. These integrated circuits are used in various applications such as time delays, counters, one-shot, and waveform generation. This chapter has been concerned with applications of programmable timer/counter devices, specifically, the Z80 Counter/Timer Circuit (CTC). The CTC was described in detail, and it was illustrated with two applications: baud generator and timer (clock) design using a 60 Hz power line signal. In addition, the Intel 82.53 timer was described and compared with the CTC. A summary of the important features of the programmable timer circuits is as follows. 
□ A programmable timer/counter device generally includes multiple timer/counter circuits and can operate in various modes. 
□ The control logic of the timer includes a control register and a time constant register. The operation mode and the selection of a timer is specified by writing a control word into the control register, and an appropriate count is loaded into the time constant register. 
□ The Z80 CTC has two modes of operation: the timer mode and the counter mode. 
□ In the timer mode, the CTC provides the time delay based on the frequency of the system clock, the prescaler specified in the control word, and the time constant loaded into the counter register. After the time constant (count) is loaded, the counter can be initiated either automatically or by an external pulse. Once the operation is initiated, the down-counter is decremented at every clock pulse, and when it reaches zero, an active high pulse is generated at the output. The count is automatically loaded again, and the operation continues. 
□ In the counter mode, the CTC counts external events indicated by the input from an external circuit. In this mode, the counter is decremented whenever it receives an active pulse from the external event, and when the counter reaches zero, an active high pulse is generated at the output and the count is automatically reloaded into the counter register. 
o The Z80 CTC is capable of generating an interrupt request pulse. If the interrupt is enabled, the CTC generates an interrupt request pulse when the count reaches zero. The CTC also includes interrupt control logic to set up several CTCs in a daisy chain priority. 
□ The Intel 82.5.3 is also a widely used general purpose timer/counter circuit. It has three 16-bit counters that can operate independently in six different modes. 
PROGRAMMABLE TIMERS AND COUNTERS 
409 
ASSIGNMENTS 
1. Explain the operations of the Z80 CTC in the counter mode and the timer mode. 
2. What is the function of the prescaler when the CTC is set up in the timer mode? 
3. Calculate the time delay for the following parameters: System clock frequency = 4 MHz, prescaler = 256, and the time constant = 150. 
4. Calculate the time constant to obtain a pulse every 400 |xs if the system clock is 4 MHz and the prescaler value is 16. 
5. Identify the port addresses of Channel 1 and Channel 2 in Figure 14.2 if address lines A7 and A4 are interchanged. 
6. Specify the control word for Channel 1 (Figure 14.7) to set up the CTC in the timer mode with the automatic trigger on the falling edge and the interrupt disabled. 
7. Write instinctions to initialize Channel 2 (Figure 14.7) in the timer mode to provide a pulse approximately every 5 ms. 
8. Specify the control word to set up Channel 2 in the counter mode with the interrupt enabled. 
9. Write instructions to set up Channel 2 (Fig. 14.8) in the counter mode to count 120 events. At the end of 120 events, the CTC should generate an interrupt request. After the intemipt acknowledge, the program should be transferred to the location 209Fh, where the service routine is located. The interrupt vector address for Channel 0 is specified as 2048h. 
10. Show output connections of Channel 1 and Channel 2 (Fig. 14.8) to count 1000 events. Initialize the channels with appropriate time constants. 
11. Design a five minute timer using two channels of the Z80 CTC. Assuming the system clock to be 2 MHz, set up one channel as a timer and another as a counter. Connect the output of the timer to CLK/TRG input of the counter. The counter channel should generate an intemipt request every second, and the service routine should count the seconds until the total time is five minutes. 
12. Write initialization instructions to set up Channel 0 as a timer with the prescaler equal to 16 and the time constant equal to 256. If the clock frequency is 4 MHz, calculate the delay obtained at the output of Channel 0. 
13. Set up Channel 1 as a counter with the maximum count (256) and trigger the CLK/TRG 1 from the output of Channel 0 in Assignment 12. Calculate the delay interval at ZC/TOl. 
14. Set up Channels 2 and 3 as counters and generate an interrupt after one hour by using the output of Assignment 13. 
Serial I/O and Data Communication 
The Z80 microprocessor is a parallel device; it transfers data bits simultaneously over its eight data lines. This is called the parallel I/O mode, as discussed in previous chapters. However, in many situations, the parallel I/O mode is either impractical or impossible. For example, parallel data communication over a long distance can become very expensive. Similarly, devices such as a CRT terminal and a cassette tape are not designed for parallel I/O. In these instances, the serial I/O mode is used, whereby one bit at a time is transferred over a single line. 
In serial transmission (from the MPU to a peripheral), an 8-bit parallel word should be converted into a stream of eight serial bits; this is known as parallel-to-serial conversion. After the conversion, one bit at a time is transmitted over a single line at a given rate called the baud (bits per second). In serial reception, on the other hand, the MPU receives a stream of eight bits, and they should be converted into an 8-bit parallel word; this is known as serial-to-parallel conversion. In addition to the conversion, information such as the beginning and the end of transmission and error check is necessary in serial communication. This chapter first discusses these basic concepts in serial data communication and explains how serial communication can be implemented  using  microprocessor instructions 
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        (software). However, in industrial applications, the hardware approach through programmable devices is generally used. This chapter illustrates applications with two such devices: the Intel 8251 and the Z80 SIO (and DART). 
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OBJECTIVES 
□ Explain how data transfer occurs in the serial I/O mode and how it differs from the parallel I/O mode. 
□ Explain the terms: synchronous and asynchronous transmission; simplex, and half and full duplex transmission; baud, and parity check. 
o Explain how data bits are transmitted (or received) in the asynchronous format, and calculate the delay required between two successive bits for a given baud. 
□ Explain the RS-2.32C serial I/O standard and compare it with the RS-422 and -42.3 standards. 
□ Explain how serial I/O communication can be implemented in the asynchronous format using software. 
□ Explain the block diagram and the functions of each block of the Intel 8251 US ART (Program
mable Communication Interface). 
□ Design an interfacing circuit using the 8251, and write initialization instructions to set up data communication between a microcomputer and a serial peripheral. 
□ Explain the block diagram and the functions of each block of the Z80 SIO (Serial Input/Output Controller) and the DART (Dual Asynchronous Receiver and Transmitter). 
□ Write initialization instructions to set up the Z80 SIO (or DART) for given specifications to implement the asynchronous communication. 
□ Write interrupt service routines to implement communication between the Z80 MPU and a terminal when the Z80 SIO is set up in the interrupt mode. 
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        BASIC CONCEPTS IN SERIAL I/O 
The basic concepts concerning the serial I/O mode can be classified into the following categories. 
1. Interfacing requirements 
2. Serial I/O format and requirements 
3. Error checks in data communication 
4. Data communication over long distance 
5. Standards in serial I/O 
6. Software versus programmable hardware approaches 
15.11   Interfacing Requirements 
The interfacing requirements for a serial I/O peripheral are the same as those of a parallel I/O device. The microprocessor identifies the peripheral through a port address and enables it using Read or Write control signal. The primary difference between the parallel I/O and the serial I/O is in the number of lines used for data transfer—the parallel I/O uses the entire data bus and the serial I/O uses only one data line. Figure 15.1 shows a typical configuration of serial I/O transmission; the MPU selects the peripheral through Chip Select and uses the control signals READ to receive data and WRITE to transmit data. The serial peripheral can be interfaced either under program control (status check) or interrupt control. 
FIGURE 15.1 
Block Diagram: Serial I/O Interfacing 
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15.12   Serial I/O Format and Requirements 
The serial transmission format is concerned with such issues as synchronization between a receiver and a transmitter, direction of data flow, and rate or speed of transmission. These topics are briefly described below. Topics concerning errors in transmission and data communication over long distances are discussed in the subsequent sections. 
Synchronous versus Asynchronous Transmission Serial communication occurs in one of two formats: synchronous or asynchronous. In the synchronous format, a receiver and a transmitter are synchronized with the same frequency, and a block of characters is transmitted along with the synchronization (Sync) characters, as shown in Figure 15.2(a). Error check characters called CRC (Cyclic Redundancy Check—discussed later), are also included. This format is generally used for high speed transmission (more than 20 k bits/second). 
The asynchronous format is character-oriented as shown in Figure 15.2(b). The asynchronous transmission, as the name suggests, can occur any time; it is unpredictable in relation to time. Therefore, each character must carry information about when the transmission begins and when it ends; this information is included in each character by adding the Start and the Stop bits (Figure 15.2(b)). When no data aie being transmitted, a receiver stays in the high state. Transmission begins with a low Start bit, followed by a character and one or two high Stop bits. This is also known as framing. Figure 15.2(b) shows the transmission of 11 bits for an ASCII character in the asynchronous format: one Start bit, eight character bits, and two Stop bits. In serial I/O, logic 1 is known also as Mark and logic 0 as Space. The format shown in Figure 15.2(b) is similar to Morse Code, but dots and dashes are replaced by logic Os and Is. The asynchronous format is generally used in low speed transmission (less than 20 k bits/second). 
Simplex and Duplex Transmission Serial communication can also be classified according to the direction and simultaneity of data flow. 
In simplex transmission, data are transmitted in only one direction. An example is the transmission from a microcomputer to a printer. 
In duplex transmission, data flow in both directions. However, if the transmission is one way at a time, it is called half duplex; if it is both ways simultaneously, it is called 
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FIGURE 15.2 
Transmission Format: (a) Synchronous (b) Asynchronous 
full duplex. Generally, transmission between two computers or between a computer and a terminal is full duplex. 
Rate of Transmission In parallel I/O, data bits are transfened when a control signal enables the interfacing device; the transfer takes place in less than three T-states. However, in serial I/O, one bit is sent out at a time; therefore, how long the bit stays on or off is determined by the speed at which the bits are transmitted. Furthermore, the receiver should be set up to receive the bits at the same rate as the transmission; otherwise, the receiver may not be able to differentiate between two consecutive Os or Is. 
The rate at which the bits are transmitted—bits/second—is called a baud; however, technically, it is defined as the number of signal changes/second. Each piece of equipment has its own baud requirement. For example, a teletype (TTY) generally runs on a 110 baud. However, in most terminals and printers, the baud is adjustable, typically ranging from .50 to 9,600 baud. Figure 15.3 shows how the ASCII character I (49h) will be transmitted with 1,200 baud with the framing information of one Start and two Stop bits. The transmission begins with active low Start bit, followed by the LSB Dq. The bit time— the delay between any two successive bits—is 0.8.3 ms; this is determined by the baud as shown in Figure 15.3. 
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Serial Bit Format for ASCII Character "I" at 1,200 Baud 
1,200 bits = 1 second 
For 1 bit = 1/1,200 = 0.83 ms 
Therefore, to transmit one character, a parallel byte (49h) should be converted into a stream of 11 bits by adding framing bits (one Start and two Stop bits), and each bit must be transmitted at the interval of 0.83 ms. This can be implemented either through software or through programmable hardware chips. To receive a character in the serial mode, the process is reversed^—^bits are received one at a time and converted into a parallel word. 
15.13   Error Checks in Data Communication 
During transmission, various types of errors can occur. For example, data bits may change because of noise or can be misunderstood by the receiver because of differences in receiver and transmitter clocks. These errors need to be checked; therefore, additional information for error checking is sent during the transmission. The receiver can check the received data against the error check information, and if an error is detected, the receiver can request the retransmission of that data segment. Three methods used in common practice are parity check, checksum, and cyclic redundancy check. 
PARITY CHECK 
This is used to check each character by counting the number of Is in the character, and in the ASCII code transmission, bit D7 is used to transmit parity check information. The technique is based on the principle that in a given system, each character is transmitted with either an even number or an odd number of Is. 
In an even parity system, when a character has an odd number of Is, the bit D7 is set to 1 and an even number of Is is transmitted. For example, the code for the character I is 49h (01001001) with three Is. When the character I is transmitted in an even parity system, the transmitter will set the bit D7 to 1, making the code C9h (1100 1001). On the 
Other hand, in an odd parity system, the character I is transmitted by keeping bit D7 at 0; thus, the code remains 49h
In the Z80 system, the parity check is easy to implement and detect because the Z80 has the parity flag, and this flag can be used to check parity information in each character. However, the parity check cannot detect multiple errors in any given character if the number of errors is even. 
CHECKSUM 
The checksum technique is used when blocks of data are transferred. It involves adding all the bytes in a block without carries. Then, the 2's complement of the sum (negative of the sum) is transmitted as the last byte. The receiver adds all the bytes, including the 2's complement of the sum; thus, the result should be zero if there is no error in the block. 
CYCLIC REDUNDANCY CHECK (CRC) 
This technique is commonly used when data are transferred from and to a floppy disk and in a synchronous data communication. The technique is based on mathematical relationships of polynomials. A stream of data can be represented as a polynomial that is divided by a constant polynomial called the generator polynomial. The remainder of the division is sent out as a check for errors. The receiver checks the remainder to detect an error in the transmission. The mathematical details are as follows. 
1. A stream of data bits can be represented as M{x) = b,^° + b„ - \x' + . . . + box", where bo = least significant bit 
b„ = most significant bit. 
For example, the polynomial of the Hex number 8Ah (1 0 0 0 1 0 1 0) is M{x) = lx° + Qx' + Ox- + Qx^ +      + Ox^ + Ix^ + Ox'' = lx° + \x^ + Ix^ =    +    + 1. 
2. Let us assume the length of the CRC code is four bits, although normally it is 16 bits. To obtain proper division, the polynomial is first multiplied by the power of the CRC code length (in our example it is x'*) and divided by the agreed-upon generator polynomial G(x). The formula is 
M(x) X x'* 
= e(x) + R{x) 
G(x) 
where Q(x) is the quotient obtained by Modulo-2 arithmetic (see Appendix B for Modulo-2 arithmetic) and R(x) is the remainder. 
3. Assuming G(x) = x'* + 1 
M(x) X x'*   x'° + x^ -I- x'^ 
—— = 5 j = (x + x^ + X-) + x"^      (see Appendix B). 
'^^^^ ^ Quotient Q(x) Remainder ^(x) 
4. This remainder is added to the modified polynomial M(x) X    + R{x) = .v'° + .v^ +    + X- and transmitted as 
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The transmitted stream of bits includes the original byte 8Ah in reverse order, appended by the CRC bits at the end. 
5. The receiver divides the transmitted polynomial by G{x), and if the remainder is 0, it indicates no eixor (divides .v'° + x^ + .v'* + a- by a-"* + 1 and checks the answer). 
The CRC check is a somewhat complex technique; it is discussed briefly here because the Z80 SIO is capable of generating and checking the CRC code if the SIO is used in the synchronous mode. 
15.14  Data Communication Over Telephone Lines 
The serial I/O technique can be used to send data over long distance through telephone lines. However, telephones lines are designed to handle voice; the bandwidth of telephone lines ranges from 300 Hz to 3,300 Hz, while a digital signal, with rise time in nanoseconds, requires a bandwidth of several megahertz. Therefore, data bits are converted into audio tones using modems. 
A modem (Modulator/Demodulator) is a circuit that translates digital data into audio tone frequencies for transmission over telephone lines and converts audio frequencies into digital data for reception. The modems are designed to transfer data at rates of 300-2,400 bps (bits per second). Generally, two types of modulation techniques are used: frequency shift keying (FSK) for low-speed modems and phase shift keying (PSK) for high-speed modems. 
Computers can exchange information over telephone lines by using two modems— one on each side (Figure 15.4). A calling computer (or terminal), also known as the originator, contacts a receiving (answering) computer through a telephone number, and a communication link is established after control signals have been exchanged between computers and modems. 
A typical process of communication for a 300 bps modem is shown in Figure 15.4. A parallel word is converted into serial bits; in turn, the originator modem generates two audio frequencies —1,070 Hz for logic 0 (Space) and 1,270 Hz for logic 1 (Mark). These audio frequencies are transmitted over telephone lines. At the answering end, audio frequencies are converted back into Os and Is, and serial bits are converted into a parallel word that can be read by the computer. When the answering computer needs to transmit, it transmits on 2,025 Hz (Space) and 2,225 Hz (Mark). 
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FIGURE 15.4 
Communication over Telephone Lines Using Modems 
15.15  Standards in Serial I/O 
The serial I/O technique is commonly used to interface terminals, printers, and modems. These peripherals and computers are designed and manufactured by various companies. Therefore, a common understanding must exist among various manufacturing and user groups that can ensure compatibility among different equipment. When this understanding is defined and generally accepted in industry (and by users), it is known as a standard. A standard is normally defined by a professional organization (such as IEEE—Institute of Electrical and Electronics Engineers); however, a widespread practice can occasionally become a de facto standard. A standard may include such items as assignment of pin positions for signals, voltage levels, speed of data transfer, length of cables, and mechanical specifications. 
In serial I/O, data can be transmitted either as current or voltage. Typically, 20mA (or 60mA) current loops are used in teletype equipment. When a teletype is Marking or at logic 1, current flows; when it is at logic 0 (or Space), the current flow is interrupted. The advantage of the current loop method is that signals are relatively noise-free. 
When data are transmitted as voltage, the commonly used standard is known as RS-232C. It is defined in reference to Data Terminal Equipment (DTE) and Data Communication Equipment (DCE)—terminal and modem—as shown in Figure 1.5..5(a); however, its voltage levels are not compatible with TTL logic levels. The rate of data transmission in RS-2.32C is restricted to a maximum of 20 kbaud and the distance is limited to 50 ft. For high-speed data transmission, two new standards—RS-422A and RS-42.3A— have been developed in recent years; however, they are not yet widely used. 
To appreciate the difficulties and confusion in this standard, one has to examine its historical background. The RS-2.32 Standard was developed during the initial days of computer timesharing, long before the existence of TTL logic, and its primary focus was to have compatibility between a terminal and a modem. However, the same standard is now being used for communications between computers and peripherals, and the roles of a 
data terminal and a modem have become ambiguous. Should a computer be considered a terminal or a modem? The answer is that it can be either. Therefore, the lines used for transmission and reception will differ, depending on how the manufacturer designs the equipment. 
RS-232C 
Figure 15.5(b) shows the RS-232C 25 pins and associated signals. The signals are divided into four groups: data signals, control signals, timing signals, and grounds. For data 
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FIGURE 15.5 
(a) Minimum Corifiguiation of RS-232C Signals and Voltage Levels (b) RS-232C Signal Definitions and Pin Assignments 
SOURCE: Courtesy of Electronic Industries Association. 
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lines, the voltage level from +3 V to +15 V is defined as logic 0, and from -3 V to -15 V is defined as logic 1 (normally, voltage levels are ±12 V). This is negative true logic. Because of incompatibility with TTL logic, voltage translators, called line drivers and line receivers, are required to interface TTL logic with the RS-232 signals, as shown in Figure 15.5(a). The line driver, MC1488, converts logic 1 into approximately -9 V and logic 0 into +9 V (Figure 15.5(a)). Before the signal is received by the DCE, it is again converted by the line receiver, MCI489, into TTL compatible logic. This raises the question: If the received signal is to be converted back to the TTL levels, what is the reason to convert the transmitted signal to higher voltages in the first place? The primary reason is that the standard was defined before the TTL levels came into existence; before 1960, most equipment was designed to handle higher voltages. The other reason is that this standard provides a higher level of noise margin, from -3 V to +3 V. 
The minimum interface requires three lines: pins 2, 3, and 7 as shown in Figure 15.5(a). These lines are defined in relation to the DTE; the terminal transmits on pin 2 and receives on pin 3. On the other hand, the DCE transmits on pin 3 and receives on pin 2. Typically, data transmission with a handshake requires eight lines. Specific functions of handshake lines differ in different peripherals, and therefore, should be referred to in the manufacturer's manuals. 
For high-speed transmission, the standards RS-422A and RS-423A are used. These standards use differential amplifiers to reject noise levels and can transmit data at a higher speed with longer cable. The RS-422A allows the maximum speeds of 10 Mbaud for a 40 ft distance and 100 kbaud at 4,000 ft. The RS-423A is limited to 100 kbaud for a 30 ft distance and 10 kbaud at 300 ft. See Table 15.1 for comparison of the three standards: RS-232C, RS-422A, and RS-423A. 
15.16  Review of Serial I/O Concepts and Approaches to Implementation 
Serial data transmission can be implemented through either software or programmable I/O devices. The software and the hardware approaches are conceptually similar. In asynchronous data transmission, the steps can be summarized as follows: 
1. Inform the receiver that the transmission is beginning with the Start pulse. 
2. Convert a parallel word into a stream of serial bits. 
3. Transmit data one bit at a time with appropriate time delay using one data line of an output port. The time delay is determined by the speed of the transmission. 
4. Transmit parity check bit. 
5. Inform the receiver that transmission is ending by sending Stop bits. In data reception, the process is reversed. The receiver needs to 
1. Recognize the beginning of the transmission. 
2. Receive data one bit at a time and convert them into a parallel byte. 
3. Check for errors and recognize the end of the transmission. 
TABLE 15.1 
Comparison of Seiial I/O Standards 
Specifications RS-232C RS-422A RS-423A 
Speed 20 kbaud 10 Mbaud—40 ft 100 kbaud—30 ft 
100 kbaud—4,000 ft 1 kbaud—4,000 ft 
Distance 50 ft 4,000 ft 4,000 ft 
Logic 0 >+3to+25V B>A +4 to+6 V 
Logic! <-3 to-25 V B<A -4 to-6 V 
Receiver Input ±15V ±7V ±12V 
Voltage 
NOTE:   B and A are differential input to the op amp 
In the software approach, the speed of transmission is set up by using an appropriate delay between the transmission of two consecutive bits, and the entire word is converted into a serial stream by rotating the byte and outputting one bit at a time using one of the data lines of an output port. The software provides the time delay between the two consecutive bits and adds framing bits and the parity bit; this is discussed in Section 15.2. 
In the hardware approach, the above functions are performed by a programmable device (chip). The device contains a parallel-to-serial register and 1-bit output port for transmission, and a serial-to-parallel register and 1-bit input port for reception. The rate of transmission and reception is determined by the clock. The programmable chip also includes a control register that can be programmed to add framing and error-check information, and to specify the number of bits to be transferred. The microprocessor transfers a parallel byte using the data bus, and the programmable chip performs the remaining functions for serial I/O. 
The software approach is suitable for slow-speed asynchronous data communication where timing requirements are not critical. The approach is simple and inexpensive. The hardware approach is suitable for both asynchronous and synchronous formats. The approach is flexible, and chips can be programmed to accommodate changing requirements. In industrial and commercial products, the hardware approach has become almost universal. This chapter includes the detailed discussion and illustrations of two programmable chips: the Intel 8251 and the Z80 SIO. However, for learning the basic concepts in serial I/O, the software approach is more suitable than the hardware approach; thus, the software approach is described here prior to the discussion of the programmable serial I/O devices. We will limit our discussion to the asynchronous communication mode, which is commonly used in the microcomputer. Synchronous data communication is a specialized technique and will not be discussed here. 
The basic concepts concerning serial I/O discussed in the previous sections are summarized in Table 15.2. 
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TABLE 15.2 
Summary of Synchronous and Asynchronous Serial Data Communication 
Format Synchronous Asynchronous 
	Data Format 
	Groups of Characters 
	One Character at a Time 

	Speed 
	High (20 k bits/second or 
	20 k bits/second or 

	
	Higher) 
	Lower 

	Framing 
	Sync Characters Are Sent 
	Start and Stop Bits with 

	Information 
	with Each Group 
	Every Character 

	Implementation 
	Hardware 
	Hardware or Software 

	Data Direction 
	Simplex, Half and Full 
	Simplex, Half and Full 

	
	Duplex 
	Duplex 


2SOFTWARE-CONTROLLED ASYNCHRONOUS SERIAL I/O 
In the software-controlled asynchronous serial mode, the program should perform the following tasks. 
1. Output a Start bit. 
2. Convert the character to be sent into a stream of serial bits with appropriate delay. 
3. Add parity information if necessary. 
4. Output one or two Stop bits. 
Figure 15.6 shows the accumulator with the code for the ASCII character " I," and it is converted into a stream of 11 bits, including one Start bit and two Stop bits. After the Start bit, the character bits are transmitted with bit Do first and bit D7 last; for ASCII characters, bit D7 can be used to add parity information. The bit time—the delay between two successive bits—is determined by the transmission baud. Figure 15.6 shows the transmission with 1,200 baud; the delay between the two consecutive bits is thus 0.8.3 ms. 
Data reception in the serial mode involves the reverse process: receiving one bit at a time and forming an 8-bit parallel word. The receiving program should continue to read the input port until it receives the Start bit, and then begin to count character bits with appropriate delay. 
15.21  Serial Data Transmission 
Figure 1.5.7(a) shows a flowchart to transmit an ASCII character, and it can be explained in the context of the block diagram shown in Figure 15.6(a). When no character is being transmitted, the transmit line of the output port stays high in the Mark position. The transmission begins with the Start bit, active low. The initialization block of the flowchart 
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(a) Serial Data Transmission and (b) Serial Data Reception under Software Ctontrol 
includes setting up a counter to count eight character bits; Start and Stop bits are sent out separately. The program waits for bit time—0.833 ms for 1,200 baud—and begins to send one character-bit at a time over the data line Do at the interval of 0.83 ms. To get ready for the next bit, the program rotates the bits—for example, D, into Dq. It repeats the loop eight times, and finally sends out two Stop bits. Assuming that the character is being sent to a printer, the printer waits until it receives all the bits serially, checks the parity if necessary, forms a character, and prints it during the Stop bits. The Stop bits perform two functions: They allow sufficient time for the printer to print the character and leave the transmit line in the Mark position at the end of the character. 
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Return (b) 
15.22  Serial Data Reception 
In serial data reception, the program begins by reading the input port. When no character is being received, the input line stays high. The program stays in the loop and continues to read the port until the Start bit (active low) is received, as shown in the flowchart (Figure 15.7(b)). 
When the Start bit is received, the program waits for half the bit time and samples the character bits in the middle of the pulse rather than at the beginning to avoid errors in transition. Then it checks again to confirm that it is really a Start bit and not a false start such as a noise spike. In the next block, it initializes the counter to count eight bits and clears a register to save the partial readings. The program reads the input port at the interval of bit time until it reads all the character bits, checks the parity bit, and ignores the last two bits by just waiting for bit times. The character reception also begins with the LSB; that is, the microprocessor will receive bit Do first. In Figure 15.6(a), the data line Dy is used for the reception. The line D? provides some programming convenience for serial-to-parallel conversion; the word can be formed by shifting bits to the right whenever a bit is read, and eventually the LSB will reach its proper position. 
PROGRAMMABLE COMMUNICATION INTERFACEINTEL 8251A: HARDWARE APPROACH TO SERIAL I/O 
The hardware approach to serial I/O incorporates the same basic principles and requirements necessary for the software approach. The various functions performed separately under software control must be performed by the hardware, designed in an integrated circuit. Such a device should 
1. Transfer a parallel word between the microprocessor and the device. 
2. Have an input port to receive and an output port to transmit serial data, both with one I/O line each. 
3. Perform parallel-to-serial and serial-to-parallel conversion. 
4. Provide framing and error-check infoimation. 
5. Transmit (or receive) serial data according to the clock connected to the device. 
The integrated circuit that meets these requirements is generally called a USART (Universal Synchronous/Asynchronous Receiver/Transmitter). Because of technological advances in IC fabrication, such devices have become quite inexpensive and are commonly used for serial I/O. We will focus on two widely used devices: the Intel 8251A and the Z80 SIO. The 8251A is discussed in this section and the Z80 SIO is described in Section 15.5. The discussion of the 8251A is included prior to the discussion of the SIO because the initialization of the 8251A is easier than that of the SIO. 
15.31   The 825lA Programmable Communication Interface: Overview 
The 8251A is a programmable chip designed for synchronous and asynchronous serial data communication, packaged in a 28-pin DIP. The 8251A is the enhanced version of its 
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predecessor, the 8251, and is compatible with the 8251. Figure 15.8 shows the block diagram of the 8251 A. It includes five sections—Read/Write Control Logic, Transmitter, Receiver, Data Bus Buffer, and Modem Control. 
The control logic interfaces the chip with the MPU, determines the functions of the chip according to the control word in its register (explained later), and monitors the data flow. The transmitter section converts a parallel word received from the MPU into serial bits and transmits them over the TxD line to a peripheral. The receiver section receives serial bits from a peripheral, converts them into a parallel word, and transfers the word to the MPU. The modem control is used to establish data communication through modems over telephone lines. The 8251A is a complex device, capable of performing various functions. For the sake of clarity, this chapter focuses only on the asynchronous mode of serial I/O and excludes any discussion of the synchronous mode and the modem control. The asynchronous mode is commonly used for data communication between the MPU and such serial peripherals as terminals and floppy disks. 
Figure 15.9 shows an expanded version of the 8251A block diagram. The block diagram shows all the elements of a programmable chip; it includes the interfacing signals, the control register, and the status register. The functions of various blocks are described next. 
15.32  Read/Write Control Logic and Interfacing 
This section has six input signals, control logic, and three buffer registers: data register, control register, and status register. 
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FIGURE 15.9 
The 8251A; Expanded Block Diagram of Contiol Logic and Registers 
INTERFACING PERIPHERALS PROGRAMMABLE I/O DEVICES, APPLICATIONS, AND DESIGN 
Input Signals 
□ CS—Chip Select: When this signal goes low, the 8251A is selected by the MPU for communication. This is usually connected to a decoded address bus. 
□ C/D—Control/Data: When this signal is high, the control register or the status register is addressed, and when it is low the data buffer is addressed. The control register and the status register are differentiated by WR and RD signals, respectively. 
□ WR—Write: When this signal goes low, the MPU either writes in the control register or sends output to the data buffer. This is connected to 10WR or MEMWR. 
□ RD—Read: When this signal goes low, the MPU either reads a status from the status register or accepts (inputs) data from the data buffer. This is connected to either lORD or MEMRD. 
□ RESET—Reset: A high on this input resets the 82.51 A and forces it into the idle mode. 
□ CLK—Clock: This is the clock input, usually connected to the system clock; the clock frequency must be between 740/kHz and 3.125/MHz. This clock does not control either the transmission or the reception rate. This clock is necessary to synchronize internal operations of the 82.51 A. 
Control Register This 16-bit register for a control word consists of two independent bytes; the first byte is called the mode instruction (word), and the second byte is called the command instruction (word). This register can be accessed as an output port when the C/D pin is high. 
Status Register This input register checks the ready status of a peripheral. This register is addressed as an input port when the C/D pin is high; it has the same port address as the control register. 
Data Buffer _This bidirectional register can be addressed as an input and an output port when the C/D pin is low. Table 15.3 summarizes all the interfacing and control signals. 
TABLE 1S.3 
Summary of Control Signal for the 8251A 
	CS 
	C/D 
	RD 
	WR 
	Function 

	0 
	1 
	1 
	0 
	MPU Writes Instructions in the Control Register 

	0 
	1 
	0 
	1 
	MPU Reads Status from the Status Register 

	0 
	0 
	1 
	0 
	MPU Outputs Data to the Data Buffer 

	0 
	0 
	0 
	1 
	MPU Accepts Data from the Data Buffer 

	1 
	X 
	X 
	X 
	USART Is Not Selected 
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Identify port addresses of the control register and the data register in Figure 15.10 and explain the functions of each control register. 
In Figure 15.10, the address line Aq is connected to the C/D pin of the 8251A. When Aq is high, the MPU communicates with the control register, and when it is low, it selects the data register. The 8251A is selected when the output line O4 of the decoder goes low. Therefore, the control register is accessed with the port address F9h, and the data register is accessed with the port address F8h as shown. 
Example 15.1 
Solution 
At .1 
1 
As 1 
A4 1 
CS 
A3 1 
A2 0 
A, 
0 , 
Ao 1 
0 
C/D 
F9h F8h 
Control Register Data Register 
The control register is an output port and the status register is an input port; they are identified by WR and RD signals even if their_port addresses are the same. 
The data register is selected when the C/D line goes low. Thus, the port address of the data register is F8h. The register is bidirectional, and the same address is used to receive or transmit data. The input and output functions are identified by RD and WR signals. 
A5
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The 8251A does not have lORQ signal; it has RD and WR signals. However, the Z80 identifies its I/O operation using the lORQ signal. Therefore, the control signals lORD and lOWR are generated by ANDing (physically OR gate) RD and WR with the lORQ signal as shown in Figure 15.10. The RESET signal from the Z80 can reset the 8251 A, thus clearing all the previous commands, and the Z80 clock signal is used by the 8251A to perform internal functions. 
15.33  Transmitter Section 
The transmitter accepts parallel data from the MPU and converts them into serial data. It has two registers: a buffer register to hold 8 bits and an output register to convert 8 bits into a stream of serial bits (Figure 15.11). The MPU writes a byte in the buffer register, and whenever the output register is empty, the contents of the buffer register are transferred to the output register. This section transmits data on the TxD pin with the appropriate framing bits (Start and Stop). Three output signals and one input signal are associated with the transmitter section. 
□ TxD—Transmit Data: Serial bits are transmitted on this line. 
□ TxC—Transmitter Clock: This input signal controls the rate at which bits are transmitted by the US ART. The clock frequency can be 1, 16, or 64 times the baud. 
□ TxRDY—Transmitter Ready: This is an output signal. When it is high, it indicates that the buffer register is empty and the US ART is ready to accept a byte. It can be used 
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The 8251A, Expanded Block Diagrams of Transmitter and Receiver Sections 
either to inteiTupt the MPU or to indicate the status. This signal is reset when a data byte is loaded into the buffer. 
□ TxE—Transmitter Empty: This is an output signal. Logic 1 on this line indicates that the output register and the buffer register are empty. This signal is reset when a byte is transfened from the buffer to the output register. 
15.34 Receiver Section 
The receiver accepts serial data on the RxD line from a peripheral and converts them into parallel data. The section has two registers; the receiver input register and the buffer register (Figure 15.11). When the RxD line goes low, the control logic assumes it is a Start bit, waits for half a bit time, and samples the line again. If the line is still low, the input register accepts the next bits, forms a character, and loads it into the buffer register. Subsequently, the parallel byte is transferred to the MPU when requested. In the asynchronous mode, two input signals and one output signal are necessary. 
□ RxD—Receive Data: Bits are received serially on this line and converted into a parallel byte in the receiver input register. 
□ RxC—Receiver Clock: This is a clock signal that controls the rate at which bits are received by the USART. In the asynchronous mode the clock can be set to 1, 16, or 64 times the baud. 
□ RxRDY (Receiver Ready): This is an output signal. It goes high when the USART has a character in the buffer register and is ready to transfer it to the MPU. This line can be used either to indicate the status or to interrupt the MPU. 
15.35 Programming the 8251A 
To implement serial communication, the MPU must inform the 8251A of all details such as mode, baud. Stop bits, and parity. Therefore, prior to data transfer, a set of control words must be loaded into the 16-bit control register of the 8251 A. In addition, the MPU must check the readiness of a peripheral by reading the status register. The control words are divided into two formats: mode word and command word. The mode word specifies the general characteristics of operation (such as baud, parity, number of Stop bits), and the command word enables data transmission and/or reception. The status word, which can be read by the MPU, provides information concerning register status and transmission errors. Figure 15.12 shows the definitions of these words. 
To program the 8251A in the asynchronous mode, the following sequence of steps must be followed. 
1. Reset the 8251 A. This can be done either through a system reset (RESET signal) or software reset of the 8251A (bit De in the command word). 
2. Write a mode word in the control register to specify baud, parity, number of stop bits (see Figure 15.12(a) for definition). This word must be followed by a command word (see Step 3). 
3. Write a command word in the control register to enable data transfer (see Figure 
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15.12(b) for definition). The command word can be changed anytime during the operation without resetting the 8251 A. 4. To modify the mode word, the 8251A must be reset prior to writing a new mode word. This can be accomplished by setting bit De to logic 1 in the command word. 
The 8251A is designed to recognize the first word written to the control register as a mode word. However, the software reset is accomplished by the bit Dg in the command word. If we were to load a command word with bit De = 1, it would be interpreted as the mode word. The solution to this dilemma is to send the first word as a dummy mode word, followed by the command word that resets the 8251 A. Therefore, the sequence of programming the 8251 is as follows: 
1. Send dummy mode word (00) to the control register. 
2. Send command word with bit De = 1 to reset the 8251 A. 
3. Send mode word to specify communication parameters (baud, parity, etc.). 
4. Send command word to enable transmission/reception. 
After this sequence, any word sent to the control register will be interpreted as a command word until the 8251A is reset. The above sequence is adequate in most situations; however, on rare occasions the 8251A may be set up for synchronous mode by a random word when the system is turned on. In such a case, it would interpret the next two words written in the control register as Sync characters. Therefore, to deal with the worst possible situation at power turned on, three dummy words are sent to the control register, followed by the command word to reset the 8251 A. 
Figure 15.10 shows a schematic of interfacing the 8251A with the Z80 MPU. Example 
1. Identify the mode and the command words to initialize the 8251A to transmit data with the following requirements: 
□ Asynchronous mode with 9,600 baud. 
□ Character length: seven bits and two Stop bits. 
□ No parity check. 
2. Write a subroutine SETUP to initialize the 8251 A. 
15.2 
Solution 
1. The mode word to meet the requirements is as follows (refer to Figure 15.12(a): D7 Dfi D5 D4 D3 D2 Di Do 
1,1,0,0,1,0,1,0 =CAh 
Two No 7-Bit Baud Stop Bits Parity Character 
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        TxC/16 153.6 k/16 9,600 
Reset command word—Figure 15.12(b): 
D7 De D5 D4 D3 D2 Di Do X|l|X|X|X|X|X|X 
40h 
Reset 8251A 
Command word to enable transmitter—Figure 15.12(b): D7 Dfi Ds D4 D3 D2 Di Do 
X,Q,X|1,X,0,X,1| = 11h 
Do not Error Receive Transmit Reset  Reset Disable Enable 
Status Word—Figure 15.12(c): 
D7 De D5 D4 D3 D2 Di Dp X|X|X|X|X|X|X| 1 
= 01, 
2. Initialization Subroutine: 
CNTRL    EQU F9H PORT      EQU F8H RESET     EQU 40H MODE     EQU CAH COMAND EQU IIH SETUP:    LD C, CNTRL LD B, 00 OUT (C), B OUT (C), B OUT (C), B LD B, RESET OUT (C), B LD B, MODE OUT (C), B LD B, COMAND OUT (C), B RET 
Transmitter Ready 
;8251A control port address ;8251A data port address ;Reset command ;Mode word 
;Command word to enable transmitter ;Load control port address into C ;Load dummy word ;Send dummy word three times 
;Load reset command 
;Reset 8251A 
;Load mode word = CAH 
;Specify communication parameters 
;Load command word (IIH) to enable transmission 
;Enable transmitter 
435 
As the power is turned on, the 8251A can come up in either the asynchronous or the synchronous mode. If it is set up in the synchronous mode, it expects the next two words as Sync pulses. Therefore, this initialization routine sends three dummy words at the beginning; the first two will be interpreted as Sync characters and the third as the Mode word, which is followed by the Reset command word. Then the Mode and Command words are sent in a sequence. If the 8251A comes up in the asynchronous mode, it will interpret the first dummy word as the Mode word, followed by Command and Mode words; thus, it will interpret the Reset as a Command and not as a Mode word. 
CRT terminals are serial I/O devices, generally connected using the RS-232C standard. The terminal has two sections: the ASCII keyboard as an input port and the video screen as an output port. To transmit data using the RS-232C standard, the TTL logic levels should be converted into RS-232C levels by using line drivers, and to receive data, line receivers should be used to convert back into TTL logic levels. 
15.41   Problem Statement 
1. Figure 15.13 shows a schematic of interfacing a CRT terminal using RS-232C. The port decoding logic is the same as in Figure 15.10 with the control port address F9h and the data port address F8h. Explain the RS-232C signals and the operations of the line driver (MC 1488) and the line receiver (MC 1489). 
2. Write a program to transmit a message from a Z80 single-board microcomputer to a CRT terminal under program control (status check). The requirements are as follows: 
□ A message is stored in ASCII characters (without parity) in memory locations starting at XX70h. 
□ The message specifies the number of characters (excluding the first byte) to be transmitted in the first byte and concludes with the characters for the carriage return and the line feed. 
□ Use subroutine SETUP to initialize the 8251A as in Example 15.2. 
□ Explain the necessary modifications in the program to receive data into the Z80 system. 
In Figure 15.13, the addresses of the control port and the data port are F9h and F8h, respectively; these addresses are from Figure 15.10. The transmit and receive signals are connected to the terminal using the line driver (MC 1488) and the line receiver (MC 1489), as shown in Figure 15.13. Line drivers and receivers are integrated circuits designed to 
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        15.42   RS-232C Signals 
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FIGURE 15.13 
Schematic: Interfacing a CRT Terminal Using RS-232 with the 8251A in the Polled Mode 
interface TTL logic levels with the RS-232C signal levels. They are used primarily in interfacing data terminal equipment (DTE) with data communication equipment (DCE). 
Line Driver: MC 1488 This is a quad line driver which converts TTL input levels to a maximum + 15 Vdc output signal. Typically, for logic 0 input (< 0.8 Vdc) the output is around +10 V, and for logic 1 input (> + 2.4 Vqc) the output is around -10 V; thus, the positive true logic is converted into negative tnie logic for RS-232C signals. The internal circuit of the MC 1488 functions much like a comparator. For an input lower than the threshold voltage, the output approaches positive power supply voltage, and for an input higher than the threshold voltage, the output approaches negative power supply voltage. 
Line Receiver: MC 1489 This a quad line receiver which converts high voltage signals (typically + 1.5 V) into TTL logic levels. Output voltages usually range from 0.2 V (low) 
to 4.0 V (high). The internal circuit functions as an on/off transistor. When the transistor base has a negative input voltage, the transistor is turned off and the collector voltage (the output of the MC 1489) is high. When the transistor base has a positive input voltage, the transistor is driven into saturation to 0.2 V. 
15.43 Program 
(   Start ) 
	
	

	Initialize 
• Stack Pointer 
• Memory Pointer " Set up Counter 

	
	

	
	Initialize 8251 
	


LD SP, STACK LD HL, XX70H 
CALL SETUP 
LD B, (HL) 
;Memory pointer where the message be;gins—XX represents the high-order byte ;of the address. ;Initialize 8251A 
;Set up register B as counter by loading ;the first character. 
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        » Get Character from Memory 
" Output to Transmitter 
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        STATUS: IN A, (C) AND 01H 
JR Z, STATUS 
INC HL LD A, (HL) OUT (SRPORT), A DEC B 
JR NZ, STATUS HALT 
ORG XX70H DB 08 
DB 48, 45, 4C, 4C, 4F DB 21 DB OD,OA 
(   End ) FIGURE IS. 14 
Flowchart: Tiansmission from Microcomputer to Terminal 
;Read status 
;Find transmitter status bit 
;Is transmitter empty? If no, wait. 
;Point to next character ;Get character ;Send character ;Update character counter 
;If all characters are not yet transmitted, 
;go to next 
;End 
;XX is the high-order byte of memory ;address. 
;Number of characters to follow. ;Message—Hello ;Exclamation 
;Carriage return/Line feed 
PROGRAM DESCRIPTION 
According to the problem statement, the first character of the message specifies the number of characters to be transmitted. Therefore, the instruction LD B, (HL) loads the first character (in this case 08h) into register B and sets that register as counter. The subroutine SETUP (described earlier in Example 15.2) initializes the 82.51 A for the given specifications. 
The next group of instructions, starting with the label STATUS, continues to read the status port and check bit Dq until it is 1. Bit Dq indicates the status of the transmitter; logic 1 indicates that the transmitter buffer is empty and ready for the next character. When bit Do goes to logic 1, the program points to the next character, loads it into the accumulator, and sends it to the transmitter. This loop is repeated until the counter B becomes 0, indicating the completion of the message. 
15.44  Data Reception 
To receive data from the terminal, the command word should be modified to enable the receiver section of the 8251A by setting D2 = 1. Thus, to enable only the receiver, the command word is as follows: 
D7 De D5 D4 D3 D, D, Do 
	X 
	0 
	X 
	1 
	X 
	1 
	X 
	0 


Do not Reset 
Error Reset 
= 14h 
Receiver Transmitter Enable Disable 
The program for data reception (Figure 15.15) should begin with reading the status port as in the transmission program and checking bit Di for receiver ready, instead of bit Dq for 
FIGURE 15.15 
Flowchart: Data Reception 
Read Status Register 
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        Read Data Port and Store Character 
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transmitter ready (Figure 15.12(c)). When a character is placed into the receiver buffer by the terminal, bit Di is set to logic 1, and then the program should read the data port for the character. 
The Z80 Serial Input/Output Controller (SIO) is another commonly used programmable device in serial communication. It has two channels (equivalent of two devices), and both channels can be used for asynchronous or synchronous communication. It is functionally similar to the Intel 8251A (Section 15.3), but includes two chaimels and additional features such as CRC error check. It is a versatile device, but requires many more programming instructions to set up than does the 8251 A. The Z80 DART (Dual Asynchronous Receiver/Transmitter) is similar to the SIO, but it is designed to handle only asynchronous serial communication. It also has two channels, and they are identical to the asynchronous sections of the SIO. 
In 8-bit microprocessors, serial communication is generally asynchronous; thus, we will focus on applications using the DART or the asynchronous section of the SIO. The SIO can be set up to communicate data in three different ways: program control (status check), intenupt control, and block transfer. In the last section, we illustrated the 8251A under program control; in this section, we focus on inteiTupt control. 
The Z80 SIO is a dual channel interfacing device in a 40-pin package as shown in Figure 15.16(a). The logic pin-out shows seven sections: Channel A and Channel B, modem control for each channel, parallel data bus, control signals for interfacing, and interrupt control. 
Channel A and Channel B are two independent channels and can support both asynchronous and synchronous communications. The SIO has a versatile interrupt structure and can be used to set up daisy-chained interrupt priority. The parallel data bus and the control signals are used to interface the device with the Z80, and the modem control signals are used for communication through telephone lines. 
The SIO has three versions: SIO/0, SIO/1, and SIO/2. The internal structure of these versions is identical; however, to provide all the necessary signals for two independent channels, 41 pins are necessary. To accommodate 41 signals in a 40-pin package, one function must be restricted or combined with some other pin. For example, channel B of the SIO/0 has a common clock for the receiver and the transmitter; thus, the clock frequency for the receiver and the transmitter must be the same. 
The DART is designed to support only asynchronous communication; it is functionally and architecturally identical with the asynchronous section of the SIO. Figure 15.16(c) shows the pin-out of the DART. It is pin compatible with the Z80 SIO/0 except for two pins, which can be used for general-purpose inputs or ignored. 
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15.51   The Z80 SIO and DART: Overview 
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(a) Z80-SIO/0 Pin Configuration FIGURE 15.16 
Z80 SIO/0 and DART Logic and Pin Configiorations 
SOURCE: Courtesy of Zilog, Inc 
Figure 15.17 shows the expanded block diagram of the DART (or the asynchronous section the SIO) with Channel A only. The Read/Write control section and the data bus are used for interfacing the device with the MPU. The device includes several control and status registers shown as the Control/Status block. The parameters of communications, such as number of bits per character, parity, and transmission rate in relation to the clock have to be specified or programmed. Prior to implementing communication, these control registers must be programmed. 
To transmit a byte, the MPU accesses the device through a port address and sends a parallel byte. The control and status circuitry of Channel A frames the byte by adding a Start bit. Stop bits and a parity bit, places it into the register to transmit data, and then 
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(c) Pin Assignments 
transmits one bit at a time by using the shift register. The baud is determined by the transmitter clock and multiplying factor specified in the control register. To receive data, the process is reversed. In addition, the data go through error logic to check errors. The following sections describe various signals and illustrate the serial communication process. 
15.52  Read/Write Control Logic and Interfacing 
To interface the DART (or the SIO) with the Z80, the signals are as follows: 
□ D0-D7—Data Bus; This is a tri-state bidirectional data bus that transfers data and commands between the Z80 and the SIO. 
□ B/A—Channel Select: This signal selects either channel A or channel B for communication. When it is logic 1, channel B is selected, and when it is logic 0, channel A is selected. Address line Aq from the Z80 is generally connected to this signal. 
INTERFACING PERIPHERALS PROGRAMMABLE VO DEVICES, APPLICATIONS, AND DESIGN 

        
        [image: Picture #190]
        

        	
	Read/ Write Control 
	t 

	

	

	

	

	

	

	

	

	


Interrupt Control 
V 
Transmit 
Control/ Status 
Receive 
-TxDa -Tic. 
W/RDYa 
-RxDa -RxC« 
	Modem Control 
	

	

	

	

	

	


■RDa -RTSa 
-CTSa DTRa ■DCD. 
FIGURE 15.17 
Z80 DART: Expanded Block Diagram of Channel A 
□ C/D—Control or Data: This signal selects either the control register or the data register of the selected channel. When this signal is logic 1, the MPU communicates with the control register either to write a command or read the status. When this signal is logic 0, the MPU either writes a byte in the data register to transmit or reads a byte from the receiver. Address line Ai from the Z80 is generally connected to this signal. 
□ CE—Chip Enable: When this signal goes low, it indicates that the SIO has been selected for communication. The decoded address bus is usually connected to this signal. The address lines connected to signals CE, C/D, and B/A determine the port addresses of the control register and the data register. Table 1.5.4 summarizes the active levels of these signals and the control signals. 
□ cj)—System Clock: This is a single phase clock input from the system; it synchronizes the internal operations of the SIO. 
□ RESET—Reset: This is an active low signal that disables all the SIO operations, including interrupts. After a reset, the control registers must be rewritten to transmit or receive. 
□ lORQ (I/O Request), Mi (Machine Cycle 1), and RD (Read): These are three active low 
SERIAL I/O AND DATA COMMUNICATION 
signals that perform Read/Write/Interrupt Acknowledge operations as described below: 
1. Read. This operation is performed when lORQ and RD are active low and M[ is 
high. In this operation, the Z80 either receives a data byte or reads a status from the status register. 
2. Write. This operation is performed when lORQ is active low, but RD and Mj are 
high; the SIO does not have a separate signal for the Write operation. In this operation, the Z80 either writes a command in the control register or transfers a byte for transmission. 
3. Interrupt Acknowledge. The Z80 acknowledges an intenupt by asserting lORQ and 
Ml signals low, and the SIO places its interrupt vector on the data bus. 
The control operations, the active level of the associated signals, and port selection are summarized in Table 15.4; Example 15.3 illustrates interfacing of the SIO with the Z80. 
TABLE 15.4 
Summary of Contiol Signals and Port Selection of Z80 SIO/DART 
	lORQ 
	RD Ml 
	CE 
	C/D 
	B/A 
	Function and Port Selection 

	0 
	1 1 
	0 
	0 
	0 
	Z80 Selects Channel A for Data Trans

	
	
	
	
	
	mission 

	
	
	0 
	0 
	1 
	Z80 Selects Channel B for Data Trans

	
	
	
	
	
	mission 

	
	
	0 
	1 
	0 
	Z80 Writes Command in Channel A Con

	
	
	
	
	
	trol Register 

	
	
	0 
	1 
	1 
	Z80 Writes Command in Channel B Con

	
	
	
	
	
	trol Register 

	0 
	0 1 
	0 
	0 
	0 
	Z80 Selects Channel A for Data Recep

	
	
	
	
	
	tion 

	
	
	0 
	0 
	1 
	Z80 Selects Channel B for Data Recep

	
	
	
	
	
	tion 

	
	
	0 
	1 
	0 
	Z80 Reads Channel A Status Register 

	
	
	0 
	1 
	1 
	Z80 Reads Channel B Status Register 

	
	
	1 
	X 
	X 
	SIO Is Not Selected 


0 
1 
0 
SIO acknowledges an interrupt and a vector address is placed on the data bus 
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Determine the port addresses of the Z80 SIO control registers and data registers Figure 15.18. 
Example 15.3 
shown in 
As 
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3-to-8 Decoder 

	

	

	


FIGURE 15.18 
Interfacing Z80 SIO/DART 
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Solution According to Table 1.5.4, the SIO is selected when the CE signal goes low, and the CE 
goes low when the output line Oq of the decoder is asserted active low. By combining the logic levels of A7-A2 with those of A] and Aq, the port addresses range from 40h to 43h as shown. 
A7 Ag A5 A4 A3 A2  Ai Ao C/D B/A 
,0   1   0,  ,0   0   0,    0 0 
Decoder     Decoder    0 1 Enable       Input        1 0 1 1 
40h Channel A data register 
41h Channel B data register 
42h Channel A control register 
43h Channel B control register 
15.53  Transmitter and Receiver Sections 
When the MPU writes into the channel A data register, the byte is placed into the Transmit Data register of the transmitter section (Figure 15.19). The byte is properly framed by adding Start and Stop bits according to the instructions written into the control register during the initialization of the device. Then the framed byte is transmitted one bit at a time over the TxDA line by use of the shift register. The rate of transmission is determined by the transmitter clock and the scaling factor specified in the control register. The data transmission rate can be specified as 1, 1/16, 1/.32, or 1/64 of the clock. 
The receiver section has one 8-bit Receive Shift register and three buffer registers (Figure 15.19) arranged in the FIFO (first-in-first-out) format. The shift register receives bits over the RxDA line and converts the bits into a parallel word. This word is placed in 
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the buffer register that can be read by the MPU. Three buffer registers can store three bytes, thus allowing the MPU sufficient time for an interrupt service if needed. The incoming data also go through the error logic section, which also has three registers. Status information associated with each byte and errors such as parity, framing error, and overrun are stored in Receive Error registers. The rate of reception is again determined by the receiver clock and the scaling factor. The line called W/RDYA shown in Figure 1.5.19 synchronizes the data transfer (described later in more detail). 
Although Figure 1.5.19 shows only the internal structure of Channel A of the DART, the discussion is equally valid for Channel B and the asynchronous section of the SIO. Five signals associated with this section are described below: 
□ TxDA—Transmit Data: This is an output signal, and serial bits are transmitted on this line. 
□ TxCA—Transmitter Clock: This is an input clock signal, and the clock frequency can be 1, 16, 32, or 64 times the transmission data rate. However, this scaling factor must be the same for both the transmitter and the receiver. 
□ RxDA—Receive Data: Bits are received serially on this line. 
□ RxCA^—Receiver Clock: This is an input clock signal for the receiver, and the clock frequency can be 1, 16, .32, or 64 times the data rate. 
□ W/RDYA—Wait/Ready: This is an output signal defined during the initialization of the device and used for two functions. When this line is defined as a Wait function, it has the characteristics of the open drain logic, and it synchronizes the data transfer between the device and the MPU by adding Wait states. When it is defined as a Ready function, it can be driven high or low, and it is used in conjunction with the DMA (Direct Memory Access) controller. 
Channel B includes all the above signals except that it has only one clock signal used for both transmission and reception. The SIO has one additional signal called SYNC that is used in the synchronous communication. 
15.54  Programming the SIO and DART 
In the asynchronous format, the SIO and the DART can be set up to handle serial data transfer in three modes: polling, interrupt, and block transfer. However, prior to implementing data transfer, a series of commands must be issued to define various communication parameters such as number of bits in a character, number of Stop bits, and parity. These commands are issued using the Write Registers (WR) in the control section. Similarly, to synchronize the communication, the MPU needs to check the readiness of the peripheral, examine error conditions, and obtain information concerning the interrupt vector. The MPU performs these tasks by reading the status from Read Registers (RR). The DART has six Write Registers (WRO—WR5), shown in Figure 1.5.20, which are used to specify the communication parameters. It has three Read Registers (RR0-RR2), shown in Figure 15.21, which are used for status information. The SIO has two additional Write Registers (WR6-WR7) that are used only for synchronous communication. This type of architecture raises the question: How does the MPU write in these six (or eight in the SIO) 
Write Register 0 
	
	D6 
	D5 
	D4 
	
	
	
	Do 


	0 
	0 
	0 
	Register 0 

	0 
	0 
	1 
	Register 1 

	0 
	I 
	0 
	Register 2 

	0 
	1 
	1 
	Register 3 

	1 
	0 
	0 
	Register 4 

	1 
	0 
	1 
	Register 5 


	0 
	0 
	0 
	Null Code 

	0 
	0 
	1 
	Not Used 

	0 
	I 
	0 
	Reset Ext/Status Interrupts 

	0 
	1 
	1 
	Channel Reset 

	1 
	0 
	0 
	Enable INT On Next Rx Character 

	1 
	0 
	1 
	Reset TxINT Pending 

	1 
	1 
	0 
	Error Reset 

	1 
	1 
	1 
	Return From INT (CH-A Only) 

	
	
	
	—Not Used 


Write Register 1 |D7|D6|D5|D4[D3|D2|D||Do| 
L 
Ext INT Enable -TxINT Enable 
Status Affects Vector 
(Ch. B Only) 0    0     RxINT Disable 
0 1     RxINT on First Character 
1 0     INT on All Rx Characters (Parity 
Affects Vector) 1     1     INT on All Rx Characters (Parity Does not Affect Vector) 
-WAIT/READY on R/T -WAIT/READY Function -WAIT/READY Enable 
Or on Special ' Receive Condition 
Write Register 2 (Channel B Only) 
Write Register 3 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D| 
	Do 


	D7 
	De 
	D5 
	D4ID3 
	D2 
	D, 
	Do 


Interrupt Vector 
L rx Enable —Not Used —Auto Enables 
— 0    0     Rx 5 Bits/Character 
0 1     Rx 7 Bits/Character 
1 0 Rx 6 Bits/Character 1     1     Rx 8 Bits/Character 
Write Register 4 
	D7 
	D6 
	D5 
	D4 
	D3 
	D, 
	D, 
	Do 


I   L Parity Enable ' Parity Even/Odd 
0 0 Not Used 
0 1 1 Stop Bit/Character 
1 0 V/2 Stop Bits/Character 1 1 2 Stop Bits/Character 
Not Used 
■0 0 xl  Clock Mode 
0 1 xi6 Clock Mode 
1 0 x32 Clock Mode 1 1 x64 Clock Mode 
Write Register 5 
	D7 
	Dft 
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 


L-Not Used 
I RTS 
I Not Used 
I Tx Enable 
I Send Break 
0 0 Tx5 Bits (or Less)/Character 
0 1 Tx7 Bits/Character 
1 0 Tx6 Bits/Character 1 1 Tx8 Bits/Character 
DTR 
HGUEE 15.20 
Z80 DART; Write Registers 
SOURCE: Courtesy of Zilog, Inc. 
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Read Register 0 
	D7 
	
	D5 
	D4 
	D3 
	D, 
	D| 
	Do 


L 
Rx Character Available INT Pending (Ch, A Only) Tx Buffer^Empty DCD 
-RI 
-CTS -Not Used - Break 
Used with "External ^  Status Interrupt" Mode 
Read Register 1* 
	D7 
	
	D5 
	D4 
	D3 
	
	D, 
	Do 


L-All Sent —Not Used 
— Parity Error 
— Rx Overrun Error 
— Framing Error —Not Used 
*Used With Special Receive Condition Mode 
FIGURE 15.21 
Z80 DART: Read Registers 
SOURCE: Courtesy of Zilog, Inc 
Read Register 2 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 


-V,** 
Interrupt Vector 
'""Variable if "Status Affects Vector" is Programmed 
registers and read three different status registers using one port address of the control register? This dilemma is resolved by using three bits (D2-D0) of the WRO register as a pointer to the remaining registers; thus, each command issued through WR1-WR5 requires two bytes: one to the WRO register to set up the pointer, and the other to write a command into the specified register. The Read and Write operations are differentiated by the Read and Write control signals of the MPU. 
Both channels A and B have identical architecture, except that register WR2 is included only in Channel B. When the device is set up to handle the interrupt mode, register WR2 is used to specify the low-order address of the intemipt vector, and this address can be used by both channels. Figure 15.20 shows bit definitions for Write Registers and Figure 1.5.21 shows the bit definitions of the Read (status) Registers. The 
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functions of the Write Registers are briefly described here and illustrated in Examples 15.4 and 15.5. The Read (status) Registers are explained later. 
WRITE REGISTERS 
□ WRO (Write Register 0): This is a special register; bits D0-D2 are used as pointers to the remaining registers and bits D3-D5 are used to issue initialization commands. Bits D7De should be 00; they are used in Synchronous communication only. 
□ WRl (Write Register 1): The bits in this register define various interrupt and Wait/ Ready modes. 
o WR2 (Write Register 2—Channel B only): This register is used to store the low-order address of the interrupt vector, and it can be used by the interrupts in both channels. The vector is automatically modified based on the status of bit D2 in register WRl. 
□ WR3 (Write Register 3): The bits in this register define receiver parameters and enable the receiver. 
□ WR4 (Write Register 4): This register contains bits that define communication parameters such as Stop bits, parity, and baud multiplying factor. 
□ WR5 (Write Register 5): The bits in this register define transmitter parameters and enable the transmitter. 
□ WR6-WR7 (Write Registers 6-7): These registers are included in the SIC only and used for synchronous communication. 
Draw a flowchart and give bit definitions to initialize the Z80 SIO or DART to meet the following specifications: 
1. Asynchronous transmission/receiver format without interrupts. 
2. 7-bit character, two Stop bits, no parity, frequency multiplying factor = 16, 
Example 15.4 
To initialize the SIO in the asynchronous mode, register WRO is used to reset the device and as a pointer to other registers. The steps are as follows: 
Solution 
1 
	Write to WRO to Reset SIO 

	
	


Load Pointer for WR4 in WRO 
Write in WR4 to Specify Asyn. Mode Parameters 
D7   De   D5   D4   D3   D2   D, Do 
0 0 
0 0 
T 
L 
0 
1 
1 
Reset Command 0     1 0 
J 
Reset Ext/Status Interrupts 0 0,1 
0 0 
0 = 18 
I 
H 
J I 
Point to WRO 1     0     0 , = 14h 
i 
Point to WR4 
Clock X 16 
2 Stop   No parity bits 
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Load Pointer for WR3 in WRO 
Load Pointer for WR5 in WRO 
Load Pointer for WRl in WRO 
Write in WR3 to Specify Receive Parameters 
Write in WR5 to Specify Transmit Parameters 
Write in WRl To Disable Interrupt 
0 0 
0 
1 
T 
7-Bit Ch. Auto Enable 0     0     0 1 
0 ^ 
0     1     0   , 0     1     1 = 13h I 
Point to WR3 0     0     0     0 ^=61„ 
Rx Enable 
7-Bit Ch. 
0 
1     0     1 = 15h 
T 
Point to WR5 1     0     0     0 = 28h 
Tx Enable 
0     0     0     1     0     0     0     1 = 11h 
' 1 ' 
Point to WRl 
0     0     0,0     0^   0   ^ 0     0 = OOh 
r 
Disable Rx Int 
i 
Disable Tx/ Ext Int 
Example Write a subroutine to initialize channel A of the DART shown in Figure 15.18 to meet the 
15.5 specifications of Example 15.4. 
Solution As shown in Example 15.3, the channel A control port address is 42h. Referring to bit 
definitions in Example 15.4, we can write the instructions using register C as follows. However, the coding can be substantially reduced by using the instruction OTIR (see Assignment 29). 
	DATAA 
	EQU 40H 
	;Channel A data port address 

	CNTRLA 
	EQU 42H 
	;Channel A control port address 

	DART: 
	LD C, CNTRLA 
	;Load control port address into register C 

	
	LD A, 18H 
	;Reset byte 

	
	OUT (C), A 
	;Reset Channel A 

	
	LD A, 14H 
	;Pointer for WR4 

	
	OUT (C), A 
	

	
	LD A, 4CH 
	;Bit definitions for asynchronous communica

	
	
	;tion 

	
	OUT (C), A 
	;Specify parity, stop bits, clock multiplier 

	
	LD A, 13H 
	: Pointer to WR3 

	
	OUT (C), A 
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LD A, 61H OUT (C), A LD A, 15H OUT (C), A LD A, 28H OUT (C), A LD A,IIH OUT (C), A LD A, OOH OUT (C), A RET 
;Bit definitions for receiver 
;EnabIe receiver to receive 7-bit character 
;Point to WR5 
;Bit definition for transmitter 
;Enable transmitter to transmit 7-bit character 
;Point to WRl 
:Byte to disable interrupts ;Disable interrupts ;InitiaHzation complete 
READ REGISTERS 
The SIO (DART) has three registers (RRO, and RRl, and RR2) that can be read by the MPU to obtain receiver/transmitter status information. Registers RRO and RRl are included in both channels; however, register RR2 is only in Channel B. The RRO register can be read directly by accessing the control port; however, the remaining two registers have to be read by using the pointer bits in Write register WRO. Figure 15.21 shows bit definitions of the Read Registers. These registers are briefly described here and illustrated in the following examples. 
□ RRO (Read Register 0): This register provides the status information of the receiver, transmitter, and the interrupts. Bit Dq is set when a character is received, and bit D2 is set when the transmitter buffer is empty. 
□ RRl (Read Register 1): This register monitors errors in receiving data; bits in this register identify various types of the errors, such as parity, framing, and overrun. To read the information from this register, the pointer must be written in register WRO. 
□ RR2 (Read Register 2—Channel B only): The inteiTupt vector written in register WR2 of Channel B is available through this register for interrupts in both channels. If bit D2 of Write Register WRl is set, the vector address can be modified according to the interrupting source, and the modified address is returned to the MPU when the interrupt is acknowledged. 
Assuming Channel A of the SIO or DART is initialized for asynchronous serial I/O with Example 
the polled mode, write a subroutine to receive a character and check for errors. The 15.6 character should be stored in memory location INBUF, and if there are any errors, the contents of the status register RRl should be stored in memory location ERRCHK. 
The availability of a character is indicated by bit Do in RRO. Therefore, in the polled Solution mode, the program should continue to check bit Do until it is set. 
4S2 
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READ:     r-»IN A, (CNTRLA) BIT 0, A L-JR z, READ IN A, (PORTA) LD (INBUF), A 
CHECK:      LD A, OIH 
OUT (CNTRLA), A IN A, (CNTRLA) AND 70H 
LD (ERRCHK), A RET Z RESET:       LD A, 30H 
OUT (CNTRLA), A RET 
;Read status register RRO ;Check bit Dq 
;Wait until character is available 
;Read character 
;Store character 
;Load pointer for RRl 
;Select status register RRl 
;Read error flags in register RRl 
;Mask all bits except De, D5, D4 
;These are error flags (refer to Figure 15.21) 
;Store error status. 
;No errors 
;Reset command 
;Reset all error flags 
Description The first instniction (IN) of this subroutine places the contents of the status register RRO in the accumulator by reading the control port of Channel A. To read register RRO does not require a pointer in WRO. Bit Do of the register RRO indicates the availability of a character. Thus, the routine continues to check bit Do until it is set. Once a character is available, it is stored in memory location INBUF. 
If there are errors in the received character, bits De (framing), D5 (overrun), and D4 (parity) of register RRl are set. However, to read register RRl, the pointer needs to be loaded into Write Register WRO. The subroutine reads RRl, logically ANDs its contents with 01110000, and saves the result for further action in location ERRCHK. If there are no errors, error bits (Dg, D5, and D4) are reset, the Z flag of the Z80 is set, and the program returns on the Z flag. If there are errors, the error bits are reset by sending the reset instruction to the control port. 
Example 15.7 
Solution 
Assuming the SIO (DART) Channel A is initialized for the polled I/O, write a subroutine to send a character stored in memory location OUTBUF. 
The status of the transmitter section is indicated by bit D2 in register RRO. Therefore, the subroutine should continue to check bit D2 in RRO until it is set, at which time it should transmit the character. 
STATUS: 
TRNSMT p*IN A, (CNTRLA) 
BIT 2, A I—JR Z, STATUS 
LD A, (OUTBUF) 
OUT (PORTA), A 
RET 
;Read register RRO 
;Check transmitter buffer if it is empty ;Wait until buffer is empty ;Get character from memory ;Send the character 
15.55  The SIO (DART) In the Interrupt Mode 
The SIO has a powerful interrupt scheme that can respond quickly to various sources of interrupts. In the previous examples of data transmission and reception in the polled mode, we have seen that the MPU is kept occupied continuously in polling, even if there is no character to transmit or receive. In the interrupt mode, the SIO will interrupt the MPU only on a need basis—such as when it has received a character, when the transmitter is empty, or under some special error conditions. The MPU is thus free to perform other functions. 
Figure 15.22 shows three sources of interrupts: transmit, receive, and external status. In transmission, when the buffer becomes empty and the SIO is ready for the next character, an interrupt is generated. The external status interrupt is generated whenever there is a transition in status lines and when transmission conditions such as Transmit Underrun and Break occur. 
The receive interrupt is somewhat complex in that it has two categories: one for the first character received and the second for every character received. The second category is similar to the transmit interrupt; whenever a character is received, an interrupt is generated. The first category is used primarily for the block transfer. In this case, when the first character arrives, an interrupt is generated, and then no other interrupt is generated until 
Buffer Empty 
DCDRICTSBreak
Character
Errors*— 
All Received Characters 
First CharacterErrors*
First Received Character 
Figure 15.22 
Z80 DART: Interrupt Structuie 
Interrupt Sources 
Transmit Interrupt 
External Status Interrupt 
Receive Interrupt 
SIC/DART Interrupt 
-INT 
*Errors: 
• Parity 
• Receive Overrun 
• Framing 
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the block transfer is completed or a higher priority source requests a service. The receive interrupt can also be generated when errors occur. Once an intemipt is generated, it is necessary to identify the source of the interrupt. Two procedures can be used: polling and modifying the interrupt vector. For both methods, an interrupt vector must be loaded into register WR2 in Channel B during the initialization. In the polling method, once an interrupt is acknowledged, the program control will be transferred to the vector location. Then the service routine will identify the source of the interrupt by checking the status registers RRO and RRl. In the other method, the interrupt vector in register WR2 is modified according to the interrupting source and eight different addresses can be generated, as shown in Table 1.5..5. The vectors shown in Table 15..5 are arranged according to their interrupt priorities, starting with the lowest priority 0; Channel B has lower priority than Channel A, and within each channel the interrupt generated by the receive errors (Special Receive Condition) has the highest priority. This is further illustrated in Example 15.8. 
The Z80 SIO (DART) has three signals to handle the interrupts: one to generate an interrupt and the other two to set the priorities among various devices using the daisy chain scheme. The signals are as follows: 
□ INT—Interrupt Request: This is an open drain active low signal, and it is generated to acknowledge the conditions previously discussed. 
□ lEI—Interrupt Enable IN and lEO—Interrupt Enable Out: These signals are used to determine the priorities among devices in the system when multiple devices are connected in the interrupt driven mode. The functions of these signals are identical to those of lEI and lEO signals in the Z80 PIO and CTC described in the previous chapters. 
Example Add the necessary instructions in the initialization subroutine SETUP in Example 15.4 to 
15-8 include the interrupt mode with the interrupt vector at 80h. The vector should be modified 
according to the interrupting source. Assuming the interrupt register in the Z80 contains the address 20h, specify the vector addresses for the transmit interrupt in Channel A and the interrupt due to the parity error (refer to Table 15.5). 
TABLE 15.5 
Interrupt Vectors 
	
	Type of Interrupt 
	D7 
	
	Ds 
	D4 
	D3 
	D2 
	D, 
	Do 
	Hex 
	Priority 

	Channel B: 
	External/status Transition 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	= 02 
	0 

	
	Transmitter Buffer Empty 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	= 00 
	1 

	
	Received Character 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	= 04 
	2 

	
	Special Receive Condition 
	0 
	0 
	0 
	0 
	0 
	1 
	1 
	0 
	= 06 
	3 

	Channel A: 
	External/status Transition 
	0 
	0 
	0 
	0 
	1 
	0 
	1 
	0 
	= OA 
	4 

	
	Transmitter Buffer Empty 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	= 08 
	5 

	
	Received Character 
	0 
	0 
	0 
	0 
	1 
	1 
	0 
	0 
	== OC 
	6 

	
	Special Receive Condition 
	0 
	0 
	0 
	0 
	1 
	1 
	1 
	0 
	= OE 
	7 
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Referring to the subroutine DART in Example 15.4, we find that three commands must be added to initialize the DART in the interrupt mode: one command in WR2 to specify the vector 80h (Channel B), the second command to turn on bit D2 in WRl (Channel B) to enable modification of the inteniipt vector, and the third command in WRl to enable the interrupts. The second command is additional here because we are using only Channel A, and the third command replaces the last disable command in the previous routine. To load these commands, the register WRO must be used as a pointer. The instructions are as follows: 
Solution 
LD A, 12H 
OUT (CNTRLB), A 
LD A, 80H 
OUT (CNTRLB), A 
LD A, IIH 
OUT (CNTRLB), A 
LD A, 04H 
OUT (CNTRLB), A 
LD A, 12H 
OUT (C), A RET 
;Pointer to WR2 ;Set up pointer to WR2 ;Low-order vector address ;Load vector into register WR2;Point to WRl 
-Channel B 
;Bit D2 = 1 (status affects vector) 
;Set bit Dj in Channel B 
;Byte to enable Tx, Rx (every received char.) 
;   and parity error intemipt. 
;Enable interrupts 
;Initialization complete 
By referring to Table 15.4 and using 20h as the high-order address of the interrupt vector, we can identify the memory locations where the pointers are stored for various interrupts. 
D3 D2 D, 
1. Transmitter Buffer Empty  10 0 0 
2. Character Received 10 0 0 
3. Parity Error 10 0 0 
0 = 20 88h 0 = 20 8Ch 0 = 20 8Eh 
These vectors are situated two memory locations apart (208Ah is not included in this problem); thus can 16-bit addresses of various service routines be stored. 
ILLUSTRATION: INTERFACING A RS-232 TERMINAL USING DART (SIC) IN THE INTERRUPT MODE 
The DART requirements for the interrupt-driven serial I/O have been discussed in the previous sections. Examples 15.6 and 15.7 illustrated how to receive and transmit a character using the polled mode, and Example 15.8 illustrated how to initialize the SIO for the interrupt mode. We will now use these concepts to interface a RS-232 terminal to a Z80 system using the DART in the inteiTupt mode. 
INTERFACING PERIPHERALS PROGRAMMABLE I/O DEVICES, APPLICATIONS, AND DESIGN 
The microprocessor views the ASCII terminal as two different peripherals: the keyboard as an input and the CRT as an output display. When a key is pressed, the DART receives a serial stream of bits that can be read by the microprocessor. However, to display that character on the screen, the same byte should be sent out as an output to the screen; these are two distinct processes. The following illustration shows how ASCII characters are received and displayed on the screen. 
15.61  Problem Statement 
1. Interface an ASCII terminal with the Z80 system using the DART in the interrupt mode. Use the same decoding logic as in Example 15.3 to assign port addresses 40h to the Channel A data port and 42h to the Channel A control port. 
2. Initialize the DART for the interrupt mode to meet the following specifications: (a) asynchronous format, (b) seven-bit character with even parity, (c) transmit and receive frequency = 16 times baud, (d) interrupts should be generated on Rx (All Received Characters), Tx, and parity error. 
3. Write a service routine to receive a character when a key is pressed. 
4. Write a service routine to transmit (echo) the received character to the CRT screen. 
15.62  Problem Analysis 
1. Figure 15.23 shows the interfacing circuit using the DART in the interrupt mode. The decoding logic is the same as in Example 15.3 with Channel A port addresses PORTA_= 40h and CNTRLA = 42h. In addition, INT of the DART is connected to the INT signal of the Z80, and the lEI line of the DART is tied high with the assumption there are no other devices in the system. 
2. The specifications are the same as in Example 15.8, with the interrupt vector at location 80h. 
3. Main Program: This program is quite simple; it involves initializing the stack and the high-order interrupt vector and calling the initialization subroutine SETUP. To illustrate how characters are received or transmitted in the intemipt-driven mode, the program should have an endless loop. In a real-life example, the MPU would be free to 
perform other tasks. 
PORTA     EQU 40H CNTRLA STACK 
;Channel A: data port address 
EQU 42H ;Channel A: control port address 
EQU 2100H ;Stack address 
SIO: LD SP, STACK ;Initialize the stack 
IM 2 ;Set up Z80 in interrupt Mode 2 
LD A, 20H ;High-order interrupt vector 
LD (I), A ;Load vector into Interrupt Register 
CALL SETUP ;Initialize DART as in Example 15.8 
WAIT:      JR WAIT ;Wait here until an interrupt occurs 
4. The following service routine receives a character when the receive interrupt occurs and transmits the same character to the CRT by checking the status of bit D2 in register RRO. 
+5 V 

        
        [image: Picture #194]
        

        Z80 INT 
(with a pull-up resistor) 
FIGURE 15.23 
Interfacing a RS-232C Terminal with a Z80 System Using the DART in the Intenupt Mode 
ECHO:      EX AF, AF' PUSH BC LD C,PORTA IN B, (C) 
STATUS:   IN A, (CNTRLA) BIT 2, A JR Z, STATUS OUT (C), B EX AF, AF' POP BC EI 
RETI 
;Save accumulator and flags ;Save contents of BC ;Load PORTA address into register C ;Read received character in register B ;Read status register RRO ;Is transmitter buffer empty? ;Wait until transmitter is ready ;Send character to CRT ;Retrieve register contents 
;Enable intenupts 
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SUMMARY 
In this chapter, we discussed the technique of serial I/O for data communication, whereby one bit is transferred over one line rather than using eight data lines to transfer a byte. The serial I/O technique is necessary for certain types of equipment and media such as magnetic tapes and telephone lines. The rate of data transfer in serial I/O is determined by the time delay between two successive bits. Therefore, a host of issues such as error check and synchronization of data transfer between the transmitter and the receiver need to be resolved. The serial I/O data transfer can be implemented using software techniques; however, programmable devices called USART (Universal Synchronous/Asynchronous Receiver/Transmitter) are commonly used in industrial and commercial products. Two such devices, the Intel 82.51 A and the Z80 SIO (DART), are discussed with illustrations in this chapter. The basic concepts involved in serial I/O can be summarized as follows: 
1. In serial I/O communication, a word is transmitted one bit at a time over a single line by converting a parallel word into a stream of serial bits. On the other hand, a word is received by converting a stream of bits into a parallel word. 
2. Serial data communication can be either synchronous or asynchronous. The synchronous mode is used for high-speed and the asynchronous mode for low-speed data communications. 
3. The MPU identifies a serial peripheral through a decoded address and an appropriate control signal. Data transfer can be implemented using such methods as polling (status check), and interrupt. 
4. In software-controlled serial transmission, the MPU converts a parallel word into serial bits by using time delays and transmits one bit at a time over one data line of an output port. 
5. In software-controlled serial reception, the MPU converts a serial word into a parallel word by using time delays and receives bits over one data line. 
6. The Intel 82.51 A is a programmable serial I/O device known as a USART, which can perform all the functions of software techniques and is commonly used in synchronous and asynchronous data communication. 
7. The Z80 SIO (Serial Input/Output Controller) and DART (Dual Asynchronous Receiver/Transmitter) are also commonly used in serial I/O communication. 
DEFINITION OF TERMS 
□ ASCII (American Standard Code for Information Interchange).   A 7-bit alphanumeric code commonly used in computers. 
□ EBCDIC (Extended Binary Coded Decimal Interchange Code).   An 8-bit alphanumeric code used primarily in IBM large computers. 
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□ Asynchronous Serial Data Transmission. In this format, the transmitter is not synchronized with the receiver by the same master clock. A transmitted character includes information concerning the starting and ending of the character. 
□ Synchronous Serial Data Transmission. In this format, the transmitter is synchronized with the receiver by a common clock. 
o Simplex Transmission.   One-way data communication. 
□ Duplex Transmission.   Two-way data communication. Full duplex is simultaneous in both directions and half duplex is one direction at a time. 
□ Baud (Rate).   The number of signal changes per second. In serial I/O, it is equal to bits per second, the rate of data transmission. 
□ Current Loop.  The transmission of serial data bits as current signals. 
o RS-232C. A data communications standard that defines voltage signals in reference to data terminal equipment and data communication equipment. 
□ RS-422A and -423A.  Data communication standards for high-speed data transmission. 
□ US ART (Universal Synchronous/Asynchronous Receiver/Transmitter). A programmable chip designed for synchronous/asynchronous serial data communication. 
ASSIGNMENTS 
1. Explain the difference between asynchronous and the synchronous data transmission. 
2. Explain the terms odd and even parity. 
3. Calculate the bit time for 9,600 baud. 
4. Sketch the serial output waveform for the ASCII character "A" when it is transmitted with 9,600 baud and even parity. 
5. What is the Hex code necessary to transmit the ASCII character "H" with odd parity? 
6. Sketch the serial output waveform for the ASCII sign " -f-" when it is transmitted with 2,400 baud and odd parity. 
7. Explain the RS-232C serial I/O standard and specify the signals used in the minimum configuration. 
8. Is a microcomputer connected as a DTE or DCE in the RS-232C standard serial I/O communication? 
9. Show the RS-232C cable connections in the minimum configuration when a microcomputer and a printer are connected as DCEs. 
10. In Figure 15.10, specify the control port and data port addresses if the address lines A7 and Aq are interchanged. 
11. In Example 15.2 (Figure 15.10), change the mode word from CAh to CBh, and calculate the clock frequency for 1,200 baud. 
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12. In Example 15.2, change the mode word to meet the following specifications: 8bit character, even parity, VA Stop bits, and 2,400 baud (TxC = 153.6 kHz). 
13. In Example 15.2, explain the consequences if the command word to enable the transmitter is changed to 51h. 
14. Write a program to transmit letters A to Z from the MPU to the terminal in Figure 15.1.3. 
15. Write a subroutine to accept a letter from the CRT terminal (Figure 15.13). 
16. In Figure 15.13, specify the command word to transmit and to receive characters. 
17. Write a subroutine to check and identify an error in the received character by reading the status register (Figure 15.13). 
18. In Figure 15.24, identify the addresses of the control and data ports (assume all "don't care" lines are at logic 0). 
19. In Figure 15.24, if the following instructions are executed and the program is transferred to location CHECK, explain the possible reasons for such a transfer. 
LD A, (8001H)       ;Read status register 
AND 38H 
JP NZ, CHECK 
20. Write instructions to check a parity error when a character is received (Figure 15.24). If an error occurs, write a command word to disable the receiver, reset the error, and call the Error routine. 
21. Specify the mode word and the command word for data communication having the following specifications (Figure 15.24): (a) asynchronous mode, (b) 1,200 baud (TxC = RxC = 76.8 kHz), (c) 8-bit character, (d) even parity, (e) 2 Stop bits. 
FIGURE 15.24 
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SERIAL I/O AND DATA COMMUNICATION 
22. Write an interrupt service routine to receive a character from the keyboard and store the character in memory location INBUF. 
23. How does the MPU write into the Z80 SIO without the WR signal pin on the SIO? 
24. Specify the logic levels of the SIO control signals when the Z80 acknowledges an interrupt. 
25. In Figure 15.18, identify the addresses of the control and the data ports if the address lines Ay and Aq are interchanged. 
26. Write initialization instructions for the Z80 SIO to meet the following specifications: (a) asynchronous format to receive characters under program control, (b) 8-bit character with 2 Stop bits and even parity, (c) frequency multiplying factor 64. 
27. Modify the instructions in the previous assignment to include the interrupt control and the low-order inteixupt vector at 50h that can be modified if an error occurs. 
28. In assignment 27, specify the 16-bit address of the interrupt vector if the parity error occurs in Channel B and the Interrupt Register I contains 24h. 
29. Rewrite the initialization instructions in Example 15.5 using the instruction OTIR. 
Advanced Topics in Memory Design and DMA Concepts 
In Chapter 4, we discussed memory interfacing; however, to maintain the clarity in our discussion, we avoided the details of memory access time and its effect on interfacing. Similarly, we did not discuss the need for Wait states in interfacing slow memory devices (peripherals) or the implementation of highspeed data transfer by giving control of system buses to external peripherals. We introduced the topic of dynamic memory, but did not discuss its interfacing. In this chapter, we discuss these timing-related topics and how they affect interfacing and design processes. 
We will begin by examining the memory access time in the context of the microprocessor execution time and determine the need for Wait states in interfacing slow memory devices. We will discuss the structure and the requirements of dynamic memory and illustrate the interfacing of a dynamic memory chip. Then we will examine the same memoryrelated topics from a design point of view and illustrate a memory design using industrial practices. The chapter concludes with the discussion of high-speed data transfer using the Direct Memory Access (DMA) technique. 
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OBJECTIVES 
□ Define memory access time and explain how it relates to the microprocessor machine cycles. 
□ Determine the need for Wait states in interfacing slow memory devices and explain how to generate Wait states. 
□ Explain the internal structure, interfacing requirements, and the need for refreshing dynamic memory. 
□ Illustrate the interfacing of a 16K dynamic memory chip with the Z80. 
□ Explain address decoding using a decoder and a PROM programmer. 
□ Design a memory system for given specifications. 
□ Explain the need for data transfer using the Direct Memory Access technique and the functions of BUSRQ (Bus Request) and BUSAK (Bus Acknowledgment) signals of the Z80. 
□ Explain the differences between the three modes of DMA data transfer; byte, burst, and continuous. 
□ Explain the block diagram of the Z80 DMA controller and its interfacing with the Z80. 
INTERFACING MEMORY USING WAIT STATES 
In interfacing memory with the microprocessor, the interfacing circuit must satisfy the timing requirements of both the microprocessor and the memory chip. In Chapter 4, we assumed that memory response can match the execution speed of the microprocessor, but this assumption is invalid in'some situations. Because of cost considerations, memory chips with slow response time are occasionally used in microprocessor-based systems. Therefore, it is necessary to synchronize the execution speed of the microprocessor with the response time of memory. This can be accomplished by using the Wait signal input to the Z80 microprocessor. 
□ WAIT (Wait)—This is an active low signal, input to the Z80 as an external request from a slow peripheral (or memory), to indicate that the peripheral is not yet ready for data transfer. The Z80 samples the WAIT line at the falling edge of T2 of each machine cycle, and if the WAIT line is low, it adds one T-state (Tw) as a Wait state to its machine cycle. Then it samples the Tw state and adds an additional Wait state if the WAIT signal is still low and continues to add Wait states until the WAIT signal becomes inactive. During this time, the Z80 extends the time of control signals and preserves the contents of all the buses. Thus, the WAIT signal can be used to synchronize the response time of any type of peripheral. 
To ascertain whether a given memory chip is too slow in comparison with the execution speed of the microprocessor and needs Wait states to synchronize the data transfer, we must examine the timing requirements of the microprocessor and the response time of the memory. 
16.11   Z80 Machine Cycles and Memory Access Time 
In Chapter 3, we examined three Z80 machine cycles: Opcode Fetch, Memory Read, and Memory Write. The Opcode Fetch machine cycle is shown here again in Figure 16.1 with 
precise timing for the Z80 witii a 2.5 MHz clock. The read timing of the Opcode Fetch is the most restrictive because the microprocessor begins to read the data byte at the rising edge of T3; in the Memory Read cycle, it reads the byte at the falling edge of T3. If the memory chip can respond adequately in the Opcode Fetch cycle, we need not be concerned with the Memory Read cycle. 
Figure 16.1 shows the time interval Tad; this is the interval between the time the Z80 places the address on the address bus and the time it has to read the byte. In a 2.5 MHz system (400 ns clock period), the Tad is 605 ns. This is calculated by subtracting the output address delay Td(ad) and the data set-up time Tsd on the data bus from the two clock periods (see Figure 16.1). 
Allowable time interval for Z80 to read = 2 X Clock Period - Address Delay data after placing the address on the - Data Set-Up Time 
address bus 
Tad = (2 X T) - Td(ad) - T^d (Eq. 16.1) 
= 2 X 400 ns - 145 ns - 50 ns = 605 ns* 
*These specifications are obtained from Z80 AC cliaracteristics. 
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FIGURE 16.1 
Z80 Opcode Fetch Machine Cycle 
SOURCE: Adapted from Memory' Data Book and Designer's Guide, p, x-40; courtesy of Mostek Corporation 
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The memory response is defined in terms of the memory access time Tag; this is the delay between the time the memory address is placed on the address bus and the data byte is placed on the data bus. The memory access time plus the delay in the address decoding network must be less than Tad; if it is more than Tad, we must add Wait states. 
16.12  Generating Wait States 
In the definition of the WAIT signal, the only requirement to add Wait states is to keep the WAIT signal low when the Z80 samples it during the T2 state. Figure 16.1 shows that the Memory Request (MREQ) goes active after the falling edge of T,. The MREQ signal can be used, after the delay of one clock period, to activate the WAIT signal, as shown in Figure 16.2. 
Figure 16.2 shows that a WAIT signal can be generated by ANDing the outputs of the two edge-triggered flip-flops and using the MREQ as an input to the flip-flop FFj. The MREQ stays high unless the microprocessor is accessing memory; therefore, we can safely assume that Q2, the output of FF2, is initially high. The MREQ goes low after the falling edge of Tl (Figure 16.1); thus, QI goes high in the next clock period at the rising edge of T2 (the flip-flop is positive-edge-triggered) and generates the Wait signal, which should be connected to the WAIT pin of the Z80. Because WAIT is low at T2, the Z80 extends the machine cycle by one clock period, Tw At the next cycle, Q2 goes low (Q, was low in the previous cycle), causing the WAIT signal to go inactive. The circuit shown in Figure 16.2 adds one Wait state to all memory access cycles in the system. To use the Wait state for a particular memory chip in the system, the input MREQ should be ANDed with the decoded address of the chip as shown in the next example. 
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Generating One Wait State 
Example 16.1 
Figure 16.3 shows the circuit (from Figure 4.7) interfacing the 27.32 EPROM with a 4 MHz Z80A system; the circuit includes a Wait state circuit. The Z80A address delay is 110 ns and data set-up time is 35 ns. The memory access time for the EPROM is given as 
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+5 V Rl5 
450 ns, and the delay in the decoder is 40 ns. Explain the timing, and calculate the number of Wait states required. 
In this system, the clock period is 250 ns. In the Opcode Fetch cycle, the Z80 reads the Solution data byte at the rising edge of T2 cycle. Therefore, the allowable microprocessor read time is (see Eq. 16.1) 
Tad = 2 X 250 ns - 110 ns - 35 ns = 355 ns The EPROM would require 
Memory Read Time = Memory Access Time + Address Decoding Delay = 450 ns + 40 ns = 490 ns 
These calculations show that the memory requires 490 ns and that the microprocessor, without the Wait states, would begin to read in 355 ns after placing the address on the bus. After adding one Wait state, the microprocessor read time is extended to 605 ns (355 ns + 
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250 ns). This leaves 115 ns (605 ns - 490 ns) as a safety margin for the memory read time. 
The interfacing circuit shown in Figure 16.3 is a combination of two circuits: Generating one Wait State (Figure 16.2) and the memory interfacing circuit (Figure 4.7). However, in this circuit, the input to the flip-flop of the Generating Wait State circuit is modified; the input is the gated signal of the MREQ and the decoded address from the .3-to-8 decoder. Thus, whenever the Z80 accesses the EPROM, this circuit will add one Wait state to the memory machine cycles without affecting the performance of other memory chips in the system. 
16.2 
INTERFACING DYNAMIC MEMORY 
The dynamic Read/Write memory stores bit information in the form of a capacitive charge, and its internal structure differs from that of static memory. It is organized in the square matrix format of rows and columns, and its address lines are multiplexed. Therefore, to interface dynamic memory with the microprocessor, additional circuitry must be designed to address rows and columns separately. Furthermore, each memory cell needs to be refreshed at least every two milliseconds to retain the stored information. The circuitry necessary for refreshing the dynamic memory is built-in Z80 architecture; in other microprocessors, the refreshing is performed by external logic or LSI devices such as a Dynamic Memory Controller. 
In the following sections, we will examine the internal structure of dynamic memory and its timing requirements, and design an interfacing circuit. 
16.21   Dynamic Memory: Structure and Addressing 
The dynamic memory consists of MOS transistors, which store information as capacitive charge and are internally arranged in the matrix format. Figure 16.4(a) shows four such cells with two rows and two columns. Figure 16.4(b) shows the representation of 16 cells with four rows and four columns with 2-to-4 decoders and latches. Thus, two input lines Ri and R2 can identify four rows when strobe line RAS (Row Address Strobe) is active, and two lines C, and C2 can identify four columns when the strobe line CAS (Column Address Strobe) is active. The lines Rl, R2, CI, and C2 are connected together, and in turn connected to two address lines Ai and Aq. Thus, with two address lines and two strobe lines, we can select any of the cells. For example, by sending address 11 and asserting the RAS line, the address 11 will be latched and row .3 will be selected, and if we follow that by sending the address 01 and asserting the CAS line, we select column 1. Therefore, by sending the address 0111, we can select cell number 7. Of course, we need to know the timings of when to assert RAS and CAS strobes. After selecting the cell, if we want to write into the cell, the Write signal must be asserted. 
The memory structure shown in Figure 16.4(b) has one input line and one output line; thus, we can write 16 bits or read 16 bits from this memory. This memory is repre
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sented by the logic symbol, shown in Figure 16.4(c) with two address lines, two strobe lines, one control signal WE, one input line, and one output line; the size of this chip is 16 X 1. An 8-bit microprocessor such as the Z80 requires an 8-bit memory word; thus, we will need eight chips to have memory of 16 bytes. Figure 16.4(d) shows the logic symbol of the Intel 2118 family of 16,.384 X 1 dynamic memory. To address 16K memory, we need 14 address lines, A13-A0—seven rows and seven columns; however, the chip shows only seven lines Ag-Ao- These lines are multiplexed; the low-order address Ae-Ao is used for rows and the high-order address A13-A7 is used for columns. 
To appreciate the complexities in interfacing this dynamic memory chip, let us first recall the steps for interfacing a static memory in relation to the Z80 Read/Write operations. The Z80 
1. places a 16-bit address on the address bus. 
2. sends the MREQ signal to indicate that the 16-bit address is on the address bus. 
3. sends the control signal RD or WR. 
Therefore, to interface a static memory, the designer has to perform the following three steps: 
1. Generate the CS signal by decoding the high-order bus and connect it to the CE pin of the memory chip. 
2. Generate the MEMRD signal by ANDing RD and MREQ and connect it to the RD pin of the memory chip. 
3. Generate the MEMWR signal by ANDing WR and MREQ and connect it to the WR pin of the memory chip. 
In interfacing dynamic memory, the Z80 operations remain the same; it is the responsibility of the designer to generate the signals that are necessary for the dynamic memory chip. The steps and the issues involved are as follows: 
1. Generate the CS signal to identify this chip among many memory chips in the system. However, there is no CS pin on the memory chip. 
2. Isolate the low-order address from the high-order address. 
3. Place the low-order address on the memory address lines and generate RAS (Row Address Strobe) to inform the memory that the row address is on the address lines. 
4. Switch from the low-order address to the high-order address and place the high-order address (column address) on the memory address lines. 
5. Generate the CAS (Column Strobe Signal) to inform the memory that the high-order address is on the address lines. 
6. Use the WR signal to write into the memory or RD signal to read from memory. However, there is no RD pin on the memory chip. 
The timing diagram for the memory is shown in Figure 16..5. How to generate these signals is discussed in the next section. 
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Timing Requirements to Read from or Write into Dynamic Memory 
16.22  Designing Circuits and Generating Timing Signals for Dynamic Memory 
To generate timing signals shown in Figure 16.5, we will refer to the six steps listed above and use the memory chip 2118 as an illustration. 
Step 1: Generating the CS signal 
To address 16K memory, we need 14 address lines A13-A0; only two address lines A15-A14 remain. We can use a 2-to-4 decoder or a simple two-input gate with an inverter as shown in Figure 16.6. The CS is generated when A15 is logic 1 and Ah is logic 0. 
Step 2: Isolating the low-order address from the high-order address 
This can be accomplished by using the 74LS157 multiplexer shown in Figure 16.7(a). The device has two control signals: SELECT and STROBE, and the STROBE must be active (low) for the device to function. When the SELECT is low, the data on input lines 1A-4A are available on the output lines, and when the SELECT is high, the data on lines 1B-4B are available on the output lines. 
To separate the low-order address from the high-order address, the low-order address lines can be connected to the A input lines of the multiplexer and the high-order 
FIGURE 16.6 
Address Decoding to Generate Chip Select Signal 
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address lines can be connected to the B input lines. The Intel 2118 memory chip has seven multiplexed address lines for 14-bit addresses; we therefore need to use two multiplexers as shown in Figure 16.7(b). When the SELECT is low, the address Ag-Ao is placed on the output lines, and when the SELECT is high, the address A13-A7 is placed on the output lines. 
Step 3: Generating RAS (Row Address Strobe) and placing the low-order address on the memory address lines 
The RAS informs the memory that the row address is on the address lines. In the Z80, assertion of the MREQ (Memory Request) signal indicates that the 16-bit address is on the address bus. Therefore, the MREQ can be used as the RAS signal, and by keeping the SELECT low, the low-order address can be placed on the memory address lines. On the falling edge of the RAS, the row address is latched by the memory. 
Step 4: Switching from the row address to the column address 
HGURE 16.8 
Geneiating RAS and CAS Signals Using a Delay Line 
MREQ
Delay Line 
RAS   SWITCH CAS 
This is accomplished by asserting the SELECT line high. The multiplexer can be switched by using the MREQ signal with appropriate delay. This delay can be generated by using a delay line circuit as shown in Figure 16.8 or using propagation delays in logic gates. When the delay line, connected to the SELECT pin of the multiplexer, is asserted, the column address (A13-A7) is placed on the memory address lines. 
Step 5: Generating the CAS (Column Address Strobe) signal 
The CAS signal can be generated by delaying the MREQ signal as shown in Figure 16.8. When the CAS is asserted, the column address is latched by the memory chip. 
Step 6: Writing into or reading from a memory cell 
To write into a memory cell, three signals—RAS, CAS, and WR—must be asserted. The WR signal can be asserted before the CAS signal (the early-write technique) or after the CAS signal. When these three signals are active, the data bit on the input line Din is latched into the internal register. 
To read from a memory cell, the cell must be selected by asserting the RAS and CAS signals. After the selection of the cell, the Z80 can assert its RD signal to read from the cell; however, the memory chip does not have a RD pin. Therefore, the Read operation requires a buffer that can be enabled to read the data bit as shown in Figure 16.9. 
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16.23  Refreshing Dynamic Memory 
As mentioned earlier, the bits are stored as capacitive charges in the dynamic memory cells and the charge leaks. Therefore, to retain information, the cells must be refreshed every 2 ms. A memory cell is automatically refreshed simply by accessing its row or by reading from or writing into the cell. However, there is no guarantee that each cell can be refreshed within a 2 ms period during the normal execution of a program. Therefore, additional circuitry must be used to refresh the cells in dynamic memory. 
The commonly used technique to refresh dynamic memory is to place a row address on the memory address lines and assert the RAS signal without the RD, WR, or the CAS signals; this is called RAS-only refresh. The 2118 memory chip has seven rows with 128 cells that can be refreshed by using a 7-bit counter. The counter provides a 7-bit address, and by cycling the counter through 128 row addresses within 2 ms, the entire memory chip can be refreshed. The Z80 has a specially built register R which is used as a refresh counter and a signal called RFSH (Refresh). 
Figure 16.1 shows the timing of the Z80 Opcode Fetch cycle. The time during T3 and T4, when the Z80 decodes the instruction internally and the address bus would otherwise be idle, is used in Z80-based systems for refreshing the dynamic memories. This process is called transparent refresh. During T3, the RFSH signal goes low, indicating that the lower seven bits of the address bus contain a refresh address, and the MREQ is asserted low again. To latch the row address and refresh the cell, the RAS signal must be generated when the RFSH is active; this can be done by ANDing the MREQ and the RFSH signals. In addition, the CAS signal must be kept inactive during this period or the contents of the memory cell may be lost. The row address to refresh the cell is supplied by the contents of Refresh register R, and the address is incremented automatically after each Opcode Fetch cycle. The refresh process is automatic; the programmer can load an address into register R for testing purposes, but it is not necessary. 
The refreshing technique discussed here can refresh 128 rows of a 16K dynamic memory. This technique is not, however, necessarily limited to 16K memory. If the system includes four 2118s (64K memory), the same refresh address can be used to refresh one row in each of the four memory chips if the RAS is generated without the Chip Select. We will combine the circuits discussed in this section in Section 16.3, Interfacing the 2118 Dynamic Memory with the Z80. 
This refreshing technique is ideal in that it does not slow down the microprocessor operations. However, it has some limitations. It is based on the Mj cycle's being executed at least 128 times within 2 ms. This may not be possible if the external Reset, Wait, and Hold signals are active more than 1 ms. Even if this technique can refresh several 16K memory chips, it cannot be used for a memory chip larger than 16K. Then, LSI devices such as Dynamic RAM Controllers are commonly used. These controllers not only refresh the dynamic memories but also provide such necessary timing signals as RAS and CAS. 
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ILLUSTRATION: INTERFACING THE 2118—16K R/W      1 Q Q DYNAMIC MEMORY—WITH THE Z80 lO.O 
This illustration is concerned with interfacing a 16K R/W dynamic memory with the Z80. The illustration synthesizes the concepts we discussed in the previous section. 
16.31 Problem Statement 
Design a circuit to interface the 2118—16K dynamic memory—with the Z80 for the memory map starting at BOOOh- Generate the necessary timing signals assuming the system clock is 2.5 MHz, and use the Z80 Refresh signal and register R to refresh the memory cells within 2 ms. 
16.32 Problem Analysis 
The interfacing of dynamic memory involves three aspects: assigning the memory map, generating timing signals, and refreshing memory cells. The steps are as follows: 
1. Decode the high-order address lines to assign the map. 
2. Generate RAS, CAS, and SELECT signals with appropriate delays. 
3. Use the RAS signal to latch the row address, the SELECT signal to switch from the RAS to the CAS signal, and the CAS signal to latch the column address. 
4. Use the Z80 WR signal to write into the selected cell. 
5. Generate the Memory Read signal to enable a buffer as an input port. 
6. Refresh the memory cell during T3 and T4 states of the Opcode Fetch cycle. 
16.33 Interfacing Circuit and Its Operation 
In this circuit design, the assignment of the memory map with the starting address 8000h is easy. The 16K memory requires 14 address lines A13-A0 to address memory cells; thus, only two address lines, A15 and A14, remain. These address lines can be decoded either using a simple gate and an inverter or a 2-to-4 decoder. Figure 16.10 shows that the CS signal is generated using the gate 74LS32 with an inverter. The memory map of this circuit ranges from 8000h to BFFFh as shown. 
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GENERATING THE RAS SIGNAL 
The RAS signal should be active when the row address is placed on the memory lines and when the RFSH signal is asserted to refresh the memory cells. However, the CS signal is not necessary for refreshing. Therefore, the CS and RFSH signals are logically ORed as shown in Figure 16.10. The RAS is generated by ANDing CS or RFSH with the MREQ. The time delay in generating the RAS signal in relation to the MREQ wiljjbe .37 ns, the sum of the delays in 74LS04 and NAND gate. The delay in generating the CS is irrelevant because the address is placed on the address bus .300 ns before the MREQ is asserted. 
CONNECTING THE ROW AND COLUMN ADDRESSES 
Figure 16.11 shows that the row address lines Ae-Ao are connected to A input and the column address lines A13-A? are connected to B input of the two multiplexers 74S1.57. The seven output lines of the multiplexers are connected to the multiplexed address lines Ag-Ao of the memory chip, and the eighth output line of the multiplexer is connected to the CAS signal of the memory chip. The input lines 4A and 4B of the second multiplexer are tied to +5 V and ground, respectively. When the SELECT is switched from low to high, the eighth output line goes from high to low (from + 5 V to ground), and the CAS signal is asserted (active low). Figure 16.11 shows the details of only one memory chip, rather than eight chips, to avoid clutter. 
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SOURCE: Adapled from Memory Data Book and Designer's Guide, p, x-45; courtesy of Mostek Corporation, 
DATARD 
from Fig. 16.10(b) 
PLACING THE ADDRESSES AND SWITCHING FROM RAS TO CAS 
The SELECT signal of the multiplexer is controlled by the MREQ through the edgetriggered flip-flop 7474 (Figure 16.11). At the beginning of the Opcode Fetch cycle, the MREQ is high and the output of the flip-flop is low. Thus, the SELECT signal is low, and the row address is placed on the output lines of the multiplexer. When the MREQ is asserted, the RAS is generated 37 ns later because of the delay in the inverter and the NAND gate (Figure 16.10), and the row address is latched by the memory. The MREQ also changes the input to the flip-flop; however, the output of the flop-flop changes on the rising edge of the clock T2. When the output of the flip-flop goes high, the SELECT is switched from low to high, and the column address A13-A7 is placed on the address lines. The CAS is delayed by 37 ns by using two inverters, thus allowing sufficient time for the column address to settle. When the CAS is asserted, the column address is latched. 
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READING FROM AND WRITING DATA INTO MEMORY 
The Memory Read signal is generated by ANDing CS, MREQ, and RD (Figure 16.10(b)); this is similar to generating the MEMRD signal for static R/W memory. However, this memory chip does not have a RD pin; therefore, the data bit is read by using the buffer 74LS244 as a memory-mapped input port. Figure 16.11 shows one input and one output data line; the other seven data lines are not shown here. 
To write data into a selected cell, the WR signal, which is connected to WR pin of the memory, must be asserted. The WR signal can also be asserted before the CAS signal (early-write); we have not used that technique in this illustration. 
REFRESHING THE MEMORY CELL 
During the T3 state of the Opcode Fetch cycle, the RFSH is asserted and the address from the R register is placed on the address bus. The RAS signal is asserted again when the MREQ goes low, the row address is latched by the memory, and the cell is refreshed. However, the CAS is held inactive during the refresh by using the RFSH signal to reset the flip-flop. Thus, this operation is not confused with a Read or Write operation. 
TIMING CALCULATIONS AND MICROPROCESSOR READ TIME 
In Section 16.1 we calculated that the Z80 with a 2.5 MHz clock begins to read data 450 ns after asserting the MREQ. In dynamic memory, the sum of the memory access time and the delays in generating various signals must be less than the microprocessor read time. In Figures 16.10 and 16.11, the delays in reference to MREQ can be calculated as follows: 
	1. 
	MREQ to RAS : Delay in 7404 and 7400 
	= .37 ns 

	2. 
	RAS to SELECT : Rising clock + flip-flop delay 
	= 7.3 ns 

	3. 
	SELECT to CAS : Multiplexer and inverter delays 
	= 52 ns 

	4. 
	CAS Access Time: 
	= 165 ns 

	5. 
	CAS to Octal Buffer: 
	=  12 ns 

	
	Total Delay 
	339 ns 


The timings are shown in Figure 16.12. The total delay is 339 ns, and the microprocessor would begin to read at 450 ns; thus, we have a 111 ns safety margin. 
16,4 
DESIGNING MEMORY SYSTEMS 
In designing memory systems for microprocessor-based products, several critical issues must be considered at the beginning of the design cycle. These issues are 
1. Cost effectiveness 
2. Ease of converting a product from design to production 
3. Design flexibility and future upgrading 
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SOURCE: Adpated from Memory Data Book and Designer's Guide, p. x-46; courtesy of Mostek Corporation 
The first issue of cost effectiveness involves the unit price of the memory chips to be used in the system and the available space on the printed circuit board (commonly known as the real estate of a PC board). Ideally, the designer would like to use the minimum space and components with the lowest unit price, and at times, these requirements may conflict. 
In terms of selecting the memory chips, the memory map must be divided between R/W memory and Read Only Memory; the decision is generally based on the requirements of data retention. In the design stage, these requirements are generally not known; however, compatible memory chips are currently available so that RAM, ROM, and EPROM can be interchanged in the same socket. The next decision concerning the R/W memory is to select either static memory or dynamic memory. For small systems with 8K or less memory, the static memory has cost advantage. When memory size begins to approach 64K, dynamic memory has a distinct price advantage in spite of the additional cost of the refresh circuitry. For memory size between 8K and 32K, the integrated R/W memory (iRAM) appears to have cost advantage. Similarly, for Read Only Memory, we need to choose from among masked ROM, PROM, and EPROM. In the design stage, the EPROM is the best choice until the system is completely developed and debugged. The masked ROM becomes cost effective only for large production quantities. 
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The remaining two issues—the ease of converting the product from design to production and future expansion—can be solved by using Mostek's BYTEWYDE concept (also known as "byte-wide universal site"), whereby a designer can use the 28-pin DIP socket that can accommodate compatible RAMs, ROMs, EPROMs, or E-PROMs from memory size IK x 8 to 32K x 8, as shown in Figure 16.13(a). This socket can accept a 24-pin or a 28-pin memory chip; a 24-pin memory chip is inserted into the lower portion of the socket, leaving the top 4 pins unused. In this socket, 21 of the lower 24 pins are defined: ten address lines A9-A0, eight data lines D0-D7, the Chip Enable CE, the Output Enable OE, and the ground. The remaining pins are either defined by using a jumper or left as no connections. Figure 16.13(b) shows how pins are connected for IK x 8 and 8K x 8 memory chips. This BYTEWYDE concept provides flexibility during the design stage, ease in changing over from a laboratory design to a production unit, and future expandability. 
After the general considerations discussed above, we need to examine how to mix different sizes of memory chips in a system; this is illustrated in the next example. 
16.41 Memory Design: Problem Statement 
Design a memory system using the following memory devices. The memory map of ROM devices should begin at 0000, and the entire address range for ROMs should be continuous. The R/W memory address should be placed at SOOOh or beyond. Illustrate the memory address decoding schemes using (a) a 3-to-8 decoder and (b) a 2.56 X 4 PROM. 
1. Two ROMs : MOSTEK MK37000 (8K x 8) 
2. One EPROM : 2732 (4K x 8) 
3. One R/W memory: CMOS 6116 (2K x 8) 
16.42 Address Decoding Using a 3-to-8 Decoder 
This is the simplest technique to use for address decoding, and the memory map is largely influenced by the largest memory chip, ROM, which must be mapped at address 0000. The MK37000 has 8K registers (memory locations); thus, it would require 13 address lines for the memory chip. The remaining three address lines A|3~A|5 can be connected to the decoder, and all of them must be at logic 0 to place the beginning address at 0000. Figure 16.14 shows that the output Yo of the decoder is connected to the CE signal of the first MK37000, and to keep the memory map continuous, the Y, output of the decoder is connected to the CE of the second ROM chip. The memory addresses of the ROM chips are as follows: 
A|5  A,4  A|3      A|2  All   A|o  Ag  Ag  A7  Ag  A5  A4  A3  A,  A| Aq 
0     0 0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

        
        [image: Picture #203]
        

        
        
        [image: Picture #204]
        

        i 
ROM, 
I 0     0     1 I       0     0     0    0000000000 = 20001 
I I i ROM| 
chip select 1      1      11111111111= 3FFfJ 

        
        [image: Picture #205]
        

        	1— 
	
	IVrr 

	Ap 1 
	
	ZD WE 

	A-,1 
	26 
	ZD 

	
	
	IDAg 

	A5IIII 
	
	ZlAg 

	A4CZ 
	23 
	ZD 

	A^l— 
	
	ZDOE 

	
	21 
	—1 

	A.CZ 
	
	ZUCE 

	AoCZ 
	
	ZDDQ 

	DPI— 
	
	IPO 

	DQ[z: 
	
	mm 

	DQCZ 
	
	mm 

	Vssd 
	
	mm 


(a) 
	4118/A 4801A 
	
	37000 8K 
	
	
	
	37000 8K 
	
	4118A 4801A IK 

	IK 
	
	NC 
	cz 
	1 
	
	28 
	ZD 
	Vcc 
	

	
	
	A,2 
	cz 
	2 
	
	27 
	m 
	NC 
	
	

	A7 
	
	A7 
	!= 
	3(1) 
	
	(24)26 
	
	NC 
	
	Vcc 

	Ae 
	
	A6 
	c= 
	4(2) 
	
	(23)25 
	m 
	Ag 
	
	As 

	A5 
	
	As 
	cz 
	5(3) 
	
	(22)24 
	P 
	A, 
	
	A9 

	A4 
	
	A4 
	
	6(4) 
	
	(21)23 
	m 
	A,, 
	
	WE 

	A3 
	
	A3 
	cz 
	7(5) 
	
	(20)22 
	
	OE 
	
	OE 

	A2 
	
	A2 
	[Z 
	8(6) 
	
	(19)21 
	
	Aio 
	
	NC 

	A, 
	
	A, 
	cz 
	9(7) 
	
	(18)20 
	m 
	CE 
	
	CE 

	Ao 
	
	Ao 
	cz 
	10(8) 
	
	(17)19 
	u 
	D7 
	
	D7 

	Do 
	
	Do 
	cz 
	11(9) 
	
	(16)18 
	m 
	D6 
	
	D6 

	D, 
	
	D, 
	cz 
	12(10) 
	
	(15)17 
	m 
	D5 
	
	D5 

	D2 
	
	D2 
	cz 
	13(11) 
	
	(14)16 
	m 
	D4 
	
	D4 

	Vss 
	
	Vss 
	cz 
	14(12) 
	
	(13)15 
	_.j 
	D3 
	
	D3 


Parentheses Indicates 
Pin Number of 24-Pin Packages 
(b) 
FIGURE 16.13 
Bytewide Concept (a) 28-Pm Socket and Related Jumpers, and (b) Used to Connect 8K and IK Memoiy in a 28-Pin Socket 
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Memory Board Design 
The next memory chip is the EPROM with 4K registers; thus, only 12 address lines are required for the memory chip. Therefore, one address line, A,,, must be left as "don't care." As a result, this memory chip will have a foldback memory of 4K. This conclusion can be drawn simply by examining the decoder circuit. Each output line of the decoder in this circuit can have a memory address block of 8K; therefore, any memory chip with less than 8K memory will have foldback memory addresses. Assuming the "don't care" address line at logic 0, the memory map of the EPROM ranges from 4000h to 4FFFh, and the foldback addresses range from .5000h to .5FFFh as shown. 
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EPROM Foldback 
The size of the R/W memory chip is 2K, and it must have the beginning address 8000h or higher. Therefore, it should be selected when A15 = 1, and this can be accom
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plished by connecting the Y4 output of the decoder to the CE of the memory chip. This memory chip requires 11 address lines; thus, two address lines, and A„, will assume "don't care" logic status. The address of the R/W memory will range from 8000h to 87FFh assuming the "don't care" lines at logic 0. The remaining 6K (of the decoder's 8K block) from BSOOh to 9FFFh will be the foldback memory. Figure 16.15(a) shows the entire memory map, and Figure 16.15(b) shows how to connect different sizes of memory chips using the 28-pin package and the BYTEWYDE concept. For example, to connect a IK R/W memory chip, pin 23 is connected to WE using the jumper, and pin 21 has no connection. 
One of the drawbacks of this type of decoding technique is that it generates foldback memory addresses; thus, it wastes memory space and limits further expansion. However, in small systems this is not a serious problem. Another approach that avoids the foldback memory addresses is to use a separate decoder for each different size memory chip, but this increases the cost of the system and the size of the PC board. 
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16.43  Address Decoding Using a PROM 
Another technique, commonly used in industrial products, is to decode the address bus using a PROM. Figure 16.16 shows a PROM (256 x 4) with eight address lines and four data lines. We can connect each data line to the Chip Enable CE signals of memory devices; thus, we can interface four memory devices. Now we can program the PROM in such a way that for a given range of the address, only one data line will go active (low) while the others stay high. 
In this memory design problem, the smallest memory size is 2K, which requires 11 address lines; the remaining five address lines must be decoded. The PROM has eight address lines; we can connect the five address lines A15-A11 to the address lines A4-A0 of the PROM, and the address lines A7-A5 can be tied high. The five address lines A4--A0 of the PROM can have 32 (2^) combinations, and we can determine the data output as shown in Table 16,1. 
Table 16.1 shows that for the first 8K memory block of ROMq, the data line Do is active; other data lines are high. Similarly, for the second 8K memory block of ROM,, the data line D, is active while others are high. The PROM is decoded for 2K resolution; thus, every combination on A4-A0 of the PROM provides a 2K memory map. Therefore, for 8K memory, we need Do and D| to be active for four combinations each. Similarly, D2 is active for the next two combinations, and D3 is active when the address begins at SOOOh. For the open memory space, all data lines are high. 
The decoding technique using the PROM has several advantages: (1) it is programmable, so the map can be altered or expanded by just reprogramming the PROM, and (2) the entire memory space can be utilized without the foldback memory addresses. 
1 O O      DIRECT MEMORY ACCESS (DMA) AND THE Z80 1U. O      DMA CONTROLLER 
Direct Memory Access is a commonly used I/O technique for high-speed data transfer (for example, data transfer between system memory and a floppy disk). In polling and interrupt I/O, data transfer is relatively slow because each byte must be read and then written to its 
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transfer between memory and a peripheral under its control, thus bypassing the MPU. Conceptually, this is an important I/O technique that requires two signals available on the Z80—BUSRQ (Bus Request) and BUSAK (Bus Acknowledge). 
□ BUSRQ—This is an active low input signal to the Z80 from another device requesting the use of the address and the data buses, and control signals. After receiving the Bus Request, the MPU relinquishes the buses in the following machine cycle. All buses are tri-stated, so the Bus Acknowledge (BUSAK) signal is sent out. The MPU regains the control of the buses after the BUSRQ goes high. 
□ BUSAK—Bus Acknowledge. This is an active low output signal indicating that the MPU has completed its cunent machine cycle and has relinquished control of the buses. 
A DMA controller plays two roles in this type of data transfer: one as a peripheral to the Z80 and the other as a data transfer processor. The DMA controller uses the signals just discussed as if it were a peripheral requesting control of the buses from the MPU. The MPU communicates with the controller by using the Chip Select line, buses, and control signals. However, once the controller has gained control, it plays the role of a specialpurpose processor for data transfer; it uses the Z80 buses and the control signals to transfer data directly between memory and an I/O device. To perform this function the DMA controller must have the following: 
1. Data bus 
2. Address bus 
3. Chip Enable and Read/Write control signals 
4. Signals to communicate when it functions as a peripheral and when as a processor. 
Typically, the microprocessor accesses the DMA controller as an I/O device and writes the necessary initialization instructions in the DMA control registers. These instructions include the mode of data transfer (discussed later), the source and the destination addresses, and the number of bytes to be transferred. Figure 16.17 shows a block diagram of the DMA data transfer. When a peripheral is ready for data transfer, it sends the Ready signal to the DMA controller, and in turn, the DMA controller sends the Bus Request (BUSREQ) signal to the MPU. The MPU completes the execution of the present machine cycle, acknowledges the request by sending the Bus Acknowledge (BUSAK) signal, and releases the control of the buses to the DMA controller. 
The DMA controller can transfer data either sequentially or simultaneously. In the sequential transfer, the Read cycle is followed by the Write cycle. In the simultaneous transfer, each byte is read from the source and written into the destination simultaneously; the Read and Write cycles are active at the same time. Figure 16.18 shows these two types 
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Block Diagram: DMA Data Transfer 
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DMA Data Transfer: Sequential and Simultaneous 
SOURCE: Courtesy of Zilog, Inc 
of data transfer. In addition, for each type of data transfer, the DMA controller can be set up in one of three modes: byte, burst, and continuous (block). In the byte mode, the controller transfers one byte and releases the bus control back to the MPU. In the burst mode, the data transfer continues until the Ready goes inactive, and then the bus control is released. In the continuous transfer, the controller does not release control of the buses until the entire block of data transfer is completed. 
The DMA data transfer has the highest priority in the system; no interrupt, not even the NMI (non-maskable interrupt), can be acknowledged during the DMA data transfer. One of the major disadvantages of the DMA process is that the refreshing of the dynamic memory is suspended during the data transfer; this suspension can be detrimental to the system, especially in the block mode. The process of DMA data transfer and the interfacing are discussed in the following sections in the context of the Z80 DMA controller. 
16.51   The Z80 DMA Controller 
The Z80 DMA controller is a programmable device, capable of transfening a block of 64K bytes or searching for a particular 8-bit maskable byte. It can also combine data transfers with simultaneous search. The ability to search for a byte is generally not found in other controllers. Figure 16.19 shows the logic pinout of the device; it is similar to a processor, and designed to be compatible with the Z80 control signals. It includes 16 address lines, eight data lines, control signals compatible with the Z80, interrupt control, and the signals to communicate with a peripheral and the MPU for the DMA data transfer. Some of these 
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SOURCE: Courtesy of Zilog, Inc. 
signals are bidirectional, and they perform different functions depending upon whether the DMA is in the peripheral mode or in the processor (master) mode. The signals that perform some special functions or are unique to the DMA controller are described as follows. 
□ CE/WAIT—(Chip Enable and Wait): Generally, this is used as a Chip Enable signal through which the MPU can access the DMA as a peripheral and write instructions in the control register or read status registers. However, it can be also used as a Wait line. After the DMA receives the Bus Acknowledge (BUSAK) signal and when it is in the processor mode, this line can be used as a Wait line by memory or I/O to slow down the speed of the DMA to match with memory or I/O. 
□ BAI—(Bus Acknowledge In): This is an active low input signal and is generally connected to the BUSAK signal of the Z80. When this signal is active, it indicates that the 
buses have been released by the MPU. In a multiple-DMA system, this signal is connected to the BAO (Bus Acknowledge Out) signal of the next higher priority DMA to form a daisy chain; the BAI of the highest priority is connected to the BUSAK of the Z80. 
□ BAO—Bus Acknowledge Out: This is an active low signal and is used in a multipleDMA system to form the daisy chain priority. 
□ RDY—(Ready): This is an input signal and can be programmed as active low or high. When a peripheral is ready for data transfer, this signal goes active. When the DMA is in the processor mode, this signal controls the activities of the DMA. 
□ lORQ, RD, and WR—These are three bidirectional control signals. When the Z80 communicates with the DMA as a peripheral, these signals are input to the DMA. When the DMA functions as a processor, these signals are output signals and used to communicate with other memory or I/Os. 
□ MREQ—This is an output signal used as a control signal to communicate with memory. 
□ BUSREQ—(Bus Request): This is a bidirectional active low signal. As an output, it is connected to the BUSRQ of the Z80; it requests the use of the buses to the MPU. In a multiple-DMA system, it senses whether any other DMA is using the buses, and it refrains from requesting the buses until the other DMA operation is completed. 
16.52  Interfacing the Z80 DMA Controller 
The interfacing of the Z80 DMA is similar to that of any other peripheral. Figure 16.20 shows a schematic of interfacing the Z80 DMA with the Z80. The output line Yi of the decoder is connected to the CE/WAIT line of the DMA; thus, the DMA is assigned the port address F9h. The Bus Request and Bus Acknowledge signals of the Z80 are connected to the respective signals (BUSREQ and BAI) of the DMA, and the RDY signal of the DMA 
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is connected to a peripheral. Tiie remaining control signals of the Z80 (Mi, RD, WR, lORQ, and MREQ) are connected to the respective control signals of the DMA; this is similar to interfacing any other programmable I/O. However, three control signals (RD, WR, lORQ) of the DMA are bidirectional, and the MREQ is an output signal. When the DMA is in the peripheral mode, the Z80 communicates with the DMA using the RD, WR, and lORQ. When the DMA is in the processor mode, the DMA can communicate with the system memory or I/O (such as a floppy disk controller) using all four control signals (lORQ, MREQ, RD, and WR). 
16.53  Programming the DMA Controller 
The Z80 DMA is a versatile device and offers many options; thus, it requires a series of instructions to program the device for given specifications. However, we will discuss only the important features of this device. Figure 16.21 shows the internal structure of the DMA, which includes two port addresses, one byte counter, control and status registers, and control logic. 
To program the DMA, we must write starting addresses of source and destination in Port A and Port B; either port can be used for source or destination. The addresses can be for memory or I/O; they can also be either fixed or variable, and if they are variable, they can be incremented or decremented. We must also specify the block length (the number of bytes to be transferred), type of operation (transfer, search, or search/transfer), and the mode of data transfer (byte, burst, or continuous). 
The Z80 DMA has 21 Write registers to write control words and seven Read registers to read the status of an operation. The Write registers are organized in seven base register groups, and each group includes several control registers. The steps in writing 
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Z80 DMA Block Diagram 
SOURCE: Courtesy of Zilog, Inc 
control words into these registers are similar to those of writing into Z80 SIO registers; they involve writing to a base register and using the base register as a pointer to other registers. The Read registers provide status information of the DMA, including the number in the byte counter and addresses in Ports A and B. For the programming details of these registers, refer to the Technical Manual of the Z80 DMA included in the References. 
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16.54  Process of DMA Data Transfer 
In a Z80 system, the DMA is normally connected as a peripheral, and control bytes must be written at the power-up initialization. Then the DMA begins to monitor the RDY line from the peripheral (such as a floppy disk controller, a printer, or a SIO). When the RDY line goes active, indicating that the peripheral is ready for data transfer, the DMA asserts the BUSREQ. The Z80 MPU completes the present machine cycle, acknowledges the request by asserting the BUSAK, which is connected to the BAI of the DMA, and releases the control of the buses. When the BAI signal goes low, the DMA assumes the role of the processor and begins the data transfer according to the specified mode. This can also be accomplished by generating an interrupt when the RDY goes active and then enabling the DMA data transfer. 
If the DMA is set up in the byte mode, it transfers one byte and releases control of the buses to the MPU. The buses are requested again for each succeeding byte transfer. If the DMA is programmed in the burst mode, the DMA transfers a byte and checks the block length. If it is not the end of the block and the RDY is still active, the data transfer continues. When the RDY line goes inactive, the BUSREQ signal goes high, and the DMA releases bus control to the MPU. 
If the DMA is programmed in the continuous (block) mode, the data transfer continues until the end of the block. During the transfer, if the RDY goes inactive, the DMA does not release the control of the buses; it waits until the RDY goes active again and continues the data transfer until the end of the block. Figure 16.22 shows two flowcharts, one for the burst mode and the other for the continuous (block) mode. 
SUMMARY 
In this chapter, we have discussed applications of two external request signals: Wait and Bus Request. The Wait signal is used to provide additional time to a slow peripheral so that data transfer is properly synchronized between the Z80 microprocessor and slow peripherals. On the other hand, the Bus Request is used to implement highspeed data transfer without the intervention of the microprocessor. In addition, interfacing of dynamic memory, address decoding using a PROM, and memory design were illustrated. The important concepts discussed in this chapter can be summarized as follows. 
□ The Z80 includes the "WAIT" signal, which can be used as an input from slow peripherals to add clock cycles in a given operation. The Z80 samples the WAIT line during T2 of each machine cycle, and if it is asserted low, the Z80 adds an additional clock period, thus providing extra time to slow peripherals. 
□ If memory access time is too slow in comparison with the execution speed of the microprocessor, the WAIT line can be used to synchronize the data transfer between the memory and the Z80. 
ADVANCED TOPICS IN MEMORY DESIGN AND DMA CONCEPTS 
□ Dynamic memory stores a bit as a capacitive charge, which has a tendency to leak; therefore, all cells must be refreshed every two milliseconds. 
□ In a dynamic memory chip, the memory cells are organized in a square matrix format, and the row and the column address lines are multiplexed. Therefore, the row address must be placed on the memory address lines first, followed by the column address with an appropriate delay.   ___ 
□ Dynamic memoiy includes two signals, RAS (Row Address Strobe) and CAS (Column Address Strobe), which are used to latch the row address and the column address. 
□ The Z80 architecture includes a refresh register R that can be used as a 7-bit counter to refresh 128 rows every two milliseconds. 
□ In memory design, two techniques used for address decoding are called incomplete decoding and absolute decoding. The incomplete decoding technique is generally less expensive, but generates foldback memory addresses. 
□ Memory address decoding can be achieved by using various devices such as a decoder, a PROM programmer, or logic gates. 
□ Direct memory access (DMA) is a commonly used I/O technique for high-speed data transfer. 
□ The Z80 includes two signals—BUSRQ (Bus Request) and BUSAK (Bus Acknowledge)—which are used in the DMA data transfer. 
□ When the DMA controller sends the BUSREQ signal, the MPU acknowledges the request by asserting the BUSAK signal at the end of the machine cycle being executed and releases bus control to the DMA. The DMA uses the buses to transfer data, and then releases bus control back to the MPU. 
□ The DMA has three modes of data transfer: byte, burst, and block (continuous). In the byte mode, the DMA transfers one byte and releases the control back to the MPU. In the burst mode, the DMA continues to transfer data until the Ready signal of the DMA is inactive. In the block (continuous) mode, the DMA does not release the control of the buses until the entire block of the data transfer is complete. 
ASSIGNMENTS 
1. Define the memory access time. 
2. Explain the condition that must be satisfied to add a Wait state. 
3. Explain the need to refresh the dynamic memory cells. 
4. Explain why the lefiesh circuitry is unnecessary in static R/W memory. 
5. What aie the advantages of using a PROM as a decoder? 
6. Explain the DMA technique and the functions of the Z80 BUSRQ and BUSAK signals. 
7. List the steps involved in the DMA controller's transfer of data using the BUSRQ and BUSAK signals. 
8. In the DMA, what is the difference between the sequential and the simultaneous data transfer? 
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9. 
10. 
11. 
12. 
13. 
14. 
15. 16. 17. 
18. 
19. 
20. 
21. 
22. 
Explain the difference between the three modes of DMA data transfer: byte, burst, and block. 
Calculate the time available for the Z80 to read data after an address is placed on the address bus in a 6 MHz system if the address delay is 90 ns and the data set-up time is 30 ns. 
In 10, can the memory chip with the access time 300 ns be used without a Wait state? 
The Mostek MK4164 is a 64K memory chip. How many multiplexed address lines are necessary for this chip? 
Figure 16.4(d) shows the logic pinout of the 16K memory chip, in which two pins are without any connections. If these two pins are used as address lines to design a new chip, what will be the memory size of this chip? How does theMPU read data from the 2118 memory if the memory chip does 
not have the RD signal? 
Specify the signals necessary to generate the RAS signal. 
Explain how the CAS signal is generated in Figure 16.11. 
In Figure 16.11, when the RFSH signal clears the flip-flop 7474, specify the 
logic levels of the signal STROBE (S) of the 74S1.57, the CAS, and the contents 
of the memory address lines. 
Specify the memory map of the 4K EPROM and 2K R/W memory in Figure 16.23. 
In 18, is there foldback memory because memory chips of two different sizes are decoded by the same decoder? Explain your answer. 
In Figure 16.16, change the contents of the PROM to obtain the memory map as follows: 4K EPROM from 0000 to IFFFh, 2K R/WM from 2000h to 27FFh, and ROMs from SOOOh
In Figure 16.16, how many address lines of the PROM should be used if the R/WM is of size 4K? 
Explain the detrimental effect of the continuous (block) mode in DMA if the system includes dynamic memory. 
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Schematic for Assignment 18 
MicroprocessorBased Products 
In Chapter 1, we began with an overview of microprocessor-based products and microcomputer systems. In subsequent chapters, we examined the architecture of the Z80 microprocessor and interfacing of memory and I/Os. An overview of the Z80 instruction set was given in Chapter 6, and Chapters 7 through 11 were devoted to the discussion of various programming techniques, applications of the Z80 instruction set, and familiarization with operating systems. Similarly, we examined processes of data transfer such as interrupts, serial I/O, and DMA using programmable devices. This chapter is concerned with integrating or synthesizing the concepts of the microprocessor architecture, software, and interfacing discussed previously, by designing a microprocessor system. 
Designing a single-board microcomputer is the best possible choice, since it can incorporate all the important concepts related to the microprocessorbased design. Furthermore, it allows expansion to include various types of interfacing. This chapter deals primarily with designing such a single-board computer. The chapter also includes troubleshooting techniques using an in-circuit emulator, a logic analyzer, and a signature analyzer. 
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OBJECTIVES 
□ Design modules (sub-systems) of a single-board microcomputer based on the Z80 microprocessor and Z80 family of programmable interfacing devices. 
□ Illustrate the interfacing of scanned display, and list the advantages. 
□ Illustrate the interfacing of a matrix keyboard using software. 
□ Illustrate the interfacing of a matrix keyboard using a keyboard encoder. 
□ Draw flowcharts to illustrate the software design of a Key Monitor program and related sub-modules. 
□ List the primary features of the in-circuit emulator and explain its applications in troubleshooting microprocessor-based systems. 
□ Explain the functions of a logic analyzer and a signature analyzer as troubleshooting instruments. 
PROJECT STATEMENT: DESIGNING A MICROCOMPUTER SYSTEM 
Design a single-board microcomputer to meet the following specifications: 
n Input: Hex keyboard with minimum of 20 keys. 
□ Output: Six seven-segment LEDs to display memory address and data. 
: Two seven-segment LEDs to display results. 
□ Memory: Minimum 2K of EPROM—2716 (2048 x 8) or 27.32 (4096 x 8). 
: 2K of R/W static memory—6116 (2048 X 8) or equivalent. 
□ Microprocessor: Z80. 
n System Frequency: 2 MHz. 
□ Suggested Interfacing Devices: Z80 PIOs, bus drivers, 3-to-8 decoders, key encoder, segment and digit drivers, and Hex decoder/drivers. 
The system should allow a user to enter and execute programs, and the buses should have enough driving capacity to interface with additional peripherals. While machine codes are being entered, the memory address and data should be displayed by sevensegment LEDs. A two-digit seven-segment LED port should be available as an output port to display the results when programs are executed. 
17.11   Project Analysis 
In analyzing the specifications of a microprocessor-based product it is essential to consider both hardware and software, simultaneously. Both are interrelated, and each will have an impact on the other. However, in this project we will not focus on one approach, but will explore alternatives. We will design various modules and leave the final decisions with the user. 
The functions of the single-board microcomputer according to the specifications (given above) can be classified into three categories as follows: 
1. Check the keyboard for data or functions. 
2. Display memory address, data, and results. 
3. Execute programs. 
Keyboard The keyboard in this design is an input port with keys arranged in the matrix format. When a key is pressed, the keyboard routine should piovide a binary equivalent of the key. This can be accomplished various ways: one is a software approach whereby a key closure is sensed, debounced, identified, and the key code obtained by using the software. The other is the hardware approach whereby all these key functions are performed through a programmable keyboard encoder. 
The keys are divided into two groups: One group is for Hex digits from 0 to F, and the second is concerned with various functions. There are two basic approaches to entering data and specifying a function. One approach is to begin with Hex keys, identify the memory address, and then specify a function such as Examine Memory or Execute. In the second approach, a function is specified first and then Hex keys are entered. 
Display This project has two types of display: the system display and the user display. The system display consists of four seven-segment LEDs for memory address and two seven-segment LEDs for data. The user display consists of two seven-segment LEDs for results. We can explore both hardware and software approaches to designing output ports for these displays and suggest a way of combining the user display and the data display. 
Execute This is the simplest function among all three and can be performed with one instruction: JP (HL). When the user wants to execute a program, he or she provides the starting memory address where the program is stored and presses the Execute key. Assuming the memory address is stored in the HL register, the instruction JP (HL) simply loads the program counter with the specified memory address, and the program control is tiansfeiTcd from the monitor program to the user's program. 
Figure 17.1 shows the block diagram of a single-board microcomputer, and we can divide the project design into the following sections: 
1. Z80 MPU design. 
2. Memory design. 
3. Display design. 
4. Keyboard interfacing. 
5. System software. 
Z80 MPU DESIGN 
This single-board microcomputer is designed around the Z80 microprocessor, and the MPU should provide necessary buses with appropriate driving capacity. The MPU design can be divided into the following segments: 
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Block Diagram of a Single-Board Microcomputer 
1. Address bus. 
2. Data bus. 
3. Control signals. 
4. Frequency and power requirements. 
5. Externally triggered signals (Reset, Interrupts, etc.). 
17.21  Address Bus 
The Z80 has 16 address lines A15--A0; this is a unidirectional bus with driving current capacity of Iqh = 250 |xa and sinking capacity Iql. of 1.8 mA. At this point, we do not know the total load on the address bus, but by examining the block diagram, we can make some reasonable estimates of the load on the address bus. Figure 17.1 shows that the address bus will drive two decode circuits (I/O and memory decoders) and two memory chips (CMOS 6116 and EPROM 2716). We can calculate the bus loading as follows (see Figure 17.2): 
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Loading on the Address Bus 
High-level input currents Iih 
Two Decoders = R/W Memory 2732 EPROM 
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Low-level input currents IPil 
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By examining these load currents, we can conclude that the bus driver is unnecessary for the address bus; we can even add a few decode circuits or gates. However, this singleboard microcomputer is expected to be used for general-purpose interfacing; therefore, as a precaution we will use the 74LS244 as a bus driver to increase the driving capacity. The 74LS244 is an octal buffer/driver, capable of sourcing 15 mA and sinking 24 mA of current. Figure 17.3 shows two octal buffers for 16 address lines; the Enable lines of these buffers are active low, and they are permanently enabled. Thus, the Z80 address bus can drive additional devices (decoders, gates, etc.) without excessive loading. 
17.22  Data Bus 
The Z80 data bus has eight bidirectional lines with driving capacity similar to that of the address bus. Because the data bus is bidirectional, the loading on the bus varies considerably. When the Z80 is reading from memory, the memory chip that is enabled becomes the driving source and the microprocessor becomes the load, and when the Z80 is writing to an output port, the microprocessor is the source and the latches of the output port constitute the load. An octal latch, such as the 74LS363, requires a 400 (xA input current at the low level logic; on the other hand, the 7475 requires 3 to 6 mA. Therefore, as a precaution, we will use a bidirectional buffer as a data bus driver. 
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DESIGNING MICROPROCESSOR-BASED PRODUCTS 
Figure 17.3 shows the 74LS245 as an 8-bit bidirectional bus driver to increase the driving capacity of the data bus. The 74LS245 can sink 24 mA and source 15 mA of current. The 74LS245 has eight bidirectional data lines; the direction of the data flow is determined by the direction control^line (DIR). Figure 17.3 shows that the bus driver is enabled by grounding the Enable (G) signal. The direction of the data flow is determined by connecting the RD signal from the Z80 to the DIR signal. When the Z80 is writing to peripherals, the RD is high and data flow from the Z80 to peripherals. When it is reading from peripherals, the RD is low and data flow toward the microprocessor. 
17.23  Control Bus 
The Z80 provides five active low signals—-M^, lORQ, MREQ, RD, and WR—which can be combined to generate necessary control signals. The commonly used control signals are lORD (I/O Read), 10WR (I/O Write), MEMRD (Memory Read), MEMWR (Memory Write), and INTA (Interrupt Acknowledge); they can be generated by the logic combinations shown in Figure 17.4(a). However, in memory interfacing the RD and WR signals are generally connected to the memory chip directly and MREQ is combined with the address-decoding scheme. Figure 17.4(b) shows another scheme to generate the I/O control signals and the INTA signal by using a 3-to-8 decoder. 
The driving capacity of these control signals is determined by the circuits used in generating them. If necessary, these control signals can be buffered by using the 74LS244 or the Hex drivers 74LS367. Generally, the circuits shown in Figure 17.4 will have sufficient drive so that buffers may not be needed. 
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Generating Control Signals 
17.24 Frequency and Power Requirements 
The clock circuitry is of critical importance in designing Z80 systems. The Z80 does not have an oscillator circuit on its chip; therefore, a separate oscillator circuit needs to be built. The Z80 requires a single-phase TTL level clock with a maximum .30 nsec rise/fall time, and the voltage levels should be between (Vcc - 0.6V) and 0.8 V. The Z80 microprocessor has four versions of the chip operating at different maximum frequencies: the Z80 operates at 2.5 MHz, the Z80A at 4 MHz, the Z80B at 6 MHz, and Z80H at 8 MHz clock. 
Figure 17..5(a) shows a typical oscillator circuit with two inverters and RC network; the 3.30 ohm pull-up resistor is necessary to obtain TTL voltage level within 0.6 V of Vcc. However, this type of circuit is somewhat unstable because of variances in the components. If the microprocessor is not operating at the specified maximum frequency, the circuit shown in Figure 17.5(a) can function very well. Figure 17.5(b) shows a circuit that is generally used in industrial products. The circuit uses a crystal to stabilize the frequency. The output of the oscillator circuit is fed to a flip-flop that divides the frequency in half; the flip-flop provides a 50 percent duty cycle for the clock. In addition to these circuits, several manufacturers (for example, the Motorola K1160 series) offer oscillator/ driver circuits on a chip. 
The Z80 and other components used in this system require one power supply with -1-5 V. The current requirement of the power supply is determined primarily by the display load and the peripherals of the system; the MPU and memory components of the system require less than 400 mA, 
17.25 External Trigger Signals 
As discussed in Chapter 3, the Z80 has provision for five external input signals: Reset (RESET), Interrupt (INT), Nonmaskable Interrupt (NMI), Wait (WAIT), and Bus Request (BUSRQ). Of these five input signals, the RESET and the INT are used in this system, and the others are disabled by connecting them to +5 V (see Figure 17.3). 
Reset Circuit The RESET signal in the Z80 is active low; when this signal goes low, the system is reset. The reset forces the program counter to zero, disables the interrupt flipflop, clears registers I and R, and sets the Z80 in the interrupt Mode 0. 
The reset circuit shown in Figure 17.5(c) is an RC network with a time constant around 50 ms. When the reset key is pushed, the RESET goes low and slowly rises to -1-5 V, providing sufficient time for the MPU to reset the system; two inverters provide a sharp pulse. Some systems include a circuit called power-on reset, as shown in Figure 17.5(d). As power is turned on, the voltage across the capacitor does not change instantaneously; therefore, the voltage at the junction of the resistor and the capacitor goes low and slowly rises to +5 V. This pulse can be used through two inverters as in Figure 17.5(c) to reset the system. 
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(a) RC Network Oscillator Circuit (b) Oscillator with Crystal (c) Manual Reset Circuit (d) Power-on Reset Circuit 
Interrupts The Z80 has two interrupt signals, INT and NMI, both active low. In this system, we will use the INT signal and tie the NMI signal high; the floating interrupt pin can cause malfunction in the system. 
Bus Request This is an active low signal, generally used in the DMA data transfer. We will not be using this signal in our system; this signal also must be connected to + .5V. 
Wait If the WAIT signal goes low during T2 of any machine cycle, the MPU enters the Wait state for an integral number of clock cycles until WAIT goes high, and then the MPU completes the Read or Write cycle. This signal is used primarily to synchronize slow peripherals with the MPU. If we were to use the Z80A and increase the system frequency to 4 MHz, the WAIT signal might be necessary for memory devices used in this project (see Example 16.1 for Wait calculations). In this project, to prevent the MPU from entering the Wait state, this pin is tied high. 
MEMORY DESIGN 
This single-board microcomputer includes two types of memory: EPROM and R/W memory. In memory design, we should be concerned about the size of the memory chips required and their memory maps, future expandability, and access time. 
The first consideration of the memory design is the memory size and the memory map. For our design, the monitor program can be very easily stored in 2K memory, such as the 2716 EPROM. However, the price difference between the easily available 27.32 EPROM (4K) and the 2716 EPROM is negligible, and both of them are pin-compatible. Therefore, we will use the 2732 EPROM (4K X 8) in our design. The memory map of this EPROM should begin at memory address OOOOh because the program counter is cleared to that address whenever the system is reset. The memory map of EPROM with 4K bytes of memory should be placed in the range from OOOOh to OFFFh as shown in Figure 17.6. However, there are no such restrictions for the memory map of R/W memory; it can be mapped anywhere so long as it does not overlap with the map of the EPROM. The other consideration is an appropriate decoding technique for memory devices with different sizes; in this system, we are using 4K of EPROM and 2K of R/W memory. If we use the same decoding network for both devices, such as a 3-to-8 decoder, the 2K R/W memory will be left with one "don't care" address line; thus, it will have foldback memory addresses. However, in a small system, the foldback memory is not a serious concern. Figure 17.6 shows how to avoid the foldback memory by using a negative NOR logic gate and a 3-to-8 decoder (explained in section 17.32). 
The next consideration is future expandability. The 2732 requires a 24-pin socket; however, its pinout is designed in such a way that it can use a 28-pin socket and be compatible with larger memory chips. By using a 28-pin socket with additional DIP switches, the system can be expanded to accommodate the 2764 (8K), 27128 (16K), and 
27256 (32K) memory chips. However, this type of expansion cannot be easily accomplished by the decoding network shown in Figure 17.6; to accommodate larger memory chips, we will have to use a PROM, which can be reprogrammed for the decoding. 
The last consideration is the memory access time and whether we need any Wait states in interfacing these memories. In the last decade, the memory access time has 
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Schematic: Memoiy Design 
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improved considerably; memory devices with access time around 200 ns are commonly available. If the clock frequency in our system is 2 MHz, we can conclude from the calculations shown in the last chapter that Wait states will be unnecessary in this system. However, the circuit shown in Figure 17.6 may not function properly with a 4 MHz system; the total access time including the delay in the decoder may exceed the microprocessor read time. One of the solutions to reduce the total delay is to use gates to generate control signals as shown in Figure 17.4(a). 
17.31  EPROM Memory 
Figure 17.6 shows the design of EPROM using the 2732 (4,096 X 8) and the 74LS1.38 (3-to-8 decoder). The twelve address lines (Ai i-Aq) of the MPU from the bus drivers are directly connected to pins A] i-Aq of the 2732 to decode 4,096 memory locations. The rest of the address lines (A15-A12) and An are decoded by the 74LS138; this provides a 2K decoding resolution for each output line of the decoder. The address line An is connected to the input of the decoder to avoid its being "don't care" for the R/W memory (this is discussed in the next section). However, to address 4K of the EPROM memory locations, two output lines Yi and Yq are logically ORed and used for the Chip Enable CE line of the memory chip. To enable the memory chip, the address lines A15 to A12 should be at logic 0, and All can be at 0 or 1 because either of the output lines Yq and Yi can select the memory chip. By combining the address lines Aiq-Aq with the decoding lines, we can obtain the memory address of EPROM ranging from OOOOh to 07FFh when An is 0 and from OSOOh to OFFFh when An is 1, as shown. 
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17.32  R/W Memory 
The system R/W memory (2K bytes) is designed with 6116 (2,048 x 8) memory chips. Figure 17.6 shows that 11 address lines Aio to Aq from the MPU are connected to the 11 address pins Aio to Ao of the memory chips to decode the 2,048 memory locations. The Chip Select CS logic is generated from the same decoder as that for EPROM. When the Y4 line of the decoder goes low, this memory chip is enabled; thus, the memory map of this R/W memory ranges from 2000h to 27FFh, as shown. 
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DESIGNING SCANNED DISPLAYS 
In this system, two types of displays are specified: the system display and the user display. In Chapter 13, we discussed the interfacing of seven-segment LED displays; the approach was primarily software dependent based on the table look-up technique. In addition, we briefly introduced alternative approaches: the scan technique and hardware decoding. We will illustrate both of these approaches in this design: the scan technique for the system display and the hardware decoding for the user display. We will use Z80 PIOs as the interfacing devices. 
17.41 Basic Concepts 
The basic concepts in scanned display were discussed in Section 13.58 (Figure 13.20). The display involves two output ports: One port is used to send seven-segment binary code, and the other port is used to turn seven-segment LEDs off or on in a sequence. The program repeats the sequence of code continuously; thus, the user can see a stable display. 
17.42 Interfacing Circuit 
Figure 17.7 shows the address-decoding network using the 74LS138 3-to-8 decoder. The address lines A7-A2 are connected to the decoder and the remaining two address lines A, and Ao will be connected directly to the Z80 PIO. The output lines of this decoder will be used for other displays and the matrix keyboard. The decode logic of the PIO is identical to that of Figure 13.6. The Z80 PIO is selected when the the output line Yq of the decoder (Figure 17.7) is asserted. Therefore, the port addresses of the PIO (Figure 17.8) are as follows: 
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Figure 17.8 shows the schematic of a scanned display; it has six common cathode seven-segment LEDs, one Z80 PIO, and two drivers. Of the six LEDs, four are used for memory address and two for data. Both ports of the PIO are set up as output ports: Port A with the address 80h for segment codes and Port B with the address 81h for digits to turn LEDs on or off. The SN 75491 and the SN 75492 are used as the segment code driver and the digit driver, respectively, to increase the current capacity in the circuit. 
SN 75491—Segment Driver The SN 75491 is a quad device that has four Darlington pair transistors in a package; to drive eight data lines, we need two devices, as shown in Figure 17.8. The SN 75491 can source or sink 50 mA current (approximately 12.5 mA/ pair). Pin A, the base of the transistor, is connected to one of the data lines of the output port and emitter E is connected to one of the LED segments. 
SN 75492—Digit Driver The SN 75492 has six Dailington pairs in a package and can sink 250 mA of total current. Each collector (pins 6Y-1Y) is connected to the common cathode of its respective LED, and the data lines from the port are connected to the base of the transistor to turn the LEDs on or off. 
To display a digit, the seven-segment code for the digit is sent to Port A, and the corresponding cathode is turned on and off in sequence; the loop is repeated continuously. 
17.43 Program 
;The following program initializes the Z80 PIO ports A and B as output ports ;   and displays a constant message stored at memory location SYSRDY (System ;   Ready). The message has six codes: uP-rdy (microprocessor ready). The ;   code for the right-most letter "y" is stored at the first location SYSRDY, ;    and the scanning begins at that location. 
	SEGMNT 
	EQU 80H 
	;Port address-Segment Driver 

	DIGIT 
	EQU 81H 
	;Port address-Digit Driver 

	PIOIA 
	EQU 82H 
	;Control Port A 

	PIO IB 
	EQU 83H 
	;Control Port B 

	PIOl: 
	LD A, 0000111 IB 
	;PIO control word OFH for Mode 0 

	
	OUT (PIOIA), A 
	;Initialize Port A 

	
	OUT (PIOIB), A 
	;Initialize Port B 

	READY: 
	LD B, 0000000IB 
	;Initialize digit code 

	
	LD C, 06 
	;Initialize counter for six LEDs 

	
	LD HL, SYSRDY 
	;Use HL as memory pointer for message 

	NEXT: 
	LD A, (HL) 
	;Get segment code 

	
	OUT (SEGMNT), A 
	;Output segment code 

	
	LD A, B 
	;Get digit code 

	
	OUT (DIGIT), A 
	;Tum on one LED 

	
	CALL DELAY 1 
	;Wait 1 millisecond 

	
	XOR A 
	;Code to turn off segments 

	
	OUT (SEGMNT), A 
	;Clear segments 


RLC B INC HL DEC C 
;Shift digit code to turn on next LED ;Point to next code ;Next LED count 
JR Z, NEXT RET 
SYSRDY:   DB   5EH, 50H, 
;Message codes 
DB   40H, 73H, ICH   ;y d r - P u PROGRAM DESCRIPTION 
This routine initializes ports A and B of PIOl as output ports by sending the word 0000111 IB (OFh) to the control registers of Port A and Port B (see Figure 13.7 for the definition of the control word). The next instruction initializes the scan routine by placing the digit code 00000001 into register B; this code will turn on LED-1 (the first LED at the right). By rotating bit Do (logic 1) to the left, the next LED is turned on and the LED presently being displayed is turned off; thus, only one LED is on at a time. Register C is set up as a counter to scan six LEDs, and the HL register is used as a memory pointer to point to where the message is stored. 
The scanning begins by sending the first code (the last letter "y" in the message) to Port A, and LED-1 is turned on by sending the digit code. This LED is kept on for approximately 1 ms by calling the delay routine, and the entire display is turned off by clearing the segment code; this eliminates the flicker and the ghost images. The segment codes are sent in a sequence as they are stored in memory, and the corresponding LED is turned on until the counter reaches zero. To keep the display on, the routine should be called repeatedly. 
Comments In the scanned display, the hardware is minimized. With two output ports, this scheme can scan eight LEDs. In addition, current consumption is considerably reduced. However, the major disadvantage is that the MPU is kept occupied in scanning the display continuously. To relieve the MPU from the continuous scanning task, the Intel 8279—programmable keyboard/display interface device—can be used (discussed in the Section 17.5). 
17.44  Hardware Approach for the User Display Using a Hex Decoder/Driver 
The user display requires two seven-segment LEDs; they are interfaced with the MPU using the Z80 PI02 and 9370 Hex decoder drivers (Figure 17.9). The 9370 has four data lines as binary input and seven output lines. The binary input is decoded internally, and the corresponding seven-segment code is placed on the output lines. To display two bytes, we need one port of the PIG and two 9370s. The PI02 is accessed by connecting the decoder output Yi (Figure 17.7) to the CE signal of the PIO; thus, the port addresses range from 84h to 87h. 
In this design, we will use Port A and leave Port B for additional displays. Because the decoding is performed internally using hardware, the software required to use this 
display is simple; it involves initializing Port A as an output port in Mode 0 and outputting the byte to be displayed to Port A. The instructions to display a byte at this port are as follows: 
PI02A     EQU   86H -.Control Port A 
LEDPRT  EQU   84H ;LED port address 
LD A, 0000 HUB    ;PIO control word for Mode 0 OUT (PI02A), A     ;Initialize Port A of PI02 LD A, BYTE ;Load byte to be displayed 
OUT (LEDPRT), A   ;Display BYTE at Port A 
Comments In this hardware approach, the number of components increase in proportion with the numbers of LEDs; this can be quite expensive. The power consumption also increases in the same proportion. 
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Schematic: Interfacing Seven-Segment LEDs Using a Hex Decoder 
INTERFACING A MATRIX KEYBOARD 
A matrix keyboard is a commonly used input device when more than eight keys are necessary, rather than a row of keys as discussed in Chapter 13. A matrix keyboard reduces the number of connections, thus the number of interfacing devices required. For example, a keyboard with 20 keys, arranged in a .5 x 4 (five rows and four columns) matrix, requires nine lines from the microprocessor to make all the connections instead of twenty lines needed if the keys are connected in a linear format. 
In interfacing a matrix keyboard, the major task is to identify which key is pressed and decode the key in terms of its binary value. This task can be accomplished through either software or hardware. In this section we explore both methods: First we discuss the basic concepts in interfacing a matrix keyboard, and then write subroutines to check, identify, and decode (interpret) the key pressed. Finally, we illustrate how these functions can be replaced by a hardware device, such as the National Semiconductor keyboard encoder MM74C92.3. 
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FIGURE 17.10 
Interfacing a Matrix Keyboard 
17.51 Basic Concepts 
Figure 17.10 shows a matrix keyboard with 20 keys; the keyboard has five rows and four columns. The first sixteen keys in a sequence represent data 0 to F in Hex, and the remaining four will represent various functions such as Store and Execute. The circuit includes two I/O ports: one output port and one input port. Rows are connected to the output port and columns to the input port. The columns and rows make contact only when a key is pressed; otherwise, they remain high ( + 5 V). When a key is pressed, the key must be identified by its column and the row, and the intersection of the column and row must change from high to low. This can be accomplished as explained in the following steps. 
1. Ground all the rows by sending logic 0 through the output port. 
2. Check the columns by reading the input port. If no key is pressed, all columns remain high. Continue to repeat Steps 1 and 2 until the reading indicates a change. 
3. When one of the keys is pressed, the corresponding column goes low; at that point, identify and decode the key. 
17.52 Interfacing Circuit 
Figure 17.10 shows an interfacing circuit of a 20-key matrix keyboard using a Z80 PIO, identified as PI03. This circuit uses t_h£decoding network of Figure 17.7; the output line Y4 of the decoder is connected to the CE line of PI03. Therefore, the port addresses of the PI03 range from 90h to 93h as follows: 
= 90h Port A 
= 91h Port B 
= 92h Control Register A 
= 93h Control Register B 
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Lines 
In Figure 17.10, the rows are connected to Port A, and the columns are connected to Port B; therefore, Port A should be initiahzed as an output port and Port B as an input port. To initialize the PI03, the instructions are as follows: 
PI03A EQU 92H ;Port A control register 
PI03B EQU 93H ;Port B control registei 
PI02:  LD A, 0000111 IB ;Mode 0 control word (OFH) 
OUT (PI03A), A ;Initialize Port A as an output port 
LD A, 0100111 IB ;Mode 1 control word (4FH) 
OUT (PI03B), A ;Initialize Port B as an input port 
17.53 Program 
The matrix keyboard routine is conceptually important because it illustrates how to set up relationships between hardware binary readings and expected codes. For example, when 
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key "0" is pressed, the input reading at Port B will be 1 1 1 0 (D3-D0); however, the binary code for that key must be 0000000 0. This conversion is performed by the software routines which are illustrated in this section. Similarly, when key "NEXT" is pressed, the input reading will be the same as for the "0" key (111 0). The software routines will have to differentiate between data and function keys. This matrix keyboard problem can be divided into four steps (Figure 17.11). 
Step 1: Check whether all keys are open. 
In this step, the program grounds all the rows by sending Os to the output port. It reads the input port to check the key release, and debounces the key release by waiting for 10 ms. This step is necessary to avoid misinterpretation if a key is held for a long time. 
Step 2: Check a key closure. 
In this step, the program checks for a key closure by reading the input port. If all keys are open, the input reading on data lines D3-D0 should be 1 1 1 1, and if one of the keys is closed, the reading will be less than 1111. (Data lines D7-D4 are not connected; therefore, the data on these lines should be masked.) 
Step 3: Identify the key. 
This is a somewhat complex procedure. Once a key closure is found, the key should be identified by grounding one row at a time and checking each column for zero. Figure 17.11 (Step 3) shows that two loops are set up: The outer loop grounds one row at a time, and the inner loop checks each column for zero. 
Step 4: Find the binary key code for the key. 
The binary key code is identified through the counter procedure. For each row, the inner loop is repeated four times to check four columns, and for every column check, the counter is incremented. For five rows, the inner loop is repeated twenty times, and the counter is incremented from 0 to 1.3h—thus maintaining the binary code in the counter. Once the key is identified, the code is transferred from the counter to the accumulator. The codes 0 to F are used for data keys and the remaining codes IOh to 13h are assigned various functions as shown in Figure 17.10. 
KEYBOARD SUBROUTINE 
;This subroutine checks a key closure in the keyboard, identifies the key, and ;supplies the corresponding binary code in the accumulator. It does not modify ;any register contents. ;Input: None 
;Output; Binary key code in the accumulator ;Calls DBONCE, a 10 ms delay subroutine 
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OUT (ROW), A 
IN A, (COLUMN) AND OFH CP OFH 
JR NZ, KYREL 
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IN A, (COLUMN) 
AND OFH 
CP OFH 
JR Z, KYCHK 
CALL DBONCE LD A, 0111 HUB 
LD B, 05 
Port address for rows Port address for columns Save registers 
;Clear accumulator ;Set up register E as binary ;code counter starting with ;code for key 0 ;Ground all rows 
;Read columns 
;Mask data lines D7-D4 
;Check for key release 
;If previous key is not released, 
;wait in loop 
;Wait for 10 ms when key is ;released 
;Read columns ;Mask data lines D7-D4 ;Is any key closed? ;If not, wait in loop 
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FIGURE 17.11 
Flowchait; Matrix Keyboard Subioutine 
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^    Return ^ 
RL,CA LD D, A 
OUT (ROW), A IN A, (COLUMN) AND OFH LD C, 04 RRA 
JR NC, CODE INC E DEC C 
JR NZ, NXTCOLM LD A, D 
DEC B 
JR NZ, NXTROW 
JR KYCHK 
LD A, E 
POP DE POP EC RET 
;Move zero into one of the rows ;Save data byte to ground next ;row 
;Ground one of the rows 
;Read columns 
;Mask D7-D4 
;Set column counter 
;Move Dq into CY 
;Key closure is found if zero 
;is in CY 
;Increment binary code for ;next key 
;No key closure found yet, ;decrement column counter ;Check for key closure in ;next column 
;Load data byte to ground next ;row 
;No key closure found in col;umns, get ready to ground ;next row 
;No key closure yet, go back ;to ground next row ;No key closure found, it was ;an error 
;L,oad accumulator with binary ;code from code counter ;Retrieve data from stack 
;Return to main program 
;This is a 10 ms. delay routine, does not ;destroy any register contents ;Input: None ;Output: None PUSH EC PUSH AF LD EC, COUNT DEC EC LD A, C OR B 
JR NZ, LOOP POP AF POP BC RET 
;Save registers 
;Load 10 ms delay count ;Repeat loop for delay 
;Set zero flag if BC = 0 
PROGRAM DESCRIPTION 
This keyboard routine saves register contents of the calling program and clears registers A and E. Register E is used as a binary code counter for the keys; it begins with the code of "0" key. The OUT instruction grounds all the rows, and the IN instruction reads the columns. The AND instruction masks the data on lines D7-D4 because they are not being used for this keyboard. 
The next instruction, CP OFH, checks whether the previous key pressed has been released; this is a precautionary step against someone holding a key for a long time. If all keys are open, D3-D0 will be high, the reading will be OFh, and the Compare instruction will set the zero flag; otherwise, the routine stays in the loop KYREL until all keys are open. The subroutine DBONCE eliminates the key bounce by waiting for 10 ms. 
Once all keys are open, the routine reads the columns to check for a key closure. If any of the keys is closed, one of the columns will be at logic 0, and the routine will skip the KYCHK loop. The DBONCE routine will debounce the key closure. At this point, a key closure is found, but the key is not identified. For example, if the reading on data lines D3-D0 is 1 1 1 0, any of the keys in Column 0 may have been pressed. Therefore, the next step is to identify the key. 
To identify the key pressed, one row is grounded at a time, beginning at Row 0. The byte 0 1111111 (7Fh) is loaded into the accumulator and rotated left (RLCA) by one position; the byte is thus converted to 1 1 1 1 1 1 1 0. This byte is sent to Port A to ground Row 0. Then, Port B is read, and each column is checked for logic 0 by rotating the reading into the CY flag. Register C is set up to count four columns, and by rotating the byte to the left four times, each column is checked for logic 0 in the loop labelled as NXTCOLM. As each column is being checked, the code counter (Register E) is incremented at each iteration. For example, when Row 0 is grounded, four keys, 0 through 3, are checked, and the code counter is incremented from 00 to 03h. 
After checking the columns in Row O, the program loops back to location NXTROW and grounds the next row by sending the code which was previously saved in register D. Register B is set up as a row counter to count five rows. For each row, the loop NXTCOLM is repeated four times; thus, all twenty keys are checked, and for each iteration the code counter is incremented. When columns are checked, each reading is rotated into the CY flag; the key closure is found and the key identified when CY is reset. The program jumps to location CODE. The routine copies the key code into the accumulator and returns to the calling program. 
17.54  Using the Matrix Keyboard in the Project 
In our single-board microcomputer project, the keyboard monitor program from the previous section can be used in conjunction with the user display where the output is latched. If we were to use the scanned display (as specified) with the software-driven matrix keyboard, the keyboard subroutine would have to be coupled with the scanned display; otherwise, the display may go off. For example, when the subroutine is waiting for a key to be pressed, the scanned display cannot be refreshed by turning on and off digits in a sequence at a regular interval. Therefore, the program must alternate between refreshing 
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the display and checking a keyboard to find a key pressed. Another approach is to interface the keyboard using the intenupt technique. In this approach, the program continues to scan the display until the interrupt signal is received, and then the program checks the keyboard, processes the key, and goes back to scanning the display. 
17.55  Hardware Approaches to Interfacing Matrix Keyboard and Scanned Display 
The hardware approach reduces the software and allows the MPU to perform other tasks; however, it may increase the unit cost of the product. One of the approaches is to use a logic device, such as the National Semiconductor MM74C923 keyboard encoder. This keyboard encoder can sense a key closure, debounce the key, provide the binary code of the key, and generate an interrupt. Another approach is to use a programmable device, such as the Intel 8279 keyboard/display interface. This interface device performs two tasks: One task is to detect and encode a key (this is the same task as that of the National Semiconductor keyboard encoder), and the other is to refresh a scanned display. It is capable of displaying 16 bytes. The 8279 is a complex device and will not be discussed here. However, we will illustrate how to interface a matrix keyboard using the MM74C923 keyboard encoder. 
MM74C923 KEYBOARD ENCODER 
This is a 20-key encoder with four columns and five rows (Figure 17.12). The respective columns and rows of a matrix keyboard must be connected to the columns and rows of the encoder. The encoder includes Chip Select and Interrupt logic. The decoded address line (I/O Select) is connected to the OE pin of the encoder; it does not require a PIO or an input buffer. It has five output data lines that provide the binary code of a key closure from 00000 to 10011 (0-19). 
Figure 17.13 shows the schematic for interfacing a 20-key matrix keyboard using the encoder. The keyboard is assigned the port address by connecting the output Y5 of the decoder from Figure 17.7. Thus, the keyboard can be accessed by any one of the port addresses 94h to 97h; the address lines Ai and Aq are left as "don't care." 
When a key is pressed, the encoder debounces the key and checks again for a valid key. If a valid key is detected, the encoder generates an intenupt and places the binary code of the key into the internal latches, and the code can be read by enabling OE. When the MPU acknowledges the interrupt and reads the binary code, the encoder turns off the intetTupt. In this interfacing, the keyboard routine is reduced to a few instructions of a service routine, which reads the keyboard and stores the code in the input buffer. This technique reduces considerable software overhead for the MPU. Therefore, the MPU can continue to scan the display until an interrupt request is received. Then, it can process the key and go back to the scanned display routine. 
PROJECT DECISIONS AND SOFTWARE DESIGN 
In microprocessor-based systems, software design is a more demanding task than hardware design. Industrial experience suggests that 70 percent of the total design effort is 
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FIGURE 17.13 
Interfacing 20-Key Matrix Keyboard Using the MM74C923 
devoted to writing and troubleshooting software. Software design is done neither in isolation from nor after the completion of hardware design; these are concurrent processes. In the previous sections, we discussed approaches to interfacing displays and matrix keyboards. Now we need to make some decisions based on the cost and the specifications; several alternatives are suggested here. 
Alternative 1 Figure 17.14 shows a way of combining the matrix keyboard and the scanned display. The digit code driver of the scanned display can be used to connect the rows of the matrix keyboard. The program scans the display once, turns off the display temporarily by sending logic 0 to the LED segments, and then grounds rows of the keyboard and checks the columns for a key closure. This approach requires two PIOs; three ports can be used for the display and the keyboard, and the fourth port can be used for the user display. Now the question is: Why do we need a separate user display? Can we use the data LEDs of the system display as the user display? The scanned display is not convenient for the user to use as an output port; the user can use that port only by calling routines in the monitor program. To have a separate latched output port is a worthwhile feature for beginning users. 
This approach requires 14 components (two PIOs, two drivers, two Hex decoders, and eight LEDs) and a keyboard. This design is heavily software-dependent, and the microprocessor is kept totally busy in scanning the keyboard and display. 
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FIGUEE 17.14 
Combining Scanned Display and Matrix Keyboaid—System Design Alterative 1 
Alternative 2 The second alternative is to use four LEDs in the scanned display; these can be used to display a memory address. The two-LED-latched output port can be used for system data and by the user as well. When the user program is being executed, the program control is transferred to the user program; therefore, the system display will not be used. Furthermore, when a latched port is used for data, the software overhead is reduced; there is no need to continuously scan the data port. The block diagram for this alternative is similar to the first alternative. 
Alternative 3 The third alternative is to replace the keyboard routine with a keyboard encoder (MM74C923). This approach eliminates the software related to checking and encoding a key. The program has to continuously scan the display, and when a keyboard encoder generates an interrupt, the MPU can read the keyboard, process the key, and go back to scanning the display. In this approach, we need one PIO for the system display, and the other PIO can be replaced by an octal latch such as the 74LS373 as shown in Figure 17.15. The block diagram shows that the design requires 15 components (in addition to a keyboard, which is common to all circuits). 
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FIGURE 17.15 
System Design Using the MM74C923 Keyboard EncoderSystem Design Alternative 3 
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Alternative 4 The fourth alternative is to replace the display scanning and keyboard checking with a programmable keyboard encoder, such as the Intel 8279. This device relieves the burden of scanning the display and checking the keyboard from the MPU. When a key is pressed, the 8279 generates an interrupt to inform the MPU. When the MPU reads the keyboard, it places the code in the encoder memory, and informs the encoder how many LEDs to scan. This simplifies the software necessary for the keyboard monitor and allows the MPU to perform other tasks. 
Figure 17.16 shows the logic diagram of the 8279, which includes interfacing logic, control signals, system data bus, eight data lines to drive LED segments, eight return lines, and four scan lines. The 8279 is functionally equivalent to the circuit shown in Figure 17.14 without the user display. To scan more than four LEDs, additional scan lines can be generated by using a decoder. 
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HGURE 17.16 
System Design Using the 8279 Keyboard/Display Inteiface—Alternative 4 
The design shown in Figure 17.16 requires 15 components. This is a hardware approach to keyboard and display scanning at a somewhat higher unit cost. 
Alternative 5 The fifth alternative is to use a keyboard encoder, such as the National Semiconductor MM74C923, for the keyboard and use the latched LED ports as displays. This will simplify the software considerably. 
Figure 17.17 shows that three octal latches are used as output ports to interface six LEDs. One of the output ports can be used as the user port; thus, the total number of components required in this design is 16. This approach increases the power consumption in LEDs, but relieves the MPU from the scanning task. 
We have suggested various alternatives, and now we will discuss software routines for some of these approaches. The most puzzling aspect of software design is where to begin and how to synthesize all functions into one program. The place to begin is the list of the functions to be performed. In the project analysis section, three functions are listed: check keyboard, display, and execute. The next place to look for clues is hardware. 
FIGURE 17.17 
System Design Using the MM74C923 Keyboard Encoder and Octal Latches 
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Examination of the hardware design reveals the following: 
1. Program should begin at location OOOOh
2. "Low" memory locations should be reserved for interrupt restarts. 
3. Programmable peripherals need initialization instructions. 
4. As the system is turned on, a message should be displayed. 
5. Four keys are available to identify functions, and 16 keys are used as Hex digits from 0 to F. 
By combining the functions to be performed and the clues obtained from hardware design, the task can be divided into the following steps: 
1. Initialize programmable peripherals. 
2. Display the sign-on message to indicate that the system is ready. 
3. Scan the display once and jump to check a key closure. If no key is pressed, go back and scan the display. 
4. When a key closure is found, read the binary code of the key to check whether it is an appropriate key. 
5. If it is an appropriate key, turn off the sign-on message, process the key, and return to the display loop to display the new key; otherwise, blank the display. 
6. If it is not an appropriate key, return to the display loop to indicate the error message. 
7. If the keyboard is intenupt driven, stay in the display loop until an interrupt is generated (this is an alternative to Steps 3-6). 
The first three steps are fairly simple. The initialization is determined by peripheral devices and their decode logic (discussed previously). The display involves scanning the sign-on message. 
The fourth step—the deteimination of an appropriate key—is critical to the software design, and the appropriateness depends upon how the user is allowed to enter and execute a program. There are two basic approaches: One approach is to begin with a function key and then enter Hex digit keys, and the second is to enter a memory address and then specify the function to be performed. In addition to the Reset key, at least three keys are required: MEMEX (Memory Examine), NEXT (Next Memory Location), and EXEC (Execute). The MEMEX key allows the user to enter the memory address, examine the data stored in that memory, and enter new data. The NEXT key stores the new data byte and increments to the next memory location. The EXEC key allows the user to execute a program. With this minimum configuration, if an inappropriate sequence of keys is pressed, and the program displays the enor message, it can be terminated only by the Reset key. Therefore, a key called MON (Monitor) is added to terminate a program. 
In the first approach, whereby the user begins with a function, we will use four keys: MON (Monitor), MEMEX (Memory Examine), NEXT (Next Address), and EXEC (Execute). If the MON function is selected, the program goes to the beginning and displays a Ready message, and if the EXEC function is selected, the program transfers the control to the user program. If the MEMEX key is pressed, the program displays the contents of the 
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memory, and if the NEXT key is pressed, the program increments to the next memory location. After the MEMEX key, the user is allowed to enter new data or go to any one of the functions. 
In the second approach, the user must begin with a memory address and then specify a function; otherwise, an erroneous result will be displayed. Now we can make some hardware design decisions and illustrate an approach to software design. 
Among the five design alternatives we have discussed, it appears that Alternative 1 (Figure 17.14) is the least expensive in unit price, but it is extensively dependent on software. Alternatives 4 and 5 (Figures 17.16 and 17.17) are hardware oriented and may be more expensive in unit price. We prefer to select Alternative .3 (Figure 17.15) based on instructional rather than commercial reasons. Our primary reason for the selection is that the approach illustrates important concepts without being excessively dependent on software. The specifications are as follows: 
1. Memory Map: EPROM OOOOh to 07FFh (Figure 17.6) 
R/WM   2000h to 27FFh (Figure 17.6). 
2. System Display: Scanned display with six LEDs using PIOl 
Port addresses—80h to 83h (Figure 17.8). 
3. User Display: Latched LED port using the octal latch 74LS373. 
4. Keyboard: 20-key matrix keyboard using the encoder MM74C923 
Port is interrupt driven with address 94h (Figure 17.13) Four function keys—MON, MEMEX, NEXT, and EXEC. 
Based on these specifications, we will illustrate an approach to software design in the next section. 
DESIGNING SOFTWARE MODULES 
The proposed system includes a scanned display that needs refreshing at a regular interval and a matrix keyboard that is interrupt driven. Therefore, the main program revolves primarily around refreshing the display and waiting for an interrupt to occur, as shown in Figure 17.18. The primary task of the interrupt service routine is to read and process the key pressed and perform the designated function of the key. We can divide the software design into the following modules: 
1. Initialization. 
2. Display the sign-on message and wait for an interrupt. 
3. When an interrupt occurs, read the key. 
4. Decode the key and jump to the appropriate function. 
5. Perform the function and return to scanning the display. 
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17.71 Initialization 
When a system is reset, the Z80 clears the program counter, and the program execution begins at location OOOOh- If the system includes several sources of interrupts, the initial memory locations can be used for Mode 0 interrupts. However, in the Z80, Mode 2 interrupts can be placed anywhere in the memory map; therefore, there is no compelling reason to save these interrupt call locations. The initialization program module can be written in the beginning segment of the 2732 EPROM. 
This module must initialize the programmable devices (PIOs) and the stack pointer, enable the intenupts, and set up the interrupt mode. In Section 17.4, we have already written the initialization instructions for the Z80 PIOs. The stack pointer is generally initialized at the top of the R/W memory; however, in this project, we will need six top locations as a display buffer and one location to save input data. After- reserving top locations (for example, from 27F9h to 27FFh) for the buffer (explained in the next section), the stack pointer can be initialized. In the Z80, Mode 1 interrupt is the simplest to implement because it does not require any external hardware. When an intenupt is generated by the keyboard encoder and accepted by the MPU, the program is automatically transferred to location 0038h. Thus, the keyboard service routine must begin at 0038h or a Jump instruction must be written at 0038h to locate the start of the interrupt service routine. 
17.72 Display Module 
We have already discussed the scanned display routine in Section 17.4. That routine can be used for any fixed message such as the sign-on message or the error message; the codes 
for these messages can be stored permanently in the EPROM. However, to display memory address and data that change with key strokes, we need to reserve memory locations: four for memory address and two for data in the R/W memory. These locations are called the display buffer. For example, in this single-board microcomputer, the R/W memory ranges from 2000h to 27FFh; we can reserve the last six locations, 27FAh to 27FFh, as the display buffer. The display routine must be modified to scan the display buffer and get the segment code by using the table look-up technique, output the code, and turn on the corresponding digit (Figure 17.8). In addition, the routine must be informed of the number of digits to be scanned. For example, when a memory address is entered, four digits are displayed, and when the MEMEX key is pressed, six digits are displayed. 
Now we need to find a way to inform the routine of the number of digits to be displayed and how to differentiate between data keys and address keys. This can be accomplished by using the flag concept. The routine that calls the codes to be displayed sets a flag when four digits are to be displayed. For example, bit D7 in register B can be used as a flag. When D7 is 0, the routine scans four memory digits, and when it is 1, it scans the six digits. The CY can also be used to perform the same function. In block .3 of the main program, this flag concept is used. Before calling the Display routine, the program checks the flag to determine whether it should scan four locations or six locations of the buffer. 
17.73 Reading the Keyboard and Placing the Byte In the Buffer 
When an interrupt request is generated by the keyboard encoder, the MPU should read the keyboard and save the reading in the input buffer (location 27F9h). If it is a Hex key of a memory address or of a data byte, the MPU should place the binary value of the new key in the buffer. In addition, a register pair such as DE can be used as the memory register to save the memory address and register C can be used as the data register. However, before the key code is placed in the buffer, the previous codes must be shifted by one location, and in the process, the MSD (Most Significant Digit) must be discarded (see Example 11.4). 
Figure 17.19 shows the partial flowchart of the interrupt service routine, which begins with reading a key and saving the data in the input buffer. Then the program checks whether it is a function key or a Hex digit key; the keys with binary code 00 to OFh are Hex digit keys and with binary code higher than OFh are function keys. If a function key is pressed, the program determines whether it is the MEMEX, NEXT, MON, or EXEC key and then jumps to appropriate locations. If it is a Hex digit key, it checks the flag (bit D7) in register B) and identifies the key that is a part of a memory address or of a data byte. Then the program inserts the code of the new key as the least significant four bits in the display buffer and in the memory register or data register and returns from the interrupt service routine. 
17.74 Function Module 
The user must enter four Hex digits as a memory address. If more than four Hex keys are entered, the binary code of the last four is saved in register DE, and the display buffer is updated accordingly. If a function key is pressed after an address is entered, the program checks which function key is pressed. If the MEMEX key is pressed, the memory address 
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Flowchart: Key Seivice Routine 
is already in the DE register. This address can be used as a memory pointer, and data from that memory location can be retrieved and placed in the display buffer (Figure 17.20). Similarly, when the NEXT key is pressed, the address in the DE register is incremented, the data byte in that location is obtained, and all six digits are placed in the display buffer. 
When a data byte is being entered, we can use register C to save data keys, as mentioned earlier. When a new key is pressed, the most significant nibble can be discarded, and the binary code of the new key can be entered as a least significant nibble (see Assignment 3). 
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If the key is EXEC, the memory address where the execution should begin is already in the DE register pair. The program places the memory address in the program counter, and the control is transferred to the user program. If the key is MON, the program returns to the beginning and displays the system-ready message. 
In writing this monitor program, the critical issue to remember is that the system uses the scanned display and needs continuous refreshing. Therefore, the main program consists primarily of calling the display routine. The next steps are to code this program in Z80 assembly language and to test it on prototype hardware, using such debugging tools as an in-circuit emulator and a logic analyzer (discussed later). 
PROGRAM CODING 
Assuming that program coding is to be performed by a team, it is necessary to break down the task into small, manageable, and independent modules. It is not always possible to break logic flow into independent subroutine modules. However, it is necessary to agree on symbols or labels that might be used by various members of the team; these are called global symbols. 
17.75  Prototype Building and Testing 
Microprocessor-based products are hardly ever completely built and tested as complete systems during the initial stages of design. If a system is completely built, it is difficult to 
troubleshoot. Traditional approaches, such as signal injection and isolation of trouble spots, are ineffective for troubleshooting bus-oriented systems. Therefore a system is built and tested in stages. Each subsystem, such as keyboard, displays, and memory, should be built and tested separately as an independent module. Now the question is: How do we test a module without building a system? An answer can be found in such everyday incidents as testing a light bulb or starting a car with a dead battery. The light bulb can be tested by plugging it into a working socket, and the car can be started with a jumper cable and another battery. There are two principles involved in these examples: (1) borrowing resources from a working system, and (2) substitution. These principles can be used in testing each separate subsystem of a microprocessor-based product. What is needed is a working system that can create an environment similar to the complete prototype system, and that is generous enough to share its resources with hardware modules to be built. Such a working system is called an in-circuit emulator, and is described in Section 17.8 and shown in Figure 17.21. 
Assuming that such an in-circuit emulator is available, each subsystem of the singleboard microcomputer can be built and tested one at a time. Similarly, as software modules are being written, they can be tested first on a software development system (discussed in Chapter 7). Finally, hardware and software can be integrated and tested using an in-circuit emulator. 
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        FIGURE 17.21 
Photograph: In-Circuit Emulator—Applied Micro Systems 
SOURCE: Courtesy of Applied Microsystems 
DEVELOPMENT AND TROUBLESHOOTING TOOLS 
In bus-oriented systems, a constant flow of data changes logic states continuously. The flow of data is controlled by software instructions. Therefore, to examine what is happening inside the system, special instruments capable of capturing data in relation to instructions are required. Three such instruments—in-circuit emulator, logic state analyzer, and signature analyzer—are discussed briefly in the next sections. 
17.81   In-Circuit Emulator 
The in-circuit emulation technique has become an essential part of the design process for microprocessor-based products. In-circuit emulation is the execution of a prototype software program in prototype hardware under the control of a software development system. First, the microprocessor is removed from the prototype design board, and a 40-pin cable from an in-circuit emulator is plugged into the socket previously occupied by the microprocessor. The in-circuit emulator performs all the functions of the replaced microprocessor; in addition, it allows the prototype hardware to share all its resources, such as software, memory, and I/Os. It provides a window for looking into the dynamic, real-time operation of the prototype hardware. At present, a wide variety of in-circuit emulators is available, ranging from universal emulators with complete software development systems to stand-alone microprocessor units. Figure 17.21 shows a stand-alone in-circuit emulator (MT-180) designed by Applied Micro Systems. 
Emulation Process To test subsystems (such as I/O and memory) using an in-circuit emulator, the minimum prototype hardware required is a 40-pin microprocessor socket (without the microprocessor), a power supply, and a system clock. All other resources can be borrowed from the in-circuit emulator. As more and more prototype hardware is built, fewer and fewer resources from the in-circuit emulator will be required. In the final stage, total software and hardware are integrated for testing. A hardware prototype can be viewed as a fetus growing in stages in the womb of an in-circuit emulator; until the fetus is fully developed and functioning independently, the in-circuit emulator provides the necessary environment and resources. 
Features of the In-Circuit Emulator An in-circuit emulator is a software/hardware troubleshooting instrument. It can be a stand-alone unit or part of a software development system. A small program can be entered directly into the emulator, or a program can be transferred into the emulator from a host computer system through an RS-232 serial link. Once a program is loaded, a user can interact with the emulator through its keyboard or a terminal. The emulator has its own software commands to perform various debugging functions. The main capabilities of an in-circuit emulator can be listed as follows: 
□ Downloading: Facilities to transfer programs between a software development system or a host computer and the in-circuit emulator. 
□ Resource Sharing: The in-circuit emulator allows the system being tested to share its memory and I/O ports. The memory and I/O ports of the in-circuit emulator can be assigned any addresses, which will avoid conflict with memory and I/O of the prototype; this is called memory and I/O mapping. 
□ Debugging Tools: Real-Time Trace 
Breakpoints 
Mnemonic Display 
In-Line Assembly 
Register Display/Modification 
Disassembly 
DEBUGGING TOOLS 
The debugging tools listed are used in troubleshooting programs. Single-stepping and setting breakpoints have already been discussed in Chapters 7 and 8. The others are briefly described as follows. 
Real-Time Trace The in-circuit emulator has R/W memory used as a buffer to store the last several (128, for example) bus operations, and these can be displayed on the screen. This display is like a snapshot of all the bus operations in real time. The user can specify several requirements, such as a memory address and certain data conditions for recognizing an event, in order to trigger and display a trace. Similarly, a trace can be observed between two breakpoints or at a specified delay after a certain event. The real-time trace is a very valuable tool in debugging microprocessor-based products. 
In-Line Assembly This allows the user to change data or instructions while software is in the in-circuit emulator. 
Disassembly After instructions are changed in the in-circuit emulator, this facility can write mnemonics in software. 
Register Display  This displays register contents after the execution of instructions. 17.82  Logic State Analyzer 
The logic state analyzer, also known as the logic analyzer, is a multitrace digital oscilloscope specially designed to use with microprocessor-related products. In a multitrace scope, the timing relationships of several signals can be observed with respect to some triggering event or events. For example, a four-trace scope can show the timing relationships of four signals. In a microprocessor-related product the user is interested in observing digital signals on the address bus, the data bus, the control bus, and possibly on an external instrument, relative to a specified triggering event or events. Furtheimore, data display should be in a conveniently readable format, such as Hex or binary. The logic analyzer performs these functions. 
A typical logic analyzer designed primarily to work with microprocessors has a 40-pin probe plus an auxiliary probe to gather external information. It includes Read-Only 
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Memory (ROM) to store instructions related to the analyzer, R/W buffer memory to store data from a product under test, a microprocessor to monitor data gathering, and a keyboard to specify operations and enter data in Hex or octal format. The analyzer can be triggered to gather information at a specified event related to the microprocessor in the product under test or in relation to an external word. The analyzer in a trace mode takes a snapshot of real-time information at a specific trigger, stores it in its buffer memory, and displays it on its CRT. 
The in-circuit emulator is a very valuable tool in the initial stages of product development, and in later stages the logic analyzer can perform some of the troubleshooting functions. 
17.83  Signature Analyzer 
The signature analyzer is an instrument used in troubleshooting microprocessor products either in the field or during production. This instrument converts the complex serial data stream present at the intersections of logic circuits, called nodes, into a four-digit pattern called a signature. Conceptually, a signature is similar to a voltage level specified on the schematic of an analog product. To troubleshoot an analog product, voltages are measured at various locations until a mismatch is found between the measured reading and the specified reading to isolate the trouble. The signature analyzer is used in the same manner. 
SUMMARY 
In this chapter, various techniques of interfacing the scanned display and the matrix keyboard were illustrated, and the trade-offs between hardware and the software were discussed. Then we used the scanned display and keyboard illustrations in designing a single-board microcomputer. In addition, debugging tools such as the in-circuit emulator, the logic analyzer, and the signature analyzer were introduced. 
The design of a single-board microcomputer integrates all the concepts of microprocessor architecture, software, and interfacing discussed throughout this text. In this chapter, we discussed the necessary steps in designing hardware and software. The necessary software modules were illustrated with flowcharts; however, the coding of these modules has been reserved for Assignments. 
ASSIGNMENTS 
1.   Draw a schematic to interface a 16-key matrix keyboard using one PIO port. Explain how the PIO should be initialized. 
DESIGNING MICROPROCESSOR-BASED PRODUCTS 
2. Draw a schematic to interface a 30-key matrix board and a six-LED scanned display using three PIO ports. Combine the matrix columns and the digit drivers, and explain why it is possible. 
3. In a key monitor program, register C is used to save 4-bit codes of two data keys. Write a subroutine to insert a new 4-bit key code that is available in the accumulator; the new code must be inserted as a low-order nibble, and the most significant nibble in register C must be discarded. 
4. Write instructions to unpack the data keys in 3 and place the codes in two different memory locations of the output buffer. 
5. In a monitor program, register DE is used to save a 16-bit memory address. Write instructions to insert a 4-bit code of a new key in DE as a least significant nibble. 
6. In 5, unpack all the codes and store them in four memory locations in the output buffer. 
7. In Section 17.5, modify the matrix keyboard routine to accommodate 30 keys (six rows and five columns). 
8. Modify the program in Section 17.43 to display an error message as Err and blanks. 
9. Write instructions for the EXEC module assuming the memory address is in register DE. 
10. Write a subroutine to transfer a 16-bit address from register DE and a data byte from register C into the display buffer (20FAh to 20FFh); the least significant nibble of the memory address should be placed in location 20FAh and the least significant nibble of the data byte in location 20FEh. 
11. Write a Display subroutine that takes the unpacked memory address and the byte from the buffer, looks up the seven-segment code, sends the segment codes to the segment driver, and scans the digit code in a sequence to display the address and the byte. 
Tr©ncis m 
Microprocessor 
Technology 
The advent of the microprocessor is having an impact on industries as diversified as machine tools, chemical processes, medical instrumentation, and sophisticated guidance control. Some applications require simple timing and bit set/reset functions, while others require high-speed data processing capability. Therefore, different microprocessor families are being designed to meet these diversified requirements. In addition to general-purpose 8-bit microprocessors, microprocessor technology has evolved in several directions as follows: (1) the complete microcomputer, commonly known as a microcontroller, on a single chip geared toward specific application; (2) the 16-bit and 32-bit microprocessors with general-purpose capability similar to miniand mainframe computers, and (3) the integrated super 8-bit chips. 
This chapter includes brief descriptions of single-chip microcomputers, 16-bit and 32-bit microprocessors, and integrated 8-bit chips; in addition, it examines recent trends in this fast-changing technology and their implications for industry. 
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OBJECTIVES 
□ List the elements of a single-chip microcomputer (microcontroller), and compare the characteristics of Zilog Z8 and Intel MCS-51 microcontrollers. 
□ Describe important features of 16-bit microprocessors, and explain the concepts of memory segmentation, parallel processing, queueing, and coprocessing. 
□ Compare the features of the Intel 8086, the Zilog Z8000, and the Motorola MC68000 16-bit microprocessors. 
□ Explain the differences between the operating environments of single-user systems and multiuser systems. 
□ Explain how .32-bit microprocessors differ from 16-bit microprocessors. 
□ Explain the features of integrated super 8-bit chips, such as Zilog Z280 and Toshiba HD64180. 
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        SINGLE-CHIP MICROCOMPUTERS (MICROCONTROLLERS) 
Single-chip microcomputers, also known as microcontrollers, are used primarily to perform dedicated functions. They are used as independent controllers in machines or dedicated to perform specialized functions in a larger system. Generally, they include all the essential elements of a computer on a single chip: MPU, R/W memory, ROM, and I/O lines. Examples of the single-chip microcomputers are the Zilog Z8; the Intel MCS-48, MCS-51, and MCS-96 families; the Motorola 6801; and the Fairchild F8(two-chip). 
Most of these microcontrollers have an 8-bit word size (except the MCS-96, with a 16-bit word size), at least 64 bytes of R/W memory, and IK bytes of ROM. The range of I/O lines varies from 16 to 32 lines. However, most of these devices cannot be easily programmed in college laboratories except those with EPROM on the chip, such as the Intel 8748 and 8751. A variety of single-chip microcomputers is available on the market to meet diversified industrial needs. To illustrate the trend, we will describe the Zilog Z8, and the Intel MCS-51 and 2920. 
18,11  Zilog Z8 Microcomputer 
The Z8 microcomputer is a versatile and powerful 8-bit single-chip microcontroller, used primarily in dedicated control applications. The Z8 family includes three versions: the 40-pin with ROM, the 40-pin with EPROM, and the 64-pin version, and they can operate with 8 MHz frequency. 
Figure 18.1 shows the block diagram of the Z8 microcomputer. It includes four I/O ports (.32 I/O lines), 2K ROM or EPROM, 128 bytes of R/W memory, two 8-bit timer/counters, and one serial I/O port (UART). It has 144 registers, including 124 general-purpose registers which can function as accumulators, address pointers, or index registers. It is capable of addressing 124K bytes of external memory. The Z8 has six interrupts, and each of the interrupts has a 16-bit vector that can point to its service routine. These interrupts can be prioritized through programming. The instruction set is quite 
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powerful and especially suited for control applications. It has 46 instruction types that include bit manipulation, BCD operations, conditional and relative branching, and block transfer. 
18.12  Intel MCS-51 Single-Chip Family 
This is one of the Intel's single-chip microcomputer families, at the high end of the single-chip device spectrum in terms of its capability and versatility. It is designed for use 
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MCS-51 Architectural Block Diagram 
SOURCE: Courtesy of Intel Corporation. 
540 
541 
in sophisticated real-time instramentation and industrial control. It can operate with a 12 MHz clock and has a very powerful instruction set. 
Figure 18.2 shows the block diagram of the chip; its architecture is in many ways similar to the Zilog Z8 microcomputer. It includes the following features: 
1. 4K bytes of ROM or EPROM. 
2. 256 bytes of R/W memory, which includes 128 8-bit, special-function registers (SFR). 
3. Four programmable I/O ports. 
4. Two 16-bit timer/event counters. 
5. A serial I/O port with a UART. 
6. Five inteiTupt lines: two for external signals and three for internal operations. 
The MCS-51 is known as a bit and byte processor. The instruction set includes binary and BCD arithmetic operations, bit set/reset functions, and all logical functions. However, its real power comes from its ability to handle Boolean functions. On any addressable bit, the processor can perform such functions as Set, Clear, Complement, Jump If Set or Not Set, and Jump If Set Then Clear. It can also perform logical functions with two bits and place the result in the cany flag. 
The MCS-51 can use its 32 I/O lines as 32 individual bits or as four 8-bit parallel ports. It can serve five interrupts: two external, two from the counters, and one from the serial I/O port. The chip includes two 16-bit counters, which can operate in three different modes, and a serial I/O port, which can operate in full duplex mode. 
18.13  Analog Signal Processor: the Intel 2920 
This is a single-chip microcomputer specially designed to process analog signals. Most microprocessors are not able to process high speed analog signals because of their slow response. The 2920 is designed with special architecture and an instruction set suitable for handling high-speed signal processing. In addition to the MPU and memory, the chip includes all such necessary devices as A/D and D/A converters, a multiplexer to handle four different inputs, a sample and hold circuit, and a demultiplexer. 
The 2920 is widely used for acquiring and processing analog signals. Typical applications are in such areas as telecommunications, signal processing, guidance and control, speech processing, and industrial automation. 
16- AND 32-BIT MICROPROCESSORS 
The 16-bit microprocessor families are designed primarily to compete in the territory of minicomputers, and are oriented towards high-level languages. Their applications may overlap the high end of 8-bit microprocessor applications and may compete with mainframe computers. They have powerful instruction sets and are capable of addressing megabytes of memory. Examples of widely used 16-bit microprocessors include Intel 8086/ 
8088, Zilog Z8001/8002, Digital Equipment LSM1, Motorola 68000, and National Semiconductor NS16000. Apart from design concepts and instruction sets, a critical factor that decides the capability of the microprocessor is the number of pins available. One trend is to stay within the 40-pin package size and take advantage of existing production and testing facilities. The 40-pin package either limits the size of the memory that can be addressed or necessitates multiplexing of several functions. Intel, Zilog (for Z8002), and Digital Equipment have stayed with the 40-pin package. Another trend is to go beyond the 40-pin limit, either to a 48-pin size or to a 64-pin size. National Semiconductor (for NS 16000) and Zilog (for Z8001) have chosen the 48-pin size package. Motorola and Texas Instruments have selected the 64-pin size package. The primary objectives of these 16-bit microprocessors can be summarized as follows: 
1. Increase memory-addressing capacity. 
2. Increase execution speed. 
3. Provide a powerful instruction set. 
4. Facilitate programming in high-level languages. 
These objectives can be met by using various design concepts. To illustrate differences in design philosophies, the next two sections will briefly describe three 16-bit microprocessors: Intel 8086/8088, Zilog Z8001/Z8002, and Motorola MC68000. 
18.21   Intel 8086/8088 
This is a 16-bit microprocessor housed in a 40-pin package and capable of addressing 1 megabyte of memory. Various versions of this chip can operate with clock frequencies from 4 MHz to 8 MHz. Figure 18.3 shows internal registers; the shaded portions of the figure are identical with the 8085/8080A registers. This microprocessor includes fourteen 16-bit registers, of which the top four registers (AX, BX, CX, and DX) are used as general purpose accumulators. These four can also be used as 8-bit registers. The next four 16-bit registers are used primarily as memory pointers and index registers; they hold part of a 20-bit memory address, as described under Memory Segmentation. They can also be used as general-purpose registers. The next four 16-bit registers are used to specify a segment of the 1-megabyte memory. The last two registers are similar to the program counter and flag register in the 8080.5/8080A, but have four additional flags. 
The 8088 is functionally similar to the 8086, except that it has an 8-bit data bus. Its internal architecture and instruction set are essentially identical with those of the 8086. The only difference is that a 16-bit data word must be transferred in two segments in the 8088. The 8088 can be viewed as an 8-bit microprocessor with the execution power of a 16-bit microprocessor. The next few paragraphs describe the features of the 8086 architecture that meet the objectives described. 
MEMORY SEGMENTATION 
To increase the memory addressing capacity, the concept of memory segmentation is employed in this device. This concept involves combining the addresses from two 16-bit 
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registers to form a 20-bit effective address. A segment register provides a base address, and another register supplies an offset address. For example, to fetch an instruction from the 256th location on page 0, the address can be formed as follows: 
1. Define the memory segment by loading OOOOh into the Code Segment Register. 
2. The Instruction Pointer should hold OOFFh as the offset. 
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3. The processor shifts the address in the Code Segment Register by four bits to the left and adds the content of the Instruction Pointer to form the 20-bit address: 
Code Segment:      0 0 0 0 Instruction Pointer:        0 0 F F Effective Address:      0 0 0 F F 
The same address can be obtained by redefining the address in the Code Segment Register and using an appropriate count from the Instruction Pointer. By having four segment registers, the 1-megabyte memory space can be conveniently divided into different sections such as program, data, and stack. 
SIMULTANEOUS PROCESSING 
The 8086 includes two processors called Execution Unit and Bus Interface Unit, as shown in Figure 18.4. They speed up execution by employing the concept of dividing work between two processors and processing it simultaneously. The execution process in the 8086 is similar to that of the Z80: fetch, decode, and execute. However, in the 8-bit processor, the buses are idle during the execution cycle. This idle time is avoided in the 8086 by assigning execution to the Execution Unit and fetching to the Bus Interface Unit. When an instruction is being executed, the Bus Interface Unit fetches instructions and places them on the queue, as shown in Figure 18.4; this is also known as pipelining the instructions. 
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FIGURE 18.4 
Execution and Bus Interface Units (EU and BIU) of the 
SOURCE: Reprinted by permission of Intel Corporation, copyright 1981 
COPROCESSING 
In addition to the 8086, Intel has designed a series of such special function devices as the 8089 (I/O Processor) and the 8087 (Numeric Processor). These processors are compatible with the 8086 in the master-slave relationship. They are designed with additional instructions and can be assigned dedicated functions to increase the overall execution speed in large systems. 
INSTRUCTION SET 
The 8086 has a large instruction set, consisting of 135 basic instructions, which can operate on individual bits, bytes, 16-bit words, and 32-bit double words. The set includes such instructions as multiply, divide, and bit and string manipulation. 
MODULAR PROGRAMMING 
In addition to the powerful instruction set, the chip design is oriented toward modular programming, which is highly desirable for high-level languages. The memory-segmentation concept facilitates programming of independent modules that can communicate with each other as well as share common data. 
18.22 ZilogZSOOO 
The Zilog Z8000 is a 16-bit microprocessor with two versions—Z8001 and Z8002. The Z8002 is a 40-pin device capable of addressing 64K non-segmented memory. The Z8001 is a 48-pin device, almost identical to the Z8002, capable of directly addressing eight megabytes of memory. Like the 8086, it can also use the concept of segmented memory, but unlike the 8086, it requires an additional device called the Memory Management Unit, and the memory addressing can be extended to 48 megabytes. 
The overall architectural philosophy of the Z8000 is similar to that of the 8086. The Z8000 is a register-oriented microprocessor; the Z8002 version has twenty-one 16-bit registers, of which 16 are general-purpose registers (Figure 18.5). Any of these generalpurpose registers, with the exception of the register RO, can be used as an accumulator, index register, memory pointer, or stack pointer. This is unlike the 8086, in which most registers have designated functions. In addition to 16 general-puipose registers, the Z8000 includes five registers: program counter, flag register, status pointer, instruction register, and refresh counter. To speed up the execution, it uses the prefetched pipeline technique and has a powerful inteiTupt structure. One of the unique features of the Z8000 is that it provides a refresh counter to refresh dynamic memory. It can operate in either the system or normal mode. The system mode permits privileged operations, thereby facilitating multi-user systems. 
The Z8000 has a very powerful instruction set of 110 instruction types; it has seven addressing modes and can operate on a bit, byte, 16-bit word, 32-bit long word, and 64-bit quad word. The instruction set includes instructions such as multiply/divide, block transfer, and string manipulations. 
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18.23  Motorola MC68000 
This is a 16-bit microprocessor with a 32-bit internal architecture housed in a 64-pin package. It is capable of addressing 16 megabytes of memory, and the clock frequency ranges from 4 MHz to 10 MHz for different versions of the chip. 
Fi gure 18.6 shows the internal architecture of the device. It includes seventeen .32-bit, general-purpose registers, a 32-bit program counter, and a 16-bit status register. 
FIGURE 18.6 
Progiamming Registers of the 68000 
SOURCE: Courtesy of Motorola, Inc. 
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The general-purpose registers are divided into three groups: eight data registers, seven address registers, and two stack pointers. The contents of the data registers can be accessed as bytes, 16-bit words, or 32-bit words, and the contents of the address registers can be accessed as 16-bit or 32-bit addresses. The 68000 can operate in two different modes: the user mode and the supervisor mode. The supervisor mode is designed primarily for operating systems; in this mode, some privileged system control instructions can be used. Some of its other features can be described as follows. 
NONSEGMENTED MEMORY 
To increase the memory addressing capacity, Motorola has increased the number of pins in its package. The chip is designed with 23 separate lines to address eight megawords (16 megabytes). Similarly, its program counter is 32 bits long; however, only the low-order 24 bits are necessary to address the entire memory map. 
INSTRUCTION SET 
The 68000 has one of the most powerful and simple instruction sets. It includes 56 basic instructions and can operate on five different types of data: bit, byte, BCD, 16-bit word, and 32-bit word. It has only memory-mapped I/O but includes 14 memory addressing modes. To cite one example of its powerful set, its MOV instruction can transfer data from 
any source to any destination. It includes such instructions as Multiply and Divide and special instructions to deal with numbers longer than 32 bits. Its orientation towards high-level languages comes primarily from its instruction set. 
ASYNCHRONOUS AND SYNCHRONOUS CONTROL LINES 
The 68000 has a special way of handling slow and fast peripherals. It has two sets of control signals, called asynchronous and synchronous signals. Communication with asynchronous peripherals is handled through the control lines called Upper Data Strobe (UDS), Lower Data Strobe (LDS), and Data Acknowledge (DACK). The DACK signal is similar to a handshake line; until the signal DACK is received, the bus cycle is not terminated. The 6800 family offers some synchronous peripherals, and communication with these peripherals is handled through the control signals called Valid Peripheral Address (VPA), Valid Memory Address (VMA), and Enable(E). 
18.24 Intel 80186 and 80286 
The Intel 80186 and -286 are 16-bit microprocessors, extended versions of the 8086. One of the critical barriers among the Intel's earlier microprocessors was the 40-pin package. Once that barrier was broken, it became easier to address large memory. These recent microprocessors are housed in 68-pin packages. These microprocessors, generally, use the concepts of prefetched pipeline structure, parallel processing, and memory management. 
The 80186 is an improved version of the 8086; it is available in two speeds: 6 MHz and 8 MHz. It is an integrated device designed to reduce the chip count, rather than to increase the memory addressing capacity, it has multiplexed address and the data buses, and the additional lines of the bigger package are used to include devices such as a clock generator, interrupt controller, timers, DMA controller, and a chip-select unit. 
The 80286 is also a 16-bit microprocessor, an improved version of the 8086 but with different architectural philosophy. It has eliminated the multiplexing of the buses; it has a linear address bus with 24 address lines that can address 16 megabytes of memory directly. It can also support a memory management unit, and through the memory management unit it can address 1 gigabyte of memory, also known as virtual memory. The processor includes various built-in mechanisms that can protect system software from user programs, protect users' programs, and restrict access to some regions of memory. The 80286 is designed for a multi-user system in an environment similar to that of minicomputers and mainframe computers; its architectural philosophy is closer to the Intel's 80386 32-bit microprocessor, which is described in the next section. 
18.25 32-bit Microprocessors 
At the high end of the microprocessor range, we now have 32-bit microprocessors available; examples include such microprocessors as Intel 80386, Zilog Z80,000, National Semiconductor NS32032, and Motorola MC68020. We are interested not in discussing the details of these microprocessors, but in exploring trends in the microprocessor technology. 
These microprocessors are not merely more of the same, except bigger and faster; they offer some unique features not available in 16-bit microprocessors. The applications and the environments in which they operate are far different from those of the 8-bit microprocessor and the 16-bit microprocessors. It appears that two trends are evolving: One is multi-user, multi-tasking, time-sharing environments, and the other is distributed processing, interconnected with networks. As soon as we move away from the single-user system, the demands on these microprocessors change dramatically; the environment is more like that of minicomputers or mainframe computers. These microprocessors should not be viewed as programmable logic devices. 
In a single-user system, the user has an unlimited access to all aspects of the system. The user need not be concerned with sharing the time or the resources of the system, but can schedule various tasks according to his or her convenience. The user has access to the operating system, can tamper with the system to include some personal conveniences, or in the process can lock up the system. However, the multi-user system cannot afford to provide the luxuries of unlimited access to all users. Some of the requirements of the multi-user system are as follows: 
1. Higher speed of execution. 
2. Ability to handle different types of tasks efficiently. 
3. Large memory space that can be shared by multiple users. 
4. Appropriate memory allocations and the management of memory access. 
5. Data security and data access. 
6. Limited and selected access to part of the system. 
7. Resource (printer, hard disk, etc.) sharing and management. 
Some of these requirements must be managed by a multi-user operating system, and some should be facilitated by the architectural design of the microprocessors. The 32-bit microprocessors are designed to work in this type of environment. Some of the important features of Intel 80386 and Zilog Z80,000 are described in this section as representative samples of 32-bit microprocessor technology. 
The 80386 is a 32-bit microprocessor with a nonmultiplexed 32-bit address bus and can operate at 16 MHz clock. It is capable of addressing 4 gigabytes of physical memory, and through its memory management unit, it can address 64 tetrabytes {2'^^) of memory. The 80386 has 32-bit registers, and it is upward software compatible with the 8086. The execution of instructions is highly pipelined, and it is designed to operate in a multi-user and multitasking environment. It has the protection mechanism that is necessary for this type of environment. 
The 280,000 is also a 32-bit microprocessor with architecture similar to that of the 80386. It can directly address 4 gigabytes of memory, and it can extend the memory addressing capacity similar to the 80386 by using the built-in memory management unit. It is designed to operate in two primary modes—system and nonnal—supported by separate stacks. The normal mode is for user programs, and the system mode is used for some of the critical functions of an operating system, such as protecting the operating system from user access. 
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In summary, these 32-bit microprocessors are oriented toward high-level languages. They can address a large memory space, execute instructions with high speed, and perform arithmetic operations with high precision. These microprocessors suggest a trend toward replacing software functions with hardware. They are designed to perform the functions normally found in mainframe computers. 
18.26  Contemporary 8-Bit Microprocessors and Technology Trends 
The Intel 8008, which was later superseded by the Intel 8080A, was the first 8-bit microprocessor. Just about the same time (1974), Motorola brought out the MC6800 as an improvement over the first 8008, but with substantially different architecture. Within a few years, Zilog designed the Z80, and Intel came up with the 8085 as an improvement over the 8080A. Both are upward machine-language compatible with the 8080A. Other popular microprocessors are those of the MOS Technology (now part of Rockwell) MCS6500 series, which was designed as an improvement over the Motorola 6800; however, they are neither hardware nor software compatible. In recent years. Motorola came up with the MC6809, a vastly improved version of the MC6800. These contemporary 8-bit microprocessors were discussed briefly in Chapter 2. Now the question is: What is the role of these general-purpose 8-bit microprocessors in the fast changing microprocessor technology? 
Along with the development of general-purpose 8-bit microprocessors, the singlechip microcontrollers began to assume a major role in the area of dedicated functions. Examination of the three examples discussed in Section 18.1 shows that the single-chip microcomputer plays a vital role in control applications and is an important segment of microprocessor technology. These devices are designed for special-purpose applications, and the circuitry on the chips varies according to the objectives. Applications range from bit set/reset functions to processing high-speed analog signals. 
At the other end of the application spectrum, 16-bit microprocessors have begun to dominate the microcomputer industry. The 8086 and the Z8002 have employed several new architectural concepts, such as memory segmentation, parallel processing, queueing, and coprocessing. In addition, the Motorola MC68000 and the Zilog Z8001 broke the barrier of the 40-pin package. These processors are oriented toward high-level languages and will perform some functions of minicomputers and mainframe computers. Recent microprocessors, such as Intel 80286 and -386, and Zilog Z80,000 have begun to accept the challenges of multi-user and multi-tasking environments. 
Now the question is: will these general-purpose 8-bit microprocessors disappear because of the competition from highly sophisticated single-chip microcontrollers at one end and high speed and powerful 16-bit microprocessors at the other end? We think not. Each group has carved out its own share of applications. This is similar to the automobile industry; there is room for subcompacts as well as luxury sports cars. 
The 16-bit microprocessors are too powerful to perform the functions of general purpose 8-bit microprocessors; therefore, they are less likely to replace 8-bit processors. Competition for the general-purpose 8-bit microprocessors will come from the other direc
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tion: the single-chip microcomputers. However, the single-chip microcomputers do not lend themselves as suitable learning vehicles for basic concepts, and the 16-bit microprocessors are too complex and cumbersome for instructional purposes. 
In 8-bit general-purpose microprocessors, the trend seems to be toward integrated devices that reduce the chip count; these devices are known as integrated super 8-bit MPUs. Two examples of such devices are Hitachi HD64180 and Zilog Z280; these are described briefly here to indicate the trend. 
Hitachi HD64180 This is an 8-bit, high-integration CMOS microprocessor in a 64-pin package, designed for applications with low power consumption, and it can operate with a 6 MHz clock. It includes a clock generator, an interrupt controller, and a memory management unit (MMU) as support devices for the microprocessor (Figure 18.7). It has 19 address lines that can address 512K bytes of physical memory, and the MMU translates internal 64K logical addressing into appropriate physical addressing. The interrupt controller is capable of handling four external and eight internal interrupting sources. 
Figure 18.7 also shows that the HD64180 includes four I/O related devices: DMA controller (DMAC—two channels), asynchronous serial communication interface (ASCI—two channels), clocked serial I/O port (CSI/0), and programmable reload timer (PRT—two channels). The DM AC has two channels that support high-speed data transfer of 64K bytes per channel anywhere in the physical space of 512K bytes of memory. The ASCI has two separate channels for full-duplex communication, and the CSI/O provides a half-duplex communication; it is used primarily for simple high-speed connection between microcomputers. Similarly, the timer has two channels with 16-bit counters, and one of the channels can be used for waveform generation. 
The instruction set of the HD64180 is upward compatible with the Z80 instruction set. The HD64I80 has seven additional instructions, including 8-bit Multiply and Sleep. The Sleep instruction reduces the power consumption to 19 mW. One of the powerful features of this device is that the Opcode Fetch cycle of an instruction consists of three T-states versus four T-states in the Z80, resulting in faster program execution. 
Zilog Z280 This is also an 8-bit, high-integration CMOS microprocessor in a 68-pin package, and it can operate with a 20* MHz clock. It includes a clock generator, refresh address generator, 256 bytes of on-chip memory, and a memory management unit (MMU) as support devices for the microprocessor operations (Figure 18.8). The MMU enables the microprocessor to address 16M bytes of memory, and the refresh address generator provides a 10-bit address that is used in refreshing dynamic memory. The on-chip memory allows programs to run significantly faster by reducing the number of external bus accesses. 
Figure 18.8 also shows that the Z280 includes four I/O related devices: DMA (four channels). Universal Asynchronous Receiver/Transmitter (UART), and Counter/Timer (three channels). The DMA has four channels that can transfer data between any two ports (source and destination), including memory-to-I/O, I/O-to-memory, memory-to-memory, 
'"Note: The preliminary specifications indicate that the clock frequencies can go as high as 50 MHz. 
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and I/O-to-I/0. The UART is capable of handling any full-duplex asynchronous data communication. Similarly, the Z280 has three channels of Timer/Counter with 16-bit time constant; these can be used for event counting, interrupt and interval timing, and general clock generation. 
The Z280 can operate in either user or system mode, and each has separate stacks. System mode is intended for the functions of an operating system, and user mode is intended for application programs. Thus, the sensitive and critical functions of the operating system are protected from the user interference. The instruction set of the Z280 retains compatibility with that of the Z80 and includes additional instructions such as 8and 16-bit signed and unsigned multiply and divide. It has a powerful interrupt structure which has four modes of operation; the first three modes are similar to those of the Z80. 
After examining these two devices, it appears that the Z80-type microprocessors have begun to reassert their presence in the form of integrated devices in industrial and computer applications. 
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        BUS INTERFACE STANDARDS 
The microcomputer is a bus-oriented system whereby subsystems or peripherals are interconnected through the bus architecture. The design approach should be such that systems are modular, expandable, and multipurpose. For example, a microcomputer with .32K memory should be expandable to 64K memory without any design changes as the user's needs change. The user should be able to select a peripheral from any manufacturer and plug it into the system. Similarly, the user should be able to print out programs as well as collect data from various instruments. To design microcomputers with such features, a common understanding of equipment specifications among manufacturers is needed; this is known as defining standards. In the field of electronics, these standards are generally defined by professional organizations such as IEEE (Institute for Electrical and Electronics Engineers) and EIA (Electronic Industries Association); sometimes the standards are forced upon the industry either by a dominant manufacturer or by common practice. The need for expandability and modularity gave rise to various bus standards, as listed in Table 18.1. The bus S-100, the Standard Bus, IBM PC Bus, the Multibus, and the GPIB are described here; others were described in Chapter 1.5. 
18.31   S-100 (IEEE 696), Standard, IBM PC Bus 
The primary force behind the development of these buses is their expandability. This type of bus allows the user to plug in additional peripherals (including memory) without any design changes and also facilitates troubleshooting. The bus design is based on the concept of the "mother board," a printed circuit board with parallel foil strips. Several edge connectors, connected to the foil strips, are included in a system, and some edge connectors are left empty for the user. 
TABLE 18.1 
Bus Standaids 
	
	Buses 
	I/O Mode 

	1. 
	S-100 
	Parallel 

	
	(IEEE-696) 
	

	2. 
	STD Bus 
	Parallel 

	3. 
	IBM PC 
	Parallel 

	
	Bus 
	

	4. 
	Multibus 
	Parallel 

	
	(IEEE-796) 
	

	5. 
	GPIB 
	Parallel 

	
	(IEEE-488) 
	

	6. 
	RS-232C 
	Serial 

	7. 
	RS-422 and 
	Serial 


Applications/Description 
RS-423 
To interconnect various components within the microcomputer. It has 100 signals. This is a bus competing with S-100. It has 56 signals. It has 62 signal lines and is used to connect peripherals. 
Interface between modules with the master/slave type communication. It has 86 signals. 
Interface between the microcomputer and measurement equipment such as a voltmeter. It has 24 signals. 
Interface between the microcomputer and serial peripherals such as a terminal and a printer (see Chapter 15). 
High-speed serial communication for distances longer than 20 meters. 
BUS INTERFACE 
The bus signals are divided into four groups, as shown in Figure 18.9: power, data, address, and control. The S-100 bus has 100 signals, the STD bus has 56 signals, and the IBM PC bus has 62 signals. 
The S-100 bus was originally developed by MITS and IMASAI in 1975, even before the existence of a 16-bit microprocessor. The bus quickly became popular with hobbyists and it became the de-facto industry standard. Initially, several lines were undefined, causing contradictory uses by manufacturers. Eventually, IEEE adopted the S-100, with some modifications, as the IEEE-696 standard. This bus has 24 address lines, 16 data lines, 11 interrupts, and provision for multiprocessing. 
The STD bus was recently (1981) developed by Pro-Log Corporation and MOSTEK, as a simple bus structure for 8-bit microprocessors. It is a 56-pin bus with eight data lines, 16 address lines, 22 control lines, and ten power lines. It is a better-defined bus, an improvement over the original S-100 bus. However, the S-100 is so widely used that the STD bus may have difficulty demonstrating its superiority to industry. 
The IBM PC bus is a set of 62 signal lines, specifically designed for IBM personal computers; the bus is also known as I/O channel. It is used to connect peripherals such as floppy disk controllers, serial and parallel I/O devices, and video display controllers to the system board. In addition, it can also be used to expand memory capacity and connect special-purpose I/O devices. The bus includes 20 address lines, eight data lines, seven power and frequency related lines (± 12 V, ±5 V, GND, system clock, and high frequency clock), and one unspecified line; the remaining 26 lines can be classified as control and status lines. The control and status group consists of Read/Write signals, interrupt request signals, DMA request and acknowledge signals, and status (such as address latch enable, I/O check. Ready) signals. 
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The IBM PC design is divided primarily into two segments: system board and various I/O channels with these 62 lines. Peripheral boards are simply plugged into these channels. For example, a floppy disk controller is specifically assigned three control signals: IRQ6 (Interrupt Request 6), DRQ2 (DMA Request 2), and DACK2 (DMA Acknowledge 2), and the disk controller board is designed using these lines. The usage and popularity of this bus is dependent on the IBM PC and it compatible systems; the recent models of IBM PCs (Personal System/2) do not use this bus. 
18.32  Multibus (IEEE 796) 
The multibus is an 86-line (optional 60-line) bus developed by Intel Corporation to connect independent modules (or microcomputers) of various microprocessors to share resources. Each board can operate independently using its own memory and I/Os for dedicated functions. They can access a system's resources such as a hard disk or printer through the multibus. 
TRENDS IN MICROPROCESSOR TECHNOLOGY 
The bus includes 20 address lines, 16 bidirectional data lines, numerous control lines, and multiple power and ground lines; the bus control can be managed by IC devices such as the Intel 8218 or 8288. A multibus system can have many masters; therefore, control logic is required for arbitration and data flow when multiple requests are made to access the bus. Simultaneous requests to access the bus are handled through either serial or parallel techniques by control signals. 
18.33  GPIB Interface Bus (IEEE 488) 
This bus was developed to facilitate interfacing of programmable instruments (such as printers, digital voltmeters, and digital tape recorders) with computers. Initially, the bus was developed by Hewlett-Packard; later, it was accepted as the IEEE 488 Interface Standard. The bus standard is also known as the General Purpose Interface Bus (GPIB) or the Hewlett-Packard Interface Bus (HP-IB). 
Some of the features of this bus are the following: 
1. Data transfer among the interconnected devices is digital. 
2. Fifteen devices may be connected to one continuous bus. 
3. Total transmission path is limited to twenty meters or two meters per device. 
4. Data rate on any signal line is limited to 1 Mbyte/sec. 
BUS SIGNALS 
The bus has 24 signals: eight bidirectional data lines, five general bus management lines, three handshake lines, and eight grounds. Figure 18.10 shows four types of devices that can be connected to the bus. These devices are classified as follows: 
Device A Able to Talk, Listen and Control (e.g., calculator) 
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1. Listener is a device capable of receiving data when addressed; 14 devices can listen at a time. Examples include printers and display devices. 
2. Talker is a device capable of transmitting data when addressed; only one device can be active at a time. Examples include tape readers and voltmeters. 
3. Listener/Talker is a device that can receive as well as transmit data over the interface. A programmable digital voltmeter (DVM) is a listener/talker device. 
4. Controller is a device that controls signals and specifies which device can talk and which device can listen. A microcomputer with an appropriate I/O card can serve as a controller. 
SUMMARY 
In this chapter, various microprocessors—from 8-bit to .?2-bit—and single-chip microcontrollers were discussed, compared, and contrasted in terms of their characteristics and applications. Future trends in microprocessor technology were suggested. 
Single-chip microcomputers (also known as microcontrollers) and their various applications were discussed in Section 18.1. These microcontrollers are specially designed for specific applications, and their characteristics differ according to their areas of applications. 
Microprocessors with 16- and .32-bit words were discussed in Sections 18.2. These are designed to facilitate the use of high-level languages, and are expected to compete with functions of minicomputers and mainframe computers. New architectural concepts such as memory segmentation, parallel processing, and queueing were employed in designing some of these processors, and some are designed with pin package larger than 40. In 8-bit general-purpose microprocessors, Z80-type microprocessors have begun to appear in the form of integrated devices that include a microprocessor, memory management unit, DMA controllers, UARTS, and timers on one chip. 
The chapter was concluded with the discussion of various bus standards. 
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Z80 Instruction Set 
Appendix A describes each Z80 instraction fully in terms of its operation and the operand, including details such as number of bytes, machine cycles, Tstates, Hex code, and affected flags. The instructions appear in alphabetical order and are illustrated with examples. 
The following abbreviations and symbols are used in the description of the instruction set. 
r = Z80 Registers rp = Register Pair rx = Index Registers r' = Z80 Alternate Registers m = Memory Location rs = Register Source Td = Register Destination ( ) = Contents of 
d = 7-bit Displacement (Expressed in 2's Complement for Backward Displacement) b = Bit from 0 to 7 MC = Machine Cycles 1 = Flag Set 0 = Flag Reset = Flag Affected [Blank] = No Effect On Flag ? = Flag Indeterminate 
	Flags 
	
	cc = 
	Flag Condition Code 

	S = 
	Sign 
	P = 
	Plus 

	z = 
	Zero 
	M = 
	Minus 

	H = 
	Half-Carry 
	Z = 
	Zero 

	P/V = 
	Parity/Overflow 
	NZ = 
	No Zero 

	N = 
	Add/Subtract 
	PE = 
	Parity Even 

	C = 
	Carry (In the description of an 
	P0 = 
	Parity Odd 

	
	instruction, the abbreviation CY 
	C = 
	Carry 

	
	is used instead of C to avoid 
	NC = 
	No Carry 


confusion with register C.) 
ADC A, r: ADD REGISTER TO ACCUMULATOR WITH CARRY ADC A, 8-BIT: ADD 8-BIT TO ACCUMULATOR WITH CARRY 
Opcode   Operand   Bytes   MC /T-States Hex Codes 
ADC r 1 1/4 ABCDEHL 
8F   88   89   8A   8B   8C 8D 
8-Bit        2        2 /7(4,3)       CE 8-Bit 
Description The contents of the operand (register or 8-bit data) and the carry flag CY are added to the contents of the accumulator and the result is placed in the accumulator. 
	s 
	z 
	H 
	P/V 
	N 
	c 

	y 
	/ 
	
	/ 
	/ 
	0 
	y 


Example The register EC contains 2498h and the register DE contains 54A1h. Add (BC) and (DE) and store the result in BC. 
	Step 1: 
	Copy (B) into A and add (D) using ADD instruc
	(C) 
	(A): 
	98h 

	
	tion. 
	
	(E): 
	Al„ 

	Step 2: 
	Save the sum (39h) in register C. 
	
	(A): 
	1/39h 

	Step 3: 
	Copy (B) into A and add (D) using the ADC 
	
	
	

	
	instruction to account for the carry from the pre
	(B) 
	(A): 
	24h 

	
	vious sum. 
	
	(D): 
	54h 

	Step 4: 
	Save the sum (79h) in B. The ADC instruction 
	
	Carry: 
	1 

	
	resets the previous CY flag. 
	
	
	79h 


Comments The instruction is generally used in 16-bit addition or multi-byte number; the carry generated by bit Dj is added to bit Do of the next addition. This instruction should not be used to account for carries generated in summing 8-bit numbers. 
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ADC A, (HL)    : ADD THE CONTENTS OF MEMORY AND CARRY TO ACCUMULATOR 
ADC A, (DC + d): ADC A, (lY + d): 
Opcode        Operand        Bytes     MC /T-States Hex Codes 
ADC       A,   (HL) 1 2/7(4,3) 8E 
ADC       A,   (IX+ d) 3 5/19(4,4,3,5,3)      DD 8E d 
A,   (lY + d) FD 8E d 
Description The contents of memory specified by the operand (HL, IX + d, or lY + d) and the carry flag are added to the contents of the accumulator. 
	s 
	z 
	H 
	P/V 
	N 
	c 

	y 
	y 
	
	y 
	
	y 
	0 
	y 


ADC HL, rp: ADD REGISTER PAIR TO HL WITH CARRY 
Opcode      Operand      Bytes    MC /T-States Hex Codes 
ADC HL, rp 2 2 715(4,4,4,3) BC DE HL SP 
ED 4A 5A 6A 7A 
Description The contents of the operand (BC, DE, HL, or SP) and the carry flag are added to the contents of the HL register and the result is stored in the HL register. 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	C 

	y 
	y 
	
	7 
	
	y 
	0 
	y 


Example The HL register contains 8200h, the DE register contains F850h, and the carry flag CY is set. Add the contents of HL and DE with carry. 
Mnemonics: ADC HL, DE      Hex Code: ED 5A 
Addition with Carry 
(DE): nil 1000 0101 0000 (F850h) (HL): 1000   0010   0000   0000 (8200h) 
CY : 1 
l/Olll   1010   0101   OOOl (7A51h) 
Register Contents After Instruction SZ  H VNC 
	X 
	0,0, ,0, ,1,0,1 

	F8 
	50 

	7A 
	51 


^DD A, r: ADD REGISTER TO ACCUMULATOR Opcode    Operand    Bytes    MC /T-States ADD A, r 1 1/4 
Hex Codes 
A B C D E H L 87 80 81 82 83 84 85 
Description The contents of the register are added to the contents of the accumulator, and the result is stored in the accumulator. 
S Z 
H 
P/V N C 
Flags 
y y   y   y o y 
Example   Register B has 51h and the accumulator has 47h. Add (B) to (A). 
Mnemonics: ADD A, B      Hex Code: 80 Addition 
(B) (A) 
0101 0001 0100 0111 
(51h) (47h) 
Register Contents After Execution SZ  H VNC 
(A)    1001   1000 (98h) 
	98 
	1,0, ,0, ,0,0,0 

	51 
	X 


ADD A, 8-BIT: ADD 8-BIT TO ACCUMULATOR 
Opcode        Operand        Bytes        MC /T-States        Hex Code 
ADD 8-Bit 2 2/7(4,3) C6 8-Bit 
Description The operand byte (8-bit data) is added to the contents of the accumulator, and the result is placed in the accumulator. 
Flags 
	s z 
	H 
	P/V 
	N 
	c 

	y y 
	y 
	
	y 
	0 
	y 


Example The accumulator contains 4Ah. Add the data byte 59h to the contents of the accumulator. 
Mnemonics: ADD A, 59H      Hex Codes: C6 59 
Addition                   Register Contents After Execution (A)   0100   1010   (4Ah) SZ  H VNC 
8-bit  0101   1001   (59h) a I 7^ TTT-l—7777] 
ADD A, (HL)    : ADD CONTENTS OF MEMORY TO ACCUMULATOR 
ADD A, (K + d): ADD A, (lY + d): 
Opcode Operand 
Bytes      MC /T-States 
ADD ADD 
A, (HL) A, (IX + d) A, (IX + d) 
1 2 /7(4,3) 
3 5 /19(4,4,3,5,3) 
Hex Codes 86 
DD 86 d FD 86 d 
Description The contents of the accumulator are added to the contents of memory location shown by the address in HL registers, and the result is stored in the accumulator. When the operand is an index register, the memory address is calculated by adding the index register and the displacement byte d. 
S Z 
H 
P/V N C 
Flags 
y /  y   y 0 y 
Example The accumulator contains the byte 76h, and the HL pair contains 2050h. Add the byte A2h which is stored in memory location 2050h to the contents of the accumulator. 
Mnemonics: ADD A, (HL)     Hex Code:86 
Addition 
0111 0110 
Register Contents After Execution SZ  H VNC 
	(2050)Mem 1010   0010 (A2h) 
	A 
	18 
	0,0, ,0, ,0,0,1 

	1 0001 1000 
	H 
	20 
	50 


Example Use the index register IX as a memory pointer in Example A to add the contents of the accumulator and memory location 2050h. Assume that the index register IX contains 2035h. The displacement byte d (IBh) is calculated by subtracting the index address 2035h from the memory address 2050h. 
Mnemonics: ADD A, (IX + IB)      Hex Code: DD   86 IB 
ADD HL, rp: ADD REGISTER PAIR TO HL 
Opcode     Operand     Bytes     MC /T-States 
ADD HL, rp 1 3/11(4,4,3) 
Hex Codes 
BC DE HL SP 09    19   29 39 
Description The contents of the specified register rp (BC, DE, HL, or SP) are added to the contents of HL and the result is placed in HL. 
s z 
Flags 
H 
171 
P/V N C 
0 
C = 1 if bit D15 generates carry; otherwise it is reset. H = 1 if bit Dii generates carry; otherwise it is reset. 
Example The HL register contains 2900h and the DE register contains F89.5h. Add (HL) and (DE). 
Mnemonics: ADD HL, DE Addition 
Hex Code: 19 
(HL) (DE) (HL) 
0010 1001 0000 0000 (2900h) 
1111 1000 1001 0101 (F89-5h) 
1/0010 0001 1001 0101 (2195h) CY = 1, H = 1 
Register Contents After Instruction 
	F8 
	95 

	21 
	95 


HDD K, rp: ADD REGISTER PAIR TO INDEX REGISTER ADD lY, rp: 
Opcode      Operand      Bytes     MC /T-States Hex Codes 
ADD IX, rp 2 4 715(4,4,4,3) BC DE IX/IY SP 
IX: DD 09 19 29 39 lY: FD 09  19    29 39 
Description The contents of the specified register pair rp are added to the contents of the index register and the result is placed in the index register. 
1. This is a 2-byte instruction. The first byte specifies the index register (IX or lY), and the second byte specifies the register pair to be added to the index register. 
2. This instruction cannot add (HL) to an index register or add (IX) and (lY). If the second byte is 29h, the contents of the index register specified adds to its own contents. 
	s 
	z 
	H 
	P/V 
	N 
	c 

	
	
	9 
	
	
	0 
	y 


AND r: LOGICALLY AND REGISTER WITH ACCUMULATOR 
Opcode      Operand      Bytes      MC /T-States Hex Codes 
AND r 1 1/4 ABCDEHL 
A7 AO Al A2 A3 A4 A5 
Description The contents of the specified register are ANDed with the contents of the accumulator and the result is placed in the accumulator. 
s z 
H 
P/V N C 
Flags 
	y 
	y 
	
	1 
	
	y 
	0 
	0 


Example The contents of the accumulator and register B are 54h and 82h respectively. Logically AND (B) with (A) and show the flags and the contents of each register after ANDing. 
Mnemonics: AND B 
Hex Code: AO 
Logical AND 
(A) 1 0 0 0   0 0 1 0 (82h) 
(B) 0 1 0 1 0 1 0 0 (54h) (A)   0000   0000 (OOh) 
Register Contents After Instruction 
SZ  H PNC 
	00 
	0,1, ,1, ,1,0,0 

	54 
	X 


END 8-BIT: LOGICALLY RND 8-BIT WITH ACCUMULATOR 
Opcode       Operand       Bytes       MC /T-States       Hex Codes 
AND 8-Bit 2 2/7(4,3) E6 8-Bit 
Description The contents of the operand (8-bit data) are logically ANDed with the contents of the accumulator and the result is placed in the accumulator. 
S Z 
H 
P/V   N C 
Flags 
y y 
1 
y 
0 
0 
Example   The accumulator contains A3h. AND byte 97h with (A). 
Mnemonics: AND 97H      Hex Code: E6 97 
Logical AND 
(A) (Data) 
10 10 10 0 1 
0 0 11 (A3h) 0 111 (97h) 
Register Contents After Instruction SZ  H PNC 
(A) :1 00 0   0 0 1 1 (83h) 
83 
10   0   0 0 0 
AND (HL)    : LOGICALLY AND CONTENTS OF MEMORY WITH ACCUMULATOR 
AND (K + d): AND (lY -I- d): 
Opcode     Operand      Bytes     MC /T-States      Hex Codes 
AND AND 
(HL) (IX + d) (lY + d) 
2 /7(4,3) 5 /19 
(4,4,3,5,3) 
A6 DD FD 
A6 A6 
Description The contents of memory are ANDed with the contents of the accumulator. The memory address is specified by the contents of the HL register or an index register with a displacement byte d. 
S Z 
H 
P/V   N C 
Flags 
1 
0 0 
Example Write mnemonics to AND the contents of memory location 2070h with the contents of the accumulator, assuming index register lY contains address 2000h. 
Mnemonics: AND (lY + 70H)     Hex Code: FD  A6 70 
BIT b, r: TEST BIT IN REGISTER Opcode  Operand  Bytes  MC /T-States 
BIT         b, r 2 2 /8(4,4) 
Hex Codes 
	
	Source Register 
	
	

	(Bit) 
	A B C  D E 
	H 
	L 

	CB (7) 
	7F 78 79 7A 7B 
	7C 
	7D 

	CB (6) 
	77 70 71 72 73 
	74 
	75 

	CB (5) 
	6F 68 69 6A 6B 
	6C 
	6D 

	CB (4) 
	67 60 61 62 63 
	64 
	65 

	CB (3) 
	5F 58 59 5A 5B 
	5C 
	5D 

	CB (2) 
	57 50 51 52 53 
	54 
	55 

	CB (1) 
	4F 48 49 4A 4B 4C 4D 

	CB (0) 
	47 40 41 42 43 
	44 
	45 


Description This instruction tests the specified bit in a given register r and sets the Z flag if bit is zero; otherwise, Z flag is reset. The register r can be any one of the registers: A, B, C, D, E, H, L. 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	c 

	? 
	/ 
	
	
	
	? 
	0 
	


Example  Register B has 1000 011 1(87h). Test bit D3. 
Mnemonics: BIT 3, B      Hex Code: CB 58 This instniction tests bit D3 and sets the Z flag because D3 = 0. 
BIT b, (HL) BIT b, (DC + d): BIT b, (lY + d); 
TEST BIT IN MEMORY LOCATION 
569 
Opcode    Operand    Bytes  MC /T-States Hex Codes 
(BIT)     7 6 5 4 3 2 1 0 
BIT     b, (HL) 2        3/12(4,4,4,)        CB   [7E 76 6E 66 5E 56 4E 46] 
BIT     b, (IX + d)     4        5 /20 DD CB d [7E 76 6E 66 5E 56 4E 46] 
BIT     b, (lY + d) (4,4,3,5,4)   FD CB d [7E 76 6E 66 5E 56 4E 46] 
Description This instruction tests the bit in the specified memory location and sets Z flag if the bit is zero. The memory location is specified by the contents of HL or index registers (plus displacement). 
Flags 
	s 
	z 
	H 
	P/V N 
	C 

	7 
	J 
	1 
	? 0 
	

	


CALL 16-BIT: CALL SUBROUTINE SPECIFIED BY OPERAND 
Opcode       Operand       Bytes      MC /T-States Hex Code 
CALL 16-Bit 3 5 717(4,3,4,3,3)       CD 16-bit 
Description The program execution is transferred to the subroutine address specified by the operand. Before the transfer, the address of the opcode following the CALL (the contents of the program counter) is stored on the stack. The sequence of events is described in the example below. This instruction should be accompanied by one of the return (RET or conditional RET) instructions in the subroutine. 
Flags  No flags are affected. 
Example Write the instruction to call the subroutine located at memory location 2050h. Explain how the contents of the program counter are stored on the stack if the stack pointer is at location 2099h. 
Instruction: CALL 2050H      Hex Code: CD   50 20 
As an example, this machine code can be stored as follows: 
Memory Hex 
Address      Code Mnemonics 
2010 CD       CALL 2050H 
2011 50 
2012 20 
Make a note of the difference between writing a 16-bit address as mnemonics and machine code. In the code, the low-order byte (50h) is entered first, followed by the 
APPENDIX A 
high-order byte (20h). However, in mnemonics the bytes are shown in the proper sequence. If an assembler is used to obtain the codes, it will automatically reverse the sequence of the mnemonics. 
When the last machine code (20h), located at 2012h, is fetched by the microprocessor, the program counter holds the address 2013h. This address is placed on the stack as follows. 
1. Stack pointer is decremented to 2098h and the MSB 
is stored. 
	2. Stack pointer is decremented to 2097h and the LSB 
	
	2097 
	13 

	is stored. 
	t 
	2098 
	20 

	3. Call address (2050h) is temporarily stored in inter
	SP 
	2099 
	XX 


nal registers and placed on the bus for the fetch 
cycle. 
CALL cc, 16-BIT: CALL SUBROUTI^E: IF CONDITION IS TRUE Opcode      Operand      Bytes     MC /T-States 
CALL      cc, 16-Bit        3 5 /17(4,3,4,3,3); If condition is true 
3 /10(4,3,3)     ; If condition is false 
Condition Flags  NZ  Z    NC  C     PO  PE   P M Hex Codes C4   CC  D4   DC   E4   EC  F4 PC 
Description The program execution is transferred to the subroutine address specified by the 16-bit of the operand if the flag condition is true. If the condition is false, the program continues without calling the subroutine. 
Flags   No flags are affected. 
Example Write two conditional Call instructions: one with Carry set (C) and the other with Zero flag not set (NZ). 
Instructions:   1) CALL C, 2050H        Hex Codes:   DC   .50 20 2) CALL NZ, 2070H C4   70 20 
CCF: COMPLEMENT CARRY FLAG 
Opcode       Operand       Bytes       MC /T-States 
CCF 1 1 /4 
Description   The Carry flag is complemented. 
S   Z       H       P/V   N C 
Flags 
Hex Code 
3F 
	
	
	
	? 
	
	
	0 
	


CP r    : COMPARE REGISTER WITH ACCUMULATOR CP 8-Bit: COMPARE 8-BIT DATA WITH ACCUMULATOR 
Opcode  Operand  Bytes  MC /T-States Hex Codes 
CP r 1 1/4 ABCDEHL 
BF  B8   B9  BA   BB   BC BD CP        8-bit        2        2/7(4,3)     FE 8-bit 
Description Tlie operand is compared with the accumulator by subtracting the contents of the operand from the contents of the accumulator. None of the contents are altered and the comparison is shown by setting the flags as follows: 
□ If (A) < (r /8-bit): Carry flag is set and Zero flag is reset. 
□ If (A) = (r /8-bit): Zero flag is set and Carry flag is reset. 
□ If (A) > (r /8-bit): Carry and Zero flags are reset. 
Flags In addition to C and Z, the other flags are also modified to reflect the result of the operation. 
	s 
	Z 
	H 
	P/V 
	N C 

	y 
	J 
	J 
	y 
	1 y 


Example Register B contains data byte 62h and the accumulator contains data byte 57h. Compare (B) with (A). 
Mnemonics: CP   B      Hex Code: B8 
Register Contents Register Contents 
Before Instruction After Instruction 
SZ  H VNC 
	A 
	57 
	X 
	X 
	F 
	A 
	57 
	1,0, ,0, 
	,0,1,1 

	B 
	62 
	X 
	X 
	C 
	B 
	62 
	X 
	X 


□ No contents are changed. 
□ Carry flag is set because (A) < (B). 
□ Other flags are also modified as shown. 
CP (HL)    : COMPARE MEMORY CONTENTS WITH ACCUMULATOR 
CP (K + d): CP (lY + d): 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
CP (HL) 1 2/7(4,3) BE 
CP        (IX+ d) 3 5/19(4,4,3,5,3)     DD  BE 8-bit 
CP (lY + d) FD   BE   8 bit 
572 
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Description The memory is compared with the accumulator by subtracting the contents of the memory from the contents of the accumulator. None of the contents are altered and the comparison is shown by setting the flags as follows. The memory address is specified by the contents of the HL register or index register. 
□ If (A) < (M): Carry flag is set and Zero flag is reset. 
□ If (A) = (M): Zero flag is set and Carry flag is reset. 
□ If (A) > (M): Carry and Zero flags are reset. 
Flags In addition to CY and Z, the other flags are also modified to reflect the result of the operation. 
	s 
	z 
	H 
	P/V 
	N 
	C 

	y 
	y 
	
	y 
	
	y 
	1 
	y 


Example The memory location 2050h contains 64h, the accumulator contains 64h, and the HL register holds the address 2050h. Write the instruction to compare the contents of the accumulator with the contents of the memory location 20.50H and show the status of the flags. 
Mnemonics: CP (HL)      Hex Code: BE 
Register Contents Memory Contents Register Contents 
Before Instruction After Instruction 
SZ   H VNC 
	A 
	64 
	X X 
	F 
	204F 
	XX 
	A 
	64 
	0,1, ,0, ,0,1,0 

	H 
	20 
	50 
	L 
	20.50 
	64 
	H 
	20 
	50 


□ No contents are changed. 
□ Zero flag is set because (A) = (M). 
□ Other flags are also modified as shown. 
CPD: COMPARE MEMORY WITH ACCUMULATOR, AND 
DECREMENT MEMORY ADDRESS AND BYTE COUNTER 
Opcode       Operand       Bytes       MC /T-States Hex Code 
CPD 2 4/16(4,4,3,5)         ED A9 
Description The contents of the memory location addressed by the HL register are compared with the contents of the accumulator, and the flags are set as follows without altering the contents. The HL and BC registers are decremented. Register BC can be used as a byte counter. 
□ If (A) < (M): Sign flag is set and Zero flag is reset. 
□ If (A) = (M): Zero flag is set and Sign flag is reset. 
□ If (A) > (M): Sign and Zero flags are reset. 
Flags In addition to S and Z, the other flags are also modified to reflect the result of the operation. 
S Z 
H 
P/V   N C 
0/1 
1 
P/V = 0 if BC = 0 = 1 if BC =5t 0 
CPDR: COMPARE MEMORY WITH ACCUMULATOR, AND 
DECREMENT MEMORY ADDRESS AND BYTE COUNTER UNTIL CONTENTS ARE EQUAL OR COUNTER IS ZERO 
Opcode     Bytes     MC /T-States Hex Code 
CPDR 2 5/21(4,4,3,5,5)     if BC   0 and (A) ^ (HL)       ED B9 
4 /16(4,4,3,5)        if BC = 0 or (A) = (HL) 
Description The contents of the memory location addressed by the HL register are compared with the contents of the accumulator, and HL and BC registers are decremented. The instruction is repeated until either BC = 0 or (A) = (HL). Register BC is used as a byte counter. 
	S 
	z 
	H 
	P/V   N C 

	y 
	y 
	
	y 
	0/1 1 


Z.= 1 if (A) = (HL)      P/V = 0 if BC = 0 
= 1 if BC 0 
Example The contents of the registers are (A) = 9Fh, BC = OOOFh, and (HL) = 2099h. The memory location 2090h has the byte 9F. Specify the contents of the registers after the execution of the instruction CPDR. 
Instruction: CPDR      Hex Code: ED B9 
The instruction begins its search from the location 2099h, and it will be repeated ten times until the memory location 2090h, where (A) = (HL). The contents of the registers at the end of the search will be as follows: 
SZ   H P/VNC 
	9F 
	0,1, ,1, , 1 ,1,0 

	00 
	05 

	20 
	8F 


CPI: COMPARE MEMORY WITH ACCUMULATOR, 
INCREMENT MEMORY ADDRESS, AND DECREMENT BYTE COUNTER 
Opcode     Operand     Bytes     MC /T-States Hex Code 
CPI 2 4/16(4,4,3,5)       ED Al 
Description The contents of the memory location addressed by the HL register are compared with the contents of the accumulator, and the flags are set as follows without altering the contents. The HL register is incremented and the BC register is decremented. Register BC can be used as a byte counter. 
□ If (A) < (M): Sign flag is set and Zero flag is reset. 
□ If (A) = (M): Zero flag is set and Sign flag is reset. 
□ If (A) > (M): Sign and Zero flags are reset. 
Flags In addition to S and Z, the other flags are also modified to reflect the result of the operation. 
	S 
	z 
	H 
	P/V 
	N 
	c 

	/ 
	/ 
	
	y 
	
	0/1 
	1 
	


P/V = 0 if BC = 0 = 1 if BC =?t 0 
CPIR: COMPARE MEMORY WITH ACCUMULATOR, 
INCREMENT MEMORY ADDRESS, AND DECREMENT BYTE COUNTER UNTIL CONTENTS ARE EQUAL OR COUNTER IS ZERO 
Opcode      Bytes      M€ /T-States Hex Code 
CPIR 2 5/21(4,4,3,-5,5)   if BC ^ 0 and (A) (HL)        ED Bl 
4 /16(4,4,3,5)     if BC = 0 or (A) = (HL) 
Description The contents of the memory location addressed by the HL register are compared with the contents of the accumulator, and the HL register is incremented and the BC register decremented. The instruction is repeated until either BC = 0 or (A) = (HL). Register BC is used as a byte counter. 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	C 

	/ 
	y 
	
	y 
	
	0/1 
	1 
	


Z = 1 if (A) = (HL)   P/V = 0 if BC = 0 
= 1 if BC =?t 0 
Example The contents of the registers are (A) = 9Fh, BC = OOOFh, and (HL) = 2090h. None of the memory locations between 2090h and 209Fh has the byte 9F. Specify the contents of the registers after the execution of the instruction CPIR. 
Instruction: CPIR     Hex Code: ED Bl 
The instruction begins its search from the location 2090h, and it will be repeated fifteen times until the byte counter BC is zero. The contents of the registers at the end of the search will be as follows: 
SZ  H PNC 
	A 
	9F 
	0 0 1 
1 1 1 1 1 1 1 
	F 
	S and H flags will be determined 

	B 
	00 
	00 
	C 
	by the last comparison. 

	H 
	20 
	AO 
	L 
	


CPL: COMPLEMENT ACCUMULATOR 
Opcode     Operand     Bytes     MC/T-States     Hex Code 
CPL 1 1/4 2F 
Description The contents of the accumulator are complemented (inverted or I's complement). 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	C 

	
	
	
	1 
	
	
	1 
	


Example The accumulator has 89h. Show the contents after the execution of the instruction CPL. 
Mnemonics: CPL      Hex Code: 2F 
Before Instruction After Instruction 
(89h) a 
1 0 0 0 1 0 0 1 
0 1110 110 
(76h) 
Dim: DECIMAL ADJUST ACCUMULATOR 
Opcode     Operand      Bytes     MC /T-States      Hex Code 
DAA 1 1/4 27 
Description If this instruction is used after an addition or subtraction of two BCD numbers, the result is adjusted for BCD values. This instruction uses the Half Carry (H) flag internally to convert the binary result into BCD values shown as follows. 
After an addition of two BCD numbers 
1. If the value of the low-order four bits (D3-D0) in the accumulator is greater than 9 or if H flag is set, the instruction adjusts the low-order bits by adding 06 (0 1 1 0) to D3-D0. 
2. If the value of the high-order bits (DT-D4) is greater than 9 or if CY flag is set, the instruction adjusts the high-order bits by adding 60 (0 1 1 0) to D7-D4. 
After a subtraction of two BCD numbers, the above procedure is also valid, except the instruction adds 2's complement of 06 or 60 to the respective group of digits. 
Flags 
S Z 
717 
H 
P/V  N C 
y 
y 
Example The accumulator contains 85bcd and register B contains 68bcd- Add the two numbers and adjust the result for the BCD value. 
Mnemonics:   ADD   B      Hex Code: 80 DAA 27 
(A) 1 0 0 0   0 1 0 1 (85)bcd 
(B) +0 1 1 0   1 0 0 0 (68)bcd 
1110   110 1 (1.53)bcd 
The binary sum is EDh, and the values of both low- and high-order four bits are higher than 9(10 0 1). The instruction adds 6 (0 1 1 0) to both groups as shown below: 
(A)   1110   110 1 (ED) +011 0  0 1 1 0 (66) 10 10 10 0 11      1 53bcd CY 
The accumulator contains 53 and the CY flag is set to indicate that the sum is larger than eight bits. The program should keep track of the carry; otherwise it may be altered by subsequent instructions. 
Example The accumulator contains 97bcd and register B contains 39bcd- Subtract (B) from (A) and adjust the result for decimal numbers. 
Mnemonics:   SUB B     Hex Codes: 90 DAA 27 The subtraction is performed in 2's complement as follows: 
(A)   1 0 0 1   0 1 1 1 97 + (B)   1 1 0 0  0 1 1 1      2's Comp. (39) 1   0 10 1   1 1 1 0 5Eh 
After the subtraction, the low-order byte is larger than (1 0 0 1). The instruction adjusts 
the result by adding 2's complement of 06 (1 111   101 0) as shown. 
(A)  0 1 0 1   1110 5E 
+ 1111   10 10     2's Comp. (06) 1   0 1 0 1   1 0 0 0 -^ 58bcd 
DEC r : DECREMENT REGISTER CONTENTS 
DEC (HL)    : DECREMENT MEMORY CONTENTS DEC (DC + d): DEC (lY + d): 
Opcode     Operand     Bytes     MC /T-States 
DEC 
DEC DEC DEC 
(HL) (IX + d) (lY + d) 
1 1 /4 
1 3/11(4,4,3) 
3 6 723(4,4,3,5,4,3) 
Hex Codes 
A B C D E H L 3D 05 OP 15 ID 25 2D 
35 
DD 35 d FD   35 d 
Description The contents of the designated register/memory location are decremented by 1. If the operand is a memory location, it is specified by the contents of HL or index registers. 
Flags 
S Z 
7T7" 
H 
P/V  N C 
1 
DEC rp: DECREMENT REGISTER PAIR OR INDEX REGISTER DEC rx: 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
EC   DE   HL SP DEC rp 1 1/6 OB   IB   2B 3B 
DEC IX 2 2/10(4,6)       DD 2B 
DEC lY FD 2B 
Description The contents of the specified register are decremented by 1; the contents are viewed as a 16-bit number. 
Flags  No flags are affected. 
Example Register HL contains 2000h. Specify the contents of the entire register after the instruction DEC HL. 
Mnemonics: DEC  HL     Hex Code: 2B 
The contents of the HL register will be IFFFh. 
DI: DISABLE INTERRUPTS 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
DI 11/4 F3 
Description This instruction resets the interrupt enable flip-flops (IFFl and IFF2) and disables maskable interrupts. 
Flags  No flags are affected. 
DJNZ d: JUMP RELATIVE IF B IS NOT ZERO 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
DJNZ d 2 3/13(5,3,5)        10 d 
if B^fcO 
^ /8(3,5) ifB = 0 
Description Register B is decremented, and if B#0, the program execution is transferred to the memory location by adding displacement byte to the program counter +2. 
Flags   No flags are affected. 
EI: ENABLE INTERRUPTS 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
EI 11/4 FB 
Description This instruction sets the interrupt enable flip-flops (IFFl and IFF2) to logic 1 and enables the maskable interrupts. 
Flags  No flags are affected. 
Comments After the system reset or the acknowledgment of an interrupt, the interrupt enable flip-flops are reset, thus disabling the interrupts. This instruction must be executed to reenable the maskable interrupts. 
EX AF, AF': EXCHANGE ACCUMULATOR AND FLAGS WITH ALTERNATE ACCUMULATOR AND FLAGS 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
EX AF, AF' 1 1/4 08 
Description The contents of the accumulator and the flag register are exchanged with their respective alternate registers. 
Flags   All flags are affected. 
EX DE, HL: EXCHANGE HL AND DE REGISTERS 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
EX DE, HL 1 1/4 EB 
Description The contents of register H are exchanged with the contents of register D, and the contents of register L are exchanged with the contents of register E. 
Flags   No flags are affected. 
EX (SP), HL: EXCHANGE CONTENTS OF REGISTERS WITH TOP OF STACK 
EX (SP), IX: EX (SP), lY: Opcode 
Operand     Bytes     MC /T-States 
Hex Code 
EX EX EX 
(SP), HL (SP), IX (SP), lY 
1 5 /19(4,3,4,3,5) 
2 6 /23(4,4,3,4,3,5) 
E3 
DD 
FD 
E3 E3 
Description The contents of the low-order register (L or the low-order byte of an index register) are exchanged with the contents of the memory location pointed to by the stack pointer. The contents of the high-order register or the high-order byte of an index register are exchanged with the contents of the next memory (stack) location (SP + 1). 
Flags  No flags are affected. 
Example   The contents of registers and stack location are as follows: 
Register Contents Stack 
Contents 
	H 
	80 
	FF 
	L 2097 
	32 

	SP 
	20 
	97 
	2098 
	A2 

	
	
	
	2099 
	


After the execution of the instruction EX (SP), HL, the contents of registers and stack 
locations will be as follows: 
Register Contents 
Stack Contents 
	H 
	A2 
	32 
	L 2097 
	FF 

	SP 
	20 
	97 
	2098 
	80 

	
	
	
	2099 
	


EXX: EXCHANGE REGISTERS WITH ALTERNATE REGISTERS Opcode      Operand      Bytes      MC/T-States      Hex Code 
EXX 1 1/4 D9 
Description The contents of the general-purpose registers BC, DE, and HL are exchanged with the contents of their respective alternate registers BC, DE' and HL'. 
Flags  No flags are affected. 
HALT: SUSPEND OPERATIONS Opcode     Operand     Bytes     MC /T-States     Hex Code 
HALT 1 1/4 76 
Description This instruction suspends (halts) all operations, and the microprocessor waits until an interrupt or the reset is received. During the halt, the microprocessor continues to execute NOP instruction to maintain memory refresh cycles. 
Flags  No flags are affected. 
IM 0: SET UP INTERRUPT MODE 0 Opcode      Operand      Bytes      MC /T-States      Hex Code 
IM 0 2 2 /8(4,4) ED 46 
Description This instruction sets up the microprocessor in Interrupt Mode 0. In this mode, the interrupting device can insert any instruction onto the data bus to restart the MPU execution; the first byte must be inserted during the interrupt acknowledge cycle. 
Flags  No flags are affected. 
IM 1: SET UP INTERRUPT MODE 1 Opcode     Operand     Bytes     MC /T-States     Hex Code 
IM 1 2 2/8(4,4) ED .56 
Description This instruction sets up ttie microprocessor in Interrupt Mode 1. In this nmode, the MPU responds to an interrupt by executing the restart at location 0038h. 
Flags  No flags are affected. 
IM 2: SET UP INTERRUPT MODE 2 Opcode     Operand     Bytes     MC/T-States     Hex Code 
IM 2 2 2 /8(4,4) ED 5E 
Description This instruction sets up the microprocessor in Interrupt Mode 2. In this mode, the MPU responds to an interrupt by executing an indirect call to the specified 16-bit address of a memory location. The low-order 8-bit address is supplied by the interrupting device, and the high-order address is supplied by the contents of the interrupt vector register I. 
Flags   No flags are affected. 
IN A, (8-BIT): INPUT DATA TO ACCUMULATOR FROM A PORT WITH 8-BIT ADDRESS 
Opcode     Operand     Bytes     MC/T-States      Hex Code 
IN 8-bit 2 3/11(4,3,4)      DB 8-bit 
Description The contents of the input port specified in the operand are read and placed in the accumulator. 
Flags   No flags are affected. 
IN r, (C): INPUT DATA TO REGISTER FROM A PORT WITH ADDRESS IN C 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
IN r, (C) 2 3/12 A B  C D E H L 
ED 78 40 48 50 58 60 68 
Description The contents of the input port with the address in register C are read and placed in the specified register. 
Flags 
S Z 
VTT 
H 
P/V   N C 
0 
INC r: INCREMENT REGISTER Opcode     Operand     Bytes     MC/T-States 
INC r 11 /4 
Hex Codes 
A B C D E H L 3C 04 OC 14 IC 24 2C 
Description  The contents of the specified register are incremented by 1. S   Z       H       P/V  N C 
Flags 
y y 
y 
y 
0 
Example The accumulator contains FFh- Specify the contents of the accumulator and the status of CY and Z flags after the INC instniction. 
Mnemonics: INC   A   Hex Code: 3C 
(A)=   1111 1111 + 0 0 0 0   0 0 0 1 
(A) =10000 0000 
After the byte FF has been incremented, the sum should be 00 with carry. However, the INC instruction does not set the CY flag even though it affects all other flags. If ADD instruction is used, the accumulator contents will be 00 with the CY flag set. 
INC rp: INCREMENT REGISTER PAIR OR INDEX REGISTER INCrx: 
Opcode        Operand        Bytes        MC /T-States Hex Codes 
EC DE  HL SP 
INC rp 1 1 /6 03 13    23 33 
INC IX 2 2/10(4,6) DD 23 
INC lY FD 23 
Description The contents of the specified register pair or the index register are incremented by 1. 
Flags  No flags are affected. 
INC (HL):     INCREMENT MEMORY CONTENTS INC (DC + d): INC (lY + d): 
Opcode Operand Bytes     MC /T-States Hex Codes 
INC (HL) 1            3/11(4,4,3) 34 
INC (IX+ d) 3           6 /23(4,4,3,5,4,3)      DD   .34 d 
INC (lY + d) FD   34 d 
Description The contents of the specified memory are incremented by 1. The memory location is specified either by the contents of HL register or the contents of an index register plus the displacement. 
S Z 
H 
P/V   N C 
Flags 
0 
Example The memory register at 2040h contains the byte FFh- The index register IX holds the address 2050h- Write the instruction to increment the contents of the memory register and specify the status of the flags. 
Mnemonics: INC (IX + FOH)      Hex Codes: DD   34 FO 
The displacement is calculated by taking 2's complement of IOh, the difference between 2050h and 2040h. After the execution of the instruction, the memory contents will be 00. The flag status will be as follows: 
	s 
	z 
	H 
	V 
	N 
	c 

	0 
	1 
	
	1 
	
	0 
	0 
	


Note: This instruction does not affect the C flag. 
IND: INPUT DATA TO MEMORY AND DECREMENT BYTE COUNTER AND MEMORY POINTER 
Opcode     Operand     Bytes     MC/T-States        Hex Code 
IND 2 4/16(4,5,3,4)      ED AA 
Description This instruction reads the input port specified by the contents of register C, and the reading is stored in the memory location specified by the contents of register HL. Register B is used as a byte counter, and both B and HL are decremented by one. 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	C 

	? 
	0/1 
	
	? 
	
	? 
	1 
	


Z = 1 if B = 0 = 0 if B^O 
INDR: INPUT DATA TO MEMORY AND DECREMENT 
MEMORY POINTER AND BYTE COUNTER UNTIL BYTE COUNTER IS ZERO 
Opcode     Operand     Bytes     MC /T-States Hex Code 
INDR 2 5/21(4,5,3,4,5)       ED BA 
if B=itO 4 /16(4,5,3,4) if B = 0 
Description This instruction reads the input port specified by the contents of register C, and the reading is stored in the memory location specified by the contents of register HL. Register B is used as a byte counter, both B and HL are decremented by one, and the instruction is repeated until B = 0. 
	s 
	z 
	H 
	P/V 
	N 
	C 

	
	1 
	
	? 
	
	7 
	1 
	


Example The contents of the registers are HL = 2070h and BC = 0401h. Show the contents of memory locations and registers after the execution of the instruction INDR. 
Instruction: INDR     Hex Code: ED BA 
The instruction reads the data at the input port OIh four times until register B = 0 and stores the data in memory starting from 2070h. The contents of registers and the memory locations are as follows: 
Register Contents After Instruction 
	Register Contents Before Instruction 
	
	Memory Contents 

	B 
	04 
	01 
	C 
	206C 
	

	H 
	20 
	70 
	L 
	206D 
	BYTE4 

	
	
	
	
	206E 
	BYTE3 

	
	
	
	
	206F 
	BYTE2 

	
	
	
	
	2070 
	BYTEl 


	00 
	01 

	20 
	6C 


INI: INPUT DATA TO MEMORY, DECREMENT BYTE COUNTER, AND INCREMENT MEMORY POINTER 
Opcode     Operand     Bytes     MC /T-States        Hex Code 
INI 2 4/16(4,5,3,4)       ED A2 
Description This instruction reads the input port specified by the contents of register C, and the reading is stored in the memory location specified by the contents of register HL. The contents of register B are decremented and those of register HL are incremented by one. 
	s 
	z 
	H 
	P/V 
	N 
	C 

	9 
	0/1 
	
	? 
	
	? 
	1 
	


Z = 1 if B = 0 = OifB# 0 
INIR: INPUT DATA TO MEMORY, INCREMENT MEMORY 
POINTER, AND DECREMENT BYTE COUNTER UNTIL BYTE COUNTER IS ZERO 
Opcode     Operand     Bytes     MC /T-States Hex Code 
INIR 2 5/21(4,5,3,4,5) if B^tO       ED B2 
4 /16(4,5,3,4) if B = 0 
Description This instruction reads the input port specified by the contents of register C, and the reading is stored in the memory location specified by the contents of register HL. The contents of register B are decremented and those of register HL are incremented by one. Register B is used as a byte counter, and the instruction is repeated until B = 0. 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	C 

	7 
	1 
	
	? 
	
	? 
	1 
	


Example The contents of the registers are HL = 2070h and BC = 0407h. Show the contents of memory locations and registers after the execution of the instruction INIR. 
Instruction: INIR 
Hex Code: ED B2 
The instruction reads the data at the input port 07h four times until register B = 0 and stores the data in memory starting from 2070h. The contents of registers and the memory locations are as follows: 
Register Contents Before Instruction 
	04 
	07 

	20 
	70 


Memory Contents 
2070 I BYTEl 
2071 BYTE2 
2072 BYTE3 
2073 BYTE4 
2074 
Register Contents After Instruction 
	00 
	07 

	20 
	74 


JP 16-BIT: JUMP TO 16-BIT ADDRESS 
Opcode     Operand     Bytes     MC /T-States       Hex Code 
JP 16-Bit 3 3/10(4,3,3)     C3 16-bit 
Description The program execution is transferred to the memory location specified by the 16-bit address. This is a 3-byte instruction; the second byte specifies the low-order byte and the third byte specifies the high-order byte of the 16-bit address. 
Flags  No flags are affected. 
Example Write the instruction at location 201 Oh to transfer the program sequence to location 2050h. 
Instruction: JP  2050H     Hex Code: C3   50 20 This machine code can be stored as follows: 
Memory Hex Address Code 
2010 C3 
2011 50 
2012 20 
Make a note of the difference between writing a 16-bit address as mnemonics and machine code. In the code, the low-order byte (50) is entered first, followed by the high-order byte (20). However, in mnemonics the bytes are shown in the proper sequence. If an assembler is used to obtain the codes, it will automatically reverse the sequence of the machine codes. 
Mnemonics 
JP 2050H 
JP cc, 16-BIT: JUMP TO 16-BIT ADDRESS IF CONDITION IS TRUE Opcode    Operand     Bytes    MC /T-States Hex Codes 
JP       cc, 16-Bit       3 3 /lO NZ Z NC  C  PO PE P M 
C2 CA D2 DA E2 EA F2 FA 
Description The program execution is transferred to the address specified by the 16-bit of the operand if the flag condition is true. If the condition is false, the program continues to the next memory location. 
Flags  No flags are affected. 
Example Write two conditional Jump instructions: one with Carry set (C) and the other when the Zero flag is not set (NZ). 
Instructions: 1) JP C, 2050H       Hex Codes: DA 50 20 2) JP NZ, 2070H C2 70 20 
JP (HL): JUMP TO MEMORY LOCATION SPECIFIED BY HL OR INDEX REGISTERS 
JP(IX): 
JP(rso: 
Opcode       Operand       Bytes       MC /T-States       Hex Codes 
JP (HL) 1 1/4 E9 
JP (IX) 2 2/8(4,4) DDE9 
JP (lY) FD E9 
Description The program execution is transferred to the memory location specified by the contents of the HL register or the index register. 
Flags  No flags are affected. 
JR: JUMP RELATIVE EQUAL TO DISPLACEMENT 
Opcode     Operand     Bytes     MC /T-States      Hex Codes 
JR d 2 3/12(4,3,5)       18 d 
Description The program execution is transferred to the memory location specified by the sum of the present program counter and the displacement byte. The value of a displacement byte can be positive for a forward jump or in 2's complement for a backward jump. The total range of the jump is ~ 126 to +129; this accounts for the additional two memory locations due to the instruction Jump Relative. 
Flags  No flags are affected. 
Example Write the instruction at location 2010 to transfer the program sequence to location 2050h. 
Instruction: JR 3EH      Hex Code: 18 3E This machine code can be stored as follows: 
	Memory 
	Hex 
	

	Address 
	Code 
	Mnemonics 

	2010 
	18 
	JR 3EH 

	2011 
	3E 
	

	2012 
	
	


Wlien the instruction Jump Relative located at 201 Oh is executed, the program counter contains 2012h. By adding 3Eh to 2012h, the program counter contains 2050h; thus, the program is transferred to the location 2050h. Therefore, to calculate the displacement byte for a forward jump, the value obtained by subtracting the instruction location (2010h) from the jump location (2050h) should be reduced by two. On the other hand, two should be added to the displacement byte in 2's complement for a backward jump as shown in the following example. 
Example Write the instruction at location 201 Oh to transfer the program sequence to location 2000H. 
Instruction: JR EEH     Hex Code: 18 EE 
This machine code can be stored as follows: 
Memory Hex 
Address Code Mnemonics 
2010 18 JR EEH 
2011 EE 2012 
The displacement byte is calculated as follows: 
(PC) = 2 0 1 2 H Jump = 2 0 0 0 H Location 
12h =00010010 2's Complement of 12h =1110 1110 (EEh) 
JR cc, d: JUMP RELATIVE EQUAL TO DISPLACEMENT IF FLAG CONDITION IS TRUE 
Opcode        Operand        Bytes        MC /T-States Hex Codes 
JR cc, d 2 3/12(4,3,5)        NZ  Z    NC C 
If condition is true 
2 /7(4,3) 20    28   30 38 
If condition is false 
Description The program execution is transferred to the memory location specified by the sum of the present program counter and the displacement byte if the condition is true. The value of a displacement byte can be positive for a forward jump or in 2's complement for a backward jump. The total range of the jump is -126 to +129; this accounts for the additional two memory locations due to the instruction Jump Relative. 
Note: There are no conditional relative jump instructions based on other flags. 
Flags  No flags are affected. 
Example Write the instruction at location 201 Oh to transfer the program sequence to location 2000h if Carry is set. 
Instruction: JR   C,   EEH      Hex Code: 38 EE 
This machine code can be stored as follows: 
Memory Hex 
Address Code Mnemonics 
2010 38 JR   C, EEH 
2011 EE 2012 
For the calculation of the displacement byte, see the example in the previous instruction. 
LD Id, Vs. COPY SOURCE REGISTER INTO DESTINATION REGISTER 
Opcode LD 
Operand 
fd, Is 
Bytes 1 
Destination Register 
MC /T-States 
Hex Codes 
	1 14 
	
	
	
	Source 
	Register 
	

	
	A 
	B 
	C 
	D 
	E 
	H 
	L 

	A 
	7F 
	78 
	79 
	7A 
	7B 
	7C 
	7D 

	B 
	47 
	40 
	41 
	42 
	43 
	44 
	45 

	C 
	4F 
	48 
	49 
	4A 
	4B 
	4C 
	4D 

	D 
	57 
	50 
	51 
	52 
	53 
	54 
	55 

	E 
	5F 
	58 
	59 
	5A 
	5B 
	5C 
	5D 

	H 
	67 
	60 
	61 
	62 
	63 
	64 
	65 

	L 
	6F 
	68 
	69 
	6A 
	6B 
	6C 
	6D 


Description The contents of the source register rs are copied into the destination register rd. The letters is and rj represent any of the registers A, B, C, D, E, H, and L. 
Flags  No flags are affected. 
Example Register B contains 72h and register C contains 9Fh. Transfer the contents of register B to register C. 
Mnemonics:   LD   C, B      Hex Code: 48 
Note that the first operand C specifies the destination register and the second operand B specifies the source register. 
Register Contents Before Instruction 
Register Contents After Instruction 
B    72       9F C 
B    72       72 C 
LD r, 8-BIT: LOAD REGISTER r WITH 8-BIT DATA Opcode Operand Bytes MC /T-States Hex Codes 
A    B    C    D   E    H L LD      r, 8-Bit     2        2 /7(4,3)     [BE   06   OE   16   IE   26   2E] 8-bit 
Description The second byte (8-bit data) is loaded into the specified register r. Register r can be any of the registers A, B, C, D, E, H, or L. 
Flags   No flags are affected. 
Example  Load 92h into register B. 
Mnemonics:   LD   B,   92H      Hex Code:   06 92 
LD r, (HL):       COPY CONTENTS OF MEMORY INTO REGISTER LD r, (IX + d): LD r, (lY + d): 
Opcode    Operand    Bytes  MC /T-States Hex Codes 
LD      r, (HL) 1 
LD      r, (IX + d) 3 r, (lY + d) 
2/7(4,3) A  B  C   D E   H L 
7E 46 4E 56 5E 66 6E 5/19 DO [7E 46 4E 56 5E 66 6E] d 
(4,4,3,5,3)     FD [7E 46 4E 56 5E 66 6E] d 
Description The contents of the memory location indicated by the HL register or by one of the index registers (plus displacement) is copied into the specified register r. Register r can be any one of the registers A, B, C, D, E, H, or L. 
Flags  No flags are affected. 
Example Assume the contents of register HL are 20h and 50h, respectively. The byte 9Fh is stored in memory location 2050h- Copy the contents of the memory location 2050h into register D. 
Mnemonics:   LD   D,   (HL)      Hex Code: 56 
Register Contents Before Instruction 
Memory Contents 
Register Contents After Instruction 
	D 
	XX 
	XX 
	E 
	
	
	D 
	9F 
	XX 

	H 
	20 
	50 
	L 
	2050 
	9F 
	H 
	20 
	50 


Example Assume the index register IX has 2040h. Copy the contents of memory location 2050h into register D as in the previous example. 
Mnemonics: LD   D,   (IX + lOH)      Hex Code: DD   56 10 
This instruction adds the displacement byte IOh to the contents of the index register (2040h) and points to location 2050h. Then it copies the contents of 2050h into register D. 
LD (HL), r    : COPY CONTENTS OF REGISTER INTO MEMORY LD (E + d), r: LD (lY + d), r: 
Opcode    Operand    Bytes   MC /T-States Hex Codes 
A B C D E H L 
LD     (HL), r 1 2 /7(4,3) 77 70 71 72 73 74 75 
LD     (IX + d), r     3 5 /19 DD [77 70 71 72 73 74 75] d 
(lY + d), r (4,4,3,5,3)    FD [77 70 71 72 73 74 75] d 
Description The contents of register r are copied into the memory location specified by either the contents of the HL register pair or one of the index registers (plus displacement). Register r represents any one of the registers A, B, C, D, E, H, or L. 
Flags  No flags are affected. 
Example Register B contains 98h and the register pair HL contains 2065h. Copy the contents of register B into memory location 2065h
Mnemonics: LD  (HL), B     Hex Code: 70 
This instruction copies the contents of register B (98H) into memory location 2065H. 
LD (HL), 8-BIT    : LOAD 8-BIT INTO MEMORY LD (K + d), 8-BIT: LD (lY + d), 8-BIT: 
Opcode Operand Bytes     MC /T-States Hex Codes 
LD        (HL), 8-Bit 2 3 /10(4,3,3) 36 8-bit 
LD        (IX + d), 8-Bit        4 5 719(4,4,3,5,3)     DD   36  d 8-bit 
(lY 4- d), 8-Bit FD   36  d 8-bit 
Description The 8-bit data are loaded into the specified memory location. The address of the memory location is specified by the contents of register pair HL or by one of the index registers (plus displacement). 
Flags  No flags are affected. 
Example Assume the contents of register pair HL are 20h and 50h, respectively. Load the byte 97h into memory location 2050h. 
Mnemonics: LD   (HL),   97H      Hex Code: 36 97 
This instruction loads 97h into memory location 2050h. 
Example Explain the data transfer in the following instruction if the index register lY holds the contents 2060h. 
Instruction: LD   (lY + OFH),   OOH     Hex Code: FD  36  OF 00 
APPENDIX A 
This instruction adds tlie displacement byte OFh to the contents of the index register lY (2060h) and specifies the memory location 206Fh, then clears that location by loading OOh. 
LD A, (16-BIT): COPY MEMORY CONTENTS INTO ACCUMULATOR LD A, (BC) LD A, (DE) 
Opcode      Operand      Bytes     MC /T-States        Hex Codes 
LD        A, (16-Bit)        3 4 /13(4,3,3,3)     3A 16-bit 
LD        A, (BC) 1 2 /7(4,3) OA 
A, (DE) lA 
Description The contents of the specified memory location are copied into the accumulator. The memory location is specified either directly by 16-bit address or by the contents of BC or DE registers. 
Flags  No flags are affected. 
Example The register BC contains 2050h and the byte F8h is stored in memory location 2050h. Copy the byte into the accumulator. 
Mnemonics: LD  A,   (BC)     Hex Code: OA 
This instruction copies the contents, F8h, of the memory location 2050h into the accumulator. 
Example Write the instruction to copy the byte from the memory location 2050h into the accumulator. 
Instruction: LD  A,   (2050H)     Hex Code: 3A  .50 20 
Note that the 16-bit address is entered in the reversed order: the low-order byte (50h) first, followed by the high-order byte (20h). 
LD  (16-BIT), A: COPY ACCUMULATOR CONTENTS INTO MEMORY LD  (BC), A LD  (DE), A 
Opcode      Operand      Bytes     MC /T-States        Hex Codes 
LD        (16-Bit), A        3 4 /13(4,3,3,3)     32 16-bit 
LD        (BC), A 1 2 /7(4,3) 02 
LD         (DE),A 12 
Description The contents of the accumulator are copied into the specified memory location. The memory location is specified either directly by a 16-bit address or by the contents of BC or DE registers. 
Flags  No flags are affected. 
Example Write instructions to copy the contents of the accumulator into memory location 2050h by using the direct addressing and the indirect addressing methods. 
Direct Addressing: LD  (2050H),   A     Hex Code: 32  50 20 
Indirect     : To use the DE pair as a memory pointer, the address 2050h Addressing : must be loaded into the DE register. Then the following instruction can be used: 
LD  (DE),   A     Hex Code: 12 
LD A, I: COPY INTERRUPT VECTOR REGISTER INTO ACCUMULATOR LD A, R: COPY MEMORY REFRESH REGISTER INTO ACCUMULATOR 
Opcode     Operand     Bytes     MC /T-States     Hex Codes 
LD LD 
A, I A, R 
2/9(4,5) 2/9(4,5) 
ED 57 ED 5F 
Description The first instruction copies the contents of the interrupt vector register and the second instruction copies the contents of the memory refresh register into the accumulator. 
S Z 
Flags 
H 
P/V   N C 
O/l 0 
P/V = IFF2 Flag 
LD I, A: COPY ACCUMULATOR INTO INTERRUPT VECTOR REGISTER LD R, A: COPY ACCUMULATOR INTO MEMORY REFRESH REGISTER 
Opcode     Operand     Bytes     MC /T-States     Hex Codes 
LD I, A 2 2 /9(4,5) ED 47 
LD R, A 2 2 /9(4,5) ED 4F 
Description The instructions copy the contents of the accumulator into the interrupt vector register and the memory refresh register, respectively. 
Flags  No flags are affected. 
LD rp, 16-BIT: LOAD 16-BIT INTO REGISTER PAIR LD DC, 16-BIT: LOAD 16-BIT INTO INDEX REGISTER LD lY, 16-BIT: 
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Opcode      Operand      Bytes     MC /T-States 
Hex Codes 
LD LD LD LD 
LD rp, 16-Bit 3 
LD IX, 16-bit 4 LD lY, 16-bit 
3 /10(4,3,3) 
4 /14(4,4,3,3) 
BC DE HL SP 
01 11 21    31 16-bit 
DO 21 16-bit 
FD 21 16-bit 
Description 16-bit data are loaded into the specified register pair or index register. The 16-bit data are entered low-order byte first, followed by the high-order byte. 
Flags   No tiags are affected. 
Example Write instructions to load 2050h into register BC and 4000h into index register lY. 
Instructions: LD   BC,   20.50H      Hex Code: 01   50 20 LD   lY,   4000H      FD   21   00 40 
Note the order of 16-bit data: low-order byte first, followed by the high-order byte. 
LD rp, (16-BIT): LOAD CONTENTS OF TWO MEMORY 
LD rx, (16-BIT): LOCATIONS INTO REGISTER PAIR OR INDEX 
LD HL, (16-BIT): REGISTER 
MC /T-States 
Opcode Operand 
Bytes 
rp, (16-Bit) IX, (16-bit) lY, (16-bit) HL, (16-bit) 
6 /20(4,4,3,3,3,.3) 
.5 /16 
Hex Codes 
BC DE HL SP ED [4B .5B 6B   7B] 16-bit DD 2A 16-bit FD 2A 16-bit 2 A 16-bit 
Description The instruction copies the contents of the memory location specified by the 16-bit address into low-order register and then copies the contents of the next memory location into high-order register. 
Flags   No flags are affected. 
Example The memory locations 2050h and 20.5 1h contain the data bytes 19h and 86h respectively. Copy the memory contents into BC and IX registers. 
Instruction:   LD   BC,   (2050H)      Hex Code:   ED   4B   50 20 
Memory Contents 
Register Contents After Instruction 
2050 2051 
19 86 
86 
19 
C 
Instruction:   LD   IX,   (2050H)      Hex Code:   DD   2A   50 20 
Memory Contents 
Register Contents After Instruction 
2050 2051 
19 
IX 
86 
19 
LD (16-BIT), rp: LOAD CONTENTS OF REGISTER PAIR OR 
INDEX REGISTER INTO TWO CONSECUTIVE MEMORY LOCATIONS 
LD (16-BIT), XY: LD (16-BIT), HL: 
Opcode Operand 
LD LD LD LD 
(16-Bit), ip (16-bit), IX (16-bit), lY (16-bit), HL 
Bytes MC /T-States 
4       6 720(4,4,3,3,3,3) 
3       5 /16 
Hex Codes 
BC DE HL SP ED [43  53  63  73] 16-bit DD 22 16-bit FD 22 16-bit 22 16-bit 
Description Tiie instruction copies the contents of the low-order register into memory location specified by the 16-bit address and copies the contents of the high-order register into the next memory location. 
Flags   No flags are affected. 
Example The BC register contains data 408Fh. Copy the register contents into memory locations 2050h and 205Ih
Instruction:   LD   (2050H),   BC      Hex Code:   ED   43   50 20 
Register Contents Before Instruction 
Memory Contents After Instruction 
40 
8F 
C 
8F 
"lo" 
2050 2051 
LD SP, HL: COPY HL OR INDEX REGISTER INTO STACK POINTER LD SP, IX: LD SP, lY: 
Opcode Operand Bytes     MC /T-States     Hex Codes 
LD SP, HL 1          1/6 F9 
LD SP, IX 2          2  /10(4,6) DD F9 
LD SP, lY FD F9 
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Description The instruction copies the contents of the HL register or an index register into the stack pointer. 
Flags  No flags are affected. 
Example The HL register contains 2050h. Specify the contents of the stack pointer after executing the following instruction. 
Instruction: LD SP, HL      Hex Code: F9 
After the execution of the above instruction, both the stack pointer and the HL register will have 20.50h. The contents of the source are not destroyed. 
LDD: COPY DATA FROM SOURCE MEMORY TO 
DESTINATION MEMORY, AND DECREMENT MEMORY POINTERS AND COUNTER 
Opcode      Operand      Bytes      MC /T-States Hex Codes 
LDD 1 4/16(4,4,3,-5)        ED A8 
Description The contents of the memory location addressed by the HL register are copied into the memory location addressed by the DE register. Then registers BC, DE, and HL are decremented. In this instruction, HL functions as a source memory pointer, DE as a destination memory pointer, and BC as a counter. 
	s 
	z 
	H 
	P/V 
	N 
	C 

	
	
	
	0 
	
	0/1 
	0 
	


P/V = 0 if BC = 0 = 1 if BC 0 
Example The memory locations 2070h, 207 1h, and 2072h contain 97h, 4Fh, and 7Ah, respectively. The contents of the registers are HL = 2072h, DE = 2045h, and BC = OIFFh- Show the contents of memory locations and registers after the execution of the instniction LDD. 
Instruction: LDD      Hex Code: ED A8 
	
	Register Contents Before Instruction 
	
	
	Memory Contents 
	
	Register Contents After Instruction 

	B 
	01 FF 
	C 
	2044 
	
	B 
	01 FE 

	D 
	20 45 
	E 
	r^2045 
	7A 
	D 
	20 44 

	H 
	20 72 
	L 
	
	
	H 
	20 71 

	
	
	
	2070 
	97 
	
	

	
	
	
	2071 
	4F 
	
	

	
	
	
	L-2072 
	
	
	


C E L 
LDDR: COPY DATA FROM SOURCE MEMORY TO 
DESTINATION MEMORY, AND DECREMENT MEMORY POINTERS AM) COUNTER UNTIL COUNTER IS ZERO 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
LDDR 2 5/21(4,4,3,5,5) if BC=itO        ED B8 
4/16(4,4,3,5) if BC = 0 
Description The contents of the memory location addressed by the HL register are copied into the memory location addressed by the DE register. Then registers BC, DE, and HL are decremented, and the copying process is continued until BC = 0. In this instruction, HL functions as a source memory pointer, DE as a destination memory pointer, and BC as a counter. 
S   Z        H        P/V   N C 
Flags 
	
	
	
	0 
	
	0 
	0 
	


Example The memory locations 207 1h and 2072h contain 97h and 4Fh, respectively. The contents of the registers are HL = 2072h, DE = 2045h, and BC = 0002h. Show the contents of memory locations and registers after the execution of the instruction LDDR. 
Instruction: LDDR      Hex Code: ED B8 
	
	Register Contents Before Instruction 
	
	
	Memory Contents 
	
	Register Contents After Instruction 

	B 
	00 02 
	C 
	1—*2044 
	97 
	B 
	00 00 

	D 
	20 45 
	E 
	
	r*2045 
	4F 
	D 
	20 43 

	H 
	20 72 
	L 
	
	
	
	H 
	20 70 

	
	
	
	
	2070 
	
	
	

	
	
	
	
	-2071 
	
	
	

	
	
	
	L-2072 
	
	
	


C E L 
LDI: COPY DATA FROM SOURCE MEMORY TO DESTINATION MEMORY, INCREMENT MEMORY POINTERS, AND DECREMENT COUNTER 
Opcode     Operand     Bytes     MC /T-States        Hex Codes 
LDI 2 4/16(4,4,3,5)        ED AO 
Description The contents of the memory location addressed by the HL register are copied into the memory location addressed by the DE register. Then DE and HL are incremented and BC is decremented. In this instruction, HL functions as a source memory pointer, DE as a destination memory pointer, and BC as a counter. 
APPENDIX A 
S Z 
H 
P/V  N C 
Flags 
	
	
	
	0 
	
	0/1 
	0 
	


P/V = 0 if BC = 0 = 1 if BC # 0 
Example The memory locations 2070h, 207 1h, and 2072h contain 97h, 4Fh, and 7Ah, respectively. The contents of the registers are HL = 2070h, DE = 2045h, and BC = OIFFh- Show the contents of memory locations and registers after the execution of the instruction LDI. 
Instruction: LDI 
Hex Code: ED AO 
	
	Register Contents Before Instruction 
	
	
	Memory Contents 
	
	
	Register Contents After Instruction 
	

	B 
	01 FF 
	C 
	2044 
	
	
	B 
	01 FE 
	C 

	D 
	20 45 
	E 
	2045 
	97 
	
	D 
	20 46 
	E 

	H 
	20 70 
	L 
	
	
	
	H 
	20 71 
	L 

	
	
	
	L-2070 
	
	
	
	
	

	
	
	
	2071 
	4F 
	
	
	
	

	
	
	
	2072 
	7A 
	
	
	
	


LDIR: COPY DATA FROM SOURCE MEMORY TO 
DESTINATION MEMORY, INCREMENT MEMORY POINTERS, AND DECREMENT COUNTER UNTIL IT IS ZERO 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
LDIR 2 5/21(4,4,3,5,5)if BC=?i=0        ED BO 
4/16(4,4,3,5) if BC = 0 
Description The contents of the memory location addressed by the HL register are copied into the memory location addressed by the DE register. Then registers DE and HL are incremented and BC is decremented, and the copying process is continued until BC = 0. In this instruction, HL functions as a source memory pointer, DE as a destination memory pointer, and BC as a counter. 
	s 
	z 
	H 
	P/V 
	N 
	c 

	
	
	
	0 
	
	0 
	0 
	


Example The memory locations 2070h, 207 1h, and 2072h contain 97h, 8Ah, 4Fh, respectively. The contents of the registers are HL = 2070h, DE = 2045h, and BC = 0003h- Show the contents of memory locations and registers after the execution of the instruction LDIR. 
Instruction: LDIR 
Hex Code: ED BO 
B D H 
Register Contents Before Instruction 
00 
20 
03 
45 
20 70 
•2045 •2046 •2047 
-2070 -2071 -2072 
Memory Contents 
97 
8A 
4F 
Register Contents After Instruction 
	B 
	00 
	00 
	C 

	D 
	20 
	48 
	E 

	H 
	20 
	73 
	L 


NEG: TAKE 2's COMPLEMENT (NEGATE ACCUMULATOR) 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
NEG 2 2/8 (4, 4) ED 44 
Description The instruction converts the accumulator contents into 2's complement by subtracting the contents from 0. 
	
	S 
	z 
	H 
	P/V 
	N C 

	Flags 
	y 
	y 
	y 
	y 
	1 y 


Example The accumulator holds 97h. Specify the contents of the accumulator and explain the S and CY flags after the execution of NEG instruction. 
Mnemonics: NEG 
Hex Code: ED 44 
Before Instruction: (A) = 1 0 0 1 After Instruction : (A) = 0 1 10 Flags : S = 0, CY = 1 
0 111 (97h) 
1 0 0 1 (69h) 
The Sign flag is reset because D7 = 0, and the Carry flag is set because the larger number 97h is subtracted from 00. However, the result does not mean that 69h is a negative number; it depends upon the interpretation of 97h. The appropriate interpretation is that 97h and 69h are 2's complements of each other. 
NOP: NO OPERATION 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
NOP 1 1/4 00 
Description No operation is performed. The instruction is fetched and decoded; however, no operation is executed. 
600 
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Flags  No flags are affected. 
Comments The instruction is used to increase time delays or delete and insert instructions while troubleshooting. 
ORr 
OR 8-Bit: OR (m) 
: LOGICALLY OR REGISTER, 8-BIT, OR MEMORY WITH ACCUMULATOR 
	Opcode 
	Operand 
	Bytes 
	MC /T-States 
	
	Hex Codes 

	OR 
	r 
	I 
	1 /4 
	A B 
	C    D E 

	
	
	
	
	B7 BO 
	Bl   B2 B3 

	OR 
	8-bit 
	2 
	2 /7(4,3) 
	F6 d 
	

	OR 
	(HL) 
	1 
	2 /7(4,3) 
	B6 
	

	OR 
	(IX + d) 
	.3 
	5 /19(4,4,3,.5,3) 
	DD B6 
	d 

	
	(lY + d) 
	
	
	FD B6 
	d 


H 
Description The contents of a register or memory or an 8-bit word are ORed with the contents of the accumulator. The memory address is specified by the contents of the HL register or an index register with a displacement byte d. 
S Z 
H 
P/V  N C 
Flags 
0 
0 0 
Example The contents of the accumulator and register B are .54h and 82h respectively. Logically OR (B) with (A) and show the flags and the contents of each register after ORing. 
Mnemonics: OR Logical OR 
B 
Hex Code: BO Register Contents After Instruction 
	(A) 
	1 
	0 
	0 0 
	0 0 
	1 0 
	(82h) 
	
	
	S Z 
	H 
	PNC 

	(B) 
	0 
	1 
	0 1 
	0 1 
	0 0 
	(54h) 
	A 
	D6 
	1,0, 
	.0 
	.0 0 0 

	(A) 
	1 
	1 
	0 1 
	0 1 
	1 0 
	(D6h) 
	B 
	54 
	X 


Example Write mnemonics to OR the contents of memory location 2070h with the contents of the accumulator assuming index register lY contains address 2000h. 
Mnemonics: OR   (lY -I- 70H)      Hex Code: FD   B6 70 
OUT (8-Bit), A: OUTPUT DATA FROM ACCUMULATOR TO PORT WITH 8-BIT ADDRESS 
Opcode     Operand     Bytes     MC/T-States Hex Code 
OUT          8-Bit          2           3/11(4,3,4) D3 8-bit 
Description The contents of the accumulator are copied into the I/O port specified by the 8-bit address. 
Flags  No flags are affected. 
OUT (C), r: OUTPUT DATA FROM REGISTER r TO THE PORT WITH ADDRESS IN C 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
A   B    C    D   E    H L OUT (C), r 2 3/12   ED     79   41   49   51   59   61 69 
Description The contents of register r are copied into the I/O port specified by the address in register C. 
Flags  No flags are affected. 
OUTD: OUTPUT DATA FROM MEMORY AND DECREMENT BYTE COUNTER AND MEMORY POINTER 
Opcode     Operand     Bytes     MC/T-States        Hex Code 
OUTD 2 4/16(4,5,3,4)       ED AB 
Description This instruction copies data from the memory location specified by the contents of register HL into the output port specified by register C. Register B is used as a byte counter, and both B and HL are decremented by one. 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	C 

	? 
	0/1 
	
	? 
	
	? 
	1 
	


OTDR: OUTPUT DATA FROM MEMORY AND DECREMENT 
MEMORY POINTER AND BYTE COUNTER UNTIL BYTE COUNTER IS ZERO 
Opcode     Operand     Bytes     MC /T-States Hex Code 
OTDR 2 5/21(4,5,3,4,5)       ED BB 
if B?tO 4 /16(4,5,3,4) if B=0 
Description This instruction copies data from the memory location specified by the contents of register HL into the output port specified by register C. Register B is used as a byte counter, and both B and HL are decremented by one; the instruction is repeated until B = 0. 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	C 

	? 
	1 
	
	? 
	
	? 
	1 
	


Example The contents of the registers are HL = 2070h and BC = 0401h- Show the contents of memory locations and registers after the execution of the instruction OTDR. 
Instruction: OTDR      Hex Code: ED BB 
The instruction copies data starting from memory 2070h to the output port 01 h four times until register B = 0. Assuming the port OIh is a printer, the four bytes will be printed. The contents of registers at the end of the instruction are as follows: 
Register Contents Register Contents 
Before Instruction After Instruction 
	B 
	04 
	01 
	C 
	B 
	00 
	01 

	H 
	20 
	70 
	L 
	H 
	20 
	6C 


OUTI: OUTPUT DATA FROM MEMORY, DECREMENT BYTE COUNTER, AND INCREMENT MEMORY POINTER 
Operand      Bytes      MC /T-States 
4/16(4,5,3,4) 
Opcode OUTI 
Bytes 
2 
Hex Code 
ED A3 
Description This instruction copies data from the memory location specified by the contents of register HL into the output port specified by register C. The contents of register B are decremented and those of register HL are incremented by one. 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	C 

	7 
	0/1 
	
	? 
	
	? 
	1 
	


OTIR: OUTPUT DATA FROM MEMORY, INCREMENT 
MEMORY POINTER, AND DECREMENT BYTE COUNTER UNTIL BYTE COUNTER IS ZERO 
Opcode     Operand     Bytes     MC /T-States Hex Code 
OTIR 2 .5/21(4,.5,3,4,.5)       ED B3 
if B=it0 
4 /16(4,.5,3,4) if B = 0 
Description This instruction copies data from the memory location specified by the contents of register HL into the output port specified by register C. The contents of register B are decremented and those of register HL are incremented by one. The instruction is repeated until B = 0. 
S   Z       H       P/V   N C 
	? 
	1 
	
	? 
	
	7 
	1 
	


Example The contents of the registers are HL = 2070h and BC = 0407h. Show the contents of memory locations and registers after the execution of the instruction OTIR. 
Instruction: OTIR      Hex Code: ED B3 
The instruction copies data starting from memory location 2070h into output port OVh- The instruction is repeated four times until B = 0, and every time data is taken from the next memory location by incrementing HL. The contents of registers are as follows: 
Register Contents Register Contents 
Before Instruction After Instruction 
	B 
	04 
	07 
	C 
	B 
	00 
	07 

	H 
	20 
	70 
	L 
	H 
	20 
	74 


POP rp: PLACE STACK CONTENTS INTO REGISTER PAIR OR INDEX REGISTER 
POP rx: 
Opcode     Operand     Bytes     MC /T-States 
POP POP POP 
ip 
IX lY 
3 /10(4,3,3) 
4 /14(4,4,3,3) 
Hex Codes 
BC   DE HL AF 
CI   Dl El Fl 
DD El 
FD El 
Description The contents at the top of the stack indicated by the address in the stack pointer aie copied into the low-order register (C, E, L, or F) or as a low-order byte into an index register and the stack pointer is incremented by one. Again, the contents of the top of the stack (after incrementing the stack pointer) are copied into the high-order register or as a high-order byte into an index register. The stack pointer is incremented by one to indicate the new top of the stack. 
Flags   No flags are affected. 
Example Assume the stack pointer contains 2090h, data byte 50h is stored in location 2090h and 80h is stored in location 2091h. Transfer the contents of the top two stack locations into HL registers. 
Mnemonics: POP   HL      Hex Code: El 
Register Contents Stack Register Contents 
Before Instruction Contents After Instruction 
	H 
	XX 
	XX 
	L 
	2090 
	50 
	H 
	80 
	50 

	SP 
	2090 
	
	2091 
	80 
	SP 
	2092 


PUSH rp: COPY REGISTER PAIR OR INDEX REGISTER ON STACK 
PUSH rx: 
Opcode 
Operand     Bytes     MC /T-States 
Hex Codes 
PUSH PUSH PUSH 
rp IX lY 
.3 /10(4,3,3) 4 /I4(4,4,3,3) 
BC   DE HL AF 
C5   D5 E5 F5 
DD E5 
FD E5 
Description The contents of the specified register pair or index register are copied into the stack locations as follows. First, the stack pointer is decremented by one and the contents of the high-order register (B, D, H, A) or high-order byte of the index register are copied into the memory location indicated by the stack pointer. The stack pointer is decremented again and the contents of the low-order register (C, E, L, F) or the low-order byte of the index register are copied into that location. 
Flags   No flags are affected. 
Example Assume that the stack pointer contains 2099h, register H contains 40h, and register L contains FSh- Save the contents of HL on the stack. 
Mnemonics: PUSH HL 
Hex Code: E5 
Register Contents Before Instruction 
Stack Contents 
Register Contents After Instruction 
	H 
	40 
	F8 
	L 2097 
	F8 
	H 
	40 
	F8 

	SP 
	2099 
	2098 
	40 
	SP 
	2097 

	
	
	
	2099 
	XX 
	
	
	


L 
RES b, r:    RESET BIT IN A REGISTER OR IN MEMORY RES b, (m): 
Opcode       Operand       Bytes     MC /T-States Hex Codes 
RES b, r 2 2 /8(4,4) Register 
(Bit) A B    C    D    E     H L 
CB (0)   87 80   81   82    83    84 85 
CB (1)   8F 88   89   8A   8B   8C 8D 
CB (2)   97 90   91   92    93   94 95 
	CB (3) 
	9F 
	98 
	99 
	9A 
	9B 
	9C 
	9D 

	CB (4) 
	A7 
	AO 
	Al 
	A2 
	A3 
	A4 
	A5 

	CB (5) 
	AF 
	A8 
	A9 
	AA 
	AB 
	AC 
	AD 

	CB (6) 
	B7 
	BO 
	Bl 
	B2 
	B3 
	B4 
	B5 

	CB (7) 
	BP 
	B8 
	B9 
	BA 
	BB 
	BC 
	BD 

	
	
	
	Bit 
	
	
	
	

	
	
	
	0 
	1 
	2 
	3 4 
	5 


6 7 
RES        b, (HL) 2        4/15 CB   [86 8E 96 9E A6 AE B6 BE] 
(4,4,4,3) 
RES        b, (IX + d) 4        6/23 DD CB d [86 8E 96 9E A6 AE B6 BE] 
(4,4,3,5,4,3) 
RES        b, (lY + d) FD CB d [86 8E 96 9E A6 AE B6 BE] 
Description   The specified bit is reset in a register or in memory. The values of b (0-7) coixespond to bits D0-D7. 
Flags   No flags are affected. 
Example   Write instructions to reset bit 3 in register A and bit 0 in memory 2055h. Assume that registers HL are already loaded with the address 2055h. 
Mnemonics Hex Code 
RES   3, A CB 9F 
RES   0, (HL)      CB 86 
RET: RETURN FROM SUBROUTINE UNCONDITIONALLY 
Opcode      Operand      Bytes      MC /T-States       Hex Code RET 1 3/10(4,3,3) 
Description The program execution is transferred from the subroutine to the calling program. The two bytes from the top of the stack are copied into the program counter and the program execution begins at the new address. The instruction is equivalent to POP Program Counter. 
Flags   No flags are affected. 
Example Assume that the stack pointer contains 2095h. Explain the effect of the RET instruction if the contents of the stack location are as follows: 
2095 2096 
50 
20 
After instruction RET, the contents of the top two stack locations are copied into the program counter, and the program execution is transferred to location 2050h. The stack pointer is incremented to location 2097h. 
RET cc: RETURN FROM SUBROUTINE IF CONDITION IS TRUE 
Opcode 
RET 
Operand 
cc 
Condition Flags Hex Codes 
Bytes 1 
NZ CO 
MC /T-States 
3/11(5,3,3) ; 1 /5 ; 
If condition is true If condition is false 
Z C8 
NC DO 
C D8 
PO EO 
PE E8 
P 
FO 
M F8 
Description The program execution is transferred from the subroutine to the calling program if the flag condition is true. If the condition is false, the program continues to the next memory location. 
Flags  No flags are affected. 
RETI: RETURN FROM INTERRUPT 
Opcode     Operand     Bytes     MC/T-States        Hex Code 
RETI 2 4/14(4,4,3,3)       ED 4D 
Description The instruction copies the contents of the top two stack locations into the program counter, and the program execution is transferred to the address stored on the stack; this execution is similar to that of a RET instruction. 
This instruction is used at the end of a maskable interrupt service routine. In addition to transferring the program execution to the interrupted program, it indicates to a Z80 family I/O device that it is the end of the service routine. 
Flags   No flags are affected. 
RETN: RETURN FROM NONMASKABLE INTERRUPT 
Opcode     Operand     Bytes     MC /T-States        Hex Code 
RETN 2 4/14(4,4,3,3)       ED 45 
Description The instruction copies the contents of the top two stack locations into the program counter and the program execution is transferred to the address stored on the stack; this execution is similar to that of a RET instruction. 
This instniction is used at the end of the nonmaskable interrupt service routine. In addition to transferring the program execution to the interrupted program, it restores the status of the maskable interrupts by copying the state of IFF2 (Interrupt Flip-flop 2) into IFFl (Intemipt Flip-flop 1). 
RLA: ROTATE ACCUMULATOR LEFT THROUGH CARRY Opcode     Operand     Bytes     MC /T-States 
RLA 1 1 /4 
Hex Code 
17 
607 
Description Each bit in the accumulator is rotated left by one position through the Cany flag. Bit D7 is placed into the CY position and the CY flag is placed into bit Dq. 
	CY 
	< 
	D7 
	
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 

	
	
	
	
	
	<
	
	
	
	


Flags 
	s 
	z 
	H 
	P/V 
	N 
	c 

	
	
	
	0 
	
	
	0 
	


The CY flag is modified according to bit D7. 
Example The accumulator contains A7h and the CY flag is reset. Show the contents of the accumulator and the CY flag after the execution of the instruction RLA. 
Mnemonics: RLA 
Hex Code: 17 
Accumulator Contents Before Instruction 
Accumulator Contents After Instruction 
	CY 
	D7 
	D6 
	
	D4 
	D3 
	D2 
	D, 
	Do 

	
	0 
	
	K 
	
	_1^ 
	
	
	-K 
	_1^ 
	_1 
	

	
	
	
	
	
	
	
	
	

	
	1 
	
	0 
	1 
	0 
	0 
	1 
	1 
	1 
	0 
	


RLCA: ROTATE ACCUMULATOR LEFT 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
RLCA 1 1/4 07 
Description Each bit in the accumulator is rotated left by one position. Bit D7 is placed into the position of bit Do and the CY flag is modified according to bit D7. 
CY 
	D7 
	Dfi 
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 

	
	
	
	
	<
	
	
	


s z 
H 
P/V   N C 
Flags 
	
	
	
	0 
	
	
	0 
	/ 


Example The accumulator contains A7h and the CY flag is reset. Show the contents of the accumulator and the CY flag after the execution of the instruction RLCA. 
Mnemonics: RLCA 
Hex Code: 07 
Accumulator Contents Before Instruction 
Accumulator Contents After Instruction 
CY 
	D7 
	
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 
	

	
	
	_ 1 ^ 
	_ 0^ 
	_ 0^ 
	_ 1 ^ 
	_ 1 ^ 
	„ 1 
	

	
	
	
	
	
	
	
	
	

	0 
	1 
	0 
	0 
	1 
	1 
	1 
	1 
	


RL r: ROTATE EACH BIT LEFT IN REGISTER OR MEMORY 
THROUGH CARRY RL (m): 
Opcode Operand Bytes MC /T-States Hex Codes 
A     B    C    D   E    H L 
RL          r 2 
RL (HL) 2 
RL (IX + d) 4 
RLC (lY + d) 
2/8(4,4) CB 17 
4/15(4,4,4,3)      CB 16 6 /23(4,4,3,5,4,3) DD CB FD CB 
10    11   12   13   14 15 
d 16 d 16 
Description Each bit in the specified register or memory is rotated left by one position through carry. Bit D7 is placed into the CY flag and the CY flag is placed into bit Dq. The memory address is specified using either HL or an index register. 
	CY 
	<— 
	D7 
	De 
	Ds^ 
	D4 
	D3^ 
	D2 
	D, 
	Do 

	
	
	
	
	
	
	
	
	
	


Flags 
S Z 
717 
H 
P/V   N C 
/ lo |y 
RLC r: ROTATE EACH BIT LEFT IN REGISTER OR MEMORY RLC (m): 
	Opcode Operand 
	Bytes 
	MC /T-States 
	Hex Codes 

	RLC r 
	2 
	2 /8(4,4) 
	A    B    C    D E 

	
	
	CB 
	07   00   01   02 03 

	RLC (HL) 
	2 
	4 /15(4,4,4,3) 
	CB 06 

	RLC    (IX + d) 
	4 
	6 /23(4,4,3,5,4,3) 
	DD  CB   d 06 

	RLC    (lY + d) 
	
	
	FD   CB   d 06 


Description Each bit in the specified register or memory is rotated left by one position. Bit D7 is placed into the position of bit Do and the CY flag is modified according to bit D7. The memory address is specified using either HL or an index register. 
	CY 
	«— 
	
	
	
	D4 
	D3 
	D2^ 
	D, 
	Do 

	
	
	
	
	
	
	
	
	<■ 
	


Flags 
S Z 
TTT" 
H 
P/V   N C 
y loiy 
RLD: ROTATE LEFT BCD DIGIT BETWEEN ACCUMULATOR AND MEMORY 
Opcode     Operand     Bytes     MC /T-States Hex Code 
RLD 2 5/18(4,4,3,4,3)       ED 6F 
Description The instruction siiifts 4-bit digits between memory and the accumulator as shown below. The four low-order bits (D3-D0) in the memory location indicated by HL register are shifted left, bits D7-D4 are copied into the low-order bits of the accumulator, and bits D3-D0 of the accumulator are copied into bits D3-D0 of the memory. 
(A) 
Flags 
	D7 De Ds D4 
	D3 D2 D, Do 
	
	D7 Dg D5 D4 
	D3 E 
	>2 D, Do 

	
	
	
	t 
	


(HL) 
S Z 
H 
P/V  N C 
y y 
0 
y 
0 
Example The accumulator contains 67h and the memory location 2050h contains 92h. If the HL register holds the address 2050h, show the contents of the memory location and the accumulator after the execution of the instruction RLD. 
Mnemonics: RLD 
Hex Code: ED 6F 
Contents Before Instruction 
A 
2050 
Contents After Instruction 
2050 
RRA: ROTATE ACCUMULATOR RIGHT THROUGH CARRY 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
RRA 1 1/4 IF 
Description Each bit in the accumulator is rotated right by one position through the Carry flag. Bit Do is placed into the CY position, and the CY flag is placed into bit D7. 
	
	
	

	L 
	CY 
	
	D7 
	
	
	D4 
	^D3 
	^D2. 
	
	
	


S   Z        H        P/V   N C 
	
	
	
	0 
	
	
	0 
	y 


The CY flag is modified according to bit Dq. 
Example The accumulator contains A7h and the CY flag is reset. Show the contents of the accumulator and the CY flag after the execution of the instruction RRA. 
Mnemonics: RRA     Hex Code: IF 
	Accumulator Contents 
	CY 
	D7 
	De 
	D5 
	D4 
	D3 
	D2 
	D, 
	Do 
	

	Before Instruction 
	
	0 
	
	1 
	0 -» 
	1 
	0 
	0 
	1 
	1 
	1 
	—> 


Accumulator Contents After Instruction 
	0 
	1 
	0 
	1 
	0 
	0 
	1 
	1 


RRCA: ROTATE ACCUMULATOR RIGHT 
Opcode     Operand     Bytes     MC /T-States     Hex Code 
RRCA 1 1/4 OF 
Description Each bit in the accumulator is rotated right by one position. Bit Do is placed in the position of bit D7 and the CY flag is also modified according to bit Dq. 
CY 
r 
	D7 
	D6_ 
	D5_ 
	^D4_ 
	.^3. 
	
	
	Do 

	
	
	
	
	
	
	
	t 


s z 
H 
P/V   N C 
Flags 
0 
0 / 
Example The accumulator contains A7h and the CY flag is reset. Show the contents of the accumulator and the CY flag after the execution of the instruction RRCA. 
Mnemonics: RRCA      Hex Code: OF 
Accumulator Contents Before Instruction 
	CY 
	Dv 
	
	Ds 
	D4 
	D3 
	D2 
	D, 
	Do 
	

	0 
	
	
	1 
	0 
	1 
	0 
	0 
	1 
	1 
	1 
	—> 


Accumulator Contents After Instruction 
	1 
	1 
	0 
	1 
	0 
	0 
	1 
	1 


RR r: ROTATE EACH BIT RIGHT IN REGISTER OR MEMORY 
THROUGH CARRY RR(in): 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
A  B  C D   E   H L 
	RR 
	r 
	2 
	2 /8(4,4) 
	CB IF 18 
	19 lA IB IC 

	RR 
	(HL) 
	2 
	4 /15(4,4,4,3) 
	CB IE 
	

	RR 
	(IX + d) 
	4 
	6 /23 
(4,4,3,5,4,3) 
	DD CBd 
	IE 

	RR 
	(lY + d) 
	
	
	FD CB d 
	IE 


Description Each bit in the specified register or memory is rotated right by one position through carry. Bit Do is placed into the CY flag and the CY flag is placed into bit D7. The memory address is specified using either HL or an index register. 
	CY 
	—> 
	D7 
	
	D5_ 
	
	D3_ 
	^D2_ 
	
	^Do 

	
	
	
	
	
	
	
	
	


s z 
H 
P/V   N C 
Flags 
	y 
	y 
	0 
	y ■ 
	0 y 


RRC r: ROTATE EACH BIT RIGHT IN REGISTER OR MEMORY RRC (m): 
Opcode      Operand      Bytes      MC /T-States Hex Codes 
A  B  C  D   E   H L 
	RRC 
	r 
	2 
	2 /8(4,4) 
	CB 
	OF 08 
	09 OA 

	RRC 
	(HL) 
	2 
	4 /15(4,4,4,3) 
	CB 
	OE 
	

	RRC 
	(IX + d) 
	4 
	6 /23 (4,4,3,5,4,3) 
	DD 
	CB d 
	OE 

	RRC 
	(lY + d) 
	
	
	FD 
	CB d 
	OE 


Description Each bit in the specified register or memory is rotated right by one position. Bit Do is placed into the position of bit D7, and the CY flag is modified according to bit DoThe memory address is specified using either HL or an index register 
CY 
D7 
Dfi 
D, 
D4 
D, 
D, 
D, 
Do 
Flags 
S Z 
7T7 
H 
P/V   N C 
y lo 1/ 
RRD: ROTATE RIGHT BCD DIGIT BETWEEN ACCUMULATOR AND MEMORY 
Opcode     Operand     Bytes     MC/T-States Hex Code 
RRD 
5 /18(4,4,3,4,3) 
ED 67 
Description The instruction shifts 4-bit digits between memory and the accumulator as shown below. The four high-order bits (D7-D4) in the memory location indicated by HL are shifted right, bits D3-D0 are copied into low-order bits of the accumulator, and bits D3-D0 of the accumulator are copied into bits D7-D4 of the memory. 
(A) 
Flags 
	
	
	i 
	I 

	D7 De D5 D4 
	D3 D2 Di Do 
	
	D7 De D5 
	D4 
	D3 D2 Di Do 

	
	t 
	
	
	
	


	S 
	Z 
	H 
	P/V 
	N 
	c 

	/ 
	y 
	
	0 
	
	y 
	0 
	


Example The accumulator contains 67h and the memory location 2050h contains 92h. If the HL register holds the address 20.50h, show the contents of the memory location and the accumulator after the execution of the instruction RRD. 
Mnemonics: RRD 
Contents Before ^ Instruction 
Contents After 
Instruction 
A 
Hex Code: ED 67 
2050 
20.50 
RST: RESTAET Opcode 
RST 
	Operand Bytes 
	MC /T-States 
	Hex Codes 

	0 to 7 1 
	3 /11(5,3,3) 
	As shown below 

	
	Restart 
	Hex 

	upcoae/uperanci 
	Address (Hex) 
	g~i i„ 
Lode 

	RST OOH 
	0000 
	C7 

	RST 08H 
	0008 
	CF 

	RST lOH 
	0010 
	D7 

	RST 18H 
	0018 
	DF 

	RST 20H 
	0020 
	E7 

	RST 28H 
	0028 
	EF 

	RST 30H 
	0030 
	F7 

	RST 38H 
	0038 
	FF 


Description The RST instructions are 1-byte call instructions to one of eight memory locations on page 0. The instructions are generally used in conjunction with intenupts and insetted using external hardware. These instructions are also used in a program as software instructions to set up breakpoints or to transfer program execution to one of the eight memory locations. 
Flags  No flags are affected. 
SBC A, r: 
SUBTRACT REGISTER AND BORROW FROM ACCUMULATOR SBC A, 8-BIT: SUBTRACT 8-BIT AND BORROW FROM ACCUMULATOR 
SUBTRACT MEMORY AND BORROW FROM ACCUMULATOR 
Operand       Bytes      MC /T-States 
SBC A, (m): Opcode 
Hex Codes 
A B C D E  H L 
1 1/4 9F 98 99 9A 9B 9C 90 
2 2 /7(4,3) DE 8-Bit 1            2 /7(4,3) 9E 
3 5 /I9(4,4,3,5,3)      DO 9E d 
FD9Ed 
Description The contents of the operand (register, 8 bit data, memory) and the Carry flag CY (as borrow) are subtracted from the contents of the accumulator, and the result is placed in the accumulator. 
	SBC 
	A, r 

	SBC 
	A, 8-Bit 

	SBC 
	A, (HL) 

	SBC 
	A, (IX + d) 

	SBC 
	A, (lY + d) 


S Z 
H 
P/V   N C 
Flags 
	y 
	y 
	y 
	
	y 
	1 
	y 


Example The register BC contains 7498h and the register DE contains 19A1h. Subtract (DE) from (BC) and store the result in BC. 
Step 1: Copy (C) into A and subtract (E) using SUB instruction. The Z80 performs this subtraction in 2's complement. Save the result F7h in register C. Copy (B) into A and subtract (D) using SBC instruction to account for the borrow of the previous result. The Z80 performs this subtraction in 2's complement. 
Save the result (.5Ah) in B. The SBC instniction resets the previous CY flag. 
Step 2: Step 3: 
Step 4: 
(B) 
(B) 
(A): -(E): 
98h AIh 
(A): 1/F7h 
(A) (D) Borrow 
74h 19h 1 
5Af 
Comments The instruction is generally used in 16-bit subtraction or multi-byte subtraction; the borrow generated by Dy is subtracted from bit Ds in the next subtraction. This instruction should not be used to account for carries (borrows) generated in subtracting 8-bit numbers. 
SBC HL, rp: SUBTRACT REGISTER PAIR AND BORROW FROM HL 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
BC DE HL SP 
SBC HL, rp 2 4 /15(4,4,4,3)      ED 42 52 62 72 
Description The contents of the operand (BC, DE, HL, or SP) and the Carry flag (as borrow) are subtracted from the contents of the HL register, and the result is stored in the HL register. 
	S 
	z 
	H 
	P/V 
	N 
	C 

	y 
	y 
	
	7 
	
	y 
	1 
	y 


Example The HL register contains F8.50h, the DE register contains 8200h, and the Carry flag CY is set. Subtract the contents of DE from HL with borrow. 
Mnemonics: SBC HL, DE     Hex Code: ED 52 
Subtraction with Borrow 
(HL): 1111 1000 0101 0000 (F850h) (DE): 1000   0010   0000   0000 (8200h) 
CY : 1_ 
0/0111   Olio  0100   1111 (764Fh) 
Register Contents After Instruction 
	D 
	82 
	00 
	E 

	H 
	76 
	4F 
	L 


615 
SCF: SET CARRY FLAG 
Opcode       Operand Bytes 
SCF 1 Description   The Carry flag (C) is set to 1, 
MC /T-States 
1 IA 
Flags 
	s 
	z 
	H 
	P/V 
	N 
	c 

	
	
	
	0 
	
	
	0 
	1 


SET b, r: SET b, (m): 
Opcode 
SET 
SET BIT IN REGISTER OR MEMORY 
Operand 
b, r 
Bytes 
2 
MC /T-States 
4 /8(4,4) 
Hex Code 
37 
Hex Codes 
Register (Bit) A   B   C D CB (0)  C7 CO CI C2 CF C8 C9 CA D7 DO Dl D2 DF D8 D9 DA E2 EA F2 FA 
(1) (2) (3) (4) (5) (6) (7) 
E7 EF F7 FF 
EO E8 FO F8 
El E9 Fl F9 
E C3 CB D3 DB E3 EF F3 FB 
0 1 
Bit 3   4 5 
[CB C6 CE D6 DE E6 EE 
SET        b, (HL) 2 4/15 
(4,4,4,3) 
SET        b, (IX + d) 4 6/23 DO CB d [C6 CE D6 DE E6 EE F6 
(4 4 3 5 4 3) 
SET        b, (lY + d)         4 ' ' ' '    FD CB d [C6 CE D6 DE E6 EE F6 
Description   The specified bit is set in a register or in memory. The values of b (0-7) coixespond to bits D0-D7. 
H L C4 C5 CC CD D4 D5 DC DD E4 E5 EC ED F4 F5 FC FD 
6 7 F6 FE] 
FE] FE] 
Flags   No flags are affected. 
Example Write instructions to set bit 6 in register A and bit 0 in memory 2055h. Assume that HL is already loaded with the address 2055h. 
Mnemonics       Hex Code SET 6, A CB F7 
SET 0, (HL)      CB C6 
SLA r: ARITHMETIC SHIFT LEFT IN REGISTER OR MEMORY SLA (m): 
MC /T-States 
Opcode     Operand Bytes 
	SLA 
	r 
	2 

	SLA 
	(HL) 
	2 

	SLA 
	(IX + d) 
	4 

	SLA 
	(lY + d) 
	


2 /8(4,4) 4 /15 (4,4,4,3) 6/23 
(4,4,3,5,4,3) 
Hex Codes 
A   B    C D CB   27   20   21 22 CB 26 
DD CB 
FD CB 
E H L 23   24 25 
d 16 d 16 
Description Each bit in the specified register or memory is arithmetically shifted left by one position. Bit Dy is placed into the CY flag and 0 is placed into bit Dq. The memory address is specified using either HL or an index register. 
	CY 
	
	
	
	
	
	
	
	
	_Do 

	
	
	
	
	
	
	
	
	
	


0 
Flags 
S Z 
7T7 
H 
P/V   N C 
0 
SRA r: ARITHMETIC SHIFT RIGHT IN REGISTER OR MEMORY SRA (m): 
MC /T-States 
Opcode     Operand Bytes 
	SRA 
	r 
	2 

	SRA 
	(HL) 
	2 

	SRA 
	(IX + d) 
	4 

	SRA 
	(lY + d) 
	


2 /8(4,4) 4 /15 (4,4,4,3) 6/23 
(4,4,3,5,4,3) 
Hex Codes 
A    B    C    D E    H L 
CB   2F   28   29   2A 2B   2C 2D CB 2E 
DD   CB   d 2E 
FD   CB   d 2E 
Description Each bit in the specified register or memory is arithemetically shifted right by one position. Bit Do is placed into the CY flag and bit D7 remains unchanged. The memory address is specified using either HL or an index register. 
Flags 
	1 
s 
	z 
	H 
	P/V 
	N 
	c 

	/ 
	y 
	
	0 
	
	y 
	0 
	y 


	D7 
	
	D5_ 
	
	
	
	^D, 
	^Do 
	
	CY 

	
	
	
	
	
	
	
	
	
	


SRL r: LOGICAL SHIFT RIGHT IN REGISTER OR MEMORY SRL (m): 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
A B  C D   E   H L 2 /8(4,4)        CB   3F 38 39 3A 3B 3C 3D 4 /15(4,4,4,3) CB 3E 6 /23 DD CB d 3E 
(4,4,3,5,4,3) 
FD CB d 3E 
	SRL 
	r 
	2 

	SRL 
	(HL) 
	2 

	SRL 
	(IX + d) 
	4 

	SRL 
	(lY + d) 
	


Description Each bit in the specified register or memory is logically shifted right by one position. Bit Do is placed into the CY flag and 0 is placed into bit Dy. The memory address is specified using either HL or an index register. 
0 
	
	
	
	D4 
	D3 
	D2 
	D, 
	Do 
	
	CY 

	
	
	■» 
	
	
	
	
	
	
	


Flags 
S Z 
TIT 
H 
P/V   N C 
y lo 1/ 
SUB r:       SUBTRACT REGISTER FROM ACCUMULATOR SUB 8-BIT: SUBTRACT 8-BIT FROM ACCUMULATOR SUB (m):   SUBTRACT MEMORY FROM ACCUMULATOR 
Opcode     Operand Bytes MC /T-States Hex Codes 
A B C D E H L 
SUB       r 1 1 /4 97 90 91 92 93 94 95 
SUB       8-Bit 2 2/7(4,3) D6 8-Bit 
SUB        (HL) 1 2/7(4,3) 96 
SUB       (IX + d) 3 5 /19(4,4,3,5,3) DD  96 d 
(lY + d) FD  96 d 
Description The contents of the operand (register, 8-bit, or memory) are subtracted from the contents of the accumulator, and the result is stored in the accumulator. 
	S z 
	H 
	P/V N 
	c 

	y y 
	
	y 
	
	y 1 
	y 


Example  Register B has 47h and the accumulator has 61h. Subtract (B) from (A). 
Mnemonics: SUB   B      Hex Code: 90 
APPENDIX A 
Subtraction 
(A) 0 1 1 0   0 0 0 1 (61h) 
+ 
(B) 10 1110 0 1   (2's comp. 
of 47h) 
Register Contents After Execution SZ  H VNC 
A B 
	lA 
	00   1   0 10 

	47 
	X 


(A)   1    0 0 0 1   1 0 1 0 Complement CY CY CY    0 0 0 1   1 0 1 0 (IAh) 
Example The accumulator contains the byte 76h, and the HL pair contains 2050h. Subtract the byte A7h which is stored in memory location 2050h from the contents of the accumulator. 
Mnemonics: SUB   (HL)      Hex Code: 96 Subtraction (A)        0 1 1 1   0 1 1 O (76h) 
Register Contents After Execution SZ  H VNC 
A 
2050 (Mem)   0 10 1   10 0 1   (2's comp. " 
of A7h) 
	CF 
	10   1 111 1 1 1, 1 1 1 i_ 

	20 
	50 


L 
1 
CY 
110 0 1111 (Complement CY) 110 0   1111 CF 
XOR r:     EXCLUSIVELY OR REGISTER, 8-BIT, OR MEMORY WITH ACCUMULATOR 
XOR 8-bit: XOR (m): 
Opcode     Operand     Bytes     MC /T-States Hex Codes 
A   B   C   D   E    H L XOR       r 1 1/4 AF A8 A9 AA AB AC AD 
XOR        8-Bit 2 2 /7(4,3) EE 8-bit 
XOR        (HL) 1 2/7(4,3) AE 
XOR        (IX+ d) 3 5/19(4,4,3,5,3)     DD AE d 
(lY-l-d) FDAEd 
Description The contents of register, memory, or an 8-bit are exclusively ORed with the contents of the accumulator. The memory address is specified by the contents of the HL register or an index register with a displacement byte d. 
Z80 INSTRUCTION SET 
Flags 
S Z 
TIT 
H 
~0~ 
P/V   N C 
0 0 
Example The contents of the accumulator and register B are 54h and 96h respectively. Exclusively OR (B) with (A) and show the flags and the contents of each register after the operation. 
Mnemonics: XOR Exclusive OR 
B     Hex Code: A8 
(A) 10 0 1 
(B) 0 10 1 
0 110 (96h) 0 1 0 0 (54h) 
(A)   1 1 0 0   0 0 1 0 (C2h) 
Register Contents After Instruction 
SZ  H PNC 
A ' B 
	C2 
	10   0 000 
1    1 1 1    1    1 L_ 

	54 
	X 


Example Write mnemonics to exclusive OR the contents of memory location 2070h with the contents of the accumulator assuming index register lY contains address 2000h. 
Mnemonics: XOR   (lY + 70H)      Hex Code: FD   AE 70 
Number Systems 
Computers communicate and operate in binary digits 0 and 1; on the other hand, human beings generally use the decimal system with ten digits, from 0-9. Other number systems are also used, such as octal with eight digits, from 0-7, and hexadecimal (Hex) system with digits from 0-15. In the hexadecimal system, digits 10 through 15 are designated as A through F, respectively, to avoid confusion with the decimal numbers, 10 to 15. 
A positional scheme is usually used to represent a number in any of the number systems. This means that each digit will have its value according to its position in a number. The number of digits in a position is also refened to as the base. For example, the binary system has base 2, the decimal system has base 10, and the hexadecimal system has base 16. 
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        NUMBER CONVERSION 
A number in any base system can be represented in a generalized format as follows: 
N = A„B" + An - ,B" - ' + + A,B' + AqBO 
N = number, B = base, A = any digit in that base 
622 
APPENDIX B 
For example, number 154 can be represented in various number systems as follows: 
Decimal: 154 = 1 x 10^ + 5 x 10' + 4 x 10° = 154 
Octal: 232 = 2 X 8^ +3x8' +2x8° 
=   128   +    24    +     2     = 154 Hexadecimal:    9A = 9 X 16' + A X 16° 
144   +    10    = 154 
Binary:   10011010 = lx2^ + 0x2^ + 0x25+lx2'*+lx2^ + 0x2^ + lx2' + 0x2° 
=   128+    0    +    0    +   16+    8    +    0    +    2    + 0=154 
The above example also shows how to convert a given number in any system into its decimal equivalent. 
CONVERSION TABLE: DECIMAL, HEXADECIMAL, BINARY, AND OCTAL 
	Decimal 
	Hex 
	Binary 
	Octal 

	0 
	0 
	0000 
	00 

	1 
	1 
	0001 
	01 

	2 
	2 
	0010 
	02 

	3 
	3 
	0011 
	03 

	4 
	4 
	0100 
	04 

	5 
	5 
	0101 
	05 

	6 
	6 
	0110 
	06 

	7 
	7 
	0111 
	07 

	8 
	8 
	1000 
	10 

	9 
	9 
	1001 
	11 

	10 
	A 
	1010 
	12 

	11 
	B 
	1011 
	13 

	12 
	C 
	1100 
	14 

	13 
	D 
	1101 
	15 

	14 
	E 
	1110 
	16 

	15 
	F 
	1111 
	17 


HOW TO CONVERT A NUMBER FROM BINARY INTO HEXADECIMAL AND OCTAL 
Example Convert the binary number 10   0   1   10   10 into its Hex and octal equiva
lents. 
Hexadecimal 
Step 1: Starting from the right (LSB) arrange the binary digits in groups of four. 10   0   1      10 10 
Step 2: Convert each group into its equivalent Hex number. 9 A 
Octal 
623 
Step 1: Starting from the right (LSB) arrange the binary digits in groups of three. 10      Oil 010 
Step 2: Convert each group into its equivalent octal number. 2   3 2 
2'S COMPLEMENT AND ARITHMETIC OPERATIONS 
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        The Z80 microprocessor performs the subtraction of two binary numbers using the 2's complement method. In digital logic circuits, it is easier to design a circuit to add numbers than to design a circuit to subtract numbers. The 2's complement of a binary number is equivalent to its negative number; thus by adding the complement of the subtrahend (the number to be subtracted) to the minuend, a subtraction can be performed. The method of 2's complement is explained below with the examples from the decimal number system. 
DECIMAL SUBTRACTION 
Subtract the following two decimal numbers using the borrow method and the lO's complement method: (52 - 23) 
Minuend:   52 = 5 x 10 + 2 Subtrahend:   23 = 2 X 10 + 3 
Step 1: To subtract 3 from 2,10 must be borrowed from the second place of the minuend, 
52 = 4 X 10 + 12 
Step 2: The subtraction of the digits in the first place and the second place is as follows. 
52    = 4x10+12 -23   =   2 X 10 + 3 
2X10+ 9 = 29 
Step 1: Find 9's complement of the subtrahend (23), meaning subtract each digit of the subtrahend from 9. 
9's complement of 23:     9 9 -2 3 7 6 
Step 2: Add 1 to the 9's complement to find the lO's complement of the subtrahend. 
lO's complement of 23: 76 + 1 77 
Example B.l 
Borrow Method 
ID'S 
Complement Method 
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The reason to find the 9's complement is to demonstrate a similar procedure to find the 2's complement of a binary number. However, in reality, the lO's complement of 23 is equivalent to subtracting 23 from 100. 
Step 3: Add lO's complement of the subtrahend (77) to the minuend (52) to subtract 23 from 52. 
lO's complement of 23: 77 Minuend:   + 52 
1 29 = 29 (By dropping the most significant digit) 
The elimination of the most significant bit is equivalent to subtracting 100 from the sum. This is necessary to compensate for the 100 that was added to find the 10's complement of 23. 
Example B.2 
Borrow Method 
Perform the subtraction of the following two numbers using the borrow method and the lO's complement method: 23 - 52. 
Minuend:   2 3 Subtrahend:   5 2 
Step 1: The subtraction of the digits in the first place results in: 3 - 2 = 1. 
Step 2: To subtract the digits in the second place, a borrow is required from the third place. Assuming the borrow is available from the third place, the digit 5 can be subtracted from 2 as follows: 
1 2 
2; 5 
T  7   (the nonexistent borrow is shown with the bar) 
Result: 
23 52 
1 71 
The same result is obtained with the lO's complement method, as shown below. 
lO's Step 1: Find the 9's complement of the subtrahend (52). 
Complement 9's complement of 52:     9 9 
Method -5 2 
4 7 
Step 2: Add 1 to the 9's complement to find lO's complement: 47 + 1 = 48 
Step 3: Add the lO's complement of the subtrahend to the minuend. 
lO's complement of 52: 48 Minuend: 23 
71 (this is negative 29, expressed in lO's complement) 
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By examining these two examples, the following conclusions can be drawn, and these conclusions can be used for any number system. 
1. The complement of a number is its equivalent negative number. 
2. A number can be subtracted by using its complement. 
3. The sum of a number and its complement results in 0 if the most significant digit of the sum is ignored. 
4. When the subtrahend is larger than the minuend, the result of the lO's complement method is negative, and it is expressed in terms of lO's complement. The same result can be obtained by borrowing a digit from the most significant position. 
PROCEDURE TO FIND 2'S COMPLEMENT OF A BINARY NUMBER 
Step 1: Find I's complement. This amounts to replacing 0 by 1 and 1 by 0. Step 2: To find 2's complement, add 1 to the I's complement. This is similar to the procedure of lO's complement. 
Find the 2's complement of the binary number: Example 
2's complement =1110     0   10 0 
By examining the result of the example, the following rule can be stated to find the 2's complement of a binary number, instead of the above procedure of the I's complement. 
Rule 1: Start at the LSB of a given number, and check all the bits to the left. Keep all the 
bits as they are up to and including the least significiant 1. Rule 2: After the first 1, replace all O's with I's and I's with O's. 
These rules can be applied to the given binary number (ICh) as illustrated below: 
B.3 
0  0  0 1 
110   0 (lCHor28,o) 
Step 1: Find I's complement, meaning replace 0 with 1 and 1 with 0. 
I's complement = 1   1   1   0     0  0   1 1 Step 2: Add 1 + 1 
Binary Number:   0  0  0   1 1 
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        Replace 0 with 1 and 1 with 0 2's complement: 1110 0 
i Start Here Keep as they are 
1   0 0 
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The 2's complement of the number can be verified by adding the complement to the original number as follows, and the sum should be 0: 
Binary Number:   0   0   0   1      1   1   0 0 2's Complement:   1110      0   10 0 
1      0000      0000 (ignore the MSB) 
BINARY SUBTRACTION USING 2'S COMPLEMENT 
The binary subtraction can be performed by using 2's complement method, and if the result is negative, it is expressed in terms of 2's complement. 
Example Subtract 32h (0011   0010) from 45h (0100 0101). 
B.4 
Subtrahend:   .32h = 0   0 1   1 0   0   1 0 
2's complement of .32h = 1   1 0   0 1110 + 
Minuend:   4.5h = 0   1 0   0 0   1   0 1 
CY       1 1 1 
0   0 0   1 0   0   1   1 = 
Example Subtract 45h (0100  0100) from 32h (0011 0010). 
	Subtrahend: 4.5h 
	= 0 
	1 
	0 
	0 
	0 
	1 
	0 
	1 

	2's complement of 4.5h 
	= 1 
	0 
	1 
	1 
	1 
	0 
	1 
	1 

	
	+ 
	
	
	
	
	
	
	

	Minuend: 32h 
	= 0 
	0 
	1 
	1 
	0 
	0 
	1 
	0 

	CY 
	
	1 
	1 
	
	
	1 
	
	

	
	1 
	1 
	1 
	0 
	1 
	1 
	0 
	1 


The result is negative and it is expressed in 2's complement. This can be verified by taking the 2's complement of the result; the 2's complement of the result should be 13h as in Example 4. 
Result EDh =1110      110 1 Two's complement of EDh = 0   0   0   1      0   0   1   1 = 13h 
SIGNED NUMBERS 
To perform the arithmetic operations with signed numbers (positive and negative), the sign must be indicated as well as the magnitude of the number. In 8-bit microprocessors, bit D7 is used to indicate the sign of a number; 0 in D7 indicates a positive number and 1 indicates 
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a negative number. Bit D7 can be used to indicate the sign of a number because: 
1. The Z80 performs the subtraction of two numbers using 2's complement and, if the result is negative, it saves (shows) the result in the form of 2's complement. 
2. 2's complements of all the 7-bit numbers have 1 in D7. 
When a programmer uses bit D7 to indicate the sign of a number, the magnitude of the number can be represented by seven bits (De-Do). For example, number 74h is represented with sign as follows: 
D7   Dg   D5   D4   D3   Do   D, Do +74h =01     1 10100 
-74h =    1    pool     1     0    0^  (2's complement of 74h) 
r 
sign magnitude 
However, the microprocessor cannot differentiate between a positive number and a negative number. For example, in the above illustration, -74h can be interpreted as the unsigned positive number 8Ch or the bit pattern. It is the responsibility of the programmer to provide the necessary interpretation. 
SUBTRACTION PROCESS IN THE Z80 MICROPROCESSOR 
The Z80 performs the following operations when it subtracts (SUB) two binary numbers: 
Step 1: Finds I's complement of the subtrahend. 
Step 2: Finds 2's complement of the subtrahend by adding 1 to the result of Step 1. Step 3: Adds the 2's complement of the subtrahend to the minuend. Step 4: Complements the CY flag. 
These steps are internal to the microprocessor and invisible to the user; only the result is available to the user. 
Show the internal steps performed by the microprocessor to subtract the following unsigned numbers: 
a. FAh - 62h 
b. 62h - FAh 
Example B.6 
a. Minuend:      FAh = 1   1   1   1      10 10 Subtrahend:   62h  = 0   1   1   0      0   0   1 0 
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	Step 1: I's complement of 62h 
	
	1 
	0 
	0 
	1 
	1 
	1 
	0 
	1 

	Step 2: Add 1 
	
	+ 
	
	
	
	
	
	
	1 

	2's complement of 62h 
	
	1 
	0 
	0 
	1 
	1 
	1 
	1 
	0 

	Step 3: Add minuend (FAh) 
	
	+ 1 
	1 
	1 
	1 
	1 
	0 
	1 
	0 

	
	1 
	1 
	0 
	0 
	1 
	1 
	0 
	0 
	0 

	dicp hj« v^onipienicni \^ i 
	0 
	1 
	n 
	n u 
	1 
	1 
1 
	n 
	n 
	n 
u 

	Kesuii, 
	0 
	1 
	n 
	n u 
	1 
X 
	1 
X 
	n u 
	n u 
	n yj 

	Flags: 
	CY = 
	
	
	- X, ■ 
	
	V : V 
	= n 
	

	h  Minuend-      62u   =0 1 
	1 
	0 
	0 
	
	0 1 
	0 
	
	
	

	Subtrahend:   FAh =1 1 
	1 
	1 
	1 
	
	0 1 
	0 
	
	
	

	Step 1: I's complement of FAh 
	
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	1 

	Step 2: Add 1 
	
	+ 
	
	
	
	
	
	
	1 

	2's complement of FAh 
	
	0 
	0 
	0 
	0 
	0 
	1 
	1 
	0 

	Step 3: Add minuend (62h) 
	
	+0 
	1 
	I 
	0 
	0 
	0 
	1 
	0 

	
	0 
	0 
	1 
	1 
	0 
	1 
	0 
	0 
	0 

	Step 4: Complement CY 
	1 
	0 
	1 
	1 
	0 
	I 
	0 
	0 
	0 

	Result: 
	1 
	0 
	1 
	1 
	0 
	1 
	0 
	0 
	0 

	Flags: 
	CY = 
	1, s 
	
	= 0, z 
	= 0, 
	, 
	= 0 
	


= 98h 
= 68h(CY = 1) 
This result is negative and expressed in 2's complement of the magnitude. 
Results a. FAh - 62h = 98h (positive), CY = 0, S = 1 
b. 62h - FAh = 68h (negative), CY = 1, S = 0 
These results and associated flags appear to be confusing. In Example B.6a, the result is positive but the sign flag indicates that it is negative. On the other hand, in Example B.6b, the result is negative but the sign flag indicates that it is positive. This confusion can be explained as follows: 
1. This subtraction is concerned with the unsigned numbers; therefore, the sign flag is irrelevant. In signed arithmetic, the number FAh is invalid because it is an 8-bit number. 
2. The programmer can check whether the result indicates the true magnitude by checking the CY flag. If CY is reset, the result is positive, and if CY is set, the result is expressed in 2's complement. 
In Example B.6a, assume that the numbers are signed numbers, and interpret the result. 
Minuend: FAh 
This is a negative number because Dy = 1; therefore, this must be represented in 2's complement. The magnitude of the number can be found by taking the 2's complement of 
Example B.7 
NUMBER SYSTEMS 
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FAh^ 
FAh =1111   10 10 2's complement of FAh = 0 0 0 0   0 1 1 0 = 06h (magnitude) 
Subtrahend: 62h (This is a positive number because D? = O.) The problem given in 6a can be represented as follows: 
FAh - 62h = (-06h) " (+62h) = -68h 
The final result is —68h, which will be in the form of its 2's complement: 
-68h =-(0110   1 0 0 0) 2's complement of 68h = 1 0 0 1   1 0 0 0 = 98h 
The final answer is the same as before; however, it will be interpreted as a negative number with the magnitude of 68h. When signed numbers are used in arithmetic operations, the sign flag will indicate the proper sign of the result. 
Add the following two positive numbers and interpret the sign flag: +41h, +54h. Example 41h = 0 1 0 0   0 0 0 1  BJB 
+ 
54h = 0 1 0 1   0 10 0 
95h=100 1   0101   S = 1, CY = 0, Z = 0, V= 1 
This is an addition of two positive numbers. The sign flag indicates that the sum is negative. However, the overflow (P/V = 1) flag indicates that there is an overflow; therefore, the sum is inaccurate if these are signed numbers. If this had been the sum of two unsigned numbers, the sign flag would have no significance. 
MODULO-2 ARITHMETIC 
B,3 
Modulo-2 arithmetic is binary addition (or subtraction) without carries. There are no negative numbers, and the result can be either 0 or 1. An addition or subtraction of two numbers in Modulo-2 is similar to exclusive-ORing two logic functions as shown, and the results are the same. 
10 10 10 10 
+ 1110      - 1 1 1 0 
0 10 0 
0 10 0 
APPENDIX B 
Similarly, a division of two polynomials can be performed as follows. The example is from the Cyclic Redundancy Check (CRC—Section 15.13). The modified polynomial for data bits 1000 1010: x'" + x^ + x'* The generator polynomial: x'* + 1 
+ x'^ + x^ 
	1 x'^'+x^ + x" 
	

	
	-» By multiplying (x^^ + l)(x'') 

	1           x^ + x^ + x'^ 
	—> In Modulo-2, subtraction is 

	
	same as addition 

	X« 
	-> By multiplying (x** + l)(x'') 

	1 x" 
x^ + x^ 
	-» By multiplying {x^ + l)(x^) 

	X2 
	-» Remainder 


American Standard Code for Information Interchange: 
ASCII Codes 
Graphic or Control 
ASCII (Hexadecimal) 
NUL Null 00 
SOH Start of Heading 01 
STX Start of Text 02 
ETX End of Text 03 
EOT End of Transmission 04 
ENQ Enquiry 05 
ACK Acknowledge 06 
BEL Bell 07 
BS Backspace 08 
HT Horizontal Tabulation 09 
LF Line Feed OA 
VT Vertical Tabulation OB 
FF Form Feed OC 
CR CaiTiage Return OD 
50 Shift Out OE 
51 Shift In OF DLE Data Link Escape 10 DCl Device Control ! 11 DC2 Device Control 2 12 DC3 Device Control 3 13 DC4 Device Control 4 14 NAK Negative Acknowledge 15 SYN Synchronous Idle 16 ETB End of Transmission Block 17 CAN Cancel 18 EM End of Medium 19 SUB Substitute lA ESC Escape IB 
c 
Graphic or Control 
ASCII (Hexadecimal) 
FS GS RS US SP ! 
# $ % 
File Separator Group Separator Record Separator Unit Separator Space 
IC ID IE IF 20 21 22 23 24 25 
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	Graphic or 
	ASCII 
	Graphic or 
	ASCII 

	Control 
	(Hexadecimal) 
	Control 
	(Hexadecimal) 

	& 
	26 
	S 
	53 

	
	27 
	T 
	54 

	( 
	28 
	u 
	55 

	) 
	29 
	V 
	56 

	* 
	2A 
	w 
	57 

	+ 
	2B 
	X 
	58 

	
	2C 
	Y 
	59 

	
	2D 
	Z 
	5A 

	
	2E 
	[ 
	5B 

	/ 
	2F 
	\ 
	5C 

	0 
	30 
	] 
	5D 

	1 
	31 
	A 
	5E 

	2 
	32 
	
	5F 

	3 
	33 
	~ 
	60 

	4 
	34 
	a 
	61 

	5 
	35 
	b 
	62 

	6 
	36 
	c 
	63 

	7 
	37 
	d 
	64 

	8 
	38 
	e 
	65 

	9 
	39 
	f 
	66 

	
	3A 
	g 
	67 

	
	3B 
	h 
	68 

	< 
	3C 
	i 
	69 

	
	3D 
	j 
	6A 

	> 
	3E 
	k 
	6B 

	? 
	3F 
	1 
	6C 

	(a) 
	40 
	m 
	6D 

	A 
	41 
	n 
	6E 

	B 
	42 
	0 
	6F 

	c 
	43 
	p 
	70 

	D 
	44 
	q 
	71 

	E 
	45 
	r 
	72 

	F 
	46 
	s 
	73 

	G 
	47 
	t 
	74 

	H 
	48 
	u 
	75 

	I 
	49 
	V 
	76 

	J 
	4A 
	w 
	77 

	K 
	4B 
	X 
	78 

	L 
	4C 
	y 
	79 

	M 
	4D 
	z 
	7A 

	N 
	4E 
	{ 
	7B 

	0 
	4F 
	1 
	7C 

	P 
	50 
	} 
	7D 

	Q 
	51 
	
	7E 

	R 
	52 
	DEL Delete 
	7F 


Preferred Logic Symbols 
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        THE OR GATE AS THE NEGATIVE NAND GATE 
The OR gate is normally represented as shown in Figure D. 1(a). The truth table in Figure D.l(c) shows that when any one of the inputs is high, the output is high; and when both inputs are low, the output is low. In applications where the output required is active high, the symbol in Figure D.l(a) accurately represents the signal states. However, in some applications, the output required is active low when both inputs are low. For example, in Figure 3.9(a), the control signal MEMWR is generated when both inputs MREQ and WR are low. Therefore, it is preferable to represent the active states by the Negative NAND gate as shown in Figure D.l(b). Physically, the gate in Figure D.l(a) is the same as the 
APPENDIX D 
(a) OR Gate 
(b) Negative NAND Gate 
FIGURE D.l 
OR Gate Logic Symbols and Truth Table 
	
	Inputs 
	Output 

	A 
	B 
	X 

	High 
	High 
	High 

	High 
	Low 
	High 

	Low 
	High 
	High 

	Low 
	Low 
	Low 


(c) Truth Table for Two-Input OR Gate 
gate in D. 1(b); both are OR gates. However, they will be interpreted differently. In Figure D. 1(a), the gate function should be read as follows: when input A or input B is high, the output goes high. In Figure D. 1(b), the gate function should be read as follows: when input A and input B are low, the output goes low. 
THE AND GATE AS THE NEGATIVE NOR GATE 
The AND gate shown in Figure D.2(a) should be read as follows: when input a and input B are high, the output goes high. However, the equivalent gate shown in Figure D.2(b) should be read as follows: when input A or input B is low, the output goes low. 
THE NOR GATE AS THE NEGATIVE AND GATE 
The NOR gate in Figure D.2(c) should read as follows: when input A or input B is high, the output goes low. However, its equivalent gate shown in Figure D.2(d) should be read as follows: when input A and input B are low, the output goes high. Figure 5.4 shows the NOR gate (74LS02) connected as the Negative AND gate. It suggests that when the signal I/O write (lOWR) and the decoded address pulse are low, the output goes high and enables the flip-flop. 
FIGURE D.2 
Logic Gates and Their Equivalent Symbols 
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        (a) AND Gate 
(b) Negative NOR Gate 
=0
(c) NOR Gate 
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        (e) NAND Gate 
(d) Negative AND Gate (f) Negative OR Gate 
PREFERRED LOGIC SYMBOLS 
THE NAND GATE AS THE ^E:GATIVE OR GATE 
Figure D.2(e) shows the nonnal representation of the NAND gate and Figure D.2(f) shows its equivalent as the Negative OR gate. 
INVERTERS AND BUBBLE MATCHING 
When the inverter is represented by its symbol, the bubble can be shown either in the front or in the back depending upon the active level of the input signal. For example, in Figure 2.10 the inverters to the 8-input NAND gate are shown with bubbles at the back. The bubble suggests that address lines Ais-Ag should be at logic 0 to cause the output of the gate to go active low. 
SUMMARY 
A logic gate can be represented with different symbols. However, the symbol should be selected based on the active level of the signals. If the active level of the signals is represented, it is easy to interpret the gate function and it facilitates troubleshooting. 
The 
Micro-Trainer*: 
80-Based Single-Board Microcomputer for 
Laboratory Use 
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        THE MICRO-TRAINER SYSTEM 
The Micro-Trainer is a single-board microcomputer designed with the Z80 microprocessor. The trainer system is well designed for laboratory work in colleges and universities. It includes a Hex keyboard and seven-segment LED display. The user can enter a Z80 assembly language program (in Hex code) using the keyboard or by downloading from a host microcomputer such as an IBM PC and its compatibles as described in Chapter 7 of 
*The Micro-Trainer is available from CAMI Research, Arlington, MA, and information in this appendix is adapted from the Micro-Trainer manual. The main circuit board of the trainer was designed and built by the Multitech Industrial Corporation and is separately available as a training system under the trade name "MicroProfessor." 
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this book. The user can write Z80 assembly language programs using an editor, assemble it using a cross-assembler, and enter the code in R/W memory of the Micro-Trainer using the program called Downloader through a serial link; such a facility, called the ZAD system, is available from CAMI Research and can be added to the Micro-Trainer. 
Figure E.l shows the functional block diagram of the Micro-Trainer system. It includes the Z80 microprocessor, the 25.32 4K-byte EPROM, the 6116 2K-byte R/W memory with the memory map from 1800h to IFFFh, Hex keyboard, and six sevensegment LEDs for display. The keyboard enables the user to enter and store the Z80 assembly language program (Hex machine code) in R/W memory and execute the program. When a program (Hex machine code) is being entered, memory addresses and data are displayed by the LED display. 
KEYBOARD AND DISPLAY 
The keyboard has .36 keys, of which four are directly connected to system hardware, and the remaining 32 keys are connected in the matrix format. The display includes six sevensegment LEDs, four for memory addresses and two for data bytes. The keyboard and the LED display are scanned, and they are connected in the format as shown in Figure 17.14 using three ports of the programmable device 8255; Port C is common to the digit driver of the display and the rows of the keyboard. 
The keys are divided into two primary groups: 20 function keys and 16 Hex keys which can also be used for register examine functions (Figure E.l). The function group includes features such as decrementing a memory address, inserting or deleting bytes from the stored program, moving blocks of data from one area of memory to another, and setting and clearing breakpoints. We will illustrate some of the commonly used keys in the following example. 
Example E.l 
Solution 
The following program loads two bytes, 45h and 4Fh, into registers A and B, respectively, and adds the bytes. The sum is stored in the accumulator. Illustrate how to enter this program in R/W memory of the Micro-Trainer, starting at location 1820h, how to execute the program, and how to verify the result. 
1. The steps in entering the program are as follows: 
Key Sequence 
Press 
Display at LED 
RESET 
Memory Field 1800 
Data Field XX 
ADDR 
Comments 
;Reset the system and display the first R/W memory location 
;Address function—subsequent Hex keys will be interpreted as memory address 
Z80 Microprocessor 
Address Bus 
Data Bus 
7^ 
Control Signals 
7X 
Memory Decode 
ROM 2532 
R/WM 6116 
I/O Decode 
Display 
Address 
Data 
L_l U L.^ O O 
\7\7 
8255 
Matrix Keyboard Layout 
\z 
RESET MOVE INS 
SBR 
PC 
MONI   RELA    DEL     CBR REG 
TAPE 
INTR     WR STEP 
USER TAPE 
K|Y     ^|D GO 
	SZ.H 
[£] 
	.PNC 
	SZ.H* 
	.PNC* 
d] 

	IX 
m 
	lY 
	SP [A] 
	I.IF 

	AF* [J] 
	BC* 
CE 
	DE* 
	HL* 
m 

	AF 
m 
	BC 
m 
	DE 
	HL 
m 


o. 
K 
FIGURE E.l 
The Micro-Trainer Functional Block Diagram 
SOURCE: Courtesy of CAMI Research Inc 
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DATA 
s 
m 
m 
I0]f6l 
+ 
3111 
+1 
^|6| 
1820 1820 
1820 
1821 1821 1822 1822 1823 1823 1824 1824 
1825 1825 
X X 
3 E 
XX 
45 
XX 
06 
XX 
4F 
X X 
80 
XX 7 6 
2. To execute the program, the steps are as follows: 
RESET 
ADDR 1 
2 0 
1800 1820 
X X 
3 E 
GO 
;Enter address desired 
;Data—subsequent Hex keys will be interpreted as data 
;LD A, 45H—Load accumulator 
;Next memory location ;First data byte in A ;Next location 
;LD B, 4FH—Load register B ;Next location ;Second byte in B ;Next location 
;ADD A, B—Add register B 
to A ;Next location ;HALT—End of program 
;Reset the system ;Enter the address where program begins ;Execute the program 
3. To examine the result, press the following keys: 
RESET 
REG 
AF (Key 0) 
1800 rEG94 84 
X X 
A F 
;Examine register ;Display contents of accumulator and flags 
4. The sum of the two bytes is 94h, which is displayed at the left, followed by the flag bits. This result sets Sign and Overflow flags; the flag byte is 84h as shown. 
Comment: We selected 1820h as the starting location to demonstrate how to enter codes in any memory location. Ordinarily, a program is stored starting at location 1800h, and you need not use the ADDR key to specify the starting address. 
Z80 Instructional Summary 
Key: 
n = 8-bit number       (  ) = contents as a pointer to memory or I/O nn = 16-bit number 
d = 7-bit displacement (express in 2's complement for backward displacement.) 
e = 7-bit displacement in reference to program counter (express in 2's complement for backward displacement.) 
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	Mnemonic 
	Hex 
	Mnemonic 
	Hex 
	Mnemonic 
	Hex 

	ADC 
	A,A 
	8F 
	CALL 
	C,nn 
	DC 16-bit 
	HALT 
	
	76 

	ADC 
	A,B 
	88 
	CALL 
	M,nn 
	FC 16-bit 
	IM 
	0 
	ED 46 

	ADC 
	A,C 
	89 
	CALL 
	NC,nn 
	D4 16-bit 
	IM 
	1 
	ED 56 

	ADC 
	A,D 
	8A 
	CALL 
	NZ.nn 
	C4 16-bit 
	IM 
	2 
	ED 5E 

	ADC 
	A,E 
	8B 
	CALL 
	P,nn 
	F4 16-bit 
	IN 
	A,(n) 
	DB 8-bit 

	ADC 
	A,H 
	8C 
	CALL 
	PE.nn 
	EC 16-bit 
	IN 
	A,(C) 
	ED 78 

	ADC 
	A,L 
	8D 
	CALL 
	PO.nn 
	E4 16-bit 
	IN 
	B,(C) 
	ED 40 

	ADC 
	A,n 
	CE 8-bit 
	CALL 
	Z,nn 
	CC 16-bit 
	IN 
	C,(C) 
	ED 48 

	ADC 
	A,{HL) 
	8E 
	CCF 
	
	3F 
	IN 
	D,(C) 
	ED 50 

	ADC 
	A,(lX+d) 
	DD 8E d 
	CP 
	A 
	BF 
	IN 
	E,(C) 
	ED 58 

	ADC 
	A,(IY+d) 
	FD 8E d 
	CP 
	B 
	B8 
	IN 
	F,(C) 
	ED 70 

	ADC 
	HL.BC 
	ED 4A 
	CP 
	C 
	B9 
	IN 
	H,(C) 
	ED 60 

	ADC 
	HL.DE 
	ED 5A 
	CP 
	D 
	BA 
	IN 
	L,(C) 
	ED 68 

	ADC 
	HL,HL 
	ED 6A 
	CP 
	E 
	BB 
	INC 
	A 
	3C 

	ADC 
	HL,SP 
	ED 7A 
	CP 
	H 
	BC 
	INC 
	B 
	04 

	ADD 
	A,A 
	87 
	CP 
	L 
	BD 
	INC 
	BC 
	03 

	ADD 
	A,B 
	80 
	CP 
	n 
	FE 8-bit 
	INC 
	C 
	OC 

	ADD 
	A,C 
	81 
	CP 
	(HL) 
	BE 
	INC 
	D 
	14 

	ADD 
	A,D 
	82 
	CP 
	(IX-l-d) 
	DD BEd 
	INC 
	DE 
	13. 

	ADD 
	A,E 
	83 
	CP 
	(lY-l-d) 
	FD BEd 
	INC 
	E 
	IC 

	ADD 
	A,H 
	84 
	CPD 
	
	ED A9 
	INC 
	H 
	24 

	ADD 
	A,L 
	85 
	CPDR 
	
	ED B9 
	INC 
	HL 
	23 

	ADD 
	A,n 
	C6 8-bit 
	CPI 
	
	ED Al 
	INC 
	IX 
	DD 23 

	ADD 
	A,{HL) 
	86 
	CPIR 
	
	ED Bl 
	INC 
	lY 
	FD 23 

	ADD 
	A,(lX+d) 
	DD 86 d 
	CPL 
	
	2F 
	INC 
	L 
	2C 

	ADD 
	A,(IY+d) 
	FD 86 d 
	DAA 
	
	27 
	INC 
	SP 
	33 

	ADD 
	HL.BC 
	09 
	DEC 
	A 
	3D 
	INC 
	(HL) 
	34 

	ADD 
	HL.DE 
	19 
	DEC 
	B 
	05 
	INC 
	(IX-l-d) 
	DD 34 d 

	ADD 
	HL,HL 
	29 
	DEC 
	BC 
	OB 
	INC 
	(lY-hd) 
	FD 34 d 

	ADD 
	HL,SP 
	39 
	DEC 
	C 
	OD 
	IND 
	
	ED AA 

	ADD 
	IX.BC 
	DD 09 
	DEC 
	D 
	15 
	INDR 
	
	ED BA 

	ADD 
	IX,DE 
	DD 19 
	DEC 
	DE 
	IB 
	INI 
	
	ED A2 

	ADD 
	IX,IX 
	DD 29 
	DEC 
	E 
	ID 
	INIR 
	
	ED B2 

	ADD 
	IX.SP 
	DD 39 
	DEC 
	H 
	25 
	JP 
	nn 
	C3 16-bit 

	ADD 
	IY,BC 
	FD 09 
	DEC 
	HL 
	2B 
	IP 
	(HL) 
	E9 

	ADD 
	IY,DE 
	FD 19 
	DEC 
	IX 
	DD 2B 
	JP 
	(IX) 
	DD E9 

	ADD 
	lY.IY 
	FD 29 
	DEC 
	lY 
	FD 2B 
	JP 
	(lY) 
	FD E9 

	ADD 
	IY,SP 
	FD 39 
	DEC 
	L 
	2D 
	JP 
	C,nn 
	DA 16-bit 

	AND 
	A 
	A7 
	DEC 
	SP 
	3B 
	JP 
	M,nn 
	FA 16-bit 

	AND 
	B 
	AO 
	DEC 
	(HL) 
	35 
	JP 
	NC,nn 
	D2 16-bit 

	AND 
	C 
	Al 
	DEC 
	(IX-t-d) 
	DD 35 d 
	JP 
	NZ,nn 
	C2 16-bit 

	AND 
	D 
	A2 
	DEC 
	(lY+d) 
	FD 35 d 
	JP 
	P,nn 
	F2 16-bit 

	AND 
	E 
	A3 
	DI 
	
	F3 
	JP 
	PE.nn 
	EA 16-bit 

	AND 
	H 
	A4 
	DJNZ 
	e 
	10 e 
	JP 
	PO,nn 
	hi 10-Dlt 

	AND 
	L 
	A5 
	El 
	
	FB 
	JP 
	Z,nn 
	CA 16-bit 

	AND 
	n 
	E6 8-bit 
	EX 
	(SP),HL 
	E3 
	JR 
	C,e 
	38 e 

	AND 
	(HL) 
	A6 
	EX 
	(SP),IX 
	DD E3 
	JR 
	NC,e 
	30 e 

	AND 
	(IX+d) 
	DD A6 d 
	EX 
	(SP),IY 
	FD E3 
	JR 
	NZ,e 
	20 e 

	AND 
	(lY+d) 
	FD A6 d 
	EX 
	AF,AF' 
	08 
	JR 
	Z,e 
	28 e 

	BIT 
	b,s 
	see pp. 568-69 
	EX 
	DE.HL 
	EB 
	JR 
	e 
	18 e 

	CALL 
	nn 
	CD 16-bit 
	EXX 
	
	D9 
	LD LD 
	A,A A,B 
	7F 78 
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	Mnemonic 
	Hex 
	
	IVKllclllUillL. 
	Hpv 
O.CA 
	Mnemonic 
	Hex 

	LD 
	A,C 
	79 
	LD 
	E A 
	5F 
	LD 
	(HL),D 
	"70 

	LD 
	A,D 
	7A 
	LD 
	E B 
	58 
	LD 
	(HL),E 
	1J 

	LD 
	A,E 
	7B 
	LD 
	E C 
	jy 
	LD 
	(HL),H 
	74 

	LD 
	A,H 
	7C 
	
	
	S A 
	LD 
	(HL),L 
	75 

	LD 
	A,I 
	ED 57 
	I n 
	
	JD 
	LD 
	(HL),n 
	36 8-bit 

	LD 
	A,L 
	7D 
	LD 
	E,H 
	5C 
	LD 
	(IX4-d),A 
	UU / / d 

	LD 
	A,n 
	3E 8-bit 
	LD 
	E,L 
	5D 
	LD 
	(IX+d),B 
	UU /U 0 

	LD 
	A,R 
	ED 5F 
	LD 
	E n 
	IE 8-bit 
	LD 
	(IX4-d),C 
	UU /I d 

	LD 
	A,(BC) 
	OA 
	LD 
	E,(HL) 
	5E 
	LD 
	(IX-t-d),D 
	T\V\ OO A 
UU /z d 

	LD 
	A,(DE) 
	lA 
	L'LJ 
	
	DD 5E d 
	LD 
	(IX-l-d),E 
	DD 73 d 

	LD 
	A,(HL) 
	7E 
	LD 
	E,(IY+d) 
	FD 5E d 
	LD 
	(IX-l-d),H 
	UU /4 u 

	LD 
	A,(IX+d) 
	DD 7E d 
	LD 
	H A 
	67 
	LD 
	{IX-t-d),L 
	^^^^ a UU /D d 

	LD 
	A,(IY+d) 
	FD 7E d 
	LD 
	H B 
	60 
	LD 
	(IX-l-d),n 
	UU jo d o-bit 

	LD 
	A,(nn) 
	3 A 16-bit 
	LD 
	H C 
	61 
	LD 
	(IY+d),A 
	FD 77 d 

	LD 
	B,A 
	47 
	luLJ 
	n,L' 
	
	LD 
	(IY-l-d),B 
	FD 70 d 

	LD 
	B,B 
	40 
	Li-/ 
	W P n,n 
	
	LD 
	(IY+d),C 
	FD 71 d 

	LD 
	B,C 
	41 
	LD 
	H H 
	64 
	LD 
	(IY-hd),D 
	FD 72 d 

	LD 
	B,D 
	42 
	LD 
	H L 
	65 
	LD 
	(IY-Fd),E 
	FD 73 d 

	LD 
	B,E 
	43 
	LD 
	H,n 
	26 8-bit 
	LD 
	(IY-l-d),H 
	cr^ lA A 
rU /4 d 

	LD 
	B,H 
	44 
	LD 
	H,(HL) 
	66 
	LD 
	(IY-hd),L 
	rU Id d 

	LD 
	B,L 
	45 
	I n 
	
	nn fifi H 
UvJ OD U 
	LD 
	(IY-hd),n 
	FD 36 d 8-bit 

	LD 
	B,n 
	06 8-bit 
	L^LJ 
	
	rU DD U 
	LD 
	(nJi),A 
	32 16-bit 

	LD 
	B,(HL) 
	46 
	I Vs 
	l-II nn 
riL,nn 
	AI iO-DU 
	LD 
	(nn),BC 
	ED 43 16-bit 

	LD 
	B,(IX+ci) 
	DD 46 d 
	I 
LjU 
	HI ^^nn^ 
riL,\nn j 
	Z.i\ lO-ull 
	LD 
	(nn),DE 
	ED 53 16-bit 

	LD 
	B,(IY+d) 
	FD 46 d 
	I n 
LU 
	I A 
	lU 4/ 
	LD 
	(nn),HL 
	22 16-bit 

	LD 
	BC.nn 
	01 16-hit 
	I 
L-U 
	TV r>n 
	UU /I iO-uu 
	LD 
	(nn),IX 
	DD 22 16-bit 

	LD 
	BC,(nn) 
	FD 4R 16-hit 
	I r\ 
L.U 
	TV fnr,\ 
	UU ZA Iu"Dlt 
	LD 
	(nn),IY 
	FD 22 16-bit 

	LD 
	C,A 
	4F 
	LU 
	TV 
11 ,nn 
	rU Zi lO-Dlt 
	LD 
	(nn),SP 
	ED 73 16-bit 

	LD 
	C,B 
	48 
	LU 
	IY,(nn) 
	rU 2A lo-oit 
	LDD 
	
	ED A8 

	LD 
	C,C 
	49 
	T ri 
	I A 
	Or 
	LDDR 
	
	ED B8 

	LD 
	CD 
	4A 
	L^LJ 
	I R 
	OO 
	LDI 
	
	ED AO 

	LD 
	C,E 
	4B 
	L-LI 
	L,L. 
	oy 
	LDIR 
	
	ED BO 

	LD 
	C,H 
	4C 
	I n 
L.U 
	L,U 
	A A OA 
	NEG 
	
	ED 44 

	LD 
	C,L 
	4D 
	L.U 
	I P 
LjlHi 
	Do 
	NOP 
	
	00 

	LD 
	C,n 
	OE 8-bit 
	
	Ljli 
	
	OR 
	A 
	B7 

	LD 
	C,(HL) 
	4E 
	LD 
	L L 
	6D 
	OR 
	B 
	BO 

	LD 
	C,(IX+d) 
	DD 4Ed 
	LD 
	L,n 
	
	OR 
	C 
	D 1 ti 1 

	LD 
	C,(IY+d) 
	FD 4E d 
	lD 
	I /UT ^ 
	or. 
	OR 
	D 
	B2 

	LD 
	D,A 
	57 
	lU 
	L,(,lAT-uj 
	UU OL U 
	OR 
	E 
	B3 

	LD 
	D,B 
	50 
	LL* 
	L,(,l I T-Qj 
	pr^ AC A rU Ol Q 
	OR 
	H 
	B4 

	LD 
	D,C 
	51 
	LL* 
	D A 
	cn /IP cu 4r 
	OR 
	L 
	B5 

	LD 
	D,D 
	52 
	LU 
	or ,OL 
	CQ 
ry 
	UR 
	n 
	F6 8-bit 

	LD 
	D,E 
	53 
	LD 
	SP,IX 
	DDF9 
	OR 
	(HL) 
	B6 

	LD 
	D,H 
	54 
	LD 
	SP,IY 
	FDF9 
	OR 
	(IX-l-d) 
	DD B6d 

	LD 
	D,L 
	55 
	LD 
	SP,nn 
	31 16-bit 
	OR 
	(lY-l-d) 
	FDB6d 

	LD 
	D,n 
	16 8-bit 
	LD 
	SP,(nn) 
	ED 7B 16-bit 
	OTDR 
	
	ED BB 

	LD 
	D,(HL) 
	56 
	LD 
	(BC),A 
	02 
	OTIR 
	
	ED B3 

	LD 
	D,(IX+d) 
	DD 56 d 
	LD 
	(DE),A 
	12 
	OUT 
	(C),A 
	ED 79 

	LD 
	D,(IY+d) 
	FD 56 d 
	LD 
	(HL),A 
	77 
	OUT 
	(C),B 
	ED 41 

	LD 
	DE.nn 
	n 16-bit 
	LD 
	(HL),B 
	70 
	OUT 
	(C).C 
	ED 49 

	LD 
	DE,(nn) 
	ED 5B 16-bit 
	LD 
	(HL),C 
	71 
	OUT 
	(C),D 
	ED 51 
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APPENDIX F 
	Mnemonic 
	Hex 
	Mnemonic 
	Hex 
	Mnemonic 
	Hex 

	OUT 
	(C),E 
	ED 59 
	RLCA 
	
	07 
	SLA 
	B 
	CB 20 

	OUT 
	(C),H 
	ED 61 
	RLD 
	
	ED6F 
	SLA 
	C 
	CB 21 

	OUT 
	(C),L 
	ED 69 
	RR 
	A 
	CB IF 
	SLA 
	D 
	CB 22 

	OUT 
	(n),A 
	D3 8-bit 
	RR 
	B 
	CB 18 
	SLA 
	E 
	CB 23 

	OUTD 
	ED AB 
	RR 
	C 
	CB 19 
	SLA 
	H 
	CB 24 

	OUTI 
	
	ED A3 
	RR 
	D 
	CB lA 
	SLA 
	L 
	CB 25 

	POP 
	AF 
	Fl 
	RR 
	E 
	CB IB 
	SLA 
	(HL) 
	CB 26 

	POP 
	BC 
	CI 
	RR 
	H 
	CB IC 
	SLA 
	(IX+d) 
	DD CB d 26 

	POP 
	DE 
	ni 
Ul 
	RR 
	L 
	CB ID 
	SLA 
	(lY+d) 
	FD CB d 26 

	POP 
	HL 
	El 
	RR 
	(HL) 
	CB IE 
	SRA 
	A 
	CB 2F 

	POP 
	IX 
	DD El 
	RR 
	(IX+d) 
	DD CB d IE 
	SRA 
	B 
	CB 28 

	POP 
	lY 
	FD El 
	RR 
	(lY+d) 
	FD CB d IE 
	SRA 
	C 
	CB 29 

	PUSH 
	AF 
	F5 
	RRA 
	
	IF 
	SRA 
	D 
	CB 2A 

	PUSH 
	BC 
	C5 
	RRC 
	A 
	CB OF 
	SRA 
	E 
	CB 2B 

	PUSH 
	DE 
	D5 
	RRC 
	B 
	CB 08 
	SRA 
	H 
	CB 2C 

	PUSH 
	HL 
	E5 
	RRC 
	C 
	CB 09 
	SRA 
	L 
	CB 2D 

	PUSH 
	IX 
	DD E5 
	RRC 
	D 
	CB OA 
	SRA 
	(HL) 
	CB 2E 

	PUSH 
	lY 
	FD E5 
	RRC 
	E 
	CB OB 
	SRA 
	(IX+d) 
	DD CB d 2E 

	RES 
	b,s 
	SCC pp> yJKJ^ J 
	RRC 
	H 
	CB OC 
	SRA 
	(lY+d) 
	FD CB d 2E 

	RET 
	C9 
	RRC 
	L 
	CB OD 
	SRL 
	A 
	CB 3F 

	RET 
	C 
	D8 
	RRC 
	(HL) 
	CB OE 
	SRL 
	B 
	CB 38 

	RET 
	M 
	F8 
	RRC 
	(IX+d) 
	DD CB d OE 
	SRL 
	C 
	CB 39 

	RET 
	NC 
	DO 
	RRC 
	(lY+d) 
	FD CB d OE 
	SRL 
	D 
	CB 3A 

	RET 
	NZ 
	CO 
	RRCA 
	
	OF 
	SRL 
	E 
	CB 3B 

	RET 
	P 
	PO 
	RRD 
	
	ED 67 
	SRL 
	H 
	CB 3C 

	RET 
	PE 
	E8 
	RST 
	OOH 
	C7 
	SRL 
	L 
	CB 3D 

	RET 
	PO 
	EG 
	RST 
	08H 
	CF 
	SRL 
	(HL) 
	CB 3E 

	RET 
	Z 
	C8 
	RST 
	lOH 
	D7 
	SRL 
	(IX+d) 
	DD CB d 3E 

	RETI 
	
	ED 4D 
	RST 
	18H 
	DF 
	SRL 
	(lY+d) 
	FD CB d 3E 

	RETN 
	
	ED 45 
	RST 
	20H 
	E7 
	SUB 
	A 
	97 

	RL 
	A 
	CB 17 
	RST 
	28H 
	EF 
	SUB 
	B 
	90 

	RL 
	B 
	CB 10 
	RST 
	30H 
	F7 
	SUB 
	C 
	91 

	RL 
	C 
	CB 11 
	RST 
	38H 
	FF 
	SUB 
	D 
	92 

	RL 
	D 
	CB 12 
	SBC 
	A,A 
	9F 
	SUB 
	E 
	93 

	RL 
	E 
	CB 13 
	SBC 
	A,B 
	98 
	SUB 
	H 
	94 

	RL 
	H 
	CB 14 
	SBC 
	A,C 
	99 
	SUB 
	L 
	95 

	RL 
	L 
	CB 15 
	SBC 
	A,D 
	9A 
	SUB 
	n 
	D6 8-bit 

	RL 
	(HL) 
	CB 16 
	SBC 
	A,E 
	9B 
	SUB 
	(HL) 
	96 

	RL 
	(IX+d) 
	DD CB d 16 
	SBC 
	A,H 
	9C 
	SUB 
	(IX+d) 
	DD 96 d 

	RL 
	(lY+d) 
	FD CB d 16 
	SBC 
	A,L 
	9D 
	SUB 
	(lY+d) 
	FD96d 

	RLA 
	17 
	SBC 
	A,n 
	DE 8-bit 
	XOR 
	A 
	AF 

	RLC 
	A 
	CB 07 
	SBC 
	A,(HL) 
	9E 
	XOR 
	B 
	A8 

	RLC 
	B 
	CB 00 
	SBC 
	A,(IX+d) 
	DD 9E d 
	XOR 
	C 
	A9 

	RLC 
	C 
	CB 01 
	SBC 
	A,(lY+d) 
	FD9Ed 
	XOR 
	D 
	AA 

	RLC 
	D 
	CB 02 
	SBC 
	HL.BC 
	ED 42 
	XOR 
	E 
	AB 

	RLC 
	E 
	CB 03 
	SBC 
	HL,DE 
	ED 52 
	XOR 
	H 
	AC 

	RLC 
	H 
	CB 04 
	SBC 
	HL.HL 
	ED 62 
	XOR 
	L 
	AD 

	RLC 
	L 
	CB 05 
	SBC 
	HL.SP 
	ED 72 
	XOR 
	n 
	EE 8-bit 

	RLC 
	(HL) 
	CB 06 
	SCF 
	
	37 
	XOR 
	(HL) 
	AE 

	RLC 
	(IX+d) 
	DD CB d 06 
	SET 
	b,s 
	see p. 615 
	XOR 
	(IX+d) 
	DD AEd 

	RLC 
	(lY+d) 
	FD CB d 06 
	SLA 
	A 
	CB 27 
	XOR 
	(lY+d) 
	FD AE d 
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	O7 
	
	
	
	
	
	
	Do 
	

	Instructions 
	S 
	z 
	
	H 
	
	PfV 
	N 
	c 
	Comments 

	ADDA, s; ADCA.s 
	» 
	J 
	X 
	t 
	X 
	V 
	0 
	t 
	8-bit add or add with carry. 

	SUB s; SBC A, s;CPs; NEG 
	t 
	» 
	X 
	t 
	X 
	V 
	1 
	» 
	8-bit subtract, subtract with carry, compare and negate accumulator 

	ANDs 
	i 
	i 
	X 
	1 
	X 
	p 
	0 
	0 
	Logical operation 

	OR s, XOR s 
	t 
	t 
	X 
	0 
	X 
	p 
	0 
	0 
	Logical operation 

	INCs 
	t 
	t 
	X 
	» 
	X 
	V 
	0 
	» 
	8-bit increment. 

	DECS 
	t 
	» 
	X 
	» 
	X 
	V 
	1 
	e 
	8-bit decrement. 

	ADD DD, ss 
	• 
	• 
	X 
	X 
	X 
	9 
	0 
	» 
	16-bit add. 

	ADC HL, ss 
	t 
	t 
	X 
	X 
	X 
	V 
	0 
	J 
	16-bit add with carry 

	SBC HL, ss 
	t 
	» 
	X 
	X 
	X 
	V 
	1 
	i 
	16-bit subtract with carry. 

	RLA; RLCA; RRA; RRCA 
	« 
	• 
	X 
	0 
	X 
	0 
	0 
	» 
	Rotate accumulator 

	RLm; RLCm; RR m; 
	
	t 
	X 
	0 
	X 
	p 
	0 
	t 
	Rotate and shift locations. 

	RRCm; SLAm; 
	
	
	
	
	
	
	
	
	

	SRA m; SRL m 
	
	
	
	
	
	
	
	
	

	RLD; RRD 
	» 
	i 
	X 
	0 
	X 
	p 
	0 
	e 
	Rotate digit left and right. 

	DAA 
	t 
	t 
	X 
	» 
	X 
	p 
	0 
	t 
	Decimal adjust accumulator. 

	CPU 
	9 
	• 
	X 
	1 
	X 
	s 
	1 
	s 
	Complement accumulator 

	SCF 
	9 
	a 
	X 
	0 
	X 
	9 
	0 
	1 
	Set carry 

	CCF 
	9 
	9 
	X 
	X 
	X 
	0 
	0 
	t 
	Complement carry 

	INr(C) 
	t 
	t 
	X 
	0 
	X 
	p 
	0 
	0 
	input register indirect 

	INI; IND; OUTI; OUTD 
	X 
	t 
	X 
	X 
	X 
	X 
	1 
	0 
	Block input and output. Z = 1 if B 5* 0, otherwise Z = 0 

	INIR; INDR; OTIR; OTDR 
	X 
	1 
	X 
	X 
	X 
	X 
	1 
	e 
	Block input and output Z = 11f 8  0, otherwise Z = 0, 

	LDI; LDD 
	X 
	X 
	X 
	0 
	X 
	f 
	0 
	
	Block transfer instructions. PA/ = lif BC # 0, otherwise PN = 0 

	LDIR; LDDR 
	X 
	X 
	X 
	0 
	X 
	0 
	0 
	a 
	Block transfer instructions P/V = 1 if BC  0, otherwise PN = 0 

	CPI;CPIR; CPD; CPDR 
	X 
	t 
	X 
	X 
	X 
	t 
	1 
	e 
	Block search instructions Z = 1 ifA = (HL), otherwise Z = 0 P/V = 1 if BC # 0, otherwise PN = 0 

	LDA;I, LDA, R 
	» 
	» 
	X 
	0 
	X 
	IFF 
	0 
	0 
	IFF, the content of the interrupt enable flip-flop, (IFFg), is copied 

	BIT b, s 
	
	
	
	
	
	
	
	
	into the P/V flag 

	X 
	t 
	X 
	1 
	X 
	X 
	0 
	9 
	The state of bit b of location s is copied into the Z flag 


SYMBOLIC NOTATION 
Symbol Operation 
S     Sign flag, S = 1 if the MSB of the result is 1, 
Z     Zero flag. Z = 1 if the result of the operation is 0. 
PN Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag with the parity of the result while arithmetic operations affect this flag with the oveiilow of the result. If PA/ holds parity: P/V = 1 if the result of the operation is even; PA/ = 0 if result is odd. If P/V holds overflow, PA/ = 1 if the result of the operation produced an overflow. If PN does not hold overflow, P/V = 0. 
H* Half-carry flag. H = 1 if the add or subtract operation produced a carry into, or borrow from, bit 4 of the accumulator. 
N* Add/Subtract flag. N = 1 if the previous operation was a subtract. 
C Carry/Link flag. C = 1 if the operation produced a carry from the IVISB of the operand or result. 
* H and N flags are used in oonjunolion with the decimal adjust instruction subtraction using ope,' ands with packed BCD format 
Symbol Operation 
t      The flag is affected according to the result of the operation. 
•      The flag is unchanged by the operation 
0 The flag is reset by the operation. 
1 The flag is set by the operation. X      The flag is indeterminate. 
V      PN flag affected according to the overflow result 
of the operation, P     PN flag affected according to the parity result of 
the operation, r      Any one o the CPU registers A, B, C, D, E, H, L. s      Any 8-bit location for all the addressing modes 
allowed for the particular instruction, ss     Any 16-bit location for all the addressing modes 
allowed for that instruction, ii      Any one of the two index registers IX or lY. R     Refresh counter, n      8-bit value in range < 0,255 >. nn     16-bit value in range <0, 65535 >. 
I to properly correct the result into packed BCD format following addition or 
Reproduced by permission, 1987 Zilog, Inc. This material shall not be reproduced witliout the written consent of Zilog, Inc, 
Absolute jump instructions, 182-86 conditional absolute juinp, 183 unconditional absolute jump, 183 
Accumulator, 52 
data copy instructions, 176-77 rotate instructions, 213-15 
ADBYTE subroutine, 268, 269 
ADC instructions, 265, 266, 562-63 
A/D converters. See Analog-to-digital converters 
ADD instructions, 130-31, 134, 147, 178, 267, 563, 564-66 
Addition, 134 example program, 193-94 instructions for, 177-78 16-bit operations, addition with 
cany, 265 two hex numbers, example programs, 139-43, 162-65 
Address bus, 27-28 in MPU design, 498-99 Z80, 59 
Address decoding memory, design, 480, 482-83 memory interfacing, 86-87 
Addressing modes, 137-39 listing of, 138 
Add/subtract flag, 56 
Alphanumeric codes, 19 
Alternate registers, 55 
ALU. See Arithmetic logic unit 
Analog signal processor, Intel 2920, 540 
Analog-to-digital converters, 117 AND gate, 634 
AND instnictions, 135, 138, 148, 208, 
209, 566-68 Appliance control, in memory-mapped 
I/O interfacing, 113-16 Arithmetic logic unit (ALU), 6, 8, 30 Arithmetic operations, 133-34, 147, 177-82 addition, 134 
instructions for, 177-78 division (binary), example program, 
271-74 flags, 180-82 increment/decrement, 134 
instructions for, 178 Modulo-2 arithmetic, 629-30 
multibyte numbers, adding, example 
program, 268-69 multiplication (binary), example 
program, 270-71 I's and 2's complement, 134 
instnictions for, 179 signed numbers, 181-82, 626-27 16-bit operations, 265-67 
addition with carry, 265 
subtraction with carry, 266-67 software project, example program, 
282-85 subtraction, 134, 627 
binary subtraction, 626 
decimal subtraction, 623-25 
instructions for, 177-78 
See also specific operations. ASCBIN subroutine, 280-81, 285 ASCII, 19, 152 
ASCII codes, listing of (Appendix 
C), 631 
conversion from binary, example program, 281-82 
conversion to binary, example program, 279-81 
software design project, 282-85 ASCII keyboard, 9, 152, 280 ASCII subroutine, 282, 285 ASM extension, 158 Assembler directives, 161-62 
DB, 161 
DW, 161 
END, 161, 163 
EQU, 161, 163 
ORG, 161, 163 Assemblers 
advantages in use of, 162 
assembler directives, 161-62 listing of, 161 
assembler statements, 160 
CP/M, 157 
enor messages, 164 
precautions, in program writing, 165 
two-pass assembler, 164 
use of, example program, 162-63 Assembler statements, 160 Assembling the code, 139, 140-41 Assembly language programming, 17, 18, 19-20, 129-49 
addressing modes, 137-39 listing of, 138 
assemblers, 159-65 
assembling the code, 139, 140-41 
binary division, 271-74 binary multiplication, 269-71 example program, 139-42 assembling the code, 140-41 execution of program, 142 program documentation, 142-43 storing in memory, 141-42 writing format, 142-43 flowcharting, 143-46 instnictions, 130-39, 170-89 programming statements, 160 repetitive techniques, 189-90 16-bit operations, 264-67 software design project, 282-85 stack, 233, 234-41 subroutines, 241-58 See also specific topics. Assembly process, 159-60 
assembling the code, 139, 140-41 source program, statements used in, 160 
Asynchronous format, 290, 413, 420-21 
Motorola MC68000, signals, 548 software controlled, 422-25 serial data reception, 425 serial data transmission, 422-23 
Backward jump, 186, 187 BAK file, 158 BASE subroutine, 282 Baud, 411 
baud generator design, example program, 395-97 
baud requirements, 414-15 BCD 
BCD operations, 53, 55 
flags, 55 BCD subroutine, 278-79 codes, table look-up technique, 255 conversion from binary, example 
program, 277-79, 622-23 conversion to binary, example 
program, 274-77 counter, example program, 252-57 packed BCD, 253 BDOS, 155 
Bidirectional data transfer, example 
program, 359-66 Binary code 
assembling the code, 139, 141 
translated from hex, 141 
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Binary Code Decimal (BCD) 
operations. See BCD Binary division, 271-74 
example program, 271-74 Binary multiplication, 269-71 
example program, 270-71 Binary subtraction, 626 BINASC subroutine, 281-82 BINBCD subroutine, 278 BIOS, 155 
Bit, addressing mode, 138 Bit and byte processor, MCS-51, 539-40 
BIT instructions, 135, 149, 216, 568-69 
Bit manipulation, 135, 148, 213 bit reset, 135 
instructions for, 216 bit set, 135 
instructions for, 216 bit test, 135 
instructions for, 216 16-bit operations, 267 Bit mode. Mode 3, PIO, 333, 344-48 Bit rotation, 135, 148, 149 Bits, 4-5 
Block transfers, example program, 198-99 
Branching operations, 136, 148, 182-87 call/return, 136 instructions for, 182-87 jump, 136 
absolute jump instructions, 182-86 relative jump instructions, 186-87 restart, 136 Breakpoint technique 
dynamic debugging, 196-97 restart (RST) instruction, 322-24 BSR mode, Intel 8255A, 366, 371, 373 Bubble matching, 635 Bus, 8, 10 in MPU design, 504 See also Address bus; Control bus; Data bus. Business microcomputers, 13 Bus interface standards, 554-57 bus signals, groups of, 555 defining standards, 554 GPIB interface bus, 557 
bus signals, 557-58 IBM PC bus, 555-56 multibus, 556-57 S-100 bus, 554-56 interface, 555-56 STD bus, 555 
Bytes, 16 adding, example program, 193-94, 195 
instructions, 1-byte through 4-byte, 
1.30-31 transfer to memory, 112 
CACODE, 354 
CALL instructions, 136, 148, 241-42, 
297, 569-70 Call/return, 136 
CALL subroutine, 241, 242, 243 Carry flag, 55, 183, 225, 274 CCF instructions, 267, 570 CCP, 156 
Central processing unit (CPU), 
explanation of, 6 CHAR subroutine, 283-84 Check sum, error checks, data 
transmission, 416 Clock signals, microprocessor unit 
(MPU), 29-30 CMOS microprocessor, 551 Code conversions. See ASCII; BCD; 
Number conversion COM files, 157, 158, 165 COMMAND instruction, 159, 428 Comments, 143, 160 Compare, 135 
instructions for, 212-13 
special instructions, 223-24 Comparing numbers, search for 
maximum number, example 
programs, 217-18, 224-25 Compiler, use of, 20 Complement Carry flag, 54, 267, 570 Complement operations. See I's and 
2's complement Computers 
types of, 11-15 
business microcomputers, 13 
home computers, 14 
mainframe computers, 12 
microcomputers, 12 
midicomputers, 12 
minicomputers, 12 
single-board microcomputers, 
14-15 
single-chip microcomputers 
(microcontrollers), 15 Conditional absolute jump, 183 Conditional relative jump, 186 Control bus, in MPU design, 501 Controllers, Z80 DMA controller, 
487-91 Control signals, 28 
counter/timer circuit (CTC), 384, 
388, 402 
serial I/O mode 
Intel 8251A, 428 
Z80 and DART, 441-43 Z80, 59, 68-69 Control unit, 9 Control words channel control word, 389-92, 397, 
398, 399, 403 Intel 8255A, 369-70, 371, 373, 374, 
378 
PIO, 337-.39, 347-48 Coprocessing, Intel 8086/8088, 545 COPY, 159 
Counter/timer circuit (CTC), 383-407 channel control word, 389-92, 397, 
398, 399, 403 control signals, 384, 388, 402 counter mode, 395, 398-401 
use with interrupt, example 
program, 398-401 Intel 8253 interval timer/counter, 
401-7 
compared to Z80 CTC, 407 
control signals, 402 
control words, 403 
data bus buffer, 402 
programming of, 403-5 
as square wave generator, 405-7 interrupts, 392-94, 400 
interrupt priorities, 394 programming of, 389-92 
programmable modes, 389 timer mode, 395 
baud generator design, example 
program, 395-97 Counting, 189 
CP instructions, 135, 148, 212, 571-72 CPD instructions, 223, 572 CPDR instructions, 149, 223, 573 CPI instructions, 223, 224-25, 574 CPIR instructions, 223, 574-75 CPL instructions, 134, 179, 575 CP/M, 155-58 
BDOS, 155 
BIOS, 155 
CCP, 156 
program assembly, 158 
files resulting from, 158 utility programs, 156-57 assemblers, 157 debugger, 157 editor, 156-57 linking loading, 157 CRIR, 223 
Cross-assemblers, and MS-DOS, 159 
649 
Cyclic redundancy check, error checks, data transmission, 416-17 
DAA instructions, 252, 253-54, 
575-76 Daisy chain foimat, 394 
PIO, 343-44 DART. See Z80 and DART Data acquisition, flowcharts, 191, 192 Data bus, 28 in MPU design, 499, 501 Z80, 59 Data copy operations, 132-33, 146-47, 170-77 addressing modes, 137 example program, 190-92 16-bit operations, 264 types of among registers, 170-72 between accumulator and I/Os, 176-77 
from and into memory, 172-75 Data processing, flowcharts, 191 Data transfer bidirectional data transfer, 343, 378 
example program, 359-66 Direct Memory Access (DMA), 
491-92 microprocessor controlled data transfer with handshake signals, 291-92 data transfer with interrupt, 291 data transfer with status check (polling), 291 
data transfer with WAIT signal, 291 
unconditional data transfer, 291 peripheral-controlled, 292 DB, assembler directive, 161 DBONCE, 352 Debugging, 194-97, 221-23 common errors, 194, 197, 221, 296 debugger, CP/M, 157 dynamic debugging, 194, 196-97 breakpoint, 196-97 register examine, 196 single step, 196 example program for, 221-23 modular programs, 258 static debugging, 194, 196 tools for disassembly, 533 in-line assembly, 533 real-time trace, 533 register display, 533 Decimal subtraction, 623-25 DEC instructions, 134, 147, 178, 577 
Decision making 
flags, use of, 180-82 
flowcharts, 191 Decoding 
absolute decoding, 92 
address decoding, 86-87 
decoding instructions, microprocessor, 30 
linear decoding, 92 Defining standards, 554 DELAY subroutine, 249, 250, 256 Delimiters, 160 
types of, 160 Designing systems 
memory system, 478-84 
single-board microcomputer, 496-534 
See also specific systems. Destination, 132 Diagnostic routine, 94-95 
input/output (I/O) interfacing, 120 
instructions in, 94-95 
memory interfacing, 94-95 Digit driver, 509 DIGIT subroutine, 284 DI instructions, 136, 578 DIR, 159 Directives, 160 
Direct Memory Access (DMA), 292, 484-91 
data transfer, 491-92 
requirements of, 486 
sequential transfer, 486 
simultaneous transfer, 486 
Z80 DMA controller, 487-91 interfacing for, 489-90 programming of, 490-91 signals for, 488-89 Disable Interrupt, 296 Disassembly, debugging tool, 533 Display buffer, 528 Display module, software design, 
527-28 DIV8 subroutine, 273 DIVIDE subroutine, 273, 274, 277 Division, binary division, 271-74 DJNZ d, 197, 198 DJNZ instructions, 149, 578 Documentation, for subroutines, 250 Downloading, in-circuit emulator, 533 DSPLAY subroutine, 255, 257, 354 Duplex transmission, 413-14 
full duplex, 414 
half duplex, 413 DW, assembler directive, 161 Dynamic debugging 
breakpoint, 196-97 
register examine, 196 
single step, 196 Dynamic memory, 468-78 
circuit design, 471-73 CAS, generating, 473, 477 RAS, generating, 472, 476 
interfacing, 2118 with Z80, example of, 475-78 
interfacing, 470 
refreshing technique, 474, 478 
structure of, 468 
EBCDIC, 19 
Editor, CP/M, 156-57 
8-bit microprocessors 
Hitachi HD64180, 551 
Intel 8008, 550 
Intel 8085, 71-74 
Motorola MC6800, 74-75, 550 
National Semiconductor NSC800, 74 
Z280, 551, 554 
Z8001, 550 
Z80, 550 18-bit microprocessor, 7, 9 80386 microprocessor, 549 8253. See Intel 8253 interval 
timer/counter 8255A. See Intel 8255A EI instructions, 578 Electrically Erasable PROM 
(EE-PROM), 43, 44 Emulation process, 532 Enable Interrupt, 296 Encoder, keyboard, 519-20 END, assembler directive, 161, 163 EQU, assembler directive, 161, 163 Erasable Programmable Read-Only 
Memory (EPROM), 43, 506 Error messages, of assembler, 164 Exchange, 239 
16-bit operations, 264-65 Exchange instructions, 239, 264, 265 Executing instructions, microprocessor, 30 
EX instructions, 239, 264, 578-79 Extended, addressing mode, 138, 173 Externally initiated operations, 
microprocessor unit (MPU), 28-29 External requests, Z80, 59-60 EXX instructions, 133, 239, 580 
Fetching instructions, microprocessor, 30 
Fields, 160 File, 155 
File management utilities, 156 
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Flag register, 53-55 
alternate flag register, 55 Flags, 562 
add/subtract flag, 55 
carry flag, 55 
decision making, use in, 180-81 
examining/manipulating, example program, 239-41 
function of, 181 
half-carry flag, 56 
and jump instructions, 183 
parity/overflow flag, 55-56 
setting flags, 189 
and signed numbers, 181-82 
sign flag, 55 
zero flag, 55 Flip-flops, 52 
See also Flags, Floppy disks, 13, 152-54 
sectors/tracks of, 153-54 Flowcharting, 143-46 
data transfer example, 192, 194 
steps, designating blocks, 191 
symbols used in, 144-45 FORMAT, 159 Forward jump, 186, 187 4-byte instruction, 131 Framing, 413 
Frequency shift keying, modems, 417 Function generator, computer as, 
example program, 218-21 Function module, software design, 
528-30 
General-purpose registers, 55 
Half-carry flag, 56 
HALT instructions, 136, 149, 170, 
171, 175, 580 Handshake mode, Intel 8255A, 366 Handshake signals, 291-92, 330 
PIO, 339-40, 343 Hard disk, 154 Hardware, 4 
Hardware model (Z80), 57-61 address bus, 59 control signals, 59, 68-69 data bus, 59 
external requests, 59-60 hex decoder/driver, 510-11 power/frequency signals, 61 request acknowledgment, 60 special signals, 60 Hex code, 143 translated from mnemonics, 139, 
140-41 translated into binary, 141 
HEX files, 157, 158, 165 
Hex keyboard, 9 High-level languages, 17, 20-21 
compiler, 20 
types of, 20 Home computers, 14 
IBMDOS, 159 IM instructions, 580-81 Immediate, addressing mode, 137, 138, 170, 172 
Immediate extended addressing mode, 
137, 138, 171 Implied addressing, 138 
See also Logic operations, INC instmctions, 134, 1.38, 147, 178, 
582-83 In-circuit emulator, 532 and emulation process, 532 features of, 532-33 debugging tools, 533 downloading, 533 resource sharing, 533 Increment/decrement, 134 
instructions for, 178 Indexed, addressing mode, 138 Index registers (IX and lY), 56, 187-89 instructions, 188-89 Indexing, 189 IND instructions, 582-83 INDR instructions, 149, 583-84 INI instructions, 584 
input devices, interfacing, 108-9 IN instructions, 133, 176, 581 INIR instructions, 585 Initialization flowcharts, 191 PIO, 342-43 software design, 527 In-line assembly, debugging tool, 533 Input devices keyboards ASCII keyboard, 9 hexadecimal keyboard, 9 Input devices (interfacing), 107-11 IN instruction, 108-9 execution/timing of, 108-9 machine cycles, 108-9 input switches, interfacing, 110-11 steps in, 109 Input/output (I/O) modes parallel I/O, 101 serial I/O, 101 Input/output (I/O), explanation of, 5 Input/output (I/O) interfacing, 101-22 data transfer (microprocessor controlled), 291-92 
data transfer with interrupt, 291 data transfer with handshake signals, 291-92 data transfer with status check (polling), 291 
data transfer with WAIT signal, 291 
unconditional data transfer, 291 data transfer (peripheral-controlled), 292 
of dc motor, 119-20 diagnostic routine, 120 memory-mapped I/O, 111-16, 290, 291 
appliance control using, 113-16 
data transfer instructions, 
execution, 112-13 parallel I/O mode, 101, 290-91 parallel-to-serial conversion, 291 peripheral-mapped I/O, 44-45, 101, 
290, 291 
interfacing LEDs, example of, 105-7 
switches as input device, example 
of, 110-11 questions related to, 121-22 serial I/O mode, 101, 290, 291 of temperature sensor, 117-19 See also Input devices, interfacing; 
Output devices, interfacing. Instructions, 130-39, 143, 170-89 arithmetic operations, 133-34, 147, 
177-82 bit manipulation, 135, 148 branching operations, 136, 148, 
182-87 
data copy operations, 132-33, 
146-47, 170-77 4-byte instruction, 131 listing of instructions, 562-619 logic operations, 135, 148 machine control operations, 136, 149 mnemonic, 18 
1- byte instruction, 130-31 repetitive instructions, 149 special instructions 
Compare instructions, 223-24 for multiple tasks, 197-98 repetitive instructions, 149 
stack, 235-38 
subroutines, 241-42 
3-byte instruction, 131 
2- byte instruction, 131 Z80, 61 
See also specific operations. 
651 
Instruction set, 130 Intel 8086/8088, 545 Motorola MC68000, 547-48 Integrated circuits (IC), 7 Integrated RAM, 44 Intel 2920 analog signal processor, 540 Intel 4004, 7 Intel 8008, 7 Intel 80186/80286, 548 Intel 8085, 71-74 Intel 8086/8088 coprocessing, 545 instruction set, 545 memory segmentation, 542-44 simultaneous processing, 544 Intel 8251A serial I/O control register, 428, 429 control signals, 428 data register, 428, 429 elements of chips, 425-27 interfacing RS-232 terminal, example program, 435-39 programming of, 431-35 receiver section, 431 status register, 428 transmitter section, 430-31 Intel 8253 interval timer/counter, 401-7 
compared to Z80 CTC, 407 
control signals, 402 
control words, 403 
data bus buffer, 402 
programming of, 403-5 
as square wave generator, 405-7 Intel 8255A 
BSR mode, 366, 371, 373 
compared to PIO, 378-79 
control logic, 367, 369 
contiol words, 369-70, 371, 373, 374, 378 
handshake mode, 366 
interfacing with A/D converter, 371-79 
Mode 0, 370, 373 
Mode 1, 374, 376-78 
Mode 2, 378 Intel MCS-51 single-chip 
microcomputer, 539-40 Interfacing, 290 
See also Input/output (I/O) 
interfacing; Memory interfacing; Programmable interface devices. Interpreter, 20 
Interrupt Enable flip-flops, 295, 297, 300 
Interrupt Enable word, PIO, 341-42 
Interrupts, 293-324 counter/timer circuit (CTC), 392-94, 400 
data transmission, Z80 and DART, 
453-54, 455-57 explanation of, 294-95 
steps in process, 299-300 
telephone analogy, 294-95, 299 implementation issues, 305-7 Interrupt Request and Acknowledge, 
300, 303 maskable interrupt, 293, 295-96 
Disable Interrupt, 296 
Enable Interrupt, 296 
Interrupt Enable flip-flops, 295, 
297, 300 
interrupt mode, instructions for, 296 
Mode 0, 296, 298-300 
illustration of, 302-7 Mode 1, 296 
illustration of, 307-13 Mode 2, 296, 313-15 
in MPU design, 504 multiple interrupts, 318-22 
interrupt vector technique, 320-22 
polling method, 318-20 nonmaskable interrupt, 293, 295, 
297, 315-17 PIO, 341-42, 343-44 Restart (RST) instructions, 297-98, 
300, 302, 307 
breakpoint technique, 322-24 and single-board microcomputers, 305 
Interrupt vectors 
interrupt vector register (I), 56 interrupt vector technique, multiple 
interrupts, 320-22 PIO,341-42 
IP instructions, 136, 139, 148, 183, 
264, 585-86 JR instructions, 138, 186, 587-88 Jump, 136 
instructions, 182-87 
absolute jump, 182-86 
relative jump, 186-87 
Keyboards 
ASCII keyboard, 9 
hexadecimal keyboard, 9 
interfacing with seven-segment LED, bidirectional data transfer, 348-59 KYBRD subroutine, 354, 514-16 KYCHK subroutine, 350, 352 KYCODE subroutine, 351, 352, 353 KYPUSH subroutine, 350 
Labels, 143, 160, 163, 192-93 Languages (computer) alphanumeric codes, 19 ASCII, 19 EBCDIC, 19 assembly language, 17, 18, 19-20 writing/execution of, 19-20 Z80 assembly language, 18-19 high-level languages, 17, 20-21 compiler, use of, 20 types of, 20 machine language, 16, 17-18 
Z80 machine language, 17-18 See also Assembly language programming. Large-Scale Integration (LSI), 7, 8 LDD instructions, 197, 596 LDDR instructions, 197, 597 LDI instructions, 197, 597-98 LD instructions, 130, 131, 133, 138, 140, 146-47, 170-71, 172-73, 174-75, 234, 235, 236, 264, 589-95 
LDIR instructions, 197, 198-99, 599-600 
LEDs (Light Emitting Diodes), 5, 9, 44 
interfacing, 105-7 
seven-segment codes, 254, 255 LIFO sequence, 238, 239 Line drivers, RS-232C, 420, 436 Line receivers, RS-232C, 420, 436-37 Linking loading, 165 
CP/M, 157 Load operations, 132-33, 146-47 
See also Data copy operations. Logic operations, 135, 148, 208-12 
AND instructions, 208, 209 
compare, 135 instructions for, 212-13 
logic functions, 135 
OR instructions, 208, 209 
rotate, instructions for, 213-15 
rotate and shift, instructions for, 215-16 
shift and rotate, 135 
XOR instructions, 208, 209 Logic state analyzer, 533-34 LOOKUP subroutine, 255-56, 257 Looping, 189 LOOP subroutine, 256-57 
Machine code, static debugging, 194, 196 
Machine control operations, 136, 149 Machine cycles, 464-65 definition of, 62 
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Machine cycles (continued) 
memory read machine cycle, 65-67, 68 
memory write cycle, 67-68 opcode fetch machine cycles, 62-64, 68 
T-states in, 62, 70 Machine language, 16, 17-18 
Z80 machine language, 17-18 Mainframe computers, 12 Maskable interrupt, 293, 295-96 
Disable Interrupt, 296 
Enable Interrupt, 296 
Interrupt Enable flip-flops, 295, 297, 300 
Masked ROM, 43 Matrix keyboard, 355-57 interfacing, 356-57 
hardware approach, 519-20 
interfacing circuit, 513 
problem areas, 514 
program for, 513-17 Medium-Scale Integration (MSI), 7 Memory, 32-44 classification of, 41-42 
prime memory, 41 
storage memory, 41 data copy, from and into memory, 
172-75 designing system, 478-84 
address decoding, 480, 482-83 
EPROM memory, 506 
issues related to, 478-80 
PROM decoding, 484-85 
Read/Write (R/W) memory, 506-7 Direct Memory Access (DMA), 
484-91 dynamic memory, 468-78 explanation of, 5, 10, 32-36 memory chip, 33, 36 memory map, 37-40 MRU, writing/reading, 40-41 new advancements, 43-44 
Integrated RAM, 44 
Non-Volatile RAM, 44 
Zero Power RAM, 43-44 Random-Access Memory (RAM), 10 Read-Only Memory (ROM), 10, 32, 
42-43 
Electrically Erasable PROM 
(EE-PROM), 43, 44 
Erasable Programmable Read-Only 
Memory (EPROM), 43 
masked ROM, 43 
Programmable Read-Only Memory 
(PROM), 43 
Read/Write Memory (R/WM), 10, 
32, 41-42 rotate instructions, 213-15 Memory addresses, 143 high-order/low-order addresses, 
39-40 
Memory interfacing, 83-97 address decoding, 86-87 design factors, 92-94 
circuit analysis, 93-94 
diagnostic routine, 94-95 
problem analysis, 93 
problem statement, 93 dynamic memory, 470, 475-78 function of, 83 MOSTEK MK4802, 90-92 
absolute vs. linear decoding, 92 
interfacing circuit, 90-91 
memory map, 92 questions related to, 95-97 requirements of microprocessor, 
83-86 2732 EPROM, 87-90 
interfacing circuit, 88-89 
memory map, 89-90 wait states, 464-69 
generation of, 466-68 Memory map, memory interfacing, 
89-90, 92 Memory-mapped I/O, 111-16 appliance control using, 113-16 
data transfer instructions, 112-13 Memory pointers, 55 
index registers, 187-89 Memory read machine cycle, 65-67, 
68 
Memory refresh register (R), 56 Memory segmentation, Intel 
8086/8088, 542-44 Memory write cycle, 67-68 Microcomputers, 12 components of 
input/output (I/O) devices, 44-45 
memory, 32-44 
microprocessor unit (MRU), 26-32 organization of, 8-10 
input, 9 
memory, 10 
microprocessor, 8 
output, 9-10 
system bus, 10 program execution, 10-11,45-46 Microcontroller, 4 
See also Single-chip microcomputersMicroprocessors areas of 
arithmetic/logic unit (ALU), 8 
control unit, 9 
register array, 9 binary digits, 4-5, 16 as a central processing unit (CPU), 6 and computer language, 16-21 
assembly language, 17, 18, 19-20 
compiler, use of, 20 
machine language, 16, 17-18 explanation of, 4-5 and input/output, 5 instraction set, 16, 17 and memory, 5 
and microcomputer system, 8-11 
as programmable devices, 5 
and semiconductor technology, 7 
types available, 7, 9 Microprocessor Unit (MPU), 26-32 
clock signals, 29-30 
externally initiated operations, 28-29 
and instructions, 30 decoding instructions, 30 executing instructions, 30 fetching instructions, 30 
and memory, writing/reading, 40-41 
program-initiated operations, 27-28 address bus, 27-28 control signals, 28 data bus, 28 operations in, 27 
See also Hardware model. Microprogramming, 9 Micro-Trainer, 637-40 Midicomputers, 12 Minicomputers, 12 MLTPLY subroutine, 270, 285 Mnemonics, 18 
translated into hex code, 139, 140-41 Mode 0, 296, 298-300 
Intel 8255A, 370, 373 
interrupts, illustration of, 302-7 
PIO, 333, 340 Mode 1, 296 
Intel 8255A, 374, 376-78 
interrupts, illustration of, 307-13 
PIO, 333, 339-40 Mode 2, 296, 313-15 
Intel 8255A, 378 
PIO, 333, 343, 359-66 Mode 3, PIO, 333, 344-48 Mode instruction, 428 Mode 0, 296, 298-300 
Intel 8255A, 370, 373 
interrupts, illustration of, 302-7 
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Mode 0 (continued) 
PIO, 333, 340 Modular approach, 234, 257-58 
advantages of, 258 
debugging, 258 Modulo-2 arithmetic, 629-30 MOSTEK MK4802, memory 
interfacing, 90-92 Motorola MC6800, 74-75 Motorola MC68000 
asynchronous signals, 548 
instruction set, 547-48 
nonsegmented memory, 547 
synchronous signals, 548 Motors, dc, I/O interfacing of, 119-20 MS-DOS, 158-59 
COMMAND, 159 
and cross-assemblers, 159 
IBMDOS, 159 
ROM-BIOS, 159 Multibyte numbers, adding, example 
program, 268-69 Multiple call subroutine, 249, 251 Multiple ending subroutine, 252, 281 Multiple interrupts, 318-22 
interrupt vector technique, 320-22 
polling method, 318-20 Multiplexing, 357-59 Multiplication, binary multiplication, 
269-71 Multi-user systems, 32-bit microprocessors, 549 
NAND gate, 635 
National Semiconductor NSC800, 74 NEG instructions, 134, 179, 599 Nested subroutine, 251 NEXTKY, 355 Nibble, 16 NOADD, 271 
Nonmaskable interrupt, 293, 295, 297, 315-17 
Nonsegmented memory. Motorola 
MC68000, 547 Non-Volatile RAM, 44 NOP instructions, 149, 599 NOR gate, 634 Number conversion, 621-23 convert from binary into 
hexadecimal/octal, 622-23 NXTBIT 270, 273 
Object code, 20 
1-byte instruction, 130-31 
I's and 2's complement, 134 
instructions for, 179 Opcode fetch machine cycle, 62-64, 68, 464-65 
Opcodes, 61, 70, 160 
in instruction set, 130 Operand, 61, 160 Operating systems, 151, 155-56 
CP/M, 155-58 
MS-DOS, 158-59 ORG, assembler directive, 161, 163 OR gate, 633-34 OR instructions, 208, 209, 600 OTDR instructions, 149 OTIR instructions, 602-3 OUTD instructions, 601 OUTI instructions, 602 OUT instructions, 133, 176, 600-601 
output devices, interfacing, 102-4 Output 
flowcharts, 191 Output devices, 5, 10 Output devices (interfacing) 
LEDs interfacing, 105-7 interfacing circuit, 106-7 
Out instruction, 102-4 execution/timing of, 103-4 machine cycles, 103 
steps in, 104-5 OUTR instructions, 601-2 
Packed BCD, 253 
PACK subroutine, 284, 285 
Page zero, addressing mode, 138 
Parallel Input/Output (PIO) device, 329 
See also PIO. Parallel I/O mode, 101, 290-91, 411 Parallel-to-serial conversion, 291, 411 Parameter passing, 246, 248, 250 Parity check, 280 
enror checks, data transmission, 415-16 
Parity/overflow flag, 56, 181, 182, 
183, 225 Peripheral-mapped 1/0, 101 examples of interfacing, LEDs, 105-7 switches as input device, 110-11 Peripherals, 6, 289 asynchronous format, 290 interrupts, 293-324 programmable interface devices, 
329-79 synchronous format, 290 See also Input/output (I/O) interfacing; specific topics. Phase shift keying, modems, 417 PIO 
bidirectional data transfer, 359-66 compared to Intel 8255A, 378-79 control words, 337-39, 347-48 
daisy chain priority, 343-44 handshake signals, 339-40, 343 initialization, 342-43 interrupt enable word, 341-42 interrupt vector, 341-42 keyboaid/seven-segment display, 
348-59 Mode 0, 333, 344-48 Mode 1, 333, 339-40 Mode 2, 333, 343, 359-66 Mode 3, 333, 344-48 signals, 335-36 Polling, 291 multiple interrupts, method for, 
318-20 
POP instructions, 234, 235, 236, 238, 
239, 603 Positional weighing, 274 Power/frequency signals, 61 Preferred logic symbols, 633-35 
AND gate, 634 
inverters/bubble matching, 635 
NAND gate, 635 
NOR GATE, 634 
OR gate, 633-34 PRN file, 157, 158, 165 Program, 4 
Program assembly, CP/M, 158 Program coding, software design, 530 Program counter (PC), 56 Program development utilities, 156 Program documentation, 142-43 Program-initiated operations, 
microprocessor unit (MPU), 27-28 Programmable interface devices, 
329-79 
bidirectional data transfer, 330, 343 handshake signals in, 330 Intel 8255A, 367-79 
HSR mode, 366, 371, 373 
compared to PIO, 378-79 
control logic, 367, 369 
control words, 369-70, 371, 373, 
374, 378 
handshake mode, 366 interfacing with A/D converter, example program, 371-79 Mode 0, 370, 373 Mode 1, 374, 376-78 Mode 2, 378 PIO, 333-66 bidirectional data transfer, example program, 359-66 compared to Intel 8255A, 378-79 control words, 337-39, 347-48 daisy chain priority, 343-44 handshake signals, 339-40, 343 
654 
INDEX 
Programmable interface devices {continued) initialization, 342-43 interrupt enable word, 341-42 interrupt vector, 341-42 keyboard/seven-segment display, example program, 348-59 Mode 0, 333, 340 Mode 1, 333, 339-40 Mode 2, 333, 343, 359-66 Mode 3, 333, 344-48 74LS234 bidirectional buffer, 331-33 
signals, categories of, 335-36 Programmable Read-Only Memory (PROM), 43 decoding, 484-85 Programming model (Z80), 52-57 components for programming accumulator, 52 alternate registers, 55 flag register, 53-55 general-purpose registers, 55 index registers (IX and lY), 56 interrupt vector register (I), 56 memory refresh register (R), 56 program counter (PC), 56 16-bit registers, as memory pointers, 55 stack pointer (SP), 56 illustration of use, 57 Programming statements, 160 delimiters, 160 fields, 160 Pseudo operations, 161 PUSH instructions, 133, 234, 235, 236, 237, 239, 604 
Random-Access Memory (RAM), 10 RD-423A, serial I/O mode, 418, 420 Reading the keyboard, software design, 528 
Read-only Memory (ROM), 10, 32, 42-43 
Electrically Erasable PROM 
(EE-PROM), 43, 44 Erasable Programmable Read-Only 
Memory (EPROM), 43 masked ROM, 43 Programmable Read-Only Memory 
(PROM), 43 Read Registers, data transmission, Z80 
and DART, 446, 451 Read/Write (R/WM) Memory, 10, 32, 
41-42, 82-83, 506-07 requirements of, 83 
Real-time trace, debugging tool, 533 Receiver section serial I/O mode Intel 8251 A, 431 Z80 and DART, 444, 446 Refreshing technique, dynamic 
memory, 474, 478 Registers addressing mode, 137, 138, 170, 
172, 173 data copy among registers, 170-72 between Z80 and memory, 172-75 register array, 9 
register display, debugging tool, 533 register examine, dynamic 
debugging, 196 register indirect, 138, 172, 173 rotate instructions, 213-15 See also Programming model (Z80). Relative, addressing mode, 138 Relative jump instructions, 186-87, 213 
conditional relative jump, 186 forward/backward jump, 186, 187 unconditional relative jump, 186, 187 
REL files, 157, 158, 165 Repetitive techniques, 149, 189-90 
counting, 189 
example programs, 190-94 
indexing, 189 
looping, 189 
setting flags, 189 Request acknowledgment, Z80, 60 RES instructions, 135, 149, 216, 
604- 5 
Resource sharing, in-circuit emulator, 533 
Restart (RST) instructions, 136, 297-98, 300, 302, 307 breakpoint technique, 322-24 RESULT subroutine, 273 RET instructions, 148, 241-42, 307, 
605- 6 
RET subroutine, 241, 242, 244-45 RETI instructions, 307, 606 RETN instructions, 606 RL, instructions, 149, 215, 608 RLA instructions, 148, 606-7 RLCA instructions, 148, 607 RLC instructions, 135, 149, 215, 
608-9 RLD instructions, 609 ROM-BIOS, 159 Rotate, instructions for, 213-15 Rotate and shift, 135 instructions for, 215-16 
RR instructions, 215, 611 RRA instructions, 135, 148, 609 RRC instructions, 215, 611-12 RRCA instructions, 148, 610-11 RRD instructions, 612 RS-232C interfacing with Intel 8251 A, 
example program, 435-39 interfacing with Z80 and DART, 
455-59 serial I/O mode, 418, 419-20 
interface requirements, 420 
line drivers, 420, 436 
line receivers, 420, 436-37 
signals, 419 RS-422A, serial I/O mode, 418, 420 RST instructions, 136, 138, 297-302, 
613 
S-100 bus, 554-56 interface, 555-56 SBC instructions, 266, 613-14 Scanned display interfacing 
hardware approach, 510-11 interfacing circuit, 507, 509 program for, 509-10 SCF instructions, 267, 615 Segment driver, 509 Semiconductor technology, advancement of, 7, 11 SEND subroutine, 364 Sequential transfer. Direct Memory 
Access (DMA), 486 Serial I/O mode, 101, 290, 291, 411, 412-59, 413-15 asynchronous format, 413, 420-21 baud requirements, 414-15 duplex transmission, 413-14 error checks, 415-17 check sum, 416 
cyclic redundancy check, 416-17 
parity check, 415-16 framing, 413 hardware approach, 421 hardware approach (Intel 8251 A), 
425-39 
control register, 428, 429 control signals, 428 data register, 428, 429 elements of chip, 425-27 interfacing RS-232 terminal, example program, 435-39 programming of, 431-35 receiver section, 431 status register, 428 transmitter section, 430-31 
INDEX 
655 
Serial I/O mode {continued) 
hardware approach (Z80 SIO and DART), 439-57 control signals, 441-43 interfacing RS-232 terminal, example program, 455-57 interrupts, 453-54, 455-57 programming of, 446-52 Read Registers, 446, 451 receiver section, 444, 446 transmitter section, 444 versions of SIO, 439 Write Registers, 446, 449-50 interfacing requirements, 413 modem, 417 simple transmission, 413 software approach, 420, 421, 422-25 
serial data reception, 425 serial data transmission, 422-23 standards used, 418-20 RS-232C, 418, 419-20 RS-422A, 418, 420 RS-423A, 418, 420 synchronous format, 413 Serial-to-parallel conversion, 411 Service subroutine, 300, 400-401 Set carry flag, 54, 267 SET instructions, 135, 138, 216, 615 Setting flags, 189 Seven-segment LED components of, 352-53 interfacing with keyboard, 
bidirectional data transfer, 348-59 LED codes, 254, 255 74LS245 bidirectional buffer, 331-33 Signature analyzer, 534 Signed numbers, 626-27 Sign flag, 55, 181, 182, 183, 225 Simple transmission, 413 Simultaneous processing, Intel 
8086/8088, 544 Simultaneous transfer. Direct Memory 
Access (DMA), 486 Single-board microcomputer, 14-15, 496-534 
design alternatives related to, 520-23 display in, 497 execute in, 497 instruments used 
debugging tools, 533 
in-circuit emulator, 532 
logic state analyzer, 533-34 
signature analyzer, 534 keyboard in, 497 
matrix keyboard, 512-20 hardware approach, encoder, use of, 519-20 
interfacing circuit, 513 
problem areas, 514 
program for, 513-17 memory design, 504-7 
design considerations, 504-6 
EPROM memory, 506 
Read/Write (R/W) Memory, 
506-7 Micro-Trainer, 637-40 MPU design, 497-504 
address bus, 498-99 
bus request, 504 
control bus, 50! 
data bus, 499, 501 
inteiTupts, 504 
power requirements, 502 
reset circuits, 502 
WAIT signal, 504 prototype building/testing, 530-31 scanned display, 507-11 
hardware approach, hex 
decoder/driver, use of, 510-11 
interfacing circuit, 507, 509 
program for, 509-10 software design modules, 526-31 
display module, 527-28 
function module, 528-30 
initialization, 527 
program coding, 530 
reading the keyboard, 528 specifications for, 496 Single-chip microcomputers, 15, 
538-40 
Intel 2920 analog signal processor, 540 
Intel MCS-51 single-chip 
microcomputer, 539-40 Z80 microcomputer, 538 Single step, dynamic debugging, 196 Single-user systems, 32-bit 
microprocessors, 549 16-bit microprocessors, 7, 9, 540, 
542-48 Intel 80186/80286, 548 Intel 8086/8088, 542-45 
coprocessing, 545 
instruction set, 545 
memory segmentation, 542-44 
simultaneous processing, 544 Motorola MC68000, 546-47 
asynchronous signals, 548 
instruction set, 547-48 
nonsegmented memory, 547 
synchronous signals, 548 
objectives of, 542 
Z8000, 545-47 16-bit operations, 264-67 
instructions 
arithmetic instructions, 265-67 bit manipulation, 267 data copy instructions, 264 exchange instructions, 264-65 16-bit registers, 55 
SLA instructions, 149, 215, 216, 616 Small-Scale Integration (SSI), 7 Software, 4 
Software design modules 
display module, 527-28 
function module, 528-30 
initialization, 527 
program coding, 530 
reading the keyboard, 528 Software design project, 282-85 Software development system, 151, 152 
components of, 152-53 
floppy disks, 152-54 
hard disk, 154 
hardware, 152 
operating systems, 155-56 CP/M, 155-58 MS-DOS, 158-59 Source, 132 Source code, 20 Source file, 158 
Source program error messages, 164 Special signals, Z80, 60 SRA instructions, 616 SRL instructions, 215, 617 Stack, 233, 234-41 
Exchange, instinctions for, 239 
flags, examining/manipulating, example program, 239-41 
instructions for, 235-38 
stack pointer, 234-35 Stack pointer (SP), 56, 398 Static debugging, 194, 196 Static memory, interfacing, 470 STORE subroutine, 279 SUB instructions, 134, 147, 178, 
617-18 Subroutines, 241-58 
BCD counter, example program, 252-57 
documentation of, 250 
instructions for, 241-42 
656 
INDEX 
Subroutines (continued) 
conditional instruction, 241-42, 243 
unconditional instruction, 241-42, 244 
modular approach, 234, 257-58 multiple call subroutine, 249, 251 multiple ending subroutine, 252 nested subroutine, 251 parameter passing, 246, 248, 250 traffic signal controller, example program, 245-49 
Subtraction, 134, 627 binary subtraction, 626 decimal subtraction, 623-25 instructions for, 177-78 16-bit operations, subtraction with carry, 266-67 
SUM subroutine, 276 
Switches, 210-12 
Synchronous format, 290, 413 synchronous signals. Motorola MC6S000, 548 
System display, 497 
Table look-up technique, 254 Temperature sensor, I/O interfacing of, 117-19 
Temporary storage, flowcharts, 191 Terminal error messages, 164 32-bit microprocessors, 7, 9, 548-50 
80386 microprocessor, 549 
single-user systems, 549 
Zilog Z80000 microprocessor, 549 3-byte instruction, 131 Time delays, 218-20 
waveform generating, example program, 218-21 Timer mode, 395 
baud generator design, example program, 395-97 
See also Counter/timer circuit (CTC). Traffic signal controller, example program, 245-49 
Transmitter section serial I/O mode Intel 8251A, 430-31 Z80 and DART, 444 Tri-state buffer, 298 74LS245 bidirectional buffer, 331-33 T-state, 62 
2732 EPROM, memory interfacing, 
87-90 2-byte instruction, 131 
Unconditional absolute jump, 183 Unconditional data transfer, 291 Unconditional relative jump, 186, 187 Universal Asynchronous 
Receiver/Transmitter (UART), 
551, 554 
Universal Synchronous/Asynchronous Receiver/Transmitter (USART), 425 
Unpacking, 253, 255 UNPACK subroutine, 255, 257, 
275-76, 282 UPDATE subroutine, 256, 257 Upward software compatible, 7 User display, 497 
Utility programs, categories of, 156 
Very-large-scale integration (VLSI), 7, 8 
WAIT signal data transfer, 291 in MPU design, 504 Wait states 
memory interfacing, 464-68 generation of, 466-68 WAIT subroutine, 256 Waveforms, generating, example 
program, 218-21 Words, 5, 130 
definition of, 5, 16 Write Registers, data transmission, Z80 and DART, 446, 449-50 
XOR instructions, 135, 208, 209, 618-19 
assembly language programming, 
129-49 hardware model, 57-61 input/output (I/O) interfacing, 101-22 instructions, 61 
opcode, 61, 70 
operand, 61 machine cycles, 61-67, 70-71 
definition of, 62 
memory read machine cycle, 
65-67, 68 
memory write cycle, 67-68 
opcode fetch machine cycle, 
62-64, 68 
T-states in, 62, 70 memory interfacing, 83-97 
reading from/writing to memory, 
40-41, 83 programming model, 52-57 questions related to, 69-71 See also specific topics. Z80 assembly language, 18-19 Z80 machine language, 17-18 Z80 SIO and DART serial I/O 
control signals, 441—43 
interfacing RS-232 terminal, 
455-57 
interrupts, 453-54, 455-57 programming of, 446-52 Read Registers, 446, 451 receiver section, 444, 446 transmitter section, 444 versions of SIO, 439 Write Registers, 446, 449-50 
Z80000 microprocessor, 549 
Zero flag, 55, 183, 225 
Zero Power RAM, 43-44 
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