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Preface

In the late 1920’s the relentless march of ideas and discoveries had carried 
physics to a generally accepted relativistic theory of the electron. The 
physicist P.A.M. Dirac, however, was dissatisfied with the prevailing ideas 
and, somewhat in isolation, sought for a better formulation. By 1928 he 
succeeded in finding a theory which accorded with his own ideas and also 
fit most of the established principles of the time. Ultimately this theory 
proved to be one of the great intellectual achievements of the period. It 
was particularly remarkable for the internal beauty of its mathematical 
structure which not only clarified much previously mysterious phenomena 
but also predicted in a compelling way the existence of an electron-like 
particle of negative energy. Indeed such particles were subsequently found 
to exist and our understanding of nature was transformed.

Because of its compelling beauty and physical significance it is perhaps 
not surprising that the ideas at the heart of Dirac’s theory have also been 
discovered to play a role of great importance in modern mathematics, 
particularly in the interrelations between topology, geometry and analysis. 
A great part of this new understanding comes from the work of M. Atiyah 
and I. Singer. It is their work and its implications which form the focus 
of this book.

It seems appropriate to sketch some of the fundamental ideas here. 
In searching for his theory, Dirac was faced, roughly speaking, with the 
problem of finding a Lorentz-invariant wave equation Dij/ =  Aif/ compat­
ible with the Klein-Gordon equation where □  =  (d/dx0)2 -
(d /d x j2 — (d/dx2)2 — (d/dx3)2. Causality required that D be first order in 
the “time” coordinate x0. Of course by Lorentz invariance there could be 
no preferred time coordinate, and so D was required to be first-order in all 
variables. Thus, in essence Dirac was looking for a first-order differential 
operator whose square was the laplacian. His solution was to replace the 
complex-valued wave function \j/ with an n-tuple =  (i//u . . .  ,^ w) of such 
functions. The operator D then became a first-order system of the form
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Brought to you by | Cornell University Library

Authenticated
Download Date | 7/1/17 9:36 PM



X PREFACE

where y0, . . .  ,y3  were n x n-matrices. The requirement that

led to the equations

+  y ,n  =  ± 2 <V

These were easily and explicitly solved for small values of n> and the 
analysis was underway.

This construction of Dirac has a curious and fundamental property. 
Lorentz transformations of the space-time variables (x0, . . .  ,x3) induce 
linear transformations of the n-tuples which are determined only up to 
a sign. Making a consistent choice of sign amounts to passing to a non­
trivial 2-fold covering L of the Lorentz group L. That is, in transforming the 
*F’s one falls upon a representation of L which does not descend to L.

The theory of Dirac had another interesting feature. In the presence of 
an electromagnetic field the Dirac Hamiltonian contained an additional 
term added on to what one might expect from the classical case. There 
were strong formal analogies with the additional term one obtains by 
introducing internal spin into the mechanical equations of an orbiting 
particle. This “spin” or internal magnetic moment had observable quan­
tum effects. The n-tuples ¥  were thereby called spinors and this family of 
transformations was called the spin representation.

This physical theory touches upon an im portant and general fact con­
cerning the orthogonal groups. (We shall restrict ourselves for the moment 
to the positive definite case.) In the theory of Cartan and Weyl the repre­
sentations of the Lie algebra of SO„ are essentially generated by two basic 
ones. The first is the standard n-dimensional representation (and its ex­
terior powers). The second is constructed from the representations of the 
algebra generated by the yM’s as above (the Clifford algebra associated to 
the quadratic form defining the orthogonal group). This second represen­
tation is called the spin representation. It does not come from a represen­
tation of the orthogonal group, but only of its universal covering group, 
called Spin*. It plays a key role in an astounding variety of questions 
in geometry and topology: questions involving vector fields on spheres, 
immersions of manifolds, the integrality of certain characteristic numbers, 
triality in dimension eight, the existence of complex structures, the exis­
tence of metrics of positive scalar curvature, and perhaps most basically, 
the index of elliptic operators.

In the early 1960s general developments had led mathematicians to con­
sider the problem of finding a topological formula for the index of any 
elliptic operator defined on a compact manifold. This formula was to gen-
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PREFACE xi

eralize the important Hirzebruch-Riemann-Roch Theorem already estab­
lished in the complex algebraic case. In considering the problem, Atiyah 
and Singer noted that among all manifolds, those whose SO„-structure 
could be simplified to a Spin„-structure had particularly suggestive prop­
erties. Realizing that over such spaces one could carry out the Dirac con­
struction, they produced a globally defined elliptic operator canonically 
associated to the underlying riemannian metric. The index of this operator 
was a basic topological invariant called the il-genus, which was known 
always to be an integer in this special class of spin manifolds. (It is not 
an integer in general.) Twisting the Dirac-type operator with arbitrary 
coefficient bundles led, with some sophistication, to a general formula for 
the index of any elliptic operator.

Atiyah and Singer went on to understand the index in the more proper 
setting of X-theory. This led in particular to the formulation of certain KO - 
invariants which have profound applications in geometry and topology. 
These invariants touch questions unapproachable by other means. Their 
study and elucidation was a principal motivation for the writing of this 
tract.

It is interesting to note in more recent years there has been another pro­
found and beautiful physical theory whose ideas have come to the core of 
topology, geometry and analysis. This is the non-abelian gauge field theory 
of C. N. Yang and R. L. Mills which through the work of S. Donaldson 
and M. Freedman has led to astonishing results in dimension four. Yang- 
Mills theory can be plausibly considered a highly non-trivial generalization 
of Dirac’s theory which encompasses three fundamental forces: the weak, 
strong, and electromagnetic interactions. This theory involves modern dif­
ferential geometry in an essential way. The theory of connections, Dirac- 
type operators, and index theory all play an important role. We hope this 
book can serve as a modest introduction to some of these concepts.

H. B. L a w so n  a n d  M.-L. M ic h e ls o h n  
Stony Brook
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Introduction

Over the past two decades the geometry of spin manifolds and Dirac 
operators, and the various associated index theorems have come to play 
an increasingly important role both in mathematics and in mathematical 
physics. In the area of differential geometry and topology they have be­
come fundamental. Topics like spin cobordism, previously considered 
exotic even by topologists, are now known to play an essential role in 
such classical questions as the existence or non-existence of metrics of po­
sitive curvature. Indeed, the profound methods introduced into geometry 
by Atiyah, Bott, Singer and others are now indispensible to mathemati­
cians working in the field. It is the intent of this book to set out the fun­
damental concepts and to present these methods and results in a unified 
way.

A principal theme of the exposition here is the consistent use of Clifford 
algebras and their representations. This reflects the observed fact that 
these algebras emerge repeatedly at the very core of an astonishing variety 
of problems in geometry and topology.

Even in discussing riemannian geometry, the formalism of Clifford mul­
tiplication will be used in place of the more conventional exterior tensor 
calculus. There is a philosophical justification for this bias. Recall that to 
any vector space V there is naturally associated the exterior algebra A*K, 
and this association carries over directly to vector bundles. Applied to the 
tangent bundle of a smooth manifold, it gives the de Rham bundle of ex­
terior differential forms. In a similar way, to any vector space V equipped 
with a quadratic form q, there is associated the Clifford algebra Ct(V,q), 
and this association carries over directly to vector bundles equipped with 
fibre metrics. In particular, applied to the tangent bundle of a smooth 
riemannian manifold, it gives a canonically associated bundle of algebras, 
called the Clifford bundle. As a vector bundle it is isomorphic to the 
bundle of exterior forms. However, the Clifford multiplication is strictly 
richer than exterior multiplication; it reflects the inner symmetries and 
basic identities of the riemannian structure. In fact fundamental curvature 
identities will be derived here in the formalism of Clifford multiplication 
and applied to some basic problems.

3
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4 INTRODUCTION

Another justification for our approach is that the Clifford formalism 
gives a transparent unification of all the fundamental elliptic complexes 
in differential geometry. It also renders many of the technical arguments 
involved in applying the Index Theorem quite natural and simple.

This point of view concerning Clifford bundles and Clifford multiplica­
tion is an implicit, but rarely an explicit theme in the writing of Atiyah and 
Singer. The authors feel that for anyone working in topology or geometry 
it is worthwhile to develop a friendly, if not intimate relationship with 
spin groups and Clifford modules. For this reason we have used them ex­
plicitly and systematically in our exposition.

The book is organized into four chapters whose successive themes are 
algebra, geometry, analysis, and applications. The first chapter offers a 
detailed introduction to Clifford algebras, spin groups and their represen­
tations. The concepts are illuminated by giving some direct applications 
to the elementary geometry of spheres, projective spaces, and low­
dimensional Lie groups, ^-theory  and K R -theory are then introduced, 
and the fundamental relationship between Clifford algebras and Bott pe­
riodicity is established.

In the second chapter of this book, the algebraic concepts are carried 
over to define structures on differentiable manifolds. Here one enters prop­
erly into the subject of spin geometry. Spin manifolds, spin cobordism, 
and spinor bundles with their canonical connections are all discussed in 
detail, and a general formalism of Dirac bundles and Dirac operators is 
developed. Hodge-de Rham Theory is reviewed in this formalism, and 
each of the fundamental elliptic operators of riemannian geometry is 
derived and examined in detail.

Special emphasis is given here to introducing the notion of a C£k-linear 
elliptic operator and discussing its index. This index lives in a certain 
quotient of the Grothendieck group of Clifford modules. For the fun­
damental operators (which are discussed in detail here) it is one of the 
deepest and most subtle invariants of global riemannian geometry. The 
systematic discussion of C£fc-linear differential operators is one of the 
im portant features of this book.

In the last section of Chapter II a universal identity of Bochner type is 
established for any Dirac bundle, and the classical vanishing theorems of 
Bochner and Lichnerowicz are derived from it.

This seems an appropriate time to make some general observations 
about spin geometry. To begin it should be emphasized that spin geom­
etry is really a special topic in riemannian geometry. The central concept 
of a spin manifold is often considered to be a topological one. It is just 
a manifold with a simply-connected structure group. This is understood 
systematically as follows. On a general differentiable n-manifold (n ^  3), 
the tangent bundle has structure group GL„. The manifold is said to be
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INTRODUCTION 5

oriented if the structure group is reduced to GL+ (the connected com­
ponent of the identity). The manifold is said to be spin if the structure 
group GL+ can be “lifted” to the universal covering group GLW G L +. 
This approach is perfectly correct, but there js^a hidden obstruction to 
the viability of the concept: namely, the group GL„ (for n ^  3) has no finite 
dimensional representations that do not come from G L f . This means that 
in terms of standard tensor calculus, nothing has been gained by this re­
finement of the structure.

However, if one passes from GL„ to the maximal compact subgroup 
Ow, that is, if one introduces a riemannian metric on the manifold, the 
story is quite different. An orientation corresponds to reducing the struc­
ture group to SO„, and a spin structure corresponds to then lifting the 
structure group to the universal covering group Spin* -» SO„. Maximal 
compact subgroups are homotopy equivalent to the Lie groups which 
contain them, and there is essentially no topological difference in viewing 
spin structures this way. However, there do exist finite dimensional repre­
sentations o f Spin* which are not lifts o f representations o f SO„. Over a 
spin manifold one can thereby construct certain new vector bundles, called 
bundles of spinors, which do not exist over general manifolds. Their exis­
tence allows the introduction of certain important analytic tools which 
are not generally available, and these tools play a central role in the 
study of the global geometry of the space. It is, by the way, an important 
fact that this construction is metric-dependent; the bundle o f spinors itself 
depends in an essential way on the choice o f riemannian structure on the 
manifold.

These observations lead one to suspect that there must exist a local 
spinor calculus, like the tensor calculus, which should be an important 
component of local riemannian geometry. A satisfactory formalism of this 
type has not yet been developed. However, the spinors bundles have 
yielded profound relations between local riemannian geometry and global 
topology.

The main tools by which we access the global structure of spin mani­
folds are the various index theorems of Atiyah and Singer. These are pre­
sented and proved in Chapter III of the book. They include not just the 
standard G-Index Theorem but also the Index Theorem for Families and 
the C£k-Index Theorem (for C£k-linear elliptic operators). There are in 
existence today many elegant proofs of index theorems which use the 
methods of the heat equation. These do not apply to the C£k-Index 
Theorem however, because of the non-local nature of this index. For this 
reason our exposition follows the “softer,” or more topological, arguments 
given in the original proofs.

Chapter IV of the book is concerned with applications of the theory. 
There is no attempt to be exhaustive; such an attempt would be pointless
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6 INTRODUCTION

and nearly impossible. We have tried however to demonstrate the broad 
range of problems in which the considerations of spin geometry can be 
effectively implemented.

It is of some historical interest to note that while Dirac did essentially 
use Clifford modules in the construction of his wave operator, he was not 
really responsible for what is commonly called the “Dirac operator” in 
riemannian geometry. The construction of this operator is due to Atiyah 
and Singer and is, in our estimation, one of their great achievements. It 
required for its discovery an understanding of the subtle geometry of spin 
manifolds and a recognition of the central role it would play in the general 
theory of elliptic operators. Even the formidable Elie Cartan, who sensed 
the importance of the question and, of course, authored the general theory 
of spinors and who was not unaware of the fundamentals of global anal­
ysis, never reached the point of defining this operator in the proper con­
text of spin manifolds. In keeping with historical developments we shall 
call the general construction of operators from modules over the Clifford 
bundle, the Dirac construction, and we shall call the specific operator so 
defined on the spinor bundle, the Atiyah-Singer operator.

It is this operator which in a very specific sense generates all elliptic 
operators over a spin manifold. It introduces a direct relationship between 
curvature and topology which exists only under the spin hypothesis. The 
C tk-linear version of this operator carries an index in KO-theory. In fact 
its index gives a basic ring homomorphism ft*pin -*• K O “ *(pt) which 
generalizes to KO-theory the classical A-genus. The applications of this 
to geometry include the fact that half the exotic spheres in dimensions 
one and two (mod 8) do not carry metrics of positive scalar curvature.

The presentation in this book is aimed at readers with a knowledge of 
elementary geometry and topology. Im portant things, such as the concept 
of spin manifolds and the theory of connections, are developed from basic 
definitions. The Atiyah-Singer index theorems are formulated and proved 
assuming little more than a knowledge of the Fourier inversion formula. 
There are several appendices in which principal bundles, classifying 
spaces, Thom isomorphisms, and spin manifolds are discussed in detail.

The references to theorems and equations within each chapter are 
made without reference to the chapter itself (e.g., 2.7 or (5.9)). Refer­
ences to other chapters are prefaced by the chapter number (e.g., III.2.7 
or (IV.5.9)).
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CHAPTER I

Clifford Algebras, Spin Groups and Their 
Represen tations

The object of this chapter is to present the algebraic ideas which lie at the 
heart of spin geometry. The central concept is that of a Clifford algebra. 
This is an algebra naturally associated to a vector space which is equipped 
with a quadratic form. Within the group of units of the algebra there is 
a distinguished subgroup, called the spin group, which, in the case of the 
positive definite form on R" (n >  2), is the universal covering group of SO„.

It is a striking (and not commonplace) fact that Clifford algebras and 
their representations play an im portant role in many fundamental aspects 
of differential geometry. These include such diverse topics as Hodge-de 
Rham Theory, Bott periodicity, immersions of manifolds into spheres, 
families of vector fields on spheres, curvature identities in riemannian 
geometry, and Thom isomorphisms in K-theory. The effort invested in 
becoming comfortable with this algebraic formalism is well worthwhile.

Our discussion begins in a very general algebraic context but soon 
moves to the real case in order to keep matters simple and in the domain 
of most interest. In §§7 and 8 we present some applications of the purely 
algebraic theory to topology and to the appearence of exceptional phe­
nomena in the theory of Lie groups.

The last part of the chapter is devoted to R-theory. Basic definitions 
are given and fundamental results are reviewed. The discussion culminates 
with the Atiyah-Bott-Shapiro isomorphisms which directly relate the 
periodicity phenomena in Clifford algebras to the classical Bott Period­
icity Theorems. In particular, explicit isomorphisms are given between 
K ~ *(pt) =  0 ) nK(S") (and KO~*(pt) =  (J)„ KO(Sn)) and a certain quotient 
of the ring of Clifford modules. Section 10 is concerned with KR-theory 
which later plays a role in the index theorem for families of real elliptic 
operators. This is a bigraded theory and the corresponding Atiyah-Bott- 
Shapiro isomorphism entails representations of Clifford algebras C£r s for 
quadratic forms of indefinite signature.

§1. Clifford Algebras

Let Pbe a vector space over the commutative field k and suppose q is a 
quadratic form on V. The Clifford algebra C€(F,<j) associated to V  and
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Authenticated

Download Date | 7/1/17 9:39 PM



8 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

q is an associative algebra with unit defined as follows. Let

wv) = £ (grv
r = 0

denote the tensor algebra of V, and define ^ ( V )  to be the ideal in ST{V) 
generated by all elements of the form v ® v  + q(V) 1 for v e V .  Then 
the Clifford algebra is defined to be the quotient

C t(V,q) =  $ -{V )/S q{V).

There is a natural embedding

(1.1)

which is the image of V  =  l^ )1 V  under the canonical projection

nq:3T {V ) > Cl(V,q). (1.2)

We prove that 7t4|K is injective as follows. We say that an element <p e 3~{V)
is of pure degree s if q> e  (X)*K. (Every element of &~{V) is a finite sum of 
elements of pure degree.) We want to show that any element <p e  # g{V) n  V 
is zero. Any such element can be written as a finite sum <p =  £  at ®  
(t)( ® v{ +  q{Vi)) <E> hj where we may assume that the a /s  and s are of 
pure degree. Since cp e V  =  V, we conclude that £  ar ®  (vr ®  vr) ®  
bv =  0, where this sum is taken over those indices with deg at +  deg bt 
maximal. This equation implies, by contraction with q, that avq(v(.) • 
bv =  0. Proceeding inductively, we prove that q> =  0.

The algebra Cl{V,q) is generated by the vector space V <= C£(P,q) (and 
the identity 1) subject to the relations:

v v = —q(v)l (1.3)

for v e  V. If the characteristic of k is not 2, then for all v,w e  V,

v  w + w  v = —2 q(v,w) (1.4)

where 2q(v,w) s  q(v +  w) — q(v) — q(w) is the polarization of q. The re­
lations (1.3) can be used to give the following universal characterization of 
the algebra.

Proposition 1.1. Let f : V - * s / b e a  linear map into an associative k-algebra 
with unit, such that

/ (» ) • / (» )=  -q (v ) l  (1.5)

for all v e  V. Then f  extends uniquely to a k-algebra homomorphism
f  :C£(K,q) -» s4. Furthermore, Cl(V,q) is the unique associative k-algebra
with this property.
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51. CLIFFORD ALGEBRAS 9

Proof. Any linear map f : V - * s i  extends to a unique algebra homo­
morphism / :&~(V) -* s i .  Property (1.5) implies that /  =  0 on ^ q(V), 
and so /  descends to Cl(V,q). Suppose now that *<f is an associative 
fc-algebra with unit and that i : V «-► <41 is an embedding with the property 
that any linear map f : V - * s i  ( s i  as above) with property (1.5) extends 
uniquely to an algebra homomorphism/  •.<€-* s i .  Then the isomorphism 
from V c  Cl(V,q) to i(V) c  <€ clearly induces an algebra isomorphism 
Ct(K,q) 3. <£. ■

This characterization of Clifford algebras is extremely useful. It shows, 
for example, that they are functorial in the following sense. Given a 
morphism /  :(V,q) - » (V',q'), i.e., a fc-linear map f : V - * V '  between vector 
spaces which preserves the quadratic forms (f* q r = q), there is, by Propo­
sition 1.1, an induced homomorphism /:C € (P ,q )->  C l(V',q'). Given 
another morphism g:(V',q')->(V",q"), we see from the uniqueness in 
Proposition 1.1, that g o f  =  g o f ,

A particular consequence of this is that the orthogonal group O (V,q) & 
( f  e GL(V): f* q  =  q) extends canonically to a group of automorphisms 
of Ct(P,<ji). We shall see later that this embedding

O(V,q) c  Aut(C£(K,4 )) (1.6)

actually lies in the subgroup of inner automorphisms.
An element here of particular importance is the automorphism

a :C t(V ,q )  > Cl(V,q) (1.7)

which extends the map a(v) =  — v on V. Since a2 =  Id, there is a decom­
position

Ct(V,q) =  CZ°(V,q) ©  C l\V ,q )  (1.8)

where CV(V,q) = {<p e Cl(V,q):a(q>) — (—l)'<p} are the eigenspaces of a. 
Clearly, since a(<Pi<p2) =  «(<Pi)' «(9>2)> we have that

Ce(V,q) ■ CV(V,q) £  CZi+<(V,q) (1.9)

where the indices are taken modulo 2. An algebra with a decomposition 
(1.8) satisfying (1.9) is called a Z2-graded algebra. Note that CZ°(V,q) is a 
subalgebra of Cl(V,q). It is called the even part of Cl(V,q). The subspace 
C ^iV .q )  is called the odd part. It is an observation of Atiyah, Bott and 
Shapiro that this Z2-grading plays an important role in the analysis and 
application of Clifford algebras.

There exist some elementary and important relationships between the 
Clifford algebra CZ(V,q) of a space and its exterior algebra A*V (whose 
definition is, of course, independent of the quadratic form q). There is a 
natural filtration # °  c  e  # 2 c  . . .  c  ST(V) of the tensor algebra,
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10 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

which is defined by

= £  <gyv,
and has the property that 3FT 0  <# 'r' c  <# 'r+r'. if  we set =  7iq( ^ ' i) we 
obtain a filtration <= <z 2 F 1 c  . . .  c  Ct(V,q) of the Clifford 
algebra, which also has the property that

for all r,r'. This makes Cl(V,q) into a filtered algebra. It follows from
( 1 . 1 0 ) that the multiplication map descends to a map {&rr/& rr~ 1) x 

-> ( ^ rr+s/ ^ r+s- 1) for all r,s. Setting =  @ ^ 0  ST where 
cgr s  we obtain the associated graded algebra.

Proposition 1.2. For any quadratic form q, the associated graded algebra o f  
Ci{V,q) is naturally isomorphic to the exterior algebra A*K

Proof. The map (X /T  2FT -> 2Frl3FT~ x, which is given by vit 0  • • • 0  
vir *-*• [fi, • • • t>ir] clearly descends to a map ArF  -» 8Frj2F r ~ 1  by property
(1.4). (When the characteristic of k is 2, we use the fact that v • w + 
w • v =  0.) This map is evidently surjective and is easily seen to give a 
homomorphism of graded algebras A*V -* &*.

To see that this map is injective we proceed as follows. The kernel of 
(xyT -» W  consists of the r-homogeneous pieces of elements <p e <fq(V) 
of degree r. Any such <p can be written as a finite sum <p =  £  a( 0  (vt 0  
vt +  q(vi)) 0  bi where vt e V and where we may assume that the at and bt 
are of pure degree with deg at + deg bt ^  r — 2. The r-homogeneous part 
of (p is then of the form q>r = £  a, 0  vt 0  vt 0  b{ (where deg at +  deg bt =  
r — 2 for each i). Since i),a»i =  0 for all i, we see that the image of q> in 
the exterior algebra is zero. Hence the map ArF  -* SF is injective. ■

Proposition 1.2 says that Clifford multiplication is an enhancement of 
exterior multiplication which is determined by the form q. N ote that 
Ce(K,0) S  A*V.

Proposition 1.3. There is a canonical vector space isomorphism

compatible with the filtrations.^

R em ark  1.4. The map (1.11) is, of course, not an isomorphism of al­
gebras unless q = 0. The point here is that the map is canonical. Thus we 
may speak of the embeddings

SF” • 2FT c  ^ ' r+r (1.10)

A*F Ci(V,q) (1.11)

ArK <= Cl(V,q) for all r ^  0. (1.12)
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§1. CLIFFORD ALGEBRAS 11

Proof. We define a map of the r-fold direct product / :  V x • • • x V  -» 
Ct(V,q) by setting

f ( v u . . . ,  vr) =  £  sign(<x)t>ff(1) • • • va{r) (1.13)

wheje the sum is taken over the symmetric group on r elements. (If the 
characteristic of k is not zero, one must drop the factor 1/r!.) Clearly /  
determines a linear map / :  A rV -» Cl(V,q) whose image lies in 3Fr. The 
composition of /  with the projection 3Fr -* fF rl&!rr~ l is easily seen to be 
the map discussed in the proof of Proposition 1.2. Hence /  is injective, 
and the direct sum of these maps (1.11) is an isomorphism.

We now take up the question of tensor products. Recall that if s i  and 
38 are algebras with unit over k, then the tensor product of the algebras 
s i  ® 38 is the algebra whose underlying vector space is the tensor product 
of s i  and 38 and whose multiplication is given (on simple elements) by 
the rule (a ® b) • (a' ® b') =  (aaf) ®  (bb'). If, however,

s i  =  s3° © s / 1 and 38 =  38° © 38x

are Z 2-gTadQd algebras, then we can introduce a second “Z2-graded” 
multiplication, determined by the rule

(a ® b) • {a’ ® V) =  ( - 1  ® (bb') (1.14)

whenever b and a' are of pure degree (even or odd). The resulting algebra 
is called the Z2-graded tensor product and is denoted s i  ® 38.

The Z2-graded tensor product is again Z2-graded with

( s i  ® 38)° = s l °  ® 33° + s i 1 ® 3 8 l

( s i  ®  38)1 =  s l l ®  3S° +  s l °  ®

It also carries a filtration cz a  3F1 a  . . .  a  s i  ®  38, where

< F '=  Y* ^  W )  ® 3Fj(38).
i + j  = r

The importance of the Z2-graded tensor product for Clifford algebras 
is evident from the following proposition.

Proposition 1.5. Let V =  Vx © V2 be a q-orthogonal decomposition o f the
vector space V (i.e., q(vx +  v2) =  q(vx) +  q(v2) for all e Vx and v2 e
V2). Then there is a natural isomorphism o f Clifford algebras

C i(V ,q )  ► Cl(Vuqi) ® Cl(V2,q2)

where qt denotes the restriction o f q to Vt and where ®  denotes the Z 2-graded 
tensor product.
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Proof. Consider the map / :  V -> C iiV ^ q ^  ®  Cl{V2,q2) given by f{v) — 
v2 ®  1 +  1 ® v2 where v =  vt +  t>2 is the decomposition of v with respect 
to the splitting V  =  Vx 0  V2. From  (1.14) and the q-orthogonality of this 
splitting we see that f(v) • f(v) =  (vt <g> 1 +  1 ® v2)2 =  vj ® 1 +  1 (g> 
v2 =  —(<Ji(i>i) +  <?2 (u2 ))l ® 1 =  — q{v)i ®  1. Hence, by Proposition 1.1, 
/  extends to an algebra homomorphism f:C l(V ,q )  -*■ C l(Vu qi) (§> 
Cl(V2,q2). The image of /  is a subalgebra which contains C l iV ^ q j  ®  1 
and 1 (g) Ct(K2,^2)- Therefore, /  is surjective. Injectivity follows easily by 
considering a basis for Ct(V,q) generated by a basis of V  which is com­
patible with the splitting. ■

We finish this section by introducing a second fundamental involution 
on the algebra. The tensor algebra &~(V) has an involution, given on 
simple elements by the reversal of order, i.e., <g) • • • <8> vr i-» vr ®
• • • <g> Uj. This map clearly preserves the ideal «/(F,<?) and so descends to 
a map

( ) ': C l ( V ,q ) - ^ C t ( V ,q )  (1.15)

called the transpose. Note that ( )' is an antiautomorphism, i.e., (q»p)‘ = 
rcpf.

12 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

§2. The Groups Pin and Spin

We now consider the multiplicative group of units in the Clifford algebra, 
which is defined to be the subset

C i x(V,q) = {cp 6 C l(V ,q ): 3q>~x with <p~l (p =  <p<p~l = 1} (2.1)

This group contains all elements v e  V  with q(v) ^  0. When dim V  =
n <  oo, and k is either R or C, this is a Lie group of dimension 2". In 
general, there is an associated Lie algebra clx(F,q) =  Cl(V,q) with Lie 
bracket given by

0 ,y ]  =  xy -  yx. (2.2)

The group of units always acts naturally as automorphisms of the 
algebra. That is, there is a homomorphism

A d : a  x (V9q ) -----► Aut(C t(V,q)) (2.3)

called the adjoint representation, which is given by

Ad^(x) =  (pxcp'1. (2.4)

Taking the “derivative” of this gives a homomorphism

ad:cl x(V ,q) *• Der(C€(F,4 )) (2.5)
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§2. PIN AND SPIN 13

into the derivations of the algebra, defined by setting

ady(x) as [y,x].

R e m a rk  2.1. Suppose Fis finite dimensional, and defined over R or €.
Then there is a natural exponential mapping exp:clx(F,g) -*• Cl*(V,q),
defined by setting

™p(y)= I  A /1- (2-6)m = 0 fnl

Note that this series converges since for any choice of positive definite 
inner product on C t(V,q), we have ||xy|| S  c||x|| ||y|| for some c >  0. It is 
easy to see that

^  Adexp(,y)(x)|I=0 =  ad,,(x). (2.7)

From this point on we shall assume that the characteristic o f the field 
k is different from  2. Under this assumption, we have the following 
important facts concerning the adjoint representation:

Proposition2.2. Let veV<= Ct(V,q) be an element with q(v) # 0. Then 
Ad„(F) =  V. In fact, for all w e F, the following equation holds:

- A d v(w) = w - 2 ^ v .  (2.8)

Proof. Since tT 1 =  —v/q(v)9 we have from (1.4) that

— q(v)Adv(w) =  — q(v)vwv~x =  vwv
= — v2w — 2q(v,w)v =  q(v)w — 2 q(v9w)v. ■

This leads us naturally to consider the subgroup of elements e 
Cl*(V,q) such that A d ^V )  =  V. By Proposition 2.2, this group contains 
all elements v e  V with q(v) ^  0. Furthermore, we see from equation (2.8) 
that whenever q(v) ^  0, the transformation A dv preserves the quadratic 
form q. That is, (Ad* q)(w) =  ^(Ad^w)) =  q(w) for all w e  V. Therefore, 
we define P(V,q) to be the subgroup of C l*  (V,q) generated by the elements 
v e  V with q(v) ^  0, and observe that there is a representation

P ( V ,q ) - ^ 0 ( V ,q )  (2.9)

where

0(F,<?) =  {A e G L (F ): X*q =  q} (2.10)

is the orthogonal group of the form q. The group P(V,q) has certain im­
portant subgroups.
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14 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

D e f in i t io n  2.3 The Pin group of (V,q) is the subgroup Pin(F,q) of 
P (V,q) generated by the elements v e V with q(v) — ±  1. The associated 
Spin group of (V,q) is defined by

Spin(F,q) =  Pin(K,<3-) n  Ci°{V,q).

We observe now that the right-hand side of equation (2.8) is just the 
map pv:V  -* V  given by reflection across the hyperplane Vs- = {w e  
V : q(w,v) =  0}. That is, the map pv fixes this hyperplane and maps v to 
— v. Unfortunately, there is a minus sign on the left in equation (2.8). This 
means, for example, that if dim V  is odd, then Ad„ is always orientation 
preserving. This defect can be removed by considering the twisted adjoint 
representation

A d: C€ *(V,q)-----► GU.Cl(V,q))

defined by setting

M v(y) = x((p)y(p~1. (2.11)

Clearly, AdVl¥2 =  Advi ° S3^2 and Ad,, =  Ad,, for even elements (p (i.e.,
for (p e  C i°(V,q)). Furthermore, from (2.8) we have

Ad„(w) =  w -  2 v. (2.12)

We then define the subgroup

P (V9q) E { ^ e  C l x(V9q ) : A d ^ V )  =  V}. (2.13)

It is clear that P (V,q) c  P (V,q). Furthermore, we have the following.

Proposition 2.4. Suppose that V is finite dimensional and that q is nonde­
generate. Then the kernel o f the homomorphism

P(V,q) GL(K)

is exactly the group k x o f non-zero multiples o f  1.

Proof. Choose a basis {vl9 . . .  9vn} for V such that q(v^ #  0 for all^i and 
q(vi9Vj) = 0 for all i ^  j . Suppose <p e C t x(V9q) is in the kernel of Ad, that 
is, suppose <p has the property that a(<p)i> =  vcp for all v e  V. Write <p =  
(p0 4- (pi, where q>0 is even and cpx is odd, and observe that

»<Po =  <PoV (214)

-V < P l =  <PlV

for all v e  V. The terms <p0 and can be written as polynomial expres­
sions in v{, . . .  ,v„. Successive use of the fact (1.4) that vtvj = —v}vt — 
2q(vt,Vj) shows that <p0 can be expressed as q>0 = a0 +  vla1 where a0 and 

are polynomial expressions in v2, . . .  ,vn. Applying a shows that a0 is
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§2. PIN AND SPIN 15

even and ax is odd. Setting v =  vx in (2.14), we see that

t>ia0 4* v\a t =  a0vx 4- v1a1v1 
=  vxa0 -  v\av

Hence, v\ax =  — =  0, and so ax = 0. This implies that <p0 does not 
involve vv  Proceeding inductively, we see that (p0 does not involve any 
of the terms vl9 . . .  ,vn and so q>0 = t • 1 for t e k.

The analogous argument can now be applied to <px. Write q>x =  ax 4- 
vxa09 where a0 and ax do not involve vv  Note that at is odd and a0 
is even; and therefore, from (2.14), —v& i -  v*a0 =  a lvi 4- vla0vi =  
— via1 4- v\a0. Hence, a0 =  0 and so q>x is independent of t^. By induc­
tion, <p! is independent of vl9. ..  9vn and so (px =  0.

Now we have <p = (p0 + q>x = t • I e k. But (p ¥ 0 ,  so <pek*. m

Note that this proposition requires the twisted adjoint representation 
and not the adjoint representation. The minus sign in (2.14) is crucial to 
the proof.

Proposition 2.4 is false if we do not assume that q is non-degenerate. 
To see this, consider the extreme case C£(F,0) =  A*F. For all vuv2 e F, 
we have 1 4- vtv2 e C l*(V ,0). In fact, (1 4* v1v2)~ i =  1 — v1v2. However, 
for any v e V , we see that a(l 4- vxv2)v(l 4- t>itf2)“ 1 =  (1 +  t>it>2) ’ 
t;(l — v tf  2)=* v. Hence, the kernel of the homomorphism includes many 
non-scalar terms.

We now introduce the norm mapping N \C l(V 9q) -» C t(V 9q) defined 
by setting

N{cp) =  <p • a(<p'). (2.15)

Here (p* denotes the transpose of (p introduced in (1.15). It is easy to see 
that a((jp') =  (a(<p))f. Note that

N(v) = q(v) fo r v e V .  (2.16)

The importance of the norm is evident from the following proposition.

Proposition 2.5. Suppose that V is finite dimensional and that q is non­
degenerate. Then the restriction o f N  to the group P(V9q) gives a 
homomorphism

N : P(V9q )  ► k x (2.17)

into the multiplicative group o f non-zero multiples o f the identity in C l(V 9q).

Proof. To begin we observe that N(P(V9q)) a  fcx. Choose q> e P(V9q) and
recall that by definition, a {(p)v(p~x e F  for all v e V .  Applying the trans­
pose antiautomorphism, which is the identity on F, we see that

Op*) 1 =  <x{<p)v<p \
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16 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

Hence,

1(a(<pr))- 1 =  ^ (p O < P M a(<P>]_1 
Ada(̂ <)̂ (t?) v

for all v e V .  Hence, ct(<p')<p is in the kernel of Ad. It is easy to check that 
a(q>‘) belongs to P (V,q), and therefore so does a(<p')<p. Hence, by Proposi­
tion 2.4 we have a(<jo‘)<p e k * . Applying a shows that (p‘oc(q>) — N(<p*) e k * .  
Since the transpose antiautomorphism preserves P(K,<f)» we conclude 
that N(<p) e k x for all <p e P{V,q).

We now observe that if <p,̂ / e P (V,q), then N(cpip) =  (pil/a(ip')x((p‘) =  
(pNiil/yxicp*) = (pa((p‘)N(ij/) = N((p)N(tjj). Thus, N  is a homomorphism on 
P (V,q). ■

Continuing to assume that dim V <  oo and q is non-degenerate, we 
have the following.

Corollary 2.6. The transformations Ad,,: V -* V for (p e  P(V,q) preserve 
the quadratic form q. Hence, there is a homomorphism

A d : P (V ,q)----->0(V,q) (2.18)

Proof. To begin we note that N(a<p) = N((p) for <p e P(V,q) since N(<x(p) =  
a.(<p)(p' =  aN(<p) =  N(q>). Consequently, if we set

V* = { v e V : q { v ) *  0}, (2.19)

then for each v e V x(aP(V,q)), we have N iA d fv )) = N(u((p)v(p~l) = 
N(x<p)N(v)N(<p)~1 — N(<p)N((p)~1N(v) = N(v). Since N(<p) =  q(v) for v e  V 
(cf. (2.16)), we see that Ad,, preserves all non-zero ^-lengths. Applying Ad,, - 1  
now shows that Ad,,(Kx) =  V* and so Ad,, leaves invariant the set of vec­
tors of zero ^-length. Thus, Ad,, is ^-orthogonal. ■

We now return to the group P (V,q) £  P (V,q) and observe that by
definition

P (V,q) =  {t>! • • • vr e  C l(V ,q ): vY. . .  ,vr is a finite sequence from V *}.
(2.20)

Recall that the twisted adjoint representation gives a homomorphism 
Ad:P(K,<f) -> 0(V,q) such that

V r ^ P v ,  ° ' " ° P v r  ( 2 . 2 1 )

where

, v - 9(w,y) (2.22)
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§2. PIN AND SPIN 17

is reflection across v1. Thus the image of P(V9q) under Ad is exactly the 
group generated by reflections. It is an important and classical result that 
this is always the entire orthogonal group.

Theorem 2.7 (Cartan-Dieudonne). Let q be a non-degenerate quadratic 
form on a finite dimensional vector space V. Then every element g e  0 (  V,q) 
can be written as a product o f r reflections

g =  pvx O • . * O pVr

where r dim(P).

We refer the reader to Artin’s book [1] for the general proof. In the 
special case where V =  R" and q(x) =  ||x||2 is the standard norm, this 
theorem is easily proved by putting the orthogonal matrix g in “diagonal” 
form:

/ 0  \

K 1
± i

\ ±  v

where each k tl is a 2 x 2 rotation matrix (which can be expressed as a 
product of two reflections).

Theorem 2.7 says that the homomorphism Xd:P(K,q) -► 0(K,<j) is sur- 
jective. Furthermore, we could consider the group SP(F,<j) =  P(F,q) r> 
Cl°(V,q) and, since dim V is finite, the special orthogonal group

SO(V,q) = {Xe 0(V ,q) : det(2) =  1}.

Theorem 2.7 also says that the homomorphism Ad:SP(F,#) -* SO(V,q) 
is surjective. To see this, we first show that det(p„) =  — 1 for any v e  V. 
To prove this, choose a basis vu . . .  ,v„ such that vY = v and q(v,Vj) =  0 for 
j  2: 2. It follows from the definition that p j lv j  — — t>x and pv(Vj) = v} for 
j  ^  2, and so det (p„) =  — 1 as claimed. Thus from Theorem 2.7 we conclude 
that

SO(F,<z) =  (p„, o • • • o pVr: q(Vj) ^  0 and r is even}. (2.23)

From the definition (cf. (2.20)) we see that SP(F,qf) =  {t^ • • • vr e  P(K,g): r 
is even}. The surjectivity of A d : SP(F,g) -» SO(K,q) follows immediately 
(see (2.21)).
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18 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

We now return to the groups Pin and Spin. Recall that these are the 
groups generated by the generalized unit sphere S =  {v e V: q(v) = ±  1} 
in V. That is,

Pin(F,q) =  {vx • • • vr e P(V ,q): q{vj) = ±  1 for all j} (2.24)
and

Spin(F,<?) =  {vt • • • vr e Pin(V9q) : r is even}. (2.25)

In light of the above it is natural to ask whether the homomorphism Ad 
restricted to Pin(V9q) and Spin(V9q) maps onto 0 (V 9q) and SO(K,g) respec­
tively. This seems quite likely since at a glance one can see that

Ptv = Pv (2.26)

for any non-zero scalar t e k , and so one should be able to renormalize 
any v e V* to have ^-length ±  1. Of course since q is quadratic, q(tv) =  
t2q(v)9 and the equation t2q(v) =  ±  1, i.e., the equation t2 =  ±  a for a given 
a, may or may not be solvable in a general field k. If k =  R or C, of course, 
it is always solvable. If k =  Q (the rational numbers) it is very often not 
solvable. (The group Q X/(Q x)2 is infinitely generated.) If k is a finite field 
of characteristic ^ 2 , then k x/(k x)2 s  Z 2 and —1 may or may not lie 
in (fcx)2. In the cases where Ad is not surjective, we still have the following 
general fact, which is interesting because the group SO(V9q) is often almost 
a simple group (see Artin [1]). (The reader interested only in the real and 
complex cases can skip this proposition.)

Proposition 2.8. Each o f the images Ad(Pin(V,q)) and Ad(Spin(F,g)) is a 
normal subgroup o f 0(V,q).

Proof. Recall (cf. (1.6)) that from the universal property of C l(V 9q)9 the 
action of 0(F,<?) on V extends to automorphisms of C t(V 9q). It is easy to 
see that these automorphisms commute with a. Suppose then that we 
have v9w e V with q(v) ^  0 and choose g e O (V9q). Then Ad^(y)(w) =  
a(gv)w{gv)~ 1 =  g(av)wg(v~l) = g(a(v)g~ l(w)v~') =  gAdv(g~ lw). Conse- 
quently, we have that

=  gr ° a 3 ° 9 -1 (2.27)

for all v e V  with q(v) #  0 and for all g e 0{V,q). The proposition now 
follows immediately from (2.24), (2.25) and (2.27). ■

We now come to the main result of this section. We are primarily in­
terested in the real and complex cases, so we shall focus on fields k  that 
have the property discussed above. We shall say that a field k of charac­
teristic # 2  is spin if at least one of the two equations t2 =  a and t2 =  —a 
can be solved in k for each non-zero element a e k * .  That is, k  is spin if 
k* = (k* )2 u  (—{k*)2). The fields R, C and Zp for p a prime with p =  
3(mod 4), are spin.
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§2. PIN AND SPIN 19

Theorem 2.9. Let V be a finite-dimensional vector space over a spin field 
k, and suppose q is a non-degenerate quadratic form on V. Then there are 
short exact sequences

0 -----► F  ► Spin(K.q) -&+ SO{V,q) > 1 (2.28)

0 -----► p  ► Pin{V,q) O(V ,q)-----► 1 (2.29)

where

F  _  |Z 2 =  {1,— 1} i f V ^ I  t k
(Z4 =  { + 1 ,+ V ^T } otherwise.

These sequences hold for general fields provided that SO(V9q) and 0(V,q) 
are replaced by appropriate normal subgroups o f 0(V,q).

Proof. Suppose <p = vx • • • vr e Pin(V9q) is in the kernel of Ad. Then (p ek*  
by Proposition 2.4, andj>o q>2 =  N(cp) =  N(vx) • • • N(vr) =  ±  1. This es­
tablishes the kernel of Ad in both cases. The surjectivity of the homo- 
morphisms follows from Theorem 2.7, the fact that pv =  ptv9 and the fact 
that since k is spin, any v e V *  can be renormalized to have ^-length 1. ■

It is interesting to observe that if k is a spin field, then either P(V,q) =  
P(V9q) or P(V9q)/P(V9q) s  Z2. The proof (which the reader may skip) is 
as follows. Since P{V9q) is generated by F x, we know that t2q(v) e P (V9q) 
for all t 6 k x and v e  V*. Since k is spin, this implies that P(V9q) contains 
(kx)2 or — (kx)2 (and possibly more). In fact, if we set fco =  {t e  fcx : t - 1 e 
P{V9q)}9 then from the above and from the definition of a spin field, we 
see that fcx =  k£ u  (-k o )-  Thus, k*/k£  =  0 or Z2. Now we have the 
sequence

k ^ P { V 9q ) ^ P ( V 9q ) ^ 0 ( V 9q)

where fcx =  ker(Ad) and where Ad(P(V,q)) =  0 (V 9q). It follows that 
O(V9q) s  P(V,q)/kx £  P(P,g)/fco • It then follows without difficulty that 
P(V9q)/P(V9q) s  k x/ko =  0 or Z2 as claimed.

We now examine the real case in some detail. Let V be an w-dimensional 
vector space over R, and suppose q is a non-degenerate quadratic form 
on V. Then we may choose a basis for V =  R" so that

q{x) = x \  +  . . .  +  x? -  x?+! -  . . .  -  xr2+s (2.30)

where r + s — n and 0 < r < n. It is standard notation to write: qr-s =  
q, Or,s =  0{V,q) and SOr s =  SO(F,q). In accordance we write

Pinrs =  Pin(F,<7 ) and Spinrs =  Spin(F,q). (2.31)

Similarly, it is conventional to write On s  O„i0 =  O0>„ and SO, = SOn 0 =  
SO0 „. Thus, we set

Pin, =  Pin„,0 and Spin, s  Spin„t0. (2.32)
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20 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

We also write Pr>s =  P (V9q) and Prs =  P(V,q\ and note from the para­
graph above that

P,,s =  Pr ,s. (2.33)

It is a classical fact (cf. Helgason [1]) that SO„ is connected and that 
SOffS, for r,s ^  1, has exactly two connected components. It is also a 
classical fact that =  Z2 for n ^  3 and £  rc^SO,.) x
tt^SO J for all r,s. Hence, 7ti(SO° r) =  ^ ( S O ^ )  =  Z2 and tc^SO^) =  
Z 2 x Z2 for all r,s 3. (Here SO°s denotes the connected component 
of the identity.)

The main result of this section is the following.

Theorem 2.10. There are short exact sequences

0 -----► Z2 ---► Spinr s  ► SOr,s  ► 1
0 -----► Z2 ---► Pinr s --- ► Or,5  ► 1

for all (r,s). Furthermore, if(r9s) ^  (1,1), these two-sheeted coverings are non­
trivial over each component o f Or s. In particular, in the special case

0 ----->Z2 -----► Spin, SO „ ► 1 (2.34)

the map £0 == Ad represents the universal covering homomorphism o f SO„ 
for all n ^  3.

Proof. The exact sequences are a direct consequence of Theorem 2.9. 
The kernel in each case is explicitly given by Z2 =  {1, — 1}. To prove 
that the coverings are non-trivial, it suffices to join — 1 to 1 by a path in 
SpinrtS. Choose orthogonal vectors eue2 e Un with q(e1)  =  q(e2) =  ±  1. 
(This is possible since (r,s) #  (1,1)0 Then y(t) =  ±cos(2t) +  ^1e2sin(2t) =  
(^cos t +  e2sin t)(e2sin t — ^ c o s  t) does the job. ■

The above argument also shows that restricting Ad to the identity 
component SpinJ?fl of Spinr l gives the universal covering homomorphism

0 ---- ► Z 2 ---- ► Spin®, - L  SO ® , ► 1 (2.35)

for all r ^  3.

§3. The Algebras C lH and C£r>1

We shall now study the Clifford algebras C fr s s= Cl(V,q) where V  =  Rr+J 
and

q(x) = x \  + . . .  +  x j  -  x ?+ , -  . . .  -  xr2+s. (3.1)

Of particular interest are the cases

a . s O . , 0  and CC„* =  Ce0.n. (3.2)
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§3. THE ALGEBRAS Ce„ AND CCr,s 21

One reason for studying these algebras is the following. As seen in §2, the 
algebra C l ftS contains the groups Spinr>5 and PinfjS, and so any representa­
tion of the algebra C t r s restricts to a representation of these groups which 
is non-trivial on the element — 1. (Such representations are therefore not 
induced from representations of Or s or SOrs.)

These algebras have a simple classical presentation:

Proposition 3.1. Let eu . . . 9er+s be any q-orthonormal basis o f Ur+S a  
C lrs. Then C irtS is generated (as an algebra) by eu . . .  ,er+s subject to the 
relations

Proof. This follows easily from the discussion in §1. ■

We also have a pretty decomposition in terms of the Z 2 "graded tensor 
product.

Proposition 3.2. There is an isomorphism

where C lx appears r times and C£f appears s times on the right in (3.4).

Proof. Decompose Rr+S into one-dimensional ^-orthogonal subspaces 
and apply Proposition 1.5 inductively. ■

It is not difficult to see that as algebras over R,

It follows immediately that dimre(C£riS) =  2r+s. Proposition 3.2 is, how­
ever, not so useful if we wish to represent C l r s as a matrix algebra. For 
this it is more useful to find decompositions in terms of ungraded tensor 
products. We shall do this in the next section.

For the remainder of this section we shall examine some of the general 
properties of the algebras C£rs. We begin with a discussion of the volume 
element. Choose an orientation for Rr+S and let el9. . .  9er+s be any posi­
tively-oriented, g-orthonormal basis. Then the associated (oriented) vol­
ume element is defined to be

If e \ , . . .  ,e'r+s is any other such basis, then e\ =  Yj  Qifij f°r 9 *= (toy) ) 6  
SOrfS. From (3.3) we easily see that e\ • • • e’r+s =  d e t^ )^  • • • er+5 =

• • • er+5. Hence the definition (3.6) is independent of the choice of the 
basis.

\ - 2 d i j  i f i ^ r  
e f i j  +  e.-e, =  < ‘J ,  
lJ  J ' \  +  23 y i f  i > r.

(3.3)

C lx * C  and C t f ^ R ® R . (3.5)

(3.6)

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



CO2

Proposition 3.3. The volume element (3.6) in C lr$s has the following basic 
properties. Let n =  r +  s. Then

n(n+l)+s
co2 =  ( - 1) 2 , (3.7)

vo) =  (—1)”~ 1cov for all v e  Rw, (3.8)

In particular, if  n is odd, then t/ie element co is central in C lrt5. J /n  is eoen,
then

(pa> =  coa(<p) (3.9)

for all q> e C£r>s.

Proof. Choose a g-orthonormal basis and apply the relations (3.3). ■

We note that property (3.7) can be rewritten as

f ( - l ) s if n =  3 or 4 (mod 4)
\(  -  l)s+1 if n =  1 or 2 (mod 4) '  ’

We now make the following elementary but im portant observation. 

Lemma 3.4. Suppose the volume element co in C lft5 satisfies co2 =  1, and set 

7i+ =  ^  (1 -b co) and n~ =  ^(1 — co). (3.10)
Z Z

Then n + and 7r“ satisfy the relations

n + + n ~  =  1 (3.11)

(7c+)2 =  n + and (n~)2 =  7i“ (3.12)

n +n~ =  7i~ 7i+ =  0. (3.13)

Proof. This is a trivial consequence of the fact that co2 =  1. ■

This leads to two basic but im portant facts:

Proposition 3.5. Suppose that the volume element co in CZr s satisfies co2 =  1, 
and that r + s is odd. Then C ir 5 can be decomposed as a direct sum

CZrtS =  C£+ ® C £“ (3.14)

o f isomorphic subalgebras, where C l*s =  ft* • C£r 5 =  C£r 5 • n 1 and where
a(ce±) = C€£.
Proof. Since r +  s is odd, we know from Proposition 3.3 that co is central. 
Hence n + and n~ are central and the decomposition (3.14) into ideals

22 I. CLIFFORD ALGEBRAS AND SPIN GROUPS
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§3. THE ALGEBRAS Ct H AND C lftS 23

follows directly from (3.11), (3.12) and (3.13). Since co is an odd element, 
<*(7 1 *) =  n* and so a(CC*s) =  C l*s. Since a is an automorphism, we con­
clude that these two ideals are isomorphic. ■

Proposition 3.6. Suppose that the volume element co in C lftS satisfies co2 =  1 
and that r + s is even. Let V be any C lrtS-module (i.e., V is a real vector 
space with an algebra homomorphism C lr s -» Hom(K, V)). Then there is 
a decomposition

V = K + ® r  (3.15)

into the 4-1 and — 1 eigenspaces for multiplication by co. In fact,

V + =  n + • V and V~ =  n~ • V,

and for any e e Rr+S with q(e) ^  0, module multiplication by e gives 
isomorphisms

e: V +  ► V~ and e \ V ~  ► F +. (3.16)

Proof. The decomposition (3.15) is a direct consequence of (3.11), (3.12) 
and (3.13), together with the observation that

co - n ± = ± n ±.

The isomorphisms (3.16) follow directly from the facts that by (3.8),

)e n t =  ^ e(l 4- co) =  ^(1 — co)e =  n~e

en~ =  n +e

and e • e =  —q(e) • 1. ■

R em ark . The above construction will prove useful when we are dealing 
with vector bundles in the next chapter.

We now come to an im portant and basic fact. Recall the even-odd 
decomposition C£r>s =  C t°s © C£*s given in (1.8), where the subalgebra 
C l°s is the fixed-point set of the automorphism a.

Theorem 3.7. There is an algebra isomorphism

a ^ C t r°+ u  (3.17)

for all r,s. In particular,

C ln * C l°n+1 (3.18)

for all n.
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Proof. Choose a g-orthonormal basis eu . . . ,  er+s+1 of Rr+S+1 so that 
q(et) = 1  for 1 i rg r +  1 and q(et) =  — 1 for i > r +  1. Let Rr+S =  
span{ej|i #  r +  1} and define a map / :  Rr+S -* C t°+l j by setting

/(<?,) =  er+1e,-

for i i=- r +  1, and extending linearly. For x  =  E f*r+i x fih we have that: 

f i x ) 2 = 'Z x ix jer+ieier+ieJ
i j

=  E
i.j

=  x  • x  = —q(x) • 1

since er+1 - er+1 = — I and er+1e{ =  — e p ^  i for i ^ r  + 1. It follows from 
the universal property (Proposition 1.1) that /  extends to an algebra 
homomorphism

/ : C £ r>s— * C e f°+1>s.

Checking /  on a linear basis shows that /  is an isomorphism. ■

We now specialize to the case of C£„.

Proposition 3.8. Let L : CC„ -» Ct„ be the linear map defined by setting

L(<P) =  - E  eJ(PeJ (3-19)
j

where e l f . . .  ,e„ is any orthonormal basis o f R". Set L =  a ° L. Then the 
eigenspaces o f Lare the canonical images o f A p s  ApUn in C ln. In fact

L\ap =  (n -  2p)Id (3.20)

for p =  0 , . . .  ,n.

Proof. It suffices to consider <p =  ex • • • ep. Then

L ((p) =  -  E  ete i ■ '' ePet -  E  eJe i ' ■ •

=  - J C  i • • • ep -   ̂ ( -  Vfe^et • • • ep

=  ( ~ l ) p" V i  •••«„ +  ( -  l)p(n -  p)e! • • • ep 
=  (—l)p(n ~  2p)et • • • ep = (n — 2p)a((p) m

Under the canonical isomorphism Ct„ s  A*R", Clifford multiplication 
has a nice interpretation. Using the inner product on R" we can identify 
R" with its dual. We can thereby talk about the interior product or con­
traction in A* Rn. For v e R", this is a linear map (v L ): APR" -*■ AP-1R"

24 I. CLIFFORD ALGEBRAS AND SPIN GROUPS
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§4. THE CLASSIFICATION 

given on simple vectors by

25

. . A A . . . A vp (3.21)

where (•) indicates deletion. This gives a skew-derivation of the algebra, 
i.e., v L(<p a  i/f) =  (u L <jo) a  $  +  (— 1 Y<p a  (v L t//) for any q> e APR". It is not 
difficult to see that v l(v l) =  0 for any v e R". Hence, by universality the 
interior product extends to all elements of A*Rn, i.e., to a bilinear map 
A*R" x A*R" ^  A*R".

Proposition 3.9. With respect to the canonical isomorphism C£„ =  A*R", 
Clifford multiplication between v e  R" and any q> e C in can be written as

Proof. Choose an orthonormal basis eu . . . , e n for R" with v =  tey for 
some t e R. Let <p =  eh • • • eip for » ! < • • • <  ip. Then

v . (p= { - t e h - - - e ip=i{vA - v t ) ( p  ifij =  1
[ t e ^  - ' - e ^  s ( d a  - v t ) ( p  if it >  1 .

Since (3.22) holds on an additive basis of Ci„, it holds in general. ■

In this section we shall give an explicit description of the algebras C£riJ as 
matrix algebras over R, C, or H (=  quaternions). With little difficulty the 
reader can check the first few cases:

V (p  = V A ( p  — vtcp (3.22)

§4. The Classification

a 1 > 0  — c  c £ 0.i — ^  ®

C£2,o =  H C t 0 > 2  =  R(2 )

C tu  =  R(2)

(4.0)

where R(2) denotes the algebra of 2 x 2 real matrices. 
The key facts to the classification are the following:

Theorem 4.1. There are isomorphisms

C £ n,o ®  C £ 0 2 =  C i o tn + 2 

C£o,n ®  ^ ^ 2 ,0  == + 2,0

C£r>s ® C£ltl = C£r+ltS+1

(4.1)

(4.2)

(4.3)

for all n,r9s ^  0 .

Note that here we are using the ungraded tensor product.
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26 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

Proof. Let eu . . .  ,en+2 be an orthonorm al basis for R"+2 in the standard 
inner product, and let q(x) =  — ||x||2. Let e \ , . . .  ,e'n denote standard genera­
tors for C£Bi0 and let e",e2 denote standard generators for C £ 0 , 2  0n the sense 
of Proposition 3.1). Define a map / :  R"+2 -» C£n 0 0  C ioa by setting

f e't 0  e”e2 for 1 ^  i ^  n
/ M  - ,0  e"-n for i =  n +  1, n +  2

and extending linearly. Note that for 1 <  i,j < n, we have f ( e t)f(ej) +  
f ( ej)f(ed — (e'ie'j +  e'je'i) ® ( — 1) =  2<5£j1 0  1; and for n + 1 ^  ocj? ^  n +  2 
we have f{ef)f{ef) +  =  1 0  =  2<5^1 0  1.
Also we see that /(e ,)/(ea) +  / (e a) /(ei) =  0. It follows that f(x ) f(x )  = 
\\x\\2l 0  1 for all x e R B+2. Hence, by the universal property (Proposition 
1 .1 ) ,/extends to an algebra homomorphism / :C£0>n+2 -► C lnt0 0  C l0t2. 
Since /  maps onto a set of generators for C lHt0 0  C l0t2, it must be 
surjective. Then, since dim C £ 0 , n + 2  =  dim Cl„t0 0  C l0t2, we conclude 
that /  must be an isomorphism. This proves (4.1). The proof of (4.2) is 
entirely analogous.

For (4.3) we proceed in a similar manner. We choose a ^-orthogonal 
basis e l9. . .  ,er+l9el9. . .  ,ss+1 for Ur+S+2 such that q(e^ =  1 and q(ej) =  
— 1 for all i j .  We then let e\ , . . . ,  e',e'l5. . .  ,e' and be corresponding 
bases for Rr+5 and R2, and we define a map f  :Ur+s+2 -+ C trtS ®  C t ltl 
by setting

f( ) =  J~l ®  e'*E* tor l ^  i <,r
n e °  11 0  e" for i =  r +  1,

and

= -  *i'8'i f o r l ^ y ^ s
JKJ) ‘1 0  e'l fo r j  = s + l ,

and then extending linearly. We now apply Proposition 1.1 and complete 
the argument as in the previous cases. ■

To apply this basic proposition we shall need the following elementary 
facts concerning the tensor products of algebras over R. For K  =  R, C 
or H, we denote by K(n) the algebra of n x  n-matrices with entries in K.

Proposition 4.2.

R(n) 0  R(m) =  R(nm) for all n,m. (4.4)

R(n) 0 M K  s  K(n) for K  =  €  or H and for all n. (4.5) 

C 0 „ C s C ® €  (4.6)
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§4. THE CLASSIFICATION 27

C ® „ H s  €(2) 

H ® R H =  R(4).

(4.7)

(4.8)

Proof. The isomorphisms (4.4) and (4.5) are obvious. The isomorphism 
C 0 € - » € ( x ) € i s  determined by sending

For the isomorphism (4.7) we consider H as a C-module under left scalar 
multiplication, and we define an R-bilinear map $ : C x H - >  Homc(H,H) 
by setting <l>2  ,(x) =  zxq. This extends (by the universal property of ®) to 
an R-linear map <&:<C_®R H -* Homc(IHI,IHI) s  €(2). Since 0 Z i 4  ° =

we have that O is an algebra homomorphism. Checking $  on a 
natural basis shows that it is injective. Hence, since dimR(C ® R H) =  
dimR(C(2)), $  is an isomorphism.

The isomorphism (4.8) is proved similarly. Consider the R-bilinear map 
¥ :  D-fl x H -► HomR(H,H) =  R(4) given by setting 'P4 lt4 z(x) s  qlxq2- The 
resulting R-linear map T : H ® R H -» Hom R(IHI,IH) is an algebra homo­
morphism between algebras of the same dimension. The injectivity of O 
can be checked on a natural basis for H ® H .  ■

We now come to the first main result of the section. Before stating the 
result, we make the observation that for any (r,s), the complexification of 
the algebra C€r s is just the Clifford algebra (over C) corresponding to the 
complexified quadratic form, i.e., C€r s <g)R C =  C£(Cr+J, q ® C). (This fol­
lows easily from Proposition 1.1.) However, all non-degenerate quadratic 
forms on C" are equivalent over C£„(C). Hence, setting

Theorem 4.3. For all n ^  0, there are “periodicity” isomorphisms

(1,0)
(0,1)

 ► i  ( 1  ®  1  +  i ®  i),

 ► j  ( 1  ®  1  -  i ®  i).

n
9c(z) =  £  ZJ

7=1

and defining
Cf„ =  C£(C",qc), (4.9)

we have that

=  Cfn o ® r C =  C€„_ j j ® r C =  • • • = C € 0iB ® r C (4.10)

C^»+8 ,o =  C tn Q ® C£g o 

C^0 ,n + 8  =  CZq,n ® ^ ^ 0 , 8

^ ^ n  + 2 =  ® C  ^ ^ 2

(4.11)

(4.12)

(4.13)
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where
Ce8, o =  C£0j8 =  R(16) (4.14)

C t 2 =  C(2). (4.15)

Therefore, by using the identities (4.4) and (4.5), all the algebras C ln 0, C l0 n 
and C£„ can be easily deduced from the following table.

28 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

Table I

i 2 3 4 5 6 7 8

ce„, © c H H ® H H(2) C(4) R(8) R(8) ® R(8) R(16)

Clo,n R ® U R(2) C(2) H(2) H(2) 0  H(2) H(4) C(8) R(16)

C eB C 0 C C(2) C(2) © C(2) C(4) €(4) © C(4) C(8) C(8) ® C(8) C(16)

Proof. From  (4.1) and (4.2) we see that for any n, we have C f„+8>0 s  
Cl„t0 ® ce0>2 ® C f2,o ® a 0,2 ® ce2,0. Using (4.0) and Proposition 
4.2 we see that C£„+g-0 =  C£„t0 ®  D-fl ® H ® R(2) ®  R(2) S  Cf„i0 ® 
R(4) ® R(4) s  C€„i0 ®  R(16). This establishes (4.11). The periodicity (4.12) 
is proved similarly. To prove (4.13), note from (4.10) that C f„+2 s  
U^n+2 , 0  ® C =  C£n>0 ® C£0i2 ® C =  €£„ ® ^ C t2.

Using the isomorphisms (4.1) and (4.2), and the facts (4.4) to (4.8), one 
can work out the first two rows of the table in “criss-cross” fashion (start­
ing with the initial data (4.0)). The third row of the table now follows by 
taking the tensor product of corresponding terms in either of the first two 
rows with C. ■

Combining Table I with the fundamental periodicity isomorphism (4.3) 
and the fact that C£x x =  R(2), we achieve the complete classification in 
Table II.

By now the reader has probably noticed some of the intrinsic beauty 
of this constellation of algebras and its interrelationships. There are some 
observations one can make from the table that are interesting exercises 
to prove. For example,

C£r>s s  C fr_4,s+4 (4.16)

C£r J+! s  C£s>r+! (symmetry about the axis y  =  x + 1). (4.17)

R em ark . The above classification reduces the Clifford algebras to fa­
miliar matrix algebras over K  = R, €  or H. Of course it is also useful to 
think of this result as introducing hidden and unexpected structure in the 
algebras K(2m). This information can be quite interesting as we shall see 
when we discuss vector fields on spheres in §8.
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30 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

§5. Representations

Most of the im portant applications of Clifford algebras come through a 
detailed understanding of their representations. This understanding fol­
lows rather easily from the classification given in §4.

We begin with a general definition. Let V  be a vector space over a 
field k and let q be a quadratic form on V.

D e f in i t io n  5.1. Let K  2  k be a field containing k. Then a  /(-representa­
tion of the Clifford algebra CZ(V,q) is a k-algebra homomorphism

p:CZ{V,q) ► Hom*(W,W)

into the algebra of linear transformations of a finite dimensional vector 
space W  over K. The space W  is called a C£(F,g)-module over K. We 
shall often simplify notation by writing

p(<p)(w) = (p-w (5.1)

for (p e C l(V 9q) and w e  W, when no confusion is likely to occur. The 
product (p • w in (5.1) is often referred to as Clifford multiplication.

Note. By a k-algebra homomorphism we mean a k-linear map p which 
satisfies the property p{(pij/) =  p(q>) ° p(^) for all (p,if/ e Cl(V,q).

We shall be interested in X-representations of C lrtS where K  =  R, C or 
H. Note that a complex vector space is just a real vector space W  to ­
gether with a real linear map J : W  -► W  such that J 2 =  —Id. A complex 
representation of C£r>s is just a real representation p : -► Hom^PV',!^)
such that

p(<p) o J  =  J  o p(<p) ( 5 .2 )

for all q> e C£r s. Thus the image of p commutes with the subalgebra 
span{Id,J} =  C. (This algebra is called a “commuting subalgebra” for p.)

Strictly analogous remarks apply to quaternionic representations of 
CZ,<s. Here the real vector space W  carries three real linear transfor­
mations I, J  and K  such that

I 2 = J 2 = K 2 = - I d

IJ  =  —J I  =  K, JK  =  — K J  =  I, K I =  —IK  — J.

This makes W  into an H-module. A representation p : C£r>J -*■ 
Hom R(W,W) is quaternionic if

p{<p) ° I  = I  ° p((p), p(<p) o j ^ j o  p((p\ p(q>) o K  =  K  o p(<p)
(5.3)

for all q> e C£riJ. That is, p has a commuting subalgebra spanK{Id,/,J,K} 
isomorphic to H.
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§5. REPRESENTATIONS 31

R e m a rk  5.2. Any complex representation of C trtS automatically ex­
tends to a representation of C£r>s C ^  C£r+5. Any quaternionic repre­
sentation of C lr%s is automatically complex (by restricting to C c  H). Of 
course the complex dimension of any H-module is even.

The above remarks will prove useful when we carry these constructions 
over to vector bundles in Chapter II.

We now come to the notion of irreducibility.

D e f in i t io n  5.3. Let V9q9k £  K , be as in definition 5.1. A K-represen- 
tation p :C t(V 9q) -> Hom K{W9W) will be said to be reducible if the vector 
space W  can be written as a non-trivial direct sum (over K).

W  =  Wx © W2

such that p{(p)(Wj) £  Wj for j  =  1,2 and for all q> e C l(V 9q). Note that in 
this case we can write

P =  Pi ® Pi

where pfcp) =  p(<p)\Wj for j  =  1,2. A representation is called irreducible if 
it is not reducible.

It is more conventional to call a representation “irreducible” if it has 
the property that there are no proper invariant subspaces. However, since 
C ln is the algebra of a finite group (see the discussion following Proposi­
tion 5.15), the two concepts are easily seen to agree in this case.

Proposition 5.4. Every K-representation p o f a Clifford algebra Cl(V,q) 
can be decomposed into a direct sum p = p x © • • * © pm o f irreducible rep­
resentations.

Proof. If p is reducible, it can be decomposed as a direct sum p =  p x © p 2- 
If either p 1 or p 2 is reducible, p can be further decomposed. This process 
must stop because of the finite dimensionality of the module. ■

We shall be interested here, of course, only in equivalence classes of 
representations.

D e f in i t io n  5.5. Two representations p j:C l(V 9q) -+ Hom*(Wj9Wj) for 
j  =  1,2 are said to be equivalent if there exists a K-linear isomorphism 
F :WX -> W2 such that F o p x((p) © F ~ 1 =  p2{(p) for all q> e C l{V9q).

From §4 we know that every algebra C lftS is of the form K(2m) or 
K(2m) ©  K(2m) for K  =  (R, C or H. The representation theory of such 
algebras is particularly simple.

Theorem 5.6. Let K =  i ,  €  or H, and consider the ring K(n) o f n x n 
K-matrices as an algebra over R. Then the natural representation p o f K(n) 
on the vector space K n is9 up to equivalence9 the only irreducible real repre­
sentation o f K(n).
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32 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

The algebra K(n) ® K(n) has exactly two equivalence classes o f irre­
ducible real representations. They are given by

acting on K n.

Proof. This follows from the classical fact that the algebras K(n) are sim­
ple and that simple algebras have only one irreducible representation up 
to equivalence. See Lang [1]. ■

From the classification of §4 (see Table II) we immediately conclude 
the following:

Theorem 5.7. Let vr s denote the number o f inequivalent irreducible real rep­
resentations o f C lrtS9 and let v j denote the number o f inequivalent irre­
ducible complex representatons o f CZn. Then

This is a good time to recall (cf. Theorem 3.7) that there are isomorphisms

we see that it is the irreducible representations of C£r_ ltJ and CZr+s-i 
that are relevant to constructing irreducible real and complex representa­
tions of SpinftS.

From this point on we shall restrict our attention to the algebras 
C£n =  C € Wf0 (and C ln =  C tn (g)R C) in order to simplify the exposition. 
Corresponding facts for the general case C£r>s are easy to deduce if the 
reader is interested. We shall begin with a summary of information easily 
deduced from the classification theorem 4.3.

We begin with some definitions. For each n, let dn =  dimR(PF) where 
W  is an irreducible R-module for CZn. Similarly, let d% =  d im JW 7) where 
W' is an irreducible complex module for CZn (and therefore for CZn =

PiiVuVi) =  P(<P i) and p 2((Pi,(Pi) =  p{<Pi)

V,
-

2 i f r + 1 —s =  0 (mod 4) 
1  otherwise

and

V" =  f
if n is odd 
if n is even.

cer.scer°+1. (5.4)

for all r,s, and consequently

ce„sc£„°+1 (5.5)

for all n. Since

Spinr>s c= CC°S c  C£?+J (5.6)
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§5. REPRESENTATIONS 33

C in C). Let X„ =  R , C o r H  denote the maximal commuting subal­
gebra for an irreducible real representation of C£„. Thus if K n =  C, this 
representation is automatically complex. If Kw =  H, it is automatically 
quaternionic. (Note that in the cases where C ln has two distinct irreduc­
ible representations, dn, d„ and K n are the same for both.)

An object which will be of interest later on is the following. Let ©ln (or 
9Jt£) denote the Grothendieck group of equivalence classes of irreducible 
real (respectively, complex) representations of C ln. This is merely the free 
abelian group generated by the distinct irreducible representations over 
R (or C). Since any representation can be decomposed into irreducibles, 
it naturally corresponds to an element in this group (with positive 
coefficients).

Theorem 5.8. For 1 <  n <; 8, the elements vn =  vBf0, v£, dn, d„, K n, 
and SDtJp (defined above) are as given in Table III.

Table III

It c tH v„ K„ Wn ce.
1 c 1 2 C z C © C 2 1 Z © Z
2 H 1 4 H z C(2) 1 2 z
3 H © H 2 4 H Z 0 Z C(2) 0  C(2) 2 2 z  © z
4 H(2) 1 8 H z C(4) 1 4 z
5 C(4) 1 8 C z C(4) © C(4) 2 4 z  © z
6 R(8) 1 8 !R z C(8) 1 8 z
7 R(8) e  R(8) 2 8 U z © z C(8) © C(8) 2 8 z © z
8 R(16) 1 16 1R z C(16) 1 16 z

For n >  8 these elements can be computed from the following facts, which 
hold for all m,k ^  1.

Vm + 8fc =  vm vcvm + 2k II < 3 O (5.7)

dm + 8k =  24fcdm dm + 2k

CNII (5.8)

®̂ m+8ik k (5.9)

K m + 8k = K m. (5.10)

Proof. This is a direct consequence of Theorem 4.3. ■

We shall now consider the key role played by the volume element in 
determining irreducible representations. Recall from §3 that the volume 
element in C i n is defined as

co =  ex • • • en (5.11)
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where ,e„ is an orthonorm al basis of R". It is well defined up to
sign and is fixed after a choice of orientation on IR”. In the complex case 
we have a corresponding element coc e  €  £„ given by

[ — 1
coc =  iL 2 co, (5.12)

called the complex volume element. Note that when n =  2m, we have

c»c = imei ■■•e2m

(Note also that coc =  co only in dimensions seven and eight modulo 8. 
O ther conventions for a complex volume element are possible. This one 
is particularly useful in studying elliptic operators.)

Recall from Proposition 3.3 that if n is odd, then co and coc are central. 
Furthermore, by (3.7)' we have that

co2 =  1 if n s  3 or 4 (mod 4), (5.13)

(coc)2 =  1 for all n. (5.14)

Thus there are algebra decompositions

ce„ =  C C  ©  C C  for n s  3 (mod 4) (5.15)

C£„ =  C C  ©  C C  for n odd (5.16)

where

C C  = (1  ±  co)Cin and C€* =  (1 ±  coc)C£„. (5.17)

(see Proposition 3.5). These decompositions correspond to the ones given 
in Table III.

Proposition 5.9. Let p : C£„ -> Hom K(U/, W ) be any irreducible real repre­
sentation where n =  4m +  3. Then either

p(co) =  Id or p(co) =  — Id.

Both possibilities can occur, and the corresponding representations are in­
equivalent. (They represent the two generators o f

The analogous statements are true in the complex case fo r Cl„, n odd.

Proof. Since p(co)2 =  p(co2) =  Id, we can decompose W  into W  =
W + ©  W~ where W + and W~ are the + 1  and — 1 eigenspaces for p(co) 
respectively. Since co is central, the spaces W + and W~ are C£„-invariant. 
By irreducibility either W + = W  or W~ =  W. This proves the first 
statement.

The inequivalence of representations p + and p~ with p ±(co)= + Id  
is evident, since if F : W  -* W' is an isomorphism and if p(co): W  -* W  is 
a scalar multiple of Id, then F o p(co)» F ~ l is the same scalar multiple of 
Id.

34 I. CLIFFORD ALGEBRAS AND SPIN GROUPS
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To see that both possibilities exist we take irreducible factors of C ln 
acting on C l*  and on C l~  by multiplication from the left.

The complex case is proved in the analogous manner by using cwc . ■

Proposition 5.10. Let p :C ln -► HomR(FF,W0 be an irreducible real repre­
sentation where n =  4m, and consider the splitting

W  =  W* ©  W~

where W * =  (1 ±  p((o)) • W  (as in Proposition 3.6). Then each o f the sub­
spaces W * and W~ is invariant under the even subalgebra Cl®. Under 
the isomorphism (3.18) =  C lH- u these spaces correspond to the two
distinct irreducible real representations o f C ln^ l .

The analogous statements are true in the complex case for C ln, n even.

Proof. The invariance of W* and W~ under Cl® is evident from the fact 
that co commutes with everything in Cl® (see (3.9)). Under the isomor­
phism C ln- i  Cl® given in (3.18), we see that the volume element co' =  
ex • • • of C ln- 1 goes to the volume element co e Cl®. (To see this

note that f a e j  ■ • • («„_!«„) =  ( - l ) 2("_1)(" " 2)ei • • • en- i (en)n~l =  ■ ■ ■ e„
since n = 4m.) It follows that co' £  Id on W* and co' ^  — Id on W  . Hence, 
by Proposition 5.9 these representations of C ln^ 1 are inequivalent.

The complex case is proved in the same manner using the volume form 
coc for Cl n. m

The representations of the algebras C ln give rise to important represen­
tations of certain groups.

Consider the spin group

Spin* c  Cl® c  C ln. (5.18)

D e f in i t io n  5.11. The real spinor representation of Spin„ is the homo­
morphism

An: Spin* ► GL(S)

given by restricting an irreducible real representation C ln -*• Hom w(S,S) 
to Spinw c: Cl® c: C£„.

Proposition 5.12. When n s  3 (mod 4) this definition o f An is independent 
o f which irreducible representation o f C ln is used. For n £  0 (mod 4) the 
representation A„ is either irreducible or a direct sum o f two equivalent irre­
ducible representations. (The second possibility occurs exactly when n =  1 
or 2 (mod 8).) In the other cases there is a decomposition

^4m ^  ^4m © A4m (5.19)

where A fm and A4w are inequivalent irreducible representations o f Spin4m.

§5. REPRESENTATIONS 35
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36 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

Proof. Recall that if n =  3 (mod 4), then the automorphism a : C ln C ln 
interchanges the factors C i * and C£~ (since a (co) =  — co). Consequently, 

sits diagonally in the decomposition C ln =  Cl+  ©  C l~ , i.e.,

Cln =  {(<?, «(<?)) 6 C i ;  ©  C C : q> e C C } (5.20)

The two irreducible representations of C£„ differ by the automorphism 
a, and are clearly equivalent when restricted to C l°. This proves the first 
statement of the proposition.

It is evident from Table III that the restriction of an irreducible real 
representation of Cl„ to C£° s  C£„_j is still irreducible if n =  3, 5, 6, or 
7 (mod 8), and must be two copies of an irreducible representation when 
n = 1 or 2 (mod 8). When n = 0 (mod 4), we know from Proposition 5.10 
that the restriction to C£° splits into two inequivalent irreducible repre­
sentations. To complete the proof we observe that any irreducible repre­
sentation of restricts to an irreducible representation of Spin„ because 
Spin„ contains an additive basis for C£°. ■

Rem ark 5.13. Note that the spin representations are complex for n =  2 
or 6 (mod 8), and are quaternionic for n =  3 ,4  or 5 (mod 8). (The maximal 
commuting algebra is determined by C f,,-! £  C£j.)

The analysis above carries over to the complex case.

D e f in i t io n  5.14. The complex spin representation of Spin,, is the homo­
morphism

A ?: Spin„ ► GLC(S)

given by restricting an irreducible complex representation €£„ -> 
Hom c(S,S) to Spin„ <r C£° <= <C£„.

Proposition 5.15. When n is odd, this definition o f  A j is independent o f  
which irreducible representation o f  C l n is used. Furthermore, when n is 
odd, the representation Ajp is irreducible. When n is even, there is a de­
composition

Ajfm =  &2m ®  Afm (5-21)

into a direct sum o f two inequivalent irreducible complex representations o f  
Spin„.

Proof. The proof is entirely analogous to that of Proposition 5.12. ■

It should be pointed out that the spin representations defined above 
do not descend to the group SO„ =  Spin„/Z2 since A„(— 1) =  —Id.

It is worthwhile noting that representations of C£„ also give rise to re­
presentations of the Clifford group. This is the finite group Fn c  C£ *
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generated by an orthonormal basis e l9 . . .  9en of R". It can be presented by 
the abstract elements e i9, . .  9eH9—l subject to the relation that —1 is 
central and that ( — l)2 =  1, (ef)2 =  — 1 and efij =  (— \ ) e f  { for all i #  j . 
The Clifford algebra is nearly the group algebra UFn of Fn. More explicitly

CZn ^  RF„/R • {(— 1) +  1}

It is clear that representations of CZn correspond exactly to linear repre­
sentations of Fn such that (—1) acts by —Id.

This group enables us to draw an important conclusion:

Proposition 5.16. Let CZ„ -> HornR(W9W) be a real representation o f CZn. 
Then there exists an inner product < v >  on W  such that Clifford multipli­
cation by unit vectors e e R” is orthogonal, i.e., such that

(e  • w, e • w'> =  <w, w' )  (5.22)

for all w,w' e W and for all e e U n with \\e\\ =  1. I f  K n (=  R, C or 0-fl) is a 
commuting subalgebra for the representation, then the inner product can be
chosen to be K„-invariant, that is, so that J  is orthogonal when K n = C and
so that J, J  and K  are each orthogonal if  K n =  H.

In particular, the spin representations Aw are unitary if  n =  2 or 6 (mod 
8) and symplectic if n =  3, 4 or 5 (mod 8).

Proof. Choose a A^-invariant inner product and average it over the finite 
group Fn. Note that if e =  £  where £  n* =  1> ^ en

< ew , e w )  =  Y , a j < ej w >ej w > +  E  a ia j ( .e iw , e Jw }  =  < w , w >
i * j

since <e,w, e,vv) =  <vv, vv) and for i ^ j ,  <e,w, ejw) = (,ejetw, — w> =  
<c(eyw, w> =  — <e,w, efw> =  0. For the last statement, recall that A„ comes 
from a representation of C€° =  C t,,-! . ■

Corollary 5.17. Let < v >  he the metric discussed in Proposition 5.16. Then 
for any v e  R",

<t> • w, w'> =  — <w, v • w ') (5.23)

for all w,w' e W. That is, Clifford multiplication by any vector v e R" is a 
skew-symmetric transformation o f W.

Proof. Assume t>#0. Then <t> • w,w'> =  <(u/||u||) • v • w,(i;/||d||) • w') =  
(l/||t>||2)<t>2 ■ w ,v  w1} =  — (w, v • w'). ■

It is worth noting that the irreducible representions of Cl 2n have a par­
ticularly nice description. Introduce on C" the standard hermitian metric

(z,0  a  t  (5-24)
J=i

§5. REPRESENTATIONS 37
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and use this inner product to define a complex linear contraction map

(» l) : A£C" ► Afc-1 C

for v e C" by formula (3.21). We then define /„: A£<C" A£C" by setting

ffq>) = V A ( p - v L ( p .  (5.25)

Then since v a  v  = 0, (v l ) ( v  L) =  0, and v L (v a  <p) =  ||t>||2<j» — v a  (u l  (p), 
we see that

f» °fv(< p)= -\\v\]2<P- (5.26)

Note that since the inner product is C-antilinear in the second variable, 
the map v -* /„ is only R-linear. Nevertheless, writing R2" =  €", we see 
from universality (Proposition 1.1) that property (5.26) determines a  unique 
extension of /  to a representation

/  : C i 2n ► Hom c(A*C", A*C"). (5.27)

Since the complex dimension of this representation is 2”, we see that it 
must be the irreducible one.

We now make some remarks concerning tensor products. Suppose W  
is a K-module for C l„ (where K  — R or C) and let V be any vector space 
over K. Then W  ® K V  is also a K-module for C£„ where by definition

(p • (w ®  v) = (<pw) ®  v. (5.28)

Therefore, if Wx and W2 are K-modules for C€„, then Wt ® K W2 is a 
K-module for C l n in two distinct ways. We set

V W ! <g) W2) =  ((pWx) ®  w2, 

P 4 w i ®  wz) =  Wi ®  (<pw2).

Then X and p are commuting representations of C€„. Furthermore, the 
product

®  w i )  =  ( ^ l W i )  ®  (<f>2 w 2 )

is a representation of the (ungraded) tensor product C£„ ®  C t n.

Proposition 5.18. Let C t 2n -* ■  HornC(S,S) be an irreducible complex repre­
sentation o f C l2n. Then the tensor product representation o f  C t 2n ® c C f2n 
on S ® c S is equivalent to the representation d> on C i2n itself given by 
setting

=  < P l ' < P ' < P 2

Proof. Since C i 2n ® c C l 2n =  € € 4n (see Theorem 4.3), we see that 
S ® c S must be an irreducible module for reasons of dimension. Since 
dimc(S ® S) =  22" =  dimc(C t2„), the representations must be equivalent.

38 I. CLIFFORD ALGEBRAS AND SPIN GROUPS
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§5. REPRESENTATIONS 39

Corollary 5.19. Let pn : Spin„ -► SO(IRn) denote the standard n-dimensional 
representation o f Spinn. Then in the complex representation ring o f Spin2m 
(cf. Adams [1]) we have the equation

(A f; +  AfM)-(A f; +  A5m)

=  2(1 +  pC2m + A2pfm +  • • • +  AM" Vfm) +  A-p5m 

where p2m denotes the complexification o f p2m.

Proof. The tensor product A2|B ® A2ib is obtained by embedding Spin2m 
into C i2m 0  C l2m diagonally (g g 0  g) and restricting the tensor 
product representation. By Proposition 5.18 this is equivalent to the 
adjoint representation <bg(<p) =  g<pg‘ — g<pg ~1 =  Adg(<p). Under the 
correspondence C l2n — A£C2m, this representation is equivalent to 
(1 +  P2m +  A2p2m +  . .  • +  A2mp2m) 0  C. However, by Hodge duality 
A Pp2m =  A 2m~pp2m. •

Results analogous to Proposition 5.18 and Corollary 5.19 hold for the 
algebras C f8m and for the real spin representation A8m =  A8m +  A8m.

Note that the tensor product of irreducible real representations of C£„ 
and C f8 gives an irreducible real representation of C fn+8 s  C€„ ®  C f8. 
Similarly the complex tensor product of irreducible complex representa­
tions of Ct„ and CC2 gives an irreducible complex representation of 
C£b+2 =  C€b ®  C f2- In general, however, C£„ 0  C fm is not a Clifford 
algebra. Thus, to find a multiplicative structure in the representations of 
Clifford algebras it is natural to consider the category of Z2-graded mod­
ules. A Z2-graded module for C£„ is a module W with a decomposition 
W  =  W° 0  W 1 such that

C V  ' W * £  J0 i + ./)(mod 2)

for 0 §  i, j  g  1.

Proposition 5.20. There is an equivalence between the category o f  Z2- 
graded modules over C in and the category o f ungraded modules over C€„_ t . 
I t  is defined by passing from the graded module W ° ©  W 1 over Cl„ to the 
module W° over C£? £  CCB_!.

Proof. The inverse procedure is given by assigning to a C£j-module 
W°, the Z2-graded module

W  =  C€b ® cto W  0

(Left multiplication by C l n on C tn makes W  into a Z2-graded module.) 
The remainder of the proof is straightforward. ■

There is a natural definition of the Z2-graded tensor product of Z2- 
graded modules W  = W ° ©  W 1 and V =  V° ©  V1 over C£„ and C£m
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40 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

respectively. We set

(W  <g> F)° =  W° ®  F° + W 1 ® V 1 

(W  <§) F )1 =  W ° <g) F 1 +  W 1 ®  F°.

The action of C€„ ®  C£m on IF (g) F  is given by

(cp (x) i]/) ■ (w ®  v) = (— l)p,(<pw) ®  (\j/v)

where deg(i^) =  p and deg(w) =  q. Under the isomorphism C€„+m s  
C£„ (g) C£m, induced from mapping R" © Rm -*• C€n+m

(e I— ► e (g> 1 if e e R" <= Cf„
je 'l— > l ® e ’ i f e 'e R ’ c  C£m,

F  <g) W  becomes a Z2-graded module over C€„+m. This construction 
holds for either real or complex modules.

In analogy with the above we define 50!„ (SWjf) to be the Grothendieck 
group of real (complex) Z2-graded modules over Cf„. Note that by P rop­
osition 5.20 there are natural isomorphisms

SOI. and SfefsSM®.!. (5.29)

The arguments just given have established the following:

Proposition 5.21. There are natural pairings

(5.30)

« E ® z * l S  ►&?+» (5-31)

induced by the T 2-graded tensor product. These pairings are associative 
and give 501* =  and S0i* =  $1? the structure o f graded
rings.

These pairings are im portant in the relation of Clifford algebras to real 
and complex K-theory (see §9).

§6. Lie Algebra Structures

This section shall be concerned with the Lie algebra of Spin*. Recall that 
the group of units C£* is a Lie group with Lie algebra cl* =  (C tn,[ v ] )  
where [<p, =  cp • i// — i// • cp. There is an exponential mapping exp : cl *
C£* given by the standard series (see Remark 2.1). The group Spin* is an 
explicitly defined, compact subgroup of C l *. We shall now investigate its 
associated Lie subalgebra sptn„ in C ln.
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§6. LIE ALGEBRA STRUCTURES 41

Recall that there are canonical embeddings APR" ci Ct„ for all p.

Proposition 6 .1 . The Lie subalgebra o f  (C £„,[-,■]) corresponding to the 
subgroup Spin„ c: C t*  is

spinB =  A 2 R". (6.1)

In particular, A2 R" is closed under the bracket operation.

Proof. The Lie subalgebra spin„ is the vector subspace of Cl„ spanned 
by the tangent vectors to the submanifold SpinB at 1. Fix an orthonormal 
basis ex, . . .  ,e„ of R" and consider for each pair i < j, the curve y(t) =  
(et cos t + ej sin t) • (—e( cos t+ e j  sin t)= (cos2 t —sin2 t)+ l e ^ j  sin t cos t = 
cos(2t) +  sin(2 f)eieJ-. This curve lies in Spin„ by definition of Spin,,, and its 
tangent vector at y(0) =  1 is lefij. Hence, spinB contains the vector sub­
space spanR{e(fy}(<j =  A2 R". Since dimR(spin„) =  n(n — l)/2, we conclude 
they are equal. ■

We now'recall that the Lie algebra of the orthogonal group SO„ is ex­
actly the space

$o„ =  (A : R "  * R ": A is linear and skew-symmetric} (6.2)

There is a natural isomorphism A 2 R" A so„ induced by associating to a 
pair of vectors v,w e R", the skew-symmetric endomorphism uv a  w” de­
fined by

(v a  w)(x) =  — (w,x)v, (6.3)

and then extending by universality. Note that et a  es, for i < j, corresponds 
to the elementary skew-symmetric ( i j)  matrix:

This is a standard basis of so„.
Recall now that the adjoint representation gives a surjective homomor­

phism

SpinB SOB.

(Since SpinB e  C£„, we have Ad|Spin(t =  Ad|Spinn.) This induces an asso­
ciated Lie algebra isomorphism

spm„ so„ (6.4)
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42 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

Proposition 6.2. The Lie algebra isomorphism (6.4) induced by the adjoint 
representation is given explicitly on basis elements {eiej}i<j by

Sotee,-) =  2ef a  ej. (6.5)

Consequently for v,w e Un,

So > a w) =  i[u ,w ] (6.6)

Note. This factor of J  plays a delicate role in geometric applications.

Proof. Consider the curve y(t) =  cos(t) -I- sin(t)efij in Spinw with y(0) =  1 
and y'(0) =  *&j• Then

at r = 0

and to compute this we apply it to a vector x  e R". Since

£o(y(0)M =  rtOxyW’ 1* 

and since (y"”1)'^ ) =  —/(0) =  — efij, we have that

S 0(^i^)(x) =  e^jX - x e f i j
=  +  (etx  +  2(sehx})ej
=  efijX — e ^ x  — 2 (e j9xyei +  2<ei,x>e/
=  a  ej)(x)

To prove (6.6), note that on basis elements, %[ei9 ej] = H e^j — ejef) =  2eiey
■

This Proposition has the following immediate corollary:

Corollary 6.3. Let A: Spin* -> SO(VF) be a representation obtained by re­
striction o f a representation C ln -> Horn(W ,W ) o f the Clifford algebra 
C ln => Spinw. Let A* :son -► &o(W) be the associated representation o f the 
Lie algebra (obtained by first pulling back son to the double covering via
2q *). Then on the elementary transformations v a  w e  so„,

A ^(v  a  w) =  i [ y 9w ]  • (6.7)

where the dot indicates Clifford module multiplication on W.

In terms of the standard basis {et a ej}i<j

K ( ei A ej) = 2 efif (6.8)

Suppose now that C ln ->• Horn(W ,W ) is a complex representation of 
C ln, and fix an element w e W .  The subgroup

Gw =  {g e  Pin„ :gw = w} (6.9)
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§6. LIE ALGEBRA STRUCTURES 43

is called the isotropy group of w. Its Lie algebra is the subalgebra

gw =  {(p e spin*: <p • w =  0 } (6 . 1 0 )

Two elements w,w' e W  are considered to be different as spinors (or more 
precisely, to have distinct orbit types) if their isotropy groups Gw and Gw. 
are not conjugate in Pin„. One crude measure of this difference is the 
following:

Definition 6.4. The rank of the (generalized) spinor w is the rank of the 
Lie group Gw. This is the dimension of a maximal torus in Gw or, equiv­
alently, of a maximal abelian subalgebra of gw.

In a compact Lie group, every abelian subgroup is contained in a maxi­
mal torus, and all maximal tori are conjugate (cf. Adams [1]). Hence any 
maximal torus T w of Gw is contained in a maximal torus T  of Pin„ which 
we can assume to be the following standard one associated to a fixed 
orthonormal basis {e l t . . .  ,en} of R":

T = | ‘n  (cos 6k + sin 0ke2k- i e 2k) : O £ 0 k < 2 n  for each fc|

The Lie algebra of T  is given by

)
t =  < £  h e2k - i ei k : A* e R for each k >

We now use our distinguished orthonormal basis to decompose the 
module W. For each ft, 1 ^  2fc g  n, define

0}k = ~ ie2k-le2 k
and note that

£ » !,... ,c0 Ib/2 ] pairwise commute, (6 . 1 1 )

tok = 1  for each k, (6 . 1 2 )

(okek — — ekcok for each k. (6.13)

Suppose now that V a  W  is a linear subspace which is e2k_ j-invariant 
and e2*-invariant for some fixed k. Then by (6.12) we know that V = 
V+ © K_ where V± =  (1 ±  cok)V  are the ±  1 eigenspaces of cok on V. Fur­
thermore, by (6.13) we see that ekV+ =  V_ and ekV_ =  V+. In particular, 
dim V± = j  dim V.

We shall now use this process to decompose the module W. We begin 
with the decomposition W  =  W+ ©  W . by ©j. Since co1 commutes with
e3 ,e4 .........e„, we see that each of the subspaces W+ and W - is e3 e„-
invariant. Hence we can similarly decompose each subspace W+ and W_ 
by a>2 to get W+ =  W++ ©  W+_ and W- — W-+ ©  W Each sub­
space W± ± is e5, . . .  ,e„-invariant. Continuing inductively, we produce a
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decomposition
^ = © ^ ±. . . ± =  © W ;  (6.14)

a

where dim Wa =  (dim W )/2[n/2] for each a and where a =  (a1?. . .  ,a[ll/2]) 
ranges over the 2[n/21-possibilities having ak =  +  or — for each k. (Note 
that if W  is an irreducible module, then dimc Wa =  1 for all a.)

The maximal torus T  preserves each subspace Wa. In fact, given g =
(cos 9k +  i sin dkcok) e T, we see that

g\w  ̂ =  eiZoik0k =  ei<a-e>

Similarly for <p =  E  K e2*- ie2* =  * E  e t we have

(p\w<, = i E  M *  =  *<M> (6.15)

The set of vectors e  t* are called the weights of the representation. 
The ^ occurs because in general theory the weights are normalized by 
relating them to the weights of the adjoint representation.

We now return to our given spinor w e W. With respect to the decom­
position (6.14) we write

w =  2 > «
a

From  (6.10) and (6.15) we conclude the following:

Proposition 6.5. The maximal abelian subalgebra o f Gw is

tw =  {i Xkcok : <a,A> =  0  for all a such that wa ^  0 }

Corollary 6 .6 . rank w =  [n/2] — dim spanR{a : wa ^  0}

If w =  wa for some a, i.e., if all but one component vanish, then w is 
clearly of maximal rank. Those elements that take the simple form w =  wa 
for some choice of orthonorm al basis in IR", are called pure. Pure spinors 
are related to complex structures, twistors spaces and calibrations. They 
will be discussed in detail in Chapter IV.

44 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

§7. Some Direct Applications to Geometry

In this section we shall use the classification of Clifford modules given 
above to construct families of pointwise linearly independent vector fields 
on spheres, projective spaces and other elliptic space forms. We shall also 
apply the methods to study the “hyperplane” bundle over complex and 
quaternionic projective space. This allows us to estimate the geometric 
dimension of TP"(C). In almost all cases the families constructed in this 
manner are maximal.
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§7. APPLICATIONS TO GEOMETRY 45

We begin with the following observation:

Proposition 7.1. Suppose RN + 1  is a module for the algebra C in. Then there 
exist n pointwise linearly independent tangent vector fields on the sphere SN 
and also on the projective space (P^R) =  SN/Z 2.

Proof. Choose an inner product in UN+1 so that Clifford multiplica­
tion by unit vectors in R" is orthogonal (see Proposition 5.16). Let SN =  
{x g RN + 1 : ||x | |2  =  1}. Choose a basis ,vn for R", and to each Vj as­
sociate the vector field Vi on RN + 1  defined by

V}{x) = v j - x  j  =  1 , . . .  ,n

(where the dot denotes Clifford multiplication). Since the linear transfor­
mation x \ - * v x  is skew-symmetric (see Corollary 5.17), we have that 
<Vj(x),x) == <iyc,x> =  0. Hence, the vector fields Vj are tangent to SN. It 
remains to show that Vl9...,V „  are pointwise linearly independent. Fix 
x g SN and consider the linear map ix : R" -► TXSN c  UN+1 given by

ix(v) = v x

The image of ix is the linear span of Vx{x\ . . .  ,Kw(x), so it suffices to prove 
that ix is injective. However if ixv =  v • x =  0 , then v • v • x =  — |MI2x =  0  
and so v =  0 .

Since PJ(—x) =  — Vj(x), these vector fields descend to (pointwise linearly 
independent) vector fields on PN(U). ■

The question now is: given an integer N, what is the largest number of 
independent vector fields on SN that can be constructed in this manner? 
That is, what is the largest integer n such that RN + 1  is a C£w-module? We 
recall that the dimension of an irreducible C£„-module is always a power 
of 2. Hence, we want to find the largest power of 2 which divides N  +  1. 
That is, we write N  + 1 =  p2m where p is odd, and then we consult Table 
III to find the largest n such that dn =  2m. The result is the following clas­
sical result of Radon and Hurwitz.

Theorem 7.2. On the sphere SN {and on the projective space PN(M)) there 
exist n pointwise linearly independent vector fields where n is computed as 
follows. Write N  +  1 =  2*a+b(2t +  1), 0 <  b < 3. Then

n =  8 n +  2b -  1. (7.1)
Proof. One need only check this when a = 0, and then note that for each 
increase of n by 8  the dimension of the vector space for an irreducible 
representation of C in increases by 24. Note that when N  is even, the num­
ber of such vector fields is zero as it must be since the Euler characteristic 
is non-zero in this case. Note also that this construction gives three vector 
fields on S3, seven on S7  and eight on S15. ■
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46 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

One of the deep results of algebraic topology is the following:

Theorem 7.3 (J. F. Adams [2]). The number o f vector fields constructed on 
SN above is the largest possible number o f pointwise linearly independent 
vector fields that can exist on SN.

It is worth noting that this construction also gives rise to vector fields 
on many elliptic space forms. If the representation of C ln on UN + 1  is com­
plex or quaternionic, then Clifford multiplication by v e  03" commutes with 
complex scalar multiplication. Therefore, if p =  e2ni,p is a pth root of unity, 
then the vector field V(x) =  v • x  on SN has the equivariance property

K(/?x) =  /?-K(x) (7.2)

for all x e SN. This means precisely that the vector field V(x) is invariant 
under the diffeomorphism SN SN given by scalar multiplication by /?. 
The Zp-action on SN generated by p is free. From  (7.2) we conclude that 
V descends to a vector field on the quotient SN/Z P which is a lens space 
of simple type L N(p) =  L N(p; 1 , . . .  ,1).

Analogous remarks hold when the representation of C ln is quaternionic. 
Here we may replace Zp by any finite multiplicative subgroup of H. Such 
subgroups are constructed as follows. The unit sphere S 3 cz H is a Lie 
group isomorphic to Spin 3  (see the paragraph below). Let £0 : S 3  S 0 3  
be the 2-fold covering homomorphism. Then for any finite subgroup 
r 0  c  S 0 3, the inverse image T =  ^Tq) is a finite subgroup of S3 c  H. 
Of course, the symmetry groups of the regular polygons, the so-called di­
hedral groups, and the symmetry groups of the Platonic solids give many 
examples of finite subgroups of S 0 3. The -images of dihedral groups 
are called binary dihedral groups. There are also the binary tetrahedral 
group, the binary octahedral group, and the binary icosahedral group, cor­
responding to the £ 0  1-images of the symmetry groups of the tetrahedron, 
octahedron and icosahedron, respectively.

From our remarks above we conclude the following two theorems.

Theorem 7.4. On each simple lens space L N(p) =  SN/ Zp, for p > 1, there 
exist k pointwise linearly independent vector fields where, i f  N  + 1 =  
2 m(2 t +  1 ), then

k = 2m — 1

Moreover, this is the maximal number o f pointwise linearly independent vec­
tor fields possible on L N(p) if  m = 1 or 2 modulo 4.

Theorem 7.5. There exist q pointwise linearly independent vector fields 
on SN/T  where T is any finite subgroup o f S 3 c  H and where if  N  -1 - 1 =
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2m(21 + 1) and m =  4a +  b9 2 b <; 5, then

f8 a +  fe +  1  i f b * 5
q ~  ( 8 a +  b +  2 i f  b =  5'

Moreover, this is the maximal number o f pointwise linearly independent vec­
tor fields possible on the elliptic space form SN/T  if  m is congruent to 1 or 
2 modulo 4.

Similar constructions can be made for complex and quaternionic pro­
jective space. Of course in these cases the Euler characteristic of the mani­
fold is not zero, and so every tangent vector field must vanish somewhere. 
However, we can pass to the stabilized bundle T X  © Rm where Rm de­
notes the trivial bundle of dimension m. Clearly there exists some bundle 
E over X  so that T X  ©  Rm s  E © Um+n~k where n =  dim X ,k  = dimR E 
and k is as small as possible (for any choice of m). The dimension of E is 
called the geometric dimension of T X .

Let Pn(K) denote the n-dimensional projective space over the field K. 
For K  =  R, C or HI there is a tautological X-line bundle r\ -+ P ”(X) whose 
fibre above a point |Y] e Pn(K) is the one-dimensional linear subspace 
{  e  K n+1 corresponding to [ / ] .  For K  =  U or C we have the following 
fact:

T(Pn(K)) © K  s  > / * © - - - © q *  (7.3)

(n -I- l)-times

where rj* is the dual bundle

rj* = Horn K(rj9K).

To see this, we first show that

r MP "(K )sH o m K( / y x). (7.4)

Each one-dimensional X-linear subspace t  c  K n+1 can be canonically 
identified with the (K-linear) orthogonal projection map ne:K n+i -* t .  
Note that n j =  ne, %{n{S. =  =  0 and n( + =  Id. Let /?,, |f| <  e, be
a smooth family of X-lines with / 0  =  <f, and set n =  {d/dt)n/t|,=0. Then by 
deriving the identities above we have that n(ne +  n,ne =  ne, Hen(i. + —

+  n/dtf =  0, and nf  +  =  0. It follows that i t%ti =  0 and %(%e =  0.
Hence iie e HomK(/, Z1). On the other hand it is easy to construct an ele­
mentary basis of HomK(/, Z1) as tangent vectors ne for curves S(t) with 
/( 0 ) =  L  

From  the exact sequence

0 ----► i -----> K n+1---------  »0
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48 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

we obtain the exact sequence

0 -----► Hom K(<f, ( ) ----- >• Hom K(/, K n+l) ----- ► HomK(/, <fx) -----► 0. (7.5)

From (7.4) this gives an exact sequence of bundles over P"(K):

0 -----► U om K(rj, rj)----- > rj* ® • • • ® rj*: -----► TP "{K )----- ► 0 (7.5)
-v ’

(n 4- 1) times

which holds for X =  R, C or H. When X =  U or C, we have HornK(ri9 rj) ^  
rj* (g) rj ^  X the trivial X-line bundle), and this establishes (7.3).

Suppose now that L : K n+l -* K m is a X-linear map (for any m ^  1). 
Then L defines a section of rj* © • • • © rj* (m times) as follows. Fix a 
X-line {  c  Xw+1. Then l \ e \ i  -> K m is exactly m X-linear functions on L  
Thus, we have an embedding

HomK(Xn+ \  K m) c= r(rj* ® -  • © t]*) (7.7)

m times

into the space of sections of the bundle rj* © • • • © / / * .  A section corre­
sponding to a X-linear map L is nowhere zero if and only if L(x) #  0 for 
any x  /  0. Similarly, L l5 . . .  ,LP give pointwise linearly independent sec­
tions of if* © • • • © ij* if and only if L x(x \  . . .  ,Lp(x) are linearly inde­
pendent at each non-zero x e  K n+i. The X-representations of C lp give us 
precisely p X-linear maps L u  . . .  ,LP :K N -► K N which satisfy this condi­
tion of pointwise independence. Thus, by consulting Table III, we have 
the following result analogous to th a t of Theorem  7.4 (cf. Lawson- 
Michelsohn [1]).

Theorem 7.6. Let (n 4 * l)if* =  i/* © * • • © rj* denote (n 4 - 1 )-copies o f the 
“hyperplane” bundle over complex projective n-space P"(C). I f  n 4 - 1 =  
2 m(2 1 4 - 1 ), then there exist k sections o f (n 4 - 1  )rj* where

k =  2m — 1 .

Therefore

ySn < 2n — 2m 4 - 3 

where y8n denotes the geometric dimension o f the tangent bundle T P"(C).

We also have the following result which is analogous to that of The­
orem 7.5.

Theorem 7.7. Let (n 4 - 1)<̂ * =  <!;*©•••©<!;* denote (n 4 - l)-copies o f the 
“hyper plane” bundle over quaternionic projective n-space P W(H). I f  n 4 - 1 =
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2 m(2 1 +  1 ) then there exist k sections o f (n +  IK* where

(2m — 3 ifm  s  0 (mod 4)
k =  \ lm  — 2 i f  m = 3 (mod 4)

1 2  m — 1  otherwise.

Therefore

{An — 2m +  7 ifm  = 0 (mod 4)
4n — 2m +  6  ifm  = 3 (mod 4)
4n — 2m +  5 otherwise

where gdn denotes the geometric dimension o f the bundle TP"(H) © 
HomM(£,£).

Note that we are unable to make a conclusion about the geometric 
dimension of the tangent bundle itself because HomH(̂ ,<̂ ) is not trivial.

§8 . Some Further Applications to the Theory of Lie Groups

It is interesting to note that the classification of Clifford modules gives 
an immediate proof of certain well-known isomorphisms between low­
dimensional Lie groups. It also leads to the fact that S1 =  Spin7 /G 2  and 
to the principal of triality for Spin8. We would like to thank Reese Harvey 
for pointing this out to us.

We begin with some classical definitions. Let C" and OT carry the stan­
dard “hermitian” inner products

(x,y) = E  x ih  (8 -1 )
J~ 1

where for a quaternion x  =  x 0  +  ixl + j x 2  +  k x3, the conjugate is defined 
by x  — x 0 — ixx —j x 2 — kx3. Then we have the following definitions of 
the classical groups:

U„ =  {g e Homc(C",C"): (gx,gy) =  (x,y) for all x,y e C"}.

SU„ =  {g 6  U n : detc(gf) =  1}

Sp. = {g 6  Hom H(IHI",IHIB) : (gx,gy) =  (x,y) for all x,y  e H"}

Under the natural isometries IR4" =  C2" = H" (and IR2" s  C") one finds 
that

Sp„ c= SU2„ and U„ <= S 0 2„. (8.2)
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50 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

Elementary linear algebra proves that

dim(SO„) =  jn(n — 1)

< dim(SU„) =  n1 -  1 (8.3)

dim(Sp,,) =  n(2n + 1 ),

and it is not difficult to see that each of these groups is connected.
When the integers p,q,r are sufficiently large (say ^  7), the groups Spinp, 

SU„, Spr are all distinct. However, in low dimensions there are certain 
exceptional isomorphisms between these groups. These isomorphisms are 
easily deduced from the Dynkin diagrams. However, the approach re­
quires the non-trivial classification of compact, simply-connected Lie 
groups. The same isomorphisms can also be deduced from Table II, which 
was comparatively easy to establish.

Theorem 8.1. There exist the following isomorphisms between low-dimen­
sional Lie groups:

Spin3  = SU 2  =  Spt 

Spin4  =  Spin3  x Spin3  

Spin5  £  Sp2  

Spin6  =  SU 4

Furthermore, Spin7  has a faithful 8-dimensional real representation, and 
Spin8  has three inequivalent 8-dimensional real representations.

Proof. Recall that Spin„ <= C£° =  C£„_ Furthermore any representa­
tion of C€„_! on CN or H* can be assumed to have the property that, 
when restricted to the group Spin,,, it preserves the hermitian inner prod­
uct (8 . 1 ). Consequently, since C t2 =  H has a  faithful one-dimensional 
quaternionic representation, we get an injection Spin 3  Spt . The first 
isomorphism follows easily. Since C l 3  =  H © H, we get an injective map 
Spin4  ^  Spi x Spt . Since dim(Spin4) =  dim(Spt x Spx) and Spin4  is con­
nected, we get the second isomorphism. Since C £ 4  S  H(2), we get an in­
jection Spin 5  ^  Sp2  and the third isomorphism follows. Since C£s s  C(4), 
we get an injection Spin6  U 4. By the simplicity of (the Lie algebra of) 
Spin6, or by Lemma 8.5 below, we see that Spin6  must lie in the kernel 
of the homomorphism detc :U 4  -> U 3. Thus, we have Spin6  ^  SU 4  and 
the fourth isomorphism follows.

The existence of a representation of Spin7  on IR8  is obvious since 
C £ 6  s  R(8 ). Furthermore, since C £ 7  s  R(8 ) ©  IR(8 ), we see that the two 
spin representations A8  and A8  of Spin8  are on IR8. There is also the
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§8. APPLICATIONS TO LIE GROUPS 51

adjoint representation Ad of Spin8  on OS8. To see that these representations 
are all distinct, it suffices to consider the central elements. Set

=  {1,—I,©,—ci>} £  Z 2  © Z 2

where co denotes the oriented volume element of CC7  ^  C£8. This group 
lies in the center of Spin8. (In fact it is the center.) From Propositions 5.9 
and 5.10 we know that A8  (ct>) =  Id and A8  (co) =  —Id. Since A8  come 
from representations of C £ 7  we have

A8  (co) =  Id, A* (-© ) =  - I d ,  A8  ( — 1) =  - I d  (8.4)

A8  (co) =  - I d ,  A8  (-co) =  Id, As (— 1) =  - I d .  (8.5)

From the definition it is clear that if Ad denotes the adjoint representation 
of C f 8  on R8, restricted to Spin8  c  C £ 8  £  C£7, then

Ad(—1) =  Id.

Recall now that equivalent irreducible representations must agree on 
central elements. (Note, for example, that if there exists an isomorphism 
F :R 8 -> R 8  with the property that F o A8  (g) o F " " 1  =  A8  (g) for all 
g e Spin8, then in particular, A8  (g) =  A8  (g) for all g e Consequently 
the three representations A8 , A8  and Ad are inequivalent. ■

It is an interesting and often useful fact that two 8 -dimensional rep­
resentations of C t 7  can be explicitly generated using the Cayley numbers. 
Recall that the Cayley numbers O can be defined as pairs of quaternions 
with multiplication given by

(a,b) • (c,d) =  (ac — db, da +  be). (8 .6 )

The multiplication so defined is neither commutative nor associative. 
However, every non-zero element has a multiplicative inverse. Further-' 
more, given a Cayley number x  =  (a9b)9 we write x  =  (a9 — b) and define 
real and imaginary parts of x  by setting

Re(x) =  |( x  +  *); Im(x) =  ^(x — x)

An inner product on O is defined by <x,y> =  Re(xy)- It has the property 
that |xy| =  |x| |y| for all x 9y  e O (where |x | 2  =  <x,x) as usual). An impor­
tant fact concerning the Cayley numbers is that any subalgebra o f  O gen­
erated by two elements is associative.

We now consider R 7  =  Im(Q) and R8  =  O with the above inner prod­
uct. For any v e lm (0) we define a linear endomorphism X9 of R 8  by 
setting

A„(x) = v - x (8.7)
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52 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

for x  g O =  R8. From the associativity of the algebra generated by x  and 
v, or by a direct computation from (8 .6 ), we see that

42 = -|M I2Id (8.8)

for all v 6  Im(Q) =  R7. Consequently, from the universal property (Propo­
sition 1.1), we know that X extends to a representation

X : C ln  ► Hom K(R8 ,R8) (8.9)

of C£7. For dimensional reasons this representation must be irreducible. 
The other irreducible 8 -dimensional representation

p =  X © a

is generated by the mapping pv(x) =  —v x .  Observe that under the con­
jugation map c(x) =  x , pv becomes equivalent to right multiplication by 
v9 i.e., pv =  c © pv o c is given by

pv(x) =  ( — v • x) = —X ’ v = X ' v

(since for v e Im O we have v — —v).
These two representations are equivalent when restricted to Spin7, but 

they are inequivalent on Spin8  c= C € 8  =  C f 7.
We now consider the action of P in 7  on R 8  given by the representation 

X above. From (8.7) it is clear that the orbit of 1 contains all elements 
e e  Im(Q) with \e\ = 1. That is, this orbit contains the “equator” 
S6 = S 7 n  Im(Q). It also contains e • S6, which is a great sphere passing 
through the “north pole” 1, for each e e S6.

Since the orbit P in 7  • 1 is a compact embedded submanifold of S7, we 
conclude that it is S7. It now follows that the orbit of Spin 7  must be
7 -dimensional and, hence, also equal to S7. We have proved the result of 
A. Borel.

Theorem 8.2. The 8-dimensional spin representation o f Spin7  is transitive 
on the unit sphere S 7.
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§8. APPLICATIONS TO LIE GROUPS 53

With a little more work it is possible to prove that the isotropy sub­
group {g e Spin7 :A9 (l) =  1} of 1 e S7  is exactly the group G2 = Aut(O) 
(see Harvey-Lawson [3] for example). Hence, we have the diffeomorphism

S7  s  Spin7 /G 2.

We pass on now to the group Sping. Recall from Theorem 8.1 that this 
group has three distinct homomorphisms Ag , Ag , A d:Sping -» SOg with 
kernels isomorphic to Z 2. Writing the center 3 t  =  {1 , — l,co,—co} as before, 
we have the following table (cf. (8.4) and (8.5)).

g <o — <o —1

A,+(g) Id - I d  - I d

A,-(g) - I d  Id - I d

Ad(g) - I d  - I d  Id

(8.10)

We now consider the pair of homomorphisms Ag and Ag . From general 
covering space theory there must be a lifting of Ag over Ag which takes 
the identity to itself, i.e., a map a : Sping -+ Sping such that the diagram

Spin8

(8.11) 

Spin8  —— » SOg

commutes and <r(l) =  1. The map a satisfies the condition

<t(0 i 0 2 ) =  ffteiMfo) (8 . 1 2 )

for all g ltg2 in a small neighborhood of 1, since both Ag and Ag are group 
homomorphisms. In fact, the relation (8.12) holds for all g ug2 e Sping. To 
see this note that both sides of (8.12) are well defined on Spin8  x Spin8  
and that the set where (8.12) holds is both open and closed. (Alternatively, 
one couid use the fact that (8 . 1 2 ) is an equation between real analytic 
maps.) Thus, a is a group homomorphism. Since a is a covering map 
between simply-connected spaces, it must be injective, and so a  is a group 
automorphism.

It is now clear from (8.11) that a carries the kernel of Ag onto the 
kernel of Ag . Since ker(Ag ) =  {1 , —a>} and ker(Ag ) =  {l,co}, and since 
<r(l) =  1 , we conclude that

<r(—to) =  (O

Since co and — co are central, a  must be an outer automorphism.

/ l ‘ :

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



Lifting Ad over the homomorphisms A8  and A8  and applying the 
arguments above we construct outer automorphisms t + and x~ of Spin8  
with the property that

t +(— 1 ) =  co and t “ (— 1) =  — co. (8.13)

By definition we have that Ag o t ± = Ad and Ag ° <x =  Ag. Furthermore, 
the associated Lie algebra maps (Ag )„, and Ad* are isomorphisms, and 
we have that

T* =  (A^ ) _ 1  ° Ad* and t*  =  (Ag) ; 1 » (Ag"),. (8.14)

At this point the automorphisms a and x ± are only defined modulo 
inner automorphisms. To get concrete representatives we must choose 
concrete representatives for the maps Ag and Ad.

We shall give such an explicit construction for a. Choose an ortho­
normal basis eu . . .  ,e8 of IR8  and recall that the Lie algebra spin 8  =  A 2 R 8  
has an orthonorm al basis {c( • The map C l7 C f 8  is induced by 
the assignment

e j  ► e/ 8  j  =  1 , . . .  ,7. (8.15)

Consequently, the preimage of spin 8  under this map is just

sptn 8  =  IR7  ©  A 2 IR7  c  C f 7  (8.16)

where h+ ete8 for 1 <> i <, 7 and where e&j i-* ete8e f 8 =  e^j for 1 ^  i < j  ̂  7.
We now consider the two representations A and p of C l7 on IR8  =  O 

that were constructed above. Since 2„(x) = v ' x  and pv(x) = —v x  for 
v e IR7, we see that

[K = -P < »  for (p e IR7  
(A  =  Pp for (p e A 2 IR7.

Now restricted to sptn 8  £  IR7  ©  A2 IR7  we have that A =  (A8 )* and 
p =  (A8  )*. Consequently, <7 * =  (A8  ) * 1  o (Ag )* has the property that

( i f (p e U 7
(p if <p e A2 IR7’ ( )

In  particular, (<r* ) 2  =  Id and so by exponentiation we have that

a2 =  Id. (8.19)

We now let 0 8 and / 8  denote respectively the groups of outer and inner 
automorphisms of Spin8. There is a natural homomorphism

Og/ / 8 -----► Aut(^f). (8.20)

It is easy to see that Aut(Jf) s  Aut(Z 2  ©  Z2) =  S3. In fact, we have natu­
rally that Aut(Jf) s  Perm (— l,co,—co). Since <j(—a>) = a> and o{2£) — 2£,

54 I. CLIFFORD ALGEBRAS AND SPIN GROUPS
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we have that either <r(— 1) =  — 1 or <x(— 1 ) =  —to. Since a2 =  Id, we 
conclude that

<t(— 1 ) =  — 1  and ff{o ))= —(o.

This information, together with (8.13), easily proves the following:

Theorem 8.3. The homomorphism 0 8/ I 8 -*• Aut(iJf) s  S 3 is surjective. In 
particular, since 0 8/ I 8 is a finite group (cf. Helgason [1]) there exists an 
element in 0 8/ I 8 o f  order three.

Those readers similar with the classification of Lie groups know that 
this map O s/I 8  -*■ S3 is reflected in the representation of 0 8 / / 8  as the 
group of symmetries of the Dynkin diagram of Spin8. This representation 
is faithful, and so 0 8 / / 8  £  S 3.

§8. APPLICATIONS TO LIE GROUPS 55

It can be shown that in fact there exists a non-trivial element A e 0 8 
such that

A 3 =  Id.

This element is called the triality automorphism. Continuing with calcula­
tions as above, this automorphism can be constructed explicitly.

It has most likely occurred to the reader that the methods of Theorem 
8.1 can be applied more generally to the groups Spinr J for any r and s. 
Indeed, this does produce further exceptional isomorphisms between 
low-dimensional Lie groups. We recall the following classical groups.

SL„(R)= {g e  HomR(R",R"): detR(g) =  1}

SL„(C) =  {g € Homc(C",C"): detc(g) =  1}

SL„(H) =  {g e Hom M(IHl",H"): detc(3) =  1}

For the last definition we have fixed a presentation H" =  (C2n,J) where 
J : C 2" -» C2" is C-antilinear and J 2 =  —Id. We observe that the complex 
determinant is in fact real-valued on HomH(H",Hn) =  {g e  Homc(C 2 ",C2”) : 
g o J  =  J  o g}. To see this, let c :C 2" -» C2" denote complex conjuga­
tion and set c(g) =  c ° g ° c. Then since c2 =  I and since g and J  com­
mute, we have detc(c(g) ° c °  J) = detc(c ° g ° J) = detc(c ° J  °g). Hence, 
detc(c(g)) =  detc(g) and since detc(c(gi)) =  detc(g), the determinant is real.

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



Now, each of the groups SLn(K) is connected, and elementary linear 
algebra shows that

dimR(SL„(R)) =  n2 — 1 

< dimK(SL„(C)) =  2(n2 -  1) (8.21)

dimK(SL„(H)) =  4n2 -  1.

Recall that for r,s > 0, the group Spinr s has two connected components. 
We let Spin®, denote the component containing the identity. It is obvious 
that there is an isomorphism

Spin,,, s  Spins,„

and an elementary calculation shows that

dim(Spinr s) =  ^ ( r  +  s)(r +  s -  1) (8.22)

for all r,s. A careful look at Table II (p. 29) now proves the following.
Let SL„(R) -> SL„(R) denote the (2-sheeted) universal covering group for
n Z  3.

Theorem 8.4. There exist the following isomorphisms between low-dimen­
sional Lie groups.

Spin®,! =  SL 2 (IR)

Spin®,! s  SL2 (C)

Spin®,! s  SL 2 (H)

Spin® , 2  s  SL 2 (R) x SL2 (R)

Spin ° , 3  =  SL4 (R)

Furthermore Spin4  4  has three inequivalent 8-dimensional real represen­
tations.

Proof. Recall from Theorem 3.7 that for r ^  1 we have

Spin,,, <= Cf®, ^  C€r_i,s.

Consequently, from Table II, we have the following embeddings: Spin2,i c  
G L 2 (IR), Spin3,i c  G L 2 (C), Spin5,i c: G L 2 (H) x G L 2 (H), Spin2  2  c  
G L 2 (IR) x G L 2 (IR) and Spin3 , 3  cr GL 4 (R) x GL 4 (R), where GL„(X) 
denotes the set of invertible elements in H om ^X",^"). We now observe 
that in each of these embeddings the identity component Spin®, is actually 
contained in the subgroup SLn(K) or in SL„(K) x SL„(K) for the latter 
cases. This is an immediate consequence of the following lemma.

56 I. CLIFFORD ALGEBRAS AND SPIN GROUPS
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§8. APPLICATIONS TO LIE GROUPS 57

Lemma 8.5. Let p:CCr_ l s -+ Homx(K,K) be any K-representation for 
K  =  IR or C. l f r  +  s ^  3, then

detK(p(0 )) =  ±  1

for all g e  Spin,,, c  C€,_ liS.

Proof. If r +  s et 3, then every element g e Spin,, can be written as a 
product g = g t • • • gm where Qj e Spin,,, satisfies

for all j. To see this, write g — v2 • • ■ v2m where Vj e  Rr+* and q(vj) =  +1. 
Write v2v2 =  :Fv1vvv2 where v e  Rr + 5  satisfies q(v) =  + 1  and where 
q(v,vt) = q(v,v2) =  0. Set g t = vtv and g2 =  +vv2. Then g \ =  vt vvtv =  
—vjv2 =  ±  1, and similarly, g2 = ±  1. Of course vtv2 — g lg2. Continuing 
in this manner proves our claim.

Since dimx(K) is even, we see that for g =  g2 • • • gm as above, we have

The first, second and fourth isomorphisms of Theorem 8.4 now follow 
from dimension considerations (cf. (8 .2 1 ) and (8 .2 2 )).

For the fifth isomorphism, consider the image of Spin ° 3  under the two 
projections SL4 (IR) x SL4 (R) SL4 (R). At least one of these must be 
non-trivial and, therefore, locally injective by the simplicity of the Lie 
algebra. Since dim(Spin3j3) =  dim(SL4 (R)) =  15, this projection is a cov­
ering map Spin3  3  -+ SL4 (tR). Since Spin3 > 3  is simply connected, it lifts 
to an isomorphism Spin3 i 3  A  SL4 (IR). The third isomorphism is proved 
similarly.

Looking more closely we can see that the two projections Spin3  3  =t 
SL4 (IR) are both non-trivial and inequivalent. To prove this we consider 
the volume element co = e2 • • • e6 where e\ = e\ =  e\ =  — e \  =  — e\ =  
—e\ =  — 1  (see Proposition 3.3). This element is central in Spin3 i 3  and 
satisfies to2  =  1. It clearly lies in Spin3  x Spin3  <= Spin3  3  and is therefore 
connected to the identity. The module K s R 8  for C £ 3 i 3  decomposes as 
V  s  V + 0  V~ where V ± =  (1 ±  m)V are invariant subspaces for Spin3>3. 
Since © =  + Id  on V ±, we see that the representations are inequivalent. 
They are each non-trivial, since otherwise we would have the identity 
co =  1 (or to = — 1) in Spin3  3, which is clearly false.

To prove the final statement we again consider the volume element 
a) = ex • • • es in Spin4i4. As above we see that © is central in Spin4 > 4  and 
is connected to the identity. Since © 2  =  1, the module W  ^  R 1 6  for C f 4 i 4

07 =  ±  1 (8.23)

[detK(pg) ] 2  =  PI detK(p0 j) j  =  FI t e lK(pgj)

-  I I  detK(± Id ) =  1 . ■
t
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decomposes as W  — W + © W~ where W ± =  (1 ±  co)W are each invari­
ant under Spin4>4. Let A 1  denote these two 8 -dimensional representations, 
and consider the central subgroup

se = {i,-i,G),-G>} s z2 © z2

in Spin4>4. Then A+, A" and Ad have precisely the values given in the 
table (8.10) derived above for the case of Spin8. It follows that these three
8 -dimensional representations of Spin4 f 4  are distinct. ■

The above arguments actually prove slightly more. Let

SL*(K) = {g e  HornK(K \K n) : detK(g) =  ±  1}

where K! =  K  if K  =  R or C and K ' =  C if K  = H. There is a short exact 
sequence

1 ------ SLn(K )  ► SL*(K) Z 2  ► 0.

From the proof of Theorem 8.4 we can actually conclude that

Spin2jl =  SLf(IR)

Spin3 > 1  =  SLf(C)

Spin5 > 1  s  SLf(O-fl)

Note. For further results of the type given in Theorem 8.4, the reader is 
referred to the beautiful book of Reese Harvey [1].

58 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

§9. K-Theory and the Atiyah-Bott-Shapiro Construction

In this section we shall present the essentials of K-theory in a fashion 
which will be useful later in our discussion of the Atiyah-Singer Index 
Theorem (Chap. III). Following these basics we shall present the con­
struction of Atiyah, Bott and Shapiro which relates the Grothendieck 
groups of real Clifford modules to the KO -theory of spheres and that of 
complex Clifford modules to the K-theory of spheres. Their fundamental 
isomorphisms explicitly identify Bott periodicity with the periodicity 
phenomena in the theory of Clifford algebras. For an elaboration of the 
details presented here, the reader is referred to Atiyah-Bott-Shapiro [1] 
and Karoubi [2].

Throughout this section all spaces will be assumed to be compact. If 
X  is any such space, we denote by V(X) the set of all isomorphism classes 
of complex vector bundles over X . The set V(X) is an abelian semigroup 
if we define addition by direct sum. We let F{X) be the free abelian group 
generated by the elements of V{X) and let E(X) be the subgroup of F(X)
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§9. K-THEORY AND THE ABS CONSTRUCTION 59

generated by elements of the form [K ] +  \W~\ — ([K ] © [H^]) where +  
denotes addition in F(X) and © denotes addition in V(X).

Definition 9.1. The If-group of X  is defined to be the quotient

K (X) =  F(X)/E(X).

Note that K (X) is an abelian group. The elements of K(X) are called 
virtual bundles.

If V and W  are bundles over X  and Y  respectively then V  ® W  is a 
bundle over X  x 7. When X  =  y th e  diagonal map A :X  -* X  x X  can 
be used to define an interior tensor product in K (X) by

[«] • [i>] s  A*[u ®  o]. (9.1)

This gives us

Proposition 9.2. The group K(X) has a ring structure with multiplication 
given by (9.1).

Let a:V (X ) -* K(X) be the composition V(X) <̂> F(X) -+ F(X)/E(X).

Proposition 9.3. I fG  is any abelian group and f : V(X) -* G any semi-group 
homomorphism, then there is a unique homomorphism f :  K (X) -* G such 
that fa  = f .

Proposition 9.4. K(X) is the universal group with respect to maps o f  the 
type described in Proposition 9.3

Suppose that / :  X  -* Y  is a continuous map and consider the map 
f* :V (Y )  -> V(X) given by the induced bundle construction. Since this 
is a semi-group homomorphism, it descends to a homomorphism / * :  
K (Y) -> K(X). One easily checks that K  thereby becomes a contravariant 
functor from the category of compact spaces to the category of abelian 
groups.

Suppose now that S is any abelian semi-group with unit and let 
A : S -* S x S be the diagonal map. This is a semi-group homomorphism. 
If we let JT(S) be the set of cosets of A(S) in S x S, then JT(S) is a quotient 
semi-group. Since the interchange of factors in S x S  induces an inverse 
in «9T(S), JY(S) is actually a group.

Definition 9.5. JT(X) is defined to be $f(V(X)).

Proposition 9.6. JT(A") is isomorphic to K(X).

Proof. For an abelian semi-group S with 0 we define ps :S  -* JfT(S) to 
be s !-*• (s,0) followed by the natural projection S x  S JT(S). If g : S -+ T
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60 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

is a semi-group homomorphism, then there is induced a map X"(g) : JT(S)-* 
JT(T) s o  that Crif{g) ° f!s = /?r  ° g. Now let S be V(X) and T be any abe­
lian group. Then PT is an isomorphism. This shows that rfT(X) is uni­
versal with respect to semi-group homomorphisms from V(X) to abelian 
groups. ■

Corollary 9.7. Every element o f K(X) can be represented in the form \_V ]  — 
[ W ] where [K ],[IT ] e V(X).

Lemma 9.8. Let %: V -* X  be a vector bundle over a compact Hausdorff 
space X . Then for some N  there is a continuous map f : V ~ *  C N which 
is injective and linear on each fibre.

Proof. Cover X  with a finite number of open sets U u . . .  ,Ur over which 
there exist trivializations a.y.n~'L{Uj) U jX  C* and set aj =  pr} ° ctj where 
pry. Uj x C* -*• C* is projection. Let {i/^}j= 1  be a partition of unity sub­
ordinate to {Uj}j=1.T h e n f  s  ©  • • • ©  (^rar): V -*■ C* © • • • © C* 
is the desired map. ■

Corollary 9.9. To each bundle V over X  there exists a “complementary” 
bundle V1 such that V  ©  V x is trivial. Hence, each element o f K (X ) can 
be represented in the form  [F ]  — [ t w], where t n is the trivial bundle over 
X  o f dimension N.

Proof. Let / :  V -* CN be the map in Lemma 9.8 and define V1 = 
L Ix e x f(K )1- Clearly V  ©  V1 s  X  x CN. Hence, [K ] =  [ tn] -  [K 1] in 
K(X) and an arbitrary element [IT ] — [T ]  in K(X) can be rewritten as 
[IT ©  K1] -  [ t n]. ■

Definition 9.10. We define the real K-ring for X , KO(X), just as we 
defined K(X) by replacing V(X) by TR(X), the set of isomorphism classes 
of real vector bundles. The same construction and considerations apply. 
Analogues of the following definitions can also be made for KO-theory. 
We will assume them without specifically stating them.

We would now like to use the X-groups to define a generalized coho­
mology theory. For this reason we now consider X  to be a space with a 
distinguished basepoint, p t e X.

Definition 9.11. The reduced X-ring, K(X), is defined to be the kernel 
of the natural projection iC(AT) ->• K(pt) = Z, so that K(X) is an ideal of 
K(X).

In fact the exact sequence

0 -----► K (X )----- ► K (X ) -----► K( p t ) ----->■ 0 (9.2)

splits in an obvious fashion.
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Definition 9.12. Suppose Y  is a non-empty closed subset of X . Then 
we define the relative K-groups as follows:

K (X ,Y ) = K (X /Y )

where X /Y is  taken to have Y  as its basepoint.

If Y is empty, X /Y  is defined to be the space

X + =  X  u  {pt} (9.3)

where pt is a disjoint point which will play the role of basepoint.

Observation 9.13. On a non-basepointed space X  we have the identi­
fication

K (X ) »  K (X +) = K(X, 0 ) .

Definition 9.14. We define the wedge X  v  Y  and the smash product 
X  a  y  of two spaces X ,Y  with basepoints ptx and p tr by

X  v  y  s  (X  x pty) u  (ptx x Y ) c X x Y

X  a  y  =  X  x Y / X v  Y.

We also define the (reduced) suspension £(X) of X  by

£(*•) 3  S 1 a  X.

Iterating this i times gives us the i-fold suspension E'(X). For all i there is 
a homeomorphism X‘(X) «  S' a  X .

Definition 9.15. When X  is a compact basepointed space, or when 
(X ,y) is a compact pair, we define

k ~ \ X )  =  K(X'(X))

K - ' ^ y )  3  k ~ {(x /Y )  s  k & ix /Y ) ) .

For spaces X  which are not necessarily basepointed we define, in the spirit 
of 9.13,

K - \ X )  3  K ~ ‘(X, 0 )  3  K 0 ( X +)).

Since the functor K  is representable (see Chap. Ill, Theorem 8 .6 ) there 
is an exact sequence for basepointed pairs (X ,y)

K (X ,Y )  ► K (X )  *• K{Y)

which we may now extend to a Barratt-Puppe sequence (Barratt [1]):

 *• K - ' _ 1 (y) ^ - ' ( X .y ) ------► X " '(X )------► (9.4)
k ~ l(Y)  — ► • • • — ► k ° ( x )  — » k°(Y) .

We write K ” * for the graded functor K ~ \ i > 0 .
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62 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

R em ark  9.16. If Y  is a retract of X , then for all i

0 -----► K - ‘( Z ,y ) -----► £ - ' ( * ) ----- ► K ~ ‘(Y )  ► 0

is a split short exact sequence and K ~ ‘(X ) s  K ~ ‘(X ,Y ) © K ~ ‘(Y). This 
follows from the Barratt-Puppe sequence (9.4).

Now if X  and Y  are spaces with basepoints then

k ~\x  x y) s  k ~‘(x  A y ) ©  k - \ x ) © *r '(y )

since X  is a retract of X  x  Y  and Y  is a retract of X  x Y /X .
We would like now to use the ring structure on K(X) to enable us to 

define a ring structure on K~*(X).

Proposition 9.17. Given X  and Y  and i,j >  0 there is a pairing K  ~ ‘(X) ®  
K ~ J(Y) -> K ~ ‘~j(X  a  y) which is given by tensor product.

Proof. For a bundle E  on S' a  X  and a bundle F  on S' a  7  we have 
the tensor product bundle E  ® F  on (S' a  X ) x  (Sj a  y). This induces a 
pairing

K(s‘ a x ) ®  k ( s j a  y) — ► K((s‘ a x ) x  (sJ a  y)).

But K({S‘ a X J a  {Sj a Y)) is the kernel of K{(S‘ a X ) x  (SJ a  y)) 
K(Sl a X ) © K(Si a  y). So we have a pairing K(Si a X ) ®  K(SJ a Y) -*■ 
K((Sl a  X) a  (Sj a  Y)) =  K{{Si+J) a X  a Y) as desired. ■

Replacing X  by X + and Y  by Y + in Proposition 9.17 gives us a pairing 
K ~ \X )  ® K ~ J(Y) K - ‘- \ X  x y). We easily conclude the following.

Corollary 9.18. The pairing o f Proposition 9.17 makes FC~*(pt) a graded 
ring. Furthermore, for any basepointed space (X,pt), this pairing makes 
K~*(X) a graded module over FC- *(pt).

Thus far everything we have said for FC-theory holds equally true for 
K 0 - theory. We will now describe periodicity and at this point the descrip­
tions must diverge. We will discuss the basic complex case first and then 
proceed to the real case. We will simply state the results. A proof based 
on the theory of Fredholm operators is given in §10 of Chapter III. For 
alternative proofs the reader is referred to Bott [1], [4].

Bott Periodicity Theorem 9.19 (the complex case). The ring K  ~ *(pt) is a 
polynomial algebra generated by an element £ e FC ~ 2 (pt) =  K (S2), i.e., there 
is a ring isomorphism

K -* ( p t ) s Z [G .  (9.5)
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§9. K-THEORY AND THE ABS CONSTRUCTION 63

Note. The element S, is in fact represented by the virtual bundle £, = [H ] — 
t 1  6  K(S2) where H  denotes the “tautologically defined” complex line bun­
dle over S 2 =  P*(C) and r 1  denotes the trivial line bundle.

The isomorphism (9.5) says in particular that the map / ^ :K - ,(pt) -> 
K ~ ' ~ 2 (pt) induced by multiplication by £, is an isomorphism for all i. In 
this form, the theorem extends to arbitrary compact Hausdorff spaces. 
Recall from 9.18 that for any pointed space (X,pt) the ring K~*(X) is a 
module over K"*(pt).

General Bott Periodicity Theorem 9.20 (the complex case). Let X  be any
compact Hausdorff space. Then the map

^ : K - \ X ) ^ K ^ 2(X) 

given by module multiplication by is an isomorphism for all i ^  0 .

Note. Replacing X  by X /Y , we get corresponding isomorphisms

p f K - \ X , Y )  > K -‘- 2(X ,Y)

for any pair (X, 7 ) of compact Hausdorff spaces.

The situation in KO-theory is slightly more complicated.

Bott Periodicity Theorem 9.21 (the real case). The ring KO~*(pt) is gene­
rated by elements

rj e  K O ~ ‘(pt), y e K O ~ 4 (pt). x e K O ~ 8 (pt)

subject only to the relations

2t] =  0, t]3 = 0, gy — 0, y 2 =  Ax

i.e., there is a ring isomorphism

KO ~ *(pt) s  Z[f/,y,x]/<2g, rj3, gy, y 2 -  Ax') (9.6)

As before we have that for any space X ,K O ~ *(K) is a K O ~*(pt)-module.

Theorem 9.22. Let X  be a compact Hausdorff space. Then the map

px :K O -‘( X )  ► K O -i-8pO

given by module multiplication by x e  KO ~8(pt), is an isomorphism for all 
i ^  0 .

As before there are also isomorphisms K O ~ \X ,Y )  • ^ K O - i - 8 (K ,y) 
for any pair (K ,7 ) of compact Hausdorff spaces.
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64 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

The best explicit representatives for the elements tj, x  and y  in /C0 ~*(pt) 
are given via the Atiyah-Bott-Shapiro isomorphism. To present this iso­
morphism, and also to adapt K-theory easily to the theory of elliptic 
operators, we present now an alternative definition of the groups K (X ,Y ) 
and KO(X,Y). The discussion is completely parallel in the real and com­
plex cases. We shall just use the generic term “vector bundle.”

We begin with the following definition. We assume throughout that 7  
is a closed subspace of X.

Definition 9.23. For each integer n ^  1, consider the set £P„(X,Y) of
elements V =  (V0, Vu . . .  ,Vn; c 1 <j„) where V0, . . .  ,V„ are vector bundles
on X  and where

0 ---------------------------------------^ + 4 , - ^ 0

is an exact sequence of bundle maps for the restriction of these bundles to 
Y. Two such elements V =  (V0, . . .  ,Vn;o u . . .  ,a„) and V' =  (V'0, . . .  ,V'„; 
a'u . . .  are said to be isomorphic if there are bundle isomorphisms 
q>i: VK -► VI over X  so that the diagram

V t - i l y  — ^  Vl Y

<Pi -  1 <Pi

commutes for each i.
An element V =  (V0, . . .  ,Vn; <r„. . .  ,a„) is said to be elementary if there 

is an i such that

(a) K =  Vi-i and at =  Id
(b) Vj =  {0 } for j  #  i or i — 1 .

There is an operation of direct sum ©  defined on the set & n(X ,Y ) in 
the obvious way. Two elements V,V' e S fn(X ,Y ) are defined to be equiv­
alent if there exist elementary elements E l f . . .  ,E*»Fi». . .  ,F , e J?n(X ,Y )  
and an isomorphism

V ©  Ej ©  • • • ©  E* s  V' © F j ©  • • • ©  F ,.

The equivalence class of an element (F0, . . .  ,V„;ou . . .  ,a„) will be denoted
by [J/0>. . .  , V n; .........<rn]. The set of all equivalence classes in &„(X,Y)
will be denoted by Ln{X,Y).

The set L n(X ,Y ) is an abelian group under the operation ©.
O ur first main proposition is the following, whose proof is left to the

reader. Consider the natural map Z£n{X,Y) -* £?n+l{X ,Y) which asso­
ciates to each element (K0> • • • ■ ■ ■ ,<rn) the trivially extended element
(V0, • * • f V n i Of f J i ,  . . .
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§9. K-THEORY AND THE ABS CONSTRUCTION 65

Proposition 9.24. For each n ^  1, the induced map L n(X ,Y) -* L n+l(X ,Y) 
is an isomorphism.

We set L(X ,Y) =  lug L n(X,Y). Each inclusion L n(X ,Y ) -► L (X ,Y )  is an 
isomorphism, and it would have sufficed for many purposes to consider 
only the case n =  1 .

Our second main proposition is the following.

Proposition 9.25. There exists a unique equivalence o f functors % ■ L(.X,Y) —> 
K (X ,Y ) with the property that

XilVo, ■ ■ ■ X T ) = i ( -  1 )* M  When 7  =  0 .  (9.7)
k — 0

Proof. This equivalence will be essentially determined by defining it on 
L^X ^Y). Given an element V =  \y 09Vx\a \  e L ^ X .Y )  we associate to it an 
element x(V) e K (X ,Y) by the following “difference bundle construction”. 
Set X k =  X  x {k} for fc =  0,1 and consider the space Z  =  X 0 u y X t ob­
tained from the disjoint union X 0 U X i by identifying y x {0} with 
y  x {1} for all y e Y. The natural sequence

0 -----► K (Z ,X t) K{Z) K i X J  ► 0

is split exact since there is an obvious retraction

p : Z — * X v  

Furthermore, there is an isomorphism

<p:X(Z,Z1) —  K (X ,Y )

induced by the map of pairs {X,Y) -> ( Z , X which identifies X  with X 0.
From our element V =  \ y 0,V{,a\ we define a vector bundle W  over Z  

(well defined up to isomorphism) by setting W|Xk =  Vk and identifying 
over Y  via the isomorphism a. Setting Wt = p*(Vi) we have [W~\ — 
[IF,] e ker(i*). Hence, there is a unique element x(V) e K (X ,Y ) with 
/*<»_ 1 y(V) =  \W~\ — [ W, \  This defines the homomorphism y :L 1(X ,Y) 
K(X,Y). It clearly has property (9.7).

It is now straightforward to verify that any homomorphism L ^ X .Y )  -* 
K (X ,Y ) with property (9.7) is an isomorphism, and furthermore, any two 
such homomorphisms agree. The reader is referred to Atiyah-Bott-Shapiro 
[ 1 ] for details. ■

As a result of this proposition we shall henceforth drop the notation 
L(X,Y)- We will however discuss elements [F0 ,F,;(t] e K (X ,Y ) whose 
meaning is now obvious.

For our later discussion of elliptic operators it will be useful to note 
that the multiplication in K(X ,7) can be realized explicitly in i ? 1 (Ar,y )
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66 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

as follows. Choose V =  (V09Vi9a)9 W =  (W0,Wi ; t)  e & x(X fY) and for con­
venience introduce metrics in each of the bundles. We then define the 
tensor product U  =  V ® W e  £Px(X 9Y) to be the element U  =  (U0,U X;p) 
where

l/ 0  =  (^o ® W0) ® (Vx ® Wx) U x =  (Vx ® W0) ®  (V0 ® Wx)

and
  f(J®\ ® T*\

^  \ 1 ® t  a* ®  1 J

Under the construction above, this tensor product on & x(X ,Y ) carries 
over to the standard product on K (X ,Y ).

This is a convenient time to introduce X-theory for locally compact 
spaces. X-theory in this setting will be im portant for certain geometric 
constructions we shall make in Chapter III.

Definition 9.26. For any locally compact space X  we define

K J (X )  =  K (X +)

where X + =  X  u  {pt} denotes the one point compactification of X . The 
higher groups are defined by setting

K - ‘P 0  =  K cpi(X  x R‘)
for i ^  0 .

The groups K~P\(X) are functors on the category of locally compact 
spaces and proper maps. Collectively they comprise the K-theory of X  with 
compact supports. They enjoy the multiplicativity properties that we pre­
sented above in the compact case. Note incidentally that if X  is compact, 
then K-*(X) =  K ~ ‘(X).

Any element in K cpl(X) can be represented as the formal difference of 
two bundles E  and F  on X , each of which is trivialized at infinity (i.e., 
trivialized outside some compact set in X). In fact, if (S <= X  is an open 
subset of the locally compact space X , then there is a natural extension 
homomorphism K cpi((9) -> K cpl(X) induced by the map X + ->■ X +/  
( X + — &) =  <P+. Taking products with IR* gives extension homomorphisms

— ► k ;p[(X)

for all i 2 : 0. Of course for any closed subset f c l w e  have the functorial 
restriction homomorphism

K;Jt(X) —  K £ ( n

The kernel of this map is defined to be the relative group K~jt(X,Y). For 
any pair (X ,Y) where X  is a locally compact space and Y  is a closed sub­
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§9. K-THEORY AND THE ABS CONSTRUCTION 67

space, there is a long exact sequence for the K c~pj-groups, analogous to
(9.4) above. We leave as an exercise for the reader the verification of the 
following isomorphism:

s  K cpi((X  -  Y) x

There exist definitions of “L-type” for the groups K cpi(X). In analogy 
with the above we can define L n(X)cpt to be the equivalence classes 
{V09. . .  ,Vn;o u . . .  ,crn] where K0, . . .  ,V„ are vecctor bundles on X 9 and 
where 0 -► V0 ^  Vx ^  ^  V„ -+ 0 is an exact sequence of bundle maps
defined on the complement of some compact subset in X . As above there 
are natural isomorphisms L t(X)epi L 2(X)cpi A  . . .  K cpt(X). Thus, in 
particular, any element o f K cpt(X) can be represented by a triple [K0, Vx;a~\ 
where a : V0 Vi is a bundle isomorphism defined in a neighborhood o f 
infinity.

All of the discussion above applies equally well to real bundles and 
yields groups KO~Jt(X) for any locally compact space X.

The Bott Periodicity theorems carry over to locally compact spaces in 
the following elegant form:

K cpt( X ) * K cpt( X x  €)
(7 .0)

KOcpt(X ) s  KOcpt(X  x  R8).

These isomorphisms are induced by multiplication by fundamental ele­
ments ^ e K cpt(C) and x  e KOcpt(R8) respectively. In the last part of this 
chapter we shall produce explicit representatives for these elements using 
Clifford modules.

We are now in a position to discuss the isomorphism of Atiyah, Bott 
and Shapiro. Let W  =  W° © W 1 be a Z2-graded module over the Clifford 
algebra C tn =  C£(RW). Let Dn =  {x e R": ||x|| <  1} be the unit disk and set 
Sn~x = dDn. We now associate to the graded module W , the element

<p(W) =  [£ 0 ,£ , ;n] e K(D",S»- ^  (9.9)

where Ek = D” x Wk is the trivial product bundle, and where fi:E 0 E l 
is the isomorphism over Sn~ l given by Clifford multiplication:

/i(x,w) =  (x, x • w).

One easily checks that the element <p{W) depends only on the isomor­
phism class of the graded module W  and, furthermore, that the map 
W  q>(W) is an additive homomorphism. Hence, (9.9) gives us a homo­
morphism

<p:  ► K(Dn,Sn _1) (9.10)

where is the Grothendieck group of complex graded C€„-modules 
defined in §5.
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68 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

Consider for a moment the natural inclusion i :R" R" + 1  given by 
setting i(xl9. . .  9x„) =  (xl5. . .  ,xw,0). This induces an algebra homomor­
phism i* : C tn C ln+l. Restricting the action from C l„+x to C in thereby 
induces a homomorphism i*:50l£+1 -► 501 

Suppose now that W  is a graded C£„-module which can be obtained 
from a C tn+1-module in the above fashion. This means that the Clifford 
multiplication of R" on W  extends to all of R"+1. Hence we may extend 
the isomorphism ju, defined on S" ~ 1  =  dDn9 to all of Dn by setting

where en+1 e R" + 1  is a unit vector orthogonal to R". Since this extended 
map is an isomorphism over all of D", the associated element cp(W) must 
be zero. It now follows that the homomorphism (9.10) descends to a homo­
morphism

where i* : 501̂ +1 501̂  is the restriction map defined above.
Exactly the same construction applied to the real case, gives us a homo­

morphism

The isomorphisms (5.29), defined by taking the even part, determine 
isomorphisms

Set Qn =  and Qn =  $Rn/i*©l,,+ 1. The periodicity pheno­
mena (4.11), (4.13) and (5.9) determine periodicity isomorphisms

As an example consider Q2 =  9M1 /i*®l2  considered as the quotient of the 
groups of ungraded modules. Since Cf^ =  C, the C ix-modules are just 
complex vector spaces, and the isomorphism SO?! A  Z is generated by 
taking the complex dimension. Similarly, since C l2 =  H, the C£2-modules 
are quaternionic vector spaces and 9J? 2  A  Z is generated by taking the 
quaternionic dimension. The map i* :S0t2-+ 95? x is generated by consider­
ing a quaternionic vector space to be a complex vector space under 
restriction of scalars. Clearly this is just the map Z -► Z given by mul­

=  (x, (x + yjl -  ||x ||2 CII + 1) • w)

(9.11)

(9.12)

SRf/i* ® ? * 1  s  8 Wf_ 1 /i*9Wf and $ ln/i* m n+, s  80L_ ./i*9Kn

Q»+2 = Qn and Qn+8 s  Q„. 

Elementary algebraic arguments show that

^  . . .  [Z if n s  0 or 4 (mod 8 )
Z if n is even ^  I .„ .

e f s {o if „ is odd e - S  t  i f « s  1 or 2
1 0  otherwise.
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§9. K-THEORY AND THE ABS CONSTRUCTION 69

tiplication by 2 , since the complex dimension is twice the quaternionic 
dimension. Thus we have Q2 =  Z2.

The reader may find the verification of these isomorphisms in general 
to be an interesting exercise. Full details are contained in Atiyah-Bott- 
Shapiro [1].

We recall now from Proposition 5.21 that the graded tensor product 
of modules gives a multiplication 501® ® 50J® -» 501®+m for all m,n. This 
makes (501®//*50l$+1) = ® ^ 0 (^/i*501®+1) into a graded ring.

On the other hand, by definition we know that

K(iy,,SH- 1) = K{S") = K~"(pt)

and therefore the direct sum l) =  K~*(pt) is also naturally
a graded ring (cf. Corollary 9.18). (The analogous comments apply in the 
real case.) One of the main results of Atiyah-Bott-Shapiro [1] is the 
following.

Theorem 9.27 (the Atiyah-Bott-Shapiro Isomorphisms). The maps (9.11) 
and (9.12) defined above induce graded ring isomorphisms:

<?V:(50t®/i*50l®+J K~*(pt)

n : (W J i* m , + l) - ^ K O - * (  pt).

Since the periodicity of the quotients + i is an elementary al­
gebraic fact, this theorem appears to give a new algebraic proof of the 
Bott Periodicity theorems. However, the argument given in Atiyah-Bott- 
Shapiro [1] to establish the isomorphisms of 9.27 actually invokes the 
Bott result. Nevertheless the existence of these isomorphisms is a profound 
and important fact. It goes a long way towards explaining the fundamental 
role played by Clifford algebras in the index theory for elliptic operators.

Remark 9.28. Theorem 9.27 gives us explicit generators for K"*(pt) 
and K 0"*(pt) defined via representations of Clifford algebras. For ex­
ample, let Sc =  S£  © S£ be the fundamental Z2-graded representation 
space for C l2n where S£ =  ( 1  ±  <oc)Sc . (The sign of the complex volume 
element coc depends on a choice of orientation in IR2”.) There is an iso­
morphism =  Z © Z with distinguished generators given by Sc and 
its “flip” §c, the same graded module with the factors interchanged. (This 
corresponds to a reversal of orientation in IR2”.) The generator of i*50t2«+i 
is [Sc] +  [Sc]. Hence, the group K ~ 2n(pt) s  Kcpt(R2”) =  Z is generated 
by the element

a€ ,n =  [ S c > ^ c i / ^ ]

where jtfx:Sc -> S£ denotes Clifford multiplication by x  e R2”.
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The real case is entirely analogous. Let S  =  S + © S" be the fundamen­
tal graded module for C£4„ where S* =  (1 +  a>)S. Then

a4n =  [ S  +  ,S

is a generator of the group X 0 _ 4 "(pt) s  K 0 cp,(IR4") s  Z.
Using the structure of Clifford modules we can easily compute that

°c,n =  (ffc.i)"» °8n = K )"  and 4 o H =  (<r4)2.

§10. O -T h eo ry  and the (l,l)-Periodicity Theorem

In this section we present a theory which, in a sense, contains both K - 
theory and XO-theory. It was invented by Atiyah in the middle 1960s 
and was motivated in part by the study of indices for families of real 
operators. (There is a detailed discussion of this at the beginning of §16 
in Chapter III.)

The higher groups in this theory carry a natural double-indexing K R r,s, 
r  ^  0, s ^ O .  Interestingly, there is an isomorphism of the Atiyah-Bott- 
Shapiro type given in §9, which relates K r,s(pt) with real modules over the 
Clifford algebra C£rs. In this sense, ICR-theory is the analogue of K- 
theory and KO-theory suggested by passing from C i„ and C£„ to C£r s. 
Basic references for this material are Atiyah [2] and Karoubi [2].

We consider here the category of Real spaces, i.e., spaces with involu­
tion. This is the category of pairs (X,cx) where X  is compact and cx : 
X  -» X  is a map with c \  =  ldx. The map cx  may itself be the identity. 
Natural examples of such spaces are provided by complexifications of real 
algebraic varieties where c is given by complex conjugation. Such an 
example is (P"(C),c) where in homogeneous coordinates c([z]) =  [z]. The 
fixed point set here is P"(IR) c  P"(C).

Definition 10.1. By a Real vector bundle over a Real space (X,cx) we 
mean a pair (V,cv) where n : V  -> X  is a complex vector bundle over X  
and where cv : V -* V  is an involution such that the diagram

V  - — ■> V

n  it

x x
commutes and cv is C-antilinear on the fibres of V. We denote by VR(X,cx) 
the abelian semigroup of isomorphism classes of Real bundles over (X,cx). 
Proceeding as in §9 we then define the associated Grothendieck group 
K R(X ,cx). It is called the Real-R-group of X . We shall generally drop the 
explicit mention of the involution cx and simply write KR(X).

70 I. CLIFFORD ALGEBRAS AND SPIN GROUPS
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R em ark  10.2. Note that if cx =  Id* then we have a natural identifica­
tion KO(X) s  KR(X). This identification associates to any real bundle KH 
on X , the pair {Vu ®  C, c) where c denotes complex conjugation in the 
fibres. Vm is recovered as the fixed-point set of c.

The groups K R(X) =  ker(KR(X) -  KR(pt)) and K R{X ,Y) = K R {X /Y)  
are defined exactly as in §9 and give functors on the obvious categories 
ofjspaces. The higher groups: K R ~ ‘(X) = K R ^ X )  and K R ~ l( X J )  = 
KR(Y.'(X/Y)), are also defined as in §9. We have the exact sequence for 
compact pairs (X,F):

. . . --- *• K R ~ ‘{X ,Y ) ----- ► K R ~ ‘{ X )----- ► K R - ‘(Y) (10.1)
 > K R ~i+1{ X ,Y ) -----► . . .

An interesting facet of RR-theory is that it carries naturally a doubly- 
indexed family of higher groups. Let Rr,s =  Rr ®  Rs =  “Rr ®  i'RJ” be 
the Real linear space with involution c(x,y) =  (x,—y). A basic case is 
r i . i  ~  < 0  with complex conjugation. Consider now the compact Real 
subspaces

IX'S =  {(x,y) e Rr’5: ||x | | 2  +  ||y | | 2  ^  1}

Sr,s =  {(x,y) 6  Rr,s: ||x | | 2  +  ||y | | 2  =  1},

and for any compact Real pair (X,T) define

K r's(X ,Y ) =- K R (X  x Dr s, X  x ST* u  Y  x Dr s). (10.2)

(The order of (r,s) here is the opposite of that in Atiyah [2].) Note that
it is immediate from the definitions that

K R ‘'° = K R ~ ‘ for all i ^  0. (10.3)

The sequence (10.1) generalizes to give exact sequences

. . . ---► K R r s(X ,Y ) ------► K R r's( X ) ----- »• K R r'\Y )
 ► K R r~1,s(X ,Y )  ►... (10.4)

for all s ^  0. To prove this one establishes the exact sequence for compact 
triples in KR-theory above, and then applies it to the triple (X x D0,J, X  x 
S0'5 u  Y  x D° \  X  x S0’5).

One of the basic facts about K R *’* is that the exterior tensor product 
induces a bigraded multiplication

K R r,s(X ,Y ) ® K R r '‘ (X ',Y ')-----► K R r+r'>s+s'(X",Y") (10.5)

where X "  =  X  x X ' and Y" =  X  x Y' u  X '  x Y. In particular, as in §9,
the “coefficients” KR*'*{pt) are a bigraded ring, and for any compact
space X , KR*'*(X) is a graded RR*'*(pt)-module.
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72 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

^C o n sid er for a moment the group K /U ’̂ pt) =  =
RRfP^C)). One can show that this group is isomorphic to Z with genera­
tor £, =  [ff] — t i  where H  -*■ P ^C ) is the tautological (or “H opf”) com­
plex line bundle over P ^C ) with its natural Real structure. (The fibre H ( 
for i  e  P ^C ) is the line i  itself.)

One of the fundamental results in this theory is the following (see Atiyah 
[2 ]):

The (l,l)-Periodicity Theorem 10.3. Let X  be any compact Hausdorff space. 
Then the map

P i: K R r'%X) K R r+ ‘'S+1 ( I )  (10.6)

given by module multiplication by is an isomorphism for all r ^  0 , s ^  0 .
Consequently, for any compact Real pair (X, 7 ) we have the isomorphism

P i :K R r'\X ,Y )  K R r+i's+1(X ,Y ) (10.7)

Corollary 10.4. There exist natural isomorphisms

K R r s s  K R s~r (10.8)

for all r  ^  s ^  0 generalizing (10.3).

Using (10.8) we can extend the definition of K R ~ l to all integers i. The 
exact sequence (1 0 . 1 ) then extends to infinity in both directions.

R em ark  10.5. There are many further internal symmetries in this the­
ory. Using the multiplication in the fields IR, C and H, Atiyah [2] shows that 
for any compact space X  there are isomorphisms

K R (X  x S°'p) s  K R ~ 2p(X  x S°’p) (10.9)

for p =  1, 2, and 4. (Recall that dim S0,p =  p — 1.) This isomorphism for 
p =  1 gives the complex Bott Periodicity Theorem. From the case p =  4 
one can deduce the real periodicity theorem.

R em ark  10.6. All of the discussion in §9 concerning the functors L n and 
their equivalence with K  carries over to the Real situation. Therefore, in 
particular, elements in K R (X ,Y )  can be represented by classes of the 
form [K0 ,Ki; <r] where VQ and Vx are Real bundles on X  and where 
o '- V0 -* Vj is a Real bundle isomorphism defined over Y.

R em ark  10.7. If X  is a locally compact space, then the groups K R epi(X) 
are defined exactly as in 9.26. This group is generated by Real bundles on 
X  which are trivialized at oo. Using the L-construction, it can also be 
generated by triples [P 0 >Piiff] where VQ and Vl are Real bundles on X  and 
where a : V0 -* Pi is a Real bundle isomorphism defined outside of some 
compact subset of X.
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§10. KR-THEORY AND (1,1J-PERIODICITY 73

In this context the higher KR-groups can be written in a particularly 
nice form:

Of course if X  is compact, then K R rcpt(X) s  K R r s(X). If we identify C =  
IR1 , 1  as before, then the (l,l)-Periodicity Theorem has the particularly nice 
form:

for any locally compact space X.

In light of the Remark 10.6 above it is natural to examine the Atiyah- 
Bott-Shapiro construction in this theory. To do this we define the Real 
Clifford algebra C£(Rr’3) to be the Clifford algebra generated by IR' ' 3  and 
the positive definite quadratic form q(x,y) = ||x | | 2  4 - ||y ||2, taken together 
with the algebra involution c : C l(Rr,s) -* C£(Rr’3) generated by the involu­
tion (x,y) (x,—y) of Rr,s.

Definition 10.8. By a Real module over the algebra C£(Rr,s) we mean 
a finite-dimensional complex representation space W  for C£r_s together 
with a C-antilinear involution c : W  -* W  so that

cO r *v) = c(<p) • c(w) for all <p e Cf(Rr>3) and all w e W .  (10.12)

If in addition W  =  W° ©  IP 1  is a Z2-graded module with the property 
that c(W l) =  W l for i =  0,1, then W  is called a Real Z2-graded module for 
C t(Rr’3).

We denote by WIR,,, and , the Grothendieck groups of equivalence
classes of Real modules (and Real Z2-graded respectively) for C£(Rr’3).

There is an im portant basic relationship between these Real algebras 
and the algebras C£rjJ defined in §3. To begin, consider the complexifi- 
cation C£(Rr'3) of C£(Rr'3) and note that the involution c has a unique 
extension to a C-antilinear involution on Cf(Rr,s). Any Real Ct(Rr,s)- 
module is naturally a C€(Rr,3)-module by extension, and the condition
(10.12) continues to hold. Considering these algebras and their modules 
is equivalent to considering those above.

Now the main claim is that Cf(Rr'3) is the appropriate complexification 
of C£r s. Under the ordinary complexification, all the algebras C£r , with 
the same value of r + s become isomorphic. However, if we also introduce 
the involution, this is not so.

Recall that C£r>s is the Clifford algebra generated by Rr ©  Rs with the 
quadratic form qrJpc,y) — ||x | | 2  — ||y||2. Let 9KriJ and s denote the G ro­
thendieck groups of R-modules (and Z2-graded R-modules respectively) 
for the Clifford algebra C£r>J.

KR'4t(X) s  K R epi(X  x Rr'3). (10.10)

K R cpt( X ) * K R cpl( X x C ) (10.11)
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74 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

Proposition 10.9. There is a natural equivalence

SRr,s SRRr,s (10.13)

for each (r,s) defined by assigning to a real C lrtS-module W, the complex 
module W  C with involution given by complex conjugation and with the 
C i(R r,symultiplication engendered by setting

(x,y) • w == xw  +  iyw for  (x,y) e IRr © Rs. (10.14)

Furthermore, under the natural inclusion i: Rr ® Rs Rr + 1  ®  Rs given 
by i{xu  . . .  9xr9y l9. . .  9ys) =  (x i9. . .  9x r909y l9. . .  9ys) the diagram

Wr+us W R r+us

i* i*

m r,s — z— * WRr,s

commutes. Hence, there are natural graded isomorphisms:

+ m R * J i* W R *  + lf*. (10.15)

y4// the analogous statements hold in the Z 2-graded case.

Proof. The multiplication given in (10.14) has the property: (x,y) • (x,y) * 
w =  —(l|x| | 2  +  ||y||2)w and therefore extends to C£(Rr,s). Furthermore, we 
see that c[(x,y) • w] =  (x -f iy)w =  (x — iy)w =  c(x9y) • c(w) where both ( ) 
and c denote complex conjugation. Hence, the map (10.13) is well defined. 
The inverse is given by taking the real module to be the fixed-point set 
of c and replacing multiplication by (x,y) e Rr © Rs with multiplication by 
x — iy. The remaining details are left as an exercise for the reader. ■

R em ark  10.10. As in previous cases the graded tensor product of mo­
dules makes and SSi*,* into graded rings. The multiplication is
preserved by the equivalence (10.13) in the graded case. In particular, the 
map

 > 8 ®..*/**®/?* + !.. (10.16)

is a ring isomorphism.

The advantage of the groups M r ,,s is that they are natural for extend­
ing the Atiyah-Bott-Shapiro construction given in §9. On the other hand, 
the groups ®lr>s and the quotients 50lriS/i*50lr+liS are particularly easy to 
compute by using the results of §§4 and 5.

Suppose that W  = W ° ©  W 1 is a Real Z 2-graded module for C£(IR'',S), 
and consider the associated element cp{W) e KRcpl(Rr's) s  KRr,s(pt) given 
by

cp(W) =  \_E0 , E i ;p ]
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§10. KR-THEORY AND (1, l)-PERIODICITY 75

where Ek =  Rr,s x W k for k =  0,1, are the trivial product bundles and 
where p :E 0 -*■ E k is defined by

p(z,w) =  (z, z • w)

for z =  (x,y) e  R,,s and for w e W°. Since z • z • w =  — ||z||2 w, the map p. 
is a bundle isomorphism outside the origin and so [£ 0 >^i! A1] *s an ele'  
ment of K R cpt(U',s) (cf. Remark 10.7). This gives a graded ring homomor­
phism

( p .W lR ^  ► KR*’*(pt). (10.17)

Arguing as in §9 one can show that q> = 0 on i*9MR!|t + 1„t and so <p des­
cends to the quotient. The arguments of Atiyah-Bott-Shapiro [1] then 
carry through to prove the following (see Atiyah [2]).

Theorem 10.11. The map defined above,

< p : m * J i* m R t+i>t  ► KR*-*( pt),

is a graded ring isomorphism.

Via the isomorphism (10.16) this relates the groups K R rs(pt) to the alge­
bras C€r s. In particular, the (l,l)-Periodicity Theorem is reflected in the
(l,l)-periodicity for these algebras (cf. (4.3) of Theorem 4.1). Furthermore, 
since K R S,0(pt) =  KR~%pt) =  KO~s(pt) and CC, 0  =  C€, we recapture 
here the real ABS-isomorphism of Theorem 9.27.

From (l,l)-periodicity we see that

KR°'°(pt) s  K R U1( pt) s  K R 22(pt) s - g Z .

For our later discussion of the Ct„-linear Atiyah-Singer operator (in III. 16) 
it will be useful to have certain explicit generators for these groups, which 
we shall now present. Recall that as a Real space R",B is just C" with 
involution given by complex conjugation, and therefore we can write 
K R tt'n(pt) s  K R Cp,(€"). We will give an explicit generator for KRcpt(C") 
by using the Clifford algebra C£„ =  C£(C") and its natural Z2-grading 
C€„ =  C£° © Cf*. For <p e <C£„, let Rv :Cl„ -* Ci„ and L v :Ci„ -*• C€„ 
denote right and left multiplication by <p respectively. For x + iy e  C", 
we consider the map

(Rx +  iLy) : Cf® »• CC* (10.18)

which, since (Rx +  iLy)(Rx — iLy) =  — (||x | | 2  +  ||y||2 )Id, is invertible when 
x  +  iy #  0. This map (10.18) is clearly a Real endomorphism, i.e., 
(Rx +  iLy)<p =  (Rx + i L . y)<p.

Proposition 10.12. The element

en = [Ce®,CC*; Rx + iLy] 6  K R cpi(C")

is a generator o f the group K R cpi(C") =  KR" "(pt) s  Z for all n ^  1.
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76 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

Proof. Because of the isomorphism of graded algebras €£„ =  
C€x <§) • • • <g) C£! (which follows from Proposition 3.2) it suffices to con­
sider the case n =  1. The element can be shown to coincide with the 
generator of the image of q> in Theorem 10.11 as follows. To begin note 
that since C l? =  C • 1, right and left multiplication coincide on C£°. 
Consequently, £j =  [C,C; ni] where m(x y): C -*• C is given by scalar multi­
plication: mixy)(w) =  (x +  iy)w.

On the other hand we have 9JIRM S  Z  ©  Z with generators given as 
follows. For (x,y) e  IR1,1, define a C-linear map €  ©  C -* C © C by the 
matrix

At (x,y), the square is — (||x | | 2  +  ||y||2 )Id. Hence, this action extends to 
make C © C (with involution given by complex conjugation) into a com­
plex Z2-graded C ffR 1, ̂ -module. This is the first generator. The second 
generator is obtained by interchanging factors. That these are indepen­
dent generators is easily verified by working through the natural iso­
morphisms

(cf. Proposition 10.9 and Theorem 3.7). These isomorphisms commute 
with i*, and working out the details for the simple case 90lOil/i*3)|l lil 
shows that either of oundistinguished generators becomes a generator of 
the quotient: ®U?ltl/i*9JlP2il =  K R ^ fp t). Clearly under the isomorphism 
(p of Theorem 10.11 our module above with multiplication 10.18 becomes 
the element [C,C; m] as claimed.

(10.19)

S0W M s  s  9W0,i
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Spin Geometry and the Dirac Operators

CHAPTER II

In this chapter one finds the soul of the book. It is here that we examine 
the structures and concepts that are central to differential geometry— 
manifolds, vector bundles, connections, curvature, etc. If one also intro­
duces metrics (in the sense of Riemann), then it is unavoidable that Clifford 
algebras and spin groups will enter the discussion. This is for the following 
reason.

There is a principle by which the natural operations on vector spaces 
such as direct sum, tensor product, exterior power, etc., carry over canoni­
cally to vector bundles. In the same fashion, the natural operations for 
vector spaces with quadratic forms carry over to vector bundles with 
metrics. In particular, suppose that n :E  -*■ X  is a riemannian vector 
bundle. Then in each fibre, Ex =  jt-1 (x ), the quadratic form ||u||2 =  (v ,v )  
can be used to construct a Clifford algebra C l(Ex). The result is a bundle 
Ct(E) X  of algebras over X  called the Clifford bundle of E. It carries 
all the natural properties of Clifford algebras such as the Z 2 -grading, the 
transpose endomorphism and the Iroperator. This rich structure is basic 
for the study of E  itself.

In the light of Chapter I it is natural to ask whether one can also find 
a vector bundle $(E) -> X  with the property that each fibre $(EX) is an 
irreducible module over Ci(Ex). The answer is in general no. We shall 
discuss the obstruction involved. By taking E = T X  this will lead to the 
notion of a spin manifold and spin cobordism. The bundle $(TX), when it 
exists, plays a central role in the study of the global geometry and to­
pology of X.

In general, given any bundle of modules S over C i(TX ), furnished with 
a suitable metric and connection, one can associate to S a self-adjoint, 
first-order elliptic operator D : r(S) -» T(S) called the Dirac operator for 
S. (This is done in §5.) From the algebraic operations of Chapter I one 
can often construct natural splittings S — S + © S~ with respect to which 
the Dirac operator has the form

where D + : T(S+) -*■ T(S ) and D : T(S ) -#• r(S+) are formal adjoints of 
one another. This gives a unified procedure for constructing all the “clas-

77
Brought to you by | Cornell University Library

Authenticated
Download Date | 7/1/17 9:39 PM



78 II. SPIN GEOMETRY AND DIRAC OPERATORS

sical” elliptic operators on a manifold, namely: the Euler characteristic 
operator, the signature operator, and the Atiyah-Singer operator. Details 
of this are given in §6 .

In §7 we introduce the notion of a C£*-linear operator and discuss in 
detail some of the basic examples. Over a compact manifold any C lk- 
linear Dirac operator D has an analytic index ind*(D) e K O ~k(pt) defined 
by applying the Atiyah-Bott-Shapiro isomorphism to the residue class of 
the Clifford module [ker D ] (see 1.9).

Roughly speaking, every Dirac operator represents the square root of 
a Laplace operator. In euclidean space this statement is unambiguously 
true. Over general manifolds, however, the difference D2 — V*V between 
the square of the Dirac operator and the standard “connection laplacian” 
is a certain universal expression involving curvature and Clifford multi­
plication. Deriving such formulas and using them to draw global con­
clusions about curvature and topology is referred to as “Bochner’s 
method.” We shall show how our universal formula specializes to give 
the classical Bochner formulas on exterior differential forms, as well as 
the Lichnerowicz formula for spinors. Using curvature identities derived 
in §5, we shall then give a succinct proof of the theorem of Gallot and 
Meyer concerning curvature and homology spheres. We shall also derive 
formulas for the Atiyah-Singer operator with coefficients in a bundle. 
This will be quite useful later in studying manifolds of positive scalar 
curvature.

§1. Spin Structures on Vector Bundles

Let i t : E -► X  be a real n-dimensional vector bundle over a manifold X . 
We assume this bundle is equipped with a riemannian structure, that is, 
a positive definite inner product continuously defined in the fibres. Such 
a structure always exists.

We assume also that the bundle is oriented, i.e., that there is an orienta­
tion continuously defined on the fibres. This structure does not always 
exist. To analyze the situation, we consider the bundle P0(E) of ortho­
normal frames in E . This is the principal Ow-bundle whose fibre at a point 
x  e X  is the set of orthonormal bases of Ex =  n '  1 (x). The bundle of orien­
tations in E is then just the quotient Or(£) =  P 0 (£)/SOn, where two bases 
of Ex are identified if the orthogonal matrix transforming one to the other 
has determinant +1 . Note that O r(E) is a 2-sheeted covering space of X  
and that E is orientable if and only if this covering space is the trivial 
one. We recall now the following elementary fact:

Lemma 1.1. Let Cov2 (X) be the set o f equivalence classes o f 2-sheeted 
covering spaces o f X . Then there is a natural isomorphism

C o v 2( X ) « H 1( X ; Z 2). (1.1)
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§1. SPIN STRUCTURES ON VECTOR BUNDLES 79

Note. This is a special case of the isomorphism: H l(X;G) «  {equivalence 
classes of principal G-bundles on X }, which is proved in Appendix A.

Proof. Assuming X  is connected, we can decompose the isomorphism
(1.1) as follows: H ^X ; Z2) A  Hom (/f x(X \  Z 2) A  Hom(nx(X), Z2) A
Cov2 pf). The second isomorphism follows from the fact that H x(X) is 
the abelianization of n^X ). The third isomorphism is a restatement of 
the elementary fact that 2-sheeted coverings of X  are in one-to-one 
correspondence with subgroups of index 2 in n^X ). The case where X  
is not connected now follows immediately. ■

From (1.1) we now see that, for each vector bundle E over X , the 2- 
sheeted covering space Or(£) determines an element wx(E )e  H 1(X ;Z 2% 
called the first Stiefel-Whitney class of E . Directly from the definitions 
we have the following fact.

Theorem 1.2. A vector bundle E over X  is orientable if and only if  wx(E) =  0. 
Furthermore if  wx(E) =  0, then the distinct orientations on E are in one- 
to-one correspondence with elements o f H °(X ;Z2).

The second statement simply says that there are two possible orienta­
tions of E over each connected component of X.

The definition of wx(E) given above is in accord with the one given 
via classifying spaces (see App. B). To prove this it suffices to show the 
following:

(i) This definition of wx is natural, i.e., wx(f*E )  =  f* w x(E) for any 
bundle E over X  and any continuous map / :  X ' X .

(ii) This definition of w^E) gives the non-zero element in 
H \ BO„;Z2) £  Z 2  when E is the universal n-plane bundle over the 
classifying space BOw.

Fact (i) is obvious since PQ(f*E )  =  f* P 0(E) and, therefore, O r(/* £ ) =  
/*O r(£). Fact (ii) is true since otherwise every n-plane bundle would be 
orientable.

By establishing properties (i) and (ii) it is possible to prove the equiv­
alence of a number of quite different definitions of w^F). For example, 
suppose X  is connected. Then from the fibration O n P 0(£) X , there 
is an exact sequence.

0 — ► H °(X ;Z 2) — ► t f 0 (Po(£);Z 2) — ► H°(0 „ ;Z 2) -==♦ H l(X ;Z 2).
(1.2)

We can define w,(£) =  wE(gt) where g 2 is the generator of H°(On;Z 2). 
This definition of wx(E) has property (i) since the sequence (1.2) is natural 
and property (ii) since the sequence ( 1 .2 ) is exact and for the universal
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80 II. SPIN GEOMETRY AND DIRAC OPERATORS

bundle E, P 0 (E) =  EO„ is contractible. From the exactness of (1.2) it is 
clear that w ^E ) =  0 iff PQ(E) is disconnected, i.e., iff E  is orientable.

We shall examine other equivalent definitions of Wj later in this section. 
At the moment we pass on to the next possible simplification of the 
structure group of a bundle E. Note that if E  is orientable, then choosing 
an orientation is equivalent to choosing a principal SO„-bundle Pso(E) <= 
P0(E). This embedding is, of course, compatible with the action of SO„ c  
0„. Having thereby made the structure group of E  0-connected, one 
might ask whether it is possible to make the structure group 1 -connected. 
This leads us to the concept of a spin structure.

Let E  be an oriented n-dimensional riemannian vector bundle over a 
manifold X , and let Pso{E) be its bundle of oriented orthonorm al frames. 
Recall that for n ^  3 we have the universal covering homomorphism 
i*0 :Spin„ -* SOn with kernel {1 ,-1}  =  Z2.

Definition 1.3. Suppose n ^  3. Then a spin structure on £  is a principal 
Spin„-bundle PSpin(£) together with a 2-sheeted covering

£ : P Spin( £ ) ----► Pso(£)

such that £(pg) =  £(p)t0(g) for all p e P Spin(£) and all g e Spinn.
When n — 2, a spin structure on £  is defined analogously, with Spin„ 

replaced by S 0 2  and : S 0 2  -*■ S0 2  the connected 2 -fold covering. When 
n =  1, P s0(£) =  X  and a spin structure is simply defined to be a 2-fold 
covering of X.

Note that the diagram

PSpia(E) Pso(E)

\  A

where it and 7t' are the bundle projections, is commutative. Note also that 
£ restricted to the fibres corresponds to the covering £0- The diagram of 
fibrations is

Spin, — ^  SOn

z O  ,  1
PSpinn( E ) - ^ P so(E)

r \
x

On the other hand, suppose £: PSpin(£) ->■ Pso(£) is a 2-sheeted covering

(1.3)
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§1. SPIN STRUCTURES ON VECTOR BUNDLES 81

which is non-trivial on the fibres of X , i.e., so that the diagram

commutes. Then setting n' — no ^ makes PSpin(£) a fibre bundle over X . 
To make this a principal Spin„-bundle we must lift the action of SO„ on 
Pso(E) to a compatible action of Spin,, on PSpin(£). The proof that this 
lifting exists is a straightforward application of elementary covering space 
theory. We conclude the following (even for n =  1 and 2).

Theorem 1.4. The spin structures on E are in natural one-to-one corre­
spondence with 2-sheeted coverings o f Ps0(E) which are non-trivial on the

Corollary 1.5. Suppose X  is connected. Then the spin structures on E are 
in natural one-to-one correspondence with elements o f H ^ P ^ E ) ;  Z*) whose 
restriction to the fibre o f Ps0(E) is non-zero.

We are now in a position to discuss the question of existence and 
uniqueness of spin structures. Associated to the fibration SO„ -4 Pso{E) 
A  X  there is an exact sequence

0 -----► H l( X ; l 2) -2 U  H 1(Pso(E)-,Z2) H ^ S O , ^ )  H 2(X ;Z 2)

which can be deduced from the Serre spectral sequence. In analogy with 
the definition of via the sequence ( 1 .2 ) we make the following definition:

Definition 1.6. The image w2(E) =  wE(g2) e H 2(X; Z 2) of the generator 
g2 of H 1(SO„;Z2) s  Z 2 is the second Stiefel-Whitney class of the oriented 
bundle E.

To prove that this (or any other) definition agrees with the one given 
via classifying spaces, it again suffices to show (cf. (i) and (ii) above):

(i') This definition of w2 is natural.
(ii') This definition of w2 (E) gives the non-zero element in 

H 2 (BSO„;Z2) =  Z 2  when E is the universal oriented n-plane bundle 
over the classifying space BSO„.

Spin, — - — ► SO,

Psp J E )  PSo(E)

fibres o f n.

This can be reinterpreted via Lemma 1.1 as follows:

(1.4)

Property (i') follows from the naturality of the sequence (1.4). Property 
(ii') follows from the exactness of (1.4) and the fact that Pso(E) =  ESO, 
is contractible.
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82 II. SPIN GEOMETRY AND DIRAC OPERATORS

From Corollary 1.5 and the exactness of the sequence (1.4) we im­
mediately conclude the following.

Theorem 1.7. Let E be an oriented vector bundle over a manifold X . Then 
there exists a spin structure on E i f  and only if  the second Stiefel-Whitney 
class o f E is zero.

Furthermore, i f  w2(E) =  0, then the distinct spin structures on E are in 
one-to-one correspondence with the elements o f H l(X; Z2).

Note that this result holds for all n. When n =  2, the class w2 is just the 
mod 2 reduction of the Euler class. More generally, the following is true.

R emark  1.8 (cf. Milnor-Stasheff [1]). If E is the real 2n-dimensional 
bundle underlying a complex n-dimensional vector bundle E , then

w2(E) =  c^UXmod 2)

where c^E )  is the first Chern class of E. (To see this, it suffices to observe 
that the map / / 2 (B S02rt; Z2) -> f / 2 (BU„; Z 2), induced by the inclusion 
U„ c  S 0 2n, is an isomorphism.)

R em ark  1.9. Note that the spin structure on a bundle E is independent 
of the bundle metric on E in the following sense. A spin structure on E 
uniquely determines a spin structure for any other metric. This follows 
from Theorem 1.4 and the observation that the inclusion PS0 (E) c= 
P gl+(£), where P GL+(P) is the bundle of all oriented bases in E, is a 
homotopy equivalence.

R emark 1.10. To choose an orientation and a spin structure for E is 
in particular to find structure groups for E which are respectively 0 and 
1-connected. Conversely, suppose E is equivalent to a vector bundle with 
a Lie structure group G. If G is connected, then E is orientable; and if G 
is simply-connected, then E is spin.

It should be noted that the process of finding successively more highly 
connected structure groups for E terminates at the spin level. This is 
because for any simply-connected Lie group G, rc2 (G) =  0, and if 7i 3 (G) =  
0, then G is contractible.

The conditions wx =  0 and w2 =  0 can be interpreted geometrically as 
follows:

Proposition 1.11. Let E be a vector bundle over a manifold X . Then E is 
orientable if  and only if  the restriction o f E to any circle embedded in X  is 
trivial

The proof is obvious. There is an analogue for w2.
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Proposition 1.12. Let E be an oriented vector bundle o f dimension ^  3 
over X . Then E is spin if  and only if for any compact surface E and any 
continuous map f : E -* X , the bundle f* E  is trivial

Suppose, furthermore, that X  is simply-connected and o f dimension > 4. 
Then E is spin if  and only i f  the restriction o f E to any 2-sphere embedded 
in X  is trivial

Proof. The group H 2{X\Z2) is generated by maps /  :E -► X  of compact 
surfaces. Hence, w2(E) =  0 <=> f* w 2(E) = w2(f*E ) = 0 for all such /  o  
f* E  is trivial for all such /  (since an oriented bundle of dimension ^  3 
over a surface is trivial if and only if w2 =  0). This proves the first state­
ment. For the second statement it suffices to note that when n xX  =  0 and 
dim(AT) >  4, the group H 2(X;Z2) is generated by embedded 2-spheres. ■

Rem a r k  1.13. This second statement can be refined somewhat. If n xX  =  
0, then H 2(X;Z2) is generated by immersions of S2, and if dim X  > 4, the 
immersions can be deformed to embeddings.

We now consider some alternative definitions of the classes Wj and w2. 
Recall that (cf. App. A) for any topological group G, we can view the 
equivalence classes of principal G-bundles on X  as elements in a “Cech 
cohomology space” H x(X;G). As noted in Milnor [7] the short exact 
sequence of topological groups

1  — ♦ SO, - U  O , z2  ► 0  (1.5)

gives an exact sequence

H l(X; SO,) H \X ;  O J  H \X ;  Z2). (1.6)

Given an n-dimensional bundle E on X , we define the first Stiefel-Whitney 
class by setting wx(E) =  p*([Po(£)])- This definition is easily seen to have 
properties (i) and (ii) and it therefore agrees with our previous definitions.

In a similar way the short exact sequence

0 -----► Z 2  >• Spinn SO „------ ► 1 (1.7)

gives an exact sequence

H°(X; SO„) H \X -  Z 2) -----► H \X ;  Spin,) (1.8)
H l(X;SO n) - ^ * H 2(X-,Z2)

(cf. Hirzebruch [1]). Thus, for an oriented bundle E we define the second 
Stiefel-Whitney class by setting w2(E) = <5([Pso(.E)]). This definition has 
properties (i') and (ii') and therefore agrees with our previous ones.

With this definition it is transparent that w2(E) =  0 if and only if Pso(£) 
is equivalent to the Z2-quotient of a principal Spin„-bundle on X.
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Remark 1.14. This is a convenient time to inject a minor word of cau­
tion. It was pointed out by Milnor that the Spin„-bundtes associated to 
distinct spin structures on E may be equivalent as abstract principal bundles. 
Recall that spin-structures on E are in one-to-one correspondence with 
elements of H 1(X;Z2). However, by (1.8) we see that the equivalence classes 
of principal Spin„-bundles with Z2-quotient equal to [P so(£)] are in one- 
to-one correspondence with elements of H 1(X-,Z2)/30(H0(X-,SOn)). Now by 
definition we have that H°(X;SO„) = C(X,SO„), the space of continuous 
maps from X  to SO„. The map

3°: C(X,SO„) ► H \X ; Z 2) (1.9)
is given as follows. For a map f ' .X - >  SO., set <5°(/) =  /*(1) where 1 is 
the generator of H 1(SO„;Z2).

The map (1.9) is often surjective. For example, any class which is the 
mod 2 reduction of an integral class lies in the image. To see this let 
f 0 :X  -* S 1 represent the integral class and define /  =  i ° f 0 :X  -* SO n 
where i'.S1 <-* SO„ is not homotopic to zero. Thus, if H 1(X;Z2) = 
H l(X;Z) ® Z 2, then 3° is surjective. Similarly if dim X  < n, then <5° is also 
surjective. To see this note that every class in H 1(X;Z2) can be induced by 
a map to P"(R) c  SO„. Thus, in either of these cases, all the principal 
Spin„-bundles associated to distinct spin structures on E are abstractly 
equivalent.

As an example of this phenomenon consider an oriented bundle E over 
the circle S 1.

Since Z 2) = Z2, there are two spin structures on E. However, any 
principal Spin„-bundle over S 1  is equivalent to the trivial one since it 
admits a cross-section (as does any fibre bundle over S 1 with connected 
fibre).

Finally we mention a direct definition of wt and w2  via homotopy 
theory. From the sequence (1.4) there is a fibration

BSO „ ► BO„ BZ2  =  K (Z2,1).

A map f E: X  -» BO„ (classifying a bundle E) has a lifting to BSO„ i lfw » /£ 
is homotopic to zero. Recall that [X ,K (Z 2,1)] =  H 1(X;Z2). The class 
w o f E is the first Stiefel-Whitney class wv(£).

From the sequence (1.6) we have a fibration K(Z 2 ,l) -*• BSpin„ 
BSO„. It follows that the cofiber of B£, is K(Z 2 ,2), i.e., there is a fibration

BSpin„ BSO„ K(Z 2 ,2).

We can now define w2(£) as we defined wt{E) above.
We complete this section with an observation concerning Whitney sums.

Proposition 1.15. Given three vector bundles £ ', E" and £  =  £ ' © E" over 
a manifold X , a choice o f orientation on any two o f them uniquely determines
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an orientation on the third. Similarly, a choice o f spin-structure on any two 
of them uniquely determines a spin structure on the third.

Proof. The statement concerning orientations is obvious since for finite 
dimensional vector spaces V =  V  © V'\ an orientation on any two canon­
ically determines an orientation on the third.

Suppose now that E, E' and E” are orientable. Then w2{E) =  w2(E) +  
w 2(E ”). Hence, if anv two are spin, so is the third.

Suppose under the correspondence of Corollary 1.5 a' e H l(Pso(E );Z 2) 
and a” e H l(Pso(£"); Z2) represent spin structures on E  and E” respec­
tively. Now consider the cartesian product bundle E  x E” -> X  x X . We 
let

A :Pso( E ® E " )  >Pso( E x E " )

denote the diagonal map. The class in H l(Pso{E  © £"); Z 2) which will 
represent the spin structure determined by a! and a" will be A*b where 
b e H ^P so iE  x £"); Z2) will be the unique class which extends f l ' x l l  
1 x a" 6  H 1 (PS0 (F ) x Pso(F '); Z2) under the inclusion PSo(E) x PSo(E') c: 
Pso(£' x E  ). That there is a unique b can be seen from the following 
diagram:

0 -  H \ X  x X ;Z 2)  ► H 1(PSĈ E' x F ');Z 2) --------► H l(SOn+n;Z2) -----► H 2(X  x X :Z 2)

I* I* I* I*
0 H l(X x X ; l 2) -* H ' iP ^ E ')  x P ^ E " ^ )  -  H ‘(SO, x SO„.;Z2) -  H2(X  x * ;Z 2)

That any two of the classes a', a" and A*b determines the third is now easy 
to see. Let nv : Pso(F) -► X  be the projection map where V — E, E' or E". 
Then any spin structure /  (under the correspondence of Corollary 1.5) 
on E' may be written a' +  n*.u' and any spin structure y” on E" may be 
written a” + n*.,u" for u’,u" e H l(X;Z2). Then following the above pre­
scription /  and y" determine A*b +  +  «"). Clearly any two of
these determine the third. ■

§2. Spin Manifolds and Spin Cobordism

We are now in a position to discuss the notion of spin structures on mani­
folds. For convenience all manifolds are assumed to be of class C 00.

Definition. A spin manifold is an oriented riemannian manifold with 
a spin structure on its tangent bundle.

The Stiefel-Whitney classes w,(Ar) of a manifold X  are defined to be the 
Stiefel-Whitney classes of its tangent bundle TX . Hence, by Theorem 1.7 
we have the following.
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Theorem 2.1. An oriented riemannian manifold X  admits a spin structure if  
and only i f  its second Stiefel- Whitney class is zero. Furthermore, if  w2{X) = 0, 
then the spin structures on X  are in one-to-one correspondence with elements 
o f H 1(X;Z2).

Recall (cf. Remark 1.9) that the choice of spin structure for one rieman­
nian metric on X  canonically determines a spin structure for any other 
riemannian metric on X . Here we are using the fact that, for any metric, 
the inclusion Pso(X) <= PGL+(X) of the bundle of oriented orthonorm al 
tangent frames into the bundle of all oriented tangent frames, is a homo- 
topy equivalence.

Consider now a diffeomorphism f - . X ^ X  of a spin manifold X . If 
/  is orientation preserving, then there is an induced diffeomorphism 
df^G i+ PO  -*• P g l+ W  of the bundle of oriented tangent frames. This 
map carries fibres to fibres and therefore induces a permutation of the 
possible spin structures on X  (considered as 2-fold coverings of PGL* (X).) 
If the given spin structure remains fixed, then /  is called a spin structure- 
preserving diffeomorphism.

It is a classical result of W.-T. Wu [1] that the Stiefel-Whitney classes 
of a compact manifold X  depend only of the homotopy type of X . There­
fore, the property of having or not having a spin structure is a homotopy 
invariant, and in particular, it remains the same under changes of the dif­
ferentiable structure on X . Wu proves his result by giving a homotopy- 
theoretic formula for the total Stiefel-Whitney class w = l  +  w 1  +  »v2  +  . . .  
of X . Define w = l + t »1  +  o2 -l- . . . 6  H*(X; Z 2) by the requirement that

(o u  a)[X ] =  Sq(a)[X]

for all a e H*(X;Z2) where Sq =  1 +  Sq 1  +  Sq 2  +  . . .  is the Steenrod 
square automorphism, and where [X ] e  H„(X;Z2), n =  dim(2f), denotes 
the fundamental class. W u’s formula states that

w =  Sq(u)

(see Milnor-Stasheff [1] for details). Since Sq‘(a) =  0 if / >  deg(a), we see 
that vk = 0 for k > [dim(X)/2]. Thus, for example, if dim(AT) =  3, we see 
that v = 1 +  =  1 +  Wj, and it follows that w2 =  wf. In particular, if
X  is orientable, then it is automatically spin. Suppose now that dim(2f) =  4 
and wx =  0. Then v = l + v 2 = l + w2, and we see that w2 is characterized 
by the fact that (w2  u  a)[X ] =  (a u  a)[X ] for all a e H 2(X;Z2).

We will now examine some examples of spin manifolds. For convenience 
we shall use the expression X  is spin to mean that wx(Z) =  w2 (X) =  0, 
(i.e., that X  carries at least one spin structure for any riemannian metric 
on X). Recall that any complex manifold is canonically oriented. Further­
more, by Remark 1.8 we know the following:
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Remark 2.2. A complex manifold X  is spin if and only if its first Chern 
class satisfies c t(X) =  0  (mod 2 ).

Example 2.3 (the trivial examples). It follows immediately from Theo­
rem 2 . 1  that any 2 -connected manifold carries a unique spin structure. 
The obvious examples of this type include homotopy spheres, Stiefel mani­
folds, and simply-connected Lie groups. Of course, any manifold whose 
tangent bundle is stably parallelizable is spin. This includes, for example, 
the inverse image of any regular value of a smooth map / :  K"+p -♦ Rp. It 
also includes any Lie group and any orientable manifold of dimension ^  3.

Example 2.4. Let P"(fc) denote the n-dimensional projective space over 
the (skew) field k. Then

P"(R) is spin iff n s  3 (mod 4)

P"(C) is spin iff n is odd

P"(H) is spin for all n.

To see this recall that the total Stiefel-Whitney class of P"(K) is w =  1 +  
wi +  w2  +  . . .  =  ( 1  +  g) n + 1  where g, the generator of the cohomology 
ring, has dimension 1, 2 and 4 for K  = R, C and H respectively. When 
K  =  R, the conditions =  0, w2 =  0 are equivalent to (n +  1) =  n(n +  1)/ 
2 =  0 (mod 2). The cases K  =  C and K  =  H are obvious.

Example 2.5. The manifold SO„ has two distinct spin structures given 
as follows: P(SO„) =  SO„ x SO* where N  — n{n — l)/2. The two coverings 
are:

Pi(SO„) =  SO„ x Spin*

P 2 (SO„) =  (Spin„ x Spin*)/Z2  

where Z 2  acts on SpinB x Spin* by the map (g, h) i-* { —g,—h).

Example 2.6. Let be a compact Riemann surface of genus g. As 
observed in 2.4 above, this surface is spin. (The Euler characteristic ^ (Z ,) 
is even.) There are exactly 22g distinct spin structures on X  which can be 
constructed as follows. Let denote the equivalence classes of
holomorphic complex line bundles on T,t . This is an abelian group under 
the operation of tensor product. There is a short exact sequence

0 -----► J  ► ^  H 2(Lg; l )  ► 0

where J  s  H \ Z t -,U)IH\J.g;Z) s  T 2e. Let r 0  6  H 1(Lg;0*) denote the tan­
gent bundle of S 9  and note that there exist exactly 22g elements t  e 
H \X g;&*) such that r 2  =  r0. Recall that for any complex line bundle r 
the natural map x -* t 2  is of the form z -* z2 in the fibres. Hence, each
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bundle t  with t 2  =  t 0  determines a 2-fold covering of PSo(Zg) «= t 0  which 
is non-trivial on the fibres. These coverings realize all the distinct spin 
structures on Eg.

This construction is a special case of the general fact (cf. Hitchin [1] 
and App. D) that for any compact Kahler manifold X  with Cj(Z) =  0 
(mod 2), the spin structures on X  are in one-to-one correspondence with 
holomorphic square roots of the canonical bundle of X.

Example 2.7. Let V (d )  denote the non-singular complex hypersurface 
of degree d in Pn+ 1 (C). That is, Vn(d) is given in homogeneous coordinates 
[Z0, . . .  ,Z„+1] for P "+ 1 (C) as the zeros of a homogeneous polynomial 
p{Z0, . . . ,Z„+l) of degree d which satisfies the condition (Vp)(Z) #  0 when 
Z ? t  0 and p(Z) =  0. The diffeomorphism class of V"(d) is uniquely deter­
mined by the integers n and d.

The first Chern class of Vn(d) for n >  1 is

c1 ={n + 2 - d ) - g

where g is the canonical generator of H 2(Vn(d); Z) (the Kahler form induced 
from P"+ 1 (C)). It follows that

Vn(d) is spin <=> n + d is even.

Example 2.8. Let F"(dj dk) be the transverse intersection of hyper­
surfaces Vn+k=1(d1) , . . .  ,Vn+k+1(dk) in P fl+*(C). Then for n >  k

c i = (n +  k + 1  — dk — . . .  — dk) ■ g 

where g is the canonical generator of H 2(V"(d1, . . .  ,dk);Z) = Z. Hence,
k

Vn(du . . .  4k) ^  sP*n n +  k +  1 +  £  dt is even.
i = 1

E xample 2.9 (N. Hitchin [1]). Let f : M  P 2 (C) be a p-fold ramified 
cover, branched over a non-singular curve of degree pq. Then M  is spin 
iff p is even and q is odd.

As we observed above, every oriented manifold of dimension ^  3 is spin. 
In higher dimensions the spin condition has a nice geometric interpreta­
tion. We shall restrict our attention to manifolds X  with the property that 
the homomorphism H 2(X;Z) H 2(X;Z2), given by reduction mod 2, is
surjective. This holds whenever X  is simply-connected.

Theorem 2.10. Let X  be an oriented n-dimensional manifold as above. I f  
n ^  5, then X  is spin if  and only if  every compact orientable surface embedded 
in X  has trivial normal bundle. I f  n =  4, then X  is spin if  and only i f  the 
normal bundle to every compact orientable surface embedded in X  has 
even Euler class.
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Proof. Since H 2(X;Z2) =  H 2(X;Z) <g> Z2, the group H 2(X;Z2) is generated 
by maps of compact orientable surfaces. By the classical theorems of 
Whitney, every map of a surface into X  is homotopic to an embedding 
if n ^  5, and to a self-transversal immersion if n =  4. In this latter case, 
we can remove small disks at each self-intesection point and attach an 
embedded handle, thereby producing an embedded surface in the same 
homology class. Consequently, H 2(X;Z2) is generated by smooth embedd­
ings of compact orientable surfaces.

Let i:T  X  be such an embedding. Then i*w2(X) =  i*w2(TX ) =  
w2(i*TX) = w2(TZ © NT) =  w2 (TZ) +  w2(NT) =  w2(NT). Evaluating 
on the fundamental class, we have (w2 (X),i#[Z]) =  (i*w2 (X), [Z]) =  
(w2 (NT), [Z]). Consequently, if w2 (Z) =  0, then w2(N11) =  0. On the other 
hand, H 2(X;Z2) is generated by such surfaces. We conclude that w2 (2f) =  0 
if and only if w2(N Z) =  0  for every compact orientable surface embedded 
in X .

The normal bundle N Z to Z is orientable. Therefore, when dim(ATZ) ^  3 
(i.e., when n 2 ;  5), we have w2(N Z) =  0 if and only if JVZ is trivial. When 
dim(iVZ) =  2 (i.e., when n =  4), we have w2(N Z) =  x(NZ) (mod 2). This 
completes the proof. ■

Corollary 2.11. Let X  be a simply-connected manifold o f dimension et 5. 
Then X  is spin if and only i f  every 2-sphere embedded in X  has trivial 
normal bundle.

Proof. Since H 2(X;Z) = n2(X) by the Hurewicz Theorem, we have that 
H 2(X;Z2) is generated by embedded 2-spheres. ■

Corollary 2.12. Let X  be a compact, simply-connected 4-manifold. Then X  
is spin i f  and only i f  (y u  y)[2f] =  0 (mod 2) for each y  e H 2(X;Z) (i.e., the 
intersection form is “even").

Proof. Let y e H 2(X;Z) s  [A'.P00̂ ) ]  be given by a smooth map f : X  
P 3 (C). Make /  transversal to a hyperplane P 2 (C) c: P 3 (C) and let Z =  
/ - 1 (P 2 (C)). Then Z represents the Poincare dual of y, and (y u  y)[x] is 
the self-intersection number of Z, i.e., the Euler number of NT,. ■

From the classification of quadratic forms (e.g., Husemoller-Milnor [1]) 
we conclude that the signature of X  must be a multiple of 8 . This result 
holds, in fact, for any topological 4-manifold with W! =  w2  =  0. For 
smooth manifolds there is the following deeper result (see Chap. IV).

Theorem 2.13 (Rochlin). The signature o f a smooth compact spin 4-manifold 
is a multiple o f 16.
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Example 2.14. The complex hypersurface V 2(4) = {(Z0,Z uZ 2,Z 3):Zq +  
Z \  + Z \  + Z% = 0} c  P 3 (C) is a spin manifold with signature 16 (see 
Example 2.7 above). This is the so-called Kummer (or K3) surface.

Remark. The statement of Corollary 2.12 fails when 7c1(AT) #  0. How­
ever, the following is true. For a compact orientable 4-manifold X , the 
intersection form is even if and only if w2 (X) is the mod 2  reduction of a 
torsion class in H 2(X;Z). This was proved by N. Habegger [1] who also 
showed the following. Let X  = F 2 (4)/Z2  be the quotient of the Kummer 
surface by the involution (Z0, Z UZ 2,Z 3) -*■ (Z U- Z 0,Z 3, - Z 2). Then X  is 
orientable and has even intersection form; however, sig(X) =  8 . Of course, 
X  cannot be a spin manifold. In fact, w2(X) is the mod 2 reduction of the 
unique torsion class in H 2(X;Z).

The remainder of this section will be devoted to a discussion of spin 
cobordism. We begin with two observations which follow immediately 
from Proposition 1.15.

Proposition 2.15. The cartesian product o f two spin manifolds is canonically 
a spin manifold. Any submanifold o f a spin manifold with a spin structure 
on its normal bundle is canonically a spin manifold.

In particular, if Y  is a compact manifold with boundary dY, then any 
spin structure on Y  induces a spin structure on d Y  as follows. Let v be 
the field of interior unit normal vectors along dY. Using v, one obtains 
an embedding Pso(dY) <= Pso(Y), by completing each tangent frame to 
d Y  with the given normal vector. The spin structure, considered for example 
as a 2 -sheeted covering, can now be restricted to Fso(3T).

Definition 2.16. Two spin manifolds are said to be differentiably equiv­
alent if there is a diffeomorphism between them preserving orientations 
and spin structures. A compact (not necessarily connected) spin manifold 
is said to be spin cobordant to zero if it is differentiably equivalent to the 
boundary of a compact spin manifold Y  with (orientation and) spin struc­
ture induced from Y  as above.

Let Q®pin denote the free abelian group generated by equivalence classes 
of compact connected n-dimensional spin manifolds, modulo the subgroup 
generated by elements [ X x] +  . . .  +  [.X*] where X x I I . . .  II  X k is spin co­
bordant to zero. Q®pin is called the n-dimensional spin cobordism group.

From  Proposition 2.15 we know that the product of two spin manifolds 
has a uniquely determined spin structure. This multiplication makes 
Q*pin =  © „ %  Q«pin into a graded ring, called the spin cobordism ring.

Note that the equivalence class (and therefore also the cobordism class) 
of a spin manifold X  is independent of the choice of riemannian metric 
on X.
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Remark 2.17. Given two spin n-manifolds X x and X 29 we can form 
their connected sum X x # X 2 and equip it with a spin structure so that 
X t # X 2 and X x II X 2 are spin cobordant. Thus every spin cobordism 
class is represented by a connected manifold (see Milnor [7]).

The connected sum operation is a special case of the general procedure 
of doing surgery on spin manifolds (see Milnor [5] and Kervaire-Milnor 
[1]). In particular one can show that for n ^  3 every spin cobordism class 
is represented by a simply-connected manifold. For n ^  5, every spin 
cobordism class is represented by a 2-connected manifold (see Corollary 
2.11). Thus by Poincare duality and the /i-cobordism theorem Q 5pin =  0.

For the special case n =  1, a spin structure is defined to be a 2-fold 
covering of PsoiS1) =  S1. Consider S 1  as the boundary of the 2-disk with 
its unique spin structure. Then the spin structure induced on S 1  is the 
connected 2-fold covering. Interestingly, the disconnected 2-fold covering 
is not cobordant to zero, although two copies of it clearly is (a good 
exercise). Thus, Qipin £  Z2.

It is also true that the square of the circle with the bad spin structure 
is not zero in Q2pin =  ^ 2  (another good exercise).

We now briefly review the Thom construction. Let X n be a compact 
n-dimensional spin manifold and choose a smooth embedding X n Sn+k, 
k >  n. The spin structures on X n and Sn+k determine a unique spin struc­
ture on the normal bundle N (X n) of X n (see Proposition 1.15). Hence, there 
is a bundle map

N (X ”) Et

X ” - U  BSpin*

classifying N(X"), where E* is the universal fc-plane bundle. The map /  
descends to a map of Thom spaces / :  x(N(X")) -*• t(E*) =  MSpin*. If we 
identify N(X") with a tubular neighborhood of X"  in S"+k, then r(N(X")) 
is the space obtained by collapsing the complement of this tubular neigh­
borhood to a point. Thus we get a map n :S n+k -+ x(N(Xn)), and the com­
position f  • n :S "+k -+ MSpin* determines an element

<X"> e  7t*(MSpin) = lim jrn+*(MSpin*).
k-+ oo

The classic result of Thom states that this map induces an isomorphism

O r  ^(M Spin). (2.1)

We observe now that there is a natural ring homomorphism

p „ : o r  — -> (2.2)
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where Q*° is the oriented cobordism ring. In fact, in low dimensions we 
have the following (cf. Milnor-Stasheff [1; §17] and M ilnor [7]):
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n

If n8°
0 Z z
1 I i 0
2 z 2 0
3 0 0
4 Z (generated by the Kummer surface 

surface V2(4) in Example 2.14)
Z (generated by P 2(C))

5 0 Z2
6 0 0
7 0 0
8 Z 0  Z (generated by P2(H) and a Z 0  Z (generated by P4(C)

manifold L8 such that 4L8 is spin and P2(C) x P 2(Q)
cobordant to K2(4) x K2(4))

Of course the non-zero element x  e  Oipin given by the circle with the 
“bad” spin structure, goes to zero in Qj°. Hence, we have x  • fi*pin c  ker p*.
In fact, it can be proved that x  • Q5pin =  ker p* (see Anderson-Brown-
Peterson [1]).

The cokernel of p* is not so simple to describe. For example, the signa­
ture gives an isomorphism O® 0  =  Z, and therefore using Theorem 2.13 
and Example 2.14 we get a short exact sequence

0 -----► Q |pin Q |° ---- ► Z 1 6 ------*• 0.
Similarly,

0 ---- ► Qfpin n | ° ----► Z2, ----- ► 0

is exact. The map p* tensored with the rational numbers is an isomorphism. 
In fact, so is p* tensored with Z [j]  (cf. M ilnor [5]).

It is known that the oriented cobordism class of a manifold is determined 
by its Pontryagin and Stiefel-Whitney numbers. Similarly, it has been 
proved that the spin cobordism class of a manifold is completely deter­
mined by its Stiefel-Whitney and AO-characteristic numbers (Anderson- 
Brown-Peterson [1]). A fundamental such AO-invariant is the ring 
homomorphism

< : n | pin---- > K O ~ * (  p t) (2.3)

which we describe in §3 of this chapter. Recall that

n (mod 8) 0 1 2 3 4 5 6 7

K O - (  pt) z Z2 0 Z 0 0 0

The homomorphism s4„ is an isomorphism for n ^  7.
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§3. CLIFFORD AND SPINOR BUNDLES 93

One of the remarkable and very useful consequences of the Atiyah- 
Singer Index Theory is that this invariant can be computed as the topolo­
gical index of an elliptic operator naturally defined on any spin manifold 
in the cobordism class. This will be discussed in Chapter III.

One of the interesting uses of the invariant s /  is the following. Let X" 
be an n-dimensional homotopy sphere, i.e., a compact differentiable mani­
fold which is homotopy equivalent to the n-sphere S". Then X" is cobordant 
to zero (cf. Kervaire-Milnor [1]), but it is not necessarily spin cobordant 
to zero. In fact the homotopy n-spheres form a finite abelian group, ©„, 
under the operation of connected sum, and s / n: &n -+ KO  ""(pt) is a homo­
morphism. The following is a consequence of deep results of Adams [3] 
and Milnor [7].

Theorem 2.18. For n =  1 or 2 (mod 8 ) and n > 8 , the homomorphism

• < * © „ — ► z 2

is surjective.

§3. Clifford and Spinor Bundles

We begin this section by briefly describing the associated bundle construc­
tion. Let n :P  -+ X  be a principal G-bundle over a space X , and let 
Homeo(F) denote the group of homomorphisms of another space F. Give 
Homeo(F) the compact-open topology. Then to each continuous homo­
morphism p : G -* Homeo(F), we construct a fibre bundle over X  with 
fibre F as follows. Consider the free left action of G on the product P x F  
given by

<Pg(P>f) =  (P9~l,p(9)f)

for g e G and (p ,/) e P  x F. Define P x p F to be the quotient space (the 
space of orbits) of this action. One easily sees that the projection P x F  
f A l  descends to a mapping

np: P x p F  >X

which is the fibre bundle over X  with fibre F. It is called the bundle asso­
ciated to P by p.

If X  and F  are manifolds, G is a Lie group, and P is differentiable, one 
can consider continuous homomorphisms p : G Diff(F), where Diff(F) 
is the group of diffeomorphisms of F  with the usual C 00 topology. In this 
case, the associated bundle np:P x p F -► X  is differentiable.

Note that if P is given by transition functions

Qafi -Ua n  Up ► G

for Ua9Ufi e where <*11 is some open cover of X , then P x p F is given
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94 II. SPIN GEOMETRY AND DIRAC OPERATORS

by the transition functions:
P ° 9 af i 'Ua n  Uf  ► Diffl(F).

Note also that if p: G -* GL(K) is a linear representation on a vector 
space V, then P x p Kis a vector bundle over X.

Example 3.0. Let X  be a manifold and let p : X  -* X  be its universal 
covering space. Then I  is a principal 7r 1 (A')-bundle. Choose p e  
Hom(7r 1 X,Z2) s  H l(X';Z 2\  and consider Z 2  as the group of permutations 
of the set {0,1}- Then X  x p {0,1} is a 2-sheeted covering of X  (see Lemma 
1.1).

Example 3.1. Let X  be a manifold and let P — PGL(X) be the principal 
GL„(R)-bundle of tangent frames. Let p„ : GL„(R) -> GL(R") denote the 
standard representation, and let p* denote the dual representation (p*{g) =  
p j l g - 'n  Then

T X  =  PGL(X) x pn R» and T * X  = PQL(X) x p, (R»)*

where T X  and T * X  are the tangent and cotangent bundles of X  respec­
tively. Similarly,

AkT X  = PGL(X) x Akpn -

AkT * X  =  PGL(X) x A,p, (A * R T

0 rTX =  P GL( X ) x 0 ;pn(0 r5r )

where Akpn9 Akp* and (X)Jpw are the induced exterior power and tensor 
product representations.

Example 3.2. Let X  be an oriented riemannian manifold and let P  =  
PSo{X) be the SOn-bundle of positively oriented orthonormal frames. If 
pn: SOw SO(IRn) is the standard representation, then again

T X  =  Pso(X) x pn R-

A kT X  =  P So(X) x Akpn (A*R")

(& T X  = PSo W x ^ ^ R " )

Note that in this case p* =  p„. This corresponds to the canonical iso­
morphism T X  = T * X  given by the riemannian metric.

Example 3.3. M ore generally, if E  is any oriented riemannian vector 
bundle over a space X , then

E  =  Pso(E) x Pn R"

A\E )  = Pso(E) x Arpn (A^R")

<Sf(E) = Pso( E ) x e>rpn((g fU H)

Again, since p„ = p * ,E  and E* are canonically isomorphic.
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§3. CLIFFORD AND SPINOR BUNDLES 95

These examples suggest the following. Recall that each orthogonal 
transformation of Un induces an orthogonal transformation of C t(R n) =  
C tn. (It maps the tensor algebra to itself and preserves the ideal.) This 
induced map on C ln clearly preserves the multiplication. Hence we get a 
representation:

c i(p n) : SO „ ► A ut(C £(r)). (3.1)

Definition 3.4. The Clifford bundle of the oriented riemannian vector 
bundle E is the bundle

Cl(E) =  P soCE) x c£(Pri) C£(IR")

associated to the representation (3.1).
£  is a bundle of vector spaces with inner products, and C 1(E) is just 

the associated bundle of Clifford algebras. In fact Ci(E) could be defined 
as the quotient bundle:

c m  =

where 1(E) is the bundle of ideals, i.e., the bundle whose fibre at x e X  is 
the two-sided I(EX) in Y?=o (8)^*’ generated by elements v ®  v +  ||t;||2 
for v e Ex.

It is evident that C 1(E) is in fact a bundle o f (Clifford) algebras over X . 
The fibrewise multiplication in C£(£) gives an algebra structure to the 
space of sections of C t(E ).

It is also evident that each of the notions intrinsic to Clifford algebras 
carries over to Clifford bundles. For example, there is a decomposition

Ci(E) =  Cl°(E) ©  C i l(E) (3.2)

corresponding to the even-odd decomposition of the algebras. These are 
the + 1  and — 1  eigenbundles of the bundle automorphism

a : C l(E )  >Cl(E) (3.3)

which extends the map E E  sending v to —1 >. There is also an intrin­
sically defined bundle map

L :C l(E )  >Ct(E) (3.4)

which in any fibre Ct(Ex) is given by

L(<P) =  -  Z  ek<pek (3.5)k=l

where {el t . . .  ,e„} is an orthonormal basis of Ex (see Chap. I).
The following is an elementary but im portant fact:

Proposition 3.5. There is a canonical vector bundle isometry

A :A * (£ )-% C C (£ ) (3.6)
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96 II. SPIN GEOMETRY AND DIRAC OPERATORS

under which

A(Aev*"£) =  C£°(£); A(Aodd£) =  C f 1̂ )  (3.7)

and

A(AP£) = {<pe C € (£ ): a ° L(<p) =  (n — 2p)<p} (3.8)

fo r p = 0 , . . .  ,n.

Proof. The isomorphism A follows directly from the canonical isomor­
phism A: A*R" A- C£(R") and the fact that A <> A*p„ =  cl(p n) ° A. Equa­
tions (3.7) and (3.8) follow from Proposition 3.8 in Chapter 1. ■

As mentioned in the introduction, it is now natural to look for bundles 
of irreducible modules over the bundle of Clifford algebras C£(£). Such 
bundles can be constructed if w2(£) =  0 .

Definition 3.6. Let £  be an oriented riemannian vector bundle with a
spin structure £ : PSpin(£) -> Pso{E)- A real spinor bundle of £  is a bundle
of the form

S(E) = PSpin{ E )x flM 9

where M  is a left module for C£(Rn) and where /x: Spin* -> SO(M) is the 
representation given by left multiplication by elements of Spin,, c  

Similarly, a complex spinor bundle of £  is a bundle of the form

Sc(E) — PS p in (^ ) x n A f c

where M c is a complex left module for Cl(Un) ®  C.
If the module M  (or Afc) is Z 2 -graded, the corresponding bundle is said 

to be Z 2 -graded.

Example 3.7. Consider C£(R") as a module over itself by left multiplica­
tion <f. The corresponding real spinor bundle

ceSpin(£) = pSpin(£) x,ce(R-)
is a  “principal C£(R")-bundle”, i.e., it admits a free action of C£(R") on 
the right. There is a natural embedding P Spin(£) c  C£Spin(£) which comes 
from the embedding Spin„ <= C£(R"). Hence, every real spinor bundle for 
£  can be captured from this one.

A similar remark holds for the complex case.
Of course, the bundle C£Spin(£) differs from the Clifford bundle C£(£). 

They can be compared as follows. Consider the representation

A d : Spin, — ► Aut(C£(R")) (3.9)

given by Adt(q>) =  gcpg-1 for g e  Spin,, c  C£(R"). Clearly Ad_ t =  identity,
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§3. CLIFFORD AND SPINOR BUNDLES 97

and so this representation descends to a representation Ad' of SO„. One 
easily checks that Ad' is just the representation cl(p n) given in (3.1). It 
follows that

Cl(E) = PSpin(E) x M C t m  

This leads to the following.

Proposition 3.8. Let S(E) be a real spinor bundle o f E. Then S(E) is a bundle 
of modules over the bundle o f algebras Cl(E). In particular the sections o f 
the spinor bundle are a module over the sections o f the Clifford bundle.

The corresponding fact holds in the complex and Z 2-graded cases.

Proof. The diagram

PSpin(E) X Ce(R") x M  ^  PSpin(E) X M

r Pi

V £ ) x C€(R") X M  Pspin(£) X M
given by

(P0-1,0<P0-1>0"»)------► (P0_1>0<pm)
clearly commutes. Therefore, p descends to a mapping

p : Ct(2s) ® S(E) ► S(E), (3.10)

which is easily seen to have the desired properties. The corresponding 
argument goes through in the complex and Z2-graded cases. ■

We say that two spinor bundles of E are equivalent iff they are equivalent 
as bundles of C£(£)-modules. A bundle of (real or complex, graded or 
ungraded) C£(£)-modules is called irreducible if at each x  the fibre is 
irreducible as a (real or complex, graded or ungraded) module over C t(Ex).

Recall that every module for Ct(Un) can be written as a direct sum of 
irreducible ones, and there are at most two equivalence classes of irreduc­
ible modules. Consulting §5 of Chapter I we obtain the following:

Proposition 3.9. Every spinor bundle o f E (real or complex, graded or un­
graded) can be decomposed into a direct sum o f irreducible ones. With the 
assumption that X  is connected, the number N  o f equivalence classes o f ir­
reducible ones depends on the dimension n o f E as follows.
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98 II. SPIN GEOMETRY AND DIRAC OPERATORS

it (mod 8)
Real

Ungraded
Complex
Ungraded

Real
Graded

Complex
Graded

1 1 2 1 1
2 1 1 1 2
3 2 2 1 1
4 1 1 2 2
5 1 2 1 1
6 1 1 1 2
7 2 2 1 1
8 1 1 2 2

Thus, for n even, there is only one irreducible, ungraded spinor bundle 
of E  (over R or over C). If n =  6 or 8 (mod 8), the complex one is just the 
complexification of the real one. If n = 2 or 4 (mod 8), the complexification 
of the real one splits into two copies of the complex one. This, and the 
corresponding information for n odd, can be easily deduced from the 
tables in Chapter I.

We now observe that in certain dimensions any real spinor bundle auto­
matically carries a natural complex or quaternion structure. This is a con­
sequence of the fact that for certain n, each irreducible real Ct(R")-module 
carries a compatible C or H structure, i.e., the module multiplication is 
C or H linear (and hence, the complex or quaternion scalar multiplication 
in M  descends to the quotient PSpin x M M). The appearance of such struc­
ture is periodic in n and can be deduced from Table III in Chapter I. We 
conclude the following.

Proposition 3.10. Let E be a real n-dimensional bundle equipped with a spin 
structure, and let S(E) be any real ungraded spinor bundle o f E. I f  n = 1 or 
5 (mod 8), then S(E) carries a complex structure such that Clifford multipli­
cation is complex linear in each fibre. I f  n =  2, 3 or 4 (mod 8), then S(E) 
carries a quaternion structure so that Clifford multiplication is quaternion 
linear in each fibre.

Let us now say a word about the Z2-graded case. There is a natural 
one-to-one correspondence between classes of bundles of irreducible Z2- 
graded modules over C£(jE) =  C£°(£) © C f^ E ) and classes of bundles of 
irreducible modules over C l1°(E). Given a bundle S(E) = S°{E) © S 1(E) of 
the first kind, S°(E) is of the second. Given an S°(E) of the second kind, 
the bundle

S(E) = Ct(E) ®ct0(£) S°(E)

is of the first.
Suppose now that n = 2m and SC(E) is the irreducible complex spinor 

bundle of E. We shall show explicitly how to  split SC(E) into a direct sum

SC(E) = S£(E) ©  Sc(E) (3.11)
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§3. CLIFFORD AND SPINOR BUNDLES 99

of C£°(£)-modules. Interpreting S£(E) as S£(£) and S£(E) as Sc(E), or 
the other way around, gives a Z2-graded module structure to SC(E). The 
two possibilities are the two inequivalent graded modules appearing in 
the table. The construction is as follows. Consider the global section coc 
of C€(£) ® €  which at x  e  X  is given by

ct)c =  imex •■■e2m (3.12)

for any positively oriented orthonormal basis {eu . . .  ,e2m} of Ex. Then 
we have

col =  1 (3.13)

emc = —a)ce (3.13')

for any e e C i l(E) ®  C. We then define S£(E) and S^(E) to be the +1
and — 1 eigenbundles for Clifford multiplication by coc . One easily sees
from (3.13') that these bundles have the same dimension and that they 
form the Z2-graded modules as stated above.

These bundles can be written as associated bundles in the following 
way. Let A2bJ and A2m denote the two fundamental complex representa­
tions of Spin2m. Then

S±(E) £  PSpln(E) x Ac±C 2" " 1. (3.14)

For n = 0 (mod 4) there is an analogous construction in the real case. 
Let S(E) be the irreducible real spinor bundle of £  and define a global 
section co of Ct(E) by setting

co = e1 ---e„  (3.15)

at x  e X  where {ely. . .  ,e„} is any positively oriented orthonormal basis 
of Ex. Again, we have that

co2  =  1 (3.16)

coe= - e w  for all e e C f °(£). (3.17)

For equations (3.16) and (3.17) it is necessary that n be a multiple of 4. 
This again determines a decomposition

S(E) =  S +(£) ©  S~(E) (3.18)

into the +1  and — 1 eigenbundles of the operator given by Clifford multi­
plication by co. They make S(E) a Z2-graded module in two distinct ways, 
thereby accounting for the 2 in Table 3.1 above.

If n =  0 (mod 8 ), then S ±(E) ®  C =  S£(E). This corresponds to the 
fact that in these dimensions, A* are the complexifications of real 
representations.
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If n = 4 (mod 8 ), then S T(f )  0  C s  S£(E) ®  S^{E). In these dimen­
sions A* are quaternionic.

We now make a fundamental observation concerning these Z2-graded 
bundles. Let

0 (E) =  {ee E : \\e\\ £  1 }

be the unit disk bundle of E  with boundary

B ( E )  =  { e e £ : | M |  =  l } ,

the unit sphere bundle. Let n : 0(E) -► X  be the bundle projection. Assume 
n is even, so that S^(E) are defined. Then the pull-backs of these bundles 
over B(E) are canonically isomorphic on 0(E) by the map

He'-(n*S£)e -----► (**ScL (3.19)

given at e e  0 (E) by

He{o) = e - a

that is, Clifford multiplication by e itself. Since e - e — — ||e| | 2  =  — 1 , each 
map fie is an isomorphism. The pair of bundles n*S£ over 0(E), together 
with the isomorphism fi:n*S£ n*S£ over 0(E), given by (3.19), deter­
mine a “ difference”  element

tfc(E) = 0*S£,7t*Sc;m] 6  K(x(E)) (3.20)

where x(£) s  B(E)/B(E) is the Thom space of £ . Here K  denotes reduced
complex E-theory (cf. 1.9).

If n =  0 (mod 4), the analogous construction clearly goes through in 
the real case. Here we obtain an element

rj(E) = [n*S+,n*S~;fi] 6  EO(t(£)). (3.21)

We are now in a position to define the map (2.3) discussed in the last
section. Let E8k be the universal 8 /c-plane bundle over BSpin8k with its 
unique spin structure. (Egk is the pull-back of the universal 8 /c-plane bundle 
over BSOSk by the map : BSpin8t -> B S 0 8t.) Let

rj(E8k) e EO(MSpin8k)

be the class (3.21) defined above. Now fix n and choose k sufficiently large 
that we have the isomorphism Q*pin =  7cn+8 k(MSpin8k). Then a cobordism 
class [A ] eQ*pin determines a map f x :Sn+8k -* M Spin8i. We define

J „: Q*pin ► K O ”"(pt) (3.22)

by

=  f M h k )  6  KO(S8k+") S  Kd(S") = K O ~ \pt).
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§4. CONNECTIONS ON SPINOR BUNDLES 101

§4. Connections on Spinor Bundles

Suppose £  is a smooth riemannian vector bundle over a manifold X  and 
that £ :P Spin(£) P so( E )  is a spin structure on E .  Then, of course, any 
connection on P So (E )  can be lifted via { to a connection on P Spin(E ) , and 
this, in turn, defines a connection on the associated spinor bundles. In 
this section we shall give an explicit computation of this spinor connection 
and its associated curvature tensor in terms of the connection on E .

We begin by briefly recalling some facts from the theory of connections. 
Let n : P X  be a smooth principal bundle over a manifold X  with group 
G. Then G is a Lie group whose Lie algebra will be denoted by g. G acts 
freely from the right on P. Each element Ve  g determines a vector field 
V on P  by setting

Vp = d/dt(p ■ exp(tF))|1=0.

The map V Vp gives an isomorphism

9 £  n  (4.1)

where i^p is the tangent space to the orbit through p. The orbits are the 
fibres of n, and the plane i^p can be thought of as the “vertical” space 
through p. A connection is then a choice of an invariant field of comple­
mentary “horizontal” spaces.

Definition 4.1. A connection on P is a G-invariant field of tangent w- 
planes t  on P (n =  dim(AT)) such that the linear map rc*: -+ Tnp(X) is
an isomorphism for all p e P.

At each p e P, xp determines a linear projection T p(P) -> The ca­
nonical isomorphism (4.1) then gives a linear map

cop:T p(P) ► g. (4.2)

This defines a g-valued 1-form co on P, called the connection 1-form. It 
has the following properties.

co(V) =  V for all V e  g. (4.3)

g*(co) =  Adg- 1 co for all g e G acting on the manifold P. (4.4)

Note that given the connection 1-form co, one can recapture the connec­
tion by the relation

r p =  ker(ct)p).

The curvature of the connection is the g-valued 2-form f2 given by the 
equation

Q =  d o  4 - [co,co]. (4.5)
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(Note that by the skew-symmetry of the Lie bracket, [co,co](t>,w) s f 
[(o(y),(u(w)] is a g-valued exterior 2-form.) This form has the following 
properties.

Q(K,-) =  0 for all P e g  (4.6)

g*Q =  Ad„- ,(£1) for all g e G (4.7)

E xam ple 4.2 (orthogonal connections). Let P  =  Ps0(£) where £  is a 
smooth, oriented riemannian vector bundle. The Lie algebra of SO„ is the 
space so„ of real, skew-symmetric n x n-matrices. Hence, a connection 1- 
form a  can be considered as an n x n-matrix of 1 -forms co =  ((coy)) where 
coy =  —oiji- The corresponding curvature is a matrix of 2-forms f l  =  ((fty)) 
where

n
Qy =  dcotj + £  o)ikAO)kJ. (4.8)

k -  1

For an orthogonal matrix g, Ad#(co) =  gcog~l .
Let et a ej denote the elementary skew-symmetric (ij)-m atrix. If 

{ek, . . .  ,en} denotes the canonical basis of IR", this corresponds to the 
transformation

(<?, a  ej){v) =  <c„ v)ej -  <Cj, v>et. (4.9)

The connection and curvature forms can then be written as

( o =  ~ Y  « u e i A ej
i<j

G =  -  £  ftyei A ej 
i<J

Given a connection on the bundle Ps0(E) as above, we can define a rule 
for taking derivatives of sections of E. For any smooth vector bundle E' 
over X , let T(F) denote the space of smooth cross-sections of £ '.

D efinition  4.3. A covariant derivative o n  £  is a  lin ear map

V : T (£ )— ►r(T*X'<g>£)

such that

V(/e) =  d / ®  e + / V e  (4.12)

for all /  e C ^ X )  and all e e T(£).
Thus, given a smooth vector field V  on X , we obtain a map Vv : T(£) -* 

r(£) called the covariant derivative with respect to V. At a given point 
x e X , (VKe)x depends only on Vx and on the values of e in a neighborhood 
of x.

102 II. SPIN GEOMETRY AND DIRAC OPERATORS
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§4. CONNECTIONS ON SPINOR BUNDLES 103

Proposition 4.4. Let a> be a connection 1-form on PSo(£) as above. Then co
determines a unique covariant derivative on E by the rule

Ve, = Z  <5jt <g> e} (4.13)
j= i

where $  =  (eu . . .  ,en) is a local family o f pointwise orthonormal sections o f  
E, i.e., a local section o f PsQ(E), and where co =  $*co.

This covariant derivative satisfies the rule

V (e , *'> =  <Vve, O  + <e, VFe'> (4.14)

for all V e  T(X) and e,e' e T(E), where <*, *> denotes the inner product in 
E.

Conversely, any covariant derivative on E satisfying (4.14) determines a 
unique connection 1-form by equations (4.13).

Note. A  co variant derivative with property (4.14) will be called riemannian.

Proof. Let S  =  (eu . . .  ,en) be a frame defined on an open set U £  X, 
and let ((cw0)) be any skew-symmetric n x n-matrix of 1-forms on 17. Then 
equation (4.13) together with property (4.12) defines a unique co variant 
derivative on E\v . (To see this, note that any section e of E over U can be 
written uniquely as e =  Y*fjeJ ôr f u  • • • J n e C°°(l/). Then by (4.12) and
(4.13) we have Ve =  £  df} <g> e,- +  £, f f ih j  ® ** =  Z  {dfk +  Z  ^ j f j }  <S> ek. 
This definition of V has properties (4.12) and (4.14) and is therefore a 
riemannian covariant derivative on 17.) Conversely, given $  and a rieman­
nian covariant derivative V on U, we have a skew-symmetric matrix of 
1-forms ((c5fj)) on U uniquely defined by (4.13).

Consequently, to define a global covariant derivative on E it suffices 
to assign to each local frame field S  a matrix of local 1-forms ((c3y)) sat­
isfying the following compatibility condition. Suppose S  =  (el9. . .  ,e„) and 
S '  =  (e \, . . .  ,e'„) are two orthonormal frame fields over an open set U, 
and let c5 =  ((c30)) and co' =  ((co-,-)) be the associated matrices of 1-forms. 
Then for each x e U ,  there is a unique orthogonal n x  n-matrix g(x) =  
((diji*))) such that S[x) =  &’(x)g(x), i.e.,

n
ef(x) =  Z  e'}(x )9ji(x )-

Applying V and using (4.13) we find easily that

(5(x) = g~ l(x)dj'(x)g(x) + g~ 1(x)dg(x). (4.15)

This transformation rule is the required compatibility condition.
Suppose now that Pso(fs) is provided with a connection 1 -form co. Then 

given a local section §  =  (ei t . . .  ,e„) of Pso(£) over an open set U, we get
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104 II. SPIN GEOMETRY AND DIRAC OPERATORS

a skew-symmetric matrix of 1-forms & =  ((<3y)) on U by setting co =
Note that $  determines a local trivialization

q>\U x SO „ ►;r“ 1 (C7)

of 7i : P so(£) -X by setting <p(x,#) =  <?(x)0 . Conversely, cp determines S , 
since <?(x) =  <p(x,e). Note that cp is SO„-equivariant.

We now observe that in this local product determined by cp, the connec­
tion 1 -form can be written as

((P*co)x,9 =  Ad, - ,((3 ) + g~ 1dg. (4.16)

To see this we first write <p*a> =  0 ) 0  +  0 ^  where tu0  =  Z  a£x,g)dx‘ for local 
coordinates x ‘ on X  and where <x>( =  £  btfic&)dgtj. Properties (4.3) and
(4.4) imply that coj =  g ~ 1dg. By definition we have co0 =  S*a> along 
U x {e} a  U x G. Property (4.4) then implies that <w0  =  Ad,-i(c5) =  
g ~ 1 ° a> ° g at a general point (x,g).

If we choose a different cross section S ' =  ( e \ , . . .  ,e'„) over U, we get a 
new trivialization (p':U x  SO„ -* n~ l(U) by the formula q>'(x,g) =  S'(x)g. 
The change of trivializations 4> =  Op') - 1 0 (p-U x  SO, -* U x  SO„ is 
given by

«D (x,g) = (x,g(x)g) (4.17)

where g :U  -* SO„ is the change of frames as above, i.e., S(x) — S ”(x)g(x). 
Clearly we have that

<p*co =  O*(<jo'*to).

Using (4.16) and (4.17) we can re-express this as

Ad,- .((3) +  g~ 'dg = M (g{x)g)- ,(<3') +  (g(x)g)~ 1d(g(x)g) (4.18)
=  A d ,-i{A d,-iw (c5') +  g~\x)dg{x)} +  g ~ ldg.

This equation immediately reduces to the compatibility condition (4.15). 
Consequently, a connection 1-form on P So (E )  determines a riemannian 
covariant derivative on £, as claimed. Conversely, given a riemannian 
co variant derivative, we obtain local 1 -forms co transforming according 
to (4.15). This implies that the compatibility condition (4.18) for the ex­
istence of a global connection 1 -form on P So (E )  is satisfied. This completes 
the proof. ■

Given a covariant derivative V on £, it is natural to ask whether the 
second covariant derivatives commute in an appropriate sense. For this we 
consider the composition

r(E) r(t* ® E) -2-» r(A2r* ® e)
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§4. CONNECTIONS ON SPINOR BUNDLES 105

where V is the natural prolongation of V defined on sections of the form 
a ®  e by V(a ®  e) =  da ®  e — a a  Ve, and we set R =  V o V

Proposition 4.5. Let co, $  and V be as in Proposition 4.4, and let Q be the 
curvature 2- form o f the connection. Then

Ret = Y  « ji ®  ej (4.19)
J= i

where SI =

Proof. From equation (4.8) we have

V(Vef) =  <5Jt ®  ejJ

n n
=  J) d&ji ® e j+  Y  &ji ® ek

1=1 M=i

=  £  Q-i (g) e,. ■
i=i

Proposition 4.6. Let Q, and V be as in Proposition 4.5. Then for local 
tangent vector fields V and W  on X , we have

R v,we =  (^v^w  “  — VlKtWr])e. (4.20)

Proof. Note that

VKV ^  =  VK^ W ^ ) )

=  I  +  Y e j V -  6jJt{W)
j,k J

and therefore

(VKV„, -  V„-VK -  V , *,])<>,. =  X  e7{T • t i jlW ) -  W  ■ (Oj&V) -  di,,([T,lT])}

+  I  ^{^ (K )c3 w(lT) -  c37 t(lT)cDti(F)}

=  Z +  Z « 7iA  tSJT.lT)}

=  X  e A ^ ^ ) -  ■ (4-21)

Notice that from (4.14) we have the relation

(R v,w e> e'y 4" (e, ^ =  0. (4.22)

Notice also that from the above it follows that the expression (R v>we, e'>
is a tensor, that is, at any point x  e  X , it depends only on the quantities
Vx,Wx,ex,e'x and not on the local fields V,W,e,e' extending them. Hence,
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given two tangent vectors V,W  at x  e X , the curvature gives a well-defined, 
skew-symmetric endomorphism

Rv.w '■ Ex * Ex (4.23)

called the curvature transformation associated to V  and W.

Suppose now that n :P  -+ X  is a smooth principal G-bundle over X , 
that p:G  -* SO, is a representation of G, and that

Ep =  P x p R"

is the associated riemannian vector bundle (cf. II.3). Then given a connec­
tion on P there is a canonical connection induced on P(Ep) as follows. 
Note that

P(Ep) =  P  x p SO,

where an element g e G acts on SO, via left multiplication by p{g). Given 
a connection t  on P, extend it trivially to P  x SO, and then push it 
forward to P x p SO,. One can easily see that this gives a connection tp 
on P(Ep).

There is a canonical, G-equivariant mapping

i : P  ► P(Ep) (4.24)

given by

P  *■ [(P,*)].
(where [(p,/t)] denotes the class of (p9h) e P x  SO„ in the quotient P(Ep).) 
If the representation p is faithful, the mapping (4.24) is an embedding. 
For simplicity we assume p to be faithful.

Proposition 4.7. Suppose co and ft are the connection and curvature forms 
on P respectively, and let cop and Qp denote the corresponding forms for the 
induced connection on P(Ep). Then, considering P cz P(Ep) as above, we 
have that

<»p| P = p*0>

and

where p * : g -> so, is the Lie algebra homomorphism associated to p :G  -*■ 
SO,.

Proof. This follows straightforwardly from the fact that the embedding
(4.24) is G-equivariant, i.e., that i(p • g) — i(p) • p(g). ■

We are now in a position to discuss the connections on Clifford and 
spinor bundles. Let E be an oriented riemannian vector bundle of dimen­
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sion n, and suppose E is furnished with a riemannian connection, i.e., a 
connection t  on PSo(^)* The Clifford bundle Cl(E) is associated to E by 
the representation (3.1):

cl(pn):SO n  ► Aut(C£(R")).

Therefore, by the construction above, r  induces a unique connection, t', 
on CZ(E). Note that since cl(p n) maps into the automorphisms of C£(R"), 
we have that the associated Lie algebra homomorphism is a map

ct(p„)*:son  ► Der(C£(R"))

where Der(-) is the Lie algebra of derivations; i.e., c£(/j„)+ has the prop­
erty that for each element A  e so„

{c Kfin)*A}{(p • ip) = {{cl(pXA}<p)-ip + (p -({c€(/7n)*A}\p) (4.25)

for all (prf e C£(R"). Recall, furthermore, that under the canonical iden­
tification C£(R") £  A*R", the representation cZ(pn) becomes A*pn. To­
gether with Propositions 4.4 and 4.7, this gives the following.

Proposition 4.8. The covariant derivative V on CZ(E) acts as a derivation 
on the algebra o f sections, i.e.,

V(<p • i//) =  (V<p) • +  cp • (Vtfr) (4.26)

for any Wo sections (p and ifr o f C 1(E),
Furthermore, under the canonical identification Cl(E) ^  A*(£), the co­

variant derivative V preserves the subbundles AP(E) and agrees there with 
the covariant derivative induced by the representation APpn (i.e., the usual 
covariant derivative).

Corollary 4.9. The subbundles CZ°(E) and C t1(E) are preserved by V. 
Furthermore, the “volume form” co =  ex • • • en is globally parallel; that is,

Vco =  0 .

Therefore when n s  3 or 4 (mod 4), t/ie eigenbundles CZ±(E) — {(ps Ct(E): 
co<p =  ±  (p} are also preserved by V.

Proof. The first statement follows from the fact that CZ°(E) s  Aeven(fs) 
and C£X(E) s  Aodd(£). The second statement follows from the fact that co 
corresponds to the unit section of A%E). ■

In the analogous way, Propositions 4.5 and 4.7 give the following.

Proposition 4.10. For any pair o f tangent vectors V and W  at x  s  X , the 
curvature transformation

R VtW:CZ(Ex)-> C l(E x)
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108 II. SPIN GEOMETRY AND DIRAC OPERATORS

is a derivation, i.e.,

Ry.wity ’ =  R y.w W )' & + (p ' R ytw(*A) (4.27)

for all (p,[j/ e C t(E x). Furthermore, R v w preserves the subspaces C l°(Ex), 
C ^ iE J  and C l ±{Ex.) as above.

Suppose now that E carries a spin structure £: PSpin(E) -+ Ps0(E) and 
let S(E) =  Pspin(^) x n M  be an associated real spinor bundle. Here M 
is a left module over CC(R") and p : Spin* -► SO(M) is the resulting repre­
sentation (cf. §3). The connection t  on PSo(E) lifts via the covering map 
£ to a connection f  on PSpin(E). This in turn induces a connection and 
therefore a covariant derivative on S(E). Recall (Proposition 3.8), that the 
sections of S(E) form a module over the sections of Cl(E).

Proposition 4.11. The covariant derivative V on S(E) acts as a derivative 
with respect to the module structure over C l(E ), i.e.,

V(cp • <j) =  (V<p) • a +  cp • (Vcr) (4.28)

/o r any section (p o f C l(E) and any section a o f S(E).

Corollary 4.12. I f  n =  3 or 4 (mod 4), the eigenbundles S ±(E) =  {q> e 
S(E): co(p = ±(p} are preserved by V.

Proof o f Proposition 4.11. The representations cl(pn)(  = Ad) and p pre­
serve the module multiplication, that is, p(g)((p * o) =  {ct(p„)(g)(p} • {p{g)o} 
for all g e Spin*, <p e  C£(Rn) and a e M  (see the discussion surrounding 
Proposition 3.8.) Differentiating at the identity, we get that for each element 
A e so* =  spirt*

{n*A}(<p ■ a) =  ({cZ{pXA}(p) • a + (p- {{p^A}a). (4.29)

The argument is now completed using Propositions 4.4 and 4.7 as before.
■

We also have the analogous statement for curvature:

Proposition 4.13. For any pair o f tangent vectors V,W  at x  g  X , the curva­
ture transformation

Ry,w • £(£*) * S(£x)

is a module derivation, i.e.,

Ry.wity * &) =  R y^ity) ' G 4r (p ' R y ^ o )  (4.30)

for all cp g  C l(Ex) and all a g  S(Ex). Furthermore, R v w preserves the sub­
spaces S ±(EX) when they are defined.
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§4. CONNECTIONS ON SPINOR BUNDLES 109

We shall now proceed to explicitly compute the connection and cur­
vature forms on S(£). To do this we need to examine the representation
ix.

Recall that sort is 'generated by the elementary transformations x  a  y;
x,y e R", given by the formula

(x a  y)(t;) =  <x, v}y  -  <y, v}x. (4.31)

From Chapter I, §6 , we have

H„(x a  y) = i[xo>]. (4.32)

That is, /c*(x a  y)(a) =  i[x ,y ] • a for all a e M. Recall that on Spin„, we 
have ct(pn) =  Ad. Hence,

c£(p„)** a  y = Ad** a  y = ad^x.,]. (4.33)

That is, Ad+(x a  y)(q>) =  i[[x,y],^>] for cp e C€(R"). Note that equation 
(4.29) follows immediately from (4.32) and (4.33).

Suppose now that 8  =  ( e „ . . .  ,e„) is an n-tuple of pointwise orthonor­
mal sections of E  defined over a contractible open set U  s  X .  8  is just 
a section of P s o (E )  over U ,  and it can be lifted to a section 8  of P Spin( E )  
over U .  There are two possible such liftings. They satisfy the relation:
£ o 8  =  8 .

The connection 1-form on P Spin( E )  is just the lift £*cw of the connection 
1 -form to on Pso(£). To obtain a formula of the type given in Proposition
4.4 we want to pull <**co down to U  by the local section 8 .  This “pull­
down” is just

co =  8*{£*a>) =  ( i  o 8)*(a>) = 8*(co).

Consequently, the scalar 1-forms <5y are just the 1-forms we obtained 
earlier by pulling down the connection co by the local frame field 8 .

Now for any spinor bundle S(E) we have a canonical embedding 
PspinC )̂ c  Pso(S(E))- Thus, 8  can be considered as a section of Pso(S(E)). 
Let co3 denote the connection 1-form on Pso(S(E)). Then to apply Propo­
sition 4.4 we want to compute cos =  8*(a>s). However, by Proposition 4.7, 
we know that cos restricted to PSpi„(£) c  Pso(S(£)) is just n ^*co). Con­
sequently, we have

c»s =  /i*c3.

Writing <5 =  -  £  c5 yej a  e} (cf. (4.10)) and using (4.32), we can rewrite 
this as i<J

<5S =  - h  E  <3rffij. (4.34)
i<J

(Note that since eu . . .  ,en are orthogonal, [eh e j  =  e ^ j — =  2 e ^ . )
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110 II. SPIN GEOMETRY AND DIRAC OPERATORS

Finally, we note that the embedding PSpm(£) c  Pso(S(E)) can be inter­
preted to mean that every point of P Spin(^) determines an orthonorm al 
frame in S(E). In particular, the local section $  determines a local section 
i f  =  (<jl9 . . .  ,crN) of Pso(S(£)). (The other choice of lifting $  just deter­
mines the negative frame — S f  =  ( — a l9. . . ,  — <rN).)

Combining the remarks above, we have the following.

Theorem 4.14. Let co be the connection 1-form on Pso(E) and let S(E) be 
any spinor bundle associated to E . Then the covariant derivative Vs on S(E) 
is given locally by the formula

where S  =  (el9. . .  ,en) is a local section o f Pso{E), c5 =  <?*(co), and where 
SP =  (or , . . .  9<jn) is a local section o f Pso(S(£)) determined by S .

Note . The frame field 6P =  (al9 . . .  9<rN) is, in fact, only determined up to a 
constant orthogonal change of framing, that is, up to a choice of ortho­
normal basis at some point. (This corresponds to a choice of basis in 
the module Af, i.e., on the matrix realization of the representation p )  This 
family of framings is characterized by the following property. For any 
/  =  (iu  . . .  ,ip), we have that eh • • • eipGj =  C \p k where the coefficients 
{Cjj} are constants.

An analysis similar to the one above can be carried out for the curva­
ture 2-form. Since curvature is a tensor, we do not need to be concerned 
in this case with the distinguished frame field S f  on S(E). Hence, the cur­
vature of S(E) can be expressed in the following very pretty way:

Theorem 4.15. Let Q be the curvature 2-form on PSo(E) and let S(E) be any 
spinor bundle associated to E. Then the curvature Rs o f S(E) is given locally 
by the formula

where & =  (eu  . . .  9en) is a local section o f P So {E )9 Q =  $*(Q) and where a 
is any section o f S (E ) .

In particular, for any two tangent vectors V and W  at x  e X 9 the curvature 
transformation R SV W: S ( E X) -+ S ( E X) is given by the formula

=  i  £  W ji <g> e te j ■ <ra (4.35)

RSff = i T i  %  ®  eiej ‘ a (4.36)

R-v,w(a) _  2 E  (R-v,w(ei)> ej ) eieja (4.37)

where R v,w curvature transformation o f Ex.
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§4. CONNECTIONS ON SPINOR BUNDLES 111

Note that the expression

v  —  i  X  ( R v , w ( e i)> e j ) e ie j  ( 4 .3 8 )
KJ

is independent of the choice of an orthonormal basis (eu  . . .  ,en) for Ex 
and is therefore invariantly defined. It is skew symmetric in V  and W . 
Consequently, can be thought of as a 2-form on X  with values in 
Cl(E). The formula (4.37) can now be succinctly expressed as

Rv,w(°) =  ^v ,w  * G- (4*39)

It is interesting to note that the arguments above can be carried through 
also for the Clifford bundle Ct(E) by using the equation (4.33). For tan­
gent vectors V  and W  at x e X  we define the invariant operator

^ v tw =  2  Z  (Rv,w(ei)9ejy&detej (4.40)
i < j

where, as before, (el9 . . .  ,en) is any orthonormal basis of Ex. We then ob­
tain the following expression for the curvature tensor on C£(£) £  A*(£)
in terms of Clifford multiplication.

Theorem 4,16. For any two tangent vectors V  and W  at x e  X ,  the curva­
ture transformation Ry W:C l(Ex) C l(Ex) is given by the formula

P ytwî P) = ytv,w(<p) (4-41)

where 9\y tW is the operator defined above in terms o f the curvature trans­
formation R VtW o f Ex.

It is an easy exercise to check that the restriction of the operator 
to Ex c= C £(£J agrees with R VtW. One need only verify that 2 [eiepe]  =  
(et a  ej)(e) for e e Ex.

Note that Theorem 4.16 does not depend on the existence of a spin 
structure on E . In fact, it does not even depend on the existence of an 
orientation on E.

We conclude this section with some remarks concerning the situation 
where E = T (X \  the tangent bundle of X . In this basic case we abbre­
viate notation by setting PsoPO =  Pso(T(X)), the (orthonormal) tangent 
frame bundle of X , and C€(2Q =  C l(T (X )\  the Clifford bundle of X .

Suppose now that P So (X ) is furnished with a connection, and let V 
denote the corresponding covariant derivative. Then there is an invari­
antly defined tensor field associated to V as follows. Let V  and W  be 
tangent vectors at a point x e X .  Extend them to local vector fields (i.e., 
local sections of T { X ) )  and consider the expression

T y , W =  V y W ~  V WV - [ V , W ] (4.42)
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112 II. SPIN GEOMETRY AND DIRAC OPERATORS

where [F ,IF ] is the Lie bracket. The value of T VtW at x  can be easily 
shown to be independent of the choice of vector fields extending Vx and 
Wx (see Helgason [1, Chap. I]). TVtW is clearly bilinear and skew-sym­
metric. It therefore defines a global 2-form on X  with values in T(X) called 
the torsion tensor of the connection. The following result can be found 
in any basic text in differential geometry.

Theorem 417. (The Fundamental Theorem of Riemannian Geometry). 
Let PS0(X) denote the tangent frame bundle o f a riemannian manifold X . 
Then there exists a unique connection on PsQ(X) with the property that its 
torsion tensor vanishes identically.

This connection will be called the canonical riemannian connection on 
X . It induces a canonical connection on C l(X ) s  A*(AT).

Note that if X  admits a spin structure {: P Spin(X) -+ P so (X ), then by 
lifting, we obtain a canonical riemannian connection on PSpin(Ar). This, 
in turn, induces a connection on any spinor bundle associated to PSpin(X).

This situation falls precisely into the general framework developed 
above. Thus any spinor bundle for X  is a bundle of left modules over 
C t(X), and the canonical covariant derivative is a derivation of the mod­
ule multiplication (see Proposition 4.11).

For most of the basic facts of riemannian geometry, the reader is referred 
to the general literature which is extensive and quite good. However, there
is one fact we use sufficiently often that it is worthwhile to cite it here.

Proposition 4.18. Let R  denote the curvature tensor o f a riemannian mani­
fold X , i.e., the curvature tensor o f the canonical riemannian connection on 
the tangent bundle TX . Then R satisfies the following identities:

Ru.yW  + R V,WU + R w,v V = 0, (4.43)

(Rv<vw, y> = <jrwju, vy (4.44)

for all tangent vectors U ,V,W ,Y  e  TxX , at all points x  e X .

§5. The Dirac Operators

Let X  be a riemannian manifold with Clifford bundle Cf(A'), and let S 
be any bundle of left modules over C£(Z) (i.e., a vector bundle over X  
such that at each point x  e  X , the fibre Sx is a left module over the algebra 
C£(X)x.) Assume S is riemannian and is furnished with a remannian con­
nection. Then under these general hypotheses, we can define a canonical 
first-order differential operator D : T(S) -*• T(S) called the Dirac operator
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§5. DIRAC OPERATORS 113

of S, by setting

t  v  V  (5.0)
j= 1

at x e  X 9 where e l9. . .  is an orthonormal basis of Tx(X \  where V 
denotes the covariant derivative on S determined by the connection, and 
where denotes the Clifford module multiplication. The operator D2 is 
called the Dirac iaplacian.

Recall that the principal symbol of a differential operator D : T(E) -> T(E) 
is a map which associates to each point x e  X  and each cotangent vector 
t; e T*(X)9 a linear map a^(D):Ex -* Ex defined as follows. If in local 
coordinates we have

0M
D =  £  A*(x) and £ =  £  Zkdxk,

|a|^m ox k

where m is the order of £>, then

°t(P) =  r  I  Ax(xK*.
\a\ = m

The operator D is elliptic if <x$(Z>) is an isomorphism for all ^ 0 (see
III.l for further details).

Recall also that the riemannian metric induces a canonical isomor­
phism between T(X) and T*(X). Throughout this section we shall con­
sider them as so identified.

Lemma 5.1. Let D be the Dirac operator o f the bundle S defined above. 
Then for any t; e T*(X) £  T(X) we have that

°&D) =  (5.1)

°i(D2)= m \2 (5.2)

where the symbol on the right denotes Clifford multiplication by the vector 
£ in (5.1) and the scalar \\^\\2 in (5.2). In particular, both D and D2 are 
elliptic operators.

Proof. Fix x e  X  and an orthonormal basis e l9. . .  9en of Tx(X). Choose 
local coordinates (x l9. . .  9xn) on X  at x such that x corresponds to 0 and 
e} corresponds to (d/3xy ) 0  for each j. Under the identification Tx(X) s  
T*(X) we have that e} also corresponds to {dxj)0 for each j.

For any local trivialization of S near x, we have that Vej =  {d/dxj)0 +  
zero-order terms. Hence, at 0 we have that D =  £  ej(d/dxj)0 +  zero-order 
terms. Consequently, for any cotangent vector £ =  £  £j(dxj)Q at 0, we 
have by definition of the symbol that cr^D) =  i £  efi} =  it;. This gives (5.1). 
Then o^(D2) =  <r4(D) o a^D) =  — t; • t; =  ||<̂ ||2, and the proof is complete.
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114 II. SPIN GEOMETRY AND DIRAC OPERATORS

We now observe that in light of the basic examples it is natural to 
require that the bundle S have certain additional properties. The first 
property is that Clifford multiplication by unit vectors in T(X) be or­
thogonal, i.e., that at each x e  X 9

<eal9e<72)  =  <crl9(r2> (5.3)

for all a l9cr2 e Sx and all unit vectors e e Tx(X). Since e2 = — 1, this is 
equivalent to the requirement that

<ieal9 cr2> +  ( a l9 ea2> =  0  (5 .3 )'

for all such a l9 a2 and e.
Recall (from the end of §4) that the bundle C£(2Q carries a canonical 

riemannian connection, whose associated covariant derivative will be 
denoted by V. O ur second requirement is that the covariant derivative 
on S (which we also denote by V) be a module derivation, i.e., that

V(<p • o) =  (V<p) • a +  cp • (V<j) (5.4)

for all <p e T{Cl{X)) and all a e T(S).
There is a surprisingly large and important collection of bundles with 

the properties described above. Although these bundles can be quite 
varied in nature, a substantial part of the theory concerning them can be 
treated in a uniform way. For this reason we introduce the following 
concept:

Definition 5.2. A Dirac bundle over a riemannian manifold X  is a bun­
dle S of left modules over C i(X )  together with a riemannian metric and 
connection on S having properties (5.3) and (5.4) above.

Before presenting examples of these bundles, we shall investigate some 
of their elementary properties. Note that any Dirac bundle S has a canon­
ically associated Dirac operator. Furthermore there is an inner product 
on F(S) induced from the pointwise inner product < v >  by setting

=  (5.5)

Proposition 5.3. The Dirac operator o f any Dirac bundle over a riemannian 
manifold is formally self-adjoint, i.e.,

(.Dal9<r2) =  (ai9Do2)

for all compactly supported sections <r1 and o 2.

Proof. Fix x e X  and choose an orthonorm al tangent frame field 
(el9. . .  9en) in a neighborhood of x so that (Veiej)x =  0 for all i j .  This can 
be done for example, by extending a frame at x  by parallel translation
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along geodesic rays emanating from x. Using properties (5.3)', (5.4) and
(4.14), we have that at x,

{d<j1,(j2}x = £  <cyv ej<r1,<t2}x =  <yejff1,ej(r2yx

=  -  <ffi,(Ve/e> 2 >  -  <^i»^Vei<r2>}x

=  - ' L ( e j < f f u e Ja 2 » x  +  < > i  , D a 2 >x
j

=  div(K)JC +  ( a 1,D a2) x 

where F  is the vector field defined by the condition that

<v,wy = -<<rltw-o2>
for all tangent vectors W. The last line in (5.6) is established as follows 

div(F)x = X  <VejV ,ej)x

=  £ { « / ^ > - < F , V . A >}x

= - ^ { eA i  ,ej-ff2y}x.
The first and last expressions in (5.6) are independent of the frame field 

,e„). Hence, we have established the equation

<Pa2,<f2y =  div(F) +  <<ru Do2y

on X . The proposition follows immediately. ■

Note that if X  is permitted to have a boundary dX, then the above 
argument proves that

(Dffi, a2) -  (<JU Dtt2) =  J0jf <v • <rlt a2y (5.7)

for compactly supported sections and a2, where v denotes the outer 
unit normal field to dX  in X.

It is a general consequence of the ellipticity of D that any weak solution 
to the equation Dty = 0 is of class C® (cf. Theorem 5.2(i) of Chap. III). 
Because of the formal self-adjointness this may be expressed as follows. 
Let Tcpt(S) denote the Frechet space of C°° sections of S with compact 
support. Then any continuous linear functional F  on rcpl(S) such that 
F(D<p) = 0 for all <p e Tcp,(S), can be represented as F(<p) = ((/>,&) where 
\j/ e T(S) and D\f/ = 0. In particular, any locally integrable section ^  of S 
which is orthogonal to Drcpt(S) (i.e., which satisfies the equation Dip =  
0 weakly), is of class C 00 and satisfies the equation D\p =  0 in the usual 
sense.

§5. DIRAC OPERATORS 115
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116 II. SPIN GEOMETRY AND DIRAC OPERATORS

Similar comments apply to D2.
With this in mind, we define ker D =  {q> e T(S): Dq> =  0} and ker D2 =  

{(p e r(S): D2cp =  0}, and observe the following:

Theorem 5.4. Let D be the Dirac operator o f any Dirac bundle over a com­
pact riemannian manifold X . Then

ker D =  ker D2

and this space has finite dimension.

Proof. Finite dimensionality is a direct consequence of elementary elliptic 
theory (cf. Theorem 5.2(ii) of Chap. III). For the rest, observe that 
D2(p =  0 => ||D<p| | 2  =  {D<pyDq>) =  (cpyD2cp) =  0 => D<p =  0. ■

The results above have an im portant extension to L2-sections of a Dirac 
bundle over any complete manifold. We begin with the following pre­
paratory lemma.

Lemma 5.5. Let D, S and X  be as above. Then for any f  e C°°(X) and any 
(p e T(S), we have that

D(f<p) =  (grad / )  • cp +  fD<p. (5.8)

Proof. D(fy>) = Y , e i '  v ej(f<p) =  Z ej{(ejf)<P + fVe,<P} =  (Z (ej f ) ej) • +
fD(p) =  (grad / ) ■<? +  fD<p. ■

Remark 5.6. The relation (5.8) immediately extends to distributional 
sections d> of S. To see this, consider (p e r cpt(S), and note that from (5.8) 
and (5.3)', ( / M ,  <p) = (4>, D(f<p)) =  (<D, (grad f)-< p +  fD<p) =  {D(f<D) -  
(grad / )  • <I>, cp).

We shall now consider the space L2(S) of L2-sections of S. This is the 
natural completion of T cpt(S) in the Hilbert space norm introduced above. 
We now consider D as a symmetric operator on r cpt(S) and take its closure 
(also denoted D), in L2(S). This gives us an unbounded operator in L2(S). 
Its domain dom(D) consists of all cp e L2(S) for which there is a sequence 
On>«°°=i c  r cpt(S) such that <?„-><? and D<pn -* if/ =  “Dcp" in L2(S).

There is another extension of this operator to L2 (S) which we shall 
denote D*. The domain of D* consists of all <p e L 2(S) such that the dis­
tributional image Dq> is also in L 2(S). Of course, dom(D) £  dom(Z)*).

We now observe that D* is simply the adjoint of D. Recall that \j/ e 
L 2(S) is in the domain of the adjoint D‘ if the function q> i-+ (D<p, \j/) is 
continuous on dom(D). Since dom(D) is dense, there exists a unique ele­
ment Dty e L 2(S) such that {Dcp, ip} = <cp, D'i^> for all cp e dom(D). Clearly 
D'tp is just the distributional image of \p under D, and so D‘ =  D*.
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§5. DIRAC OPERATORS 117

We now prove that on complete manifolds, any Dirac operator is 
essentially self-adjoint (cf. Wolf [1]).

Theorem 5.7. Let X  be a complete riemannian manifold and let D be the 
Dirac operator o f any Dirac bundle S over X . Then the closure o f D in 
L2(S) is a self-adjoint operator. Furthermore,

Proof. Fix x 0 e X  and let d(x) be a regularization of the distance func­
tion from x0. Choose x e C°°(IR) so that 0 ^  x ^  1> X(0 =  0 for t ^  2, x(t) =  
1 for t g  1, and |x'| S  2. Then set

We want to show that dom D =  dom(D*). It suffices to prove that 
dom(D*) c  dom(D) since the reverse inclusion is obvious. Choose q> e 
dom(Z)*) and define q>n =  x«<P for each positive integer n. Then by Re­
mark 5.6 we know that Dq>n =  (grad x„) * <P +  Xn&<P f°r each n• Clearly, 
XtP<P D<P in L2(S). Furthermore, if we let Bp denote the metric ball of 
radius p centered at x 0 in X , then

Consequently, D<pn -+ Dq> in L2 (S).
Thus, we are reduced to the case where cpedom(D*) has compact 

support. By a partition of unity over supp (p we can assume that <p has 
compact support in a local coordinate system. Here, using Fourier trans­
form methods, we can construct a parametrix for D, i.e. a pseudo-dif­
ferential operator P such that

where SP and £P' are infinitely smoothing operators, and where P, £P and 
i f 1 all have Schwartzian kernels supported near the diagonal. Observe 
now that since D cpeL2(S), there exists a sequence c  rcpt(S),
with support uniformly bounded in this coordinate neighborhood, such 
that 11/„ -> Dq> in L 2 (S). We then set q>„ =  + SP'<p and observe that
since the Schwartzian kernels of P  and are supported near the diagonal, 
each (smooth) <pn has compact support. That is, we have <<?„>"= t <= 
rcpt(S). From the relations above, we see that <p„ —> PD<p +  Sf'<p =  <p, 
and that D(pn =  DPi//„ +  D£P'(p = *!/„ — +  DSP'cp -* Dq> — SPDq> +
DSf'(p =  D(p (since, clearly, we have DSP' = £PD). This completes the 
proof of the essential self-adjointness of D.

ker(£>) =  ker(D2)
on L2(S).

X»{x) =  X H  * * )) .

||(grad Xn) ■ <p\\2 ^  j Bln- BnJ?  IHI2  °-'B2n-Bn n4

DP =  1 -  SP and PD = 9 ”
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118 II. SPIN GEOMETRY AND DIRAC OPERATORS

We now prove that ker(£>2) £  ker(£>). That is, we shall show that any 
(necessarily smooth) L2-section <p of S which satisfies the differential 
equation D2q> =  0, also satisfies the equation Dcp =  0. To see this, let 
X„ be the sequence of functions above and note that

and we conclude that ||ZD<p|| =  lim ||x„Z)<p|| =  0. This completes the proof.

Having discussed Dirac bundles in general terms, it is now time to look 
hard at some im portant examples. We begin with the basic ones.

E xam ple (an historical case). Let X  =  IR", euclidean n-space, and let 
S =  IR" x V where V is some finite dimensional module for C tn. In this 
case the Dirac operator is a constant coefficient operator (on F-valued 
functions) of the form

” d 
°  = i  y k g -

k =  1 OXk

where each yk is a linear map yk: V V  and where

l i l k  +  VkVj = - 2 S Jk

for all j,k. If we choose a basis for V, these yk s will be represented by 
matrices. The relations above imply that

where A =  — £  d2/d x f  is the positive laplacian in IR".
This particular operator has historical roots in physics. In the 1920s, the 

physicist P.A.M. Dirac was searching for a Lorentz-invariant first-order 
differential operator whose square would be the Klein-Gordon operator. 
Thus he was essentially led to search for a first order operator D of the

0 =  (D2(p,x2<p) =  (D<p, D(x2(p))
=  (D<p, 2xngrad(xn) ■ (p + xlD<p)
=  \\XnD<p\\2 + 2{x„D<p, grad(x„) • <p). 

Consequently, by the Schwartz inequality we have

||x„D<p| | 2  ^  2\\x„D<p\\ ||grad (x„)' <p\\-

Therefore,

\\x„D(p\\ ^  2||grad(x„)-<p|| g  t|fo»||,

n

IA ° \
D2 = A • IdK sd A .

\ 0  ’ ■ AI
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§5. DIRAC OPERATORS 119

form above which satisfied the equation D 2  =  A. Realizing that the yk s 
must be matrices, he was led immediately by this equation to the above 
relations, which we recognize now as the generating relations of a repre­
sentation of C in. See the beautiful book of Dirac [2] for a discussion of 
the physics.

It is illuminating to consider this euclidean operator in low dimensions.
Let n =  1, so that =  V=  C. Then we have

the generator of a basic semigroup of unitary operators on L2.
Let n = 2, so that C l2 =  K =  H ^ C © C .  The decomposition of H 

into €  ® C is natural and corresponds to the Z2-grading C l2 =  
C t2 © C l2. With respect to this Z 2 -grading, the Dirac operator inter­
changes even and odd parts. In particular if we identify C l2 and C i\  
with C by setting u +  ve2et =  u +  it? £  -f  ve2, then D = e^d /d x ^  +
e2{d/dx2) has the form

where d/dz =  d/dx{ -I- id/dx2. Thus, the Dirac operator on U2 =  C, con­
sidered as mapping even to odd spinors, is exactly the Cauchy-Riemann 
operator.

Let n =  3, so that C £ 3  =  H © D-D and V =  H. C £ 3  has two representa­
tions on H given as follows. Identify R 3  with Im(IHl), and let {ij,k}  be the 
standard basis of imaginary quaternions. Then the two representations 
are generated by letting i j ,k  act on either the right or the left in 0-0 . 
Choosing multiplication on the left, we get the following expression for 
the Dirac operator on H-valued functions

If we re-express left quaternion multiplication, with respect to the basis 
{l,ij,fc}, as 4 x 4 real matrices, then D becomes

^  .  d  .  0  ,  dD =  i -  h j    h fe —
dxt dx2 dx3'

/O —d1 —d2 — d3\

D =  I 1 ^ ^3 ^2 1
U  ^  0  - a j
\ a 3 — a2 o /

where dk s  d/dxk.

o - i J L
dx^
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120 II. SPIN GEOMETRY AND DIRAC OPERATORS

Let n =  4, so that C £ 4  =  H(2) and V = H 2  =  H © H. Here again the 
splitting corresponds to a Z2-grading of the module V, and D interchanges 
parts. To describe the full Dirac operator we consider first the following 
quaternion analogue of the Cauchy-Riemann operator. Identify R4  with 
H under the standard basis { 1  ,fj,fc}, and define the following operators 
on functions from H to H:

d _  d , d . d d d _  d . d . d d
dq dx0 +  1 dxx +  J dx2 +  dx 3  dq ~  dx0 * d xx J dx2 dx3

Then the Dirac operator can be expressed with respect to the splitting 
H © H as

Note the analogy with dimension two.
Note that left quaternion multiplication is always complex linear with 

respect to the complex structure given by multiplication by i on the right. 
Thus, left multiplication by i j  and k on H =  C 2  could be represented by 
complex 2 x 2-matrices <ru <r2 and a 3 respectively. Under this conven­
tion, the operator djdq becomes

The matrices ok can be chosen to be the classical Pauli matrices:

Note that these matrices generate the fundamental representation of C l3 
in complex form.

We could continue this analysis. For general n, one can calculate 
an enormous N x  N-matrix whose entries are linear combinations of 
d/dxu . . .  ,d/dxn. Here N  is on the order of 2". This matrix will have the 
property that its square is A I  where /  is the N  x N  identity matrix. How­
ever, this explicit form of D is seldom, if ever, useful. It is always simpler 
to use the structure of the Clifford module.

It is interesting to note that the concept of D as a generalized Cauchy- 
Riemann operator is a useful one. Let us fix a dimension n, and let D 
denote the euclidean Dirac operator acting on functions / :  R" -► V  where 
V is some fixed C£w-module. Recall that the fundamental solution for the

• - U  • )

8 d d d d—  _    b   b <72    b (T3   --- .
3x0  dx 2  3x 3

- f i  J >  - C  - J >  - C  0
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§5. DIRAC OPERATORS 121

Laplace operator on IR", for n >  2, is <p(x) =  c„/||x||" 2  for an appropriate 
constant c„. That is, we have

A <p =  <50

where S0 is the Dirac <5-function at the origin. Since D2 =  A • / ,  where I  
is the identity on V, we have that

<D =  D{(pl)

is the fundamental solution for D. That is,

DO =  50I.

From this one can derive very pretty analogues of the Cauchy Integral 
Formula, and the analysis of D becomes quite accessible.

We now examine Dirac bundles S over more general spaces. Let X  be 
an arbitrary riemannian manifold. Then there are two basic cases.

Example 5.8. (the Clifford bundle). Let S =  Cf(Ar) with its canonical 
riemannian connection, and view C£(2Q as a bundle of left modules over 
itself by left Clifford multiplication. (Note that Property (5.4) was estab­
lished in Proposition 4.8.) The Dirac operator in this case is a square root 
of the classical Hodge laplacian. Most of the remainder of this section is 
devoted to a detailed analysis of this basic case.

E xam ple 5.9. (the spinor bundles). Suppose X  is a spin manifold with 
a spin structure on its tangent bundle. Let S be any spinor bundle asso­
ciated to T(X). Then S is a bundle of modules over Cl(X), and as shown 
in §4, S carries a canonical riemannian connection which has property
(5.4) (see Proposition 4.11 and the discussion following Theorem 4.17). 
The Dirac operator in this case was first written down by Atiyah and 
Singer in their work on the Index Theorem. Finding this operator was a 
major accomplishment, and for this reason we shall call it the Atiyah- 
Singer operator.

Notation. For spin manifolds X  of even dimension we shall denote the 
(unique) irreducible complex spinor bundle by $c ; and when dim(Z) ^  3 
(mod 4), we denote the irreducible real spinor bundle by $. In both cases 
the Atiyah-Singer operator will be written $ .

These basic examples each generate large families of new examples by 
the following construction. Let S be a given Dirac bundle with connection 
Vs over a  riemannian manifold X , and let E be an arbitrary riemannian 
vector bundle with connection V£ over X . Then the tensor product S  <g> E 
is again a bundle of left modules over CCpQ, where for <p e  C£(2 f), o e  S 
and e e E, the module multiplication is given by setting

<p • (<x <g) e) =  (<p • o) <g) e.
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122 II. SPIN GEOMETRY AND DIRAC OPERATORS

It is clear that in the tensor product metric on S  ®  E  we have that this 
Clifford multiplication by unit tangent vectors on X  is orthogonal (i.e., 
Property (5.3) is satisfied). Furthermore, we can equip S ®  £  with the ca­
nonical tensor product connection, V =  Vs ®  V£, which is defined on sec­
tions of the form a ®  e by the formula

V(cr ®  e) =  (Vs(t) ®  e +  a ®  (V£e).

It is straightforward to verify that with this riemannian connection, the 
bundle S ® £  has the derivation property (5.4). Consequently, we have 
proved the following.

Proposition 5.10. Let S be any Dirac bundle over a riemannian manifold X ,  
and suppose E is any riemannian bundle with connection. Then the tensor 
product S ® E is again a Dirac bundle over X .

An interesting example of this construction is the following. Let X  be 
a spin manifold of dimension 8  k, and let $ be the canonical (real) spinor 
bundle of X .  Then under the above construction the bundle $ ®  $ is a 
Dirac bundle over X  in two canonical ways (by multiplication in the left 
or the right factor). It follows from the representation theory (see 1.5.18 
and IV.10.16-17) that

CC(AT) s  $ ®  $

where the two module structures correspond to multiplication on the left 
and on the right (by the transpose) in C£(X).

Similarly, in all even dimensions we have

C£(X) ® C 2  $c ®  $&

Rem ark 5.11. The construction above does indeed give rise to a large 
number of examples. As we shall see later (Remark III. 13.11), basically 
every elliptic operator on a spin manifold can be constructed, up to homo­
topy and degree shift, as a Dirac operator of the form D : T(S° ® E) -*■ 
IXS1  ®  E) where S = S° © S 1  is the complex Z 2-graded spinor bundle.

Note that in each of the basic cases above (Examples 5.8 and 5.9), the 
Dirac bundles and their associated Dirac operators are canonically defined 
in terms of the riemannian metric on X .  Hence, any mathematical objects 
constructed using these operators are invariants of the riemannian struc­
ture on X .

The remainder of this section will be devoted to an analysis of these 
operators. We begin with the Clifford bundle C£(X).

O ur first observation is that it is also possible to view C£(A) as a bundle 
of right modules over Cf(A') (by right Clifford multiplication). Property
(5.4) also holds for right multiplication. Hence, we can also define a “right-
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handed” Dirac operator D on C£(M) by setting

123

D c p = l  (Vej<P) ■ (5.9)
j= i

This operator is also elliptic and formally self-adjoint. The principal sym­
bol o((D) is just right multiplication by u*.

Recall now that there is a canonical isomorphism Cf(A') = A* ( T * ( X ) )  =  
A*(A"). The bundle A*(X) also has two canonical first order operators, 
namely the exterior derivative d : A * ( X )  -> A*(A") and its formal adjoint 
d * : A*pO -> A*(AT). This adjoint is given by the formula

d* =  ( - l ) Bp+n+1 *d* (5.10)

on App 0 , where *: A^X) -+ A"~p(2f) is the linear map defined by the 
condition that q> a  *\f/ = (<p, where * 1  is the volume form.

The Dirac operators and the exterior derivative are directly related as 
follows:

Theorem 5.12. Under the canonical isomorphism Cf(X) =  A*(X), the Dirac 
operators o f Ct(X) satisfy the following equations:

D ^ d  + d* (5.11)

D ^ i - l f i d - d * )  on A P(X). (5.12)

Consequently, since d 2 =  (d*)2 =  0, they also satisfy

D2 = D2 = dd* + d*d =  A (5.13)

DD =  DD. (5.14)

The operator A defined in (5.13) is called the Hodge laplacian.

Proof. Fix x  e X  and choose an orthonormal frame field (ei , . . .  ,e„) in a 
neighborhood U of x  with the property that (Vejej)x =  0. We first observe 
the following:

Lemma 5.13. The operators d and d* are given in U by the formulas

d  =  £ e j  a  V
j= 1

d * = - £ e j l V ej 

where “ l” denotes contraction in A*(X).

Proof. Both expressions are invariantly defined; that is, they are indepen­
dent of the choice of frame field (e1(. . .  ,en). To establish the first identity 
it suffices to show that the operator on the right satisfies the following
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axioms for d:

(i) d 2q> =  0
(ii) d(ip a  \p) = dcp a  ip + (— 1  )pcp a  dtp

(iii) d f  =  grad( / )

for all smooth functions /  and all smooth p-forms cp and #-forms ip. 
Property (iii) is obvious. Property (ii) is seen as follows:

d{(p a  i/0 =  £  e} a  [(Vej<p) A\p + cpA (V ,/) ]
7 = 1

=  dq> a  4- ( — 1 )p(p a  di//.

(Here we use the fact that V acts as a derivation on A*(X).) To prove prop­
erty (i) we first note that from the independence of the choice of frame 
field, it suffices to verify this at the point x where we have ('Veiej)x =  0 - 
Furthermore, by linearity it suffices to consider a q> of the form cp =  
aex a  . . .  a  ep where a is some smooth function in U. Then one easily sees 
that at x,

d 2<P =  £  ( |> jA ]a )^  a  ek a  e r a  . . .  a  ep.
p < j < k

Since [ejA ]* =  (Vejek — Vekej)x = 0, property (i) is proved, and the first 
equation is established.

For the second equation, we again consider <p = ae, a  . . .  a  Hence, 
at x  we have that

d{*q>) =  £  (eJa)eJ A ep+1 a  . . .  a  en.
j= i

Consequently, at x

*(d * < ? ) = £  (ep) * (fij a ep+1 a  . . .  a  e„)
7 = 1

=  £  ( - i y (p+i>+J~ l(eJa)e1 a  . . .  a  a  . . .  a
7 = 1

=  ( -  l )”( p + t  (e& ej L(e1 a . . .  a  ep)
7 = 1

=  ( - 1)"(P+1) t  ejL(Wejq>).
J=i

This completes the proof of Lemma 5.8. ■

We now recall that under the canonical isomorphism C£(A") = A*(X) we 
have that

e - (p ^  e a  <p — e i (p

(p ■ e = (— l)p(e a  (p +  e L <p)
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§5. DIRAC OPERATORS 125

for all e e A*P0 and all <p e  A%J0 (see the discussion at the end of §3 in 
Chap. I). Equations (5.11) and (5.12) now follow directly from Lemma 5.13. 
This completes the proof of the theorem. ■

This theorem has the following important consequences. On X  the space 
of harmonic p-forms is defined to be

H =  @  Hp =  ker(A).
p—o

Corollary 5.14. I f  X  is compact and without boundary, then

ker (D) = ker(D) =  ker(A)

In particular, under the isomorphism C l(X ) £  A*(AT), the kernels o f D and D 
correspond to the space o f harmonic forms on X ,

Note that by applying Theorem 5.7 to a non-compact complete mani­
fold we conclude that a differential form which is in L 2 is harmonic if and 
only if  it is both closed and co-closed.

In the compact case the harmonic forms are related to the topology of 
X  as follows. Consider the so-called de Rham complex:

o — ► r(A0*) r(A1x) r(A2x) • • •.

Since d2 = 0 we can form the quotient: J^*(X) =  [ker(d)/image(d)]*. The 
fundamental theorem of de Rham asserts that for each p =  0 , . . . ,  n9 j t f p(X) 
is isomorphic to / / p( f̂;IR), the pth singular cohomology group of X  with 
real coefficients.

Since we are given a riemannian metric, we can also consider the adjoint 
sequence:

o <—  r(A°x) + £ -  r(A‘x) r(A2*)  .

The fundamental result of harmonic theory is the following Hodge De­
composition Theorem (Corollary III.5.6):

Theorem 5.15. Let X  be compact, and without boundary. Then there is an 
orthogonal decomposition

T(A*X) =  H © Im(d) ©  Im(d*)

(where Im(-) denotes the image o f the operator on T(A*20). In particular 
there is an isomorphism

W  s  HP(X'M)
for each p =  0 , . . .  ,n.

A Note on Orientability. It is clear that orientability is not required for the 
definition of D, and so the spaces Hp can be defined for a non-orientable
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126 II. SPIN GEOMETRY AND DIRAC OPERATORS

manifold X. Moreover, if X  is compact the isomorphism Hp s  H P(X;U) also 
holds. This is proved as follows. Let n : X  -> X  be the two-fold, orientable 
covering manifold, and let F  =  {l,^r} =  Z/2Z denote the group of covering 
transformations of X . Then T  acts naturally on A*(J?). The subspace 
A?(X) of T-fixed elements is preserved by d9 and its cohomology is just 
the cohomology of X . (Orientability is not required for the de Rham Theo­
rem.) We claim that the inclusion of this cohomology into the cohomology 
of X  is injective. Suppose cp e A£(X) and cp =  dij/ for some ^  e A P̂ 1(X). 
Set \j/f =  %(\l/ +  Then tj/' e Af “ *(X) and since d commutes with g*9 
(p =  This proves the injectivity.

Given a riemannian metric on X 9 we lift the metric to X . The harmonic 
forms on X  lift to T-invariant harmonic forms on X 9 and every T-invariant 
harmonic form is such a lift. That is, H*(AT) ^  ’H.f(X). We now observe that 

corresponds to the subspace H$(X;U) <= H*(X;M). To see this we 
note that if (p is a harmonic form, so is g*(p. If cp is cohomologous to a 
closed T-invariant form, then q> and g*q> represent the same cohomology 
class. Hence q> =  g*(p. We conclude that H*(X) s  H£(X) =  H$(X;R) s  
H*(X;U) as claimed.

The fundamental identities (5.13) and (5.14), established above for the 
operators D and D, imply certain im portant identities for the curvature 
tensor. In particular we have the following.

Theorem 5.16. Suppose X  is a riemannian manifold, and let R denote the 
Riemann curvature tensor acting by derivations on the bundle C l(X ) s  
A*(X).Then for any element cp e C£(X),

where (el9. . .  9en) is any orthonormal tangent frame at the point in question. 
In particular, from  (5.15) we conclude that

Note . Since {e( a  ej}i<j represents an orthonorm al basis of A 2(X), the 
formulas above could be easily re-expressed without the use of (el9. . .  9en).

Proof. Let us fix a point x e X  and choose a local orthonorm al tangent 
frame field (el9. . .  9en) such that (Vej)x =  0 for each j. Then for any section

{ e iej R e,,ej(<P) ~  K u e fc t t e f i l}  = 0

S  eiRet.ej(<P)ej =  0 , (5.16)

(5.15)

Z e ie j R eitej(<P) =  ~  Z 
i < j  i < j

Ti Z R e u e j{ (p f]
L  i < j

Z ^’̂ e ie j(R ettej{fP)')m
L  i < j

(5.17)
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§5. DIRAC OPERATORS 127

<p e r(C£(J!0), we have at x  that

D2q> =  £  e,s? ei{eF ej<p)

=  E  e f i ^ ey ej<p
t j

= ~ E  Ve,Ve,<p + _£ «,e/veivej -  V„Ve>

=  ~ E  Ve,Ve(<P +  E  eiejRet,ej(<P)-
i i<j

Similarly, we conclude that at the point x,

D2<P= ~ E  Ve?et<P +  E  Ret,ej((p)ejet.
*' i<]

Since D2 =  D 2  (see (5.13)), we conclude that (5.15) holds at x , and therefore 
everywhere.

The second equation is proved similarly. We observe that at x,

DD(p = £  e $ ey ej<p)ej 
i j

DDq> =  E  et{Vê ei<p)e}.

Subtracting these equations and recalling that DD = DD completes the 
proof. ■

Since equations (5.15) and (5.16) are for Clifford elements, each con­
stitutes 2" scalar equations. They include the Bianchi identities (consider 
the A'-component.) They also include a large number of new identities 
for the curvature transformation of the bundle A*(X). These identities 
will prove useful in the Bochner-type vanishing arguments presented in 
§8-

We now examine some of the basic operators on C£(2Q and analyse 
their relationships with D and D. Recall that C£(X) carries a canonical 
bundle mapping

a : C t(A ') ►CepQ (5.18)

which is, on each fibre C£(X), the algebra automorphism extending the 
map — 1 on Tx(X). Since a 2  =  1, we obtain a decomposition

CKX) =  C£°(Z) ®  C P(X ) (5.19)

where Cl°(X) and C i  ‘(AT) are the 1 and — 1 eigenbundles of a respectively. 
Under the isomorphism C€(Z) =  A*(Ar), we have C£°(X) & Aeven(A') and 
C P p Q  s  Aodd(2f). For any non-zero vector e e  Tx(X) left (or right) Clif­
ford multiplication gives an isomorphism e:C ix(X) 4  C£‘pf). Hence, 
if X  admits a nowhere vanishing vector field, i.e., if the Euler characteris­
tic of X  is zero, then the bundles C l°(X ) and C t^X ) are isomorphic.
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128 II. SPIN GEOMETRY AND DIRAC OPERATORS

There is a second canonical bundle mapping

L : C £(X )-----► C£(X) (5.20)

which on C€X(AT) is defined by the formula L{<p) =  —£ "= i ej(Pej for any
orthonormal basis eu . . .  ,e„ of T x(X). This map is globally diagonalizable
and yields the canonical bundle decomposition

C£(X) =  ©  Ap(Z). (5.21)
p—o

In particular,

L  =  ( — l)p(n — 2p) on AP(X) (5.22)

for each p =  0 , . . .  ,n (see Chap. I). Clearly a and L commute, and their
composition satisfies

a o L =  L o a =  (n — 2p) on Ap(2 f) (5.23)

for each p.

Finally, we consider the section co of A"(X) <= Cl(X) given at each point 
x by setting

co = e1 ■ ■ ■ e„ (5.24)

where e „ . . .  ,e„ is any positively oriented orthonormal basis of T x(X).
Since co is independent of the choice of basis we may for any x e X  choose 
local fields eu . . .  ,e„ such that (Ve,-)* =  0 for each i. This shows that

Vco =  0. (5.25)

The section co satisfies the relations
ft(n + 1)

co2  =  (— 1) 2  (5.26)

coe =  (— l)"-1 cco (5.27)

for any section e of T(X) <= C€(X).
We now define a canonical bundle map

Xa :C l(X )  > Cf(Z) (5.28)

by setting

Xa(<p) =  co • cp.

If n =  3 or 0 (mod 4), then 22  =  1 and we have a decomposition

C l(X ) =  C £+(Ar) ©  C C ( I )  (5.29)

where C £±(AT) are the ±  1 eigenbundles of Xw. From (5.27) we see that for
any non-zero vector e e Tx(X) at any point x, left Clifford multiplication
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§5. DIRAC OPERATORS 129

gives isomorphisms:

e :C l± (X ) ----- ► C l* (X )  if n =  0 (mod 4) (5.30)

e : C l$ (X )  ► C l± (X) if n =  3 (mod 4). (5.31)

The bundles C t^ X )  can be explicitly written as

C £±(X) =  (1 ±co)Cl{X). (5.32)

Each such bundle is evidently a submodule under right Clifford 
multiplication.

The above construction is particularly important since it generalizes 
immediately to any Dirac bundle S over X . Again we have a bundle 
isomorphism

A* : S  >S (5.33)

and a corresponding decomposition

S =  S + © (5.34)

where S ± =  (1 ±  co) • S. Moreover, for any non-zero e e Tx(X \  the for­
mulas analogous to (5.30) and (5.31) hold.

Note that for n == 1 or 2 (mod 4), A* =  — 1. Hence if we complexify 
S and consider the operator iXm we obtain a splitting S ® C =  
(S (g) C)+ © (S <g) C)“ . In these dimensions, Aw defines a complex struc­
ture in S, and this splitting is the usual (1,0), (0,1 ̂ decomposition for the 
complex structure.

Let us turn our attention back to the Clifford bundle C£(2Q and ex­
amine some of the elementary properties of the operators defined above.

Lemma 5.17. The operators a, L and Â , satisfy the following relations

(i) aL — La =  0
(ii) aAm +  (— l)"_ 1 Ama =  0

(iii) LAm + ( - 1 ) ^  =  0.

Proof, (i) was observed above. For (ii) we note that a(coq>) =  a(co)a(<p) =  
(— l)"a>a(<p). For (iii) we see that by (5.27), L(axp) =  — £  efixpej =  
—(— l ) " - 1  X  <oe^pej =  (—iyt~1(oL,(<p). m

It follows from (iii) and (5.22) above that A^A^X)) =  A"_P(X). In fact 
Xa is related to the .-operator (cf. (5.10)) as follows:

, . .p (» -p )+ y  P(P+1)
(D(p =  ( — 1) z *q>

! for <f> 6  AP(Z).
,  ..tjKp+d <p(o = {—1) ♦•P

(5.35)
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To see this it suffices to consider q> =  • • • ep. Then *(p = ep+1- • • e„ and
the computation is easy.

Lemma 5.18. The operators a, L and Xa considered as sections o f 
Hom(Ct(X),Ct(X)), are globally parallel. That is,

[V ,a] =  [V ,L] =  [V,Am] =  0.

Proof. That a is parallel follows from the fact that —1 is parallel in 
Hom(T(X),T(X)) and V is a derivation. That Xa is parallel follows from
(5.25). For L  we fix a point x e X  and choose a local orthonorm al frame 
field eu . . .  ,e„ such that (V e^  =  0 for each j. Then at the point x, V(L<p) =  
- V  E  ej<pej= - £  {(Vej)(pej+ e/V<p)e7 + ^ (V e j)}  =  -  E  efi7(p)ej=L(V(p). 
This completes the proof. ■

Corollary 5.19. The subbundles A P(X) and C l ±(X) (when defined) are 
preserved by covariant differentiation.

We now examine the relationship of these operators to the Dirac 
operators.

Proposition 5.20. Let D and D be the Dirac operators on C-E(X) defined 
above. Then the following relations hold

(i) Da +  aD =  Da + txD =  0
(ii) DXa +  (—1 TXJ> =  DXm — X J)  =  0

(iii) DL + LD = 2D; DL + LD = 2D.

Corollary 5.21. The operator A =  D 2  =  D2 satisfies the relations

[a. A] =  [Xm, A] =  [L, A] =  0.

In particular we have that Xa \ W  ^  H"-p. This is the Poincare Duality 
Isomorphism.

Proof o f  Proposition 5.20. We shall consider only D. The arguments for 
D are similar. Let <p be a section of Cf(A'). Then using the lemmas above, 
we have

(i) D(aq>) =  £  ejVefixq>) =  £  e/*(Ve.<p)
j j

= eF e jv j  =  —<*{D<p)

(ii) D(cocp) =  E  ejVe/co<p) =  E  efoV e}q>

=  ( - l)n_lo> E  e}Vejq> =  ( - 1)"- l(oD<p

130 II. SPIN GEOMETRY AND DIRAC OPERATORS
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(iii) D(L<p) =  £  ejVej{Lq>) =  £  ejL{Vej<p)

=  eM^ej<p)ek

= - i ( - e ke j -  2Skj)(V (p)ek 
J.*

=  —L(D(p) + 2D(q>).

This completes the proof. ■

The above arguments carry directly over to the following case.

Proposition 5.22. Let S be any Dirac bundle over X . Then the Dirac opera­
tor on S satisfies the relation

Dxn = ( - v r - xx j ) .

We shall conclude this section with some remarks on the variation of 
the Atiyah-Singer operator under changes of metric.

Notice that all of the standard bundles of riemannian geometry—the 
tangent bundle, the cotangent bundle, and their tensor products— have 
structure group GLn(lR). They exist independently of any metric con­
siderations. In fact, the introduction of a riemannian metric amounts to 
a (simultaneous) reduction of the structure group of these bundles to SO„.

When X  is a spin manifold, the situation for the canonical spinor bundle 
of X  is completely different. The spinor bundle itself depends on the choice 
o f riemannian metric.

This last statement can be made precise as follows. Let PGL+(2 Q be the 
oriented frame bundle of X  and suppose that dim(2Q =  n >  2. Denote by 
GLn+ (IR) GL^ (IR) the 2-fold, universal covering group of GL„+ (IR). Since
X  is spin, there exists a principal G Ln+ (R)-bundle Pst+(X) with a 6 1 w+ (1R)- 
equivariant bundle map P s i+(X) -> PGl +(X). Introducing a riemannian 
metric gives a reduction of the structure groups and a commutative 
diagram

PspJX)  — > PSi+(X)

§5. DIRAC OPERATORS 131

Pso(X) ------- > PgA X )

Now one could hope for the existence of a finite dimensional represen­
tation <j:GL^(IR) GL(V) whose restriction to Spinn is an irreducible
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132 II. SPIN GEOMETRY AND DIRAC OPERATORS

spinor representation. The associated vector bundle

S =  P& +(X) x .  V

would then be the canonical spinor bundle, and choosing a metric on X  
would induce a metric on S (as in the case of the tensor bundles.). This 
would give us a fixed vector bundle on which we could consider a family 
of Atiyah-Singer operators associated to each variation of the riemannian 
structure on the base. Unfortunately, this hope cannot be fulfilled.

Lemma 5.23. The Lie group GL * (R) (n >  2) has no finite dimensional 
representations other than those which descend to GL * (IR).

Proof. Considerable subgroup SL„(R) c  GL+ (R) and its 2-fold, universal 
covering group SLW(R) c  GL* (R). Since SL„(R) contains the kernel of the 
homomorphism GL+ (R) -► GL+ (R), it will clearly suffice to prove the 
assertion for this subgroup. Let (p: SLW(R) -> GLN(R) be any Lie group 
homomorphism. Let <?*: sl„(R) -> glN(R) denote the associated Lie algebra 
homomorphism, and consider its complexification <p̂  ® C : sl„(C) -» 
gljv(C). Since SL„(C) is simply-connected, the elementary theory of Lie 
groups tells us that (g) C is induced by a homomorphism of Lie groups 
O : SL„(C) -+ GLiV(C). It follows that

V  == ® |sl„(R)

in a neighborhood of the identity. By the uniqueness of analytic continua­
tion this identity holds everywhere, and so the representation descends 
to SL„(R) as claimed. ■

Note that the argument just given does not apply to the conformal 
group C„ =  {g e GLw(R) : 0  =  Xg0 for X e R + and g0 e SOw}. Indeed, con- 
formal changes in the metric on the base manifold can be lifted to a fixed 
spinor bundle, and one can study there the associated change in the 
Atiyah-Singer operator. A basic and im portant fact is that the Atiyah- 
Singer Dirac operator remains essentially invariant under all conformal 
changes of the metric.

We now make this last statement precise. Fix a riemannian spin mani­
fold X  with metric <•,•>, and consider the conformally related metric

< v > '  =  *2M<V>

where u is some smooth function on X . Let X* denote this riemannian 
manifold with metric <*,•)'. To each orthonorm al tangent frame $  =  
{el9. . .  ,en} on X  we can associate the orthonormal frame =  
{ei , . . .  9e'H} on X', where e'j =  exp( — u)ej for each j. This gives us an SOn- 
equivariant map \j/ : ^ s o W  -* Pso(X') which lifts to a Spin„-equivariant
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§5. DIRAC OPERATORS 133

map

^ S p in P O — ^►PspinPO (5.36)

between principal Spinw-bundles. (We have chosen the spin structure on 
X ' which is topologically equivalent to the one given on X .) For any 
fixed spinor representation p : Spin* SO(M) we have associated spinor 
bundles S =  PSpin(X) M  and S' =  PSpinPO and the maP (5-36) 
gives us a bundle isometry

♦S '. (5.37)

We now modify this isometry by setting

¥  =  ^  (5*38)

The resulting map : S -► S' is a bundle isomorphism which is conformal 
on each fibre. The basic result is the following:

Theorem 5.24. Let 0 : T(S) -► T(S) and 0 ’ : T(S') -» T(S') be the canonical 
Atiyah-Singer Dirac operators defined over the conformally related riemann­
ian manifolds X  and X ' respectively. Then

0 ' = ' ¥ o 0 o '¥ - '  (5.39)

Corollary 5.25. Let 0  and 0 ' be as in 5.24. Then

dim(ker 0) =  dim(ker 0').

In other words the dimension o f the space o f harmonic spinors remains con­
stant under pointwise conformal changes o f the riemannian metric.
Note. Suppose we have a decomposition S =  S +© S “ defined by a canon­
ical volume element as in the next chapter. Then Corollary 5.25 applies to 
each of the operators 0 + and 0~> that is, dim(ker 0 ^  =  dimfkerO^')1)-

Proof o f Theorem 5.24. We have two metrics <*,*> and <*, ) '  defined 
on the same vector bundle T  =  T X  =  TX*. Let V and V' respectively de­
note the associated canonical riemannian connections. It is straight- 
foward to verify that for vector fields V and W  we have

Y yW  =  Vv W  +  {V-u)W  + (W -u)V  -  <F,MOgrad(u)

where the gradient is taken in the metric <*,•). (Check the axioms.) Sup­
pose now that S  =  {eu . . .  ,en} and ^(<?) =  {e^,. . .  9e'n} are local ortho­
normal frame fields for < v  > and <*,*>' respectively, and let (on =  (S7eh ef) 
and co'ji =  be the associated 1-forms. One easily finds that for
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134 II. SPIN GEOMETRY AND DIRAC OPERATORS

any tangent vector V,

=  coji(V) + (e, ■ uK V ,ej> -  (ej • uKK.e,).

The local tangent frame field S  = {eu . . .  ,en} determines a local frame 
field i f  =  {au . . .  ,aN} for S. Similarly, S '  =  { e \ , . . .  ,e'„} determines a 
frame field i f '  =  { a \ , . . .  ,a'N} for S' where a) = tj/„(Oj) for each j. From 
(4.35) we see that the induced connections on S and S' are related as 
follows:

Since grad(«)- V = — F-grad(w) — 2<grad(u), F>, we conclude the 
following.

Lemma 5.27. Let Vs and Vs denote the riemannian connections on S and 
S' respectively. Then

i j

= i ̂ {Z Ki(F) + (̂ XF,̂ -) - (ejuKKe êwJj 

=  </'/. | v k ff« +  i  (grad(u) ■ V — V- grad(u))<r„j.

Vs' = 0 j v s -   ̂F-grad(u) -   ̂{V ■ u)j ° l .

Corollary 5.28.

0 j #  +  ^  (« -  l)grad(u)j o ^  1

We now observe that for any constant, a,

$(eaV) =  eaM̂ < r  +  a £  (ejU)ej(rJ

=  eau{$o  +  agrad(u) • o),

and therefore

=  \f/„ ° ( f l  + i  (n -  l)grad(u)J ° ^  1  =  ■
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§6. FUNDAMENTAL ELLIPTIC OPERATORS 135

§6 . The Fundamental Elliptic Operators

In this section we shall use the Clifford bundle and its modules to sys­
tematically derive the fundamental elliptic operators in riemannian geom­
etry, that is, the Euler characteristic operator, the signature operator, 
and the Atiyah-Singer ,4 -operator.

The basic construction is the following. Let S be a Dirac bundle with 
Dirac operator D over a riemannian manifold X , and suppose that S is 
Z 2 -graded. This means that there is a parallel decomposition

S =  S° 0  S 1 (6.1)

so that C£'(AT) • SJ £  Si+J for all i,j e Z2. From the definition (5.1) of the 
Dirac operator it is clear that D is of the form

n f °  D l \ 
\D °  0 )

where

D° : r(S°) ►TfS1) and D1: ^ 1) -----► r(S°). (6.3)

Since D is self-adjoint, we see that D° and Dl are adjoints of one another.
The ellipticity of D established in §5 implies that each operator Dk is 

also elliptic. In fact, the principal symbol of Dk at a cotangent vector £, 
is simply Clifford multiplication by i£, that is,

<j((Dk) =  i£-: Sk  ► Sk+1 for k e Z 2 (6.4)

(see Lemma 5.1). Since f  • £ =  —1||||2, we see that a£Dk) is an isomorphism 
for £ #  0. It is a fact that over a compact manifold, the kernel and cokernel 
of an elliptic operator P are of finite dimension, and a basic invariant of 
P is its index which is defined as

ind P — dim(ker P) — dim(coker P). (6.5)

Since D 1 is the adjoint of D°, there is an isomorphism ker(Z)1) s  coker(D°), 
and so we have that

ind D° =  dim(ker D°) — dim(ker D 1). (6 .6 )

From (6.2) it is clear that

ker D = ker D° 0  ker D1. (6.7)

In particular, if D is injective, then ind D° = 0.
Whenever X  is oriented and even-dimensional, we recall (cf. (3.1 l)ff) that 

there is an im portant method for introducing a Z2-grading on any Dirac 
bundle S. Let oic be the complex volume element, given in terms of a posi­
tively oriented orthonormal tangent frame (eu . . .  ,e2m) by

<uc s  imei • • • e2l (6.8)

(6.2)
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where 2m = dim(Ar). This is a globally defined section of C£(A") =  
Ct(X) ®  C with the following properties.

V t o c  =  0 ,  ( 6 .9 )

col = 1, (6.10)

a)ce =  —ecoc for any e e T X .  (6.11)

Property (6.9) follows easily from the derivation property (4.26) of V. (Fix
x  e X  and choose e /s  with (Ve/X =  0.). For the rest, see Proposition 3.3
of Chapter I.

Suppose now that S is a Dirac bundle over X  (complex if m is odd). 
Then S has a decomposition

S =  S + 0  S~ (6.12)

into the + 1  and — 1 eigenbundles for multiplication by coc . These bundles
can be simply expressed as

S ± =  (1 ±  <oc)S. (6.13)

From (6.9) we see that this decomposition is parallel, and from (6.11) we 
see that for any e e T X ,

e- S ± S  S*. (6.14)

This means that after identifying S° with S + and S l with S~, the decom­
position (6.12) gives a Z2-grading on S.

We now examine some im portant examples of this construction.

Example 6.1 (the Euler characteristic operator). Let X  be a compact 
riemannian manifold and consider the basic case where

s =  ct{x) =  c f 0(z) e  ce1^ )

(cf. (3.2)). By Theorem 5.7 we see that under the canonical isomorphism 
C£(2 Q s  A*(20, the operator D °: r(C£°(A')) -» r(C £ 1 (X)) corresponds to 
the operator

d + d*: r(A even(Z ) )  ► r(A odd(X)).

Consequently, we have

ind D° = dim Heven -  dim Hodd
=  the Euler characteristic of X .

Example 6.2 (the signature operator). Let X  be a compact, oriented 
riemannian manifold of dimension 4 k and consider again the basic case

S s  C£(X) =  C l +(X) ©  C £-(Z )

136 II. SPIN GEOMETRY AND DIRAC OPERATORS
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where the Z2-grading is now given as above by the complex volume ele­
ment coc  =  (—l)*co (see (6.12) and also (5.26)ff). There is a corresponding 
decomposition

ker D =  ker D + © ker D~.

Since coc is parallel, it preserves ker D and the subspaces ker D ± are just 
the ±  1 eigenspaces under multiplication by a>c on ker D. That is,

ker D ± =  (1 ±  coc)ker D.

Now, under the canonical isomorphism C£(X) = A*{X) we know that 
ker Z) =  H =  H° ©  • • • ©  H4k, the space of harmonic forms (see Corollary 
5.9). Furthermore, under this isomorphism, left multiplication by <uc cor­
responds to the Hodge *-operator, that is, for <p e A P(X),

* + £<£Zii
o > c '9 - ( - i )  2  *9 (6.15)

(see (5.35)). Consequently, for each p =  0 , . . .  ,2k we have an isomorphism

eoc :Hp - — *■ H4*-p.

This, in turn, implies that the space H(p) =  Hp ©  H4*-p, for p < 2k, has 
a decomposition

H(p) =  H +(p) © H -(p)

where the subspaces H ±(p) =  (1 ±  coc)H(p) are of the same dimension. Since 
ker D ± =  H* =  H*(0) © • • • ©  H ±(2k -  1) © (H2fc)±, where (H2 * ) 1  =  
(1 ±  ®c)H2k, we conclude that

ind D + =  dim(H2<c)+ -  dim(H2i)"
=  sig(X).

For this last statement we recall that the signature of X , denoted sig(AT), 
is defined to be the signature of the quadratic form

Q W d) =  9  a  *!> =  ([<p] u  W K M )

on H 2* s  H lk(X;IR). Since * =  wc in dimension 2k and since

Jx <p a  *<p =  ||<p||2,

we see that this signature is just the difference of the dimensions of the 
+1 and — 1 eigenspaces of * on H 2\

Example 6.3 (the Atiyah-Singer A-operator). Let X  be a compact rie­
mannian spin manifold of dimension 4k and consider the complex spinor 
bundle $c with Dirac operator 0 . We split $c = ©  $c under the

§6. FUNDAMENTAL ELLIPTIC OPERATORS 137
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138 II. SPIN GEOMETRY AND DIRAC OPERATORS

complex volume element as above. Then it is a consequence of the Atiyah- 
Singer Index Theorem in Chapter III that

ind (p+) =  A{X)

where A{X) is a rational Pontryagin number of X  called the ,4-geiiiis. We 
shall examine this invariant in detail in §11 of Chapter III; however, some 
discussion of it is in order here.

The ,4-genus has an im portant multiplicative property like that of the sig­
nature. If X  and Y  are compact oriented manifolds. Then

A (X  x Y) =  A(X) x A(Y). (6.16)

The ,4-genus is, in general, not an integer. For example, for a compact 
4-manifold X , it is a fact that

-A ( X )  =  l-  sig(Z) =  ^  Pl(X) (6.17)

where p x(X) is the first Pontryagin number of X . In particular, for the 
complex projective plane P2(C), we have ff 2(P2(C)) £  Z and so the sig­
nature is 1. It follows that ,4(P2(C)) £  —1/8.

The index of an elliptic operator is, of course, an integer. Hence, we 
conclude the following result (cf. Atiyah-Hirzebruch [1]).

The A-genus o f a compact spin manifold is an integer. (6.18)

Note also that from (6.17) we retrieve the basic fact that the signature of 
a spin 4-manifold must be a multiple of 8  (see Corollary 2.12 and the fol­
lowing discussion).

An important set of spin manifolds with non-zero y4-genus is provided 
by the hypersurfaces V 2n(d) of complex projective space P2w+1(C) (see 
Example 2.7). Recall that the manifold V 2n(d) is spin if and only if the 
degree d is even. It is a fact that (cf. Lawson-Michelsohn [1])

2  “ 2nd n
A (V 2n(d)) =  — —  n (d2 -  (2k)2). (6.19)

(in  -t- lj! *=i

Thus, each of the spin manifolds V2a(2d), for d > n, has non-zero A- 
genus. Taking products of these gives further examples by (6.16).

Each of the fundamental examples above gives rise to a family of as­
sociated operators by the process of taking “coefficients in a bundle.” This 
works as follows. Let S = S° © S 1  be a Z 2-graded Dirac bundle as before, 
and let E  be any riemannian bundle with connection over X . Then the 
bundle

S ® E =  (S° ®  E) 0  (S 1  ®  E) 

is again a I 2-graded Dirac bundle over X  (see Proposition 5.10).
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§7. CVLINEAR OPERATORS 139

Example 6.4. Let S =  C£(X) =  C £+(AT) ® C l "(X) be as in Example 
6.2. Then for any bundle E over X  we can construct the twisted signature 
operator : T(Ct+P0 <g) E) -> r(C£“(X) ® E) whose index is

sig(X;E) =  {ch2E • L(X)}[X].

This formula is explained in detail in Chapter III.

E xample 6.5. Let $c = $c ® $c be the complex spinor bundle of Ex­
ample 6.3. Then for any bundle E over X  we can construct the twisted 
Atiyah-Singer operator : r(S£  ® E) -> T(S^ ® E) whose index is

A(X;E) s  {ch E • A(X)}[X].

Again see Chapter III for details.

§7. C lfc-Linear Dirac Operators

There is a variation of the constructions given above, due to Atiyah and 
Singer, which has proved to be very important in riemannian geometry. 
To introduce the concept we return to a point mentioned earlier (in 
Example 3.7). Let PSpin(X) be the principal Spinn-bundle of an n-di- 
mensional spin manifold X . Then from the representation t : Spinn -► 
Hom(C£„,C€„) given by left multiplication, we have the associated vector 
bundle

$ (* )  =  ^spin x , a „ .  (7.1)

Since right multiplication commutes with we see that there is a right 
action of the algebra C tn on the bundle <$(X) which preserves the fibres. 
This action makes <$(X) a bundle of rank-1 C tw-modules.

The idea now is to construct elliptic operators and an appropriate index 
theory which take into account this action of C ln.

We shall begin with the construction of such an operator in the basic 
case of <&(X). Note first that the action of Ct„ on <$(X) clearly commutes 
with Clifford multiplication by elements of C€(^T).

Since ^ (X )  is associated to PSpin{X)9 it carries the canonical riemannian 
connection, and as such it is clearly a Dirac bundle over X . In fact, as a 
vector bundle <$(X) is simply a direct sum o f irreducible (real) spinor bundles 
o f X . (This comes from the decomposition of into irreducible modules 
under left-multiplication.)

The right action of C tn on &(X) is parallel in the riemannian connec­
tion, i.e., for any section a e T($(AT)) and any element q> e C ln9 we have 
V(<r • <jp) =  (V<r) • (p. (This is evident since the holonomy in <$(X) is left 
multiplication by elements of Spinn. It can also be seen directly from the 
methods of §4.)
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140 II. SPIN GEOMETRY AND DIRAC OPERATORS

From the definition (7.1) we see that the decomposition C in =  Cl„ ® 
Cl„ gives rise to a parallel decomposition

$ (X )  =  <$°(X) ®  & (X )  (7.2)

which is not only a Z2-grading over the bundle C£(2 Q but also over the 
free C£w-action. That is, we have

& (X ) • C li  g  & +j(X) (7.3)

for all i, j  e  Z2.
Since <$>(X) is a Dirac bundle it carries a canonical Dirac operator 

which, with respect to the decomposition (7.2) is of the form

s> =  ( °  * l )
v  \t> ° o )

Furthermore, this operator commutes with the action o f Cl„. To see this, 
note that $(<r<p) =  £  efs/ej(o<p) =  £  (e/Vcy<j)cp =  t>(o)(p9 since multiplica­
tion by q> is parallel and commutes with multiplication by elements from 
Cl{X). This operator $  is called the C£n-linear Atiyah-Singer operator of 
X.

We now proceed as above and consider the restricted operator

$ ° : r ( $ ° p o ) — ► r ( W ) ) .

From (7.3) and the paragraph above we conclude the following:

Lemma 7.1. The operator ©° is a real, elliptic first-order operator which 
commutes with the action o f  C£° =  C€n_ j  on <$(X) — <jS°(X) © $ x(20-

This construction is sufficiently im portant that we shall axiomatize it.

D efinition  7.2. By a C£k-Dirac bundle over a riemannian manifold X  
we mean a real Dirac bundle ® over X , together with a right action 
C£k ^  Aut(<3) which is parallel and commutes with multiplication by 
elements of C£(2 0 .

This can be thought of as a Dirac bundle which carries “scalar multi­
plication” by C lk. Notice that a Cf j -  or Cl2-Dirac bundle is just a com­
plex or quaternionic Dirac bundle respectively.

D efin itio n  7.3. A C£k-Dirac bundle ® is said to be Z2-graded if it 
carries a Z2-grading ® =  <5° © ® x as a Dirac bundle, which is simulta­
neously a Z 2-grading for the C£k-action (that is, (7.3) is satisfied).

Any C£k-Dirac bundle <3 has a canonically associated Dirac operator 
© which commutes with the C£k-action. If <5 is Z 2 -graded, then © de­

(7.4)
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§7. CCfc-LINEAR OPERATORS 141

composes as in (7.4), and we get an elliptic operator

® ° : r ( ® ° ) ----► T (®1) (7.5)

which commutes with the action of C£k £  C£*-i-
When X  is compact, we can directly define an analytic index for such 

operators as follows. Since ©° commutes with C£k £  C lk- U the kernel 
of ©° is a finite dimensional C tk- i -module, and thereby k e r © 0  deter­
mines an element in the Grothendieck group SOI*-! of such modules. 
Consider now the residue class of this element in where i* is
induced by the homomorphism i^ :C lk^ x CCk determined by the in­
clusion map i:R k~ x ^  Rk. Recall (from Chap. I, §9) that these quotient 
groups are naturally isomorphic to the KO-groups of a point.

D efinition 7.4. Let ® =  ®° © S 1 be a Z2-graded C£k-Dirac bundle 
over a compact manifold. Then the analytic index of the Dirac operator 
© °:r(® °) -► n ® 1), denoted by indk(©°), is the residue class

We recall that the groups KO  *(pt) are the same as the stable homotopy 
groups of the orthogonal group, that is,

A standard argument shows that this index is constant under deforma­
tions of the operator. One of the deepest aspects of the work of Atiyah 
and Singer is the computation of this index topologically (see III. 16). The 
applications of this result are among the most far-reaching in all of dif­
ferential geometry. For this reason we devote the remainder of this section 
to a detailed examination of such operators particularly in the cases of 
fundamental interest in geometry.

We begin with a remark which will be useful when studying the multi­
plicative properties of the operator. Recall from Chapter I (Proposition 
5.20) that there is a natural equivalence between the category of (ungraded) 
modules over C l k- l and the category of Z2-graded modules over C tk. 
This equivalence induces a natural isomorphism

where as before 9Rk denotes the Grothendieck group of finite dimensional 
Z2-graded R-modules over C lk. The map from the graded to the ungraded 
case is given by taking the even part.

Given now a Dirac operator © : T(®) -► T(®) as above, we see that 
ker(©) is a Z2-graded C£k-module. The even part of ker(©) is exactly

[ker ©°] e s  K 0 “k(pt).

Z fc =  0 (mod 4)
K O ' \ pt) =  Z 2  k =  1 or 2 (mod 8 )

0  otherwise.
(7.6)

(7.7)

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



142 II. SPIN GEOMETRY AND DIRAC OPERATORS

ker(T>°). This gives the following:

A lternative D efin itio n  7.4. Let ® =  ®° © S 1 be a Z2-graded C tk- 
Dirac bundle over a compact manifold. The analytic index of the Dirac 
operator ® of ® is the residue class

Via the isomorphism (7.7) this index coincides with the index [ker S>°] 
given in Definition 7.4.

This second definition is actually more natural and is im portant for 
understanding the multiplicative properties of the index. With this second 
definition we see that the Clifford index generalizes the classical one in 
that ind0(-) =  ind(-) =  dimR(ker*) — dimK(coker-). To see this, note first 
that C t0 =  R and Cf^ =  C. A Z2-graded C£0-module is just a pair of real 
vector spaces V° © V 1. Now [V  © 0] =  — [0 © K] in because
V © V =  V ®  C extends to be a graded C ix-module. Consequently, 
ind0(©) =  [ker ©° © ker I ) 1] ^  [ker ©° © 0] — [ker I ) 1  © 0] as claimed.

R emark  7.5. All of these constructions could be carried out in the 
complex category. One could consider complex C lk-Dirac bundles, etc. 
Here the index will be valued in

Unfortunately, this leads to nothing essentially new, so we have con­
centrated our attention on the real case.

Some examples are in order. The first and most illuminating one comes 
by taking the “C£*-ification” of an ordinary elliptic operator.

E xam ple  7.6. Let S =  S° © S 1 be an ordinary real Z2-graded Dirac 
bundle over a compact manifold X 9 and let

be its Dirac operator. We now consider an irreducible real Z 2-graded 
module V =  V° © V 1 over the Clifford algebra C ik, and take the tensor 
product

where V is here considered as the trivialized bundle V  x X  X . This 
bundle is, in a natural way, a Z 2-graded C lk-Dirac bundle. The grading 
® =  ®° © S 1  is given by

®o =  (S° ® V°) © (S 1  ®  V1) and S 1  =  (S° ®  V 1) © (S 1  ® V%

[ker ©] e m k/ i m k+1 s  K O ~k(pt).

K- Hnrt = F  Uk  ‘S CVen
( 0  if k is odd.

^  f o  D l \
\D °  0 )

® = S ®  V
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Of course, multiplication by C lk takes place on the F-factor. The asso­
ciated Dirac operator 2> on ® is simply the extension of D, i.e.,

<S = D 0 IdK.

Consequently, we have that

ker ©° =  ((ker D°) 0  V°) 0  ((ker D 1) 0  F 1),

and therefore

{ker D 0} =  b0{V 0} +  b ^ V 1} eaw *-!

where b, =  dimR(ker Dj). In passing to the quotient ®lk_ i/i*®tk we see 
that [F °] =  — [ F 1] since F° 0  F 1  is a C fk-module. (Caution: one must 
show that F° 0  F 1  can be made a C£k-module in such a way that F° 
and F 1  are invariant subspaces under the subalgebra C€k_ j c  C tk. This 
requires a case by case check modulo 8 .)- Hence,

ind*($°) =  (b° -  ^ [ F 0] =  ind(D°)[F°] e K O ~k(pt),

and since [F0] generates this group for each k (see 1.9) we conclude that

ind D° if k s  0 (mod 4)
indt®° =  - ind D° (mod 2) if k =  1 or 2 (mod 8 ) (7.8)

0  otherwise.

This formula shows that, as one would expect, nothing essentially new 
can be found by this trivial construction. The interesting examples are 
those where the C£k-structure is more intrinsic to the geometry. This is 
the case in the following:

E xample 7.7 (the Kervaire Semicharacteristic). Let X  be a compact 
oriented (riemannian) manifold, and take ® to be the Clifford bundle 
C l(X) =  C t°(Z) 0  C £‘(X) (considered as a Z2-graded Dirac bundle as 
in Example 6.1). If X  has dimension 4 /  +  1, then @ is naturally a C f r  
Dirac bundle as follows. Consider the oriented volume form co = 
ei "  ' e4 < ? + 1  ° f  X . This form is parallel and satisfies co2 =  — 1. Hence, right 
multiplication by co in C€(2Q makes C€(2f) a C £k-Dirac bundle. Since co 
is of odd degree, right multiplication by co interchanges Cf°(2f) and 
CZi(X). Hence, CC(X) is Z2-graded as a C€j-Dirac bundle. Hence, the 
operator 2>° =  D° s  (d +  d*)|A.v.„ has an index in X O _ 1 (pt) ^  Z2. To 
compute this index we want to find the residue class of ker ®° if SK0 / i ’"9Jl1. 
Since C f t s  C and C i0 = IR, we easily identify 9R0  as the Grothendieck 
group of equivalence classes of real finite dimensional vector spaces, and 
SJlj as the complex analogue. Hence is given by spaces of even
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144 II. SPIN GEOMETRY AND DIRAC OPERATORS

dimension, and we clearly have

ind^® 0) =  dimR(ker D°) (mod 2)
=  dimK(Hcven) (mod 2)

=  V  b2j(X) (mod 2)

where b,{X) denotes the fth Betti number of X . In other words, ind^© 0) 
is exactly the Kervaire semicharacteristic of X , a basic cobordism invariant 
of an oriented (4/ +  l)-manifold.

Note that in order that the volume element co have square — 1 and be 
of odd degree, one is restricted to dimensions 4 /  +  1 .

It should be pointed out that an exactly analogous construction fails 
for the signature complex (Example 6.2), since the subbundles C f ±(Z) =  
(1 ±  coc)Cl(X) are each invariant under right multiplication by any 
Clifford element. Hence, this is never a grading for right multiplication.

We now pass to an example which illustrates this construction.

T h e  F u n d am ental  C ase (the Atiyah-Milnor-Singer Invariant). Let X  
be a compact spin manifold of dimension n, and let <&(X) =  <56°(AT) ©  
^ J(2f) be the Z2-graded C£„-Dirac bundle given by (7.1). It is a conse­
quence of the Atiyah-Singer theorem that ind„ =  ind„(©°) is a spin cobor­
dism invariant of X , and in fact gives a graded ring homomorphism

This homomorphism coincides with the one defined homotopy-theoreti- 
cally in (3.22). We shall return to this in Chapter III.

Because of their fundamental nature, it is useful to examine these Ct„- 
spinor bundles &(X) in some detail. We begin with the simplest case where 
n =  8 fc.

Consider an irreducible real left module V8k for the Clifford algebra C f8l. 
Let V8k denote the right C£8fc-module obtained from V9k by simply 
multiplying by the transposed element, i.e., by setting v • <p =  q>* • v for 
<p e C lSk and v e V8k. Then there is an isomorphism of bimodules

To see this we recall from Proposition 5.18 of Chapter I, that in all even 
dimensions we have the complex bimodule isomorphism

K O -*( pt). (7.9)

C t8fc =  vBk ® v8k. (7.10)

C« «  =  v$k ®  Vc2k (7.11)

where V2k denotes the irreducible complex C€ 2 4 -module and where 
C l2lc = C l2k C. The assertion (7.10) follows from (7.11) since in dimen­
sions 8k the complex case is simply the complexification of the real one.
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We conclude from (7.1) that in these dimensions

<$(X) = PSpin X e C i8k =  PSpin x A8|e<g) ! (V8k ® Fgfc) (7.12)

“  ( P Spin X A8fc V*k) ®  8̂k

=  $(X) <g> v8k

where #(2Q denotes the real spinor bundle of X 9 and where ^ 8  k now be­
comes the constant (trivialized) Vsk bundle.

Recall now that has two inequivalent Z 2 -gradings, obtained one 
from the other by interchanging the factors. Either one gives the same 
Z2-grading on the tensor product Vek 0  V8k, and the bimodule isomor­
phism (7.10) is a Z2-graded one.

We are now exactly in the situation of Example 7.6. That is, =  
0  0  IdK, where 0  is the Atiyah-Singer operator on spinors. We can there­
fore read off from (7.8) that

ind8*($°) =  ind(0°) =  A(X). (7.13)

The situation in dimensions 8 fc +  4 is very much similar. The principal 
difference is that in these dimensions the irreducible real module 
for CC8 * + 4  is also the irreducible complex module; that is,

V8k+4 =  [ n * +4]K. (7.14)

(Recall that C f 8 t + 4  is a quaternion, and hence also a complex, matrix 
algebra.) From  (7.11) we know that F 8 * + 4  0 C F 8 t + 4  s  £
Cfgk+ 4  ® r C, which yields the real bundle isomorphism

2 C e 8 t + 4 S  n t+ 4 0 c k * +4. (7.15)

This implies, as above, that there is an isomorphism of real Z2-graded 
C f8t+4-bundles

2 $(X ) s  #C(X) 0 C ^ 8 * +  4 (7.16)

where $C(X) is the complex spinor bundle of X  and K8 / t + 4  is the tri­
vialized bundle. Hence, we have that 2t> — 0 C ®c Idpc. Using (7.14) and 
the arguments above, it is not difficult to see that

ind8*+4($°) =  iA(X). (7.17)

Notice that implicit in equation (7.17) is the fact that in these dimensions 
the 4-genus of a spin manifold is an even integer. A direct proof of this can 
be given by observing that the Atiyah-Singer operator in these dimensions 
is quaternion linear, and so the complex dimensions of its kernel and 
cokernel are even. This fact, in dimension four, is just Rochlin’s Theorem 
2.13.
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We now examine this index in the interesting cases where it is an integer 
modulo 2. We begin with dimension 8 k +  1 and the observation that from 
the classification of Clifford algebras we have

+ 1  =  Cfs* ® C s= CZ8k 0  i Cfgt- (7.18)

In fact, the element i in this algebra corresponds exactly to the volume 
form co = et - e8k+1, which is clearly central and has co2 = — 1. Thus,
the decomposition in (7.18) gives the Z 2-grading on C l8k+l. In particular, 
we have

Cfs*+i =  C f8k and C£*k+j =  co Ct°8k+1 =  i C i8k. (7.19) 

These isomorphisms show that

^8 * + l =  ^8 * ®  C =  Ig* 0  iV8k 

^ 8 * + l =  ^8* a n d  ^8ft+ 1 =  ^8lt + 1 
=  W8k•

Combining this with (7.11), we find that

c f8 * + i= c e 8t = v8k ®c v8k
=  (V8k 0  C) 0 C (Fgt ® C)
=  ( n . , +i ® C )  ® c (Fgit+i 0  C)

=  ( ^ +i ® C ) ® K ^ + 1

== ^8*t+l ®R ^8k+l-

This implies as above that

<S5(2Os&2O0R Fg* + 1  (7.22)

and that $  = p  ® Idp0. It follows immediately that ker(£>°) =  
H° 0  Fg* + 1  where H° =  ker(|)0). Thus we have that

ind8t+1(!?>0) =  dimRH° (mod 2). (7.23)

This index can be reinterpreted in more elementary terms as follows. 
Observe that from the discussion above, we have in these dimensions 
that the spinor bundle is the complexification of a real bundle, i.e., 
$(X) =  $ 0 pf) © co $°(X). We can construct from the Dirac operator 
|> ° : r 0 °(X)) -+ T ^ P O ) ,  an operator

P : r ($ ° (X )) -----► r$ ° P O )  (7.24)

by setting

P = co -0 ° .  (7.25)

This operator is elliptic and skew-adjoint. To prove the skew adjointness, 
we note that since co is parallel, commutes with 0  and satisfies co2 — — 1 ,
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we have (P<x, r) =  (cd0 og9 t) =  (co20°(t, cot) =  — ($°<7,cot) =  — ((7,0°cot) =  
—(<r, a)|)0T) =  — (a, Pt).

It is an elementary fact that the parity of a real skew-adjoint Fredholm 
operator is conserved under deformations (cf. III. 10). Thus for a skew- 
adjoint elliptic operator P  on a compact manifold, the mod-2 index

indZz(P) =  dim(ker P) (mod 2) (7.26)

is well defined. The result (7.23) can be reexpressed as

ind8*+1($°) =  indZ2(P) (7.27)

where P  is given by (7.25).
In the final case of dimension 8fc +  2 there is a strongly analogous

situation. Here we have from the classification of Clifford algebras that

C^8 t + 2  =  Cfgjt ® H and Cfg ) [ + 2  =  Cfgjt ®  C, (7.28)

and V°8k+2 s  V8k ® C. (7.29)

Using (7.11) one can deduce from here that

Cfsk + 2 =  ^8k + 2 ^8* + 2
=  ^8t + 2 ®C ^8* + 2-

It follows as before that

«(X ) £  &X) ® c V%k+2 (7.31)

with respect to which $  s  P ®  Id*?. Consequently, ker ($°) =
ker(0°) ® c Vtk+2, and so

ind8lk+2 (?>0) s  dimc(ker 0°) (mod 2). (7.32)

Now since the representation f*8k + 2 is H-linear, the bundle #(AT) carries 
a parallel quaternion structure, i.e., there are parallel endomorphisms /, 
J, K  of #(X) which satisfy the standard quaternion relations: I 2 = J 2 — 
K 2 =  - 1 ,  IJ  + J I  =  IK  + K l  =  JK  + K J  =  0. The Z2-grading on $(X) 
can be written in terms of these as

f(X )  =  A * )  0  (7.33)

We can then define a skew-hermitian operator

P  =  J  o 0 °

on the bundle $°(X), and as before we have

ind8k+2(t)0) =  ind22(P) (7.34)

where indZ2(P) = dimc(ker P) (mod 2).
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148 II. SPIN GEOMETRY AND DIRAC OPERATORS

We shall now examine this mod 2 index of the Atiyah-Singer operator 
in low dimensions. The computations here are of some importance since, 
as we shall see, the map ind* : f2*pln -+ K O '* (pt) is a ring homomor­
phism, and the non-zero element rj e  K O ~ 1(pt) has the property that: y\x 
and rj2x  are not zero whenever x  is an odd multiple of the generator in 
degree 8/c.

E xam ple 7.8 (the circle as a spin manifold). Consider the circle S1 with 
a riemannian metric. The oriented orthonorm al frame bundle is canon­
ically diffeomorphic to the circle itself, i.e., P soC^1) =  S1, since there is 
exactly one oriented unit tangent vector at each point. A spin structure 
on S 1 is a 2-fold covering Espin^1) -► PsoiS1) of the circle. As we noted 
in Chapter I, there are two such coverings, one connected and one with 
two components; and it is the non-connected covering S1 x Z2 -> S 1 
which is not spin-cobordant to zero. We shall refer to this as the interesting 
spin structure on S1.

Notice that since C ^  ^  C we have that

^ (S 1) =  S l x C
where the product structure gives the connection. Of course C£? ^  R 
and the Z2-grading on C l l is the standard decomposition C =  R ® iR. 
Thus, ^ ( S 1) =  S 1 x R and ^ ( S 1) =  S 1 x iR. Sections of <£> are just 
complex-valued functions f(s) on the circle, and the Dirac operator is 
simply

* - ‘S  (M»
where s is arc-length on S 1.

The kernel of ?!>0 :r(<£0) -* T ^ 1) is the set of real-valued constant 
functions on S1. The dimension of this space as a C l°  ^  R module is one. 
Hence, we have that for the interesting spin structure on S1,

in d ^S 1) ^  0, (7.36)

i.e., in d ^S 1) is the generator of K O ~ x(pt) £  Z 2.

E xercise. Show directly that ind2 =  0 for the “uninteresting” spin struc­
ture on S1. Show also that the connected sum of the intersecting spin 
structure with itself is the uninteresting one.

E xam ple 7.9 (the torus as a spin manifold). Let I  =  S1 x S1 be the flat
square torus. The oriented orthonorm al frame bundle is canonically
trivialized

P s o ( T )  = T x S K
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§7. CVLINEAR OPERATORS 149

The spin structure on T  given by squaring the interesting spin structure 
on the circle is the covering:

PSpi»(T) =  T x S1 - 5 ^  T  x S1 =  P ^ T ) .

Since C l2 =  H and Cl% ~  C, we see as before that $ (T ) =  T x H  
and $ °(T ) = T x C .  The kernel of $ °  is just the complex-valued constant 
functions, and we conclude that

ind^S 1 x S V  0 (7.37)

where S l carries the interesting spin structure.

Exercise. Compute ind2 for the remaining spin-structures on T.

Exercise. Prove directly that ind2(S2) =  0.

It is a good time to summarize what we have established so far. To 
each riemannian spin manifold X , we have associated the canonical bundle 
<$(X), given in (7.1). This is a Z2-graded C tw-Dirac bundle and its Dirac 
operator has an index, which we denote ind*(X) in K O ~k(pt). We have 
proved the following.

dimcH (mod 2) if n =  1 (mod 8)
dim^H (mod 2) if « s  2 (mod 8)

ifn  s  4 (mod 8)
M X ) i f n s O (mod 8)

Theorem 7.10. Let X  be a compact spin manifold o f dimension n. When 
n =  1 or 2 (mod 8), let H =  ker(|>) denote the space o f real harmonic spinors, 
that is, the kernel o f the Atiyah-Singer operator on the irreducible real spinor 
bundle o f X . Then

in d „ (X )H

Furthermore, for the interesting spin structure on S 1 and for its square on 
S1 x S l, this invariant is non-zero.

We shall now investigate the multiplicative properties of ind*. To begin 
we recall the ring structure on KO~ *(pt) which was discussed in Chapter 
I, §9. We set

rj =  the generator of K O ~ l{pt) £  Z2

y  =  the generator of K 0 ~ 4(pt) s  Z ► (7.38)

x =  the generator of K 0 ~ 8(pt) s  Z

Then the multiplicative structure on KO~ *(pt) is given by the following
(cf. 1.9):

KO  *(pt) £  Z[ti,y,x~\/<2ri, i/3, rjy, y 2~  4x> (7.39)
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where the grading is fixed by the requirement that deg(rj) =  1, deg(y) =  4 
and deg(x) =  8.

O ur next result is that ind* is, in fact, a ring homomorphism. M ore 
specifically, we mean the following. The homotopy invariance of the index 
shows that ind„(X) is independent of the choice of riemannian metric on 
X . (Any two metrics are smoothly homotopic.) We consider then the free 
abelian group M®pin generated by spin-structure preserving diffeomor- 
phism classes of connected spin manifolds. The sum M |pin =  © „  M®pin 
is naturally a graded ring under the direct product of manifolds.

Theorem 7.11. The mapping

in d , :M*pin ► K O - *(pt)

is a surjective graded-ring homomorphism.

Proof. The map ind* is additive by definition. To prove that it is 
multiplicative, we use the Alternative Definition 7.4 of the index. Let -Yj 
and X 2 be compact riemannian spin manifolds of dimensions and n2 
respectively. Let t>k: T ( ^ )  -*• r(<$*) be the Atiyah-Singer operator for 
the C€„k-Dirac bundle <$>k =  <£(.Yfc) defined in (7.1), for k =  1,2. Let t>\ 
T(<$) -* r((jS) be the corresponding object for X  = X t x X 2 with the 
product riemannian and spin structure. For this structure we have

PSpla(X 1 x X 2) => P srJ X ,)  x Z2 PSpJ X 2)

where Z 2 acts by ( - 1 , - 1 )  on the product. From here one sees easily, 
using (7.1), that

$  =  <§> $2 (7.40)
the exterior Z 2-graded tensor product. This is a Cf„1+„2 =  (C£Bl ® C£„2)- 
Dirac bundle, and one can straightforwardly verify that with respect to 
(7.40), the Atiyah-Singer operator of $  can be written as

t> = $>i ® Id2 +  a x ® t>2

where :C£„, -» C£ni is the automorphism extending —Id on IR"1. Since 
<*!$! +  =  0, it follows that

t ) 2 =  $ f ®  Id2 +  Id t ®  t>\.

Each of the operators $>2, and is non-negative, self-adjoint and 
elliptic over a compact manifold. It follows from standard spectral theory 
that ker($>2) =  ker($?) <g> k er($ 2). Since ker($);) =  ker($>2), we conclude 
that
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§7. Cek-LINEAR OPERATORS 151

where the tensor product in (7.41) inherits the structure of a Z 2-graded 
tensor product of Z2-graded Clifford modules from the structure of (7.40). 
This graded tensor product is exactly the multiplication in KO~* ^  

Thus, we have established that

indBl+BJ($>) =  indS|( $ 1)m d .,($ 1)

and so ind^ is a ring homomorphism.
To see that ind* is surjective we need only show that it maps onto the 

set of multiplicative generators {rj9y9x} given in (7.38). Example 7.8 shows 
that the circle with interesting spin structure maps onto rj. The K3-surface 
Y  given in Example 2.14 is a compact spin 4-manifold whose A-genus is 2. 
Hence, ind4(7) =  jA (Y )  =  y. Finally, to produce a spin 8-manifold X  with 
ind8(20 =  x, we must find one such that A(X) =  1. For this one could take 
X  =  M®, the almost parallelizable 8-manifold of index 224 constructed 
in Kervaire-Milnor [1]. Alternatively, one could take the 4-disk bundle 
E over S4 with x(E) =  1 and p ^E )2 =  900. Then dE =  S7, and the mani­
fold X  =  E u S7 D89 obtained by attaching an 8-disk along this boundary, 
is a closed spin 8-manifold with A(X) =  1 (see Milnor [7]). This completes 
the proof of Theorem 7.11. ■

R emark  7.12. To prove the index theorem for this fundamental case, it 
remains only to prove that ind* is a spin-cobordism invariant. It will 
then descend to a ring-homomorphism ind%: 0^pin -► KO  ” *(pt), which 
can be seen to agree with the map (3.22) directly. (For the torsion part, 
this requires some argument.)

It is worth noting that all of the above could be carried out with 
coefficients in a vector bundle. Let X  be a compact riemannian spin mani­
fold of dimension n, and let £  be a real vector bundle over X  with an 
orthogonal connection. Then the bundle ^(2f) ® E is naturally a Z2- 
graded C£w-Dirac bundle with a Dirac operator which we shall denote by 
t>E. We shall denote

in d ^X )  =  i n d M  e XO “ "(pt). (7.42)

Now we also have the fundamental real spinor bundle $ over X  and we 
can take the tensor product $ ® E  in the spirit of Example 6.5 above. 
We denote the Dirac operator on $ ® E by 0 E. Then arguing exactly as we 
did above proves the following.

Theorem 7.13. Let X  be a compact spin manifold o f dimension n, and let E 
be a real vector bundle over X  with an orthogonal connection. When n =  1 
or 2 (mod 8), let H £ =  ker(|>£) denote the space o f real harmonic E-valued
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152 II. SPIN GEOMETRY AND DIRAC OPERATORS

spinors. Then

ind£(X) =

dimcH £ (mod 2) if n =  1 (mod 8)
dimMH £ (mod 2) if n =  2 (mod 8)
i(c h  E • A(X)}[X] if n =  4 (mod 8)
{ch E • A(X)} [X ] if n m 0 (mod 8)

A topological computation of this index can be given as follows. Embed 
X" <= Sn+8k for k sufficiently large, and identify the normal bundle v of X  
with a tubular neighborhood of the embedding. The spin structure on X  
determines a unique spin structure on v (via Proposition 1.15 and the 
uniqueness of the spin structure on Sn+8k). Let $ +(v) and #~(v) denote the 
canonical real spinor bundles of v (whose dimension is 8k). Lift ^  ±(v) to 
the total space of v by the projection n : v -*• X , and at each non-zero 
vector « e v  consider the isomorphism p„:n*$+(v) n*$~(v) given by
Clifford multiplication by n. Then the difference element

r v =  0 * # +(v), Tt*$~(v);p]

represents a class in the relative X  O-group KO{v, v — X), where l e v  
is the zero-section. This is the KO-theory Thom class of v.

Given a real bundle E over X , we can consider the class

t v(£ )  =  r v • \ n *E~\ e KO(v, v — X).

Since v is embedded as a domain v c: Sn+8k, we have an excision isomor­
phism j:K O (v, v -  X )  s  KO(Sn+8\  Sn+Sk ^ X ) .  Composing this with the 
natural map i^KO(Sn+8k,S n̂ j k -  X ) ->■ KO(Sn+8k) and applying Bott 
Periodicity ji:K.O(Sn+8k) =  KO(Sn) =  K O -n(pt), we obtain a class

J E{X) =  o i oj(Zv(E)) e KO  ""(pt)

One assertion of the Atiyah-Singer C ffln d ex  Theorem, proved in III. 16, 
is that

Theorem 7.14.

ind^X ) =  ^ £(X).

The “cobordism invariance” in this case asserts that this map ind =  s i  
determines a transformation

^ , : D 8pin(B O ) ► KO~*{ pt)

where £2*pin(BO) denotes the spin-bordism of the space BO.

R em ark  7.15. It is interesting to note that in dimensions 1 and 2 (mod 8), 
the index can be changed even by twisting with a flat bundle. (This is not
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§8. VANISHING THEOREMS AND APPLICATIONS 153

true of the usual index.) For example consider the non-trivial real flat line 
bundle {  over the circle (the Mobius band). Using the analysis of Example 
7.8, one easily finds that ^ (S 1) <g) t  s  £ ©  it. Since the kernel of =  
i(d/ds) consists of locally constant sections, we see that ker ($ ,)  =  (0} and

ind^S1) =  0.

Recall that ind^S 1) #  0.
This sensitivity to flat bundles is a reflection of the interesting fact 

that these (mod 2)-invariants are not local, i.e., they cannot be computed 
by universal formulas involving only the local data of the operator, as 
in the Gauss-Bonnet and Chern-Weil theorems. Another indication is 
that the (mod 2)-invariants are not multiplicative under coverings (see 
Atiyah-Singer [4]).

§8. Vanishing Theorems and Some Applications

Suppose X  is a compact riemannian manifold and let D2 be the Dirac 
laplacian on the bundle Cfpf). One of the major results in riemannian 
geometry was the following discovery of S. Bochner. There exists a second, 
naturally defined laplacian V*V on Cl(X). It is self-adjoint, non-negative 
and has the same symbol as D2. The difference, D2 — V*V, which is nec­
essarily an operator of order ^  1, is, in fact, of order zero and can be 
expressed in terms of the curvature tensor of X. Using harmonic theory, 
Bochner was thereby able to conclude the vanishing of certain Betti num­
bers of X  under appropriate positivity assumptions on the curvature 
tensor.

Following Bochner’s original paper, arguments of this kind have ap­
peared repeatedly in real and complex geometry. They are known gene- 
rically as “Bochner’s method.”

In this section we shall give a systematic derivation of Bochner-type 
formulas on general Dirac bundles. This will include the classical formu­
las on C£(X), although even here the algebra is vastly simplified by using 
Clifford multiplication. It will also include the Lichnerowicz formula for 
the Dirac laplacian on spinor bundles, and generalizations of this to spinors 
with coefficients in an arbitrary vector bundle. This latter result is very 
useful in the study of manifolds of positive scalar curvature (cf. Gromov- 
Lawson [1], [2], [3]). Everything will follow from a single elegant formula 
which applies to any Dirac bundle.

We begin with the definition of the operator V*V. Let E be any 
riemannian vector bundle over X , and assume E has a riemannian con­
nection with covariant derivative V. Then to any pair of tangent vector
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fields V  and W  on X , we associate an invariant second derivative Vj>>w: 
T(£) -> T(£) by setting

Vk.iv9  = VvVwV ~  V?vW<P- (8.1)

(Here, Vv W  is the riemannian co variant derivative on X.) At any point 
x e X , the operator Vy W depends only on the values Vx and W„ i.e., it 
is tensorial in these variables. This is evidently true for Vx since it is a 
general property of the covariant derivative. That it is true for Wx follows 
from the identity

Vv,iv ~  Vw.v — Rv.w (8.2)

where R  is the curvature tensor of £. Equation (8.2) is an immediate con­
sequence of the fact that Vv W  — V WV  =  [E,IT].

Now given a smooth section q> of £, we see that V?.<p is a section of
T* ®  T* ®  £; that is, at each point it defines a bilinear form on the tan­
gent space with values in £. The connection laplacian

V* V : T (£ )-----► T(£)

is defined by taking the trace, i.e.,

V*V<p =  — trace(V?.<p). (8.3)

In terms of a local orthonormal tangent frame field (eu . . .  ,en) on X ,

V*V<p =  - t  V2ej,ejcp.

It is easy to see that the symbol of V*V at a cotangent vector f  is

*i(V*V) = ||£||2, (8.4)
and so V*V is elliptic. We shall now show that it is also symmetric and 
£ 0 .

Recall that the inner product (•,•) on T(£) is defined by integration: 
(<p, i/0 =  <«p, ij/). Similarly, we define

(Vp,V*) =  J z <V*,V*> (8.5)

where <Vq?, Vi//} is defined in terms of local orthonormal tangent frames 
(*i.........e„) by the expression <Vq>, V«̂ > =  £ ,  <Ve/jP, Vĉ > .

Proposition 8.1. The operator V*V: T(£) F(E) is non-negative and for­
mally self-adjoint. In particular,

(V*V(?,iA) =  (V<p,ViA) (8.6)

for all (p,\j/ e T(E) provided that one o f cp or \j/ has compact support.
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I f  X  is compact, then V*V<jp = 0 if  and only ifVq> = 0 i.e., if and only if  
cp is globally parallel.

Proof. Fix x  € X  and choose a local orthonormal tangent frame field
(eu . . .  ,en) with the property that (Ve,)* =  0 for all j. Then we have at the
point x  that

< v n v , ^  =  - £ < v eiv ê >  (8.7)

=  - Z  -  <?.,<?>, v . » }

=  -d iv (F )  +  <V<p, Vtfr)

where V  is the tangent vector field on X  defined by the condition that 
< V, W }  =  <ywq>^y for all W  e  T(X). The last line of (8.7) is proved as 
follows. At x,

div(F) =  X  <VejV ,ej)

= Y e j ( V ,e j )  
j

= Z eJ (VejV,'!'}-

Equation (8.6) now follows by integration of (8.7). The remainder of the 
proposition is a consequence of formula (8.6). ■

Using arguments similar to those given for Theorem 5.7, one can show 
that on a complete riemannian manifold the operator V*V is essentially self- 
adjoint, i.e., it has a unique self-adjoint closed extension on L 2(S). Further­
more, the kernel o f V*V on L 2(S) consists o f the parallel sections o f S, i.e., 
those which satisfy V<r =  0. If X  has infinite volume, then no such sections 
exist except (7 =  0, since ||<t|| is constant.

We suppose now that S is any Dirac bundle over X , and we define a 
canonical section of Hom(S,S) by the formula

W foO s* £  ej-ek -R ej,J<p) (8.8)
;.*=i

where (el f . . .  ,e„) is any orthonormal tangent frame at the point in ques­
tion, where R VtW is the curvature transformation of S, and where the dot 

denotes Clifford multiplication.

Theorem 8.2 (the general Bochner Identity). Let D be the Dirac operator 
and V*V the connection laplacian for any Dirac bundle S. Then
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D2 = V*V +  W (8.9)
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Proof. Fix x e X  and choose a local orthonorm al frame field (el9 . . .  ,e„) 
such that (Vej)x = 0 for all j . Then using (8.2) we have at x  that

Recall that the Ricci transformation of T{X) =  A x(X) is defined by the 
formula

where R  is the curvature transformation of T(X). This determines a bilinear 
form, called the Ricci curvature form, by setting

From the fundamental identity (4.44) for the Riemann curvature tensor, 
the form Ric is seen to be symmetric.

A consequence of Theorem 8.2 applied to the bundle S =  C l(X )  is the 
following

Corollary 8.3. Let A be the Hodge laplacian and V*V the connection lap- 
lacian o f the tangent bundle T(X). Then

Proof. Consider T(X) =  A 1̂ )  c  Ct(X). Since D 2  =  A it suffices to com­
pute the right hand side of (8.9) for vectors (p e A^X). Note that since 
[L,V] =  [L,A] =  0 (cf. Lemma 5.18 and Corollary 5.21), both of the 
operators V*V and A preserve the subbundle A 1̂ ) .  Hence, so does the 
operator 5R. Therefore, using the identities (4.43) and (4.44), we have

J> 2  =  I « / V . , ( v V J
j . k

=  X  e j  ’ e k ’ ^ e f ?  ek j.k

“  ^ j ej  ek'  ^ ej,ek j*

=  ~ L K e i +  L  e j - e * - ( K . e u - V l e j )
j j<k

= v*v + «.

n
Ric(<p) S  -  £  RejJ e j) (8.10)

(8.11)

A =  V*V +  Ric . (8.12)

*(<?) =
i j

=  h £  eiej<Re(,ej(<P),ek)ek 
‘.j.k
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= i  Z  <R euej(ek) + Rek.et(ej) + Rej,ek(ef), <p}e£fu

+ 2 Z ^ ( K . e j i v l e j y e j  + | £  .*;(<?)>Cf>ef

= - Z  <Reuej{(p), e^e, = ~ Z  <Rv.ej(el),ej>ei

= “ Z <Re,.«>(eA ei>e( = - Z  R«2.^)
i j  j

=  Ric((p). ■

Note. As pointed out above, we know from (8.9) that 9l(A1(A')) c  A1 (A). 
However, efiyek e  A3(Z) if i #  y ^  /c ^  i. Hence, the third line of the com­
putation above constitutes a proof of the first Bianchi identity (4.43). In 
Theorem 5.16 we saw more sophisticated examples of curvature identities 
that also followed from operator identities and Clifford multiplication.

Corollary 8.3 has the following important consequence:

Theorem 8.4 (Bochner). Let X  be a compact riemannian manifold without 
boundary. I f  Ric >  0, then the first Betti number b fX )  is zero. The con­
clusion also holds i f  Ric S; 0 and > 0 at one point.

Proof. Suppose bt(X) =  dim / / ‘(A'jlR) >  0. Then there exists a non-zero
harmonic 1-form tpe  H 1 £  H l(X;R) by Theorem 5.15. By Corollary 8.3
and Proposition 8.1 we have that

Jx Ric(<p,<p) =  — (V*V<jo,<p) =  - M 2. (8.13)

If Ric ^  0, we conclude that V<p = 0, i.e., <p is parallel. In particular, ||<p|| 
is constant. Hence, if at some point we have Ric >  0, then J Ric(<j»,(p) >  0 
and we have a contradiction. ■

Note that this argument also proves that when Ric 2:0, e v e ry  harmonic 
1-form is parallel. Under the metric correspondence T * X  = T X , the 
parallel 1-forms become parallel vector fields. Thus we can conclude the 
following

Theorem 8.5. Let X b e a  compact riemannian manifold o f non-negative Ricci 
curvature. Then b t(X) equals the dimension o f the space o f parallel vector 
fields on X . In particular,

b fX )  £  dim(X) 

with equality i f  and only if  X  is a fla t torus.

Proof. Let k =  h1(Ar). Then by the argument above, there are k linearly 
independent parallel vector fields on X . Parallel vector fields are linearly
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158 II. SPIN GEOMETRY AND DIRAC OPERATORS

independent if and only if they are linearly independent at each point. 
Hence, k S  dim(X), and k =  dim(JY) if and only if X  has a globally parallel 
framing. That X  must then be a flat torus can be seen as follows. We may 
choose parallel vector fields E l9. ..  9Ek which are pointwise orthonormal. 
Since [Ei9Ej] =  VEiEj — V£/Et =  0 for all i j ,  these vector fields generate 
a locally free Reaction. Since k =  dim(X), we see that X  is an orbit of 
this action, i.e., X  ^  Rk/A, where A is a lattice in Rk. The metric on X  
clearly agrees with the usual one on Rk. ■

Any parallel vector field generates an isometric flow, and its integral 
curves are geodesics. Thus even when k =  bx(X) <  dim(AT) (and Ric ^  0), 
we get a locally free action of Rk by isometries on X  with totally geodesic 
orbits. We can also consider the dual basis <pl9. .  , 9<pk of parallel 1-forms. 
Integration of <p =  (cpl9. . .  9cpk) gives a riemannian submersion J : X  -► 
T k =  Rk/A where A is the lattice in Rk generated by the “periods.” That 
is, A =  {A e Rk : X =  Jy q> for some closed curve y in X}. By construction, 
the map J  is a covering map on each orbit. With a little more work one 
can show that the universal covering space X  of X  splits as a riemannian 
product X  =  Rk x X 0 where X 0 is compact. The original manifold X  is a 
(possibly twisted) riemannian product of T k with X 0.

Remark. The first statement in Theorem 8.4 was considerably improved 
by Myers [1]. Much stronger results for non-compact complete manifolds 
with Ric ^  0 were proved by Cheeger and Gromoll [2]. It is a deep 
theorem of Gromov [1], that there exist explicit a priori bounds, depend­
ing only on dimension, for all the Betti numbers of a compact manifold 
of non-negative sectional curvature. Such bounds do not exist under the 
weaker hypothesis Ric ^  0 (except for degree 1) by examples of Sha and 
Yang [1].

As one might guess, theorems similar to 8.4 can be proved for the higher 
Betti numbers. For each p, there is a positivity assumption on the curvature 
tensor which guarantees that bp(X) =  0. For detailed statements of these 
results the reader is referred to Bochner and Yano [1] and to Goldberg 
[1]. However, one of the more quotable results of this type can be proved 
rather easily using the Clifford formalism. We present this now.

Recall that the curvature tensor <RKitVl V39 is antisymmetric in
(^i* ^2 ) and in (^ 3 > and symmetric under the interchange of these pairs 
(see (4.44)). Hence, R  can be considered as a symmetric endomorphism 
R : A 2(X) A2(X). We call this transformation the curvature operator and
say that it is positive (or non-negative) if all of its eigenvalues are <  0 
(or ^  0 respectively).

Theorem 8.6 (Gallot and Meyer [1]). Let X  be a compact riemannian n- 
manifold (without boundary) with the property that its curvature operator
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is positive at every point. Then all the Betti numbers, bp(X) are zero for 
p =  1 , . . .  ,n — 1, i.e., X  is a real homology sphere. The same conclusion 
holds if the curvature operator is ^ 0  and > 0  at some point.

Proof. It will suffice to prove that positivity of the curvature operator 
implies that

(9{(<p),(p} >  0 for all non-zero q> e A P(X), p =  1 , . . .  ,n — 1. (8.14)

The argument then proceeds as in the proof of Theorem 8.4. From the 
curvature identity (5.17) we have that

<Mq>),q>y =  Yj <efijRei<ej((p), 9>
i<j

=  2 Z < b f i i ^ e , e j { < P ) \ < P >
i<j

=  - 2  Z  <K«,,«,(<?)>
i<J

From Theorem 4.16 we know that the curvature transformation R Vtw: 
C t(X) -» C l(X ) can be written as R Vt1v =  i  Z k j  (Rv,w(ei\  e;>adei<r 
Hence,

<«((?)), (p) =  - i  £  <Rei,ej(ekl  «V><adeiej(q>), ad*„„,(<?)> (8.15)
k<e

=  ~ 4  I  <R(eiej),ekeeX ^ eiej((p),adekeJi.(p)>-
k<€

Observe now that the elements form an orthonormal basis of
A 2(X) c= Cf(AT). The last expression in (8.15) is clearly independent of the 
choice of orthonormal basis. That is, we can write

<n<P), <P> =  - i  z < R ( a  ^ > < a d ^ ) ; adw(<p)> (8.16)
<*,P

where {(!;„}„ is any orthonormal basis of A2(A") <= Ct(A'). We choose a 
basis that diagonalizes R. Let {X'„} be the eigenvalues of R and set =  
—$A’a. Then (8.16) becomes

<<R (<p),<p> =  Z  ^ l|ad {a((p)||2
<X

where A„ > 0 for all a. This proves that <5R(<jt>), <p) ^  0 and equality holds 
iff ad4(<p) =  0 for all t, e  A2(X). Thus, it remains only to prove the following:

Lemma 8.7. Consider a form <p e AP(IR") c  C£(R") for  l ^ p ^ n — 1. I f  
ad4(<p) =  0 for all £ e A2(R"), then q> =  0.

Proof. Recall that the representation ad{ on AP(IR") is just the standard 
representation of the Lie algebra so(n) =  A2(IR"). This lemma is therefore
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160 II. SPIN GEOMETRY AND DIRAC OPERATORS

equivalent to the well-known fact that these representations have no fixed 
vectors for p ^  0 or n. However, since an elementary proof is possible we 
shall give it.

Let eu . . .  ,en be the standard basis of IR" and write q> =  aiei • ®y
assumption, [efe7-, <p] =  0 for all i < j. One can see easily that

(0 if both i j  $ I
0 if both i j e l

legjCi 

otherwise.

If i $ I  and j  e /, then e& fi =  ± e lKJ{i) _ {7}. Therefore, \efip <p] =  0 implies 
that =  0 whenever i e I  or j  e /  but not both i j  e /. Applying this for 
all i <  j  shows that <p =  0, provided that p ^  0 or n. This completes the 
proof of the lemma and the theorem. ■

We now take up the case of spinor bundles. From now on we assume 
that X  is a compact spin manifold with a fixed spin structure on its tangent 
bundle. Let S be any spinor bundle for T(X) endowed with its canonical 
riemannian connection.

Before stating the vanishing theorem in this case we recall one of the 
simplest invariants of the riemannian curvature tensor, the so-called scalar 
curvature. This is a function k  : X  -+ U defined by setting

k  =  trace(Ric) =  — 2 trace(R).

In terms of an orthonormal tangent frame (eu . . .  ,en) at a point x e X ,

When X  has dimension two, k  coincides with the classical Gauss cur­
vature function.

Theorem 8.8 (A. Lichnerowicz [1]). Let X  be a spin manifold and suppose 
S is any bundle o f spinors over X  endowed with the canonical riemannian 
connection. Let 0  denote the Atiyah-Singer operator and V*V the connec­
tion laplacian on S. Then

(8.18)

This formula has the following striking consequence. We say that a spin 
manifold X  has no harmonic spinors, if ker 0  =  0 for any spinor bundle 
associated to T(X).

Corollary 8.9. Any compact spin manifold o f positive scalar curvature admits 
no harmonic spinors. In fact, the same conclusion holds if  the scalar cur­
vature is ^ 0  and > 0  at some point.
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§8. VANISHING THEOREMS AND APPLICATIONS 161

Proof o f  Corollary 8.9. This follows from formula (8.18) as before. Suppose 
o e T(S) satisfies $ o  =  0. Then by integration of (8.18) we find

jx KIWI2 = -(V*Vff,<7) = -||V<7||2.
If k  ^  0, then we must have Vo =  0. Hence ||<r|| is constant, and if jc(x) >  0 
for any point x, then J k||<t||2 >  0 and we have a contradiction. ■

Note that we have also proved the following:

Corollary 8.10. On a compact spin manifold with k  = 0, every harmonic 
spinor is globally parallel.

Proof o f  Theorem 8.8. We need to compute the curvature term in equa­
tion (8.9) for the canonical spinor connection. In Theorem 4.15 we es­
tablished that for all V,W  e Tx(X), the curvature transformation Rsv<w: 
Sx -> Sx is given by the formula R y W =  |  where
R v w : Tx(X) -> Tx(X) is the curvature transformation of X  and where 
(eu . ■. ,e„) is any orthornomal basis of Tx(X). Consequently, using the 
identities (4.43) and (4.44) we see that:

* = \ ^ e iej K uej

=  £  E  ( R e u e M k l ^ y e f i j e ^

Reuet (ej) +  R ejek(ei)i e^ eiejek
t  (y i,j,k 

distinct

+  E  ^  iR ^ e fe j le ^ e f i^ j j e ,

- i  E  i K f f f i i h e i y e f i t

=  ~ ^ Ric 

=  $K. ■

As a consequence of the Atiyah-Singer Index Theorem applied to the 
fundamental spin complex (Example 6.3), we have the following:

Theorem 8.11. Let X  be a compact spin manifold o f dimension 4k. I f  X  
admits a metric o f positive scalar curvature, then A(X) =  0.

More generally, applying the same argument to the Dirac operator $  
of the bundle (7.1), we find that in any dimension, positive scalar curvature 
implies that the analytic index ind„(?i0) must vanish (see Definition 7.4).
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162 II. SPIN GEOMETRY AND DIRAC OPERATORS

From the C£*-Index Theorem, this implies the following:

Theorem 8.12. Let X  be a compact spin manifold. I f  X  admits a metric o f 
positive scalar curvature, then s?(X) =  0.

By Theorem 7.10 we know that this result implies Theorem 8.11 above. 
However, it gives new information in dimensions one and two (mod 8).

Recall that <s/(X) is an invariant of the spin-cobordism class of X . The 
above results therefore explicitly present large classes of manifolds which 
cannot carry metrics of positive scalar curvature. In particular, from 
Theorem 2.8 we have the following striking result:

Theorem 8.13 (N. Hitchin [1]). In every dimension n = 1 or 2 (mod 8) 
where n > 8, there exist compact differentiable manifolds which are homeo- 
morphic to the n-sphere but which do not admit any riemannian metric with 
positive scalar curvature. In fact, they admit no metrics such that k  ^  0 
but # 0 .

Such spheres are hardly Platonic. This theorem can be perhaps best 
appreciated in light of the current positive results. The standard metric 
on the standard n-sphere Sn = { x e  R”+1: ||x|| =  1} is of course the most 
uniformly positively curved manifold. Its curvature transformation is given 
by the formula — R v  w =  V a  W9 i.e.,

- R VtW(U) =  <v, u y w - < W 9 u y v  (8.19)

for all U9V9W e  Tx{Sn). Hence, Ric(K) =  (n -  \)V  and k  =  n(n -  1). The 
most symmetric exotic spheres (see Hsiang and Hsiang [1]) are the Kervaire 
spheres which have dimension 4k +  1. They can be constructed by taking 
the boundary of the manifold obtained by plumbing together two copies 
of the tangent disk bundle of S2k+l:
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§8. VANISHING THEOREMS AND APPLICATIONS 163

However, Brieskorn has proved that these manifolds can be described 
algebraically as follows (see Hirzebruch and Mayer [1]). For each integer 
d, consider the complex polynomial

P lz0, . . .  ,z„) =  4  +  z \ + z \ + . . .  + z2+1.

Let V(d) =  {z e  C"+2 :prf(z) =  0}; S2n+3 =  {z e  C"+2 :||z|| =  1}; and set

For n = 2k and d =  3 or 5 (mod 8 ), M 2n+1(d) is a Kervaire sphere.
In this thesis Hernandez [1] proved that the Brieskorn manifolds 

M 2n+1(d) carry metrics of positive Ricci curvature. Moreover, Gromoll 
and Meyer [2] have proved that a certain exotic 7-sphere carries non­
negative sectional curvature which is strictly positive on an open subset. 
It is therefore something of a surprise that in dimension nine there exist 
exotic spheres which carry no metric of even positive scalar curvature!

Manifolds which carry positive scalar curvature are not hard to find. 
Any homogeneous space G/H, where G is a compact Lie group, carries a 
metric with k  §; 0. Furthermore, it carries k  > 0 unless G/H  is a torus. 
More generally one has the following:

Theorem 8.14 (Lawson and Yau [1]). Let X  be a compact manifold which 
admits an effective differentiable action by a compact, connected, non-abelian 
Lie group. Then X  admits a metric o f positive scalar curvature.

Corollary 8.15. Let X  be a compact spin manifold such that s /(X )  #  0. Then 
the only compact, connected Lie transformation groups o f X  are tori. In 
particular, this conclusion holds for any exotic sphere which does not bound 
a spin manifold.

In dimensions 4k, it is a result of Atiyah and Hirzebruch [3] that a 
compact connected spin manifold X  with A(X) ^  0 does not even admit 
an S 1-action! (See IV.3.)

R em ark  8.16. We point out that the results above definitely require 
that X  be a spin manifold. We know from (6.19) that the complex pro­
jective spaces P 2 *(C) have

These spaces are all homogeneous; P ”(C) =  U(n +  1)/U(1) x U(n — 1). 
Hence, they have metrics with k  > 0 and large non-abelian Lie trans­
formation groups. However, as we saw in §2, P 2 *(C) is not a spin manifold.

Compact manifolds of positive scalar curvature are now rather well 
understood. A thorough discussion will be given in Chapter IV.

M 2n+1( d ) = V ( d ) n S 2n+3, (8.20 )

i ( P 2 k(C)) =  ( - l ) k2~4k^ \ (8.21)
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164 II. SPIN GEOMETRY AND DIRAC OPERATORS

We conclude this section with an im portant generalization of the 
Lichnerowicz formula (Theorem 8 .8 ) to the case of “twisted” spinor 
bundles. This result is also quite useful in applications as we shall see in 
Chapter IV.

Let A' be a compact riemannian spin manifold, and let S be a spinor 
bundle for X  with the canonical riemannian connection. Let E be any 
vector bundle over X  equipped with an arbitrary orthogonal connection. 
Then the bundle S ® E, equipped with the tensor product connection, is 
again a Dirac bundle over X  (see Proposition 5.10). Here the Clifford 
multiplication takes place in the “S-factor”. We now define a smooth, 
symmetric bundle endomorphism

<RE: S ® E  > S ® E

by the formula

=  i  i  (ejekff) <g) (Rfj eks) (8 .2 2 )
j,k= 1

on vectors a ® e of simple type. Here R E denotes the curvature of the 
bundle E , and, as usual, (el9. . .  9en) denotes an orthonorm al tangent frame 
to X  at the point in question. The sum in (8.22) is essentially the trace of 
a bilinear object defined on A2TX .

Note . In the case that S is a complex spinor bundle, we may assume E 
to be complex and endowed with a unitary connection. The tensor product 
of S with E can then be taken over the complex numbers.

Theorem 8.17. Let X  be a riemannian spin manifold with scalar curvature 
?c, and let S ® E be any twisted spinor bundle over X  as above. Then the 
Dirac operator p E and the connection laplacian V*V o f S ® E satisfy the 
identity:

0\  =  v*V +  i /c + 5 R £ (8.23)

R em ark  8.18. Note that the operator depends linearly and uni­
versally on the components of the curvature tensor R E of E . Thus, if E is 
flat, =  0, and if R E is small, then is correspondingly small by an 
estimate depending only on dimension.

Proof. Recall that the covariant derivative of the tensor product con­
nection on S ® E acts as a derivation, i.e.,

V( < 7 ®  e) =  (V5 <x) ® e +  ( 7  ®  (VEe)
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where Vs, V£ denote the covariant derivatives on S and E respectively. 
The commutator of two derivations is again a derivation. This fact (or 
direct verification) shows that the curvature transformation of S ® E is 
also a derivation, i.e.,

R{it ® e) — (Rsa) ® e +  a ® (REs)

where Rs and R E denote the curvature transformations of S and E 
respectively.

We now wish to compute the curvature term 5R in the general Bochner 
Identity (8.9). It is given by

5R(<r ® fi) =  \  £  ejekR (a (g> s)
J,k = 1

=  2 £  eM (R ej,eS ) ® e + <* ®
h k  = 1

= ( i  £  ejekRs a ) ®  e + ^ £  {e ^ o )  <g) {RE'
\  1 /  j.k=  1

Now from the Lichnerowicz calculation (see the proof of Theorem 8.8), 
we know that the first term in the last line above is just \ k. Hence from 
(8.22) we conclude that

9t(<r <g> s) =  £k(o <8) e) + 5R£(<x <g> e),

and the proof is complete. ■
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CHAPTER III

Index Theorems

In this chapter we shall present the analytic underpinnings of the subject of 
spin geometry. In particular we shall formulate and prove various forms of 
the Atiyah-Singer Index Theorem. This will include the classical theorem 
and its consequent cohomological formula for the index. It will also in­
clude the Index Theorem for G-Operators, the Index Theorem for Families, 
and the Index Theorem for C£k-Linear Operators. This last result is one 
of the deepest in the theory. It involves indices in KO -theory which are 
in general not locally computable on the manifold. O ur exposition of this 
result differs somewhat from that which currently appears in the literature.

There are now in existence many beautiful and illuminating proofs of 
the more classical index theorems which use the asymptotics of the heat 
kernel. This is a method that was pioneered by Gilkey and Patodi in the 
late 1960s. We have elected to present here instead the arguments which 
originally appeared in Atiyah-Singer [ l ] - [5 ] .  This is in part because the 
Atiyah-Singer methods lead to the non-local results just mentioned (and 
these results are not accessible by heat equation techniques). It is also, 
however, because their arguments, which proceed in the spirit of Grothen- 
dieck, are really quite beautiful and simple. The essential idea is this. One 
observes that the index is an insensitive object, unperturbed by rather bru­
tal changes in the analytic data. Furthermore, the index is a “functorial” 
object, which transforms nicely with respect to global operations such as 
the embedding of one manifold into another, the addition and multiplica­
tion of operators, etc. Using an appropriate form of K-theory, one then for­
mulates a topologically defined index possessing the same transformation 
properties as the analytic index. By performing manipulations allowed in 
the theory, everything can be reduced to the trivial case where the mani­
fold is a point. Here the analytic and the topological indices are easily 
seen to coincide, and it follows that they must coincide in general.

Our ambition has been to make the presentation in this chapter rea­
sonably self-contained. All the requisite material on pseudodifferential op­
erators is developed assuming only a knowledge of elementary Fourier 
analysis. Along the way a proof of the generalized Hodge Decomposition 
Theorem is given. Most of the material necessary for the derivation and 
computation of the cohomological formulas is also presented in detail.
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§1. DIFFERENTIAL OPERATORS 167

The exposition in this chapter owes much to the writings of Atiyah and 
Singer and also to Gilkey and Nirenberg. The reader is encouraged to con­
sult the excellent literature on the subject of pseudodifferential operators 
and index theory which has appeared over the past twenty-five years.

This section presents the basic notion of a linear elliptic differential opera­
tor over a manifold X . We begin by fixing notation. For an n-tuple of non­
negative integers a =  («„ . . .  ,a„), we set |a| =  «*> and for each ^ e  IR" we
set ' ' '  ££"• In local coordinates {xly. . .  ,xn) on X  we define the
differentiation operators D* by iwDx =  d^.'/dx* =  dw/d x \ld x • • • dx“n. 
Recall that for a smooth vector bundle E on X , the symbol T(£) denotes 
the space of smooth (i.e., C00) cross-sections of E.

D efinition  1.1. A differential operator of order m  on X  is a  linear map 
P : r (£ )  -» r(F), where E and F  are smooth complex vector bundles over 
X , with the following property. Each point of X  has a neighborhood U 
with local coordinates (xt, . . .  ,x„) and local trivializations: E\v A  U x Cp 
and F\v U x  C ,  in which P can be written in the form:

where each /T(x) is a q x p-matrix of smooth complex-valued functions 
and where A* ^  0 for some a with |a| =  m.

A real differential operator of order m  is defined similarly with C re­
placed by IR.

Observe that if we make a change of the local trivializations of E\v and 
F\v by smooth maps gE:U -*■ GLP{C) and gF: V  -*■ GL,(C) respectively, 
then in these new trivializations P has the form

where the A* ’s are again p x ^-matrices of smooth functions of x and where

§1. Differential Operators

alal
p = I  >l*(x) —

|a| £ m OX
(1.1)

Vlal^m ux J  
0M

= y  Aa— ■
|oc| < m ^

4 “ = 9FA*gE 1 for M = rn. (1.2)

If we make a change of local coordinates x =  x(x) on U, then using the 
fact that

for each j,
a __ a  a** a

dxj *=i dxj dxk
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168 III. INDEX THEOREMS

we find that P again takes the form

P =  £  A '(x)-^~
|a|£m OX

where

*  =  £  for |a| =  m\P\ = m I d x L
(1.3)

and where [dx/dx]J denotes the symmetrization of the m‘h tensor power 
of the Jacobian matrix ((dxk/dxj)).

Equations (1.2) and (1.3) together imply that the coefficients 
represent a well-defined section o(P) of the bundle (Q mTX ) ®  Hom(E,.F) 
where O  denotes symmetric tensor product.

D efinition  1.2. The section a(P) e  T((O mTAr) <g) Hom(£,F)) is called 
the principal symbol of the differential operator P.

Recall that for a vector space V, the space O mV is canonically isomor­
phic to the space of homogeneous polynomial functions of degree m on 
V*. Hence, for each cotangent vector £, e T *X , the principal symbol gives 
an element

If we fix local coordinates and trivializations as in Definition 1.1, we find 
that for £ =  YAk d%k

It is now possible to present one of the fundamental concepts of this 
chapter.

D efinition  1.3. Let P be a differential operator of order m over a mani­
fold X . Then P  is elliptic if for each non-zero cotangent vector £ e T*X , 
the principal symbol ot(P):Ex -*■ Fx is invertible.

E xam ple 1.4. Let E — F be the trivialized line bundle and consider 
the Laplace-Beltrami operator A : C00(Ar) -* C®(A") of a given riemannian 
metric on X . In local coordinates (xt , . . .  ,x„) we have

a £P ):E X -----► Fx. (1.4)

^ (P ) = im I  W . (1.5)

" 52/
=  £  9* a— 5— •" l°wer order termsJ,k=l OXjOXk
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§1. DIFFERENTIAL OPERATORS 169

where Y.9jk dxk is the metric tensor and where {(gJk)) = ((gJk)) l . For 
a given cotangent vector £ — Y,£k dxk we find that

which is certainly invertible (as a linear map C -* C) for £ 0.

Example 1.5. Let S be a Dirac bundle over a riemannian manifold X  
(see II.5.2), and consider the associated Dirac operator D : T(S) -*■ T(S). It 
is straightforward to show that

<r£D) =  i£-

where “£•” denotes “Clifford multiplication by £.” Since £• £• — — ||^||2Id, 
this map is certainly invertible for £ #  0.

Example 1.6. Let S be as in Example 1.5 and consider the Dirac 
Laplacian D2:T(S) -*■ T(S). Then one has that

a£D2) =  ||£||2Id.

This shows, from the discussion in Chapter II, §5, that the Hodge La­
placian on exterior p-forms is an elliptic operator. The proof of the fol­
lowing statement is an easy exercise.

Proposition 1.7. Let P : T(E) -> T(F), P ' : T(E) -  T(F) and Q : T(F) -► T(L) 
be differential operators over X  where P and P' have the same order. Then 
for all £ e T * X  and for all t,t’ e IR, one has that

a ItP  + t'P') =  ta^P) +  t’o ^F )

and

^<«2 ° P) = o£Q) ° ff|(F).
This proposition says that the symbol is a rather nice object when con­
sidered to live on the cotangent bundle. Given P : T(E) -> T(F), we pull 
back the bundles to T * X  via the projection n : T * X  -* X  and consider 
the principal symbol as a bundle map

ofP): n * E  ► n*F. (1.6)

If P  is elliptic, this map is an isomorphism away from the zero section, 
and we can assign topological data to the operator as follows. Fix a metric 
on X  and set DX  =  {£ e T * X : ||^|| ^  1}. Then via the construction given 
in Chapter I, §9, the symbol of P defines a class

i(P) s  [n*E,n*F; o(P)] e K(DX, dDX). (1.7)

Important Fact 1.8. Suppose X  is a spin manifold of even dimension 
and that P  is the Atiyah-Singer operator on complex spinors. Then the
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170 III. INDEX THEOREMS

class i(P), when restricted to any fibre, becomes the element rj which gen­
erates the Bott periodicity mapping in K(D2k, S2k~ *) ^  K{S2k) ^  K(pt) (see 
1.9). This means that on an even-dimensional spin manifold, the principal 
symbol o f the Atiyah-Singer operator gives a K-theory orientation on the 
cotangent bundle, i.e., a generator of the Thom-isomorphism (see Appen­
dix C).

Similarly, on a spin manifold of dimension 8k, the principal symbol o f 
the real Atiyah-Singer operator gives a KO-theory orientation on the co­
tangent bundle.

§2. Sobolev Spaces and Sobolev Theorems

Let £  be a hermitian vector bundle with connection V on a compact 
riemannian manifold X . Given u e T(£) we have Vn e T{T*X  ®  £), 
and using the tensor product connection on T * X  ®  £ , we have VVw e 
F(T*X  ® T * X  ® E). This process continues, and for any k we can de­
fine the norm

i ni? *  I  f j y v - ” w  t2-1)j  = 0 J A  v
j times

called the basic Sobolev ft-norm on T(£). An easy exercise shows the equiv­
alence class of this norm to be independent of the choice of metrics and 
connection. The completion of T(E) in this norm is the Sobolev space 
L*(£). It is straightforward to verify the following:

Proposition 2.1. A differential operator P : T(£) -> T(F) o f order m extends 
to a bounded linear map P:L%(E) L 2- J F )  for all k ^ m .

Ultimately we shall see that if P is elliptic then these extensions have 
finite dimensional kernel and “cokernel” which consist of smooth sections 
and are independent of k.

Our aim at present is to establish some analytical tools. This is best 
done using Fourier transform methods. To this end we select a good sys­
tem of trivializations of our bundle E. To start we choose a finite cover­
ing of X  by closed coordinate balls yp: Ufi -» Bn =  { y e Un : |y| ^  1}, jS =  
1 , . . .  9N. Over each ball Up, we choose a smooth trivialization of E

E\vp U , x C '

which possesses a smooth extension to an open neighborhood of Ua. We 
further assume that the open balls of radius l /\/2  cover X , i.e., X  =
U * = 1  Bi> where Bfi = { p e u fi: \yp(p)\2 < i}.
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§2. SOBOLEV SPACES AND SOBOLEV THEOREMS 171

We now change each coordinate yf  to a local coordinate x fi by setting

x ' ~ W ^ W y*'
Note that x fi: U$ A  R" and that x ^ B f ) =  B" =  {x e Rn : |x| <  1}. Further­
more, under the given trivialization over Ut , any smooth section of E re­
stricts to become a bounded function u : R" -+ Cp. In fact the function 
|D“m(x)|(1 +  M)1*1 is bounded for any a.

Let’s now choose a smooth partition of unity i subordinate to 
the covering (B/JjjL v  Any section u 6 r(£) can now be written as u = £  
where =  Xpu- In oiir system of coordinate trivializations, each be­
comes a smooth function with compact support in the unit ball B".

D efinition  2.2. Any system of local coordinates for X  and local triv­
ializations for E, together with a partition of unity, all chosen as above, 
will be called a good presentation of E. Good presentations of each of a 
family of vector bundles over X  having the same local coordinates and 
the same partition of unity, will be called a good presentation of the family.

Using a good presentation of E, we can reduce the study of F(E) to the
study of smooth Cp-valued functions with compact support in B". Here
we can apply the classical Fourier transform

m  = {2n)~"12 JR>, e - ‘<*-t>u(x)dx (2.2)

whose elementary properties we summarize (see Taylor [2] as a basic ref­
erence). We assume all functions to be Cp-valued, and define the Schwartz 
space S f  =  {u e C°°(R”) : Va,/c,3Ca>Jk such that \Dau(x)\ ^  Cafk(l +  |x|)~* on 
Un}. (Recall that Da =  r ' a'dm/dxa.)

The Fourier transform defines an isomorphism ( )*:£? i f  whose 
inverse is given by the following “Inversion Formula”

u(x) =  (2n)-"'2 (2.3)

D > (0  =  £-fl(£). (2.4)

& (£ )  =  (2.5)

(u,v)Li =  (u,v)Li (Plancherel’s Formula) (2.6)

where (u,v)Li = J <u,u> is the usual L2 inner product.

D efinition  2.3. For s e R and u e S f ,  the Sobolev s-norm is the norm 
||«||s given by the formula

IMIs =  J(1  +  \Z\)2s\u(Q\2 d t  (2.7)

The completion of in this norm is the Sobolev space L 2.

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



Remark 2.4. Let s be a positive integer. Then there are constants ct 
and c2 so that cx( 1 +  |£|)2s ^  1 +  |£|2 +  . . .  +  |f |2s i£ c2(l +  |^|)2s. It fol­
lows from formulas (2.4) and (2.6) that there are constants C t and C2 so 
that

C M \ i £  I  f  \Dau(x)\2dx  ^  C2\\u\\l (2.8)
|a|£s J

This means that the norm (2.1) (for the trivialized Cp-bundle with the triv­
ial connection) is equivalent to the norm (2.7).

For any integer k ^  0, let Ck denote the space of /c-times continuously 
differentiable functions on R" equipped with the uniform C*-norm, defined 
for u e C k by

||«||2fc =  sup £  |D‘«|2. (2.9)
05" |a|£*

O ur first main result is the following:

Theorem 2.5 (The Sobolev Embedding Theorem). For each real number 
s >  (n/2) +  k, there is a constant K s such that

MIc* ^  K s\\u\\s (2.10)

for all ue£F . Consequently there is a continuous embedding

L \  c: Ck (2.11)

for each such s.

Proof. We begin with k =  0. For x  e  IR", formula (2.3) gives 

\u (x ) \^ (2 n )-”>2 j\u (0 \d ^

=  (27r)-"'2 J ( 1  +  |£ |) -2s(l +  \Z\¥°\u{Z)\dZ.

Since (1 +  |^|)-2s is integrable if 2s >  n we have by the Schwarz inequality 
that

|u (x ) |2 ^  { I n ) -  J  (1 +  | { | ) - 2* d £  J  (1 +  |£ |)2s|u (£ ) |2 d f  

=  k 52IMI2-
Repeating this argument for each derivative Dau with |a| <  s — (n/2) and
then summing, proves the result. ■

Observe that since (l +  |^|)2s' ^  (l +  |£|)2s if s' <  s we have that

INI, £  Hull, V s' <  s.

Hence there is a continuous inclusion L2 <= L 2 for all s' <  s. When re­
stricted to functions with support in a fixed compact set, this inclusion is 
“compact.”

172 III. INDEX THEOREMS
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Theorem 2.6 (The Rellich Lemma). Let {uj}jL x be a sequence o f functions
with support in Bn such that ||uj||s :§ C for all j. Then for any s' < s there
is a subsequence which is Cauchy in the norm ||-||s and therefore converges 
in L2.

Proof. We begin by recalling another elementary fact concerning the 
Fourier transform. Let q> be a smooth C-valued function with compact 
support in R". Then for all integrable functions w,

qm =  <p*ti and cp*u =  <pu (2.12)

where denotes the convolution product given by

(p*u(x) = j ( p ( x -  yMy) dy. (2.13)

Suppose now that supp u c  Bn and q> =  1 on Bn. Then u = cpu and so 
u =  <p*u. Taking derivatives gives the formula

D * m  =  -  r i m d n ,

and applying the Schwarz Inequality then gives

\D*m\2 ^ f ( l  +  \ri\r2s\Da<p\2(S -  JO +  M)2s\m\2dfi 

=  K«(£)H42
where K a{^) is the continuous function defined by the first integral.

Applying (2.14) to the given sequence {«,}”=! shows that the sequence 
{D*{ij}fL! is uniformly bounded on compact subsets of R" for any a. In 
particular the sequence {fy}J°= j is uniformly equicontinuous on compact 
subsets, and by the Arzela-Ascoli Theorem there is a subsequence which 
is uniformly Cauchy on compact subsets.

Fix r > 0 and split the integral

H“'  -  “‘II’’ =  L > r  ^  +  l^l)2SM >  -

+ i ^ r ( i + \ ^ 2s’W - m \ 2d i

For |£| >  r, we have that (1 +  |£|)2*' ^  (1 +  r ) " 2(s- s'>(l +  |{|)2s, and so the 
first integral is iS ||t/j — uk||2/( l  +  r)2(5_s) ^  2C/r2(s_s ). Hence, for any 
given e >  0 we can make the first integral less than e/2 for all j  and k by 
choosing r sufficiently large. The second integral is then bounded above 
by a constant multiple of

sup M O  -  s p ­
iels'-

Hence, by the previous paragraph there is a J  so that the second integral 
is S  e/2 for all j,k  ^  J, and the sequence {Uj}JL t is Cauchy in L2 as 
claimed. ■

§2. SOBOLEV SPACES AND SOBOLEV THEOREMS 173
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174 III. INDEX THEOREMS

Combining the theorems above gives the following:

Corollary 2.7. Let {ufiJL x be a sequence in L2 with supp u} c: Bn and 
||mj||s rg c for all j . I f  s > (n/2) +  k9 then there is a subsequence which con­
verges to a function we Cq in the uniform Ck-norm.

We denote by z • w =  £jL j ZjWj the standard C-bilinear pairing on Cp. 

Theorem 2.8. The bilinear function

(u,V) = j m -

is a perfect pairing on L \  x L l s, that is, it identifies L l s with the dual o f 
L s,fo r  any s e R.

Proof. For w,t; e 5^, we have

M  =  J  i i(£ ) ( i  +  |£ |) s • ^ ) ( l  +

and so by the Schwarz Inequality,

M U N I J W I -

Hence, the bilinear function has a continuous extension to L* x L i s. In 
particular, for any v e L . s, we have that

sup |(u,t>)| ^  ||a ||-5. (2.15)
IMU=i

It remains to establish equality. For this we choose w so that w({) =  
v(£){l +  |^ |)"2s. Then we find |w|2(l +  |<̂ |)2s =  |£|2(l +  |£ |)~2s so that 
IML =  M l-,-  Furthermore,

(u,») =  J |5 |2( H - |^ | ) - 2s^  =  |H | i s.

Hence (u9v)/\\u\\s = |M |_S and (2.15) can be made an equality. We have 
established the isomorphism =  (L2)*. ■

Corollary 2.9. Let T \S f  S f  and T*:SP -+ 3P be linear maps such that 
(Tu9 v) =  (w, T*v) for all u9v e S f. I f  for some s e R and some constant c9 the 
map T  satisfies the condition

||Tu||s S  c||u||s for all u e S f ,  (2.16)

then T * satisfies the condition

||T*t;||_s =  c||i>||_5 fo r  all v e S f .
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§2. SOBOLEV SPACES AND SOBOLEV THEOREMS 175

In particular, i f  T  extends to a bounded linear map T :L l  -+ L \ for all 
positive integers k, then T* extends to a bounded map T * :L lk -► L i  h for 
all negative integers — k.

Proof. Given u,v eSP  we have \{T*v,u)\ =  \(v, Tu)\ ^  ||d||_s||T,m||s ^  
c||i>||_s||m||s. Hence, by Theorem 2.8 we find ||T*t>||_s =  sup{|(T*i;,u)|:
INI. = 1} £  c|M I-r ■

There is a stronger conclusion possible here which is proved by the 
interpolation methods of Calderon. Since we shall only need ||-||fc for k e Z 
in our work here, we simply state the result.

Theorem 2.10. Let T:£P -+ S f  be a linear map such that (2.16) is satisfied 
for s =  Sj and s =  s2. Then T  also satisfies (2.16)/o r all values o f s between 
st and s2.

Corollary 2.9 gives the following key to transferring our local results to 
global results on a compact manifold.

Proposition 2.11. Let A be a smooth matrix-valued function on R" so that 
\D*A\ is bounded for all a. Then the map T \$ f  given by Tu =  Au 
extends to a bounded linear map T : L * -* L \ for all s e U .

Proof. By formula (2.6) we see that T*m =  A*u where A \x )  denotes the 
transpose of the matrix A(x). For any integer k ^  0, the maps T  and T* 
are clearly bounded with respect to the classical norm

which is equivalent to llwlL (see 2.4). The result now follows immediately 
from 2.9 and 2.10. ■

For any open set Q c  IR", let denote the || *||s-closure of Cq{Q) =  
{u e : supp m cQ } ,

Proposition 2.12. Let Q, O' be bounded open sets with smooth boundary in 
Rw, and let ® : Q -+ fT be a diffeomorphism. Then the map T : Cq (Q') -► 
Cg^Q) given by Tu = u extends to a bounded linear map T : L -► L 
for all s.

Suppose similarly that <S>: R" -► R" is a diffeomorphism which is linear 
outside a compact subset. Then the map T \S f  S f  given by Tu =  u © ® 
extends to a bounded map T : Lf L, for all s.

Proof. We begin with the second statement. Note that (Tu9v) =  (u9T*v) 
where T*v =  j(®)u o O -1 where j(0) denotes the Jacobian determinant of 
O ” 1. As above we easily see that T  and T* are bounded for the norm
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176 III. INDEX THEOREMS

|| ||k ~  || ||k for any integer k ^  0. Hence, 2.9 and 2.10 apply to give the 
result.

The first statement is proved similarly using the straightforward exten­
sions of 2.8, 2.9 and 2.10 to the case of c  Rn. ■

Proposition 2.13. Let P  =  Xl«l A*(x)Da be a differential operator o f order 
m on R" whose coefficients are bounded as in Proposition 2.11. Then 
P \S f  -> extends to a bounded linear map P\L% -+ L ^ mfor all s.

Proof. Consider P  =  D*. Since |Daw|2 =  |^a|2|M|2, we find immediately that
II^NI? =  J (1 +  \Z\)2s\? \2fid )\2 d t  ^  llull*2+|.| for a«y « and s- Applying the 
triangle inequality and (2.11) completes the proof. ■

We are now in a position to globalize. Let £  be a smooth vector bundle 
over a compact manifold X  and fix a good presentation for E  with coor­
dinates Xp'.Up-* R", /? =  1 , . . .  ,1V, and with partition of unity {xp} sub­
ordinate to the covering {Bp = x j  *(£")} (see 2.2).

Since Yip  =  1> any « e T(£) can be written as u — Y up where u0 =  Xpu- 
For s e R, a Sobolev s-norm can be defined on T(£) by setting

INI. -  I  t o l  (2-i7)

where \\up\\s is defined in terms of the presentation: E\Up s  R” x Cp. The 
following is a direct consequence of Propositions 2.11 and 2.12 which 
assert the bounded effect of changes of coordinates and trivializations.

Proposition 2.14. For any s e U  and any smooth vector bundle E over a 
compact manifold, the equivalence class o f the norm ||-||s is independent o f  
the good presentation chosen to define it. Furthermore, when s =  k is  a non­
negative integer, the equivalence class o / ||- ||k is the same as that defined by 
(2.1) for any choice o f metric or connection on E .

This justifies our use of the symbol ||-||s without subscripts to indicate 
the presentation chosen. It is now straightforward to see that our main 
theorems, 2.5-2.8 and 2.13, can be globalized. We summarize the result 
here.

Theorem 2.15. Let E and F be smooth vector bundles over a compact mani­
fold X  o f dimension n.

(1) For each integer k 0 and each s >  (n/2) +  k, there is a continuous 
inclusion L2(£) c  Ck(E). Furthermore, every sequence which is
bounded in the ||*||s-norm, has a subsequence which converges in the uniform 
Ck-norm.
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(2) For any riemannian volume measure \i on X , the bilinear map on 
r ( £ )  x T(E*) given by setting

(U,u*) =  u*(u) dp

extends to a perfect pairing L 2(E) x L 2_S(E*) for all s.
(3) Multiplication T Au = Au by any element A  e r(Hom(E,F)) extends 

to a bounded linear map T A:Lj(E) -* L 2(F) for all s.
(4) Any differential operator P : T(£) -» T(F) o f order m extends to a 

bounded linear map P :L j(E ) -*■ L,_m(F) for all s.

§3. PSEUDODIFFERENTIAL OPERATORS 177

§3. Pseudodifferential Operators

The concept of a pseudodifferential operator has its roots in the following 
observation. Let P =  £i4“(x)Z)“ be a differential operator on IR" acting 
on functions u with, say, compact support. By Fourier Inversion (2.3) any 
such w can be written as

u(x) = (2n)~nl2 ]>*•<>«(Q d l

Applying P we find that

Pu(x) =  (In)-"'2 J dt, (3.1)

where

E  A ° ( x ) ?  (3.2)
1*1 £m

is the (total) symbol of P. Replacing p by a more general function of x 
and t; defines a pseudodifferential operator. Note that in (3.2) the order of 
P corresponds to the degree of p as a polynomial in <!;. In the general case 
one must be careful with growth in the ^-variable.

D efinition  3.1. F ix  m e  (R. A sm o o th  (m atrix-valued) function  p(x,<^) on
IR" x  IR" is said  to  be a  symbol of order m if fo r each a ,a ' the re  is a  co n s tan t

such th a t

\D*xD«p(x£)\ ^  Caa{  1 +  (3.3)

for all x,^. Let Sym"1 denote the space of these symbols.

Proposition 3.2. To each p e  Symm the formula (3.1) defines a linear opera­
tor P:SP -+ £P. I f  p has compact x-support, this operator has a continuous 
extension P :L 2+m- , L 2 for all s.

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



178 III. INDEX THEOREMS

Proof. l iu e S P ,  then u e  f f .  For any integer N  > 0, we have

|x|2"Pu(x) =  ( -1 )*  J  [ A f  ei<x-i}]p(x£)u(£)d£

=  ( - l ) wJ ef<^>A l tp (x M & } d Z .

The second integral is bounded by (3.3) and growth properties of u. Hence, 
P u s S f .

To prove the second part note first that integration by parts gives 

J  ei<x'°p(x,it)dx =  J  ei<x'°D*p(x,Z)dx.

Since p has compact x-support, (3.3) then implies that

J  g*<*’O p (x ,£ ) d x

for each t e Z +. It follows that
def

W ,r i)  = J ei<x,t dx

 ̂C,(l + |£|)~s(l + |#(l + |{ -  ri\)~'
<£ C,(l + -  f,|)“ ‘+«

where C, and C, are constants that depend on t. In particular there exists 
a constant C such that

J  W ,n )  d Z < C  and J  W ,r i)  M  < C

for all ^ and rj. Using the pairing from (2.8) we now compute that 

(Pu,t>) =  Jp«(f/) •%)<*>/

e f<x,,,>Pu(x) d x | • v(tj) dtj

=  J J  j j ei<x,i ’’>p ( x ,^ ) d x |f l ( ^ )  • % ) d £  df].

Setting U(Z) =  +  |£|)s+m and V(tj) = v(tj)(l +  H )“s, we find that

|(p«,»)| <; JJ'P(̂ )t/(€) • V(ti)dfdn

<  | J J W ,r i)U 2(i) dz ^ | T| j J W * ) V 2(ti)di d r ,^

<; CIML+JMI-,.

Applying duality and interpolation completes the proof. ■

The operators P given in Proposition 3.2 are called pseudodifferential 
operators of order m on Un9 and the space of all such is denoted by ¥£>0*,.
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§3. PSEUDODIFFERENTIAL OPERATORS 179

We shall study some of the properties of these “local” operators before 
globalizing them to bundles on manifolds.

Note that a pseudodifferential operator can have order — m <  0. Such 
an operator is said to be smoothing of order m. A linear map r : S f  -* i f  
which extends to a bounded linear map t : L s -* Ls+m for all s and m is 
called an infinitely smoothing operator. Note that by the Sobolev Embed­
ding Theorem 2.5, we have t(Ls) c  C 00 for all s.

Two pseudodifferential operators P  and Pf will be called equivalent if 
P -  F  is an infinitely smoothing operator.

We want now to examine what happens to the symbols of pseudodiffer­
ential operators under the operations of composition, of taking adjoints 
and of changing coordinates. This is referred to as the “symbol calculus.” 
To this end we make the following definition.

Definition 3.3. Let P be a pseudodifferential operator with symbol p. 
Then p is said to have a formal development

CO
P ~ 1 , P J

j =  1

(each pj e Symm' for some rrtj) if for each integer m, there is a K  so that 
p — Yj=  i P j6 Sym“m for all it ^  K. (Hence, the corresponding operator is 
m-smoothing for all k ^  K.)

The utility of such formal developments is evident from the following 
result.

Proposition 3.4. Any formal series x pj9 where pj e  Symm' and mj -> 
— oo, is the formal development o f a pseudodifferential operator. This oper­
ator is unique up to equivalence.

Proof. By grouping terms we can assume mj+1 < mj for all j. Fix a smooth 
function <p:R+ —> [0,1] such that (p(i) =  0 for t <, 1 and (p(t) =  1 for 
t > 2. For any sequence of radii {o}j°=i r j  — 00 the symbol

P ( x , Q  =  <P(|£|/rj)PjOc,£)

is well defined since the sum is finite for each (x,g). Set <p(£) =  <p(| |̂) for 
£ e R", and for each j  define mj = (j + l)"||<p||c>- Recall that for each a,a' 
and j  there is a constant CM<> such that ^  C4c,-/ 1 +  |^|)my-|a *. Let
Cj =  max{Caa. j : |a| <  j  and |a'| <  j}  and choose r} > mj2JCj. Then for any 
k > j  and for |a| <  j, |a'| ^  j, we have

\D*xD*iPj\ g  C/1 + |£ |n - l« ’l
^  c / i  + i ^ r n i  +

mj2J 1
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180 III. INDEX THEOREMS

for all |^| 2i rj. Setting <pf£) =  <p(\£\/rj), we see that

for all |a|,|a'| < k  and for all £. It follows easily that p =  £  (pjPj e  Symmi 
and, moreover, that for all k

P -  Z  P j6 SymWk+l.
i= i

This proves the existence of the operator. Its uniqueness up to infinitely 
smoothing operators is obvious. ■

Before beginning the symbol calculus it is useful to note that up to 
equivalence any pseudodifferential operator can be made “local” in the 
sense that Pu always has support in a neighborhood of supp u. For this 
and many other basic calculations we shall need the following:

Workhorse Theorem 3.5. Let a(x,y,£) be a smooth matrix-valued function 
on IR" x IR" x IR” with compact x- and y-support. Fix m e  IR and assume
that for each a,/?,y, there is a constant Ca/?y such that \DaxDfiyD\a\ ^
Cafiytt +  |£|)m~,y|. Then the operator K \S f  •-> S f  given by

(Ku)(x) s  (27t)-" J J el<x~y'i>a(x,y,^)u(y)dyd^ (3.4)

is a pseudodifferential operator whose symbol k has asymptotic development

/i*1
k(x,i) ~ Z  —  (D\D*a){x,x,t). (3.5)

Proof. Note that the y-integral in (3.4) is a Fourier transform. Using the 
rule uv =  u*v (and neglecting constants (2n)~tt/2 which will take care of 
themselves), we find that

(Ku)(x) =  J J  ei<x'{>d(x^ -  ti£)u(ti) dr\ dZ

= J eK*.i> J eK - t>d(x,£ — u(t]) dr\

d=  J  ei<x,,,>k(x,t])u(ti) dtj

where a denotes Fourier transform in the second variable. The interchange 
of integration is allowed since for each integer {  we have

\s{x̂ -t,,o\\m\ z cai + |{|ra + If - ̂ ir'a + Mr'.
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and the right hand side is integrable for t  sufficiently large. Formula (3.6) 
shows that K  is pseudodifferential with symbol

k(x,ri) =  dS

=  J e i<x-°fl(x,C,C+»?)C

For each integer t  we have the Taylor expansion in the third variable:
,-i«i

a ( x , Z  -{Dffl{x£,r,K° + R/pcJU + tj)
\a\ZS

where the remainder is given by the formula

R M U + n )  -  V + i ) i ' +i Z -7 Jo W W X+OT -tr*
Recalling that (•)" denotes the Fourier transform in the middle variable, 
we find that

J  e i<x,c>(D*d)(x,C,f/)C* =  J e i<x^ > C T O (x ,C ,» /)d C

=  J ei<x-»(5p>j£)(x)c,> M

=  (£>^^)(x,x,?j).

Consequently, the symbol of K  can be written in the form
£l«l

k(x,ri)= £  ~r (DyDxa)(x,x,t]) +  rfx,tj)
\a\zt a!

and by Proposition 3.4 it will suffice to show that

r fc x )  =f J ei<x’°R A x £ Z  + ti)d£ e SymM_(' +

for each £. To prove this we first show that for each a, /?, and k there is 
a constant Cafk such that the inequality

|D*xD'a(x,C,t + tl)\ g  Cafk{ 1 +  \ t+ r ,\r -M (l + |C|)-‘

is satisfied for all x,£,f/. To establish this we first note that from our basic 
assumption on a we have

§3. PSEUDODIFFERENTIAL OPERATORS 181

\C D lD ^(x,U + r,)\ = $?(D*xD *a)(x ,yU tl)e-i<M>dy

J  (DaxDlDfa)(x,y£+rj)e~i<y’0  dy

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



After setting C =  C» the inequality follows easily. Using this inequality and 
the above formula for R ,, we calculate that

\D*xDfR<(x,U + t,)\

= ( '+ 1 )  £  A  fo ( D lD ^ ^ ix L tC + r iK V  ~  t f d t

^  c * n  f t  (1 +  K  +  i/|)m -(^ + 1 )_ w l( l  +  | C | ) - W + 1d  -  i f d t  

^  < W i  +  i»fi r - v+1,- |,,|(i +  w +1~k.

From  this inequality it follows that there are constants Caf so that 

\D%D^x,ti)\ g  Ca/)(1 +  l ^ - K + D - W  

Hence, re e  Symm~(<?+1) and the theorem is proved. ■

Theorem 3.5 has the following easy consequences:

Observation 3.6. I f  the function a(x,y,£) o f Theorem 3.5 vanishes for all
(x,y) in a neighborhood o f the diagonal, then the corresponding operator K  
given by (3.4) is infinitely smoothing.

Proof. By (3.5) we have k, ~  0. ■

For A czU n and e >  0, we set A t =  {x e R " : d istance^,A) S  e). An op­
erator P : -* S f  is said to be e-local if for all u e Cq

supp Pu <=. (supp u \.  (3.7)

Corollary 3.7. Given P e whose symbol has compact x-support, and
given any s >  0, there exists Pe e xPDOm which is equivalent to P and is
e-local.

Proof. Choose a smooth real-valued function ij/ on Un x Un such that 
ij/(x,y) =  1 in a neighborhood of the diagonal, and ij/(x,y) =  0 if |x — y\ ̂  e.
Let p be the symbol of P. Then the operator

(Pe«)(x) =  (27!)-" J J  ei<x~y’4>\j/(x,y)p{x,^)u{y) dyd£  (3.8)

is clearly e-local. By Theorem 3.5 Pe is pseudodifferential with symbol 
pe ~  p. Hence, Pe is equivalent to P. ■

Corollary 3.8. Let % =  (X\>Xi) be a pair o f real-valued functions with com­
pact support on IR". Then for any P  e  '¥DOm the operator Px given by

P*(u) =  XlP(Xlu) (3.9)

is also in 'P D 0m.
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§3. PSEUDODIFFERENTIAL OPERATORS 183

Proof. The operator Px can be expressed in the form (3.4) with a(x,y£) =  
Xi(x)Xi(y)p(x,Q. ■

Theorem 3.9. Let P be a pseudodifferential operator and u a function in its 
domain (in L* for some s, say). Then for any open set U <= IR",

M ^ e C ®  ==> P u\v e C°°.

Proof. Suppose u\v is smooth and fix x  e  U. Choose x = (XuXz) as above 
so that: x e supp Xi c  supp Xi\ Xi =  1 near *5 and Xi s  a neighbor­
hood of supp Xv Since Xiu G Q?* we have Xi^(X2u) G C°°- Furthermore, by
3.6 we have that XijPu -  Xi^iXi^) =  ZiW(l ~  XtM  6 c °°- Consequently, 
XiPu e C00 and so Pu is smooth near x. ■

The reader can probably see the potential usefulness of the above corol­
laries in trying to define and study pseudodifferential operators on general 
manifolds. These considerations motivate the following definition.

Definition. An operator P e *¥DOm is said to have support in a com­
pact set K, if supp (Pu) cz K  for all u e C®, and if Pu =  0 whenever 
supp « n K  =  0 .  The linear space of such operators is denoted *¥DOKtm.

We now begin the local symbol calculus.

Theorem 3.10. Given P e DOK e and Q e '¥DOK m with symbols p and q 
respectively, the composition P ° Q e  T,DOKt<f+m has symbol with formal 
development

;l«l
sym (P o 0 ~ £ - ( D ^ m q ) .  (3.10)

Given P e  'PDOKtOT, we define its formal adjoint P* by setting

(Pu,v)L2 = (u,P*v)L2 (3.11)

for all u,v e S f  with support in K.

Theorem 3.11. Given P e '¥DOK m with symbol p, its formal adjoint P* e 
'PDOK'm has symbol p* with formal development

(3-12)

where (•)* denotes the transposed matrix.

Theorem 3.12. Let 0:1/ -* V be a diffeomorphism between open subsets o f 
Rn. Then for each compact subset K  c= [7 ,0  induces a map 0* : DOK m -*►
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184 III. INDEX THEOREMS

'VDO+K.m by setting

(0*P)(«) =  P(« o 4 > )o 0 -\  (3.13)

Proof o f  Theorem 3.11. Choose u,v e C00 with support in K , and note that 

(Pu,v)Li =  JJei<JC'°<p(x, £)«(£), t>(x)> d£ dx

= J J J  ei<x ~ ̂  > < p(xf)u(y), a(x)> d yd^dx

=  J J J  <,u(yle~i<x~y'°P{x£yv{x)> dx dl; dy

= (u,P*v)L 2

Fix a real-valued function <t>eClf such that ^  s  1 on X, and note that 
since <pu = u, we can write

(P*v)(y) =  JJ e‘iy ~ X,i><f)(y)p{xfyv(x) dx d f  (3.14)

This operator satisfies the conditions of Theorem 3.5 and therefore has a 
symbol p* with formal development

W________ _____

a OL. x- y
il«l _____

=  E ^ W ^ ) '

where we use the fact that = p l because p has x-support contained in 
K. ■

P roof o f  Theorem 3.10. Note that

(P<2«)(x) =  J  e><**>p(x£ffiHQdt

and so we need a reasonable expression for Qu(£). To find this, note that 
Q = (<2*)* and so from equation (3.14)

(2«)(x) =  JJ ei<x~y'i}q*(yf)'u{y) dy d£ (3.15)

for x e  K, where q* — sym(Q*). Now (3.15) is just an inverse Fourier trans­
form. Hence,

Qu(£) = § e - ‘<y'iyr(y,£,)u{y)dy 

where r =  (q*)*. It follows that

(PQu)(x) = JJ ei<x " y'iyp(x,£,)r{yf)u(y) dydt,
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§3. PSEUDODIFFERENTIAL OPERATORS 185

to which Theorem 3.5 applies. We conclude that PQ is pseudodifferential 
with formal development:

i,a|
sy m (P 0  ~ £ - D ^ p i x ^ r i y t f

a a .  x = y

i\fi\ + \v\

M  /  ;M \

m
- P l p m q )

where the last line is a consequence of Theorem 3.11. ■

Proof o f  Theorem 3.12. Write x  = (f>{x) and x  =  <j)~l(x) =  ij/(x). We note 
that

X -  y  =  <A(x) -  \p(y) =  J J  J t \l/(tx +  (1 -  t)y)dt 

=  T(x, y) • (x -  y)

where *F(x,y) is a smooth matrix-valued function. Since *P(x,x) =  (<d{f//dx)x 
and ^  is a diffeomorphism, the matrix T'foy) is invertible for (x,y) in a 
neighborhood (S of the diagonal. We choose % e Co (®) such that % == 1 
in a (smaller) neighborhood of the diagonal.

Let J  =  det(3^/3x) denote the Jacobian determinant of i//9 and note that

K M u J x )  =  [P(u o <£)](*)

=  J J  eKi “ *-(>p(x,Z)u{(t>y) dy d£

=  JJ ei<x ~ y’'r‘ix’y)i>p(ip(x),£)u(y)J(y) dydij.

Let J  denote the integrand in this last integral, and write df =  +
(1 — y f f .  By 3.6, the integral of (1 — f f f  represents an infinitely smoothing 
operator. In the integral of y J  we can make a change of coordinates 
f  =  ['P'(x,y)]_ lC s  ©(x,y) • C and find that, modulo infinitely smoothing 
operators, we have

=  J J  ei<x~y-°a(x,y,Ou(y)dyd(

where

a(x,yf) =  y(x,y)J(y)|det ©| j# (x ) , ©(x,y)Q.
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186 III. INDEX THEOREMS

By the workhorse Theorem 3.5 we conclude that (fr+P is pseudodifferential.
■

Applying formula (3.5) and recalling that % =  1 near the diagonal, we

since 0(x,x) =  [(d^/Sx)']-1 =  {dx/dxj and |det 0(x,x)| =  J _1(x). Equa­
tion (3.16) states exactly that, modulo symbols of lower order, the symbol 
of a pseudodifferential operator transforms like a function on the cotangent 
bundle. More precisely, let the coordinates for the Fourier transform (x,£) 
be considered as standard coordinates for 1-forms co =  £  ^  dxj on x-space.

D efin itio n  3.13. Let P e 'PDO* have symbol p e  Symm. Then the prin­
cipal symbol of P is the residue class <r(P) =  [p] e Symm/Syrnm~ 1. Our dis­
cussion above shows the following:

Corollary 3.14. The principal symbol o(P) transforms under diffeomorphisms 
like a function on the cotangent bundle o f  IR".

We are now in a position to consider global questions. Let X  be a com­
pact n-dimensional manifold, and let E and F  be smooth complex vector 
bundles over X . We say that a linear map P : T(E) -> T(F) is infinitely 
smoothing if it extends to a bounded linear map P : L*(E) -> L j+m(F) for 
all s,m e IR. This implies by (2.15) that P(L*(E)) <= r ( F ) ( =  C00-sections) 
for all s. It is a straightforward exercise to show that given a riemannian 
volume measure p on X 9 any infinitely smoothing operator can be written 
as an integral operator:

where K(x,y) e Hornc(EyiFx) varies smoothly on X  x X .

D efin itio n  3.15. A linear map P : T(E) -> T(F) is called a pseudodiffer­
ential operator of order m  if modulo infinitely smoothing operators P can 
be written as a finite sum P =  £  Pa where each Pa can be expressed in 
some system of local coordinates xa :U a -+ IR" and smooth bundle trivi- 
alizations as a pseudodifferential operator of order m with compact sup­
port. The linear space of all such operators is denoted x¥DOm(E,F). Two 
such operators are called equivalent if they differ by an infinitely smoothing 
operator.

Any differential operator P of order m is pseudodifferential.

find that
il«l

sy n # * P ) ~ Z t  ^  W ) | d e t  © |/# (x ) ,© 0(X CC. X- y

= p ^ic(x), A  (mod Symm_1)

Pu(x) =  Jx K(x,y)u(y)dn(y) (3.17)
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§3. PSEUDODIFFERENTIAL OPERATORS 187

Remark 3.16. Given a riemannian metric on X  and P  e 'FDOm(£,F), 
we see from 3.7 that for any s >  0 there is an operator P c e *¥DOm(EyF) 
which is equivalent to P and is s-local. (Of course, a differential operator 
is 0-local.)

Using a good presentation of the bundles E and F (cf. 2.2), and patching 
together local pseudodifferential operators with a partition of unity, one 
can manufacture interesting elements in '¥DOm(E,F) for any m e IR.

Given a riemannian volume measure p  on X , we can associate to any 
operator P : T(E) -> T(F) a formal adjoint P* : T(F*) T(£*) by setting

J X (Pu, v) dp =  (u, P*v) dp (3.18)

for u e T(E) and v e T(F*). The following theorem is an immediate con­
sequence of the previous results of this section.

Theorem 3.17. Let £ ,F  and G be smooth vector bundles over a compact 
manifold X  and fix  operators P e x¥DOm(E9F) and Q e *P DO^(F9G). Then the 
following statements hold:

(i) P extends to a bounded linear map P :L j(F ) -► L*-m(F) for all s.
(ii) For any open set U c  X ,

u\v is C® = £ •  Pu\v is C°°.

(iii) Q ° P e  xPDOm+i(E,G).
(iv) P* e TDOm(F*,£*) for any fi.
(v) A diffeomorphism <f>: X  -* X  induces a linear map

DOM*E,<l>*F) — > '¥DOm{E,F) 

by the formula </>*[(<!>*P)u] =  P(<̂ *m).

We now discuss some elements of the symbol calculus in the global 
setting. Let n*E and n*F denote the pull-backs of E and F  respectively 
to the cotangent bundle n : T * X  -*• X .

D efinition 3.18. Let p be a smooth cross-section of the bundle 
Hom(n*E,n*F) on T*X. Then p is a symbol of order m if in a good 
presentation of E and P, p defines an element of Symm in each local co­
ordinate chart of the presentation (where the variables (£ ! ,...,{ * ) are 
canonically identified with the coefficients of cotangent vectors in the basis 
{dxu . . .  ,dxn}.

It is easy to see that this definition is independent of the good presen­
tation that is used.

We let Symm(£,F) denote the vector space of all such symbols of order m. 
From Corollary 3.14 and Theorem 3.10 we have the following conclusion.
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188 III. INDEX THEOREMS

Theorem 3.19. Each P e '¥DOm(E9F) has an associated “principal symbol” 
o(P) defined in the quotient space Sym m(E9F)/Sym m~1(E9F).

It would be useful to be able to canonically construct for each ele­
ment p e Symm(£,F) an associated operator P  e '¥DOm(E9F) with the same 
principal symbol as p. This can be done after introducing a riemannian 
metric on X  and a connection V on E. We proceed as follows. Fix p > 0 
sufficiently small that the exponential map expx: TxX  -► X  gives a smooth 
embedding of the p-disk at each x. Fix a smooth “cut-off” function 
\j/:[0,p] -> [0,1] with =  1 near 0 and \j/ =  0 near 1. The riemannian 
metric determines a Lebesgue measure in each fibre of T X  and of T*X , 
and we can define a “Fourier Transform” (•)" • H is) -+ r(n*E) as follows. 
For /; 6 T * X 9 we set

m  = j TxXe - ‘<v^ U (V )d V  (3.19)

where 17(F) =  t/r(|F|)M(expxF) and where u(y) denotes the parallel trans­
late of u(y) along the (unique, shortest) geodesic ray joining y  to x, when 
distance (y,x) <  p. For |F | ^  p we set 17(F) =  0. The function u(£) lies in 
the Schwartz class of each fibre, T*X.

Given a symbol p e Symm{E,F), we now define an operator P = p(V) as 
follows. For u e  T(E) we set

Pu(x) =  (2*)-« m m  d t  (3.20)

We leave as an exercise the proof that P  e xPDOm(E,F). A symbol cal­
culus for operators defined in this way has been worked out in Bokobza- 
Haggiag [1] and Widom [1],

If we take X  to be flat euclidean space, and E =  F  to be the trivialized 
line bundles, and if we choose p(x,£) =  £  A x(x)£a, then a direct calculation 
shows that Pu(x) =  £  A%x)D“u(x).

§4. Elliptic Operators and Parametrices

Recall that a differential operator P:V(E) -* T(F) over a compact mani­
fold is called elliptic if its principal symbol o£P) is invertible at all non­
zero cotangent vectors In this section we shall prove the fundamental 
result that modulo infinitely smoothing operators, an elliptic operator is 
invertible.

To this end we consider the “local” case of pseudodifferential operators 
on IR" which map € t-valued functions to themselves.

D efinition 4.1 An operator P  e 'FZ)Om with symbol p is said to be 
elliptic if there exists a constant c >  0 such that for all |£| ^  c the matrix
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§4. ELLIPTIC OPERATORS AND PARAMETRICES 189

inverse of p(x,£) exists and satisfies

^  c(i + (4.1)

For example, an operator P  whose symbol is of the form p(|£|)Id, where 
p(t) is a polynomial with constant positive coefficients, is elliptic.

R e m a rk  4.2. It is straightforward to verify that if P : r ( E )  -» T(F )  is an 
elliptic differential operator, then the local representations of P  in a good 
presentation of E  and F  are elliptic in the sense of 4.1.

Theorem 4.3. Let P  e xfD O m be elliptic. Then there exists an operator 
Q e '¥D O -m, unique up to equivalence, such that

where S and S’ are infinitely smoothing operators.

Proof. Let p be the symbol of P  and let c be the constant in Definition 4.1. 
Set q0(x, i)  =  ;c(|<!;|)p(.x, f ) -1 where x- R + -* [0 ,1 ] is a smooth function 
with x(t) =  0 for f <; c and x(t) =  1 for t ^  2c. ■

Lemma 4.4. q0 e  Sym_m.

Proof. We must show that for each a and ft there is a constant Ca/J so 
that |D“D ^ 0| ^  C ^(l +  |£|)-m~W. F o ra  =  /? =  0, this follows immediately 
from (4.1). For higher derivatives we first note that \DlD$q0\ is estimated 
uniformly in x  by derivatives of p~ l . Taking derivatives of the equation 
pp-1 s  p _1p =  I  (for |£| ^  c) and applying (3.3) and (4.1), we see that 
\dp~l/d£j\ =  \p~ \dpld^})p ~ l \ g  Cj{ 1 +  | | | ) _m“ 1 for each;. Taking further 
derivatives, using (3.3), and applying straightforward induction complete 
the proof of the lemma. ■

Note that q0p — 1 =  pq0 — 1 =  0 for |£| ^  2c. Consequently these func­
tions lie in Symm for all m and the corresponding operators are infinitely 
smoothing. Unfortunately, pointwise multiplication of symbols does not 
give rise to composition of operators. We have instead the complicated 
formula (3.10):

Placing q0 in this formula, we find from the above observation that at 
least sym(20P  — l ) e S y m ra_1. This suggests proceeding inductively to 
define a formal development

PQ =  Id — S' and QP =  Id -  S (4.2)

sym(QP) = Z - ( E r tq)(D*p).

00

(4.3)
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190 III. INDEX THEOREMS

where qk e Symm k is defined by

* - i r  ii*i 1
I  - r W q j m p )  \q0. (4.4)

j  = 0 [_ \* \+ j = k Otl J

By Proposition 3.4 there is an operator ( ? e xF D 0 _ m, unique up to 
equivalence, whose symbol has the formal development (4.3)-(4.4). Since 
the composition of any pseudodifferential operator with an infinitely 
smoothing operator is infinitely smoothing we are free to replace P  and 
Q with any operators equivalent to them. In particular, by Corollary 3.7 
we may assume P and Q to be 1-local. Theorem 3.10 now applies to prove 
that QP — I  is an infinitely smoothing operator.

A completely analogous argument proves the existence of an operator 
Q' e  ¥ 2 )0  such that PQ' — I  is infinitely smoothing. Note, however, 
that Q ~  Q(PQ') =  (QP)Q' ~  Q\ that is, Q and Q' are equivalent. ■

The operator Q constructed in Theorem 4.3 is called a parametrix for 
P. Its existence proves many of the basic im portant facts concerning elliptic 
operators. Here is an example:

Theorem 4.5. Let P e ^VDOm be an elliptic operator and choose u e  L*, for  
some s. Then on any open set U £  IR", it is true that:

Pu is C00 on U = >  u is C°° on U. (4$)

Furthermore, if  Pu =  Xu for some X e C  and if  m >  0, then u is smooth.

Proof. Choose a parametrix Q with Id =  QP +  S as above. By 3.9, if Pu
is smooth on U, then u =  QPu +  Su is smooth on U.

If P is elliptic, so is P — X Id for any X e C  provided m >  0. Hence, by 
the above, if (P — X)u =  0, then u is smooth. ■

We pass now to the global case. Let E and F  be smooth vector bun­
dles over a compact manifold X  and consider an elliptic differential 
operator P : F(E) -► T(P) of order m. Choose a good presentation of the 
bundles E,F with coordinates x p : -> IR" where /? =  1 , . . .  ,1V, and with
partition of unity {\j/p} subordinate to the covering {Bp} where Bp =  
{p e U p : \xp{p)\ < 1} (see Definition 2.2). In the /?th system P  defines an 
elliptic operator Pp e xPDOm for which there is a parametrix Qp e 
satisfying

PpQp ^  M. S'p and QpPp =  Id Sp> (46)

where Sp and S'p are infinitely smoothing. By (3.7) we may assume that 
Qp and, therefore, also Sp and S'p are 1-local. Now observe that for any 
1-local operator R  in the /?th coordinate system, the operators il/pR and
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§4. ELLIPTIC OPERATORS AND PARAMETRICES 191

Ripp have compact support in 2Bf  =  {xp : \x^\ <  2}, and therefore define 
global operators in xf?D04l(E,F). (In particular, if u e  r(£ ), we have 
if/pRu =  tj/pR(<pu) +  p fiR(l — <p)u) s  \j/fiR((pu) where <p is any smooth cut­
off function with support in Up and with <p = 1 on 2Bfi.)

We now define global operators Q ,Q 'e '¥ D O -m(E,F) and S,S' e 
'VDO _«,(£,£) by setting

S =  J] if/pSp, S' =  S'pif/p.
It follows immediately from (4.6) that PQ'u =  £  PpQp(\f/pu) =  £  \pf u — 
]T S'p(\f/pu) = u — S'u since ^ ( s l ,  Similarly, one finds that QP =  Id — S, 
and therefore also that Q ~  Q(PQ') = (QP)Q' ~  Q', that is, Q and Q  are 
equivalent. We have proved the following main result:
Theorem 4.6. Let P : F(E) -* T(F) be an elliptic differential operator o f 
order m over a compact manifold. Then there is an operator Q e 
x¥ D O -m(F,E), unique up to equivalence, such that

PQ =  Id — S' and QP = l d ~ S  (4.7)

where S and S' are infinitely smoothing operators.

The operator Q is called a parametrix for P.
Notice that the equations (4.7) imply that PQP =  P — S'P — P — PS 

and QPQ = Q — QS’ = Q — SQ, and consequently that

PS = S'P  and QS' = SQ. (4.8)

Furthermore, it is evident that

S|kerP =  Id and S'|ker q = Id. (4.9)

R emark  4.7. Theorem 4.6 carries over to pseudodifferential operators. 
An operator P e x¥DOm(E,F) is said to be elliptic if its principal symbol 
a(P) e Symm(£,F)/Symm_ 1(E,F) has a representative p which is pointwise 
invertible outside a compact set in T * X  and satisfies the estimate 
\ p ( t r l \ <f C( 1 +  for some constant C and some riemannian metric 
on X . A straightforward adaptation of the arguments above shows that 
Theorem 4.6 remains valid if  the word “differential” is replaced by “pseudo- 
differential” This fact will not be used here, so we leave the details to the 
reader.

R em ark  4.8. Given a differential operator P : T(£) -► T(F) of order m 
and a riemannian volume measure on X , let P * : r(F*) -+ T(£*) be the 
formal adjoint given by (3.18). Then P* is again a differential operator of 
order m whose principal symbol o(P*) is the pointwise transpose of o(P). 
In particular, P is elliptic if  and only if  P* is elliptic.

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



192 III. INDEX THEOREMS

§5. Fundamental Results for Elliptic Operators

In this section we shall prove some basic theorems for elliptic operators. 
These will include the fundamental elliptic estimates, the classical “Hodge 
Decomposition Theorem,” the spectral decomposition for self-adjoint el­
liptic operators, and estimates for the growth of eigenvalues, used later 
to establish the strong convergence properties of the heat kernel.

Throughout this section E  and F  will denote smooth vector bundles 
over a compact n-dimensional manifold X . We shall prove our results 
here for differential operators but many of them carry over to pseudo­
differential operators of positive order.

To begin we recall some basic concepts concerned with a bounded 
linear operator T : H t -* H 2 between Hilbert spaces. The kernel of T  is 
the subspace ker(T) = {v e H x : Tv =  0}, and the range of Tis the subspace 
Im(T) g  {Tv e H 2 '■ v e  H t ). The cokernel of T  is the quotient space 
coker(T) =  H 2/lm (T )  by the closure of the range. The operator is called 
Fredholm if its kernel and cokernel are finite dimensional and its range is 
closed. Its index is then defined to be the integer ind(T) =  dim(ker T )  — 
dim(coker T).

At the other extreme from Fredholm operators are compact operators. 
A bounded operator T : H 1 H 2 is said to be compact if the image of 
each bounded sequence from H x has a subsequence which converges in 
H 2. By the Sobolev Embedding Theorem, the inclusion L*(E) <= L*{E) 
for s' >  s is compact. In particular any infinitely smoothing operator 
S :L j(£ ) -♦ Lj(E) is compact. The Fredholm operators are exactly those 
which are invertible modulo the compact ones.

Lemma 5.1. Let T : H i —> H 2 and Q '.H2 -* H k be bounded linear maps 
such that Q T  =  Id — Sj and TQ =  Id — S2 where S 1 and S2 are compact. 
Then T  and Q are Fredholm operators.

Proof. Since S i|ker(7-) =  Id and S k is compact, ker(T’) must be finite dimen­
sional. Taking adjoints, we find Q*T* =  Id — SJ, and since Sf is compact 
we conclude as above that dim(ker T*) = dim(coker T) < co. It remains 
to prove that Im(T) is closed. By restricting to (ker T )1 we may assume 
that T is injective. Let vk = Tuk, k  =  1 ,2 , . . . ,  be a sequence such that 
vk -* v in H 2. We want to show that v = Tu for some u e  H k. We note 
first that the sequence {«*}“= i is bounded. Otherwise by passing to a sub­
sequence, we can assume that ||u*|| -* oo and so T(m*/||w*||) =  v*/||u*|| -» 0. 
Since Q T  =  I  — Sx and S 1 is compact, we may assume by passing to a 
subsequence that lim(u*/||uj|) =  lim S 1(ufc/||uA||) =  w where ||w|| =  1. How­
ever, by continuity Tw = 0, and since T  is injective, w =  0. We conclude 
that {uk}"= j must be bounded.
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§5. FUNDAMENTAL RESULTS 193

Consider now the convergent sequence Qvk =  QTuk =  uk — S x(uk) -* 
Qv. Since {uk}k=i is bounded and S x is compact we may assume, after 
passing to a subsequence, that S -» u^. Applying T  to the line above 
we find lim(7w* -  T S xuk) = v -  Tu* =  TQt;. Hence, v e Im (T) and we 
have proved that Im(T) is closed. Therefore T  (and by symmetry Q also) 
is Fredholm. ■

We now state our first main theorem:

Theorem 5.2. Let P :T (£ ) -* T(F) be an elliptic operator o f order m over 
a compact manifold X . Then the following is true:

(i) For any open set U a  X  and any u e L*(£),

P u j ^ e C 00 =£> u ^ e C 00.

(ii) For each s, P extends to a Fredholm map P : L*(£) -* Lf_m(F) whose 
index is independent o f  s.

(iii) For each s there is a constant Cs such that

il«IU ^  Q I I 4 - *  + I N I . - . )

for all u e  Lf. Hence the norms ||-||s and ||-||s- m +  ||P-||s- m on L j are 
equivalent.

Proof. Part (i) is a restatement of Theorem 4.5. For part (ii), note first 
that by Proposition 2.13, P  extends to a bounded linear map P :L *(£) -+ 
L j_m(F). That this extension is Fredholm follows immediately from the 
existence of the parametrix (Theorem 4.6) and the lemma above. By part
(i), ker P consists of smooth sections and its dimension is therefore inde­
pendent of s. Similarly, the cokernel of P  is isomorphic to the kernel of 
the adjoint

Ls2_m(F)* !*(£)*

1̂1 ?ll (5.1)

L l s+m(F*) LlJJS*)

which is easily seen to be the natural extension of the formal adjoint of 
P. Since P* is elliptic (see 4.8), dim(ker P*) is also independent of s. This 
proves part (ii).

For part (iii), let Q e D O -m(F,E) be a parametrix as in Theorem 4.7. 
Then u = QPu +  Su, and since S is infinitely smoothing, ||u||s ^  ||6F« ||S +
IM  g cfl|Pti_m + 1|4_j. ■

The above proof shows the following. Let P : r(E) -*• T(F) be an elliptic 
operator and P*: T(F*) -» T(£*) its formal adjoint (defined using any
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194 III. INDEX THEOREMS

volume form on X). Define the index of P  to be

ind(P) =  dim(ker P) — dim(ker P*). (5.2)

Corollary 5.3. The index o f an elliptic operator P equals the index o f  any 
o f its Fredholm extensions P :L 2(E) -*■ L ^ m(F).

Part (iii) of Theorem 5.2 is called a “fundamental elliptic estimate.” 
Notice that if we solve the equation P u = v, it allows us to estimate the 
||-||s-norm of u in terms of the ||-||s_m-norms of u and v. It will be useful 
in later discussions to write down an im portant local consequence of this 
result.

Theorem 5.4. Let P  be an elliptic differential operator (o f  order > 0 ) defined 
on an open subset Q o f  IR". Then fo r every compact subset K  c  Cl and every 
integer 0, there is a constant CKk such that for all solutions u o f  the 
equation Pu =  0, one has that

where U'H^c* denotes the uniform Ck-norm on K  and || * ||n,x.2 denotes the 
L 2-norm on £2.

Proof. Choose q> e C“ (£2) with (p =  1 on K. Observe that P(<pu) = q>Pu +  
Y, a f x ){Dau){x) where the sum is over |a| <  m =  order(P) and where the 
coefficients a„ depend only on P  and cp. Assume Pu =  0. Then the funda­
mental elliptic estimate 5.2(iii) applies to give

Taking a sequence K c  c  f l ;  c  c  c  c  ■ • • c  c  =  Q, applying the 
argument repeatedly, and then using the Sobolev Embedding Theorem 
2.15(1) completes the proof. ■

It is often useful, when studying an operator P : T(£) -» T(P) to consider 
non-negative operators P*P  and PP* where P * : T(P) -> T(£) is the formal 
adjoint defined via bundle metrics. For this reason we shall assume from 
this point on that E  and F  are equipped with hermitian inner products and 
unitary connections, and that X  is furnished with a riemannian metric. 
All connections will be denoted by V. The Sobolev norms || • ||* with k e  2 + 
will be given explicitly by (2.1).

Given an mth order differential operator P :T (£ ) -*■ T(F) and bundle 
metrics as above, we define the formal adjoint of P  to be the map P*: 
r(F) -+ T(£) such that (Pu,v)L2 =  (u,P*v)Li for all u e  T(£) and all v e  T(£). 
Integration by parts shows that P* exists and is also a differential operator

(5.3)

IMU.L! <  |M I « u *  ^  C ( | |H ln x |-m +  \\P(pu\\atLz _ J

=  C ' | | « | | n X 2 _  t=  C'||M||nX2
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§5. FUNDAMENTAL RESULTS 195

of order m. Furthermore, <r(P*) =  <r(P)* and so P* is elliptic if and only 
if P  is elliptic.

A differential operator P : F(E) F(E) is then said to be self-adjoint if 
P  =  P*. The Dirac operator of a Dirac bundle is always self-adjoint, and 
so, of course, are its powers (see H.5.3.). An important example for rie­
mannian geometry is the Dirac operator D on the Clifford bundle C£(AT). 
Under the canonical isomorphism C£(X) s  A*(X) we have D + d*9
and so D2 s  dd* -F d*d = A, the Hodge Laplacian (see II.5.12).

Theorem 5.5, Let P : F(E) -> T(£) be an elliptic self-adjoint differential op­
erator over a compact riemannian manifold. Then there is an L 2-orthogonal 
direct sum decomposition:

F{E) =  ker P © Im P (5.4)

Proof. With respect to the decomposition L 2(E) =  ker P ©  (ker P)1 any 
element u e F(E) cz L 2(E) can be written as u =  u0 +  ux with Pu0 =  0. 
Since u and u0 are smooth, so is uv  

Consider now the Fredholm map P :L 2(E) -> L l w(£) whose adjoint 
P*:L„(E) -+ L 2(E) (cf. 5.1) is the natural extension of P itself. We clearly 
have that (ker P)1 =  Im P* =  P(L^(£)). Hence, we can write ux =  Pux for 
ux e L^(£). Since ux is smooth, so is ux by Theorem 5.2. ■

Consider the special case E =  A*A" and P =  A =  dd* + d*d (see II.5.12 
forward). Clearly, Im A =  Im d +  Im d*. However, since (d*<p,d^)L2 =  
((p>d2i//)L2 = 0 for all (p9ij/9 this sum is L 2-orthogonal. Letting H* =  ker A 
denote the harmonic forms we have the following:

Corollary 5.6 (The Hodge Decomposition Theorem). Let X  be a compact 
riemannian n-manifold. Then there is an L 2-orthogonal direct sum decom­
position o f the smooth p-forms

F(ApX) =  W  ©  Im d © Im d* (5.5)

for p =  0 , . . .  ,w.

Theorem 5.5 has another important consequence:

Corollary 5.7. Let P : F(E) -» F(E) be a self-adjoint elliptic operator over a 
compact riemannian manifold, and let H : F(E) -> ker P be the orthogonal 
projection given by the decomposition (5.4) Then there is an operator G : 
F(E) T(£) o f degree —m, called the “Green's operator,” such that

PG =  GP =  Id -  H.

Proof. The map P : Im P -> Im P is an algebraic isomorphism and has 
an inverse P ~1. Let G =  P " 1 o (/ — H). G obviously extends to a bounded

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



196 III. INDEX THEOREMS

map G : L 2(E) -> L 2+m(E) which is a Hilbert space isomorphism on (ker P)1 
for all s. ■

We now consider the spectral theory for a self-adjoint elliptic operator 
P:F(E) -> r (F). For X e C we consider the A-eigenspace of P given by

Ex =  ker(P -  X I\ (5.6)

and we say that X is an eigenvalue of P if dim Ex > 0.

Theorem 5.8. Let P : r(£) -► F(E) be a self-adjoint elliptic differential op­
erator o f order m >  0 over a compact riemannian n-manifold. Then each 
eigenspace o f P is finite-dimensional and consists o f smooth sections. The 
eigenvalues o f P are real, discrete and tend rapidly to infinity in the fo l­
lowing sense. I f

d{A) =  d im ( 0  e \  (5.6)
\ | A|gA /

Then there is a constant c such that

d{A) <; cA n(n+2m+2)/2m. (5.7)

Furthermore, the eigenspaces o f P furnish complete orthonormal systems for  
L 2(E), i.e., there is a Hilbert space direct sum decomposition

L 2{E) =  (+) Ex. (5.8)

Proof. The first statement follows immediately from the fact that P — XI
is elliptic. To see that each eigenvalue is real, note that if Pu =  A«, then
A||u||2 =  (Pu,u)Li =  (u,Pu ) L 2 =  X||u||2.

To prove the estimate (5.7) we proceed as follows. Given e > 0, we say 
that a subset A  c  X  is s-dense if for each point x e  X  there is a point 
a e A with dist(x,a) <  s. For each e >  0, let N{e) be the minimal possible 
number of elements in an e-dense subset of X . One sees easily that for 
some constant C.

N(e) ^  C e -n for all e > 0. (5.9)

Consider now a function u e  Ex and note that for each integer k > 0, 
p ku =  Xku. Hence by the elliptic estimates 5.2(iii) we see that there is a 
constant Ck9 independent of n, such that

IM U ^  c *(IMIo +  M o ) .  (5.io)
Set E(A) =  0 m  s a Ex and write u e E(A) as w =  £  axux where ux e Ex has 
uA]| =  1. Then Pku = £  axXkux, and since ux 1  for X ¥= p, we have that 
Pu\\l = £  |aA|2|A|2'1 S  Z  |aA|2A2‘ =  A2k||u||o. Consequently, by (5.10) we 

lave that

||»||mfe ^  Q (1 +  A k)||«||o
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§5. FUNDAMENTAL RESULTS 197

for all u e E{A). If we assume that mk > (n/2) +  1, the Sobolev Embedding 
Theorem 2.15 gives us a constant C'k such that

sup |Vu| ^  C i(l +  A*)||«||o (5.11)
x

for all u e £(A). Suppose now that for a given c > 0  we have d( A) =  
dim £(A) >  N(e). Then there will be an element u e  £(A) with ||u||0 =  1 
such that u =  0 on an e-dense subset of points in X . It then follows from 
(5.11) that

sup |u| g  eQ (l +  A4). 
x

i_
However, this is impossible if eC'k(l +  A*)vol(X)2 <  1 since J |u|2 =  1. We

conclude that d(A) £  N(eA) where e ^ 1 = 2Ck(l +  A4)vol(AT)2 S  CkAk. 
Consequently, by (5.9) we have d{A) g  Csj^" iS ckAnk. Choosing k = 
[(« + 2m +  2)/2ni] completes the proof of the estimate (5.7).

It remains to prove (5.8). Let V, denote the closure in L2(£) of the 
subspace consisting of finite linear combinations of eigensections of P. 
Note that by 5.2(ii) the map P :L 2(E) -* m(E) is an isomorphism on 
(ker P)x. Hence, P: P x -> Kx_m is a Hilbert space isomorphism for all s. 
We want to show that Vq =  {0}. Let’s assume Vq /  {0} and consider

H2 =  inf{(P2«, m) =  ||Pu||g : u e  V q and ||u||0 =  1}.

Note that Fjm is dense in Pq and so n 2 < co. (This density follows from 
the fact that L |m-orthogonality implies Lo-orthogonality, V2m is dense in 
V0 and L \m is dense in Lq.)

Choose a sequence («k}”= i c  with ||«k||0 =  1 for all k and 
lim(P2M*,Kt) =  n 2. Since ||ufcJ|o +  ||Puk||o is uniformly bounded we know 
from Theorem 5.2(iii) and the compactness of the embedding L2(£) c: 
Lq(£), that there exists a subsequence, also denoted {«*}*= i, such that 
uk -* u in Lq(£). We claim that

((P2 -  n 2)u, v)0 =  («, (P2 -  n 2)v)0 =  0 (5.12)

for all v e Vjm =  (V-2m)*- If not> then there exists v e  V 2m with ||a||0 =  1 
and ((P2 — fi2)u, v) — — a <  0. For t e R, consider the vectors uk(t) =  
uk +  tv and note that

Q ^  ((P2 ~  P2M t ) ,  Mfc(t))o  f —2<xt +  t 2

||Mfc(0||o 1 + 2t(«,l>) +  t2

for |t| sufficiently small. This proves (5.12), which in turn proves that 
P2u =  n 2u. Since P 2 is elliptic, the /z2-eigenspace is finite dimensional and 
P-invariant. Consequently it contains an eigenvector of P  in contradiction 
with the definition of Fq. This completes the proof of Theorem 5.8. ■
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198 III. INDEX THEOREMS

A self-adjoint operator P  is said to be positive if (Pu9u)0 ^  0 for all 
u e T(E). Theorem 5.8 can be reformulated in the positive case as follows:

Corollary 5.9. Let P : T(£) T(£) be a positive self-adjoint elliptic differ­
ential operator o f order m >  0 over a compact manifold. Then there is a 
complete orthonormal basis {uk} t o f L q(E) such that

Luk =  Xkuk for all k (5.13)

where 0 <  Xx ^  X2 ^  . . .  -► oo. In fact for some constant c >  0,

Xk ^  ck2m/n(n+2m+2) for all k. (5.14)

Proof. The first statement is clear. For the second note that d(Xk) =  k. ■

§6. The Heat Kernel and the Index

Let P :T (£ ) T(£) be a positive self-adjoint elliptic differential operator
of order m over a compact riemannian n-manifold X . In this section we 
shall explicitly construct the heat operator e~tp:Y (£) -» T(£), for t > 0, 
which is an infinitely smoothing operator with the property that if ut == 
e~tPu, for some u e T(£), then ut satisfies the equation

^ « t +  P M( =  0. (6.1)

We shall define e~tP as an integral operator of the form

(e~,Fu)(x) = Jx K,(x,y)u(y) dy (6.2)

where K t(x9y) : Ey Ex is a linear map depending smoothly on x 9y  and t. 
(Hence, K  is a smooth section of the obvious bundle over R x X  x X )  
This kernel K  is called the heat kernel for P and is defined as follows. Let 
{uk}k=i be a complete orthonormal basis of L 2(£) consisting of eigen- 
sections of P  with Puk =  Xkuk and 0 ^  Xx ^  X2 S  °o as guaranteed 
by Corollary 5.9. We set

K,{x,y) =  f  e~ Xk,uk(x) ®  u?(y) (6.3)
k = 1

where v* e E* denotes the element such that v*(u) = ( u9v )y for all u s  Ey.

Lemma 6.1. For any r ^  0 and any closed interval I  c  (0,oo), the series
(6.3) converges uniformly in the Cr-topology on I  x X  x X .

Proof. Fix a positive integer s with ms > (n/2) 4* r. By the Sobolev Em­
bedding Theorem 2.15 and the Fundamental Elliptic Estimates 5.2(iii) we 
have constants c and d 9 depending only on s, such that each uk satisfies
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the inequality:

Ikllc- ^  c 'IW U  =  C(||M*l|o +  II^Mjkllo) =  c(l +  AO

where ||*||Cr denotes the function Cr-norm on X . By Corollary 5.9, Ak satis­
fies the inequality

a* ^  ky

where y =  2m/n(n +  2m 4* 2). This implies that

e~Xktl sk £  (e~kvt)(ksy)

for all k >  (s/t)1/y. The uniform Cr-convergence of (6.3) now follows di­
rectly from the convergence of the integral e~txx*dx. ■

This lemma has the following immediate consequence:

Theorem 6.2. For each t >  0 the operator e~tP:T(E) -* T(E) is infinitely 
smoothing. Furthermore, given u e L* (is), for any s, the section u(t,x) =  
(e~tpu)(x) is C00 onU  x X  and satisfies the “heat equation” du/dt =  —Pu.

Proof. The first two statements are an immediate consequence of the fact 
that K  is C00. To see that du/dt =  —Pu, note that

J t K«(x> > > ) = - £  e~Xk,Xkuk(x) <g> uf(y)

=  - P xK t(x,y). m

For a given operator P as above, we introduce the following important 
concept.

Definition 6.3. The trace of the heat kernel for F  is the function

tr(e - 'p) =  J x tracex[K,(x,jc)] dx
00

=  zk= 1

which is defined and analytic for all t >  0.
Note that tracex(ut(x) <g) u*(x)) =  |u*(x)|2 and so the second equality 

follows from the fact that ||«*||o =  1 for all k.

Example. Let X  be the flat cubical torus R"/27tZ", where IR" carries the 
standard metric, and let P =  —A =  — £  d2/ddk acting on functions. The 
normalized eigenfunctions are given by uN(0) = (2n)~nl2ei<N'e> for N  =  
{Nly . . .  ,Nn) e  Z". Note that —AuN =  |N |2un, and so

K ,(M ') =  I  c -M 2'+i<N.«-«'>
NeZ"

§6. HEAT KERNEL AND THE INDEX 199
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200 III. INDEX THEOREMS

and

tv(etA) =  £  a{k)e~kt 
* = o

where a(k) denotes the number of elements N e  Z" with \N\2 =  fc. For n =  1, 
we find

tr(e'A) =  J  e ' ‘’’ ^
-  oo

Let us return now to the case of a general elliptic differential operator 
P .T (£ )  -> T(F) over a compact riemannian manifold X . We assume E  
and F  are equipped with bundle metrics, and we consider the “Laplace 
operators”:

P *P : T (£ )-----► T(£) and P P * : T (F ) ► T(F).

Since (P*Pu,u)0 =  ||Pu||o and (PP*v,v)Q =  ||P*t>||o, we see that these 
elliptic operators are self-adjoint and positive. It is furthermore evident 
that ker P*P = ker P and ker PP* =  ker P*. Consequently, we have 
(cf.(5.2)) that

ind(P) =  dim(ker P*P) — dim(ker PP*) (6.5)

On the other hand, the operators P*P and PP* have exactly the same 
sequence o f non-zero eigenvalues. To see this, set Ex =  {u 6  T (£ ): P*Pu =  
X«} and F x =  {u er(£ ): PP*v =  Xv} for X e  IR. Observe that if u e Ex, then 
(PP*)(Pu) = P(P*Pu) =  X(Pu); that is, P(EX) c: F x. Similarly, we find that 
P*(F J  c  Ex. Since P*P = X Id on Ex, we conclude that P : Ex A  Fx is an 
isomorphism for all X #  0.

Let 0 <  A, A2  =  ^ 3  =  • • • “* 0 0  denote the common non-zero eigen­
values of P*P and PP* (listed to multiplicity). Then taking the difference 
of the traces of the heat kernels, we get enormous cancellation©:

tr(e~,F*p) — tr(e~,J>J”) =  (dim £ 0  +  £  e~Xkt) — (dim £ 0  +  X  e ~Xk')
= dim £ 0  — dim F 0.

This proves the following:

Theorem 6.4. L e tP : T(£) -*■ T(£) be an elliptic differential operator over a 
compact riemannian manifold, and let P * : T(£) -* T(£) be defined via inner 
products in E and F. Then

ind(P) =  tr(e~,F,p) — ti(e~‘ppt)

fo r all t > 0 .

Observe that as t -* oo, the operator e~tp,p converges strongly to the 
orthogonal projection H e :L2(E) -* ker P. Consequently the direct sum
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§7. TOPOLOGICAL INVARIANCE OF THE INDEX 201

D, = e~ ,p*p ©  (—e~,PF") acting on T(E © F) can be thought of as a “ho- 
motopy” of operators which, as t -* co, converges to H E ©  ( —H F), the 
“difference of harmonic projections.” We see that for all t, D, is of trace 
class and its trace, tr(D.,) =  ind(P), is time independent. It is useful to con­
sider the operator D, at the other end of the “homotopy,” as t \  0.

When deg(P) =  1, it turns out that as t \  0, the heat kernel for P*P 
has an asymptotic expansion

tracexX,(x,x) ~  £  pk(x)t(k~n)/2 (6.6)
k =  0

Where pk{x) are densities on X  which are locally and explicitly computable 
in terms of the geometry of X  and P. Theorem 6.4 says that the index of 
P  depends only on the coefficient p„(x) for the operators P*P and PP*. 
Careful computations of these terms yields a proof of the classical Atiyah- 
Singer Index Theorem.

§7. The Topological Invariance of the Index

The index of an elliptic operator is a quite stable object. It remains con­
stant during continuous perturbations of the operator and, in fact, it can 
be shown to depend only on the homotopy class of the principal symbol. 
A proof of this fact is one of the main objectives of this section. In succeed­
ing sections we shall consider elliptic operators with additional structure, 
such as operators which are C£k-linear for some k or operators which 
commute with a given action of a compact Lie group. In each case we 
shall define a refined index and examine its elementary homotopy invari­
ance properties.

The index of an elliptic operator P : T(E) -*• V(F) is the index of any of 
its Fredholm extensions P :L j(E ) -* Ls2_m(P). For this reason we begin 
with a discussion of Fredholm operators.

Let H t and H 2 be separable Hilbert spaces and let S£ =  SP(HUH 2) 
denote the Banach space of bounded linear maps from H t to H 2 with 
norm given by ||T|| =  sup{||Ti;||: ||u|| <, 1}. It is elementary to verify that 
the subset ££* a  SP of linear isomorphisms is open in the norm topology 
(cf. Palais [1]). We are interested here in the subset % =  $ (H l, H 2) of 
Fredholm operators from H k to H 2 (see §5). To each T e we have defined 
the index of T :

ind T  = dim(ker T) — dim(coker T).

Proposition 7.1. The map ind i f f  -* Z is locally constant on g , and induces 
a bijection

in d : 7i0(3r) —̂  Z 

between the connected components o f  §  and the integers Z.
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202 III. INDEX THEOREMS

Proof. We begin the proof with a lemma which will be useful later on.

Lemma 7.2. Fix T 0 e g  and let V c  H x be a closed subspace o f finite codi­
mension with V n  (ker T0) =  {0}. Then there is a neighborhood °U o f T 0 in 
TP such that for all T  in °U we have:

(i) V  n  (ker T) =  {0},
(ii) T V  is closed in H 2,

(iii) the subspace W  =  (T qV)1 <=■ H 2 projects isomorphically:

W z  H J T V .

Furthermore, the isomorphisms o f (iii) assemble to give that:

(iv) The family (J rs<w(^ 2 /T V ) -> °U, topologized as a quotient o f t f i x  
H 2, is equivalent to the trivial bundle °U x W °U.

Proof. To each T e  TP we associate the bounded linear map

f : W ®  V  ► H 2 (7.1)

given by setting T(w,v) — w + Tv. This correspondence T  -* T  defines a 
continuous map TP -*• TP(W ®  V,H2) in the norm topology. Since T0 is 
an isomorphism, so is T for all T  in a neighborhood °U of T 0. This estab­
lishes (i)-(iv). ■

Corollary 7.3. 5  is open in TP.

Proof. Choose V =  (ker T0)x in Lemma 7.2 and note that °U c  g  by (i),
(ii), and (iii). ■

Corollary 7.4. The index is constant on connected components o f  3r.

Proof. Fix T0 e g , set V = (ker T0)x, and let °U be given by Lemma 7.2. It 
will suffice to show that ind T =  ind T 0 for all T e ' f .  Fix T  e t f t  and con­
sider the (non-orthogonal) direct sum decomposition H x =  (ker T) © 
Z ® V  where Z  =  (ker T  ©  V)1 (see 7.2 (i)). By the Open Mapping Theo­
rem, T  induces an isomorphism between Z  ©  V and the closed subspace 
T Z  ©  TV. Setting coker T  =  (77*i)x =  (T Z  © T V )1, we obtain the fol­
lowing factoring of T: ~

H i -------------- 1-------------   H 2

ill ill (7.2)

ker T  © Z  ©  V  ------ ► coker T © T Z  ©  T V

Dividing by V = (ker To)1 gives an isomorphism

ker T 0 £  ker T  ©  Z. (7.3)
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§7. TOPOLOGICAL INVARIANCE OF THE INDEX 203

Dividing by T V  and using 7.2(iii) (with W  =  coker T0) gives an isomor­
phism

coker T0 =  coker T  © T Z  s  coker T  © Z. (7.4)

It follows immediately that ind T 0 =  ind T . ■

We shall examine this argument again when the maps have more struc­
ture. The proof of Proposition 7.1 is completed by the following:

Lemma 7.6. Any two operators T0, 7 \ e g  with t/ie same index lie in the 
same connected component o f g.

Proof. Since ind(T*) =  —ind T, it suffices to consider the case where 
ind T0 =  ind T\ ^  0. To begin we note that any T e  g  with ind T  ^  0 is 
homotopic in g  to a surjective map. To see this, choose any linear surjec- 
tion L . ker T —» coker T  =  (Im T)1, and consider the homotopy T  -F 
t L , t ^  0. We may assume therefore that T0 and T j are both surjective. Set 
K j =  ker(Tj) and consider the decomposition H x =  K j ©  K f  for each j. 
We have the isomorphism B s  T ^ T q-.Kq A  and since K 0 and 

have the same finite dimension, we can choose an isomorphism 
A :K 0 -> K j. The direct sum C =  A © B :K 0 ®  K q -> K i ®  Kj- is an 
automorphism of H x such that T0 =  T XC. Suppose we can find a contin­
uous family of isomorphisms Ct: H x H u 0 <  t < 1, with C0 =  C and 
Cj =  Id. Then Tt =  connects T0 to 7 \. Therefore we are done when 
we have proved the following:

Lemma 7.7. The set ££* = ££* {H,H) o f isomorphisms o f Hilbert space is 
connected.

Proof. We fix C e SPx and show that C can be connected to the identity. 
To begin we put C in polar form C =  UA where A is the positive square 
root of the positive self-adjoint operator C*C, and where (since U*U = 
A ~1 C*CA “ 1 =  A ~ iA 2A  “ 1 =  Id), U is unitary. Since the positive bounded 
self-adjoint operators form a convex set, we see that C is homotopic to 
U. Now U has a spectral decomposition of the form U = jo* *ixdnx and 
can be written as U = eiT where T  = \ l n Xdnx. The homotopy Ut =  
eitT, 0 <  t ^  1, completes the proof of Lemma 7.7 and so also of Lemma
7.6 and Proposition 7.1. ■

Note. When H t =  f f 2 =  if, the composition of operators makes 7r0g  a 
semigroup. Interestingly, the map i nd : n0ft -> Z is a group isomorphism. 
To prove this we need only observe that

ind(S o T) =  ind(S) +  ind(T) (7.5)
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204 III. INDEX THEOREMS

for all S,T  e  $. To begin let n : H  (ker S)1 be orthogonal projection and 
note that since T  is homotopic to n ° T  in g  (by a linear homotopy) we 
can assume that Image(T) c  (ker S)1. The assertion is now easily checked 

Let us now return to the case of elliptic operators over a compact 
manifold X . A family Pt : T(E) -> T(F), 0 <  t <  1, of such operators is said 
to be continuous if in any good presentation of the bundles the coefficients 
of the local representations Pt =  A*(x,t)Da are jointly continuous in x and 
t. Under this hypothesis the order of the operators must be a constant, 
say m. Furthermore, for any s the map [0,1] -► ^(L ^F), L*_m(F)) given 
by t Pt9 is continuous in the norm topology. Consequently, ind(P,) is 
constant in t by Proposition 7.1.

Recall that two elliptic operators P0,Px : T(£) -► T(F) over X  are homo- 
topic if they can be joined by a continuous family Pt9 0 ^  t ^  1, of elliptic 
operators. Our remarks above can be restated as follows:

Corollary 7.8. The index o f an elliptic operator on a compact manifold 
depends only on its homotopy class.

An immediate consequence is this:

Corollary 7.9. The index o f an elliptic operator on a compact manifold 
depends only on its principal symbol

Proof. If P09P 1:r(E ) -+ T(F) have the same principal symbol, then so 
does each element in the family Pt =  (1 — t)P0 +  tP x. ■

This result suggests making deformations of the principal symbol. Re­
call that the principal symbol of an elliptic operator is a section <r e 
T[{O mTX ) ® Hom(£,F)] with the property that

<T{: E -> F is an isomophism for all £ ^  0. (7.6)

We shall say that two such symbols oQ9o 1 are regularly homotopic if there 
is a homotopy ot9 0 <  t < 1, joining them such that otA satisfies (7.6) for 
all t.

Theorem 7.10. The index o f an elliptic differential operator on a compact 
manifold depends only on the regular homotopy class o f its principal symbol.

R emark  7.11. Using Theorem 3.19 and the subsequent discussion there, 
one can generalize this result to elliptic pseudodifferential operators.

Proof. In light of 7.8 and 7.9 it will suffice, given ot9 to construct a family 
of operators Pt with o(Pt) =  ot. This is evidently possible locally given 
coordinates on X  and trivializations of E and F. Patching together with 
a partition of unity over some good presentation of E and F does the job 
globally. ■
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§8. INDEX OF A FAMILY 205

The question, manifest at this point, is whether the index of an elliptic 
operator can be computed directly from its principal symbol. A procedure 
for doing this was first given by Atiyah and Singer. It will be discussed 
in detail in §13.

§8. The Index of a Family of Elliptic Operators

In this section we shall present the important concept, due to Atiyah and 
Singer, of an index for families of elliptic operators. In examining the 
topological invariance of this index we shall prove that the Fredholm 
operators on Hilbert space constitute a classifying space for K-Theory.

Let A be a Hausdorff topological space, and let E and F  be smooth 
vector bundles over a compact manifold X . The definition given in §7 of 
a continuous family Pt :F(E) -» T(F), t e [0,1], of elliptic operators, can 
be extended directly by replacing [0,1] with A. (We shall call this a product 
family.) However, when A  is homotopically non-trivial, it is important to 
allow the manifold and the operators to twist globally over A  (in the spirit 
of the families of complex analytic objects considered by Kodaira and 
Spencer).

For a smooth vector bundle E -► X , let Diff(£;Ar) be the set of diffeo- 
morphisms of E which carry fibres to fibres linearly. Note the homo­
morphism P : Diff(£;X) Diff(A”) onto the diffeomorphism group of X . 
Let 9  == Diffl{E,F;X) be the subgroup of Diff(£ © F;X) which maps E  to 
E and F to F . This group acts naturally on the space Opm(EyF) of all 
differential operators P : F(E) -> F(F) of order ^  m (by setting g(P) =  
g2 ° P ° g i i for g =  {gug2)).

D efinition  8.1. A continuous family o f smooth vector bundles over X  
parameterized by the Hausdorff space A is a fibre bundle & -* A whose 
fibre is a smooth vector bundle E  over X  and whose structure group is 
Diff(£;Ar).

From the homomorphism (i:Diff(E;X) -* Diff(X) we get an associated 
fibre bundle 9C -* A  whose fibre is X  and whose structure group is Diff(Ar). 
Note that & is just a vector bundle over the total space of SC which is 
smooth on each fibre. Furthermore, this smooth structure is changing 
continuously over A.

D efinition  8.2. By a continuous pair of vector bundles over X  param­
eterized by A we mean a bundle S  ©  HF -* A whose fibre is a split bundle 
E © F  over X  and whose structure group is ®  =  Diff(£,F;A').

Associated to such a pair is the family of differential operators of 
order ^  m from E to F. This is the bundle O pm($,3F) -* A associated
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206 III. INDEX THEOREMS

to the principal ^-bund le  of & 0  ZF by the action of 3) on O pm(E,F). 
A continuous section P  of such a bundle whose fibre is elliptic for all 
a e A  is called a family of elliptic operators parameterized by A.

E xam ple  8.3. Let X  be a compact manifold and consider its asso­
ciated Jacobian torus J x =  H l(X\U)/H1{X;Z). Recall the isomorphisms: 
H l(X;U) g  H o m ^ X .R ) and H l(X;Z) s  HomfajXjZ). Let X  denote the 
universal covering of X . Then we define a flat complex line bundle L over 
X  x J x by taking the quotient

L =  X  x  H 1(X;U) x  C /n ^X ) x  H \X ;Z )  (8.1)

where the action of n yX  x  H 1(X;Z) is given by

<P(gJ x ,v ,z )  =  (gx,v+ h,e2*™z). (8.2)

We think of L as a family of flat line bundles on X  parameterized by
Jx-

Suppose now that X  is even-dimensional and oriented, and let S be 
any Dirac bundle over X  with associated Dirac operator D. (For example, 
one could choose the Clifford bundle or the spinor bundle for some 
riemannian metric on X.) Then S ®  L  = (S+ ® L) © (S~ ®  L) is a con­
tinuous pair of vector bundles on X  parameterized by J x . Using the given 
flat connection on L, the Dirac operator on S  extends to a family of Dirac 
operators

D: : T(S+ (8) L v)  > T(S~ ® Lv) (8.3)

for v e J x . For S — C£(X), this family was introduced by G. Lusztig [1] 
is his proof of the Novikov Conjecture for n 1 ~  Z m.

Suppose now that P  is a family of elliptic operators defined over a 
compact Hausdorff space A. Following Atiyah and Singer [3] we shall 
define an analytic index ind(P) in the group K(A). If the dimension of 
ker Pa (and therefore also of coker Pa) were locally constant on A, then 
this index would simply be the formal difference of finite dimensional 
vector bundles:

ind P = [ker F ] — [coker P ] e  K(A). (8.4)

In general these dimensions are not constant, and so we must stabilize 
the picture. Let S', ZF and SC be as above. For a € A, let S a (and denote 
the fibre of S  (and ZF respectively) at a. This is a smooth vector bundle 
on X  and we denote by its space of smooth cross-sections.

Lemma 8.4. There exists a finite set o fjections {wj , . . .  ,wN} o f ZF over 
SC such that fo r each a e A  the map Pa:C N ® T{Sa) -* T(&?a) given by 
Pa(tu . . .  ,tN,<p) = Y, +  PJwU is surjectivefor all a. The vector spaces
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§8. INDEX OF A FAMILY 207

ker Paform a vector bundle over A , and the element

[ker P ] -  [C*] e K(A) (8.5)

depends only on the operator P.

Proof. From the local triviality of fibrations each point a0 e A has a 
neighborhood U in which Pa9 a e U9 is a product family. For any s9 this 
family extends to a continuous map P :U  -+ 5 (Lf(£), L2_m(F)), and we 
can apply Lemma 7.2. For W  =  ker(P*0) this lemma shows that the maps 
Pa:W ®  Ls(E) -> Ls2_m(P) given by Pa(w,<p) =  w +  Pa(cp) are all surjective 
in a neighborhood U ' o f a0. Theorem 5.2(i) implies that VF c= T(P) and 
that the restriction P fl: W  ®  r(P) -► T(P) is also surjective for all a e U'. 
Corollary 7.4 shows that dim(ker Pa) is locally constant on U'.

We now globalize this construction. Let {w i9. . .  ,wr} be a basis for 
W. Each Wj can be considered as a (constant) section of $F over IF, or 
alternatively as a section of the vector bundle 3F over the open set 
7c_1(U ') c: SC (where n\SC -> A is the fibration). Clearly each Wj can be 
extended to a global section Wj of 3F over all of S€. Taking a finite 
covering of A by such neighborhoods, and taking {wu . . .  ,wN} to be the 
union of the sections constructed from each neighborhood, we establish 
the first statement of the lemma. The local constancy of dim(ker Pa) follows 
by repeating the argument above with W  replaced by the direct sum of 
W ’s from each neighborhood.

It remains to prove that the class (8.5) is independent of the choice of 
global sections wu . . .  9wN. Let w^,. . .  be another such choice, and 
qpnsider the family of maps Pa: CN ©  CN> ©  -► given by
Pa(tyt'9(p) =  Y, +  Z  tjtfjia) +  P fl(<p). We have a commutative diagram

ker Pa c  € N®  r ®  m

n n ii

ker P . c C " ®  CN' © r(«?„) - * - *  r (^ a) 

pr

CN‘ =  CN’
where the map pr denotes projection. Since the map Pa is suijective one 
easily sees that the sequence

0 -----> ker Pa  y ker P„  » Cw'  ► 0

is exact. It follows that [ker Pfl] — [CN+N ] =  [ker P„] — [CN] in K(A).
The argument applies symmetrically to the operators P i : €* ' © r(<f„) -* 
r(J^a) to prove that [ker Pa] — [CiV+w] =  [ker F a] — [C ^ ], and the 
proof is complete. ■
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208 III. INDEX THEOREMS

We are now authorized to make the following definition:

D efinition 8.5. The analytic index of a family of elliptic operators 
P over a compact Hausdorff space A  is the element ind(P) e K(A) defined 
by (8.5).

As one might imagine, this index enjoys invariance properties analogous 
to those of the ordinary index. It depends only on the principal symbol 
of the family, and in fact only on the homotopy class of the principal 
symbol (all taken in the obvious sense; see Atiyah-Singer [3] for details).

This invariance is related to a basic and interesting fact. Let i f  be a 
(infinite-dimensional) separable Hilbert space. Recall that any two such 
spaces are isomorphic. Furthermore, there is Kuiper’s Theorem which 
states that the group £ £ x =  £ £ %{H9H) of linear isomorphisms of H  with 
the norm topology is contractible. Consider a family of elliptic operators 
P over A as above. This is a section of the bundle O p "* ^ ;^ ) with structure 
group ©. We can fix s and complete each fibre in the Sobolev norms to 
get a bundle with fibre H  £  g(L2(F),L2__m(F)). This is the bundle asso­
ciated to the principle ©-bundle by the homomorphism ©  -*> SF 
Since £P*(H9H) is contractible, this bundle is trivial as an SF x(ff,/f)- 
bundle in a homotopically unique fashion. Under the trivialization, the 
family P becomes a continuous map P :A  -> H = $ (/I l9H 2) where H , =  
L2(£) and H 2 =  L 2_m(F).

Note that the set $  =  5 (# > # ) of Fredholm operators on a Hilbert 
space H  has a continuous associative semi-group structure given by the 
composition g  x g  For any topological space A , this makes the 
space [A , g ], of homotopy classes of maps of A  into g , into an associative 
semigroup.

Theorem 8.6. (cf. Atiyah [4]). For any compact Hausdorff space A there is 
a natural isomorphism

i n d : [ A , g ]  ► K(A) (8.6)

It has the property that for any continuous map f : A' -> A between such 
spaces,

ind ° f *  =  / *  ° ind (8.7)

Consequently, 5  is a classifying space for K-Theory.

This theorem completely generalizes Proposition 7.1 (where A =  [0,1]) 
and is the foundation for proving the homotopy invariance of the index 
for families.

Proof. Let T : A  Qf be a continuous map. By Lemma 7.2 and the
compactness of A we know that there is a closed subspace V cz H  of
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§8. INDEX OF A FAMILY 209

finite codimension so that for all a e A
(i) V n  (ker Ta) =  {0},

(ii) TaV  is closed and of finite codimension in H, and
(iii) H /T V  =  \J aeA (H /T aV ) is a vector bundle over A.

One then defines
ind(T) =  [H /V ] -  [H /T V ]  e K(A), (8.8)

where [H /V]  =  [A x (H/V)~\ denotes the trivial bundle. We must show 
that this element is independent of the choice of V. Let V' be another 
such choice. Since V n  V  is also a choice, we may assume V  <= V. There 
is then an exact sequences of vector bundles: 0 -» V/V' -* H /T V  -* 
H /T V  -*• 0, which shows that [H /T V ] -  [H /T V ]  =  [V /V ]  =  [H /V ]  -  
[H 'V ]. Hence, (8.8) depends only on T.

Given T : A -* % and a map f : A ' - * A ,  the subspace V chosen for T  
also works for T  o f  and we evidently have ind(T ° / )  =  /* (ind  T).

Suppose now that T : / l  x / - ♦  g  is a homotopy between T 0 and T k 
where Tj = T °  i}, and i} :A -* A  x I  is the inclusion ij(a) =  (a ,j). By the 
above paragraph ind(7’J) =  i|(ind T) for j  = 0,1, and it is a basic fact that 
i* = if in K-theory. This proves the homotopy invariance of ind.

It remains to show that (8.6) is an isomorphism. We show first that it 
is a homomorphism. Let T : A -> 5  and T : A  -*• 5  be continuous maps 
and choose V c: H  for T  as above. Note that T ' is homotopic to pr„ ° T ' 
where pr„: H -* V is orthogonal projection. Hence, we may assume 
T ’H  <S V. Let V  be a choice of subspace for T', and note that V  is also 
a choice for the composition T o T .  Therefore we have

From the exact sequence: 0 -  V /T 'V  H /T T 'V  -> H /T V -> 0 of vec­
tor bundles over A, we see that [H /T T 'V ]  =  [H /T V ]  +  [V /T 'V ]  =  
[H /T V ] + [H /T 'V ]  — [H /V]. Plugging this into the equation above 
shows that ind(T o T') =  ind(T) +  ind(T') as required.

To prove that ind is surjective we first recall from Chapter I, §9, that 
every element in K(y4) can be written as [€*] — [E] where £  is a vector 
bundle on A  and C* denotes the trivial /c-plane bundle. For each integer 
k we define an operator Sk e  g  of index k by fixing a complete orthonormal 
basis {ej}jLi of H  and setting

ind(T o T )  = [H /V ]  -  [H /T T 'V ]  

ind(T) =  [H /V ] -  [H /T V ]  

ind(T') =  [H /V ]  -  [H /T 'V ] .

J )0 otherwise.

The constant map T  =  Sk on A  has ind T  =  [C*] for k ^  0.
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210 III. INDEX THEOREMS

Fix a vector bundle E  over A  and recall from Chapter I, §9, that for 
some N  there is a continuous map f : E - >  CN which is a linear injection 
on each fibre. Let pra : CN -*■ CN denote orthogonal projection onto f{E a) 
and let prx =  Id — pr„ denote projection onto the orthogonal comple­
ment. Then the map TE: A -*■ 3(CN ® H, CN ®  H) given by setting 
T M  =  pr„ <S» +  pra ®  Id has the property that ind TE = — [£ ].
Choosing an isomorphism C" ®  H s  f l  yields an isomorphism 
0r(<CN ®  H, CN ® H) £  5- Since ind(S* ° TE) = [C*] — [£ ], we have 
proved that in d : [A , 5 ]  -* K(A) is a surjective homomorphism.

O ur next step is the following. Let $ x denote the invertible elements 
in g.

Lemma 8.7. I f  T : A -*%  has index zero, then T  is homotopic to a map

Proof. Choose a subspace V a  H  as above so that ind T  = 
[H /F ]  — [H/TV~\. The hypothesis ind T  =  0 means that for some k, we 
have A  x [(H /F) ©  €*] £  (H /T V ) © C \ This implies that if we replace 
F  by a closed subspace of codimension k in F, we have the bundle 
isomorphism

A x  (H /V) £  H /TV.

It is elementary to verify that there is a continuous map H /T V  -*• H  which 
carries H /T aV  isomorphically onto (TaF)x for each a e A. Combining with 
the isomorphism above, we get a linear map T L:A -* £P(H/V, H) where 
for each a, T x is a linear injection of H /V  onto (T„F)X. The direct sum

T? =  7^  ®  Ttt: (H /V) ©  F  ► H

defines a continuous map T * : / 4 - » 3 r x e g .  This map can be connected 
to T  in 5  by the homotopy T, = t T x © T for 0 ^  t <  1. This proves the 
lemma. ■

Using the theorem of Kuiper [1] that 5 X is contractible, we conclude 
that any T : A  -> g  of index zero is homotopic to the constant map T  = Id. 
Hence ind is injective and Theorem 8.6 is proved. ■

One of the im portant results of Atiyah and Singer is the establishment 
of a topological formula for the index of a family P  of elliptic operators. 
We shall present this formula in §15.

As a final remark we point out that the arguments given above adapt 
easily to prove the following real analogue of Theorem 8.6. Let 5m =  
3rK( / /K) denote the space of (real) Fredholm operators acting on real 
Hilbert space H u.
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Theorem 8.8. For any compact Hausdorff space A there is a natural 
isomorphism

ind : [ X ,g R] - ^ X O ( A )  (8.9)

having the functorial property (8.7) above. Consequently, go* is a classifying 
space for KO-theory.

An important consequence of 8.6 and 8.8 is the following:

Corollary 8.9. For all k ^  0, there are isomorphisms:

nk( m - ^ K ( S k) = K ~ k(pt) (8.10)

**(8r) KO(Sk) = KO  - fc(pt). (8.11)

§9. The G-Index

In this section we shall study operators which are preserved by the action 
of a compact Lie group G. To be specific we fix vector bundles E and F 
over a compact manifold X  together with an action of G on the triple 
(X,E,F). This means a smooth action /j:G  x I - * I o f G o n I  together 
with smooth actions of G on both E and F  which carry fibres to fibres 
linearly and which project to p. In this context we have the following 
notion:

Definition 9.1. A differential operator P :T (£ ) -*■ T(F) is called a G- 
operator if P(gcp) = gP(<p) for all g e G and all <p e F(E).

A good example is given by the isometry group Gx of X  acting on 
Cf(A') s  A*X. This action preserves both splittings Cl(X) =  
C t°(X) ® C f 1̂ )  and C l(X ) =  C f +(A) ® C l~(X ) and commutes with 
the Dirac operator. Therefore both D° and D + are G^-operators.

Similarly, if X  is spin, then either Gx  or a two-fold covering of Gx acts 
on the spinor bundle of X  and commutes with the Atiyah-Singer operator.

The basic observation here is that if  P is elliptic and a G-operator, then 
ker P and coker P  are finite-dimensional representation spaces for G. This 
leads us to consider the representation ring (or the ring of virtual repre­
sentations) R(G) of G. This can be defined as the free abelian group gen­
erated by the equivalence classes of irreducible finite-dimensional complex 
representations of G. Since every finite-dimensional representation of G 
can be decomposed uniquely, up to equivalence, into a direct sum of ir­
reducible ones, R{G) can also be defined as the Grothendeick group of all 
finite-dimensional representations. In other words, each element of R(G) 
can be expressed as a formal difference [K ] — [W ], where [K ] and [W ]
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212 III. INDEX THEOREMS

are equivalence classes of finite-dimensional representations of G, and 
where [F ]  — [IF ] fc? [F ']  — [IF '] if and only if F  ©  W' is equivalent to
v  e  w.

The tensor product of representations is distributive over the direct sum 
operation and makes R(G) into a commutative ring.

Example 9.2. Let G — S 1 and let tm stand for the 1-dimensional repre­
sentation: (pm(a)z = eimaz. Then R iS1) is easily seen to be the ring of Lau­
rent polynomials in f .R iS 1) £  Z [t,t-1].

Definition 9.3. Let P  be an elliptic G-operator on a compact manifold. 
Then the G-index of P  is the element

indG(P) =  [ker P ] — [coker P ] 6 R(G).

Note that when G =  {1}, R(G) £  Z  and we recover the usual index of P.

The G-index can be specialized to individual elements of G. Given a 
complex representation p :G  -» GL(F) we define its associated character 
to be the function xp(g) =  trace(p(p)). This function completely determines 
the representation up to equivalence, and it has the properties that 
XPl+P2 =  XP1 +  XP2> Xp, ® P2 = Xp,Xp2> etc. (see Adams [1] for details). For 
this reason R(G) is alternatively called the character ring of G. Given a 
G-operator P  as above and given g e G ,  we can define

ind„(P) =  trace(p|ker P) -  trace(p|cokcr P). (9.1)

This is the difference of the characters of the two representations, ker P 
and coker P, evaluated at g. Consequently indg is the specialization of 
indG to g as claimed.

Note that for D =  d +  d* : A 'vcn(A) -+ Aodd(A), and for g e Isom(X), the 
number ind#(D) is just the classical Lefschetz number of g. The general 
topological formulas for indG given by Atiyah, Singer, Bott and Segal 
represent generalizations of fundamental work of Lefschetz and Hopf.

O ur object at the moment is to establish some elementary stability 
properties of indG. As before, the regularity theory of elliptic operators 
implies that the spaces ker P  and ker P* £  coker P  remain unchanged if 
we pass to any Sobolev completion P :L f(£ ) -* Lf_m(P). Since G is com­
pact, we may choose metrics on X , E  and F  which are G-invariant. The 
actions of G on T(£) and T(£) then extend to unitary representations on 
Lj (£) and Lf(F) which commute with P  and P*. This leads us to examine 
the following concept.

Let ff i and H 2 be separable complex Hilbert spaces equipped with 
unitary representations G ->• U{Hj),j = 1,2, of a compact Lie group G. Let 
5 G =  <&g(H1,H 2) denote the space of all G-equivariant Fredholm maps, 
i.e., all Fredholm maps T  :H l -> H 2 such that Tgv = gTv for all g e G
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and all v e H x. To each T  e g G we associate the index

indG(T) =  [ker 7 ]  -  [coker 7 ]  e R(G)

Proposition 9.4. The map indG: g G -» R(G) is constant on connected com­
ponents o f g G. Furthermore, if  H x and H 2 are G-isomorphic, then indG 
induces an injection

indG:n0(%G)c— >R(G). (9.2)

Note. The map (9.2) will be a bijection provided that each finite-dimen­
sional irreducible representation of G occurs with infinite multiplicity 
in H x = H 2. The map (9.2) is also an additive homomorphism since 
indG(T o S) =  indG(T) -f indG(S). This is proved exactly as above (see (7.5)).

Proof. The argument for the first statement is identical with the one given 
for the first part of Proposition 7.1 above. It is only necessary to check 
that all subspaces are G-invariant and that all maps (such as (7.2), (7.3) 
and (7.4)) commute with G.

We now assume that H x = H 2 = H  (as G-spaces). To prove the second 
statement we must show that any two elements T 09T x e g G with the same 
G-index must lie in the same connected component of g G. We begin by 
observing that any T e % G can be deformed to one which is “relatively 
prime,” that is, one for which no non-zero subspace of ker T  is G-isomor- 
phic to a subspace of coker T  =  (Im T)1. Indeed, if such a G-isomorphism 
L exists, it can be extended to a map L :H  H  by defining it to be zero 
on the complementary subspace. The family T  +  tL 9 t ^  0, gives the de­
sired deformation.

We may assume now that T 0 and T x satisfy this “relatively prime” 
condition. Consequently, the hypothesis indGT0 =  indGTi implies that 
there are G-isomorphisms: ker T 0 ^  ker T x and coker T 0 ^  coker T v  We 
now observe that given two finite dimensional, G-invariant subspaces 
V09VX cz H  which are G-isomorphic, there exists a G-isomorphism 
C :H  H  with C{V^) =  Vi. In fact, C may be taken to be the identity on 
(V0 +  Vi)1. The subspace V0 n  Vx is G-invariant and its complements in 
V0 and Vx respectively are G-isomorphic; so the existence of C is clear.

It now follows that there exists a G-isomorphism C :H  -> H  which 
carries Im(T0) isomorphically onto Im(T x). We define a second G-isomor- 
phism C : H -* H  by taking the given isomorphism ker T 0 A  ker T x and 
extending by the map T x l C T0 : (ker T 0)L A  (ker T J 1. We find that 
T x =  C T0(C )~ 19 and the existence of a homotopy from T0 to T x is an 
immediate consequence of the following:
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Lemma 9.5. The set £PG(H9H) o f G-isomorphisms o f H  is connected.
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214 III. INDEX THEOREMS

Proof. The argument here is identical to the one given for Lemma 7.7 
above. One needs only to check that the entire construction is G- 
equivariant. ■

Arguing as in §7 we see that Proposition 9.4 has the following imme­
diate consequence. Let P : T(£) -» T(F) be an elliptic G-operator over a 
compact manifold X .

Corollary 9.6. The G-index o f P depends only on the homotopy class o f P 
in the space o f elliptic G-operators. In particular, indG(P) depends only on 
the principal symbol o f P.

Note that the action of G on X , E and F makes E == (O mTX ) ® Hom(£,F) 
into a G-bundle, i.e., a bundle with a smooth G-action which maps fibres 
to fibres linearly (and isomorphically). The principal symbol of P is an 
invariant section of E, i.e., o(P) e TG(E) where TG(E) =  {a e T(E): go =  a 
for all g e G}. Two principal symbols of elliptic G-operators, <r0 =  cr(P0) 
and o 1 =  o^Pi), are said to be regularly G-homotopic if there is a regular 
homotopy ot, 0 <  t <> 1, joining them (see (7.5) forward), such that ot e 
TG(E) for all t.

Theorem 9.7. The G-index o f an elliptic G-operator on a compact manifold 
depends only on the regular G-homotopy class o f its principal symbol.

Proof. As in the proof of Theorem 7.10 we construct a family of elliptic 
operators Pt with o(Pt) =  ot for 0 <  t <  1. Averaging over G, by integrating

P,<P =  JG (gP,g~i (p)dg =  j j G g(Pt)dg^<p

with respect to H aar measure on G, produces a homotopy of G-operators 
with <x(P,) =  <7, for all t (since <j , is G-invariant). The result now follows 
from Corollary 9.6. ■

§10. The Clifford Index

In this section we shall discuss, in general terms, elliptic operators which 
are Cfjflinear for some k. Several im portant examples of such operators 
have been introduced and discussed in detail in Chapter II, §7. Motivated 
by these C£*-Dirac operators, we make the following definitions.

Definition 10.7. By a C£*-bundle on a space X  we mean a bundle of 
real, left C£t-modules. This is a real vector bundle E  over X  together with 
a continuous map T : C ik x E -*■ E such that '?,,(•) = '¥(q>,-):E -+ E is a 
bundle endomorphism for all <p e  C£k, and the restriction C lk x Ex -*• Ex 
makes the fibre into a C£*-module for each x e  X .
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§10. THE CLIFFORD INDEX 215

Note that -bundles and C f2-bundles are simply complex and qua­
ternion bundles respectively. In general, a C tk-bundle is thought of as 
having the algebra C lk as “scalars.”

R em ark  10.2. A Cf*-bundle £  will be called riemannian if it carries a 
bundle metric which is preserved under multiplication by each unit vector 
e e t f c  Cf*. Starting with any metric and averaging over the Clifford 
group, as in 1.5.16, makes any C fk-bundle riemannian. Note that if E  is 
riemannian, then multiplication by any element w e R l c  Cf* is fibre-wise 
skew-adjoint. Thus

<w • «!, u2> +  <uj, w • u2> s  0 (10.1)

for all uu u2 e  T(£).
Let us fix smooth Cf*-bundles E  and F over a manifold X.

Definition 10.3. A differential operator P: T(£) -+ T(F) is said to be 
Ct*-linear (or simply a C f ̂ -operator) if q>P(u) =  P(<pu) for all <p e Cf* and 
all u e r(E).

Tensoring with C lk makes any differential operator trivially into one 
which is Ct*-linear. More interesting examples, such as the Cf*-Dirac 
operators of II.7, occur when there exists a Z2-grading. We say that a 
Ct*-bundle E  is Z2-graded if there is a bundle decomposition E =  E° ©  E l 
making each fibre into a Z2-graded Ct*-module. A C£*-linear differential 
operator P : T(£) -> F(£) on such a bundle is called Z 2-graded (or simply
graded) if with respect to the decomposition £  =  £° @ £ \  it has the form

* }  0M»

Note that P °: T(£°) -> F (£ ‘) is C t k = C£*_ ̂ linear. When £  and X  are 
riemannian, the operator P  is (formally) self-adjoint if and only if
p i  =

We would like to define the analytic index of an elliptic operator of this 
type. For this we recall the groups

S PW M R * =  W Ji*W k+l a  K O ~k(pt) (10.3)

where and SR* denote respectively the Grothendieck groups of equiv­
alence classes of C f k and Z2-graded C f k modules. (For detailed discussions 
of these, see 1.5.20,1.9 and II.7.) Recall also that £ 0 _*(pt) s  £ 0 _*+8(pt) 
for all k, and we have

k 1 2 3 4 5 6 7 8

KO~k z 2 0 Z 0 0 0 Z
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Suppose now that P : T(£) -*■ T(£) is an elliptic self-adjoint graded C tk- 
operator on a compact riemannian manifold X . Then ker P  is a finite­
dimensional Z2-graded C£k-module, and we have the following:

D e f in i t io n  10.4. The analytic Clifford index of P is the residue class

indkP s  [ker P ] e 9Jik/i*9Jlk+1 s  X O - *(pt). (10.4)

Under the isomorphism (10.3) this element corresponds to the residue class

indkP  s  [ker P°] e  SMk _ f i * m k (10.5)

where P° is given in (10.2). (The equivalence of these definitions is discussed 
in detail in Chapter II. See II.7.4.)

The category of self-adjoint graded C£k-linear operators is a natural 
and im portant one as we have seen by examples in Chapter II. However, 
there is a twin category which has some advantages when studying sta­
bility properties of the Clifford index. This is the category of graded op­
erators which are skew-adjoint and C£k-antilinear. A differential operator 
P : T(£) -» T(£) between C£k-bundles is said to be CCk-antilinear if P(wu) =  
— wP(m) for all w e IR* c= C£k and all u e T(£). This is equivalent to the 
requirement that

P{(pu) = ct((p)P{u) (10.6)

for cp e C lk and u e  T(£), where a denotes the involution of C£k engendered 
by w -* — w.

Suppose now that £  =  £°  © E l is a riemannian Z2-graded C£k-bundle 
over a compact riemannian manifold X , and let P : F(£) -*■ T(£) be a Z2- 
graded elliptic differential operator which is C£k-antilinear and formally 
skew-adjoint. With P  written as in (10.2) above, this means that P 1 =  
—(P0)*. We define the analytic Clifford index of such an operator to be

indkP =  [ker P ] e = K O ~k{pt) (10.7)

and note as before that this is equivalent to taking [ker P°] in ©tk_ i/i*9Wk.

216 III. INDEX THEOREMS

Observation 10.5. There is a natural transformation between graded elliptic 
differential operators which are formally self-adjoint and C ik-linear, and 
those which are formally skew-adjoint and CZk-antilinear. I t  is given by 
associating to

p J °  Pl)
\P °  O j

the operator

p = f °  ~ p l)\ P°  0 /

Evidently, indkP  =  indkP.
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§10. THE CLIFFORD INDEX 217

We shall now explore the topological invariance of these indices. To 
begin we recall from 5.9 above that the elliptic self-adjoint operator P  
above can be diagonalized on L 2{E) with finite-dimensional eigenspace V} 
and discrete eigenvalues Xt with limy |Ay| =  oo. Thus, P can be written as 
P  =  Y, Ajiij where n}:L 2{E) -» Vj denotes orthogonal projection. In these 
terms the (essentially) positive operator P 2 is written as P2 =  £  Xjrtj. Note 
that P 2 is C£k-linear and preserves the factors of the splitting L 2(E) =  
L 2{E°) ©  L 2(El). We shall now define an associated C£*-linear operator 
on L 2(E) which preserves these factors by the formula

(I + P2) - K Z ( l  + X2) \ .

The operator

P  s  (1 +  P2)~2P  (10.8)

is a Z2-graded C£k-linear self-adjoint Fredholm operator on L 2(E) =  
L 2(E°) © L 2(£ ‘). We leave as an exercise the verification that this con­
struction associates to a continuous family P „0 <,t ^  I, of such elliptic 
operators, a continuous family P„ 0 ^  t <, 1, of Fredholm operators.

The reader will note that if P is the companion of P in the sense of

10.5, then the operator P  =  (1 +  P2) 2P = (1 — P2) 2P  is a Z2-graded 
Fredholm operator which is C£*-antilinear and skew-adjoint. These con­
siderations motivate the following definitions.

Let H  =  H° ©  H 1 be an infinite-dimensional separable real Hilbert 
space which is a graded module for the algebra C£t . Assume in addition 
that for each unit vector e e IR* c  C£t , the corresponding map e : H —> H  
is a skew-adjoint isometry. Such a space will be called a graded Hilbert 
module for C i k. Examples are easily constructed by taking the tensor 
product H = H' ® C tk =  (H' ®  C£°) © (H' <g) C ik) for some real Hilbert 
space H ’.

Let &  c  g R(H, H) denote the subset of those Fredholm operators 
T :H -+ H  which are Z2-graded (i.e., T(H°) £  H l and T (H l) £  H°), C lk- 
linear and self-adjoint. Similarly, let <=■ 3rR(ff, H) denote the subset of 
graded operators which are C£*-antilinear and skew-adjoint. (As should 
be obvious, an operator T  e 0rR(//, H) is called C£k-linear if T(<pu) =  <pT(u) 
for all <p € C tk and u e  H. It is called C£k-antilinear if T(<pu) =  a(<jo)T(u) 
for all such <p and u.)

As in Observation 10.5 we have a natural homeomorphism g k s  § k. 
We define the Clifford index of an element T  e  3* (or g k) to be the residue 
class indkT =  [ker T ] e Sft4/i*95tk+1 =  K O ~ \pt). Our first main result is
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218 III. INDEX THEOREMS

the following:

Proposition 10.6. The Clifford index

ind* : & ( £ & ) ----->KO~k(pt)

is constant on connected components o f  3rk.

Proof. Fix T  e g* and recall that since T  is Fredholm, 0 is an isolated 
point in the spectrum of T. Replacing T  by an appropriate scalar multiple 
we may assume that the non-zero spectrum of T  lies outside [ —2,2], i.e., 
that T 2 >  2Id on (ker T)1. Choose a neighborhood U of T  in g* so that 
for all S e l l ,  we have spectrum(S2) cr [0,^) u  (l,oo), and || T 2 — S2|| <  1/2.

Fix S e l l  and let W  c= H  be the range of the spectral projection of S 2 
onto [0, J]. We claim that orthogonal projection p r : H  ker T  (=  ker T 2)
restricts to give an isomorphism

To begin, suppose v e W n  (ker T)1 and note that <(T2 — S2)v,v)  ^  
(2 — j)\\v\\2 ^  \\v\\2. Since ||T 2 — S2\\ <  1/2 we must have v =  0 and so
(10.9) is injective. Similarly any v e W 1 n  ker T  satisfies <(S2 — T 2)v, i?> ^  
||t;||2 and is therefore 0. Hence, (10.9) is surjective and the claim is proved.

Observe now that W  is a Z2-graded C£*-submodule of H , and fur­
thermore splits into graded submodules W  =  ker S 0  V where V  =  
(ker S)1 n  W  is S-invariant. One easily sees that the projection (10.9) 
preserves the graded module structure, and so we have a graded C tk- 
module equivalence

It remains only to enhance the structure of V  to that of a graded C£k+1- 
module. This is done as follows. Let Sv : V  -► V  denote the restriction of 
S to V . This is a symmetric, Z2-graded C£k-linear map, and so also is

J  =  [S£] 2SV. Note that J 2 =  Id. With respect to the decomposition 
V  =  V° ©  V 1 we can write J  in the form

is C£k-antilinear and satisfies J 2 =  —Id. It therefore makes V  into a 
graded C£k+1-module as required. Hence indkT =  indkS and the proof is 
complete. ■

pr: W - — > ker T . (10.9)

ker S  © V s  ker T.

The graded endomorphism of V given by

- o
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§10. THE CLIFFORD INDEX 219

Consider now an elliptic differential operator P : r(E) -» T(£) which is 
C€fc-linear and graded. Note that its principal symbol is also Cf*-linear 
and graded. In this context a regular homotopy of symbols is required to 
preserve these additional properties. Arguing as in Theorem 7.10 and using 
the proposition above directly proves the following. Assume, as before, 
that P is defined over a compact manifold and is self-adjoint.

Theorem 10.7. The Clifford index o f P depends only on the regular homo­
topy class o f its principal symbol.

Proposition 10.6 implies that ind* induces a map on the connected 
components of g*. In previous cases this map was a bijection, and the 
analogous result is almost true here. However, we need some preliminary 
adjustments. To begin, we shall assume for each k that H  = H° ©  H 1 
is a graded Hilbert module for C tk+2 and is considered to be a graded 
C f ̂ -module under restriction to Cl* ci Cf*+2. (This algebra inclusion 
is induced by the euclidean space inclusion R* c  R*+2 as the first k- 
coordinates.) This assumption assures us, for example, that when k =  
0(mod 4), each of the two distinct irreducible graded C f  ̂ -modules appear 
with infinite multiplicity in H.

For each k, we_now define a new space g* as follows. If k  #  — l(mod 4), 
then g* =  g* «  g t . If k = — l(mod 4), then we consider for each T  e  g t , 
the associated operator w(T) = el • ■ ■ ekT\Ho where eu . . .  ,ek is a fixed 
orthonormal basis of R* c  Cf*. Note that w{T):H° -> H° is a self-adjoint 
Fredholm operator. We now decompose g* into three disjoint subsets 
g*+, and 3* consisting respectively of those T ’s such that w(T) is 
essentially positive, essentially negative, or neither. (A self-adjoint operator 
is essentially positive if it is positive on a closed invariant subspace of 
finite codimension.) Each of these subsets is open in g* and hence is a 
union of connected components of g*.

We now show that when k = — l(mod 4), the space g* is not empty. 
Recall that H is a module for C lk+2 => Cf*. Let eu . . .  ,ek+2 be an exten­
sion of our orthonormal basis above, and write the action of ek+1 on 
H  =  H° 0  H 1 as

is Ctfc-linear and self-adjoint. Furthermore w(e*+1) anticommutes with 
ek+2ek+u and so we have e*+1 e g*.

_ / °  ~ s * \  
c*+1 Is  0 /'

Then the map ek+1:H -* H  given by

/0  s*\ 
Ek+1~\s  0 J

(10.10)
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220 III. INDEX THEOREMS

The following striking result is due to Atiyah and Singer [5]:

Theorem 10.8. For each k, the Clifford index induces a bijection

ind*: 7i0(gk) ► K O ~k(pt). (10.11)

Proof. From Proposition 10.6 we know that the map (10.11) is well de­
fined. To show that it is surjective, let V = V° ©  V 1 represent an element 
of 9Wk/i*9Wk+1 s  K O ~k(pt), and let ek+1 be as in (10.10) above. Then the 
map © 0 is an element of g k(H © V) and has kernel V. Since 
H  ©  V s  H, this shows that the map (10.11) is surjective.

To prove injectivity, it is convenient to first divest ourselves of the 
grading. Recall that the endomorphisms e\ == ekel9 . . .  ,e k_ x = ekek- x 
make the subspace H° into an ungraded module over C lk- X s  C£k. Let 
J5* denote the space of all skew-adjoint, C ti^ -an tilin e a r Fredholm op­
erators on H°. There is a natural map

( • ) ° : & — + (10.12)

defined by setting T° =  ekT |Ho. It is easily checked that this map is a 
homeomorphism. Passing from graded to ungraded modules as in (10.4) 
and (10.5), we find that indkT ^  [ker T 0].

Assume now that we are given two operators S,T e g k with indkS =  
indkT. It will suffice to show that S° and T°  are homotopic in g k. Our 
first step is to observe that we may assume S° to be a Hilbert space 
isometry on (ker S0)1 (and similarly for T°). This is accomplished by 
putting the operator in polar form and deforming away the “radial” part 
as in the first step of the proof of Lemma 7.7. Properties of skew-adjoint- 
ness and C lk- t -antilinearity are preserved. The operator S° now satisfies 
(50)2 =  —Id on (kerS0)1, and setting ek =  S° makes (kerS0) into a 
C£*-module. The same remarks apply to T°  of course.

Observe now that our hypothesis ind*S =  ind*T implies that there 
exist ungraded C£*-modules V and W  together with a C lk„ i-module 
isomorphism

ker S° © V s  ker T° © W. (10.13)

We now claim that the module V can be realized as an S°-invariant
subspace of (ker S0)1. This means simply that V is isomorphic to a C£k- 
submodule of (ker S0)1 where ek acts by S° as above. When k #
— l(mod 4), all irreducible C£k-modules are equivalent, and our claim
is obvious. When k s  — l(mod 4), there are two equivalence classes of irre­
ducible C tk-modules and we must show that each of them appears with in­
finite multiplicity in (ker S0)1. Recall that these two representations are 
distinguished by whether the central element co =  e\ • • • ek acts by 1 
or —1. There is a splitting (ker S0)1 =  M  =  M + © M ~  where M ± =
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§10. THE CLIFFORD INDEX 221

(1 +  co)M, and we want to know that dim M + =  dim M “ =  oo. However, 
ca = e° e° = eJ • • • e ^ xS° =  ±w(S) where the sign depends only on k, 
and so the desired property follows from our assumption that w(S) is neither 
essentially positive nor essentially negative.

The same argument, of course, shows that W  may be realized as a T°- 
invariant submodule of (ker T 0)1. We now consider the two orthogonal 
decompositions:

H° =  (ker S°) © V 0  V' =  (ker T°) ® W  ©  W .

It is clear from the discussion above that V' and W ’ are isomorphic as 
C£k-modules. This means simply that there is a C£fc-linear Hilbert space 
isomorphism L :V ' such that S° =  L ~ 1T°L  on V'. By the obvi­
ous homotopy we may assume that S° =  0 on V and T°  =  0 on W. Ex­
tending L by the isomorphism (10.13) gives an isomorphism L:H °  -> H° 
such that S° =  L ~ l T°L.

The theorem now follows from the fact that the group of C£k-linear 
isometries of H° is connected. This fact is proved by suitable adaptation of 
the argument given for Lemma 7.7 above. ■

R em ark  10.9. The mapping (10.12) above gives a natural transforma­
tion between graded and ungraded operators. All the previous discussion 
of this section could be so transformed. Consequently we find that there 
exists a parallel index theory for real elliptic operators which are skew- 
adjoint and (ungradedl) C lk^ x-antilinear.

Let us examine some examples. Let P be the operator. If k =  1, we find 
that indXP  == dimR(ker P)(mod 2). (Thus, every real skew-adjoint elliptic 
operator has a well-defined index in Z2!) If k =  2, then ker P is a 
C lx ^  C module and we find that ind2P  =  dimc(ker P)(mod 2). If fc =  4, 
then C f3 ^  H © H and the bundle E on which P is defined splits as 
E = E + © E~ where E ± =  (1 ±  co)E and co =  e1e2e3. By antilinearity, 
PfjE1) c  T(£*) and we split P into P + and P "  =  — (P +)* as before. 
Note that ker P  =  ker P + © ker P "  and that ind4P  =  0 if and only 
if dimM(ker P +) =  dimM(ker P"). (This is because the ±  spaces are the 
two distinct C t3-modules.) It follows easily that ind4P  =  dimH(P +) — 
dimM(P ”) =  the index of P + considered as a quaternionic operator.

We conclude this section with a discussion of a nice result of Atiyah 
and Singer which states that the spaces form a “spectrum” (in the sense 
of homotopy theory). Together with the periodicity phenomena in Clifford 
modules and Theorem 8.8, this will give a new proof of Bott periodicity. 
To begin we notice that for each k ^  1 there is a natural inclusion

5fc+1c— ► 5k
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and a distinguished element

e*+i 6 S t

given by (10.10). We extend this by convention to k = 0 as follows. Let 
So denote the space of all real Fredholm operators on H°, and let S i *+ So 
be the map which associates to T e  S i  the operator T°  =  e jT ^o . (This 
identifies S i with the space of all skew-adjoint operators in So-) Set 
Sj =  Id e So-

Let QS* denote the loop space of S* defined here to be the set of all 
continuous paths y : [ 0 ,7r] -> S* with y(0) =  e*+1 and y{n) =  —ek+l. This 
space carries the compact-open topology. It is homotopy equivalent to 
the space of all paths which both begin and end at e*+1. The following 
is the main result of Atiyah-Singer [5] and is presented here without proof.

Theorem 10.10 (Atiyah and Singer). For each k ^  0, the map

5*+i * ^ 5 *

which assigns to T e  S*+i the path from Ek+1 to — ek+1 given by 

(cos t)fi*+i +  (sin t)T, 0 <  t <  n, 

is a homotopy equivalence.

This gives us a generalization of Theorem 8.8 above.

Theorem 10.11. For any compact Hausdorff space A and for any k there is 
a natural isomorphism

in d * :[A ,S * ] >KO~k(A)

with the functorial property (8.7). Hence, S* is a classifying space for the 
functor KO~k.

Proof. The case fc =  0 is just Theorem 8.8 above. For higher k we have 
[A, S*] S  [A, Q*So] s  p M .S o ]  £  KO(ZkA) = K O ~ \A )  where I f  A  de- 
notes the fc-fold suspension of A . ■

Theorem 10.12 (Bott Periodicity). For each k ^ 0  there is a homeomor- 
phism £  5*+8- Therefore, by 10.10 there is a homotopy equivalence 

which implies that

K O ~ \A )  s  K O ~k+*(A)

for any compact Hausdorff space A.

Proof. Let H = H° ©  H 1 be a  graded Hilbert module for C lk as above, 
and let V = V° © V 1 be an irreducible graded (real) module for C l8. The 
graded tensor product H  <g) V  is a module for Cf* ® C lB s  Cf*+8.
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There is an isomorphism V  ~  IR16 which yields an explicit identifica­
tion C£8 ^  R(16). The fundamental results of Chapter I, §4, give an isomor­
phism C£k+8 £  C lk ®  R(16) (ungraded tensor product), where elements of 
the form 1 ® q> act by Id <g) <p on H  <g) V.

Let £?k(H) denote the Banach space of bounded operators on H  which 
are C£k-linear and graded. Define a map '¥ :& h(H) ^fk+8( //  <g) V) by
setting 'P(T) = T ®  Id. This map is continuous and injective. Further­
more, we claim that it is surjective. To see this, fix f  e £Pk+B(H (g) V \  and 
for each x e  H  consider the map f x: V H  <g) V defined by f x(v) =  
f ( x  (g) v). Since f x((pv) =  q>Tx(v) for all <p e  R(16), we conclude that 
dim(Image f x) is either 0 or 16. It follows that Image('fJC) =  t  <g) V  for a 
unique 1-d im ensionalsubspace/cE C onsequen tly , f ( x  <g) v) =  T(x) (g) v 
for a unique element T(x) e H. The map T : H H  is easily seen to be 
bounded, C£k-linear and graded. Clearly ^ (T ) =  T. We have shown that 

is surjective and therefore by the Open Mapping Theorem that *¥ is 
a homeomorphism. It is easy to check that carries the self-adjoint 
Fredholm operators in & k(H) onto those in S^k+8{H <g) V). This gives 
the desired homeomorphism g k ^  3rk+8. ■

Kuiper’s results [1] show that the group of C£k-linear isometries of 
H° is contractible. This shows that the construction of the homeomor­
phism above is canonical up to homotopy.

Note that for each k ^  0 we have isomorphisms

K O ~ \Pt) n -  *o(3*) - 4 *

where a is given by 10.11 and where p  is the Clifford index defined in
10.4. It is shown in Atiyah-Singer [5] that the map a » p ~ 1 coincides with 
the isomorphism given by the Aityah-Bott-Shapiro construction (cf. 1.9).

There is a natural ring structure in KO~* where the multiplication is 
induced by the tensor product of operators. This is defined as follows. Let 
Hk and i f ,  be graded Hilbert modules for Cf* and C f , respectively. The 
graded tensor product H k ®  H t  is then a module for Cf* ®  C f, =  Cf*+,  
(see 1.5). Representing 5*+, by $*+,(//* ®  i / „  H k ®  H(), we define a map

<§>:&* & ---------------------------------------(10.14)

by requiring that for elements v e  H k and w e  He of pure degree with 
respect to the grading,

(S <§> T)(v ®  w) =  (Sv) ® w  + ( -  l)«'*vv ®  (Tw),

where S e  g* and T  e  g ,. One checks easily that S ® T is Cf*-linear and 
C f ̂ linear, and therefore Of*+,-linear. The inner product on H k ®  H ( is 
given by <v ® w, v' ®  w'> =  (v ,v ')(w ,w '), and S ® T  is clearly self- 
adjoint. Since S and T  interchange even and odd factors, so does S ®  T,
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224 III. INDEX THEOREMS

and one computes that

{S ® T )2 =  S 2 ®  Id +  Id <g> T 2.

From this one sees that S ® T  is Fredholm and that there is an
identification

ker(S ® T )  = (ker S) <§> (ker T). (10.15)

The graded tensor product of modules induces a multiplication in 
which descends to the quotient KO~*(pt) =  (0(S^ik/i*9Wt+1). 

Hence, (10.15) gives the following:

Proposition 10.13. For S e Qk and T  e  one has that

ind*+,(S ®  T) =  ind*(S) ®  ind^T).

It is straightforward to check that the map (10.14) above preserves the 
subsets 3*, that is, it restricts to give a continuous mapping

®  • 3k x 3k ►

Applying the isomorphism K O ~k(A) s  [A, 3k] of 10.11, we get a 
multiplication

K O ~k(A) x  K O ~ '{A )-----► KO~w (A)

defined for any compact Hausdorff space A  and for all k, £ ^  0. In fact, 
for any pair of such spaces A  and B, we have a transformation

K O ~k(A) x K O -'(B ) ----> KO ~k- '(A  x  B)

given by associating to / :  A -► 3k and 0: 3k *he map (fg)(a,b) =
f(a) ® g(b). (When A = B the multiplication is obtained by restricting to 
the diagonal.) These transformations coincide with the ones convention­
ally defined in KO-theory (see 1.9).

Remark 10.14. Recall that the homeomorphism (10.12) identifies 3k 
with the space g skew of all skew-adjoint Fredholm operators on real 
Hilbert space. Consequently, Theorem 10.11 shows that g skew is a clas­
sifying space for the functor K O ~ k.

Similarly, the assignment T  -* e7T |Ho associates to each element 
T e  3k, a C f6-linear map of the ungraded Hilbert module H 6 for C t6. 
Note that C£6 s  IR(8) and we can take H 6 to be the product H 6 = H  ®  R8 
with IR(8) acting on the right-hand factor. Any IR(8)-linear map of H 6 is 
then of the form A ®  Id. This identifies 3k with the space g symm of 
all self-adjoint Fredholm operators on real Hilbert space, and Theorem 
10.11 shows that g symm classifies the functor K O ~ n.

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



§11. MULTIPLICATIVE SEQUENCES 225

R emark  10.15. The entire discussion of this section can be carried 
through in the complex case. One considers complex Clifford algebras, 
complex graded modules, complex Hilbert spaces, etc. All of the analogous 
fundamental results remain true. One essentially recaptures the “classical” 
index theory discussed in §§7 and 8. However, a new fact which emerges 
is that the functor K 1 is classified by the skew-adjoint Fredholm operators 
on complex Hilbert space. The analogue of Theorem 10.10 (also proved 
in Atiyah-Singer [5]) leads to a proof of Bott Periodicity for the unitary 
group.

§11. Multiplicative Sequences and the Chern Character

In this section we present some fundamental constructions in A-theory 
and the theory of characteristic classes. These constructions will be needed 
later whem we discuss the cohomological formula for the index of an 
elliptic operator.

Throughout the section cohomology groups will be taken with rational 
coefficients, although much of what we do carries over to more general 
coefficient rings.

There is a principle underlying much of what we do here. Roughly 
stated it asserts that for computational purposes every complex vector 
bundle is a direct sum o f line bundles. Moreover, if the bundle is the com- 
plexification of a real bundle, the non-trivial line bundles occur in complex 
conjugate pairs. To make this precise we need the following result, often 
referred to as the “Splitting Principle”:

Proposition 11.1. Let E be a complex vector bundle over a manifold X . Then 
there exists a manifold SfE and a smooth, proper fibration n : SfE -+ X  such 
that

(i) The homomorphism n * : H*(X) -> H*(£PE) is injective.
(ii) The bundle n*E splits into a direct sum o f complex line bundles:

t 0  ^  (11.1)

Proof. Let p:P(E) -> X  denote the projectivization of E, i.e., the bundle 
whose fibre at x  is the projective space P (Ex) of all complex lines in Ex. 
The bundle p*E contains a line bundle defined tautologically at a line 
{  cz Ex to be { itself. Using some fixed hermitian metric in £ , this gives us 
a tautological splitting

p*E =  £ ®  t 1

The homomorphism p*: H*(X; Z) -► H*(P(E); Z) is injective by the Leray- 
Hirsch Theorem C.14 in Appendix C.
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We now repeat the process for the bundle and continue inductively 
to complete the proof. ■

There is a direct analogue of the proposition and its proof for the case 
of real vector bundles. We shall not state this. However, we do want to 
signal the following “hybrid” result.

Proposition 11.2. Let E be an oriented real vector bundle o f dimension 2n 
over a manifold X . Then there is a smooth proper fibration n : SPE -* X  such 
that 7i* : H*(X) -> H*(SPE) is injective and the bundle n*(E ® C) splits into 
complex line bundles:

n*(E (11.2)

where f } denotes the “inverse” or “complex conjugate” bundle t o t } (see below). 
In fact, there is a splitting

n*E = E 1 ® - - - ® E „  (11.3)

into oriented real 2-plane bundles such that Ek ®  C =  i k © 7kfor each k.

Proof. Suppose, to begin, that dimK(£) =  2. Fix a metric in E  and let 
J : E  -* E  be the map which rotates each fibre by n/2 in the positive di­
rection. We let SfE = X  and note that

£<g) C =  <f © /

where at x  e X

t?x = {v — iJ v : v e  Ex} and 7X == {v +  iJe : v e  Ex}, (11.4)

are the -I- i and — i eigenspaces of J  ® C. Note incidentally that as com­
plex bundles we have the bundle isomorphism

(11.5)

For the general case we fix a metric in E  and consider the bundle
p : G(E) -> X  whose fibre at a point x  consists of all oriented 2-dimen­
sional subspaces of Ex. Then there is a canonical splitting

p*E = E k ® E \

where E t -> G(E) is the tautological oriented 2-plane bundle whose fibre 
at P  6 G(E) is P  itself. The argument given for Theorem C.14 adapts im­
mediately to prove that the homomorphism p * : H*(X; I )  -* H*(G(E); I )  is 
injective. Repeating the process for the bundle £ x and proceeding in­
ductively, we construct the desired splitting bundle SfE. ■

R em ark  11.3. An analogous result holds when dimK(£) =  2n +  1. One 
must add a trivial line bundle onto the decompositions (11.2) and (11.3).

226 III. INDEX THEOREMS
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§11. MULTIPLICATIVE SEQUENCES 227

For many purposes it is permissible to add a trivial real line bundle to £  
and work directly in the even-dimensional case.

N ote 11.4 (conjugate bundles). Recall that if £  is a complex vector 
bundle, then its conjugate bundle £  is obtained from £  by redefining scalar 
multiplication. The new scalar multiplication by t e C is the old scalar 
multiplication by F. For any given hermitian metric (•,•) in £, the map 
v —> cpv(') = ( ', u) identifies £  with E* = Hom c(£,C). If £  =  £ 0 ®  C is the 
complexification of a real vector bundle £ 0, then there is a complex bundle 
isomorphism £  S  £.

N ote 11.5 (line bundles). The set S P iX ^ H ^ X iS ^ o f  equivalence classes 
of complex line bundles on a manifold X  has a natural commutative multi­
plication given by the tensor product. Since /  =  =  trivial, the
multiplication is invertible, and & (X ) is a group. The first Chern class 
c l : £ ’(X) -* H 2(X \Z) is a group isomorphism (see Appendix A, Example 
A.5).

The Splitting Principle above can be applied directly to characteristic 
classes.

O b s e r v a t io n  11.6 (splitting the Euler class). Let £  be an oriented real 
vector bundle of dimension 2n, and let x(£) e H 2n(X; Q) denote its Euler 
class. If £  decomposes into a sum of oriented 2-plane bundles £  =  
£ t 0 • • • 0 £„, then since x(E 0 £ ') =  x(E)x(E') we can write

X{E) = x l ■ x n (11.6)

where xk =  x(£*) for each k. If we now complexify and write £  <8> C =
© f \  0 " •" 0 0 then we see from (11.5) that

xk = c i(4 ) for each k.

Using the Splitting Principle, formula (11.6) can, in fact, be used to define 
the Euler class.

O bservation  11.7 (splitting the total Chern class). Let £  be a complex 
vector bundle, and denote by

c(£) =  1 +  c t(E) +  . . .  +  c„(£)

the total Chern class of £. Recall that c(£ 0  £ ') =  c(£)c(£'). Hence, if £  
decomposes as a sum of line bundles £  =  © • • • ©  i n, then

c(E) =  n  (1 +  x k) (11.7)
fc=l

where xk =  for k =  1 , . . .  ,n. In particular, we find that
Ĉ (JS) =  (Tj(Xj, . . . jX„), j  1, . . .  ,71 (11.8)

where Oj denotes the ;th  elementary symmetric function of x u  . . .  ,x„.
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If E does not split as a sum of line bundles, we may lift it to the space 
where it does. The map H*(X) -> H*(SfE) is injective and identifies Cj 

with (Tj(xi9. . .  9x n) as in the previous case. Note that any symmetric 
polynomial expression in the x /s  can be rewritten as a polynomial in 
gu . . .  ,(rn (i.e., in c i9 . . .  ,c„). This will enable us to define characteristic 
invariants in a particularly useful way.

As a simple application note that since c t(?) =  — ct(^)9 we have

Cj(E) = ( - i y Cj(E) (11.9)

for all j.

O bservation  11.8 (splitting the total rational Pontrjagin class). Let E 
be a real oriented vector bundle of dimension 2n, and recall that the 
rational Pontrjagin classes of E are defined by p /£ )  =  ( —iyc2/ £  <S> C), 
j  =  1 , . . .  ,n. (Since £ ® C  =  (E ®  €), the Chern classes of odd degree are 
zero by (11.9).) The total (rational) Pontrjagin class is defined to be

P(E) =  1 +  Pi(E) +  . . .  +  p„(E).

It has the property that p{E ©  F) =  p(£)p(F). If £  0  C decomposes as a 
direct sum, E ® C =  t j ©  ©  • • • © („ ©  then c(E 0  C) =

c(ifk)c(?k) = n  (1 — x l)> and we find that

P(E) =  n  ( i + x d  (u .io )

where x k =  as before. In particular, we have

Pj(E) =  a / x j , . . .  ,*„2) (11.11)

for each j.
Let G>[[x]]~ denote the set of formal power series in x with rational 

coefficients and with constant term 1. It is easily seen that 0 [ [ x ] ] '  is a 
group under multiplication. Fix an element /(x ) e  0 [ [ x ] ] ,  and for each 
n e Z + consider the formal power series in n indeterminates given by 
f ( x  i ) ' ‘ ' /(*»)• This is evidently symmetric in the x/s, and so it has an 
expansion of the form

f ( x i) • • • f ( x n) =  1 +  +  F 2(au  <t2) +  <r3) +  • • •

where

. . .  ,x„) =  X  xit • • • x ik for 1 < ,k < n
ii < . . .< ik

denotes the kth  elementary symmetric function in x t , . . .  ,x„, and where 
Fk is weighted homogeneous of degree k, i.e.,

Fk(tou  . . .  ,tkak) =  tkF k(<71, . . .  ,ak) for all t e Q.
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Each of the polynomials Fk(ok, . . .  ,ok) is well defined and independent o f 
the number o f variables Xj. This is easily seen by adding more variables
and using the obvious fact that <7*(*i.........x„,0, . . .  ,0) =  ok(xu . . .  ,x„) if
k ^  n, and <r*(x x, . . .  ,x„,0,. . .  ,0) =  0 if k > n.

The sequence of polynomials {Fk(ffi, . . .  ,<**)}“= i is called the multi­
plicative sequence determined by the formal power series /(x). It has a 
universal multiplicative property which we shall now describe.

Let B be a commutative algebra with unit over Q, and assume that B 
has a direct sum decomposition B  =  B° © B 1 ®  B 2 © • • • with the prop­
erty that Bk ■ B t  s  B* V  for all k, f  ^  0. For example, B  could be H 2 (X;Q) 
or H*’{X;Q) for a space X . It could also be the polynomial ring Q [x] 
with Bk = Q x \

Given such an algebra B, let IT  denote the set of all formal sums 
1 +  bt +  b2 +  . . .  where bk e Bk for each k. Note that the finite sums (those 
with only a finite number of non-zero terms) actually belong to B  and 
form a set which is closed under multiplication. This extends to B~ by 
defining

[l + b1 + b2 + . . -XI+ C1 +C 2  +  . . . ) = I + ( h i  +  Cj)+(f>2F b kCi +  0 2 ) +  . . . »

that is, by defining the nth term of the product to be £  bkcn- k. Every 
element of B~ has a multiplicative inverse, and so is an abelian group. 
As an example, note that if B = Q [x], then IT  =  Q[[x]]~.

Fix a multiplicative sequence {Fk(ou  . . .  ,o»)}®=1. Then to each alge­
bra B  as above we associate a map F : IT  -* IT  by assigning to 
b = 1 +  hj -I- b2 +  . . .  e B~ the element

m  =  1 +  F & J  +  F 2( M 2) +  • • • • (11-12)

Lemma 11.9. The map T  :B" -> B'' is a group homomorphism, i.e.,

F (be) =  T(b)F(c)

for all b,c e  B~.

Proof. In the polynomial algebra B  =  Q f x j , . . .  ,x„] consider the element 
o =  (1 +  Xi) • • • (1 +  x„) =  1 +  o-j +  . . .  +  on e B By definition of {Fk} 
we have that F(<r) =  f ( x k) ■ ■ • /(x„) =  1 +  F ^o ,)  + F 2{ol ,<t2) +  . . . .  We 
now increase the number of variables. Let B = Q [x t , . . .  ,x„+m], and 
consider the subalgebras B’ =  Q [ x t, . . .  ,x„] and B" =  Q[x„+u . . .  ,xB+BI]. 
Let 0 ,0 ',a" be the corresponding elementary products in each case. Then 
we have

<r =  (1 +  x ,) • • • (1 +  x „+ J =  o'a",

and
m  =  f i x , )  • • • / (x n+m) =  T(o')T(o").
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The general result now follows easily from the algebraic independence of 
the a/s. ■

It is easy to see that the universal multiplicative property 11.9 char­
acterizes the sequence. The formal power series is recaptured by taking 
F(1 4- x) =  f(x )  in the algebra Q [x].

The concept of a multiplicative sequence is due to F. Hirzebruch, who 
established their importance in the theory of characteristic classes.

Basic C o n str u c tio n  11.10 (multiplicative sequences of Chern classes). 
Let {Fk} be a multiplicative sequence associated to the formal power series 
f ( x ) e  Q [[x ]]~ . To each complex vector bundle E over a space X , we 
associate the total F-class

for any two complex vector bundles E and E  over X. If we decompose 
E =  ® • • • © t n according to the Splitting Principle, then

where Xj =  c ^ j )  for each j.

E xam ple  11.11 (the total Todd class). Associated to the formal power 
series

is the multiplicative sequence {Tdm} called the Todd sequence. The total 
Todd class is denoted by Tdc. Its first few terms are:

If X  is a compact complex manifold of dimension n, and if E =  T X , then 
the number Td(X) =  Td„(TX)[X'] (where [X ] denotes the fundamental 
class of X  in H 2n(X;Q)) is called the Todd genus of X .

Basic C o n str u c tio n  11.12 (multiplicative sequences of Pontrjagin 
classes). Let {Fk} be a multiplicative sequence associated to the formal 
power series /(x). To each real vector bundle E over a space X , we asso-

T c(E) = T (c (E ))eH 2\X ;Q r .

Since c(£ 0  E') = c(E)c(E’), this class has the property that 

Fc(£ ©  £') =  F c(£)Fc(£')> (11.13)

Fc(£) = / ( * ! )  •••/(*„) (11.14)

td(x) = — = l +  ^ x  + — x2 +  . . .  
1 — e 2 12

T d 1(c1) =  i c 1 

T d2(c1,c2) =  — (c2 +  cl) 

T d3(c1,c2,c3) =  — c2cv
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§11. MULTIPLICATIVE SEQUENCES 231

date  the total F-class

T(E) = T (p iE ))eH * '(X ;Q r.

Given two such bundles E and £ ' over X , we have p(E © £') =  p(£)p(£') 
and so

T(£ ©  £') =  F(£)F(£'). (11.15)

Assume £  is oriented and of dimension 2n, and decompose £  ® C  as 
/ i  ©  © • • • © / „ ©  4  according to the Splitting Principle. Then

F(£) =  /(*?) ‘ ’ ' f i x«) (11.16)

where xk =  c^/*) for each k.

Example 11.13 (the total /1-class). Associated to the formal power series

a(x) == — 2 ^ /3 —  =  1 — x  +  f - L  g x 2 + . . .
sinh(N/x/2) 24 27 • 32 • 5

is a multiplicative sequence {4m} called the 4-sequence. The first few terms 
of the sequence are

M P i ) =  ~ ^ P t  

A 2(P»P2) =  27 -32 -5 ( ~ 4pz +  7p^

MPt,P2>Pi) =  ~ 2 I 0 . 3 3 . 5  . 7  (16Pa ~  44P2Pi +  31pi).

Given a real bundle £, the total 4-class of £  is the sum

A(£) =  1 +  4 i(P iE ) +  A 2(p1E ,p2E) +  . . .

If we write £  <g) C  =  ( x ©  l x ©  • • • © i n © t n as above, then from (11.16) 
we see that

" x./2
A(£) =  f t  • J  (H-17)M  smh(x/2)

where of course pjE =  a f x \ , . . .  ,x2).
Closely related to the 4-sequence is the 4-sequence {4m} determined 

by the power series a(x) =  a(16x). One easily sees that A m =  16m4 m for 
each m.

The Todd class and the 4-class are intimately related.

Proposition 11.14. For any oriented real vector bundle E it is true that

T d c ( £  ®  C )  =  A ( £ ) 2 .
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232 III. INDEX THEOREMS

Proof. We may assume dim E is even (see Remark 11.3) and we consider 
a formal splitting E ® C = i l ® lfx ® • • • © £n ©  7n. Then by definition

where Xj =  c tfj) . Multiplying by eXj,2e~Xjl2 in the denominator gives

Tdc(£ (g) C) =  f l
j =  i

n

-n;= i

3  T
-  e- x'12]

kJ2 _ J
sinh(xy2)J 

=  [A (£)]2. ■

Example 11.15 (the total L-class). Associated to the formal power series

„/  ̂ yfx  . 1  1 ,

m ‘ - ^ T x  = l + ) x - v x  + -

is a multiplicative sequence (Lm) called the Hirzebruch L-sequence. The 
first few terms of the sequence are

^ i(P i) =  ^ P i

LiiPuPz) =  ^  OPz -  Pi)

jL 3(P i »P2»P3) =  3 3 ~ 5 ~ "7  6̂ 2 p 3 “  1 3 p i p 2 +

Given a real bundle E, the total L-class of E is the sum 

L (E) = 1 +  L ^P iE )  +  L 2(PiE,p2E) + . . .  .

If we write £  ®  C =  ^  ^  ©  • ■ • ®  4  ®  4  according to the Splitting
Principle, then from (11.28) we see that

L (E )- M ; = v  
<1U8)

where pjE =  o }{ x \ , . . .  ,x2).
Closely related to the L-sequence is the L-sequence {Lm} determined 

by the power series <f(x) =  <f(x/4). One easily sees that L m = 4mL m. For a 
real oriented bundle E of dimension n, we have

( 1 U 8 '>
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§11. MULTIPLICATIVE SEQUENCES 233

Suppose we fix a multiplicative sequence {Fk} as above. Then for each 
differentiable manifold X  we define the total F-class of X  to be

F(2Q =  T(TX ) e H 4\X ;Q )

In particular, the examples above give us a total /4-class A(2f) and a total 
L-class L(X).

If we furthermore assume that X  is compact, oriented and of dimension 
n, then we define the F-genus of X  to be the rational number F(X) obtained 
by evaluating F(2Q on the fundamental homology class [X ] e  H„(X; O) of 
the manifold. In other words:

(11.19)

From (11.15) one easily deduces that the F-genus is multiplicative in the 
sense that

F(X  x X') = F(X)F(X') (11.20)

for any pair of compact oriented manifolds X  and X'.
Suppose now that Y  is a compact oriented manifold with boundary 

dY  = X . Note that T Y \X =  T X  0  (trivial), and so p{Y)\x =  p(X). Con­
sequently, F(T)|X =  F(Z) and, since X  is homologous to zero in Y, the 
F-genus of X  must be zero. This proves that the F-genus of a manifold 
depends only on its oriented cobordism class. In fact the F-genus gives a 
ring homomorphism

F :f iS °  ► Q (11.21)

from the oriented cobordism ring into Q.
Two important examples here are the /4-genus and the L-genus. An 

important result of F. Hirzebruch says that for any compact oriented 
4fc-manifold X ,

L(X) =  sig(2Q.

This can be proved by direct verification on a set of generators for the 
ring Q*° ® Q (cf. Hirzebruch [1]). It also follows from the Atiyah-Singer 
Index Theorem.

Note in particular that L(X) is always an integer. This is not true for
A(X). The formulas above show, for example, that /4(P2(C)) =
—(1/8)L(P2(C)) =  —1/8. Nevertheless, it will follow from the Index Theo­
rem that A{X) is an integer when X  is a spin manifold. It is a fact, inciden­
tally, that the /4-genus is always an integer.

We now discuss the Chern character. Let £  be a complex vector bundle 
of dimension n over a manifold X , and via the Splitting Principle express
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234 III. INDEX THEOREMS

the total rational Chern class of E formally as

c(E) =  1 + c l + . . .  + cn = f l  (1 +  x k)
k—1

so that ck =  ak(x l9. . .  9x n). Consider the expression

ch(£) =  eXl +  . . .  +  eXn =  n -f Y  x , +  \  Y  x )  +  . . .  (11.22)

The term of degree k in this expression is just the symmetric polynomial

chk£  =  r r  E  *5 (11.23)K\ 7 = 1

which can be rewritten as a universal polynomial expression in the ele­
mentary symmetric functions cu  . . .  ,c„. In particular, ch E =  n 4- ch1#  +  
ch2£  -f . . .  is a well-defined element of H 2*(X;Q). It is called the Chern 
character of E.

Note that if t  is a complex line bundle, then

ch(f) = ec'i' ) (11.24)

where cx{^) denotes the first Chern class of L  
The importance of the Chern character lies in the fact that it respects 

the (semi) ring structure on the set of vector bundles.

Proposition 11.16. The Chern character has the following properties for any 
pair o f complex vector bundles E  and E' over X:

(i) ch(E 0  £ ') =  ch(£) 4- ch(E')
(ii) ch(£ ® E ) =  ch(£)ch(£').

Proof. Consider formal splittings
n m

c(E) =  n  ( i + x*) c(E') =  n  ( i +
k=l j=l

where as above the Chern classes are the elementary symmetric functions 
of the x’s. Then we have corresponding splittings

c(e  ®  f )  =  n  ( i + Xk) n  a + xj)
fc=i j - i

m n

C(e ® f) = n n (!+^+x'j)j= 1 k~ 1

The first is obvious. The second is a consequence of the basic fact that 
for complex line bundles c f j  ®  ( ’) =  cx(/) +  c ^ f ) .  (Compare Note 11.5
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§11. MULTIPLICATIVE SEQUENCES 235

or (A.7) in App. A.) By definition we now have

ch(E © E )  =  £  +  £  e*' =  ch(E) +  ch(F)
k = l  j  =  1

m n /  n \ /  m \
ch(£ <g> £ ') =  £  £  e**+x'> =  £  e3* £  ex‘ =  ch(£)ch(£') ■

j = l k = l  \fc=i  /  v = i  J

Corollary 11.17. For any compact Hausdorff space X , the Chern character 
descends to a ring homomorphism

ch :K (2 0 -----► H 2'(X;Q).

R emark  11.18. It is a result of Atiyah and Hirzebruch [2 ]  that if, say, 
X  is a finite complex, then the associated map c h : K(X) 0 Q - »  H 2*{X\ Q) 
is an isomorphism. They show, moreover, that this map extends to a ring 
isomorphism c h : K*(X) <g) Q  A  H*(X; Q) which carries K ^ X )  (g) Q onto 
Hodd{X;Q).

We now examine some basic constructions in K-theory. To make cal­
culations we shall always assume our bundles to be a direct sum of line 
bundles. This is justified by the Splitting Principle 11.1 and 11.2 provided 
the answer is independent of the splitting. We assume throughout that X  
is a manifold or a finite simplicial complex.

Construction 11.19 (the exterior power operations). Let £  be a com­
plex vector bundle of dimension n over X  and for each k, I ^  k <.n, con­
sider the bundle A*£. This operation on vector bundles has the property

A*(£ © £ ') =  £  (A‘£) ® (AJ£'). (11.25)
i+j = k

To extend the operation to K-theory we consider the ring K(X)\_[t] ] of 
formal power series with coefficients in K (X ). Assigning to a vector bundle 
E the element

A,(£) =  £  [A‘£]t* (11.26)
k — 0

gives a map with the property that

X,(E ©  £ ) =  A,(£)2,(£) (11.27)

by (11.25). From the universal property of K(X) the map (11.24) extends 
to a group homomorphism

X ,:K (X )— * K (X )[IQ T .

The k-component of this map is called the fcth power operation on K{X).
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236 III. INDEX THEOREMS

For vector bundles, Xt(E) is a polynomial and Xm{E) is a well-defined 
element of K(X) for all m e Z. For example, Xt(f) =  1 +  t[/~\ for any line 
bundle L  For general elements of K(X) the above statement is false. Note, 
for example, that Xt( — [ / ] )  =  (1 -f t [ / ] ) _1 =  £  ( —f)m[4]m.

Fix a vector bundle E and consider a formal splitting E =  4  ® • • * ©  4  
with x k =  £^(4)- From (11.27) we have that Xt(E) =  n ^ ( 4 ) = n a + t M ) ,  
and so

ch(2t£ ) =  f [  (1 +  teXk). (11.28)
k = l

In particular, we conclude that

ch(2_j£) =  ch(Aeven£  -  Aodd£) =  f j  (1 -  eXk). (11.29)
k = l

Construction 11.20 (the Adams operations). Closely related to the 
power operations are a family of ring homomorphisms ij/k : K (X) -*■ K(X) 
called the Adams operations. For a line bundle ( , they are defined by 
setting,

H O  = O.  (11.30)

The extension is then determined by the Splitting Principle. Write £  =  
0  © • • • © 4  and define \j/k(E) =  / * © • • •  © /*. We see that

H E  ©  £') =  H E )  ©  HE') ,}  _  _
f (11.31)

4>k(E <2> £ ') =  H E )  ®  </'*(£')•)

The first is obvious. For the second, note that tAfc[(Z 4) ® (Z 4)1 =
W E 0 ®  01 = Z (0 ® O* = Z O ®  (0)k = (Ê f) ® (E0 k) =
WEO® WEW

Note that ch ij/kE =  X e**' =  pkch £  where pk: H 2\ X ; Q) -* H 2*(X; Q) is 
defined by setting =  fcm on H 2m(X\Q).

The Adams operations transform naturally under the homomorphism 
/ * :  K{X) -*• £ (T ) induced by a continuous map f : Y - * X .

It is an interesting exercise to show that E£°=i (—t)kil/k(E) =  
-t[(d/dt)A t(£)]/A,(£).

Construction 11.21 (the Clifford difference element). Let £  be a real 
oriented riemannian vector bundle of dimension 2n, and let coE = 
ine l • • • e2n be the oriented unit volume element in the complex Clifford 
bundle Cl(E) = C 1(E) ®  C. Since cof =  1, we have a splitting C£(£) =  
C e+(£) ©  C l "(£) where £ €*(£ ) s  (1 ±  <u£)C€(£). We then define the 
Clifford difference element

<5(£) =  [C €+(£)] -  [€ € " (£ )] 6 K(X). (11.32)
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Suppose £ ' is another such bundle. From the fact that C£(E © E') — 
Ct(E) <g> C£(£') and coE(SE- =  coEcoE;  one sees easily that

<5(E © £') =  8(£)<5(F). (11.33)

The proof of the Splitting Principle 11.2 shows that we may consider E 
to be a direct sum of 2-plane bundles E =  £ t ©_•••© £„, and £  ® C =  

© ■ ’ ■ © t* ©  4  where Ej ® C — ^  © {j.
Consider therefore the case where dim E — 2. We have £  <g) C =  (  ©  /  

for some complex line bundle t .  In fact, if at a fixed point x  e  X  we choose 
an oriented orthonormal basis (eu e2) of Ex, then l x — C • (e_x — ie2) and 

= C • (ex + ie2). Clearly C£(E) =  C - l © C - a ) £ © / © / ,  and since 
toE — iexe2 we find that

C f +(£) =  C • (1 +  0)E) ©  e and € € " (£ ) =  C • (1 -  a>E) ©  / .

Since the bundles C • (1 +  coE) are trivial, we find that for dim £  =  2,

m =[/]-[/].
Applying the Splitting Principle and (11.33), we conclude that for £  =
£ j © • • ’ © E„,

m  = n (M - M)k= 1

and so

ch[<5(£)] =  f l  (e~Xk ~  eXk) (11.34)
*=i

where xk = c t(4) for fc =  1 , . . .  ,n. From (11.6) we know that *(£) =  
x x ■ • • x„. Consequently, one verifies that

n f Xk   pXk\
ch[«5(E)] =  x(E) f l  ( ------ ------- I

*=i \  xk J
n /pxk/2 ___ p~xit/2\

= (-i)"x(£)tn y— - — )(eXkl2 + e'Xkl2)

From (11.17) and (11.18') we conclude the following:

Proposition 11.22. For any oriented real vector bundle E o f dimension 2n, 
one has the relation

§11. MULTIPLICATIVE SEQUENCES 237

ch[<5(£)] =  ( -2 )" x (E )L (£ )A (E )-2.
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238 III. INDEX THEOREMS

C onstruction  11.23 (the spinor difference element). Let E and oE be 
as in Construction 11.21 and suppose E carries a spin structure. Let SC(E) 
be the complex spinor bundle for E and consider the decomposition 
SC(E) = S£(E) 0  Sc(E) where S£(E) =  (1 ±  cde)Sc(E). We define the 
spinor difference element to be

s(£) =  [£+(£)] -  [Sc (£)] 6 K(X). (11.35)

It follows easily from the material of Chapter I that if £ ' is another such 
bundle, then

s(£ ©  £ ') =  s(E)s(E'). (11.36)

As above w e m ay  now restrict attention to the case dim £  =  2 where 
£  ®  C =  /  0  / .  Recall from (11.5) that as oriented 2-plane bundles £  s  / .  
The fact that £  is spin is equivalent to the fact that x(E) =  cx(<0 is even, i.e., 
that t  has a square root t m . The spinor bundle is given by

Sc(£) =  / 1/2 ®  / 1/2

One verifies that Sc(£) =  ? 1/2 and S£(E) =  <f1/2, and so

s(E) =  [7 1'2] -  [^»/2].

Passing to the general case £  =  E t © • • • © £ „  via the Splitting Principle 
as above, we then have

5 (£ )  =  f t  ( K / 2 ]  -  [ 4 1/2] ) ,  
fc= 1

and so

ch[s(JB)] =  f [  (e"Xk/2 -  eXfc/2) (11.37)
k= 1

This proves the following:

Proposition 11.24. For any real spin vector bundle E o f dimension 2n9 one 
has that

ch[s(£)] =  (—l)"x(£)A(£)-1

§12. Thom Isomorphisms and the Chern Character Defect

We present here some material relevant to understanding the general form 
of the Index Theorem. It is not necessary, however, for understanding the 
cohomological formula for the index in the basic cases.

Let X  be an oriented n-dimensional manifold which is not necessarily 
compact. Let H*pt(X) denote the cohomology of the complex of rational
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singular cochains with compact support on X . (A cochain c has compact 
support if there is a compact subset K  c  X  such that c ( g ) =  0 for any chain 
g which does not meet K .) Poincar£ duality states that there is a canonical 
isomorphism

9 x :H * J iX )-Z + H m-JLX) (12.1)

for p =  0 , . . . ,  n (see de Rham [1]). If Y  is another such manifold of di­
mension m, and if / :  Y -* X  is a continuous map, then for each p with 
p ^ m  — n there is a linear map

f : H ' pt( Y )  m & f - 'K X )  (12.2)

called integration over the fibre (or the Gysin homomorphism). It is de­
fined by setting flu )  =  ® * 1/*® y where /„  is the usual map induced on 
homology.

An im portant example is provided by the following. Let E  be an oriented 
vector bundle of fibre dimension k over X . Consider the maps

71: E  ► X  and i : X  ► E

where n is the bundle projection and i denotes inclusion as the zero sec­
tion. Since these maps are homotopy equivalences, and i* induce iso­
morphisms on homology with =  Id. Consequently, the maps

n,: H £ \ E )  ► t f  ?„,(*) and i,: H ppi{ X )----- ► H & k(E)

are isomorphisms for all p. Since n f  =  3>x =  Id, we see
that

«i =  (12.3)

Definition 12.1. The map i,: H ppt(X) -» H p£ k(E) is called the Thom iso­
morphism of E  for compactly supported cohomology.

Note that if X  is compact, then H ppt(X) = H P{X). Furthermore, if DE de­
notes the disk bundle of E, then by excision and Lefschetz duality we have

HJP7 (E ) s  H „ .p{E) 2  Htt. p(DE) 2  H k+p(DE,dDE). (12.4)

We thereby recover the Thom isomorphism in its more conventional form 
(cf. Milnor-Stasheff [1]). We also have the following basic result:

Lemma 12.2. I f  X  is compact, then for all u e  H*(X) =  H*pt(X), one has

i*i,(u) =  X(E) ■ u (12.5)

where x(E) is the Euler class o f  E.

Proof. We shall only outline an argument (for full details, see Milnor- 
Stasheff [1]). Let Z  =  i*[2f] =  i*®x(l) be the class of the zero-section in

§12. THOM ISOMORPHISMS 239
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240 III. INDEX THEOREMS

Hn(E). The equation

X(E) =  i * m  =

is one of the standard characterizations of the Euler class. To wit, if c e 
H k(X), then

(x(E),c) = =  (1,Z  n  i*c),

that is to say that x is given by intersection in E with the zero section. 
For a general class u e H P(X ), we fix c e Hk+p(X) and note that

(X(E) ■ u, c) =  (x(E), ®xu n c )  =  ( l , Z n  n  c))

=  (1. n  i*c) =
=  (/,«, i+c) =  c) ■

In K-theory there is a group K cpi(X) analogous to the group H*pt(X) 
discussed above. It consists of homotopy classes of triples [F, F; <r] where 
E and F  are complex vector bundles over X  and where a is a bundle 
isomorphism from E to F  defined outside some compact subset of X  (see 
1.9). If X  is a compact manifold, then K cptW  =  K(X). If U c: X  is an 
open subset of any manifold, then there is a natural inclusion homomor­
phism K cpi(U) -+ K cpi(X).

Suppose now that n : E -* X  is a complex vector bundle of rank k over 
a manifold, and let i :X  -> E be the inclusion as the zero section. Then, 
as proved in Appendix C, Theorem C.8, there is a natural Thom iso­
morphism if: K cpt(X) -> K cpt(E) of the form

i,(u) =  * 7C*U

where A -!  =  [7r*AcvenF,7c*AcddF;<x] and where a is defined at each non­
zero vector e in E by setting

oe =  e a  -  (<?*)L.

(The element e* is the dual of e under some fixed hermitian metric.) If 
X  is compact, then A _ x =  i,(l) is a well-defined element of K cpi(E). When 
X  is not compact, the product A _ x • n*u can still be shown to be a well- 
defined element of K cpt(E) (cf- Karoubi [2]). Roughly speaking, n*u has 
compact support in the “X-directions” and A - x has compact support in 
“fibre-directions”. If we restrict the element A _ x to the zero section, we 
recover the element A_t(F) 6 K*(X). This gives the following.

Lemma 12.3. I f  X  is compact, then for all £ e K(X) =  K cpi(X), one has

**«© =  * _ , ( £ ) • {  (12.6) 

where >!_*(£) =  [AcvcnF ] -  [AoddF ] € K{X).
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§12. THOM ISOMORPHISMS 241

Assume now that X  and Y  are smooth manifolds and that f : X < ^ Y  
is a smooth proper embedding. Assume furthermore that the normal 
bundle N  to f(X )  is equipped with a complex structure. (Hence, dim y  — 
dim X  is even.) Under these circumstances we can define a natural mapping

fi'-K Cpt(X) -» K cpt(Y)

by taking the Thom isomorphism i,: Kcpl(X) -* K cpl(N) followed by the 
map K cpl(N) -*■ fCcpl(y) obtained by identifying N  with a regular neigh­
borhood of X  in y.

Observe now that for any proper embedding f ' . X  t + f  of manifolds, 
the normal bundle to the associated (proper) embedding /„,: T X  T Y  
has a canonical complex structure. This normal bundle is just the pull­
back to T X  of N  ©  N  where N  is the normal bundle to X . The first 
factor is thought of as lying in “manifold-directions,” the second in “fibre- 
directions.” The complex structure is given by

'-G
Consequently, for any proper embedding of manifolds f : X  c_. y, there is 
an associated map

ft'-K ept(T X )  ► K cpl(T Y )  (12.7)

which is of fundamental importance in defining the topological index of 
an elliptic operator.

In the last section we defined the Chern character c h : K(2Q -* H eyen(X). 
This homomorphism has a direct extension

ch :K cpt( X )  >Hi;\n(X)

to the case of compact supports. For any given complex vector bundle 
n : E -* X , we have defined Thom isomorphisms:

K cpt(X) K cpt(E) and H cpt(X) t f cpt(£),

and it is natural to ask whether /jch =  ch This is not true in general 
and the resulting “correction term” is of basic importance.

We assume from this point on that the manifold X  is compact. Then 
to each complex vector bundle n : E X  we associate the class

Z(E) =  7t,ch i,(l) (12.8)

Note that for any ^ e K(X) we have rcjch =  7r,ch(i,(l) • n*£) =  
7r,[ch 1,(1) • ch n*£\ =  [^ch  i,(l)]ch <̂, and so, since 7r, =  (i,)"1 on H*pt(E)9

(i1) - 1ch (^ ) =  I(£ )ch ^ , (12.9)

That is, Z(E) is just the “commutativity defect” mentioned above.
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Now it is not difficult to check that 1(E) is natural, i.e., f* 1 (E )  =  
1 (f* E )  for any continuous map between manifolds. Consequently 1(E) 
is a characteristic which we shall compute. Note that it1(E) =  ch i,(l) =  
ch A _ j . Applying i* and Propositions 12.2 and 12.3, we find that 
X(E)1(E) =  i \ 1 ( E )  =  i*ch A _ t =  ch i*A_! =  ch X .^E ).  This compu­
tation can be carried out for the universal bundle E over the classifying 
space BU„ whose cohomology ring is a polynomial ring generated by the 
Chern classes ,cn. Here we are authorized to write the equation

I ( E ) _ c h ^ p  
(11 ]0 |

If we split c(E) =  (1 +  Xj) formally as in §11, we find from equations
(11.6) and (11.29) that

n 1   pxk

*<*) - nk= 1 Xk

From  (11.11) and (11.9) we can rewrite this as

1(E) =  ( -  l r r d c ( E ) - 1 (12.11)

Assume now that E is a real oriented riemannian vector bundle of even 
dimension over X. Then one can define the basic element

5(E) =  [* * C t+(£),K *C r(E);M ] 6 K cpl(£) (12.12)

where \ie — e ' denotes Clifford multiplication by e. It is evident that 
i*5(E) =  5(E), the difference element considered in 11.21. Arguing as above 
we see that: x(E)^jCh 5(E) =  ch 5(E) =  i*ch 5(E) =  ch 5(E). Applying 
the calculations of Proposition 11.22 then proves the following.

Propositon 12.4. For any oriented real vector bundle E o f dimension 2n on 
X , one has

7i,ch 5(E) =  ( —2)"L(£)A(£)“ 2

If we now assume that £  has a spin structure, we can construct the 
element

s(E) m 0 * S c+(£), n*Sc(E); e  K ept(E) (12.13)

where again ne =  e- denotes Clifford multiplication by e. Clearly, i*s(E) =  
s(E) =  the element discussed in Construction 11.23. Arguing as above and 
applying the calculation of Proposition 11.24, we find the following:

Proposition 12.5. For any real spin vector bundle E o f dimension 2n on X ,  
one has

7tjCh s(£) =  ( — 1)"A(£)~1
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These last two propositions extend easily to the case of coefficients. 
Given any element « e K(X), one immeidately verifies that

;t|Ch[5(£) • n*u]  =  ( -  2)"ch u • L (£ )A (£ )" 2 (12.14)

7t,ch[s(£)-7t*M] =  ( - I f c h u - k i E ) - 1 (12.15)

Indeed, note that 7t|Ch(5(E)jt*ti)=7t,[ch 6(E)ch 7t* u ]= 7t,[ch 5(E)rc*ch «] =  
[ 7t|Ch 5(£)]ch u. If u =  [£ ']  is the class corresponding to a complex vector 
bundle £ ' over X , then

6(E)-n*u s  [n*C l+(E)® E', n*C£ '(£ )  ® £'; /i],
(12.16)

s(£) • ti*u 2  [n*S£(E) ® £ ', n*S£(E) <g> £'; ji].

These elements 6(E) and s(£) are fundamental. Using them, one can define 
Thom isomorphisms in K-theory for £  as follows:

Proposition 12.6. Let n :E  -* X  be an oriented real vector bundle o f dimen­
sion 2n on X . Then the map

if : K(X) (g) Q  ► K cpt(E) <g> Q given by if(u) s  6(E) • n*u

is an (additive) isomorphism. I f  E is spin, then the map

if: K (X )  ► K ept(E) given by i?(«) s  s(£) • n*u

is an (additive) isomorphism.

For a proof of this proposition and a discussion of related results, the 
reader is referred to Appendix C.
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§13. The Atiyah-Singer Index Theorem

We present here the topological formulas of Atiyah and Singer for the 
index of an elliptic operator on a compact manifold. We begin with the 
general K-theoretic formula for which we give a detailed proof. Then, 
using material derived above, we shall rewrite the formula in cohomo­
logical terms and work out the details in some im portant special cases.

Let X  be a compact differentiable manifold of dimension n and consider 
an elliptic operator P : T(£) -*■ T(£) where £  and F  are smooth complex 
vector bundles over X . Recall from §1 that the principal symbol <r(P) of 
P  defines a class

<r(P) =  0 * £ ,  n*F; c(P)] e K cpi(TX ) (13.1)

where n :T X  -» X  is the tangent bundle of X . (We have identified K ept(T X ) 
with K(DX,dDX) since D X/dD X  is naturally homeomorphic to the one 
point compactification of TX.) Choose now a smooth embedding
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244 III. INDEX THEOREMS

/ :  X  <-+ UN into some euclidean space, and consider the induced map

f : K cpt( T X )  ► K cpi(T R N) (13.2)

defined in (12.7). Follow this by the homomorphism

qr.K cpl(T R N)  >K( pt ) s Z  (13.3)

where q : T R N -* pt is the canonical “scrunch” map taking T R N to a point. 
Note that TUN =  R* ®  R* =  C" and q : C* -» pt can be considered as a 
vector bundle. Viewed in this way, the m ap q, is just the inverse of the 
Thom isomorphism i,: K(pt) -* K Qpl(CN). (It is also just the Bott periodic­
ity map. For an alternative view, consider the embedding T R N =  R2N -»
S2N =  R2iV u  {oo} and the induced map K cpt(TU N) -*• K(S2N) =  X(pt).)
Applying scrunch-shriek to f  gives the index.

D efinition 13.1. The topological index of P  is the integer

top-ind(P) =  q\f\<r(P). (13.4)

One must verify that this definition is independent of the choice of / .  
To begin consider /  = j  ° f  where j : R N RN+N' is a linear inclusion. 
The induced map j t :K cpl(T R N) -* K cpt(T R N+N') is just the Thom isomor­
phism for the bundle CN+N' -+ Cw, and one easily checks that q jj  =  q ,f  
where q :T R N+N' -* pt. If we are given two embeddings f 0:X < ^  RNo and 
f i ' .X  RWl, then the embeddings j 0f 0 :X  RNo+Ni and j i ° f i ’X ->  
RNo+N‘, defined as above, are isotopic. That is, F, = tjl ° / i  +  (1 — 
r)/o ° f 0, 0 < t < I, is a smooth family of embeddings. Applying the 
homotopy invariance of K cpl completes the proof that (13.4) is independent 
of the choice off .  One of the basic results in mathematics is the following:

Theorem 13.2 (The Atiyah-Singer Index Theorem [1]). For any elliptic 
operator P over a compact manifold, one has

ind(P) =  top-ind(P),

that is, the topological and analytic indices o f P coincide.

Proof. For the purposes of the proof we introduce a special class of 
operators. Let E and F  be (smooth) com lex vector bundles over a com­
pact riemannian manifold X . An operator P  e 'PDOJ.E, F) is called clas­
sical if its principal symbol is homogeneous of degree m in ^ outside of 
some compact subset of T *X , that is, P is classical if there is a constant c 
so that <Jti(P) =  tmffi(P) for all £, e T * X  with ||£|| ^  c and for all t ^  1. If X  
is not compact, we define the classical operators to be those which have 
this property over every compact subdomain of X . The set of all such 
operators will be denoted x¥COm(E, F ).
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Given an operator P e '¥COm(E, F) we can consider its asymptotic prin­
cipal symbol

W  = limt-* 00 I

defined for all ^ in dDX  == {<!; e T * X : ||<̂ || =  1}. This gives us an exact 
sequence

0 -----► TDOm. x( £ ,F )  ► VCOm(E9F) -*-+ r(Hom(7t*£,7i*£))-----► 0
(13.5)

where n : dDX -+ X  is the bundle projection. The surjectivity of a is seen 
as follows. Given a section s e r(Hom(7r*£,7i*£)), extend s smoothly to all 
of T * X  so that it is homogeneous of degree m in £ for ||f || ^  1. Given local 
trivializations of £  and F over a coordinate chart U on X , one easily con­
structs an operator P in U with principal symbol 5. Let {Uj} be a finite 
covering of X  by such charts and let {%]} be a partition of unity subor­
dinate to this covering. Then the operator P =  £  Xj^Xj 6 '¥COm{E9F) has 
principal symbol a(P) =  s, and the surjectivity is proved.

Our first main step in the proof will be to show that the analytic index 
makes sense at the symbolic level and, in fact, gives a well-defined homo­
morphism ind : Xcpt(T*Ar) -> Z. We begin with a technical lemma which 
will be useful later on. For this lemma, X  is assumed to be a manifold 
which is not necessarily compact but is of finite topological type.

Lemma 13.3. Let n : B X  be a smooth, real vector bundle over X . Then 
every element in K cpi(B) can be represented by a triple o f the form  
(7i*£, n*F; a) e where E and F are vector bundles on X  which are
trivial outside a compact set, and where <x: n*E -► n*F is homogeneous o f 
degree 0 on the fibres o f B {wherever it is definedI).

Note that outside a compact subset of X 9 a is defined everywhere on 
the fibres. At such points the homogeneity implies that o is in fact con­
stant on the fibres.

Proof. We know from Chapter I, §9 that any element in K cpi(B) can be 
represented by a triple (E09F0;<t0) where c 0 :E0 ^> F0 is a bundle equiv­
alence defined outside a compact subset K a  B. There exists a bundle 
£o on B  so that the sum £ 0 ©  ££ is trivial, and we can replace (£0, F0; <r0) 
with the equivalent triple (£ ,£ ;a )  =  (£0 © £ £ ,£ 0 © E ^;o  ©  Id). Then 
there exist trivializations
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V £ U - * )  ^ ( B - K ) x C m and xp : £ |(fl- K) (B -  K) x Cm
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246 III. INDEX THEOREMS

so th a t  <7 =  xF  1 o xp. (Let xp be the  assum ed  triv ia lization , an d  set xF  =  
Te°o~K )

Choose now a compact domain fi c= X  so that K  cz B\a. Set E =  i*E 
and F =  i*F where i : X  B  is the zero-section, and let t £ and t f  denote 
the restrictions of the trivializations xp and xp to E and F  respectively. 
We claim that over B there exist bundle isomorphisms

f E:E n*E and f P:F n*F (13.6)

which are compatible with the given trivializations over B\(X- Q)9 i.e., which 
have the property that

f E =  xE 1 ° xp and f F =  xF 1 ° t f .

at points of These isomorphisms are constructed as follows. Let
h : B x  [0,1] -► B be the homotopy defined by h(b9t) =  tb9 and set $  =  h*E 
and =  h*F. Note that

^ | fl X {0 } =  ^ ^ | b x { 0 }  =  ft*F

^ \b x {1 } — ^  « ^ | b x { 1 }  =  F

Introduce connections on and &  which extend the canonical flat con­
nections (compatible with the trivializations) over B ^x-ny  Parallel trans­
port along the curves b x [0,1] gives the desired maps (13.6). The bundle 
map a =  f F ° d  ° f E 1: n*E n*F  is an isomorphism which is defined on 
B  — K  and constant on the fibres of B — tC  H^)- r >  0 so that X c:
{b e B \n : ||h|| ^  r}. We now redefine a in the set where b ^  r so that it is 
homogeneous of degree zero (by setting at( — cr( for Q =  r and t 2  1).
This gives the desired triple and completes the proof of the lemma. ■

Suppose now that X  is a compact manifold and choose an element 
u g  X cpt(T*X). Represent u by an element (n*E9n*F'9a) as in Lemma 13.3. 
Fix an integer m. From  the discussion above we know that we can choose 
an (elliptic) operator P e x¥COm(E9F) whose asymptotic principal symbol 
is exactly <r, and so in particular a(P) =  u. We now set

ind u =  ind P (13.7)

and show that this definition is independent of all the choices involved. 
We know from §7 that ind P depends only on the homotopy class of its 
principal symbol. Now if F  g  *P COm{E9F) satisfies a(F ) =  a{P)9 then a(Pf) 
and a(P) are homotopic (rel oo). Therefore, ind P  is independent of the 
choice of P with a given asymptotic principal symbol. It is also indepen­
dent of the homotopy class of the representative (n*E9 n*F; cr) of u. T o see 
this suppose that (n*E'9 n*F'; a') is another such representative and that 
there exists an element a =  (E9F;ff) e x  [0 ,l])cpt whose restric­
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§13. THE ATIYAH-SINGER INDEX THEOREM 247

tion to T * X  x {k} is (n*E{k\  n*F(k); a{k)) for k =  0,1. The argument used for 
Lemma 13.3 applies here to prove that a can be replaced with an element 
of the form (n*E9n*F;&) where E and F are bundles on X  x [0,1] and 
where <f is homogeneous of degree zero outside a compact set. Given mth 
order operators P and P ' associated as above to these representatives, one 
can easily use the element {n*E9 n*F; <?) to construct a homotopy between 
them and thereby show that ind P =  ind P ' as claimed.

Suppose now that we have two distinct representatives uk =  
(;n*Ek, n*Fk; ah) for our class w, and that we have chosen associated zero- 
order operators Ph where k =  0,1. By the definition of the equivalence 
defining L 1(T*Ar)cpt ^  K (T*X )cpt this means that there exist elementary 
complexes ek =  (n*Gk,n*Gk;ld)9 k =  0,1, so that a0 © e0 and are
homotopic. We can choose associated operators Pk — P k © Id for a* © ek, 
and one easily sees that ind Pk =  ind Pk for each fc. Hence, we have 
ind P 0 =  ind P l9 and so ind u is well defined at least if we choose operators 
of order m =  0.

The definition is also independent of the choice of the order m. To see 
this, suppose we are given an elliptic operator P  e x¥COm{E9 P). Choose a 
metric and a unitary connection on £, and let V*V be the associated 
laplacian on E (see II.8.3). Then for any integer t 9 we consider the com­
position P£ =  P o (1 +  y * ?)^2 e '¥COm+j(E9F). It is easily seen that 
&(Pt) =  <t(P) and since (1 +  V*V)'/2 is invertible, that ind Pe =  ind P. It fol­
lows that ind u is well defined using operators of any order.

We have now shown that for any compact manifold X 9 the analytic 
index (13.7) gives a well-defined homomorphism:

ind: K cpt(T * X )  ►Z (13.8)

Our task now is to prove that this coincides with the homomorphism 
top-ind defined above. This will be accomplished if we can establish the 
following two properties:

Property 1. In the special case where X  =  T * X  =  pt, the homomorphism 
in d : TC(pt) -* Z is the identity.

Property 2. I f  X  and Y are compact manifolds and f : X  Y  is a smooth 
embedding, then

ind(u) =  ind(./;u)

for all u e K cpt(T*X)9 where f  is the homomorphism (12.7).

To see that these properties suffice to prove the theorem, we first choose 
an embedding f :X c -+ S N and let j :pt SN denote the inclusion of a
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248 III. INDEX THEOREMS

point. By Property 2 we have ind(n) =  ind(/u) =  ind(j, xfu ), and by Prop­
erty 1 we know that ind ° j,-1 s  j ," 1 =  qx. We conclude that ind(u) =  
qJ&M) =  top-ind(u).

Property 1 is easily established. Each element in K(pt) can be repre­
sented in the form [Cf] — [Cs] where (C ,C S) 6 ^ ( p t )  is a pair of vector 
spaces. An elliptic operator on this pair is just a linear map P : Cr -» C5, 
and we see that ind P — r — s.

Property 2 is more difficult to establish. Following Atiyah and Singer
[1], we split this up into more easily established properties. The first one 
shows that ind is well defined over open manifolds of finite topological 
type.

The Excision Property 13.4. Let & be an open manifold, and let

and

be two open embeddings into compact manifolds X  and X '. Then ind 0 f  = 
i n d o / ;  on K cpi(T*&).

Proof. Fix u e K cpt(T*6). By Lemma 13.3 we know that u can be repre­
sented by a triple (n*E, n*F; <r) where E  and F  are bundles over (9 which 
are trivial outside a compact subset of & and where o is homogeneous 
of degree 0 outside a compact subset of T*&. In particular, outside a 
compact set 12 c  6  there are trivializations

TE; £|<e-n) * (® and * (© — H) x Cm
(13.9)

with respect to which ox>i — ox — {xF)x 1 ° {rE)x at all points (x,£) e 
T*(& — Q). This means that over T*(6 — Q) the morphism a comes from 
a bundle map a0 :E -* F  over the base. Moreover, with respect to the 
trivializations (13.9), <r0 becomes the identity mapping, i.e., cr0(z i> • • • >zm) =  
(zl f . . .  , z j  at all points x  e & — fi. Recall that a bundle map a0 e 
r(H om (£, F)) is just a differential operator of order zero.

We now choose a zero-order elliptic operator P e 'P C O 0(£ ,F ) which 
has symbol o(P) = <x outside a compact set in T*& and which is the 
operator o0 =  Id in & — f l  Such an operator clearly exists.

Suppose now that we are given an open embedding f: tV  X . Using
(13.9), we extend the bundles E and F trivially over X  — f(0 ), and we 
extend the operator P  to be the identity there. This defines an elliptic 
operator f P  on X  with the property that

W f p ) ' ] = m p ) ' ] = f u -  (i3.io)

Clearly any element in ker(yjP) has support in Q and hence belongs to 
the subspace ker P (under the natural embedding ker P  c  ker f P  given
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by extending by zero). Hence, dim(ker fP )  = dim(ker P). The same re­
marks apply to the adjoint (f P )*. Assuming that X  is compact, we con­
clude from this and from (13.10) that

ind(yiu) =  ind(yjP) =  dim(ker P) — dim(ker P*).

Since the right hand side is independent of / ,  our assertion 13.4 is proved.

§13. THE ATIYAH-SINGER INDEX THEOREM 249

The Multiplicative Property 13.5. Let X  and Y  be compact manifolds. Then 
for all elements u e  K cpt(T*X) and v e K cpl(T*Y) we have that

ind(u • u) =  (ind u)(ind v) (13.11)

Proof. Naively the argument goes as follows. We represent u and v as 
above by first-order elliptic operators

P : T(£) — ► T(P) and Q : T(E') — ► T(F)

over X  and Y  respectively. We introduce metrics and define a “graded 
tensor product”

D : T((£ ® E )  ® ( F ®  F ) ) -----► T((P ®  E )  ©  (E ®  F )

by

j p ®  1 - i ® e * \  (1312)
V i ® e  p * ® i  )

Note that E ® E \  etc., here denotes the exterior tensor product over 
X  x Y. The operators P ®  1, etc. are uniquely determined by requiring 
that for (p e  T(E) and iff e  T(E') we have (P <g> l)(<p(x) ® i = (Pq>(x)) ® 
il/(y). Using the fact that P  ® 1 and 1 ® Q commute, one easily computes 
that

» /P * P ® 1  +  1 0 (2 * 6  0 V
V 0 P P * ® l  +  l ® g Q V

^ / P P * ® 1 +  1®Q*Q  0 \
\  0 P * P ® 1  +  1® Q Q *J

(13.13)

Note that: D*Dq> =  0 => (D*D(p,<p) = {Dcp,Dtp) =  0 => D(p = 0. Hence, 
ker D*D = ker D. Furthermore, since D*D is diagonal, it suffices to com­
pute ker D*D separately on each summand, E ®  E  and F ® F .  Given 
cpe T(£ ®  E), we see that: D*Dcp =  0 => (P*Pq>, (p) -I- (Q*Q<p, (p) = 0 => 
l l ^ l l 2 +  \\Q<P\\2 =  0 => P<p =  Q<p = 0 (where R denotes R ®  1 or 1 ®  R, 
whichever is appropriate). Note that ker P  n  ker Q =  ker P  ®  ker Q.
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250 III. INDEX THEOREMS

Continuing in this fashion we deduce that

ker D — ker D*D £  (ker P  ® ker Q) ©  (ker P* ® ker Q*) 

coker D = ker D* = ker DD* = (ker P* ®  ker Q) ©  (ker P  ® ker Q*) 

are therefore in K(pt)

[ker D] — [coker D] =  ([ker P ] — [coker P ])([k er Q] — [coker Q]).

In particular we have

ind D =  (ind P)(ind Q). (13.14)

Now the principal symbol of D is exactly the (outer) tensor product 
of the symbols of P  and Q. Therefore, naively we have established (13.11). 
However, there is one technical flaw in the argument. This is the fact that 
forP  e 'P C 0 1(£,P), the operator P  ®  1 e  'PD 01(E ®  E ',F  ®  £ ') does not 
in general belong to the class vP C 0 1(£ ®  £ ', £  ®  £ ') because its principal 
symbol is not homogeneous outside a compact set in T*(X  x 7). It is only 
homogeneous outside a uniform neighborhood of the “T* 7-axes” in 
T*(X  x 7).

This flaw is repaired as follows. We shall construct a continuous fam­
ily of operators (P ® l)c e 'PCOi{E ®  £ ', £  ® £ ') for e >  0 such that 
limes,0 (£ ® 1)« =  P  ® 1, where this limit is taken in the space of bounded 
linear maps from L\(E  ® £ ') to L q(F ®  £'). Applying the construction 
to each entry in (13.12) will give us a family of elliptic operators Dc in 
'FCO1 such that limCN,0 De = D as bounded (Fredholm) maps between 
Sobolev spaces. From  the local constancy of the index (see 7.3.) we have

ind Ds =  ind D for all e >  0.

On the other hand it will be evident from the construction that given any 
compact subset K  <= T*(X  x 7), there exists a constant eK > 0 so that 
cr(Dt) =  a(D) on K  for all s Sj eK. It follows by excision that [<t(D£)] =  
[<r(D)] =  u ■ v for all s sufficiently small. Hence, ind(u • v) — ind(D£) =  
ind(D) =  (ind P)(ind Q) =  (ind u)(ind p), and the property will be 
established.

It remains to construct the operator (P ® 1)E. This is done by multi­
plying the symbol of P  ®  1 by a function iA£(|^|,|>/|) of the cotangent 
variables (£,>/) e T * X  x T* Y. This function is constructed as follows. Fix 
a C “  function </>: R + -► [0 ,1 ] such that <j)(t) =  0 for t ^  1 and (j>{t) =  1 for 
t Si 2. Then for e > 0 and for r,s jg 0, set ^ e(r,s) = 1 — <p(e\/r2 + s2)(f>(es/r). 
In multiplying the symbol of P  ®  1 by one can use a good co­
ordinate presentation or some symbol calculus. The choice of method is 
not critical. It is a straightforward and worthwhile exercise to check that 
the resulting family (P ®  l)e has the properties claimed above. This com­
pletes the proof of 13.5. ■
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We shall actually need the multiplicative property in the more general 
context of twisted products, i.e., fibre bundles. However, we only need to 
consider the special case of sphere bundles which arise from vector bundles 
by adding a section at infinity. More specifically, let n : P  -► X  be a prin­
cipal 0,,-bundle over a compact manifold X  and consider the associated 
bundles

K =  P x 0hR* Z  =  P  x Qn Sn (13.15)

where Ow acts on Un by the standard representation and acts on Sn by 
extending this representation to the one-point compactification on Rw. 
(That is, Ow acts on Sn by trivially extending the standard representation 
to Un+1 =  Rn x IR1 and then restricting to the unit sphere.) We define a 
product

K cpi(T*X) ® K 0n(T*S")cpt > K cpi(T*Z) (13.16)

as follows. Choosing a metric in Z  we get a splitting T *Z  =  n*T *X  ©  
T (Z /X ) where T (Z /X ) =  T *Z /n*T *X  denotes the tangent spaces along 
the fibres of the projection n :Z  -* X . This splitting gives us a multipli­
cation

K cpt(T*X) ® K cptT (Z /X )  ► Kcpt(T *Z).

(Given a direct sum of vector bundles E ©  E  on X , the map on 
Kcpt(£) ® K cpl(E') is defined by first taking the outer tensor product on
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252 III. INDEX THEOREMS

E x E' over X  x X  and then restricting to the diagonal.) Combining this 
with the composition

K 0n(T*S% pt -  K 0JP  x T * S \ pt -> K cpt(P x 0n T*Sn) =  K ept(T (Z /X ))

gives the desired multiplication (13.16).
The associated bundle construction, which associates to a linear repre­

sentation p : O n -*■ Ojy the vector bundle Vp =  P  x p IR*, extends naturally 
to a homomorphism

aP:P (0 B)  >K(X) (13.17)

The ring K cpi(T*X) is naturally a K(Ar)-module. Therefore, via (13.17) it 
becomes an P(O n)-module. We are now in a position to state the main 
property.

The Multiplicative Property for Sphere Bundles 13.6. Let Z  be an Stt-bundle 
defined as above over a compact manifold X . Then

ind(u • v) =  ind(« • ind0llt>)

for all u e K cpt(T*X) and v e  K 0n( T * S \ pl.

Proof. The proof of this fact follows very much the argument given for
13.5. We represent u and v by first-order elliptic operators P  and Q re­
spectively. (Q is an 0„-equivariant operator on 0„-bundles.) Using local 
trivializations of the bundle, we cover P  by a finite number of product 
neighborhoods {Uj x 0„}*=!. We lift the operator P  back over each pro­
duct and glue together with a partition of unity with respect to {Ufi on 
X , to get an 0„-invariant operator P  on P. We now consider the tensor 
product operator D on P  x Sn defined as in (13.12) (with P  replaced by 
P). This is an On-operator and can be pushed down to give an operator 
D on the quotient Z. Notice that “pushing down” is equivalent to restricting 
D to the subspace of sections coming from the base. It is easily checked 
that <x(D) represents the class u • v where the multiplication is that defined 
in (13.16) above.

It remains to compute the analytic index of D in terms of ind P  and 
ind0it Q. We shall work upstairs with the operator D restricted to sections 
coming from the base. Using (13.13) and the arguments which follow it, 
we see that:

ker D = ker D*D
=  (ker(P ® 1) n  ker(l (g) Q)) ®  (ker(P* (g> 1) n  ker(l ® Q*))

with an analogous statement for ker D* =  coker D. Since the operators 
P  ® 1 and 1 ® Q commute, we can carry out the computation in steps, 
that is, we first pass to the kernel of 1 ®  Q (or 1 ® Q* whichever is rele-
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vant) and consider the operators P ®  1 and P* ®  1 acting there. For 
example, on r ( £  ® E') the space ker(l ®  Q) consists of those sections cp 
which when restricted to each factor {p} x S" <= P  x S", lie in the space 
£ b(p) ® ker Q. To say that <p comes from a section on the base means that 
(p satisfies the transformation law: <p{pg ~ i ,gx) — pgip(p,x) for g e  O n, where 
p is the natural representation of 0 „  on ker Q. This means precisely that 
<p corresponds to a section <p over X  of the bundle E ®  ker Q  where ker Q
is the vector bundle on X  associated via the principal bundle P  to the
representation p. Therefore, in passing to ker(l ® Q) and ker(l <g) Q*) 
the operator D descends to an operator on X  on the form Pk +  Pj*. where

Pk: r(E  <g) ker Q)------- ► T(P <g) ker Q), and

Pk.:T{E ®  ker Q*) — ► T(P <g) ker Q*).

It follows that ind D =  ind Pk — ind P*. =  ind[P  ® (ker Q  — coker Q)] =  
ind[u • ind0n u] as claimed. ■

From the properties we have established, matters can be easily reduced 
to computing some simple cases. However, it is unavoidable that one must 
compute the index of some operator at some point. We do this now.

Lemma 13.7. Consider the n-sphere Sn to be an On-manifold under the re­
striction o f the standard representation on IR" © R => S" (i.e., by rotations 
about an axis). Let i : pt S" denote the inclusion o f one o f the two fixed- 
points o f the action. Then

Proof. Consider the operator D °:C t°  -+ C f1 with respect to the stan­
dard metric on S". Recall that D° is just the de Rham-Hodge operator 
d + d*: Aeven -* Aodd. This is an 0,,-operator and from Hodge Theory (II.5) 
we see easily that m d0n(D°) =  [H °] +  (-1)"[H "]. The action of On on 
H° =  {constant functions} is always trivial. The action on H" =  IR{the 
volume n-form} is trivial if and only if n is even. Therefore, we have

where <\ represents the non-trivial 1-dimensional representation on 0„. 
We leave the details of the computation of the symbol class of D° to the 
reader. One finds that in K0n(S")

indoJM ) =  1 € R(On)

. t f2 if n is even
indoB £>° =  < .

11 — ^ if n is odd

if n is even 
if n is odd.

Combined with the above, this completes the proof of the lemma. ■
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We now complete the proof of the Index Theorem. We have shown 
that it will suffice to establish Property 2, namely that ind =  ind ° f  for 
embeddings / :  X  Y. By the Excision Property we may replace the com­
pact manifold Y  with a tubular neighborhood of X  in Y, which is diffeo- 
morphic to the normal bundle of X  in Y. Consequently it will suffice to 
prove that

ind u =  ind(yjw) for all u e K epi(T*X)

where V  is a vector bundle over X  and / :  X  ^  V is the inclusion of the 
zero-section. Again by the Excision Property we may compactify V  by 
passing to the associated sphere bundle as in (13.15). We then apply the 
Multiplicative Property for Sphere Bundles 13.6, with v = i,l. Using 
Lemma 13.7 we find that: ind(u • i,l) =  ind(u • ind0n(i,l)) =  ind(u). How­
ever, by definition f u  =  u • i,l, and the proof is complete. ■

The remainder of this section will be devoted to deriving certain co- 
homological formulas for the topological index. The most general one is 
the following:

Recall that for any manifold X , the tangent bundle T X  is canonically 
an almost complex manifold since T(TX ) =  n * T X  ©  n * T X  =  n * T X  (g> 
C. This gives T X  a canonical orientation as a manifold, A positively 
oriented basis of T(TX )  is of the form (c1,Je1,e2,Je2, . . .  ,e„,Je„) where 
eu . . .  ,e„ is a basis of n*T X  and J  carries the “horizontal” to the “vertical” 
factor. With this orientation we can evaluate any element w 6 H lpi(TX) 
on the fundamental class [T X ] of the manifold. The result is denoted by 
u l T X l

Theorem 13.8. Let P be an elliptic operator over a compact manifold X  o f  
dimension n. Then

ind P  =  ( -  l)"{ch <t(P) • A(A)2}[TA] (13.18)

where A(X) denotes the total A-class o f X  pulled back to TX .

Proof. We consider first the scrunch map q : TUN = UN ® UN = CN ->■ pt. 
Consider this as a complex bundle and let /: pt c.* CN be the inclusion 
as the origin. Fix an element u e K cpl(CN) and apply the defect formula
(12.9) with u =  i,£. Recalling that qx =  (i,)-1 , that 3(C^) =  1, and that 
c h : K(pt) -*• //°(pt) is an isomorphism, we find that: qxch u = qtu. Since qt 
on H*p ,  is just integration over the fibre, we find that

qtu = ch u[TIRN]. (13.19)

Consider now a real vector bundle p : v -*■ X  and let i : X  -* v denote 
the inclusion as the zero-section. Taking derivatives gives the bundle

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



§13. THE ATIYAH-SINGER INDEX THEOREM 255

p:T v  -> T X  with zero-section i :T X  -* Tv. One sees easily that the bundle 
p: Tv -* T X  is equivalent to 7t*v 0  n*v = n*v 0  C. While T X  is not 
compact, the map i is proper and equation (12.9) can be shown to hold 
for elements of K cpi(TX). Thus for any a e K ept(T X ) we have

p,ch i,«r =  3(v 0  C)ch a.

Evaluating on the fundamental class and recalling that p, is integration 
over the fibre give the formula:

(ch i,«r)[Tv] =  {3(v 0  C)ch <r}[TX]. (13.20)

Consider now an embedding / :  X  Rw with normal bundle v. We 
identify v with an open tubular neighborhood of f(X )  in IR*. Similarly we 
have an open embedding

Tv c  TUN (13.21)

as a tubular neighborhood of f(T X ). Given any a  e K cpl(TX), the class 
ii<r has compact support in Tv and naturally extends to TUN under the 
open inclusion (13.21). This extended class is, by definition, the element 
f a  e K cpt(TUN) given in (13.2). In particular we have

ch(/» [T v ] =  ch(/i«r)[m N]. (13.22)

Combining (13.19)—(13.21) gives

ind P  =  (3(v 0  Q ch a(P)}[TX].

It remains to identify 3(v 0  C). For this we note that since v is the normal 
bundle to X , we have T X  © v =  (trivial). Since 3  is multiplicative, this 
means that 3(v ® C) =  3 (T X  0  C)-1 . Applying formula (12.11) we see 
that

3 (T X  0  C )"1 =  ( -  l ) " T d c ( T Z  0  C). (13.23)

We have used here that T X  0  C is self-conjugate. For the final step we 
invoke Proposition 11.14. ■

Integrating over the fibre immediately gives the following.

Theorem 13.8 (the cohomological formula for the index; Atiyah-Singer
[2]). Let P be an elliptic operator on a compact oriented n-manifold X  and 
let a = a(P) e K cpX(TX) denote the symbol class o f P. Then

ind /> =  (—!) 2 {7t,ch a) • A(X)2}[X ] (13.24)

where n: T X  -> X  is the bundle projection.
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w(n+ 1)

Note. The factor (—1) 2 compensates for the difference between the 
orientation on T X  induced by the one on X , and the canonical orientation 
described above.

We now consider two im portant special cases.

Theorem 13.9. Let X  be a compact oriented manifold o f  dimension n =  2m 
and consider the signature operator D + : r(C£+(X)) —> r(C£“(Ar)). Then

More generally, i f  E is any complex vector bundle over X , then the index o f 
D ^:T(C Z+{X) ® E )-+  r(Cf"(Z) <g> E) is given by

Proof. Clearly we have that <x(£>+) =  S(TX) where S is defined in (12.12). 
By Proposition 12.4, 7t,ch 8{TX) = ( - 2 ) mL(X )R (X )~2. Applying the for­
mula (13.24) above, we find that

(A direct identification of ind D + with the signature of X  was carried out 
in II.6.2). For the more general case we apply the formula (12.14) and
(12.16). We conclude similarly that

ind(Z?£) =  2m{ch E ■ L(Ar)}[AT].

Writing this out and using the fact that Le = 2~2<L e, we find that 
2m{ch £-L(X )}[X ] =  £  {2mchkE • LfX)}\_X~\ =  £  {2m- 2‘chkE -L fX )}\_X ]  
— Z  {2*ch*E • L^2f)}[X] since the sum is over (k f)  with 2£ + k = m. This 
proves (13.25). ■

Similar arguments give the following in the spin case:

Theorem 13.10. Let X  be a compact spin manifold o f dimension n = 2m and 
consider the Atiyah-Singer operator i>*: T($£(X)) -* r(#c(C )). Then

ind =  A(X).

More generally, i f  E is any complex vector bundle over X , then the index 
o f H>t: IT O X )  ® E) ^  T($c(X) <g> E) is given by

ind D + =  L(X) =  sig(X)

ind(D^) =  {ch2£  • L(X)}[X] 

where by definition chZE  =  £  2*chkE.

(13.25)

k

ind D + — 2 mL(X) = <T(X)
if m is even 
if m is odd.

in d (^ )  =  {ch £  • A(Ar)}[X]. (13.26)
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§13. THE ATIYAH-SINGER INDEX THEOREM 257

Proof. Note that o{D+) =  s(TX) where s is defined in (12.13). By Proposi­
tion 12.5,7c,chs(TAr) =  ( — l)mA(AT)_1. Applying formula (13.24) above, we 
find that ind H>+ =  A(X)[X] =  A(X).

For the more general case we apply formulas (12.16) and (12.15) to con­
clude that 7t,ch[s(rX) 0  £ ]  =  ( -  l)mch E ■ A W 1. Therefore ind(D^) =  
(ch E • A(2f)}[2f] as claimed. ■

R em ark  13.11. For a compact spin 2m-manifold X , formula (13.26) is 
equivalent to the full Index Theorem. This is seen as follows. Any elliptic 
zero,P0 =  (1 +  P*P) ~112P, which has the same index and the same symbol 
class a e K cpl(TX). By the Thom isomorphism 12.6, a  can be written in 
the form a =  s(TX) • n*u for some u e K(X). (We use here that X  is spin.) 
Writing u = [£ ]  — [F ] for vector bundles E and F on X , we see that

a = 0 * £ c  ® E,n*$c 0  E; p] -  [>*#£ 0  F, n*$c 0  F; p~\

i.e., at the level of the principal symbol, P  is equivalent to the difference 
of two Atiyah-Singer operators with coefficients. This means essentially 
that P  0  is homotopic to 0 £ . Therefore, ind P  =  ind — ind =  
{(ch E — ch F) • A(2f)}[2f] =  (ch u • A(X)}[2f]. However, (12.15) gives 
7i,«r =  7t,(s(X)7t*u) =  ( -  l f c h  u • A W 1, and ind P  =  {nxa ■ A(Ar)2}[A_] as 
claimed.

For non-spin manifolds, one can argue similarly by using the signature 
operator with coefficients.

One interesting corollary of the index formulas above is the following:

Theorem 13.12. On an odd-dimensional compact manifold, the index o f  
every elliptic differential operator is zero.

Note that this result does not remain true for pseudodifferential operators.

Proof. Consider the diffeomorphism c: T X  -> T X  given by c(u) =  — v and 
note that if dim X  is odd, then c*[T2f] =  —\_TX f Let P  be an elliptic 
differential operator of degree m with principal symbol c(P). Since <?-£P) =  
(— l)mCT̂ (P), we see that c*a{P) — (—l)m<r(P). Since o(P) and — o(P) are 
regularly homotopic (by o(t,P) =  enito(P), 0 <  t <  1), they define the same 
elements in K-theory, and we conclude that c*o(P) = a{P). Applying for­
mula (13.18) now gives

ind P  =  -  {ch <r(P) • A(Ar)2}[TAr]
=  — c*{ch o(P) ■ A(X)2}ct [T X ]
=  -  {ch c*o(P) ■ A(Ar)2}c*[TA'l 
=  - { c h ff( P ) A W } ( - [ r X ] )
=  - i n d  P. ■
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Many im portant elliptic operators on a manifold X  arise in the follow­
ing way. Suppose the structure group of AT can be reduced to a compact, 
connected subgroup G c= S 0 2m (where dim X  =  2m), and that P : T(£) -> 
r(F ) is an elliptic operator where E and F  are vector bundles associated 
to unitary representations, pE and pF respectively, of G. To apply the index 
formula (13.24) to P we must compute nxch a(P) where n :T X  -> X  is the 
bundle projection.

To do this we pass to the universal case. Let n: f  -► BG denote the 
universal 2m-plane bundle associated to the inclusion G c= S 0 2m, and let 
F ,F  be the complex bundles over BG associated to the representations pE 
and respectively. Let a  =  [7i*F, 7t*F; <t] e K cpl( f ) be any elliptic symbol 
from E to F. Then from (12.5) and the fact that nx =  (/j)” 1, we have that

X {f )7c,ch a =  i*i,7i,ch a =  i*ch a =  ch £  — ch F.

The algebra H*(jBG;Q) always embeds in the polynomial algebra H*(BT;Q) 
where T  c  G is a maximal torus. Therefore, if x(T) ^  0, we can write: 
7iich <x =  (ch E — ch F)/x(T). Pulling back to X by the classifying map for 
T X  (with its G-structure) gives the following corollary to Theorem 13.8.

Theorem 13.13. Let X  be a compact 2m-manifold with structure group 
G c  S 0 2m as above. Let P : T(F) T(F) be an elliptic operator where E and 
F are associated to unitary representations o f  G. Suppose that the image o f 
the Euler class x under the map H 2m(B S 0 2m) -► H 2m(BG) is not zero. Then 
the characteristic class (ch E  — ch F)/x(TX) e H*(X\ Q) is well defined, and

ind P  =  ( -  i r {Ch^ ~ ^  -  • A(X)2|[ Z ] ,

Example 13.14 (The Riemann-Roch-Hirzebruch Formula). Let X  be a
compact complex manifold with a hermitian metric and let E be a holo- 
morphic hermitian bundle over X . The Dolbeault complex

 L  A0,m ®  £  (13.27)

converts to an elliptic operator
A°.cvc" (g) E  A 0.odd g j E

where 8* denotes the adjoint of 8. Theorem 13.13 can be applied with 
G =  Um c  S 0 2m and with P = B + 8*. If we consider T  = T X  as an m- 
dimensional complex vector bundle, then A0’* s  A *T  and we see that 
ch A0’eve,, — ch A0,odd =  c h i_ j(T ) . From (12.10) and (12.11) we see that 
chA _1(r)/z (T ) =  ( - l ) mT d c ( f ) - ‘ . From  Proposition 11.14 we have 
R (X )2 =  T d c ( [ T ] R 0  C) =  T d C( T ®  T) =  T d c ( T ) T d c ( r ) .  Plugging into
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13.13 immediately gives the following:

ind(d 4- 5*) =  {ch £  • T d c ( X ) } [ X ]

where T d c(20 =  T d c(T) is the total Todd class of X.
Observe that ker P =  ker P*P =  ker(55* 4* d*d) = {<pe A0,cvcn (g) E : 

dcp =  d*q> =  0}, and similarly coker P =  ker P* =  {cp e A0,odd (g> E : 
dcp =  d*cp =  0}. Applying the Hodge Decomposition Theorem (II.5.6) 
gives the following:

Theorem 13.15. Let H*(X;E) denote the kth cohomology group o f the 
Dolbeault complex (13.27) over the compact complex manifold X . Then

£  ( -  l)*dim Hk(X;E) =  {ch £  • T d c(X )}[X l

Example 13.16. Let X  be a compact oriented riemannian manifold of 
dimension 2m, and consider the operator D° : r (C l°X ) T iC ^ X )  given 
in II.6.1. We leave as an exercise to the reader the verification that 
ind D° =  x(X).

§14. Fixed-Point Formulas for Elliptic Operators

The proof of the Index Theorem outlined above carries over, almost 
without change, to the cases of G-operators, C tk-linear operators, families 
of operators, etc. The main point is always to find the right K-theoretic 
setting in which to work.

In this section we consider the case of G-operators and the associated 
G-index Theorem. We assume throughout that X  is a compact G-manifold, 
i.e., a manifold equipped with a given smooth action p :X  x G X  of a 
compact Lie group G. By a G-bundle on X  we shall mean a complex vector 
bundle E -* X  with a G-action which carries fibres to fibres linearly and 
projects to p. The Grothendieck group of equivalence classes of such G- 
bundles (cf. 1.9) is called the equivariant K-theory of X  and is denoted 
K g(X).

Equivariant JK-theory has the same properties as ordinary K-theory if 
one restricts to the category of G-spaces and G-equivariant maps. Hence, 
given a G-operator P  on X , one can pass through the same constructions 
as above (using a G-equivariant embedding X  ^  UN and the Thom iso­
morphism) to define the topological G-index top-indG(P) in X G(pt) £  R(G).

Theorem 14.1 (Atiyah and Singer [1]). For any elliptic G-operator P on a 
compact G-manifold, one has that

ind G(P) =  top-indG(P)
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The proof of this “G-index Theorem” follows precisely the arguments 
outlined above for the basic case where G =  {e}.

In the case that G acts trivially on X , there is a cohomological formula
for the index which is deduced in analogy with the basic case. An impor­
tant fact is that when G acts trivially on X , there is a natural isomorphism

K g( X ) - ^ K ( X ) ® R ( G )  (14.1)

determined as follows. Every finite-dimensional representation V  of G can 
be written in the form © ,  Hom G(Ki,F) ® Vt where the direct sum ranges 
over the set {^-} of equivalence classes of irreducible representations of G. 
Similarly, if G acts trivially on X , then any G-bundle E can be written as

£  =  ^ H o m G(Ei)E)<8)Ei (14.2)
I

where E( denotes the trivial bundle Et =  X  x V,. This association induces 
the isomorphism (14.1) (see Segal [1]). Composing this isomorphism with 
ch ® Id gives a homomorphism

chG: K g(X) — > H*(X; Q) <g> R(G).

For non-compact spaces, such as T X , this extends to X-theory and coho­
mology with compact supports.

For each g e G  there is a homomorphism x9■ R(G) -* C determined 
by setting xg(p) =  trace(p(gr)) for each finite dimensional representation 
p :G  -* Hom(K,K). Composing with chG gives a homomorphism

ch„: K G(X )  ► H*(X; C) (14.3)

which, for an element u =  £  u,- ® rt e K (X) ® R(G) is written chgu =  
^](ch Ut)Xg(r,). The isomorphism (14.1) together with the arguments for the 
basic case given in §13 show the following:

Proposition 14.2. Let X  be a compact n-manifold on which G acts trivially, 
and let P be an elliptic G-operator on X  with symbol class a  =  tr(P) e 
Ka.opS.TX). Then one has that

indG(P) =  ( -  l)"{chG<r • k (X )2} [ T X l  (14.4)

In particular, for each g e G ,

ind9(P) =  ( -  l)"{ch9<r • A(X)2}[TX ], (14.5)

In the case that G acts non-trivially on X , the formula (14.5) can be 
replaced by one which involves the data of the action in a neighborhood 
of the fixed-point set. The result is a grand generalization of the classical 
Lefschetz Fixed-Point Formula for maps of finite order. The key to the 
computation is a certain “localization” theorem of Atiyah and Segal [1].
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An excellent summary of the arguments involved and a large collection 
of illuminating examples are given in the book of Shanahan [1]. This 
exposition, together with the highly readable original literature, are recom­
mended to the reader interested in full details. We shall present the result 
here in concise form.

To begin, we recall that for each g e  G, the fixed-point set of g is defined 
to be the set

Fg =  {x e X  : gx  =  x}.

Since G is compact, we know by averaging that G acts as isometries for 
some riemannian metric on X . An elementary argument using the expo­
nential map then shows that for each g e G, the set Fg is a smooth closed 
submanifold of X  (see Kobayashi [1]). In general, however, Fg is not con­
nected and the dimensions of the components can vary.

We wish to derive a cohomological formula for ind#(P), where P is an 
elliptic G-operator. For this purpose, we may replace G by the closure of 
the cyclic subgroup generated by g. This is a compact abelian Lie group 
for which g is a “topological generator.” With this assumption we see that 
Fg — (x e X  : g'x =  x  for all g' e G} =  Fa, the fixed-point set for the entire 
group. This is a trivial G-space; however, the normal bundle N  of Fg is a 
non-trivial real G-bundle. The normal bundle to the induced embedding

i:T F g <— >TX

is the complex G-bundle n*N  (g) C (where n : TFg -> Fg is the bundle pro­
jection). The element A_ i(Nc) =  X-x(n*N  ®  €) is the Thom class for this 
bundle and is used, as in (12.7), to define a homomorphism

i,: K GiCpt(TFg) — > K G cpt(TX) (14.6)

The fundamental result of Atiyah and Segal [1] is that after localizing at 
g, i.e., after introducing formal inverses for all elements r e R(G) with 
Xg(r) ¥* 0, the map (14.6) becomes an isomorphism with inverse given by

This leads to the following.

Theorem 14.3 (The Atiyah-Segal-Singer Fixed-Point Formula). Let X b e a  
compact G-manifold, where G is a compact Lie group, and let P be an elliptic 
G-operator on X  with symbol class a =  <r(P) e K Gcpl(TX). For each element 
g e G , the “Lefschetz number” indg(P) s  trace(g|ker P) — trace(g|C0ker P) is 
given by the formula

( 1 4 '7 )
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262 III. INDEX THEOREMS

where Fg denotes the fixed-point set o f g9 where denotes the Thom
class o f the complexified normal bundle o f Fg9 and where d denotes the di­
mension o f Fg {an integer-valued function which varies from component to 
component).

Note that G is not assumed to be connected; in particular, Theorem 
14.3 applies when G is a finite group. Some of the most im portant appli­
cations of the result come from this case. This theorem also gives rise to 
a number of intriguing relations between topology and elementary num­
ber theory (see Hirzebruch-Zagier [1]).

The most basic example of a G-operator comes from the de Rham com­
plex. Let G act by isometries on a compact riemannian manifold X, and 
consider the Dirac operator D °:C l°(X ) -* C f^X ). (Recall that this is ex­
actly the operator d -f 5: Acven(X) -> Acdd(X)). This operator is G-equiv- 
ariant and for each g e G, the number indg{D°) is just the classical 
Lefschetz number of g9 i.e., indg(D°) =  L(g) == trace(^|Heven) — trace(gf|Hodd). 
The symbol class of D° is just the class o{D°) =  X ^x{n*TX  ®  C). Re­
stricting to TFg we have n * T X  ®  C =  (n*TFg ®  C) ®  {n*N ®  C) =f 
T c ®  N C9 and so i*a(D°) =  X . x{Tc ®  N c) =  It follows
that chg(i*a(D0)) =  ch^A.^TcJjch^A-^ATc)), and formula (14.7) becomes

L { g )  =  x ( F g).

In particular, if g has isolated fixed points, then L(g) =  card(i^). This result 
uses strongly the fact that g is contained in a compact group of diffeomor- 
phisms. The general Lefschetz formula applies to any diffeomorphism /  
with isolated non-degenerate fixed points, i.e., points where det(/ — df) #  
0. In this case points are added with the weight factor sign[det(f — df)], so 
that the Lefschetz number becomes equal to the algebraic sum of the fixed 
points.

One might ask whether the fixed-point formula (14.7) can be extended 
to cover geometric automorphisms of an elliptic operator which do not lie 
in a compact group. Such a formula was given by Atiyah and Bott [3,4] 
for the case of automorphisms with isolated non-degenerate fixed points.

To give the reader some feeling for the fixed-point formula, we shall 
work out the details for the signature operator D + : T (C f+(X)) 
r ( C f ( X ) )  and the Atiyah-Singer operator 0 + : r $ +(X)) -> T($“ (X)) 
(where X is spin).

Let us suppose that X  is a compact oriented riemannian manifold and 
that g : X  -> X is an orientation preserving isometry. Let N  denote the 
normal bundle of the fixed-point set Fg9 and note that the differential dg 
of g gives a bundle isometry

d g : N  ► N. (14.8)
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§14. FIXED POINT FORMULAS 263

Fix x  € Fg and note that since g is an isometry, we have 0 (expxt;) =  
expx(dg• v) for all v e N x. It follows that d g ^ v ^ v  for each v ±  0, since 
otherwise exp*(ti?) would lie in Fg for all t e  IR. Since g lies in a compact 
abelian Lie group, we know from elementary representation theory that 
there is an orthogonal decomposition N x =  N x(n) ©  ® 0 <e<* N x(0), 
where dgx\Nxin) =  —Id, and where the space N x(9) splits into 2-dimensional 
subspaces in which dgx rotates every vector by 0. This decomposition is 
“constant” on each component of Fg. This follows from (14.2) or by simply 
observing that parallel translation along any curve joining x  to y  in Fg 
gives a gr-equivariant isometry of N x(9) with N y(9). (This follows without 
difficulty from the fact that g is an isometry.) Consequently, we conclude 
that the bundle N  admits a decomposition

N  = N(n) ® 0  N(9) (14.9)
o <0 <«

where dg acts on N(n) by multiplication by — 1, and where for each 0, 
0 <  0 <  7r, N(9) is a complex bundle in which dg acts by multiplication 
by eid.

R emark  14.4. Note that the bundle N(n) may not be orientable but it 
carries the same orientation class as Fg, i.e., for every loop y c  Fg, the 
orientation of Fg changes along y if and only if the orientation of N(n) 
also changes along y. (This is because X  is orientable and each N(0), 
0  <  0  <  7c, is complex and hence also orientable.)

For any real vector bundle £, we introduce the characteristic class

h n(E) = x(E )h~ l(E) (14.10)

where L(£) is the total L-class of Hirzebruch and where x(£) is the Euler 
class of E. If E is not orientable, then x(E) lives in cohomology with twisted 
coefficients.

For any complex vector bundle E, and any 0,0  <  8 < n, we define L„(E) 
to be the total class associated to the multiplicative sequence of Chern 
classes with formal power series coth(jc +  %id). Therefore, if E =  i x ©  . . .  
@ is a formal splitting into complex line bundles with c ^ )  =  x}, then

h g(E) =  f l  coth(x, +  $i0) (14.11)

With these definitions we can state the following.
We recall now that if X  is oriented and of even-dimension, then there 

is a canonical splitting C€(X) =  C t +(X) ©  C£~(Ar) and the Dirac con­
struction gives the “signature operator” D +:r (C £ +(X)) -»• r (C € _(AT)). 
This operator is preserved by the group G of isometries of X . For each 
g e G  we denote

sig(X,0 ) =  ind,(D+)
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to emphasize that this invariant depends only on X  and g. If dim X  = 4k 
and g = 1, then sig(X ,g) =  sig(X).

Theorem 14.5. (The G-signature Theorem). Let g :X  -*• X  be an orienta­
tion-preserving isometry o f a compact oriented 2m-dimensional manifold X . 
Then

sig(* ,0 ) =  { J ]  Le(N(0)) • L ( F , ) W ]  (14.12)
( 0 < 9 § n  J

where N  =  ©N(0) is the decomposition o f the normal bundle to Fg given in
(14.9).

Note. The cohomology class in (14.12) factors into a product of an ordi­
nary cohomology class with x(N(jr)). As observed in Remark 14.4, N(n) 
and Fg have the same orientation type. Hence, the pairing in (14.12) is 
well defined.

Proof. We begin with a remark on dimensions. Since g is orientation 
preserving, we see that dimR(N(n)) is even. Hence we may write

dim Ft =  2d, dim N(n) =  2 r, dimKN(0) =  2 s(8)

where d,r and s(6) are integers which vary from component to component 
on Fg.

Recall that o(D+) — 8{TX), and therefore by the multiplicativity (11.33) 
of 8 we have i*8(TX) =  8(TFg © N) =  8(TFg)8(N). By pushing forward 
to Fg and using Proposition 12.4, the Fixed-point Form ula (14.7) becomes

(1413)

It remains to evaluate the term chg(S(N)A- t(N  ®  C)-1). Since every­
thing is multiplicative, we can consider the factors N(0) separately. Via 
the Splitting Principle it suffices to compute in the case where v is an 
oriented real 2-plane bundle on which g acts by rotation by 9. We write 
v <g) C =  {  ©  7  where £ is a complex line bundle, and we set x  =  
cl{£) =  x(v)- Then we have

<5(v) = £ - £  and A_x(v ®  C) - (1 -  £){\ -  7).

From the fact that chg(£) = ch(£)eie = e*+i0, we find that
p - x - i O  — p x  + ie

ch ^ , 1( v 0 C)-» =  - - ^ - (1 _ r , , 1  

=  coth ^(x 4 - i0 ).

264 III. INDEX THEOREMS
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§14. FIXED POINT FORMULAS 265

This leads us to introduce the multiplicative sequence of Chern classes 
fig associated to the formal power series coth %(x +  iff). The above 
computation shows that

® C )"1) =  L e(N(6)).

This computation is equally valid when 0 = n provided that N(n) is 
orientable. In fact, under this assumption we take a formal splitting 
N(n) =  vt © • • • © vr into oriented 2-plane bundles, and with Xj =  x(vj) 
we find that

chff(5(N(jr))A_1(N(rt) ® C)_1) =  ]^[ coth^(Xj +  in)
1 = 1

r
=  J"J tanh(xj/2)

= f l  -  f i  M M -1M  2 M  |_tanh(x/2)J

where x(N(n)) = 2~rx(iV(7r)). Assembling these calculations, we find that 

sig(X,g) = 2d\  f l  L ,(N (0 ) ) -L (F ,)W ]
( 0 < 9 £ *  )

where we have set L„ =  x • L -1 . Multiplying the appropriate homoge­
neous component of this cohomology class by 2d allows us to remove the 
hats from the L’s and gives us the desired formula (14.12). ■

R emark 14.6. This formula undergoes only minor modification if one 
takes coefficients in a complex G-bundle E. Specifically, if D £ : 
T (C f+ ® E) -* T (C t- <8> E) is the twisted signature operator, then 
setting sig(X,E,g) s  ind9(£>£), we have

sig(X,£, g) =  (ch £  • iP}[F„] (14.14)

where i ?  is the cohomological expression appearing in formula (14.12).
The applications of Theorem 14.5 are numerous and varied (see Atiyah- 

Singer [2], Shanahan [1], and Hirzebruch-Zagier [1] for example). We 
mention here just a few corollaries. Note to begin, that the expression 
L* =  x ' !•” 1 involves the Euler class. Consequently we have the following.

Corollary 14.7. Let X , D*, g, etc., be as in Theorem 14.5. I f  dim N(n) >  
dim Fg, then sig(X,g) = 0.

Note that when g is an involution, (i.e, g2 =  Id), we have N  = N(n). In 
this case the corollary states that dim Fg < £dim X  => sig(Ar, g) = 0. This 
statement has a pretty generalization.
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Corollary 14.8 (Atiyah-Singer [2]). Let X  be a compact oriented 4m- 
mainfold, and let g :X  X  be an orientation preserving involution with 
fixed-point set Fr  Let Fg Fg denote the closed oriented manifold obtained 
by intersecting Fg with (a generic displacement of) itself Then we have

si&(X,g) =  sig(F^ • Fg).

The right hand side of the formula is independent of the transversal 
displacement of Fg used to define Fg - Fg. It depends, of course, only on 
the oriented cobordism class of Fg - Fg.

Proof. Since g2 =  Id, we have N  =  N(n). One can verify easily that 
{ H F J L - K m m F ' l  =  {U F g)L - '(N )} lF g • i y  =  {L(Fg • Fg)}[Fg • F f] 
=  sig(F^ • Fg). (We use here that N\Fg.Fg is the normal bundle to Fg • Fg 
in Fg.) Applying (14.12) completes the proof. ■

The proof of the following corollary is left as an exercise for the reader.

Corollary 14.9 (Atiyah-Singer [2]). Let X  be a compact connected oriented
4-manifold, and suppose that g : X  X  is a diffeomorphism o f odd order 
(necessarily orientation preserving). Suppose Fg consists o f oriented embedded 
surfaces S l9. . . ,  Sn and that for each k, dg rotates the oriented normal bundle 
to Sk through an angle 6k. Then

sig(g ,X )=  n  Sin~2m s k-s k
Jt = 1

where Sk 'S k denotes the homological self-intersection number o f Sk.

Our second basic set of examples will come from considering the 
Atiyah-Singer operator 0 +: T($£) -► F($^) acting on spinors over a com­
pact even-dimensional spin manifold X . We shall assume that G is a 
compact Lie group acting by orientation preserving isometries of X. Note 
that there is an induced action of G on the bundle P sQ(X) of oriented 
orthonormal tangent frames. Recall that the spin structure is a 2-fold 
covering Pspin(X) PsQ(X) which is non-trivial on the fibres. It corre­
sponds to an element u e ^ (P so iX );  Z2).

D efinition  14.10. The action of G preserves the spin s truc tu re  of X  if it 
lifts to an action on the bundle P SpinW- An individual isometry g : X  -* X  
is said to preserve the spin structure of X  if the closed subgroup G c  
Isom(X) generated by g preserves this structure.

Note that if g preserves the spin structure, then g*u =  w, where u e 
H 1(Pso(-J0; Z2) is the element corresponding to the structure.

If G is connected, then it follows from elementary covering space theory 
that either G or a 2-fold covering group of G preserves the spin structure. 
In particular, if n xG =  0, then G preserves every spin structure on X .
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§14. FIXED POINT FORMULAS 267

Whenever G preserves the spin structure, it acts on the bundle of spinors 
and commutes with the Atiyah-Singer operator 0 + above. For each g e G  
one defines

Spin(X,0) ee ind9 ( 0 +),

and the Fixed-Point Theorem gives us a cohomological formula for this 
invariant. Its expression involves the sequences of Chem classes Ae asso­
ciated to the formal power series [2 sinh $(x + 0)]-1 for 0 <  0 < n. If E 
is a complex vector bundle with formal splitting E =  © . . .  © 4  into
line bundles with c t f j )  =  xJf then

* 1 k gr<xj + i9)

In the special case where 6 =  n we define a characteristic class A„(£) 
for any oriented real 2/c-dimensional bundle E as follows. Let E = 
£ j  © . . .  ©  Ek be a formal splitting into oriented 2-plane bundles, and set 
xj =  *(£;). Then

A „ ( £ ) s 2  * . n  sinh  i ( Xj +  in) =  (2,) k . n  cosh(xy 2)

Theorem 14.11 (The G-spin Theorem). Let g: X  -+ X  be a spin structure 
preserving isometry o f a compact even-dimensional spin manifold X . Then

Spin(* ,0 ) =  ( - i r {  n  A9 (N(0 )) A(F#) j [ F , ]

where N  =  ®N(9) is the decomposition o f the normal bundle to Fg given in 
{14.9\ and where a :Fg {0,1} is a locally constant function which depends 
on the action o f g on the spin structure.

Remark 14.12. In general the calculation of the sign function o is a 
complicated and subtle affair. We refer the interested reader to Atiyah- 
Bott [3],[4] and Atiyah-Hirzebruch [3] for details.

Proof We proceed much as in the proof of the G-signature Theorem. Re­
call that a(D+) =  s(TX) and therefore by the multiplicativity (11.36) of s 
we have i*tr(D+) =  s(TFg ® N) =  s(TFg)s(N). Pushing forward to Fg and 
using Proposition 12.5 converts the Fixed-Point Formula to

^ D 4 )- { e h / y « c ) )  M [ r j
Computing as before, we consider the case of an oriented 2-plane bun­
dle v with v ® C =  i  ® 7, Here we have that s(v) =  7 1/2 — *f1 / 2  and
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A_t(v <g) C) =  (1 — <0(1 — ?), and therefore that c h ^ v JA .^ v  ®  C)-1) =  
± [e ^ x+,9) — e _^(x+i9)] ~ L, if g acts on vby rotation by 6. It follows directly 
that

ch#(s(N(0))A_1(JV(0) ®  C)-1 ) =  ± R e(N(9)) 

for each 9 ,0  < 9  £ n .  This completes the proof. ■

The G-Spin Theorem can be enhanced by taking coefficients in a G- 
bundle E. The formula changes exactly as in the G-signature case (cf. 
Remark 14.6).

268 III. INDEX THEOREMS

§15. The Index Theorem for Families

Consider now a family of elliptic operators P  on a compact manifold X  
parameterized by a compact Hausdorff space A. In §8 it was shown that 
this family has a well-defined analytic index ind P e K(A). On the other 
hand the constructions of §13 can be generalized to define a topological 
index in K(A). The main result of this section asserts that these two indices 
coincide.

The topological index of the family P  is defined as follows. Let n : 3C -* A 
denote the underlying family of manifolds (recall that this is a bundle 
with fibre X  and structure group D iff^ )), and let T9C -*• A denote the 
associated family of tangent bundles (so that (T2P)a =  T{2Fa) where SCa s  
7t-1 (a)). It is not difficult to see that for sufficiently large m we can find 
a map / :  9C -» A x Rm which restricts to a smooth embedding f a : 9Ca c-> 
{a} x IRm for each a e  A. This induces a map T3C A  x TUm which for 
each a e A, restricts to an embedding TSCa ^  {a} x TRm with normal 
bundle N a @ Na s  N a ®  C. Here N a denotes the normal bundle of 
faffia) c  pulled back to T2Pa. We now define a map

f : K cpl( m )  ► K cpt(A x Cm)

by taking the composition

Kcpt( r a r )  ► K cpl(N  ®  C )  ► K apl(A x Cm)

where the first map is the Thom isomorphism, and where the second map 
is induced via an embedding N  <8) C ^  A  x TRm s  A  x Cm, which is con­
structed fibrewise by identifying N a ®  €  with a tubular neighborhood of 
f a(2Pa) in {a} x TRm as before.

The projection q : A  x Cm -*■ A induces a Thom isomorphism (or Bott 
periodicity map)
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The composition ql o f : K cpX(T9C) -+ K(A) is independent of the choice of 
the embedding / .

Definition 15.1. Let P be a family of elliptic operators on a compact 
manifold X  parameterized by a compact Hausdorff space A as in §8. Let 
tj(P) e K cpt{T9C) be the class determined by the principal symbol of the 
family. Then the topological index of P is the element

top-ind(P) =  q\f\((r(P)) e K(A).

Straightforward generalization of the arguments given in §13 proves the 
following:

Theorem 15.2 (The Atiyah-Singer Index Theorem for Families [3]). For 
any P as above one has that

ind(P) =  top-ind(P).

Applying the Chern character and arguing as in §13 establishes the fol­
lowing cohomological form of this result.

Theorem 15.3 (Atiyah-Singer [3]). I f  P is as above, then

ch(ind P) =  ( -  l ) ® ^  7t,{ch a(P) ■ k{T3C)2} 

where n =  dim X  and where n : T3C -> A is the natural projection.

Suppose now that n : A is a family of riemannian manifolds, i.e., a
family of manifolds as above together with a family of riemannian metrics 
introduced continuously in the fibres.

Corollary 15.4. Let n:3P -> A be a family o f compact oriented riemannian 
manifolds o f dimension 2m, and let@ +: T (C f+(T^T)) -► T(C 1~{T&)) be the 
associated family o f signature operators. Then

ind(S>+) =  2m7Cj{L(T^)}.

More generally, if  we take coefficients in a family o f hermitian vector bundles 
$  with connection, then the associated operator 3}% :T(C l +(T2F) ®  S)  -» 
T(Cf “ (T#f) ® S) has index given by

ind(S£) =  2w7c,{ch S  • L (T ^)].

Proof. The symbol of 3 +  is a ( 3 +) =  5(T$P). Using 12.4 to push forward 
over the projection n0:T3T 3T, we find that (7to)i{ch a { 3 +) • A(T3C)2} =  
(—2)ml*(T3C)A(T2£)~2R(T3C)2 =  (—2)mi»(TSF). Projecting on to A then 
gives the first formula. The second formula follows similarly from the fact 
that o ( 9 i )  =  5(T3C) • *J(*). ■

§15. INDEX THEOREM FOR FAMILIES 269
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It is an interesting exercise to apply this formula to the Lusztig family 
(8.3).

Carrying through the computations above with 8 replaced by s gives 
the following.

Corollary 15.5. Let n\3C  A b e  a family o f compact oriented spin mani­
folds o f dimension 2m, and let 3 #  : T(6P+ ® 8 ) T{SP~ ® 8 ) be the family 
o f Atiyah-Singer operators twisted by a family o f coefficient bundles 8 . 
Then

in d (3 f)  =  7r,{ch 8  • A(T^)}.

All of these results go through for families of G-operators. One replaces 
K  by K g in this case.

270 III. INDEX THEOREMS

§16. Families of Real Operators and the C£k-Index Theorem

In discussing the Index Theorem thus far we have considered only com­
plex differential operators. Given a real operator, say P, defined using real 
vector bundles, one can always complexify and apply the index theorem 
in the form above. Since dimR(ker P) =  dimc(ker P ®  C) (and similarly 
for £*), we see that the ordinary real and complex indices of p coincide. 
Thus, in the basic case no information is lost under complexification.

This is not true, however, if one passes to the index theorem for families. 
The index of a family of real operators takes its value in the group KO(A), 
and the complexification m ap KO(A) K(A) is not always injective. Note 
for example that KO{Sn) ^  Z 2 for n =  l(mod 8), but K(Sn) =  {0} in these 
dimensions.

For this reason Atiyah and Singer established a separate index theorem 
for families of real operators. It is a more subtle and profound result than 
one might naively expect. The constructions and arguments outlined above 
for complex families go through essentially unchanged in the real case, 
provided one employs the appropriate “IC-theory.” It is here that matters 
become interesting, for the appropriate theory is not KO-theory, the 
straightforward theory of real bundles. It is the more general K R -theory 
which is defined on any space with involution and reduces to KO-theory 
when the involution is trivial. Recall (cf. I. 10) that if X  is a space with 
involution / :  X  X , then K R(X) is the Grothendieck group of pairs 
(EJe) where £  is a complex vector bundle over X  and where f E: E -► £  
is an involution which covers /  and is C-antilinear on the fibres.

The introduction of this theory is motivated by the simple fact that the 
principal symbol of a real operator is in general not real. Consider, for 
example, the operator d/50 iC 00̂ 1) -* C 00̂ 1) whose symbol is =  i£.
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§16. THE C£t-INDEX THEOREM 271

Recall also that for any real Dirac operator D, one has that o£D) =  if- 
(cf. Example 1.5). The appearance here of the complex number i cannot 
be ignored. It is essential in the calculus of pseudo-differential operators 
and must be retained if the proofs discussed above are to carry over.

Suppose now that P : F(£) -> r(£) is a real differential operator between 
real bundles E and F  over a compact manifold X . In local terms, we have 
that P  =  £  ^*(x)3|a|/5xa plus lower order terms, where the A* are real 
matrix-valued functions. Consequently for any tangent vector £, we have 
a^(P) = £  A * (xM r, from which it follows that

<r_*(P) =  tJF ). (16.1)
This is the key to defining the symbol class of a real operator.

Definition 16.1. Given a compact manifold X , consider the tangent 
bundle n : T X  -> X  to be equipped with the canonical involution / :  T X  -> 
T X  defined by /(£) =  — Given any real bundle E -* X , consider 
n*(E 0  C) to be equipped with the antilinear involution defined by com­
plex conjugation. Then for any real elliptic operator P : T(£) -> T(F) the 
Real symbol class of P  is defined to be the element

[>*(£ 0  C), n*(F ®  C); <x(P)] e K R cpi(TX). (16.2)

Here n*(E 0  C) and n*(F 0  C) are Real bundles on the Real space TX , 
and (16.1) says that <x(P) is an isomorphism of real bundles outside the 
zero section of TX . Hence, (16.2) naturally defines an element in K R ept(TX.)

In general if one wants to remember that a given bundle is the com- 
plexification of a real bundle, one carries along the associated complex 
conjugation map. The new point here is that when the bundle is pulled 
back over T X  we think of this conjugation as covering the involution 
£ i-> — £. With this little refinement everything works as one hopes.

To define the topological index of a real elliptic operator P  we first 
choose an embedding f:X < -*  IRm. The associated embedding T X  TUm 
is compatible with the involutions i.e., is a mapping of Real spaces. If N  
is the normal bundle to X  in IR”, then n*N  ©  n*N  s  n*N  0  C is the 
normal bundle to T X  in TRm. We consider this to be a Real vector bundle 
on T X  as in Definition 16.1 above. For such bundles, the Thom isomor­
phism holds for KR-theory. (It is defined exactly as it was for X-theory 
in §12. We need only note that the de Rham element A_ t of a Real bundle 
is itself Real. See Atiyah [2].) We can now define a map

f : K R cpt(TX ) > K R cpt(TUm)

as before by composing the Thom isomorphism with the map induced by 
the inclusion of the normal bundle as a tubular neighborhood of T X  in 
TUm. This inclusion can be easily chosen to be compatible with the involu­
tions.
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If 3C -* A is a family of smooth manifolds over the compact space A, 
this construction extends, by using local triviality of the family, to give 
a map

f : K R Qpl(T9C) ► K R cpt(A x TUm).

We now identify TIRm s  Rm © IRm =  Cm by associating (x,«J) to x  +  i£. 
Clearly the involution on TUm becomes complex conjugation on Cm. The 
fundamental (l,l)-Periodicity Theorem (1,10.3), says that there is a natural 
isomorphism

qi:K R cpl(A x  Cm)  ► KR(A)

for any compact (Real) space A. As before, the composition qt ° f  can be 
shown to be independent of the choices involved in the construction.

D efinition 16.2. Let P  be a family of real elliptic differential operators 
on a compact manifold X  parameterized by a compact Hausdorff space 
A. Let a(P) e  K R Cf)i(T3C) be the symbol class of the family (where, as 
before, 3C -* A  is the underlying family of manifolds). The topological 
index of the family P  is defined to be the element

top-ind(P) =  q f xa(P) e KR{A) s  KO(A).

(Note that A  carries the trivial involution.)
With this definition, the arguments for the Index Theorem discussed 

above go through easily to prove the following.

Theorem 16.3 (Atiyah and Singer [3], [4]). Let P be a family o f real 
elliptic operators on a compact manifold parameterized by a compact Haus­
dorff space A. Let ind(P) e KO(A) be the analytic index o f the family de­
fined as in 8.5 by replacing complex objects with real ones. Then

ind(P) =  top-ind(P).

It should be remarked that the index theorem for families is a useful 
tool, much more powerful than the standard index theorem. A number 
of applications are given in the next chapter.

One im portant consequence of this result is the derivation of a topo­
logical formula for the Clifford index discussed in §10. No such formula 
appears in the current literature even though the derivation was known 
to Atiyah and Singer. We shall present the details here.

Assume from this point on that E — E° ®  E 1 is a real, Z 2-graded C t k- 
bundle over a compact riemannian manifold X . Assume E  carries a bundle 
metric for which Clifford multiplication by unit vectors in IR* is orthogonal. 
Let P : T(£) -* T(£) be an elliptic self-adjoint operator and assume that 
P  is C€t-linear and Z2-graded. In 10.4 we defined an analytic index
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indtP  e K 0 “ *(pt) for P  in terms of the C tk-module ker P. We shall now 
give a topological formula for this index.

To do this we construct the following family of elliptic operators 
parameterized by IR*. We assume that P has degree zero by replacing P 
with (1 +  P*P)~il2P. We recall from 10.2 that with respect to the splitting 
E =  £ °  © £* we can write P as

H "  o )
where P 1 — (P0)*. The product family on IR* x X  is now constructed 
by assigning to each v e  IR* the operator

: T(£°) -» r(£‘) (16.3)

defined by the restriction to £°  of the operator

&>u = v + P (16.4)

where “v” denotes Clifford multiplication by v. Note that there is a “con­
jugate family” of operators # „  defined by s  v — P. Since P com­
mutes with Clifford multiplication, we have that

=  -  {||t>||2 +  P 2}. (16.5)

In particular, is invertible for all v =£ 0. Since the invertible operators
on Hilbert space form a contractible set, we could easily pass to a family 
parameterized by S*. However, the calculations will be more transparent 
if we treat &*0 as a family with “compact support” in IR*, whose index lies 
in £ O cpt(R*) 2  K 0 “*(pt). The main result is the following:

Theorem 16.4. Let P  be an elliptic self-adjoint graded C l k-operator on a 
compact manifold. Then

indk(P) =  top-ind(0>°) 

where &  is the family over IR* defined by (16.4).

Proof. Set K °  = ker P° <= T(£°) and K l s ker P 1 2 coker P° c r(£‘). 
By Theorem 5.5 there are L2-orthogonal direct sum decompositions

T(£0) =  V° ©  K °  and TfE1) =  V 1 © K 1 (16.6)

where P °: V° ^  V 1 is an isomorphism. Since P  commutes which Clifford 
multiplication, we have that v • K ° = K 1 for all v 0 in IR*. Furthermore, 
since multiplication by u/||u|| is L2-orthogonal, we have v • V° = V 1 for all 
such v. It follows that the family =  v +  P ° :r (£ ° )  -♦ r(£*) decom­
poses, with respect to (16.6), as a direct sum of two operators. By (16.5)
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the first summand
yO y l

is an isomorphism for all v e  IR*, and thus can be ignored for the purposes 
of computing the index. The second summand is just

K o J ^ K x

This operator is independent of variables on X . Its index equals the index

of 8P° and is given by the element

[K 0, * 1;i>] e KOcpt(Uk) s  K 0 ~ k(pt).

Under the Atiyah-Bott-Shapiro isomorphism X O - *(pt) A  $ lk/i*$ lk+1, 
this corresponds exactly to the element represented by the Z2-graded C£k- 
module ker P  =  K°  © K l, i.e., it corresponds exactly to indkP. ■

Theorem 16.4 can be applied to give topological formulas for the index 
of any of the graded C£k Dirac operators discussed in Chapter II, §7. 
In particular this includes the Atiyah-Singer operator whose index is a 
basic invariant which we shall now discuss in detail.

Let X  be a compact spin manifold of dimension n, and recall that X  
carries a canonical graded C in Dirac bundle

m ^ p Spin( x ) x , c i „ ,

whose associated Dirac operator t> is called the Atiyah-Singer operator (see 
equation (II.7.1) forward). This operator has an index ind„($>) e  /CO~"(pt) 
which coincides, by 16.4, with the index of the family 0  on IR" x X  defined 
by setting

= v + t>x-
To compute the topological index of this family we must understand its 
symbol class a(0 )  e K R ept(Rn x TX). For this we note first that it:U n x  
T X  -» X  is a Real bundle over X  whose fibre at x e X  is R" x TxX  with 
involution (v£) (u, — £). The fibre of the bundle at x  is the Clifford
algebra C i(T xX) s  C ln. Vectors £ e T xX  act by left Clifford multiplica­
tion as usual, and vectors v e U n act by right multiplication. The principal 
symbol of 0  is the map g{ 0 ) :T(7t*^c) defined by

= v + i£ (=  K  + iL(),

where n * ^  =  n*&k 0  €  is treated as a Real bundle on IR" x T X  with in­
volution given by conjugation. The symbol class. a($)]  when
restricted to any fibre IR" x TxX  s  IR” x IR" s  C", becomes exactly the 
element,

[C t2 ,C t} ;v  + iZ ] e K R cpt(C”)
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which, as we have seen in 1.10.12 is the generator of the group K R cpl(Cn) s  
Z. (It corresponds exactly to the deRham element A_ t under the usual 
isomorphism C£* a; A*.) Consequently the symbol class

a{0) s  e x T X )

is a Thom class or “orientation class” for the bundle n\ R" x T X  -*• X  in 
K R-theory. Under the Thom isomorphism i,:K R(X) -> K R cpt(Un x TX ) 
we have

< 0)  =  m  (16.7)

Choose now a smooth embedding f : X  ^  Rn+8'  and let N  denote its 
normal bundle. This induces a smooth embedding / :  T X  7 W * 8'  with 
normal bundle n*N  © rc*lV s  <g) C, and we get the following com­
mutative diagram of bundle maps:

R" x T X  R" x (n*N ®  C)

The vertical arrows are Real bundles. Taking zero-sections and embedding 
the normal bundles as tubular neighborhoods give the following commu­
tative diagram of embeddings:

R" x T X  c  R" x (n*N  <g) C) c  R" x C"+8'

iU iU iU (16.8)

X  <= JV <= RB + 8'
j  k

We now recall from II. 1.15 that N  has a canonically induced spin 
structure. Since dimKlV =  there is a Thom isomorphism j l : KO(X) -► 
KOcpt(N ) defined by setting

Ji(«) =  (P*u) ■ s(N)

where s(N) =  [S +(N),S~(N); fi] is defined as in (12.13) using the real spinor 
bundle of N  (see Appendix C). We could view this as an isomorphism in 
KR-theory where the spaces X  and N  carry the trivial involution. There 
is a completely analogous Thom isomorphism j\ : K R cpi(Un x TX ) -> 
K R cpt(Rn x (n*N  ® C)) defined using the spin structure on n*N  and the 
Real bundle n*Sc(N) == n*S{N) ®  C. One easily checks that

i\ji = lh  and itk{ =  fc,i, 

where kx and fc, denote the natural maps induced by the open inclusions
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k and k. Consequently, (16.8) leads to a commutative diagram 

K R JL fP  x TX ) - J U  K R cpt(W  x  C"+80

K R ~ n(pt) (16.9)

KR{X) --------- :------- ► K R cpt(Un+8')

where /, = k j h f  =  /cj„ and where q{ and qx denote the Bott periodicity 
isomorphisms.

The topological index of the family 0) is defined to be the element 
q j xo l0 ). Applying (16.7) and (16.9) we conclude that

top-ind(^) =  q j xix(l) =  qxf (  1). (16.10)

D efinition  16.5. For a compact spin manifold X  of dimension n, the 
Atiyah-Milnor-Singer invariant is the element

J ( X )  = qiM ) e K O -" (p t )

where f :  X  R"+8<f is a smooth embedding for some / ,  and where qx 
and f  are defined as above.

This definition is easily seen to agree with the one given in II.3.22. In 
particular, we see that s£{X) depends only on the spin cobordism class of 
X . Combining (16.10) with Theorem 16.4 gives the following main result:

Theorem 16.6. Suppose X  is a compact spin manifold o f dimension n, and let 
!j>: T(£>) -> r(<£) be the canonical Ct„-linear Atiyah-Singer operator. Then

io d jm  = J { x ) .

From  Theorem II.7.11 and the spin-cobordism invariance of s /(X ), we 
see that s i  :£2yin —> X O _ *(pt) is a graded ring homomorphism.

Suppose now that E  is any real vector bundle on X . Furnish E with 
any orthogonal connection and introduce the tensor product connection 
on (g) £. This is again a graded C£„-Dirac bundle and has an associated 
Dirac operator $>£. Let &>E = v +  $>£ be its associated family. One easily 
checks that o{0)E) =  !,([£]). Passing through the arguments above one 
finds that top-ind(^£) =  qJ\{\_Ef). This proves the following result:

D efinition  16.7. Let X  be a compact spin manifold of dimension n. 
For each real vector bundle E over X , the associated Atiyah-Miinor-Singer 
invariant is the element

J{X ;E ) = q J l[ E - ] ) e K O - \  pt)

where q J t :KO{X) -* K O ~n(pt) is defined as above.

Theorem 16.8. Suppose X  is a compact spin manifold o f dimension n, and 
let E b e a  real vector bundle over X . Let $>£ : T(<J? ®  E) -> T(<£ ® E) be the
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Cl„-linear Atiyah-Singer operator with coefficients in E (defined using any 
orthogonal connection on E.) Then

ind„($>£) =  J (X ;E ).

§17. Remarks on Heat and Supersymmetry

Since the basic work of Gilkey and Patodi it has been known that index 
formulas for classical elliptic operators (such as the Atiyah-Singer opera­
tor with coefficients in a bundle) can be derived from the asymptotics of 
the heat kernel. As explained at the end of §6, it is necessary to make 
detailed computations of the density pn occurring in the asymptotic ex­
pansion trace K t(x,x) ~  £  pk(x)t{k~n)/2 as t \  0. Expositions of this can 
be found in Gilkey [2] and Atiyah-Bott-Patodi [1].

In 1979 W. Allard showed us a simple and elementary calculation of 
these densities obtained by working with certain canonical operators on 
the underlying principal bundle and using the natural filtration of the 
Clifford algebra. (His resulting proof of the classical Index Theorem is 
completely elementary.)

In 1982, E. Witten found a different approach to these formulas through 
considerations of symplectic geometry and supersymmetry. There is a 
fixed-point formula for S e c tio n s  on (finite dimensional) symplectic mani­
folds due to Duistermaat and Heckman [1]. Witten considered the anal­
ogue of this formula for the canonical S1-action on the free loop space 
of a manifold. Using this together with some ideas from supersymmetry 
he outlined a proof of the index theorem for the Atiyah-Singer operator 
(see Atiyah [13]). His ideas have engendered a series of interesting papers 
on the subject, notably by L. Alvarez-Gaume, E. Getzler, N. Berline and 
M. Vergne, and J. M. Bismut.

It should be pointed out however that none of these methods applies 
to prove the index theorem for families or the C£k-index Theorem (in their 
strong forms). These theorems in general involve torsion elements in K - 
theory which are not detectable by cohomological means. Moreover, it 
is known that the Z2"invariants appearing in the C tk-index Theorem are 
not computable from local densities, for this would imply a certain multi- 
plicativity under coverings which examples show not to be true.

§17. HEAT AHD SUPERSYMMETRY 277
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Applications in Geometry and Topology

CHAPTER IV

In this chapter we shall use the results of our previous discussion to derive 
a series of consequences in differential topology and geometry. Some of 
the theorems we shall derive have other, completely different proofs, and 
some (to date) can only be proved by these means. Nevertheless we hope 
to make clear that spin geometry and the Index Theorem give a unified 
approach to a wide range of geometric problems.

The applications presented here fall into several categories: integrality 
and divisibility theorems for characteristic numbers, immersions of mani­
folds and the vector field problem, group actions on manifolds with posi­
tive scalar curvature, Kahler geometry, pure spinors and basic twistor 
geometry, the theory of calibrations, and the study of riemannian metrics 
with reduced holonomy. A few of these results are already mentioned in 
previous chapters in order to add spice to the exposition there. On the 
other hand there are applications given in previous chapters which do not 
appear here. Notable among them are the results of §§7 and 8 in Chapter 
I, the new curvature identities 5.15-16 of Chapter II and their application 
to the Homology Sphere Theorem (II.7.6) of Gallot and Meyer.

The first part of this chapter is concerned with applications of the Index 
Theorem to differential topology. Recall that the ordinary index of an 
elliptic is an integer. However, the Atiyah-Singer formula computes this 
index in terms of topological invariants which are in general just rational 
numbers. The fact that these rational numbers are always integers under 
certain hypotheses, plays a significant role in topology. Its importance 
stems from the underlying elliptic operators. Two general problems to 
which such integrality theorems often apply are: finding the smallest codi­
mension for immersing a manifold into euclidean space, and finding the 
largest number of pointwise linearly independent vector fields on a mani­
fold. We shall show how to prove results in these areas by directly con­
structing the relevant operators via Clifford multiplication.

Using more sophisticated forms of the Index Theorem, one can prove 
interesting results about smooth compact group actions on spin mani­
folds. For example, applying the G-Index Theorem to the Atiyah-Singer 
operator shows that on spin manifolds admitting an S1-action the A-
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APPLICATIONS 279

genus is zero. Applying the C£fc-Index Theorem to the C£fc-linear Atiyah- 
Singer operator and invoking some basic riemannian geometry yields a 
more refined result about S3-actions. All of this is done in §3.

Sections 4, 5 and 6 are devoted to the study of riemannian manifolds 
of positive scalar curvature. For compact simply-connected spin mani­
folds, the KO-index of the Atiyah-Singer operator gives a nearly complete 
set of invariants for deciding whether or not there exists a metric of posi­
tive scalar curvature. This is discussed in §4. In §5 the analogous question 
is discussed for manifolds with non-trivial fundamental group. Here there 
is an interesting interaction between spin geometry and the fundamental 
group which is mediated by an appropriately twisted Atiyah-Singer 
operator. The ideas developed here carry over to give results about the 
existence of complete metrics with positive scalar curvature on non­
compact spin manifolds. For this it will be necessary to develop a “rela­
tive version” of the Index Theorem over open manifolds. This is discussed 
in §6.

The techniques of spin geometry can be applied to say something about 
the topology of the space of all riemannian metrics with positive scalar 
curvature on a given manifold. This is done in §7.

On an even-dimensional riemannian manifold there is a concept, due to 
E. Cartan, of pure spinors. These are related directly to almost complex 
structures on the manifold and to the Penrose twistor construction. This 
together with theorems on integrability are examined in §9.

A Kahler manifold is a riemannian manifold with a parallel almost 
complex structure. (Such a structure is always integrable, i.e., the under­
lying manifold is always complex.) When X  is a Kahler manifold, the 
Clifford bundle Ct(X) has a very pretty decomposition. There are dif­
ferential operators ®  and &  such that 3)2 =  © 2 =  0 and &  4- ®  =  D (the 
Dirac operator on C€(X)). There are also 0-order operators &  and 3  
such that [ 3 ,3 ] >  s  *I2(C) and 3  +  3  =  L (cf. (II.5.20)). From
these one can define certain Clifford cohomology groups and establish 
within them all the classical identities of Kahler geometry (see §8). One 
can also decompose holomorphic Dirac bundles and define spinor coho­
mology groups. A wide variety of vanishing theorems are then proved 
using Clifford formalism in §11. These are applied to prove the existence 
of compact manifolds with SpOT-holonomy.

There is an intimate relationship between riemannian manifolds with 
reduced holonomy, calibrations, and spin geometry. This is presented in 
detail in §10 with special emphasis on the exceptional cases of G2 and 
Spin7 manifolds.

In the last section we shall examine the role played by spinors in a 
proof of the Positive Mass Conjecture in general relativity.
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§1. Integrality Theorems

The point of this section is to use the Index Theorem to prove the 
integrality and divisibility of certain rational characteristic numbers. 
These results were known before the Index Theorem and, in fact, they 
provided part of the motivation and insight for its proof. We begin with 
the following classical result of Atiyah and Hirzebruch [1].

Theorem 1.1. Let X  be a compact spin manifold o f dimension 4k. Then 
A(X) is an integer. Furthermore, if  dim(2f) =  4(mod 8 ), then A(X) is an even 
integer.

Proof. The first statement follows from the fact that on a spin manifold, 
the A-genus is the index of the Atiyah-Singer operator. The second state­
ment follows similarly from Theorem 6.16 of Chapter II but can be 
deduced directly as follows. Notice from the classification of Clifford al­
gebras (Theorem 1.4.3), that in dimensions 4 (mod 8 ), the complex spinor 
representations are actually quaternionic. The connection in the spinor 
bundle is always such that multiplication by quaternion scalars is paral­
lel. Hence, the kernel and cokernel of the Dirac operator are quaternion 
vector spaces, and their complex dimension is even. ■

For manifolds which are not spin, the ,4-genus is very often not an 
integer.

Recall that for a 4-manifold the signature is always 8  times the ,4-genus 
(see II.6.17). Thus, Theorem 1.1 generalizes the following result of Rochlin:

Corollary 1.2. The signature o f a compact smooth spin 4-manifold is a mul­
tiple o f 16.

It was pointed out in Chapter II (see 2.12ff) that on a spin 4-manifold 
X , the intersection form is even. That is, x  u  x  =  0(mod 2) for all x e 
H 2(X;Z). This implies easily that the signature of X  is a multiple of 8  
(see Milnor-Husemoller [1], p. 242). The importance of smoothness in 
Rochlin’s Theorem was recently underlined by Mike Freedman’s profound 
results [ 1 ] which proved, among other things, the existence of a topo­
logical spin 4-manifold of index 8 .

Another integrality result comes from our discussion of Spinc-manifolds.

Theorem 1.3. Let X  be a compact orientable manifold and suppose c e 
H 2(X; Z) is a class such that c =  w2 (X) (mod 2). (Hence, X  is a Spin*- 
manifold.) Then the rational number

is an integer.
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§2. IMMERSIONS AND VECTOR FIELDS 281

Proof. This number is the index of an elliptic operator (see App. D). ■

Another immediate consequence is the following classical theorem of 
Bott [1], [2]:

Theorem 1.4. Let E be a complex vector bundle over the 2n-sphere S2n. 
Then the top Chern class o f E is divisible by (n — 1)!, that is,

1  c„(£)[S2 " ] 6 Z.
(n -  1)!

Proof. Consider the twisted signature operator

D + :(C e+ ® E )  ► T(Ce- ® E)

over S2". Then the index of this operator is

ind(D+) =  {ch £  • L(S2")} [S2n]
=  (ch E)[S2"]
=  ch„(£)[S2"]

1  c„(£)[S2"],
(n -  1)!

since all the Pontrjagin classes of S2n are zero and since H 2k(S2n) =  0 for 
k 7  ̂0,n. Of course, the index is an integer. ■

This result is useful for many things, among them the study of immer­
sions of manifolds into R". Here, however, there is a direct approach 
using spin geometry.

§2. Immersions of Manifolds and the Vector Field Problem

In this section we shall present a unified approach to the following two 
problems. Let X n be a compact manifold of dimension n and without 
boundary.

I. Find the smallest integer q such that there exists an immersion
X« J +

II. Find the largest integer q such that there exist q pointwise linearly 
independent vector fields on X

In the first case we always have that q ^  n -  1 by the classical work of 
Whitney. Furthermore, using Stiefel-Whitney classes and the product for­
mula w(T)w(N) =  1, one can sometimes find very good lower bounds for 
q (see App. B, for a discussion of the product formula). Nevertheless, for 
better results it is sometimes useful to use real characteristic classes or 
KO-theory. This is the approach we shall take.
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The techniques presented here generalize fundamental ideas of Atiyah 
[9]. They appeared in Lawson-Michelsohn [1]. A second approach, also 
using spin geometry, can be found in Mayer [1].

We shall assume throughout that X  is a compact oriented manifold 
of dimension n. For simplicity we let T  denote the tangent bundle of X.

We begin with the first problem. Suppose that X  admits an immersion 
X  IR"+,. Denote by N  the normal bundle to this immersion, and note 
that

T @ N  = x (2.1)

where x denotes the trivial (n +  q)-plane bundle. Let <•,•> and V be the 
metric and connection on x induced from euclidean space. Using the de­
composition (2.1) we introduce on x a new riemannian connection V, called 
the projected connection, as follows. For a section <p =  (F,v) e r ( T  ©  N), 
we set

V(p s  ((VF)T,(Vv)N) (2.2)

where ( )r ,( )N denote pointwise orthogonal projection onto T  and N  
respectively. The connection thus induced on T  is the canonical riemann­
ian one for the induced metric. The difference V — V on x is the second 
fundamental form of the immersion.

We now consider the bundle C£(t) as a bundle of left-modules over 
C£(T) under the obvious inclusion C i(T ) <= Cl(x). This makes C£(t), with 
the connection induced from V on x, into a Dirac bundle over X  (cf. II.4.8). 
If n =  4k, then we can split the bundle C£(r) via the parallel volume form 
a> =  • • • e„, and get the elliptic operator

D + : T(C£ +( t ) ) -----► T(C£ "(t)). (2.3)

We shall prove below (Lemma 2.5) that

ind(£>+) =  2qA(X) (2.4)

where A(X) =  2nA(X) is the A-genus of X . It is a characteristic number 
which is always an integer.

Notice now that while C£(t) is not in general trivial as a bundle of left 
C£(t)-modules, it is trivial as an abstract vector bundle. In fact, we can 
find n +  q pointwise orthonorm al sections eu . . .  ,e„+q of x. These sections 
generate a finite multiplicative subgroup G =  {1} w {e/t • • • £,■„}(,< ■■■<ip in 
the algebra of sections T(C£(t)). Evidently, the group algebra IR • G is just 
the Clifford algebra C ln+r

We now consider the group G acting on C £(t) by right multiplication 
Rg(<p) =  (p- g. This action does not quite commute with the Dirac opera­
tor, so we take the average

5 a 4 r l K f oJ>‘>*f- 1M  geG
(2.5)
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§2. IMMERSIONS AND VECTOR FIELDS 283

and note that
D o R g =  R g o D for all g e G. (2.6)

One can easily see that each commutator D ° R g — Rg o D is a differ­
ential operator of order zero. Hence, the averaged operator D has the 
same principal symbol as D.

Of course right multiplication commutes with left multiplication, so the 
bundles

C l^ z )  =  (1 ±  d)C i(t) 

are clearly G-invariant. It follows that D is also of the form

- a  * ■ )
with respect to the splitting C£(r) =  C £+(t) © C t (r), and the operator 
D + has the same symbol as D +. From the topological invariance of the 
index we conclude that

ind(5+) =  ind(D+)

The main step now is to observe that since D + commutes with <3, the 
kernel and cokernel of D + are RG =  C fB+,-modules, and so the index of 
D + is divisible by a large power of 2.

There is one further observation which sharpens the result. Recall that 
C£(t) carries a Z 2-grading CC(r) =  Cl°(r) © determined as the
+  1-eigenbundles of the parallel automorphism a (which extends v >-► — v 
on r). This grading clearly carries over to C l +(x) and C l~(t), and makes 
each of these a bundle of Z2-graded modules under right Clifford 
multiplication. Furthermore, since a(D<p) =  — D{a<p), for any <p e T(C£(t)), 
we see that ker D + and ker D ~ are each Z2-graded under right multi­
plication by RG =  C in+r This proves the following:

Theorem 2.1. Let X  be a compact oriented manifold o f dimension n = 4k. 
I f  there exists an immersion X  R"+<, then

2‘l - 1A(X) = 0(m odaH+q) 

where 2 an+q is the dimension o f an irreducible real Z 2-graded C€n+,-m odule.

See the table below for values of an+r Note that by Proposition 1.5.20, 
a„+q is the dimension of an irreducible, real ungraded module over

As a quick illustration we note that A(P2(C)) =  2 and that 2q = 0 
(mod a4+q) only for q 3; 3. Hence, P 2(C) immerses only in codimension 
Si 3, the range guaranteed by the Whitney Immersion Theorem. Moreover, 
since the A-genus is an oriented cobordism invariant, the conclusion is 
much more general. In dimension four, A(X) =  2 sig(A') and we have the
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284 IV. APPLICATIONS

following:

Corollary 2.2. I f  a compact oriented 4-manifold X  can be immersed into IR6, 
then the signature o f X  is even.

These results can be somewhat strengthened by two tricks. The first 
trick allows us to deal with embeddings. Note that Ci(z) =  C t(T  ©  N) =  
Cf(T’) <§) C t(N ) where (g> denotes the graded tensor product of 
Clifford bundles. Clearly we have C €±(t) =  [(1 ±  co)Cf(T)] <g) C l(N ) =  
Cl-*(T) ® Cl(N).

Suppose now that the dimension of the normal bundle q = Q (mod 4), 
and let o>N =  ex • • • eq be the normal volume element. Then a>N is parallel 
in the projected connection and commutes with all tangent vectors. Hence, 
coN commutes with the Dirac operator D. We can define bundles

C t*  ±(t) =  C €±(T) <§> C €±(N) =  (1 ±  co)Ci(T) <g) (1 ±  a>N)Ct(N) (2.7)

and we get Dirac operators

D + : T(Cf + (x))----->• T(Cf ~ (x)) (2.8)

where can be either +  or —. Evidently, D + =  Z)+ + ® D +~, and so

ind(D+) =  ind(Z) + +) +  ind(Z)+ “ ). (2.9)

Furthermore, we shall prove below the following fact:

Lemma 2.3. I f  the Euler class x(N) o f the normal bundle is zero, then

ind(D++) =  ind(D + -). (2.10)

Carrying out the averaging process above, we may replace all D’s by 
D’s. (Note that each of C £±:t(x) is invariant under right-multiplication 
by C£(x), and in particular by G.) It is an elementary fact that for an 
embedded submanifold, x(/V) =  0 (see Milnor-Stasheff [1]). Consequently, 
we have the following:

Theorem 2.4. Let X  be as in Theorem 2.1 and suppose q = 0 (mod4). I f  
there exists an embedding X  R"+,) then

2q~2A{X) =  0 (mod an+q).

The same conclusion holds for any immersion X  Rn+qfor which the Euler
class o f the normal bundle is zero.

O ur second trick is to simply take coefficients in a vector bundle over 
X . This is technically quite easy and has the effect of introducing all of 
the rational K-theory of the space into the problem. We get conditions 
which are not simply in terms of characteristic numbers, but essentially 
involve the entire cohomology ring. We proceed as follows.
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§2. IMMERSIONS AND VECTOR FIELDS 285

Let £  be a vector bundle over X. Here E may be real, complex or 
quaternionic, and we assume it is equipped with an appropriate inner 
product and connection. Then we take r  =  T  © N  as above and consider 
the bundle

Cl(x) ® E

with the tensor product connection. This remains a bundle of right and 
left modules over X. It is easy to check that all o f the constructions above 
can be carried out with C£(t) replaced by C€(t) ®  £.

We need only compute the index of D +. We shall state the result here, 
and give the proof below.

Lemma 2.5. The index o f D + : r ( C t+(r) ® E) r(C £“(r) ® E) is given 
by the formula

ind(D+) =  2*{ch2E • A(X)}[X] (2.10)

where A(X) is the total A-class o f X , and where ch2E is defined as follows. 
Let ch E =  1 +  ch1#  +  ch2£  +  . . .  e H 2*{X; Q), denote the Chern charac­
ter o f E. Then for any t e IR,

chtE =  X  (chkE)tk (2.11)
kZ 0

In the case that x{N) =  0,

ind(D+ +) =  ? ind(Z)+) (2.12)

where ind(D+) is given by formula (2.10).

We note that when E is real, we set ch £  =  ch(£ ®  C), and when £  is
quaternionic, we set ch £  =  ch([£ ]c) where [*]c denotes restriction of
scalars from 1H1 to C.

To state our results we shall need the following table of numbers which 
is easily computed from the data given in Chapter I, §5. Let 2ak, 2bk and 
ck denote the dimension over K  of an irreducible Z2-graded X-module 
for C ik where K  = R, C and H respectively. Note that by Proposition
1.5.20, the numbers ak,b k and \c k correspond to the dimensions of 
irreducible ungraded modules for Ctfc.j. For all values of k we have that

ak+8 =  bk+8 =  16 bk, ck+B =  16ck.

The values for k ^  8 are given in the following table.

It 1 2 3 4 5 6 7 8

1 2 4 4 8 8 8 8

K 1 1 2 2 4 4 8 8

Cn 2 2 2 2 4 8 16 16
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286 IV. APPLICATIONS

The method given above proves the following general result:

Theorem 2.6. Let X  be a compact orientable manifold o f dimension n, and 
suppose there exists an immersion X  Un+q. Then for any complex bundle 
E over X ,

2 « -1{ch2£  • A(Z)}[X] =  0 (mod bn+q). (2.13)

Furthermore, i f  q is even and the normal Euler class x(N) =  0, then

2q~2{ch2E • R(X)} =  0 (mod bn+q). (2.14)

When n = 0 (mod 4), there are the following refinements: I f  E  =  ER (g) C
for a real bundle ER, or if E = [E u jc fo r  a quaternionic bundle EHy then
(2.13) holds with bn+q replaced by an+q and cn+q respectively. I f  furthermore, 
q =  0 (mod 4) and %(N) =  0, the analogous improvements can be made in
(2.14).

Proof. Again the argument goes as follows. Let r  =  T  © N  and consider 
the Dirac bundle C£(t) ® E. Average the Dirac operator over the group 
in r(C£(r)) generated by the global orthonorm al sections . . .  ,en+q of 
t. Then the kernel and cokernel of the operator are Z2-graded modules 
over the algebra CZn+qy generated by eu  . . .  ,en+q. (The Z2-grading comes 
from the even-odd grading of C l(t). In the complex case there are volume 
forms in every even dimension: coc =  ime i • • • e2J .  Applying the formula 
from Lemma 2.5 gives the first part of the theorem. Splitting the operator 
with the normal volume form and applying (2.12) gives the second part 
of the theorem. ■

We point out that the improvements in this method obtained by intro­
ducing coefficients are substantial. For example, they give results in every 
even dimension.

The congruences (2.13) and (2.14) give a relatively simple machine for 
calculating lower bounds on embedding and immersing dimensions.

For the complex and quaternionic projective spaces. P ”(C) and P W(IH1), 
these methods give the best results of this kind for every n (see Lawson- 
Michelsohn [1] for details). Similar non-immersion theorems were found 
by K. H. Mayer [1]. There were earlier, slightly weaker results of this 
type due to Atiyah and Hirzebruch [1], whose methods did not involve 
elliptic operators.

Proof o f Lemma 2.5. We note that the operator in question is just the 
twisted signature operator (cf. II.6). More precisely, since C i ±{T ® N ) = 
C £±(T) (x) C i(N \  we see that we can write D + as

Z)+ :r(C£+(T) ®  E )  ► r(C£-(T) (g> E)
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§2. IMMERSIONS AND VECTOR FIELDS 287

where E = E<g> CZ(N). It follows that

ind(D+) =  {ch2E • L(X)}[X], (2.15)

from the basic formula for the signature complex (see III. 13.9). Now 
ch2E — ch2(E ® CZ(N)) =  ch2(E)ch2(CZ(N))9 and since T  ®  N  =  x =  
Un+q, we see that CZ(T)CZ(N) =  Cln+q =  R 2"+* (trivial bundles). It follows 
that

ch(CZ(N)) =  2n+qch(CZ(T) ) - 1. (2.16)

To compute this last expression, we apply the Splitting Principle and 
express the total Chern class of T  ®  C formally as

n/2C(T®€)= n (l+x*)(l-x*)
k= 1

so that the Pontrjagin classes are

Pk(T) =  <Tk(x \ , . . .  ,x2/2)

where ak denotes the fcth elementary symmetric function. In this language, 
we have

w j B s a b

Recall that C £ ( r )  <g) <C s  A £(T ®  C )  and that therefore 

ch(C£(T)) =  f j  (1 +  e -^ X l +  eXk)
k= 1

n/2
=  2" J ]  cosh2(Xfc/2).

Consequently,

and for any t e I

n/2
ch(C€(JV)) =  2q f j  cosh“ 2(xfc/2),

k— 1

cht(CZ(N)) =  2q f j  cosh 2(xkt/2).
* = 1

It follows that

ch2(C€(N))LP0 =  2q f f
k = 1 sinh(xk)cosh(xk)

2xk=2« n -
M  sinh(2x*)

=  2«A(X),
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288 IV. APPLICATIONS

since the /4-class is the multiplicative series given by the formal power 
series 2x/sinh(2x). Formula (2.10) now follows immediately from (2.15).

For the second half of the lemma we make the following observation. 
Let £  be a complex vector bundle with dimc£  =  2m. Write c(£ ® R C) =  
J"I (1 — xj)  so that p*(£) =  o ^ x \ , . . .  ,x£) as above. Then we have

ind(£>+ +) -  ind(£>+ “) =  {(ch2C £+N -  ch2C £"N ) • ch2£  • L(Jf)}[Jf]

for some class C e H eyen(X;Q). Hence, if x(N) =  0, we have ind(D++) =  
ind(D+ ~) =  ^ind(D+) (cf. (2.9)). This completes the proof. ■

Using the techniques developed above, we shall now analyze the second 
problem mentioned at the outset of this section. Suppose our manifold 
X  carries q pointwise linearly independent vector fields eu . . .  ,eq. We 
may assume e l t . . .  ,eq to be pointwise orthonorm al with respect to a 
riemannian metric on X . Let us suppose for the moment that X  is of 
dimension n — 4k (and is orientable). Then we have the signature operator 
D + : r (C £ +(X) -» r(C £ “ A). As above, we may average D over the finite 
group G c: F(Cf X) generated by eu . . .  ,er  That is, we set

where Rg denotes right Clifford multiplication by g. This multiplication 
clearly preserves the sub-bundles C t ^ T )  =  (1 ±  <n)Ct(T), and we achieve 
an operator 5 +:T(C£+(T) -*• r(C£"(T)) which is G-equivariant and has 
the same symbol as D +. As above we find that the kernel and cokernel 
of D + are Z2-graded modules over the Clifford algebra C tq = IRC. Since 
ind(D+) =  ind(D+) =  sig(X), we have the following:

Theorem 2.7 (Atiyah [9] Frank [1]). Let X b e a  compact oriented manifold 
o f dimension 4k. I f  X  carries q pointwise linearly independent vector fields, 
then

2m
c h ( a +£) -  ch(CV E )  =  n  (eXk “  e ' Xk)

fc=i 

= 2' »
=  2Mx(£)a(£)

where a is a multiplicative sequence. It follows that

= {X(N )-C }IX ]

sig(AT) =  0 (mod 2 aq)

I f,  furthermore, q =  0 (mod 4), then

sig(A) =  0 (mod 4a,).
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§2. IMMERSIONS AND VECTOR FIELDS 289

As an example, note that if X  carries 3 such vector fields, then sig(AT) =  
0 (mod 8). If it carries 5, then sig(2Q =  0 (mod 16). In general, if X  carries 
2m such vector fields, then sig(X) s  0 (mod 2").

Proof o f  Theorem 2.7. The first statement follows from the argument 
above. For the second statement, note that there is an orthogonal split­
ting T(X) =  T0 ©  T , where T 1 =  span(e,,. . .  ,eq). Let w be the oriented 
volume element of T0. Since dim T 0 = 0 (mod 4), we have that w2 =  1 and 
w commutes with e l t . . .  ,eq. By averaging &  as above, over the group Z2 
generated by R w, we may assume D commutes with R w.

Since R2 =  1, we see that Rw has ±  1 eigenbundles on each of C £+ and 
C£~. They are given by CC+± =  C £+(l ±  w) and C l~ ± =  C £"(l ±  w). 
Each bundle C t*  * is G-invariant, and we obtain two G-equivariant ellip­
tic operators

D + +: T(C£+ +) -----► r(C £ - +) and D + “ : T(C£+" ) -----► r ( C £ " "),

with the property that

Z>+ =  D + + ©  D + ~.

We know, therefore, that ind (5+) =  ind (5++) +  ind(£>+ "). A straight­
forward computation, in the_ spirit of that given for the second part of 
Lemma 2.5, shows that ind(D+ +) — ind(D+_) =  2,/2%(T0)[X ] =  0. Thus,

ind(D + +) =  ind {D+ ~) = \  ind(D+)

and since the kernel and cokernel of D + + are Z2-graded C£,-modules, the 
result follows as before. ■

When Atiyah first presented these arguments (in [9]), he mentioned 
that they could not achieve the additional power of 2 (when q s  0(4)) 
obtainable by other means. However, the last argument given above suc­
ceeds in getting the final 2 and gives the best known results of this type.

Theorem 2.7 is very pleasant because |sig(Ar)| is a homotopy invariant. 
It is also an oriented cobordism invariant. However, for any given mani­
fold which carries a q-frame field, there is much more information avail­
able. For this we simply need to take coefficients in a vector bundle E. 
Applying the arguments given above directly to C £(A ')® £ proves the 
following result (cf. Lawson-Michelsohn [1]).

Theorem 2.8. Let X  be a compact oriented manifold o f even dimension, and 
suppose that X  carries q pointwise linearly independent vector fields. Then 
for every complex vector bundle E over X ,

{ch2E ■ L(X)}[2f] =  0 (mod 2bq) (2.16)
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290 IV. APPLICATIONS

I f , furthermore, q is even and chq,2E  =  0, then

{ch2E • L (X )}[*] =  0 (mod 4bq) (2.17)

WTien dim(AT) =  4/c, t/iere are the following refinements. I f  E =  ER ®  C 
/o r a  rea/ bundle ER, o r ifE  = [£ H] c /o r a quaternion bundle EH, then (2.16) 
holds with bq replaced by aq or cq respectively. I f , furthermore, q == 0 (mod 4) 
and chq/2E  =  0, t/ie analogous improvement can be made in (2.17).

Proof. The only point which needs attention here is the proof that 
ind(D+ +) =  ind{D+ ") when ch€/2E =  0. This follows from the equation

ind(i)++) -  ind(5 + “ ) =  2«'2{ch E • x(T0) } [ X l

which can be verified by straightforward calculation. ■

It is an interesting observation of Atiyah [9] that all of the above carries 
over without change to prove the following generalization of Theorems 
2.7 and 2.8.

Theorem 2.9. Let X  be a compact oriented manifold whose tangent bundle 
can be decomposed into oriented subbundles

T(X) =  T0 ® T x ®  T 2 ® • • • ® Tq
where

dimu(Tk) =  1 (mod 4) for k =  1 , . . .  ,q.

Then all the conclusions o f Theorems 2.7 and 2.8 hold for X .

Proof. Let ek denote the oriented volume element for the plane field Tk, 
k =  1 , . . .  ,q. Since these planes are mutually orthogonal and each has 
dimension one (mod 4), the elements eu . . .  9eq e  r(C£(AT)) generate a 
finite group G with IR • G =  C iq. The arguments now proceed exactly as 
before. ■

As a final application of these methods we consider the refined Clifford 
index for C£k-Dirac bundles introduced in §7 of Chapter II. Let X  be a 
compact oriented manifold of dimension 4fc +  1. Recall that the Kervaire 
semi-characteristic of X  is then defined to be the residue class

2k
o(X) = ^  b2j{X) (mod 2)

=  dim H 'ytn(X) (mod 2)

=  i x W  (mod 2).

Theorem 2.10 (Atiyah [9]). Let X b e a  compact oriented (4k +  1 )-manifold. 
I f  X  carries an oriented tangent p-plane field for some p = 2 or 3 (mod 4), 
then o(X) = 0.
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§3. GROUP ACTIONS 291

Proof. By assumption there exists a splitting T(X) =  T0 ©  7 \  where 
dim(T0) =  2 (mod 4), and where T0 and T t are oriented. This decomposi­
tion can be assumed orthogonal for some riemannian metric on X. Let 
co0 be the oriented volume form for T0, and note that coq =  — 1.

We consider now the Euler characteristic operator D° : r(C€°(X)) 
r(Cl 1(AT)). Since dim(T0) is even, each C lk(X) is invariant under right 
multiplication by co0. Averaging the Dirac operator over the group Z4 
generated by R ^  makes ker D° an R ao-invariant space, i.e., ker D° be­
comes a C tx =  C-module. In particular, ker(D°) s  Hcven s  H 2k(X;U) 
has even dimension (over R), and so cr(X) =  0. ■

This section is concerned with smooth group actions. Recall that a Lie 
group G is said to act effectively on a manifold X  if there is a differentiable 
map Q:G x X  -+ X  so that the corresponding map cp(g) =  0(0,-) gives 
a continuous and injective homomorphism <p: G Diff(X). Here Diff(A^) 
denotes the group of C°°-diffeomorphisms of X  in the standard C00 
topology.

There are two basic groups we shall consider here, namely,

where multiplication is induced from multiplication in the field. There are 
isomorphisms S 1 s  S 0 2 =  and S3 £  Spin3 s  SU2 =  Spv  These two 
groups are basic for the following reason. We say that a Lie group G has 
an Sk subgroup (for k =  1 or 3) if G contains a Lie subgroup isomorphic 
to a finite quotient of Sk. (The only possibilities are S1 when k = 1 and 
S3 or S3/Z 2 when k =  3.)

Proposition 3.1. Let G bea compact connected Lie group (of dimension >0). 
Then G contains an S 1-subgroup. In fact the S l-subgroups are dense in G. 

Moreover, i f  G is non-abelian, then it contains an S 3-subgroup.

Proof. These statements follow directly from the elementary theory of 
compact Lie groups (see Adams [1]). To prove the first, one notes that 
every element of G is contained in a maximal torus, where S^subgroups 
are dense. To prove the last statement one takes the subgroup correspond­
ing to the subalgebra spanned by a root space and a root vector. ■

D efinition  3.2. We say that a manifold X  admits an S*-action (k =  1 or 
3) if there exists an effective action of a finite quotient of Sk on X.

§3. Group Actions on Manifolds

S l = { z e C : \z \  = l} 

S 3 =  {<? e  H : |q| =  1}

(3.1)

(3.2)
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292 IV. APPLICATIONS

Two main results concerning connected group actions on spin mani­
folds are the following:

Theorem 3.3 (Atiyah and Hirzebruch [3]). Let X  be a compact spin mani­
fold which admits an S 1-action. Then A(X) =  0.

Theorem 3.4 (Lawson and Yau [1]). Let X  be a compact spin manifold 
which admits an S3-action. Then s i(X )  =  0.

Recall that s i  is the generalization of A to KO-theory given in (II.3.22). 
In dimensions 4/c, the two invariants are essentially the same. However, in 
dimensions 1 and 2 (mod 8), the invariant s i  takes values in Z2 and can 
be non-trivial while, of course, A =  0.

R em ark  3.5. The stronger hypothesis of Theorem 3.4 is required for its 
stronger conclusion. We can see this as follows. Let X s be a compact spin 
8-manifold with A{XB) =  1 (see the paragraph before II.7.12). Equip S1 
with the interesting spin structure (cf. II.7.8), and take the product Y  =  
X  x S 1 with the product spin structure. Then Y admits an S x-action, but 
J { Y )  /  0.

The two theorems above could be combined into the following state­
ment by using Proposition 3.1.

Theorem 3.6 Let X  be a compact spin n-manifold with s i(X )  ^  0. I fn  =  1 
or 2 (mod 8), then the only compact, connected Lie transformation groups 
o f X  are tori. I f  n =  0 (mod 4), then the only such group is the trivial one.

As we have noted before (cf. II.2.18), the spin manifolds with non-zero 
s i  constitute half of the exotic spheres in dimensions 1 and 2 (mod 8). This 
gives the following:

Corollary 3.6. Let Z" be an exotic n-sphere which does not bound a spin 
manifold (n =  1 or 2 (mod 8)). Then the only compact connected Lie sym­
metry groups o f Z" are tori o f dimension rg [^(n 4- 1)].

Proof. The kernel of the surjective homomorphism s i : &„ -► Z 2, for n =  
1,2 (mod 8), is the subgroup of homotopy spheres which do not bound 
spin manifolds. This follows from the work of Milnor [7] and Adams [3]. 
If n is even, any toral transformation group T k must have a fixed point 
set, and the induced linear action on the normal spaces must be effective. 
Therefore, 2k ^  n. If n is odd and the fixed-point set is non-empty, a 
similar argument applies. For the general case, see Ku [1]. ■

Using other techniques, people have investigated the non-existence of 
torus actions on exotic spheres. For example, using results of R. Schultz
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§3. GROUP ACTIONS 293

[1] it can be shown that there are three exotic 10-spheres whose largest 
connected transformation group is S l or S 1 x S1. These spheres are indeed 
very unsymmetric!

It is interesting to note that this asymmetry is contagious. The 
invariant is additive with respect to the connected sum operation #. Thus, 
if X  is a spin w-manifold with j#(X) =  0 and if L is an exotic n-sphere as 
above (n =  1 or 2 (mod 8)), then

J ( X  # 2) =  J ( L )  *  0

and X  # £  only admits symmetry groups of toral type. This is particu­
larly striking when X  =  G/H is homogeneous. The manifold (G/H) # £  is 
homeomorphic to G/H, but has almost no symmetries. A good example 
is the complex projective space X  =  P 4k+1(C).

Another interesting phenomenon takes place under coverings. Fix an 
exotic sphere L” as above, and let d be its order in the group &„ of 
homotopy spheres. Consider the homogeneous space X  =  (S3/Z rf) x S"“ 3. 
The manifold Y  =  X  # E" is quite inhomogeneous, however, its universal 
(d-fold) covering space is

y  =  (S3 X S" - 3) # ^ ^ - # T 2 = S 3 x S'1" 3, 
d times

a symmetric space. This instability under finite coverings is not true of 
the /1-genus.

Proof o f Theorem 3.3. The argument is based on the Atiyah-Segal-Singer 
Fixed-Point Theorem or, more specifically, the G-Spin Theorem (III. 14.11). 
It proceeds as follows. Let X  be an even-dimensional compact spin mani­
fold with an S1-action. We may assume by averaging that the action pre­
serves the riemannian metric. By passing, if necessary, to a 2-fold covering 
group, we may assume that the SLaction preserves the spin structure, i.e., 
that it lifts to an action on the bundle PSpin(AT). This produces an S e c t io n  
on the canonical complex spinor bundle #c , which projects to the given 
one on X. This action commutes with the Atiyah-Singer operator I/>, 
i.e., g o 0  o g * 1 =  0  for all g e S 1. The volume form is ^-invarian t, and 
so the splitting $c =*$c ® $c is preserved. Thus the operator 0 +: 
r(# c ) -+ r (# c ) becomes an S^operator, and we have defined an SMndex:

inds0 +) =  [ker j0+] -  [ker $ " ]  e R t f1) (3.3)

where R(S*) denotes the representation ring of S1. There is a natural 
isomorphism of R(Si) with the Laurent polynomial ring

tr .R iS 1)  ► Z f t r 1] (3.4)

obtained by taking the trace of the representation. Here t =  ew corre­
sponds to the complex-valued function, or “character,” on S 1 given by
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the natural inclusion S 1 c= C. Under the isomorphism (3.4) the index 
defined in (3.3) becomes a Laurent polynomial which we denote by

N

ip+(t) =  E
* = -AT

Note that for any g e S 1, we have

ip+te) =  tr(g|kerp+) -  tr(g|ker|)-). (3.5)

Now the G-Spin Theorem (III. 14.11) gives a formula for ip+(g) of the 
form

ip+id) =  3g{Fg\
where Fg is the fixed-point set of g. For almost all g e S 1, in fact, for all 
non-torsion elements, the subgroup generated by g is dense. In this case 
Fg = F  =  the fixed-point set of S1, and the expression S g varies only with 
“normal rotation angles” as follows. The normal bundle to F  has an S1- 
invariant decomposition N  =  N m where each N m carries the struc­
ture of a complex bundle and where S1 acts on N m by scalar multiplication 
by gm. For any given fc-dimensional complex vector bundle E we define 
the characteristic function

v (e , t) =  fT (t*e*x' -  r V * * ' ) - 1
;= i

l l
k

=  n  — —M  tex> -  1
1 1 

* r * e - ™
" M  1 - t - xe - x*

where t is taken to be an indeterminate and where, as usual, the x /s  are 
formal roots of the total Chern class of E. Because of the square roots, the 
expression (3.6) is defined only up to sign.

Now for g e S1 c= C a non-torsion element as above, the G-Spin Theo­
rem states that

ipAg) =  ( -  i r j n  v (N m,3m) • a ( f ) J  [ f ]

where the signs on each component of F  are determined by the action of 
S 1 on the spin structure. It follows that we have an equality of rational 
functions

ip+(t) =  ( - i r j n  V(Nm)tm) • A(F)j [F]
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§3. GROUP ACTIONS 295

From (3.6) it is evident that the expression of the right is zero for 
t =  0 and f =  oo. Hence, the Laurent polynomial must vanish 
identically. In particular, from (3.5) we have that ij>+( 1) =  dim(ker p +) — 
dim(ker 0 ~ )  =  A(X) =  0. This completes the proof. ■

The above argument actually proves the following stronger result.

Theorem 3.7 (Atiyah-Hirzebruch [3]). Let X  be a compact spin manifold 
o f even dimension. For every non-trivial S 1-action which preserves the spin 
structure on X , the index

ind5i($ +) =  0 in R t f 1).

This result on S1-actions has an interesting refinement observed by P. 
Landweber, R. Stong and S. Weinberger. To state it we must differentiate 
between actions of even and odd type. An S e c t io n  on a spin manifold X  
is said to be of even type if it lifts to an action on PSpin(X). Otherwise it 
is said to be of odd type. (In the latter case the action of the 2-fold covering 
group lifts to PSpin(X).) These notions can be reformulated by considering 
a lifting of the element - l e S 1 c €  to PSpin(X). The action is of even 
type if and only if — 1 has order 2 on PSpin(X). The action is of odd type 
if and only if — 1 has order 4 on PSpinPO-

Suppose that the element — 1 acts freely on X . Then one sees easily 
that the S e c t io n  is even if and only if the quotient X /Z 2 is a spin manifold.

If the fixed-point set X 12 of — 1 is not empty, then

if the action is even,
(2 (mod 4) if the action is odd.

We see this as follows. Recall that — 1 acts on its normal bundle N  by 
scalar multiplication in the fibres. Since the action of — 1 is orientation- 
preserving (it is connected to the identity in Diff(X)), the rank of N  is 
even. Furthermore, there is a Z2-equivariant diffeomorphism of N  with a 
tubular neighborhood of X Zl in X. From this we see immediately that 
the action on X  is even if and only if the action on the normal sphere 
bundle to X Zl (with the induced spin structure) is even. Here the Z2-action 
is free and by the paragraph above the question comes down to whether 
the quotient of the normal sphere is a spin manifold. By Remark II.2.4 
we know that real projective (n — l)-space is spin if and only if n =  
0 (mod 4). This proves (3.7). ■

Theorem 3.8 (Landweber and Stong [1]). Let X  be a compact spin mani­
fold o f dimension 4k with an S l-action. I f  the action is o f odd type, then

sig(

X) =  0
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296 IV. APPLICATIONS

Proof. A result of Hattori and Taniguchi [1] states that for any S*-action 
on an oriented manifold,

sigpf) =  sig(Xs‘)

where X s' is the fixed-point set of the action with an appropriately chosen 
orientation. Consider now the inclusions: X s1 c= X Zl c= X , and note that 
{XZl)sl = X s \  By a result of Edmonds [1], the manifold X Zl is orientable. 
Therefore, applying the argument again shows that sig(AT) =  sig(2fZ2). 
However, by (3.7) we have that dim(XZ2) =  2 (mod 4), and so 
sig(XZ2) =  0. ■

This result is analogous to the fact that on manifolds which admit 
orientation reversing diffeomorphisms, all the Pontrjagin numbers are 
zero. For S e c t io n s  on spin manifolds which are free outside the fixed- 
point set, there are additional characteristic classes which vanish (see 
Landweber and Stong [1]). This leads into the fascinating area of elliptic 
genera (cf. Chudnovsky and Chudnovsky [1]).

Proof o f Theorem 3.4. Recall that any spin manifold X  which carries a 
metric of positive scalar curvature has s4{X) =  0 (see II.8.12). Thus Theo­
rem 3.4 is a corollary of the following more general result. ■

Theorem 3.9 (Lawson and Yau [1]). Any compact spin manifold which ad­
mits a non-trivial S3-action, carries a riemannian metric o f positive scalar 
curvature.

When the action is free, the proof of this theorem is rather easy. In this 
case, the manifold is the total space of a smooth principal S3-bundle X  A  
M  =  X /S 3. Introduce an invariant splitting T X  =  ^  ® where 'V  
denotes the field of 3-planes tangent to the orbits. The bundle 'V  has a 
natural trivialization f  ^ I x l 3 given as usual by choosing an ortho­
normal basis eue2,e3 of T X(S3) and defining sections Ej of by Ej{x) =  
d/dt (exp(tej) • x),=0* We fix a  metric on Af and for each e >  0 we construct 
a metric g£ on X  as follows. We declare 'V  and to be everywhere 
orthogonal; we lift the given metric on M  to via n; and we set <£f, E f)  =  
e2Sij. This uniquely determines the metric g£. In this metric the orbits of 
S3 are all totally geodesic and isometric to the euclidean sphere of radius 
e. Applying the fundamental equations of O ’Neill [1] for a riemannian 
submersion, one easily sees that the scalar curvature ke of the metric gt 
is of the form k £(x ) = 6/e2 -I- a(x) +  e2b(x) for continuous functions a and 
b on X. Taking e sufficiently small completes the proof for this case.

The general case, where the action of S3 is not free, is more difficult 
and is handled as follows. Consider the diagonal action of S3 on X  x S3. 
This action is free with quotient X . (Of course, this orbit space map
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§4. COMPACT MANIFOLDS WITH k  >  0 297

X  x S3 -+ X  is different from the “product” projection p r :X  x S3 X )  
We now fix an S3-invariant metric of X , and using this metric we con­
struct, for each e >  0, a metric gt on X  x S3 in the manner above. The 
metric gt is, in fact, S 3 x S3-invariant and thus makes the product pro­
jection p r : X  x S3 -> X  into a riemannian submersion. Detailed calcula­
tions show that for e sufficiently small, this submersed metric has positive 
scalar curvature. The estimates in this calculation are most delicate at the 
fixed point set.

Theorem 3.9 actually provides a wealth of non-existence theorems for 
S3-actions. We clearly have the following:

Corollary 3.10. Any compact manifold which cannot carry a riemannian 
metric o f positive scalar curvature has no S 3-actions.

In the next section we shall produce large families of manifolds which 
do not carry positive scalar curvature. One consequence of this will be a 
proof of the fact (due originally to Browder and Hsiang [1]) that i f  a spin 
manifold X  admits an S3-action, then all the “higher A-genera” o f X  are zero.

$4. Compact Manifolds of Positive Scalar Curvature

One of the most im portant applications of the Atiyah-Singer operator in 
riemannian geometry is in the study of manifolds of positive scalar cur­
vature. Recall that the scalar curvature of a riemannian manifold X  is a
function k  : X  -* R defined at each point x  by averaging all the sectional
curvatures at x. Specifically we define

m =  i  <*«,.,(*M >  H i)
i , j -  1

where {e1(. . .  ,enj is an orthonormal basis of TxX  and R  is the Riemann 
curvature tensor. Note that k can also be written as

k (x ) =  trace(Ricx) (4.2)

where Ric* denotes the Ricci transformation at x. Thus, the condition of 
positive scalar curvature, i.e., k  > 0, is the weakest of the various “positive 
curvature” assumptions.

There has already been some discussion of manifolds with k  > 0 given 
in §8 of Chapter II. We recall the basic results proved there. There is a 
graded ring homomorphism

J :  n*pin ► KO ~ *(pt) (4.3)

which in dimensions 4k is a multiple of the /4-genus. This homomorphism 
is defined in (3.22) of Chapter II. It coincides with the ^O-index of the
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298 IV. APPLICATIONS

Atiyah-Singer operator, and can be computed in terms of the space of 
harmonic spinors (see Theorem II.7.10). Applying the Bochner-type for­
mula (II.8.18) gives the following result of Atiyah, Hitchin, Lichnerowicz 
and Singer.

Theorem 4.1. Let X  be a compact spin manifold with k > 0, then s i(X )  =  0.

This theorem implies, in particular, that a spin 4fc-manifold with 
non-vanishing 4-genus cannot carry a metric of positive scalar curvature. 
There are many examples of such manifolds. For example, let V 2k(d) 
denote a non-singular complex hypersurface of degree d in P 2k+1{C). Then 
V 2k(d) is spin if and only if d is even. (See II.2.7.) However, we have that

i ( K 2 W ) - 2 W w A ( ' , - 2 A  

( 4 4 )

so that for all even d > 2fc, and all fc ^  1, the 4fc-dimensional spin manifold 
V 2k(d) cannot carry k  >  0, and therefore cannot carry metrics of positive 
Ricci or positive sectional curvature.

It is a consequence of the Calabi Conjecture, proved by S. T. Yau [2], 
that each of the hypersurfaces V 2k(d) for d ^  2k +  1 carries a metric of 
positive Ricci curvature. This shows that the spin condition in Theorem 
4.1 is necessary. It also shows, together with Theorem 4.1, that the poly­
nomial p(d) =  A (V 2k(d))must have zeros ford =  2,4, . . .  ,2fe. It is interesting 
that with this information and some general considerations, it is rather 
easy to compute formula (4.4) for p(d).

An im portant phenomenon occurs in the borderline case V 2k(2k -f 2) 
where Yau proves that there exist metrics of zero Ricci curvature. In this 
case we see that A = 2. It follows from Corollary II.8.10, that in any Ricci 
flat metric, V 2k(2k 4- 2) carries at least two parallel spinor fields. Such 
fields automatically reduce the holonomy group of the metric. We shall 
pursue these considerations further in §10. We now return to the discus­
sion of Theorem 4.1.

Recall that the invariant s i  is non-zero also in dimensions 1 and 2 
(mod 8). Here it takes values in Z 2. Among the spin manifolds on which 
it is non-zero, are half of the exotic spheres in dimensions 1 and 2 (mod 8). 
(A general discussion of positive curvature metrics on exotic spheres is 
given in II.8.) This fact has the following consequence:

Corollary 4.2. In dimensions 1 and 2 (mod 8), every compact spin manifold 
is homeomorphic to a manifold which cannot carry positive scalar curvature.

Proof. Let X  be a spin fc-manifold with k =  1 or 2 (mod 8), and let E be 
an exotic fc-sphere with si(L ) =£ 0. Since s i ( X  # E) =  s i(X )  +  «s/(E), 
we may apply Theorem 4.1 to either X  or X  # E. ■
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§4. COMPACT MANIFOLDS WITH k  >  0 299

To keep these non-existence theorems in perspective it is useful to 
examine manifolds which are known to carry positive scalar curvature. 
The classical examples of spaces with curvature ^ 0  are the homogeneous 
spaces with normal metrics given as follows. Let G be a compact Lie 
group with Lie algebra g, and let (*,*) be any AdG-invariant inner prod­
uct of g. Then for any closed subgroup H  c: G, there is a G-invariant 
metric naturally introduced on the coset space X  =  G/H. The sectional 
curvatures of this metric are always ^ 0 , and apart from the case of the 
flat torus, the scalar curvature is always >0. (For details, see Kobayashi- 
Nomizu [2] or Cheeger-Ebin [1].)

These homogeneous spaces represent special cases of the general pheno­
menon of Theorem 3.8. Any compact manifold which admits a compact 
connected non-abelian Lie transformation group, carries a metric with 
k  >  0.

There is a general surgery procedure for constructing metrics with k  >  

0. Recall (cf. Milnor [8]) that a surgery of codimension q on an n-manifold 
X  is a modification of X  of the following type. Let 'Ln~q c= X  be a 
smoothly embedded (n — <?)-sphere with a trivialized tubular neighborhood. 
By this we mean a neighborhood U of 2,n~q together with a diffeomorphism 
f :  U Sn~q x Dq such that f ( L n~q) =  Sn~q x {0}. The surgery operation 
now consists of removing the neighborhood U = Sn~q x Dq and replacing 
it with the product Dn~q+l x Sq~{ by gluing in the obvious, canonical 
way along the boundary Sn~q x Sq~x.

Proposition 4.3 (Gromov-Lawson [2] and Schoen-Yau [2]). Let X  be a 
manifold which carries a metric o f positive scalar curvature. Then any 
manifold obtained from X  by surgery in codimension ^  3, also carries a 
metric o f positive scalar curvature.

The method of proof in Gromov-Lawson [2] is an elementary con­
struction, the proof in Schoen-Yau [2] uses techniques of partial differ­
ential equations.

Combining this result with techniques of the fe-cobordism Theorem (cf. 
Milnor [8]) and facts concerning the cobordism ring Q |°, it is possible 
to prove the following result:

Theorem 4.4 (Gromov-Lawson [2]). Let X  be a compact simply-connected 
manifold o f dimension ^  5.

(A) I f  X  is not spin, then X  carries a metric with k > 0.
(B) I f  X  is spin, and is spin cobordant to a manifold with k  >  0, then X  

carries a metric with k  > 0.

Remark. Contrasting part (A) of this theorem with Corollary 4.2 makes it 
evident that the question of positive scalar curvature is intimately related 
to spin geometry. This relationship will soon be examined in detail.
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Proof o f Theorem 4.4. Suppose X  is spin and spin cobordant to a mani­
fold X 0 which carries k  >  0. By a sequence of surgeries (on embedded 
circles) we can make X 0 simply-connected while preserving the spin 
corbordism class. By Proposition 4.3, the new X 0 will also carry k > 0.

O ur cobordism assumption means that there exists a compact spin 
manifold W  with dW  »  X  U X 0 (as spin manifolds). As above, we can kill 
n t(W ) by surgery. Moreover, since dim W  = n ^  6 and W  is spin, every 
2-sphere embedded in W  has a trivial normal bundle (cf. II.2.11), and we 
can kill n2(W) by surgery. It follows that the groups Hn_k(W,Xo) =  
H k{W,X) are zero for k =  1,2, and torsion-free for fc =  3. By the basic 
theory of S. Smale (cf. M ilnor [8]), there exists a smooth function f :W ~ *  
[0,1] with the following properties:

(0 f\xo  =  0 and f i x  =  1.
(ii) all critical points of /  are non-degenerate and lie in the interior 

of W 9
(iii) all critical points of /  have index ^  n — 3.

It now follows from the fundamental theorem of Morse Theory (cf. 
Milnor [6]) that X  can be obtained from X 0 by surgeries in codimension 
^  3. We then apply Proposition 4.3.

When X  is not spin, the argument is similar. From detailed knowledge 
of the oriented cobordism ring we know that there exists a compact 
oriented manifold W  with d W  =  X  II X Q, where X 0 carries k >  0. We 
may assume that u^X q)  =  0 as before. We now proceed to kill n ^ W )  by 
surgery. We then have H 2(W) ^  n2(W), and the second Stiefel-Whitney 
class gives a homomorphism

w2 : n 2( W ) -----> Z 2. (4.5)
Since dim W  ^  6, the group n 2(W ) is generated by embedded 2-spheres, 
and w2 exactly measures the non-triviality of the normal bundle to these 
embeddings. Thus, we can kill the subgroup ker(w2) c: n2{W). The homo­
morphism (4.5) then becomes injective. Observe now that w2 restricts to 
be the second Stiefel-Whitney class of X , which is non-zero since X  is not 
spin. It follows that (4.5) is an isomorphism and that the map H 2(X 0) s  
^ 2( ^ 0) ^ 2 ( ^ 0  =  H 2(W ) is surjective. In particular, H k(W ,X 0) =  0 for
k =  1,2. Consequently H k(W ,X) =  0 for k =  1,2, and H 3(W ,X) is torsion 
free. The argument now proceeds as before. ■

Let X  be a compact manifold of dimension ^  5. Theorem 4.4 states that 
there is an obstruction to the existence of a positive scalar curvature metric 
on X  only if X  is spin, and, furthermore, that obstruction depends only on 
the spin cobordism class of X . This leads us to consider the set of spin 
cobordism classes a e Q^pin with the property that some manifold in a 
carries positive scalar curvature. We claim that is an ideal in
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§4. COMPACT MANIFOLDS WITH k  >  0 301

Q*pin. Closure under addition (which corresponds to disjoint union) is 
clear. Suppose now that a e and choose any class /? e  Represent 
a by a spin manifold X  with a metric g x  with k x  >  0. Represent /? by a 
spin manifold Y  with some metric g Y. Then for all e >  0, the product 
metric g  =  eg x  + g Y on X  x Y  has scalar curvature k  =  e~ xk x  + k y which 
is > 0  for all sufficiently small e. This shows that j? • a e % + m, and is 
an ideal as claimed.

Consequently, setting fo* == Q*pin/^P*, we get a graded ring homo­
morphism

Note that in each dimension n, fo„ is a finitely generated group. Theorem
4.4 states the following.

Corollary 4.5. The classes a* constitute a complete set o f invariants for de­
termining whether or not a simply-connected manifold (of dimension ^  5) can 
carry a metric o f positive scalar curvature.

The fundamental Theorem 4.1 implies that there is a factoring of graded 
ring homomorphisms

and it seems likely that n is an isomorphism, i.e., that a ^  s i .  (We know 
n ®  Q to be an isomorphism; see Gromov-Lawson [2].) If this were so, 
then the «s/-class would be exactly the obstruction to the existence of posi­
tive scalar curvature metrics in the simply-connected case.

Since Qjjpin =  0 for n =  5, 6 and 7, Theorem 4.4 has the following con­
sequence.

Corollary 4.6. Every compact simply-connected manifold o f dimension 5, 6, 
or 1 carries a metric o f positive scalar curvature.

We shall next take up the question of positive scalar curvature on non- 
simply-connected manifolds. Here the situation can be quite subtle, as the 
following example, due to L. Berard-Bergery [2], illustrates. Let E be an 
exotic 9-sphere such that «g/(E) ^  0, and consider the spin manifold X  =  
(P 7(R) x S2) § E, with n xX  £  Z2. This manifold does not carry positive 
scalar curvature (since s /(X )  = s/(L ) ^  0), however its two-fold universal 
covering manifold does. To see this, one uses the fact that Q |pin £  Z2 ® Z2 
(cf. Stong [1]) which shows that the universal covering X  =  (S7 x S2) # 
E # E ^ S 7 x S2.

a : Qipin ► fo*. (4.6)

a * in

KO~*( pt)

n
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§5. Positive Scalar Curvature and the Fundamental Group

We now take up the case of manifolds with non-trivial fundamental group. 
To set the stage we note that the product of any manifold with S 2 carries 
a metric with k  > 0. Consequently, in dimensions ^  6, the presence of 
positive scalar curvature places no restriction on the isomorphism class of 
the fundamental group. (This is also true in dimensions 4 and 5; cf. R. 
Carr [1].) Nevertheless, if one takes into account the interaction of the 
fundamental group with the geometry of the manifold, then tremendous 
restrictions arise.

The interaction we are seeking lies in the geometry of the covering 
spaces. In particular, we shall be interested in manifolds with covering 
spaces which are “large in all directions, or put another way, whose uni­
versal covering spaces contain big “cubes.” To give an idea of what this 
should mean, we examine a notion due to Gromov. Let /" denote the 
standard metric cube in IR". We shall say that a riemannian n-manifold X  
contains a cube of size L if there exists a continuous map f : I n - > X  such 
that dist(/(E )/(E ')) ^  L for each pair of opposite faces E,£' of the cube 
We can then say that a riemannian manifold X  has big covering spaces, if 
for any L >  0, there is a covering space which (in the lifted metric) contains 
a cube of size L. For a compact manifold this concept is independent of 
the metric chosen (since any two metrics are uniformly commensurate). 
A good example of a manifold with big covering spaces is a torus T".

This idea can be usefully generalized. However, for the purposes here 
it is better to “dualize” the concept by mapping out of the manifold rather 
than into it.

D e f in it io n  5.1. A C arnap f : X - + Y  between riemannian manifolds is 
^-contracting (for a given e >  0) if \\f*v\\ e||t;|| for all tangent vectors v
to X. This means that for any piecewise smooth curve y in X , one has 
length(f(y)) ^  elength(y).

Such e-contracting maps are not hard to find (consider the constant 
maps). Suppose, however, that X  and Y  are compact oriented manifolds 
of the same dimension. Then the existence of an e-contracting map / :  X  -> 
Y  of non-zero degree means that in a strong sense X  is “bigger than 7 ” on 
an order of at least 1/e. Now every oriented n-manifold admits maps of 
degree 1 onto the n-sphere. Thus, we let S"(l) denote the standard riemann­
ian n-sphere of constant curvature 1, and we replace the above notion of 
big covering spaces with the following (cf. Gromov-Lawson [1],[3]):

D efinition  5.2. A co m p ac t r iem an n ian  n-m anifo ld  is said  to  be en- 
largeable if for every e > 0 th e re  exists an  o rien tab le  riem an n ian  covering  
space w hich adm its  an  e-con trac ting  m a p  o n to  S"(l) w hich is co n s ta n t a t 
infin ity  a n d  o f n o n -zero  degree.
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§5. k  >  0 AND THE FUNDAMENTAL GROUP 303

If for each e >  0, there is a finite covering space with these properties, we 
call the manifold compactly enlargeable.

Note. A map is constant at infinity if it is constant outside a compact set. 
The degree of such a map f : X - + S n is defined as

where co is an n-form on Sn with non-zero integral. The degree can also be 
defined as usual in terms of regular values of / .

The square flat torus T n =  Un/Z n is certainly enlargeable since the uni­
versal covering space has the required mappings for all e >  0. This torus 
is, in fact, compactly enlargeable. We see this as follows. For each k e Z +, 
the lattice (k • Z)” c  Z" gives a fc”-fold covering torus f n =  Un/(k • Z)”, 
which admits the (7c/fc)-contracting map to Sn( 1) of degree 1 pictured below.

Theorem 5.3. The following statements hold in the category o f compact 
manifolds:

(A) Enlargeability is independent o f the riemannian metric.
(B) Enlargeability depends only on the homotopy-type o f the manifold.
(C) The product o f enlargeable manifolds is enlargeable.
(D) The connected sum o f any manifold with an enlargeable manifold is 

again enlargeable.
(E) Any manifold which admits a map o f non-zero degree onto an en­

largeable manifold is itself enlargeable.

Proof. It is evident that (E) => (B) => (A) and that (E) => (D). To prove (E) 
we consider two compact oriented riemannian n-manifolds X  and 7, and 
a map F : X  -► Y  of non-zero degree. By compactness there exists a c >  0 
so that ||dF|| ^ c o n l  (i.e., F is c-contracting). Given e >  0, there is a

deg ( / )  = ! x f * m

f  ®Jsn

(5.1)

T" sn (1)
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riemannian covering space p :Y  -* Y  which admits a (e/c)-contracting map 
f : Y ~ *  S"(l) which is constant outside a compact set K  c  Y  and of non­
zero degree. Taking the fibre product of p and F  gives a covering space 
p' . X  -y X  and a proper mapping F : X  -* Y  so that the diagram

X  — Y  

p' p

X  - * - >  Y

commutes. Since F is a lifting of F , we have ||VF|| ^  c on X.  Hence, the 
composition f  <>F:X -> S"(l) is e-contracting. Since F  is proper, we see 
that /  o F is constant outside the compact set F~ 1(K). It is easy to see that: 
deg( /  o F) =  deg(/)deg(F) ^  0. Hence, X  is enlargeable as claimed.

To prove (C), we fix a degree-1 map <j):Sn( 1) x Sm(l) -► S"+m(l) and let 
c =  sup||d</>||. This map is chosen to be constant on the set (S"(l) x {*}) u  
({*} x Sm{ 1)), where each denotes a distinguished point in the sphere. 
Suppose now that we are given (e/c)-contracting maps, f : X n -> Sn( 1) and 
g : X m -* Sm(l), which are constant (=  *) at infinity and of non-zero degree. 
Then the map 0  © ( /  x g) : X n x Ym  ► Sn+m( 1) is e-contracting, con­
stant at infinity and of non-zero degree. From here the argument is 
straightforward. ■

Theorem 5.3 says that the category of enlargeable manifolds is closed 
under products, connected sums (with anything), changes of differentiable 
structure, etc. The category is also quite rich. It contains, as basic building 
blocks, many families of im portant K(7t,l)-manifolds.

Theorem 5.4 (Gromov-Lawson [1]). The following manifolds are enlarge­
able:

(A) Any compact “solvmanifold”, i.e., a compact manifold dijfeomorphic to 
G/T where G is a solvable Lie group and T  is a discrete subgroup.

(B) Any compact manifold which admits a metric o f non-positive sectional 
curvature.

(C) Any “sufficiently large” 3-manifold (X  is sufficiently large if  there is 
a compact surface o f positive genus Z c l  with nJL -* n YX  injective.)

Proof. We begin with (B). It is easy to see that a manifold X  of non­
positive curvature is enlargeable. By the Cartan-Hadam ard Theorem (cf. 
Milnor [6]), the exponential map at any point of the universal covering 
X  is a diffeomorphism whose inverse exp ~ 1: X  -+ TxX  is distance de­
creasing onto TxX  s  IR" with its euclidean metric. Composing with a fam­
ily of e-contracting maps f : R" -► S"( 1) as above completes the proof of (B).
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§5. K  >  0 AND THE FUNDAMENTAL GROUP 305

To prove (A) we invoke the basic fact that every compact solvmanifold 
X  admits a fibration n :X  -> T* over a torus of positive dimension with 
a (compact) solvmanifold X 0 as fibre (see Raghunathan [1] for example). 
We introduce the standard flat metric on T* =  R*/Z*, and we fix a metric 
g on X . By replacing g with tg for t > 0 sufficiently large, we can assume 
that 7t is distance-decreasing.

Consider now the covering X  X  induced by lifting n over the cov­
ering IR* T*. The induced fibration n : X  -> IR* is again distance de­
creasing. Furthermore, there exists a diffeomorphism

(p :X  ► R* x X 0

such that 7c =  prj o (jo where p tx: IR* x X 0 -> IR* is the projection map. To 
see this when fc =  1, lift a non-vanishing vector field from T 1 to X  and 
integrate to get the coordinate transverse to the fibres. When k >  1, apply 
induction.

Suppose that a >  0 is given. Consider the ball B = { x e  R*:||x|| <  n/e} 
and fix a map / :  R* -> S*(l) which is e-contracting, constant on R* — B 
and of degree 1 (as pictured in the figure above). Choose a metric g0 on 
X 0 so that the composition

X  -2-+ R x l 0 -22+ X 0

is distance decreasing on the compact subset n ~ l(B) c: X . (A sufficiently 
small multiple of any metric will do.) We may assume that X 0 is en­
largeable by induction on dimension. Hence there exists a covering 
n0 :X 0 -+ X 0 and an e-contracting map g : X 0 -> S"~*(l) which is constant 
at infinity and of non-zero degree. Let q :X  X  be the covering induced 
by lifting q> over Id x 7C0, so there is a commutative diagram (below).

G

^ X  — 5 U  R* X X 0  - ^ ^ A - ^ S " - k ( l )  

/  q Id x no no

J X  — —  IR* x X 0 x 0
W n n

\  Rk = Rk

\  s
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306 IV. APPLICATIONS

We now take the “smash product”

X  S"(l)

exactly as we did in the proof of Theorem 5.3(C). This map is ^ -c o n ­
tracting, constant at infinity and of non-zero degree. This completes the 
proof of part (A). For part (C), the reader is referred to Gromov-Lawson 
[!]• ■

Note that the tori T n =  S1 x • • • x S1, n ^  1, play a special role in 
this theory. For example, they belong to each of the three classes of 
manifolds in Theorem 5.4. Furthermore, there is the following “stability” 
phenomenon:

I f  X  is an enlargeable manifold, so is X  x T n for any n ^  1. (5.2)

I f  a manifold X  carries a metric with k >  0, so does X  x T n (5.3) 
for any n ^  1.

There is an (adversary) relationship between enlargeability and positive 
scalar curvature, and the mediating agent is the Atiyah-Singer operator. 
Here, however, the operator has coefficients in a vector bundle. The first 
main result is the following:

Theorem 5.5 (Gromov-Lawson [1], [3]). An enlargeable spin manifold X  
cannot carry a metric o f positive scalar curvature. In fact any metric with 
k ^  0 on X  must be flat.

Note. Here the spin assumption is not vital. It suffices to know that an 
appropriate covering space is spin.

Note. Results of this type were first proved in dimensions ^ 7  by R. 
Schoen and S. T. Yau [1], [2] using minimal surface techniques.

Theorems 5.4 and 5.5 together produce the following nice “exclusion 
theorem.”

Corollary 5.6. A compact manifold which carries a metric with sectional 
curvature ^ 0  (or <0), cannot carry a metric with scalar curvature > 0 ( ^ 0  
respectively).

Proof o f 5.5. For clarity’s sake we shall present here a proof for the case of 
compactly enlargeable manifolds. The more general result requires some 
tools from analysis (the Relative Index Theorem) and will be proved with 
more general results in the next section.

Let X  be a compactly enlargeable n-manifold, and suppose X  carries a 
metric with k ^ . k0 for a constant k0 >  0. From (5.2) and (5.3) we may 
assume that X  has even dimension 2n. (If not, replace X  by X  x S 1.)
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§5. k  > 0 AND THE FUNDAMENTAL GROUP 307

Choose a complex vector bundle E0 over the sphere S 2n( 1) with the prop­
erty that the top Chern class cn{E0) ^  0. This is certainly possible, since 
on S2n the Chern character

ch E =  dim E +  > ■* cn{E)

gives an isomorphism c h : K(S2n) -+ H*(S2"; Z) (cf. Atiyah-Hirzebruch [2]). 
We now fix a unitary connection V£o on E0 and we let R Eo denote the 
curvature 2-form.

Let e >  0 be given and choose a finite orientable covering X  X  which 
admits an e-contracting map f : X - +  S2w(l) of non-zero degree. Using / ,  
we pull back the bundle £ 0> with *ts connection, to X . This gives us a 
bundle E =  f* E 0 with connection V£ =  /* V £o. We then consider the com­
plex spinor bundle $c of X  with its canonical riemannian connection, and 
consider the Atiyah-Singer operator p  on the tensor product $c (g) E (as in
II.5.10). We know from Theorem II.8.17 that there is a “Bochner formula”

P I  =  V*V +  +  5R£ (5.4)

where 9t£(<x <g) e) =  Jj<k  (e/*0”) ® (&eJtek6) depends universally and lin­
early on the components of the curvature tensor R E of £. The operator 9lE 
is a symmetric bundle endomorphism of Sc (g) £ , and if its pointwise norm 
everywhere satisfies the inequality

(5.5)

then we will have > 0, and the index of the operator

P i : r ( $ i  ® E ) -----► r(^ c  ® E), (5.6)

will be zero. To achieve this estimate we first note that there is a constant 
kn depending only on dimension, such that

\\nE\\ ^  kn\\R%  (5.7)

We then observe that the curvature of E is the pull-back of the curvature 
of £ 0, and therefore

||K£N s 2||KEo||. (5.8)

To prove (5.8), we fix a point x e  X  and let {\j/u . . .  ,t^n(n_ 1)/2} be an ortho­
normal basis of A 2TxX  which diagonalizes the symmetric bilinear form 

= i f J / J J / ' } -  This means that =  tfdjk  where, since
/  is s-contracting, we have |AJ ^  e2 for all j. It follows that there exists an 
orthonormal basis {\jrl t . . .  ,$n(n- 1)/2} of A 2Tf(x)S2n such that f+\p} = Xjtj/j, 
for all j. We then compute that \\RE\\2X =  £  | | ^ J | 2 =  £  =
£  xj M ° \ \2 ^  fi4||« Eo||2-
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308 IV. APPLICATIONS

Combining (5.7) and (5.8) shows that the positivity condition (5.5) is sat­
isfied for all s < y/ic0/4kn. The index of the operator (5.6) must then vanish. 
However, this index is given by

in d e x (^ )  =  (ch E  • k (X )} [ * ]  (5.9)

= dA(X) + - ^ - ^ c n(E)[X-\

1 cn(/*E0)[*]
(» -  1)! 

1

(» ~  1)!
/* (CbCE0)) [* ]

(n -  1)! 
* 0 .

1 deg(/)c„(£0)[S2"]

This contradiction completes the proof of the first statement of the theorem.
To prove the second statement, we call upon the following result which 

appears in Kazdan-W arner [1]:

Theorem 5.7 (J. P. Bourguignon). Let X  be a compact manifold which car­
ries no metric with k  > 0. Then any metric with K  0 on X  is Ricci flat.

To complete the argument we now apply the following corollary of the 
Splitting Theorem of Cheeger and Gromoll [2].

Proposition 5.8. A Ricci fla t enlargeable manifold is flat.

Proof. Let X  be a (compact) enlargeable n-manifold with a Ricci flat 
metric. The Splitting Theorem implies that the universal cover of X  splits 
as a riemannian product Rm x Y  of a euclidean space with a compact 
simply-connected (Ricci-flat) manifold Y. We claim that dim(Y) =  0. If 
not, set d =  diameter( Y) >  0, and choose a covering X  of X  which admits 
a (7t/4<5)-contracting map / :  X  -* S"(l) which is constant at infinity and 
of non-zero degree. This covering is a quotient X  = (Rm x Y)/T by a 
subgroup T of the deck group. The deck group acts freely and properly 
discontinuously by isometries which preserve the factors. By passing to a 
subgroup of finite index we may assume that T acts freely and properly 
discontinuously on IRm. Then X  is a fibre bundle p :X  -> Rm/r over the 
quotient manifold with fibre Y.

Since /  is (7i/4<5)-contracting, we see that each fibre is mapped into a ball 
of radius n/4 in S"(l). Hence, there is a continuous map / 0 : Rm/T  -* S"(l)
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§5. K >  0 AND THE FUNDAMENTAL GROUP 309

so that
dist(/o(p(x)),/(*)) ^  nj2

for all x e  X . (Choose a section of the disk bundle whose fibre at y e Rm/r  
is the convex hull of f(Y p) =  f ( p ~ 1(y)).) This map can be chosen to agree 
with /  at infinity. By pushing along the unique geodesic arc joining f(x )  
to / 0(p(x)), we construct a homotopy from /  to f 0 <> p which is constant at 
infinity. Since dim( Y) >  0, it follows that deg(/) =  deg(/0 ° p) =  0 contrary 
to assumption. Therefore, we conclude that dim(Y) =  0, and both the 
proposition and the theorem are proved. ■

The argument given for Theorem 5.5 actually proves much more than 
is claimed. To use the full force of the argument we only need to readjust 
our definitions. In doing this we shall unify these results with the previous 
ones concerning the ,4-genus.

We begin by generalizing the notion of the degree of a map. Let f : X - > Y  
be a smooth map between compact oriented manifolds, and suppose 
dim X  — dim Y  =  4fc ^  0. The inverse image f ~ l{y) of a regular value 
y e Y  is a compact 4k-manifold whose oriented cobordism class is indepen­
dent of y. To see this, join two regular values y and y' by a smoothly 
embedded are y, and wiggle / ,  away from f~*(y)  u  f ~ 1(y% so that it 
becomes transverse to y. The inverse image of y provides a cobordism 
between f ~ x(y) and f ~ l{y'). It now follows that the ,4-genus A { f ~ l(y)) 
is independent of y. We call this number the A -degree of / .

The ^-degree can be computed by a formula of type (5.1). Let co be a 
volume form on Y  with non-zero integral, and let A k(X) be a de Rham 
representative (a closed 4/c-form) of the fcth-component of the total ,4-class 
of X.  Then

f  f * c o A A k(X)
i-d e g ( /)  =  ^ -----    (5.10)

Jr 00
Notice that the ,4-degree makes sense when X  is not compact, provided 

that /  is constant at infinity.
We now generalize the notion of enlargeability by replacing the word 

“degree” in 5.2 by the word “^-degree”.

D efinition  5.9. A compact riemannian n-manifold is said to be A- 
enlargeable if given any e > 0, there exists a riemannian covering space 
which admits an e-contracting map onto Sw(l) (for some m s  n (mod 4)) 
which is constant at infinity and of non-zero /4-degree. The basic facts 
are as before.

Theorem 5.10. The statements (A), (C) and (D) o f Theorem 5.3 remain true 
with the word “enlargeability” replaced by the word “A-enlargeability.”
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310 IV. APPLICATIONS

Proof. The proof of part (C) of Theorem 5.3 goes through after making 
the obvious linguistic changes. Parts (A) and (D) are easy. ■

Of course, an enlargeable manifold is /4-enlargeable. Moreover, an ori­
entable manifold of non-zero /4-genus is also /4-enlargeable since the con­
stant map to S° has non-zero /4-degree. More generally we have the 
following:

Corollary 5.11. A compact manifold which admits a mapping o f non-zero 
A-degree onto an enlargeable manifold is A-enlargeable. In particular, the 
product o f an enlargeable manifold and a manifold o f non-zero A-genus 
is A-enlargeable.

We now have a unification of many of the previous results.

Theorem 5.12 (Gromov-Lawson [1], [3])). An A-enlargeable spin manifold 
cannot carry a metric with k  > 0. In fact, any metric with k  ^  0 on such a 
manifold is Ricci f la t

Proof. The proof of Theorem 5.5 goes through with no essential changes. 
The main point is that the computation (5.9) now becomes

ind(0£+) =  j ( r f  +  cm(£ )) • A (Z )j [St] (5.11)

= d A ( X )  +  (cm(£) • 'W IM

=  ( ^ 1 y { f * c m( E o ) - A k( X ) } l X ]

= ( ^ l j ! (i-deg/)C'"(£o)[S2m;i 
* 0 .  ■

This theorem implies, in particular, that a spin manifold of the form 
X  x Y  where X  is enlargeable and A(Y)  #  0, cannot carry positive scalar 
curvature. In a sense, it interpolates^ between the two previous results 
which concerned enlargeability and A  separately.

A good interpretation of Theorem 5.12 can be made in terms of the 
higher /4-genera. These are defined for any compact differentiable mani­
fold X  as follows. Fix a X(7c,l)-space K  and a map f : X - + K  (corre­
sponding to a homomorphism -» For each cohomology class 
u g H*(K; Z) s  H*(n; Z), the higher /4-genus associated to u is the number
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where, as usual, A(X) is the total /4-class of X . We could, of course, pass to 
the “universal” space K x = K(Kt(X),l) and the map f x : X  -» K x through 
which every f : X  —> K(n,l) can be factored. These “universal” higher 
/4-genera are simply indexed by the cohomology classes of the group 7t1(X).

E xam ple 5.13. When the space K  =  K(n,l) is a compact oriented m- 
manifold and when u e H m(K; Z) is the fundamental cohomology class, 
then it is evident that:

AftU(X) = (A-deg)(f). (5.12)

Observe now that many fundamental examples of enlargeable manifolds 
(such as solvmanifolds, manifolds of non-positive curvature, and suffi­
ciently large prime 3-manifolds) are manifolds of X(7t,l)-type. Theorem 
5.12 states that for a spin manifold X  of positive scalar curvature, the 
higher A-genera, coming as in (5.12) from maps to an enlargeable mani­
fold, must be zero.

It is at the moment unknown whether every compact K(7c,l)-manifold 
is enlargeable; however, any counterexample to this statement is likely to 
be quite complicated. Assuming it is so, one might be led to conjecture 
the following:

Conjecture 5.14. For any compact spin manifold with positive scalar curva­
ture, all the higher A-genera must vanish.

There is much evidence for this conjecture if one restricts to “geometric” 
K(7c,l)-spaces. At very least, the conjecture serves as a rough map of the 
wilderness.

There is, in fact, a general theory which allows one to transform this 
conjecture to a more general conjecture in the K-theory of C*-algebras. 
Again it involves the Atiyah-Singer operator.

To each discrete group T  there is a canonically associated C*-algebra, 
denoted C*(T) and called the C*-aIgebra of T. Over any manifold with 
fundamental group T we can construct the flat C*(T)-bundle S  -> X  
corresponding to the representation of T on C*(T) by right multiplication. 
This is just the associated bundle

S  = X  x r  C*(T) (5.13)

where X  is the universal covering space of X  (a principal T-bundle). Note 
that S  is a bundle of left C*(T)-modules. Each fibre is free of rank one.

At this point, our discussion becomes rather general. A guide to the 
formidible technical details required to make it rigorous is found in J. 
Rosenberg [1]. Suppose the manifold X  is spin and consider the twisted 
Atiyah-Singer operator

§5. k > 0 AND THE FUNDAMENTAL GROUP 311

0 + ' S ( $ + ® S ) -----► T ( $ c  (g) S ) (5.14)
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where 8  carries its canonical flat connection. The kernel and cokernel of 
0  + are (after possibly a compact perturbation of 0 +) finitely generated pro­
jective C*(r)-modules. The formal difference gives an element in the alge­
braic K-group, X 0(C*(T)). This element depends only on the homotopy 
class of the operator 0 + and is called the analytic index of # +. Mishchenko 
and Fomenko [1] have given a formula for this index of the Atiyah-Singer 
type:

ind (0+) =  {ch 8  • ! ( * ) } [ * ]  e K 0(C*(T)) ®  Q (5.15)

The claim is that for “reasonable” fundamental groups T, this index carries 
all the higher ,4-genera of the manifold X . To prove this it is necessary 
to study a certain universal map

er : K *(K (r, 1 ))-----► K*(C*(r)), (5.16)

defined by using the analogous bundle 8  over K(T,1). (Here K* denotes 
K-homology theory extended to infinite CW-complexes.) Our assertion is 
true whenever this map is injective after tensoring with Q.

Observe now that since the bundle 8  X  is flat, the curvature term 
W* in the Bochner formula (5.4) is zero. This implies (by Rosenberg [1]) 
that if X  carries positive scalar curvature, then ind ($+) =  0. Conse­
quently, Conjecture 5.14 is true whenever the map eT (g) Q is injective.

The injectivity of er has been established by Kasparov [1] for any T 
which arises as a discrete subgroup of a connected Lie group.

Readers may have noticed the direct parallel between the higher 
,4-genera and the Novikov higher signatures, or “higher L-genera.” (Such 
classes can be formulated for any multiplicative sequence.) S. P. Novikov 
has conjectured that these higher signatures are, like the signature itself, 
homotopy invariants of a manifold. A proof of this conjecture for certain 
fundamental groups has been given by G. Lusztig [1] using a family of 
Dirac operators of the form D+ :(C l+(X) (g) Et) -» T(C£"(Ar) (g) Et) where 
Et is a family of flat bundles over X  induced from K(T, 1). Much more 
generally, one can consider the operator

D +: r(C£+(X) (g) 8)  -> r (C £ ’ P 0  <g) 8)

in analogy with (5.14). The assertion here is that the index

ind(D+) =  (ch 8  • UX ) } [ X ]  e  X*(C*(T))

carries all the higher signatures of X . This again will follow from the in­
jectivity of the map er (g) Q. For this reason, the conjecture concerning 
er is called-the Strong Novikov Conjecture.

We shall end this section with some remarks on a possible classification 
of manifolds with =  T which admit positive scalar curvature. The 
homomorphism s i : Q^pin KO*(pt) induces a transformation of general­
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§6. COMPLETE MANIFOLDS WITH k  > 0 313

ized homology theories. Thus, setting h^(T) =  h+(K(r9l))9 we get a trans­
formation

a s/ m(r) — ► ko*( r). (5.17)
Given any compact spin w-manifold X  with n tX  ^  T, there is a canonical 
mapping X  -> X(r,l), inducing an isomorphism on n t . This map deter­
mines an element [AT] 6 Q^pin(T).

Again as a guide to the forest, one could conjecture that as in the case 
where T =  {e}, the classes s i([X ] )  constitute a complete set of invariants 
for the existence of positive scalar curvature on X . There is some evidence 
for this. The analogue of Theorem 4.3 has been proved by Rosenberg [2] 
and Miyazaki [1]. They show that the question indeed only depends on 
the fundamental class [AT] e A) in the spin case. In the non-spin
case, it depends only on the class [A ] e A), and often, for example 
when n xX  £  Z or Zp, one can show that such X  always carry k  >  0.

Unhappily, the conjecture that s i  =  0 in the presence of positive scalar 
curvature fails for torsion groups T. Rosenberg [2] shows that every spin
5-manifold with ^  Z 3 carries k  >  0, but that Im s i  ^  0 in this case. 
Nevertheless, for torsion-free groups T there is reasonable evidence for 
the following:

C onjecture . For torsion free groups T, the classes si(\_Xj) (from (3.17)) 
constitute a complete set of obstructions to the existence of positive scalar 
curvature on compact spin manifolds X  with n tX  £  T.

§6. Complete Manifolds of Positive Scalar Curvature

We now consider the question of the existence and structure of complete 
metrics of positive scalar curvature on non-compact manifolds. We shall 
touch only a few results. The reader is referred to Gromov-Lawson [3] 
for a much more extensive discussion.

The first important concept here is the following:

D efinition  6.1 A bundle with compact support o n  a  m anifo ld  A" is a 
vector bund le  E -> AT w hich is triv ialized  a t infinity to g e th er w ith  a  co n ­
nec tion  w hich is com patib le  w ith  th a t triv ia lization .

This means that outside a compact subset of X , there is a given iso­
morphism of E with the product bundle. This isomorphism identifies the 
given connection with the canonical flat one on the product. The con­
nection will always be assumed to be orthogonal or unitary (depending 
on whether E is real or complex).

Suppose now that X  is a complete riemannian spin manifold of even 
dimension n =  2fc. Let #c denote the spinor bundle of AT with its canon­
ical riemannian connection, and let £  AT be any bundle with compact
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support. Then the Atiyah-Singer operator 0 E on L2-sections of $c ®  E 
is essentially self-adjoint and satisfies ker 0 E =  ker 0 \  (see Theorem II.5.7). 
This operator satisfies the pointwise formula

01  =  V*V +  \ k +  (6.1)

derived in II.8.17. Since E is flat at infinity, this reduces to the equation 
0 \  =  V*V -1- outside a compact subset of AT. Using this fact and some 
standard arguments from analysis, we prove the following. We say that 
a function k is uniformly positive on a set A  if k ^  tc0, for some constant 
Kq >  0, on A.

Proposition 6.2. Suppose X  has uniformly positive scalar curvature outside 
o f a compact se t Then the Dirac operator 0 E on L 2($c ®  E) has a 
finite-dimensional kernel and a bounded Green's function.

Corollary 6.3. The operator

0 1 : L 2($+ ® E ) -----► L 2($c ®  E) (6.2)

and its adjoint 0 E have finite-dimensional kernels. Hence the index

ind(0E) =  dim(ker 0 E) — dim(ker 0 E) (6.3)

is a well-defined integer.

Proof o f 6.2. Let K a  X  be a compact set outside of which E is trivialized 
and jg k0 for some k0 >  0. Let c >  0 be a constant such that 
c Id ^  — (%k 4- 9?£) over K. Then for any element q> e ker(|)£), formula
(6.1) implies that V*V<p =  —*\cq> — 9?£(<p). Integrating by parts, and es­
timating gives the inequality

+  <M)

Let | | - | | ,4  denote the L 2-norm over a set A a X .  If we assume 
IMIx (=  IM li +  IH Ix-x) =  then (6-4) implies that

Consider now the uniform C '-norm  ||<p||Ci,a- over K. By Theorem III.5.4 
we know that there exists a constant C >  0 such that

IMIc

1,#: — ^ IMU
for all (p e ker(Z)£). Let us fix a number s >  0 and consider and e-dense 
subset of points {*„,}„=i in K. If dim(ker DE) ^  d, then there exists an 
element (p e ker DE with ||<p||x =  1, such that <p(Xj) =  0 for j  =  1 , . . .  ,d- It
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§6. COMPLETE MANIFOLDS WITH k  >  0 315

then follows from (6.6) that the pointwise norm of cp is uniformly less than 
Cs on K , i.e. ||<p||c<>,jt ^  Ce. For e sufficiently small, this violates (6.5), and 
we conclude that dim(ker DE) is finite.

The invertibility of the Green’s function will not be used directly here. 
We refer to the reader to Gromov-Lawson [3] for the proof of this fact. ■

Proof o f 6.3. With respect to the bundle splitting $c (g) E =  ($£ (g) E) ©  
(#c <g) E) the operator p E can be written (pointwise) as

where : T($£ <g) E) -+ T($c ® E). Passing to L2-sections, we get an 
orthogonal decomposition L 2($c (g) E) =  L 2($£ <g) E) ©  L 2{$£ (g) £), 
and 0 E continues to interchange factors as above. Consequently

and the finite dimensionality of ker is clear.
Since 0 E is self-adjoint, the operators 0 E are adjoints of one another, 

and so ker P E =  coker J/>E . ■

Of course we will need a version of the vanishing theorems from the 
compact case.

Proposition 6.4. Let X  and E be as above, and suppose there is a constant 
c > 0 so that

on X . Then ker Jt>E =  0, and in particular, ind($ E) =  0.

Proof. As in the proof of II.5.7, the completeness of X  allows us to inte­
grate by parts. Thus formula (6.1) implies that

for all q> e L 2($ <g) E ), and it is evident that ker 0 E = O. m

In order to apply the arguments of the previous section, we need some­
thing to play the role of the Atiyah-Singer Index Theorem. This will be 
done by a Relative Index Theorem. We will present here only the special 
case that we need. More general versions of this result have been proved 
by J. Cheeger and by H. Donnelly [3].

Theorem 6.5 (Gromov-Lawson [3]). Let X  be a complete even-dimensional 
spin manifold whose scalar curvature is uniformly positive at infinity. Let 
E0 and E x be two bundles with compact support on X , and assume that

» ' - l °  ' • ' I* U i  o )

ker p E =  ker 0 E ® ker f>E

^  c Id. (6.7)

\\0 M \x  =  I N I I i  +  J x<(*K +  ^ EX<p), <p> ^  c||<p|||
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316 IV. APPLICATIONS

dim E0 =  dim E v Then the difference o f the indices o f the Dirac operators 
0 eo and 0 ex is a topological invariant, given by the formula

ind 0 1  -  ind 0 1  =  {(ch E , -  ch E0) • A(X)}  [.X ]. (6.8)

where, via the trivializations at infinity, the class ch £ ,  — ch E0 has com­
pact support on X .

Via Chern-Weil Theory (see Kobayashi-Nomizu [1].). the classes ch E0, 
ch E x, and A(X)  can be represented canonically in terms of the curva­
ture forms of the given connections. Form ula (6.8) can then be rewritten as

ind 0 1  -  ind 0 1  =  Jx (ch E t -  ch E0) a  A(X). (6.8)

(Recall that E0 and E x are flat outside a compact set.)
Another method to compute the relative index is as follows. Chop off 

the manifold X  outside the support of E0 and E i to obtain a compact 
manifold X  with boundary. Let Y  be the double of X  and let E be the 
bundle on Y  given by E0 on one piece and E x on the other piece with E0 
and E^ glued together at the “seam” d X  by the trivialization. Then the 
right hand side of (6.8) becomes {ch E • A (T )}[y].

An im portant special case of Theorem 6.5 is where E x = E is some 
bundle with compact support on X  and where E0 =  X  x C* is the triv­
ialized bundle of dimension k =  dim £. Note that 0 Eo =  0  © * ’ ’ ©  0  
(fc-times) where 0  is the usual Atiyah-Singer operator. We then define the 
reduced Chern character of E to be

cfr E =  ch E -  ch <C* =  ch lE +  ch2£  +  ... (6.9)

The formula (6.8) then becomes

ind(0£) -  k in d (0 +) =  {cli E  • R(X)}  [* ] .  (6.10)

For the proof of Theorem 6.5 the reader is referred to Gromov-Lawson 
[3].

Completion o f the proof o f Theorems 5.5 and 5.12. Armed with Theorem
6.5 we are able to extend the arguments of the last chapter from the 
“compactly enlargeable” to the “enlargeable” case. Let X  be a compact 
riemannian manifold with k ^ . k0 for a constant k0 > 0. Let e >  0 be 
given and suppose X  is a spin covering space which admits an e-con- 
tracting map f : X - >  S2m(l) of non-zero /1-degree. Fix a bundle E0 with 
connection over S2m(l) with cm(E0) =£ 0 and set E = f* E 0 with its induced 
connection. Note that £  is a bundle with compact support on X , and so 
we can construct operators 0  and 0 E as above.
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§6. COMPLETE MANIFOLDS WITH k  > 0 317

Since k  g: k 0  >  0, we have ind{0+) =  0. However, for e sufficiently small, 
the inequality (6.7) will be satisfied, and we conclude that ind(0e)  =  0. 
Consequently, by (6. 10) we have

0 =  {cli E • A(X)}[X] =  {cm(E) • A (* )}[* ]
= { f *cm(E0) - k ( X) } [ X]

= a-deg)(/)cm(£0)[S2m]

contrary to assumption. ■

Theorem 6.5 allows us to prove a number of results about complete 
metrics on non-compact manifolds. We begin by focusing on some impor­
tant facts. The first fact is that in all the arguments of §5 we only used 
the fact that the mappings /  were uniformly contracting on the curva­
ture 2-form of a connection. This leads to the following notion:

D efinition  6.6. A sm o o th  m ap  f : X  -> Y  betw een riem an n ian  m an i­
folds is sa id  to  be e-contracting on 2-forms o r  (e,A2)- contracting if

for all elements { e A2TX,  or equivalently if

sup l l / ’Vll ^  8 sup IMI 

for any differential 2-form ij/ on 7.

The strength of this is that to be (e,A2)-contracting the map needs only 
to be contracting in (n — 1) of the directions at each point, where n =  
dim(20. For example, the linear map L: W  Rn with matrix

/ '  » \a
a

0

\  ' « /

is (e,A2)-contracting but not e-contracting.
All of the discussion of §5 remains valid if the hypothesis “e-contracting” 

is replaced by “(e,A2)-contracting”. The real power of this observation 
will be seen in the non-compact case.

D efinition  6.7. An orientable riemannian manifold X  is called (c,A2)- 
hyperspherical if there exists an (e,A2)-contracting map / :  X  Sm( 1)
which is constant at infinity and of non-zero ,4-degree.
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The basic argument given above proves the following result.

Theorem 6.8 (Gromov-Lawson [3]). There is a constant en >  0 so that any 
spin n-manifold carrying a complete metric with k  ^  1, cannot be (e„,A2)- 
hyperspherical.

The number sn can be explicitly estimated for each n.
We now introduce a topological property of manifolds.

D e f in it io n  6.9. A manifold X  is called weakly enlargeable if for each 
riemannian metric on X  and each e >  0, there exists an orientable covering 
space of X  which is (A2,e)-hyperspherical in the lifted metric.

Any (compact) enlargeable manifold is weakly enlargeable. However, 
there are many non-compact examples .

Proposition 6.10. I f  X  is enlargeable, then X  x U is weakly enlargeable.

Proof. Fix a metric g on X  x R and consider the composition I x R - >  
R -> S x( 1) where the first map is projection and where the second map is 
constant (=  *) outside the interval (—1,1), and of degree 1. Call this com­
position p. Since X  is compact, p is ^-contracting for some <5^1.

Consider also the projection X  x  [ —1,1] X* and choose a metric 
g0 on X  so that this map is 1-contracting from the given metric g on 
* x [ - l , l ] .

Fix now an e >  0 and choose a riemannian covering (X,g0) of (X,g0) 
which admits an (e/<5)-contracting map / :  X  -+ Sm(l) which is constant 
(=  *') at infinity and of non-zero A-degree. Extend the map /  trivially to 
X  x U and note that for the lift g of the original metric g9 this map is 
(g/<5)-contracting over X  x  [ —1,1].

Fix now a 1-contracting map <7:Sm(l) x 5 X(1) -+ Sm+1(l) which is con­
stant on the set (Sm(l) x {*})u ({*'} x S 1̂ )) .  Then the composition

X  x IR ^ 4  s m(l) X S ‘(l) sm+1(l) (6.11)

is (e,A2)-contracting with respect to the metric g, constant at infinity and 
of the same y4-degree as / .  ■

We now have, for example, that any manifold of the form X n x  R, 
where X n is compact and carries non-positive curvature, is weakly 
enlargeable. A basic case is that of T n x  R.

The property of weak enlargeability is contagious.

Proposition 6.11. Let U be an open submanifold o f X  such that the map 
TtxU -► Tt^X is injective. I f  U is weakly enlargeable, so is X .
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§6. COMPLETE MANIFOLDS WITH k  >  0 319

Proof. This is an immediate consequence of the definition of weak en­
largeability. ■

Corollary 6.12. Any manifold X  which contains a (compact) enlargeable 
hypersurface X 0 with n ^ o  -► n xX  injective is weakly enlargeable.

Proof. Let U be a tubular neighborhood of X 0 and apply 6.10, 6.11. ■

As an example, let X  =  T n — A where A is any closed subset such that 
A n  T " -1 =  0 for some linear hypertorus T ""1 c  T n.

This example gives substance to the following:

Theorem 6.13 (Gromov-Lawson [3]). A weakly enlargeable manifold can­
not carry a complete metric o f positive scalar curvature.

R em ark . J. Kazdan [1] has proved a version of Theorem 5.7 for non­
compact complete manifolds. This strengthens Theorem 6.13 by adding 
the statement: Any complete metric with k * z 0  on a weakly enlargeable 
manifold must be Ricci flat.

Proof. Note that if the scalar curvature were uniformly positive, the result 
would follow easily from Theorem 6.8. To achieve the uniform positivity 
of k  we shall multiply by a large 2-sphere. The estimates then become 
more delicate.

Let X  be weakly enlargeable and suppose X  carries a complete metric 
g  with k  > 0. For any given s >  0, we can find a covering X  of X  which 
admits an (e,A2)-contracting map f : X - >  Sm( 1), constant at infinity and 
of non-zero y4-degree. In fact, we may assume this map to be (e,A2)- 
contracting with respect to the (not necessarily complete) metric g ' = Kg. 

Hence, the map /  is pointwise s k ( x )  contracting on 2-forms with respect 
to the (lift of the) metric g.

We now take the riemannian product X  x S2(r) and consider the com­
position

where a is a fixed “smashing” map as above (cf. (6.11)). Call this composi­
tion F. We want to derive a pointwise estimate for the contraction of F on
2-forms. Since /  has compact support on X , it is c-contracting on tangent 
vectors for some c >  0. The dilation map on S2(r) is of course (l/r)-con- 
tracting on tangent vectors and ( l /r2)-contracting on 2-forms. We may 
assume <r to be essentially 1-contracting. It follows that at any point

f x(y) 
X  x S 2(r)-----

s-------------
Sw(l) x S2(l) Sm+2( 1) (6.12)

F
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320 IV. APPLICATIONS

{x,y), the map F is e(x)-contracting on 2-forms, where e(x) = max{£jc(x), 
c/r, 1/r2}. The map F is supported in a compact set K. Set k0 =  inf{fc(x): 
(x,y) e K  some y} >  0, and choose r >  1 so that max{c/r, 1/r2} ^  s k 0. 

Then the map F  will be £K(x)-contracting on 2-forms at every point (x,y).
We now proceed as before to pull back a fixed bundle with connection 

from Sm+2(1), via the map F. The curvature term (6.7) will be of the form

1
4 '

k(x ) +  - j  +  * *  (6.13)

where E =  F*{E0) is the induced bundle. There is a constant y depending 
only on dimensions so that

m  ^ «
pointwise on X  x S2(r). However, since F is pointwise e/c(x)-contracting 
on 2-forms, we see that

pointwise, where HR^H^denotes the C°-norm over Sm+2(1). We may as­
sume that e satisfies s <  *y||i?£o||oo since these constants are fixed at the 
beginning. The curvature term (6.13) then satisfies the inequality

1 2  2 
-  k (x ) +  - j  +  ^  - j4 r1

on all of X  x S2(r). Hence, Proposition 6.4 applies to the twisted Atiyah- 
Singer operator and we conclude that in d e x e s )  =  0. Of course, 
index(j0+) =  0 for the standard Atiyah-Singer operator. We now apply 
the Relative Index Theorem as before to complete the proof. To do this, 
it is necessary that the bundle E0 over Sm+2(1) have a non-trivial Chern 
character, and therefore that m be even. If m is odd, however, we may
simply replace S2(r) in the construction above, with S3(r), and everything
goes through.

We now complete the argument. Let k = 2 or 3, so that m +  k =  2AT, 
for some integer AT. Then since ind($£) =  ind ($+) =  0, Theorem 6.5 
together with formula (6.10) implies that

0 =  {chE - R{X  x S*)}[X x S*]
=  {cn(E) • R (X  x Sk)} [ X x  Sk]
— {F*Cn(E0) • R (X  x S*)} [Z  x S*]
=  (i-deg)(F)cw(£0)[S2N]
=  (/4-deg)(/)cJV(£0) [S2N]

contrary to assumption. ■
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E xam ples. As a consequence of Theorem 6.13 we know that there is a 
large collection of manifolds which cannot carry complete metrics with 
k > 0. This includes X  x IR for any enlargeable manifold X . It also in­
cludes manifolds of the form T" — C where C is any closed subset which 
misses some geodesic subtorus T"_1 of codimension one. (For example, 
let C be finite.) One can also replace (Tn,'T,'‘ 1) here by any compact pair 
(X n, where X n carries a metric of non-positive sectional curvature
in which X n~ 1 is totally geodesic. The property of not admitting complete 
metrics with k > 0 remains after taking products of these manifolds and 
then taking connected sums with countable families of arbitrary spin man­
ifolds. It persists also after “boundary” connected sums with any open 
spin manifold.

The “exclusion theorem” 5.6 of the last chapter has a nice generaliza­
tion to the open case.

Corollary 6.14. A manifold which carries a complete hyperbolic metric o f 
finite volume cannot carry a complete metric with positive scalar curvature.

Proof A hyperbolic manifold X  of finite volume has ends of the form 
N  x U where N  has a finite covering by a nilmanifold and n tN  -» n tX  
is injective. Since N  x U is weakly enlargeable, so is X  by Proposition 
6.11, and Theorem 6.14 applies. ■

By introducing one further trick we are able to “localize” the results 
above. To do this we recall the notion of a warped product. Let X 1 and
X 2 be riemannian manifolds with metrics and g2 respectively, and let
/ :  X x -► U+ be a smooth function. The warped product of X t and X 2 with 
warping function / i s  the cartesian product manifold X  =  X x x X 2 with 
riemannian metric

9 =  01 + f 2g 2 (6.14)

It is an elementary exercise to compute that for such a warped-product 
metric, the scalar curvature is

K =  Ki +  J i  { k 2  ~  2n/V 2/  -  n(n -  1)||V/||2} (6.15)

where Xj is the scalar curature of X s and n =  dim(X2). If we let X 2 =  
S"(l), the euclidean n-sphere of radius 1, then on X  =  X t x S"(l) we have

k = k i +  (i _  ||A /||2) -  2n y . (6.16)

By choosing /  small and constant over a compact set, we can make k 
positive there. On a compact manifold X 0 we can then slowly change /  
to suit our purposes. This is the basic idea in proving the next result.
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Theorem 6.15 (Gromov-Lawson [3]). Let X  be a non-compact, connected 
spin n-manifold containing a compact, connected, orientable hypersurface 
X 0 c  X . Suppose that X 0 separates X  into two components. Suppose fur­
ther that there is a map F :X  -► Y, onto an enlargeable (n — l)-manifold 
which, when restricted to X 0, has non-zero degree. Then X  carries no com­
plete metric with |Ric| ^  constant and with k  uniformly positive outside a 
compact subset.

Proof. Suppose that X  carries a complete metric with k  ^  2 outside a 
compact set. Let X+ and X _ denote the two connected components of 
X  — X 0. Since X is non-compact, at least one of these components, say 
X +, is unbounded in the given metric. Define a function p : X  -*• R by 
setting

f dist(x, X 0) for x e  X+
^  X \  — dist(x, X 0) for x e X  _.

By the assumption on Ric there is a smoothing p of p with ||Vp|| ^  2 and 
with |V2p| ^  C for some constant C ^  2. Fix a number p0 so that k: ^  2 
outside the compact set K  =  {x e : |p(x)| ^  p0}. Let en be the number 
given by Theorem 6.8, and choose R  >  0 so that 1 /R  < e„. Let Kinf =  
inf{*c(x): x e  K }, and choose r, 0 <  r <  1, so that 1/r2 >  1 +  |fcinf|. Choose 
now a C 00 function 0 :  R -► R so that

X O  =  r for |t| ^  p0
$(t) =  K for |f > p0 + 2R/e

where e is the constant

e =  

r/3C.

We take the warped product of X  with S2(l) using the function/ on X  
given by

f ix )  = 4>(p{x)).

By (6.16) the scalar curvature k  of this metric satisfies: K ^  l^ infl +  2/r2 >  1 
over K  x S 2, and >  2 +  6s2C2r~ 2 >  1 over {X -  K) x  S2. Hence, jc >  1 
on all o f *  x S2.

We shall now find a covering of X x S2 which is (fi„,A2)-hyperspherical, 
in contradiction to Theorem 6.8. To begin we fix a number b >  p0 +  2R/e 
and we consider the compact set Q =  {x e  *  : b g  p(x) ^  b +  47r}. Fix a 
metric on y. Let 8 =  suplHFjj* : x e Qj and choose a riemannian cover­
ing n :Y  -► 7  which admits an (ew/<5)-contracting map p ; F Sw-1(l) 
which is constant at infinity and of non-zero degree. Taking the fibre
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product of F  and n gives a commutative diagram

323

X  —^  Y

n n

X - ^ Y

where n is a covering map and F is proper. Let g =  g ° F and let 
h = z p o p o f t : X  -► S 1( 1) where p : R -> S^ l )  is the degree-1 map given 
by collapsing everything outside the interval (b9b 4* 4n) to a point. (This 
map is (^-contracting). Let G denote the composition

' ■ F - ' W x  S l( l ) - ^ S n( 1)

where a is a “smashing” map which collapses the axes S"” 1(l) x {*} u  
{*} x S1(l) to a point. The map G is a constant outside a compact set 
contained in Q =  nT^fi). Since h is 1-contracting and g is e„-contracting, 
it follows that G is, at every point, >/(! +  ^ -con trac ting  and ^-contracting 
in the hyperplane kcv(hj.

We now lift the warped metric to X  x S2 and let H  denote the 
composition

X  x S2 S"(l) x S2(l) -Z -+  S"+2( 1),
H

where & is again a “smashing” map. Since the warping function /  =  
f  on — constant — R o n  the support of G, and since l/R  < en9 we see that 
H  is again, like G, 1-contracting and “e„-contracting in a hyperplane” at 
each point. In particular, the map H is en-contracting on 2-forms.

To complete the proof we must show that H  is of non-zero degree. 
The main point here is the following. Let t be any regular value of p and 
consider the compact manifold X t =  Clearly X t is homologous to
X 0 =  p _1(0), and so by the hypothesis on F, its restriction gives a map 
F : X t Y  of non-zero degree. The rest is straightforward. Set X t =  
n ~ l(X t) and note that the lift F is proper on X t and has the same 
degree as F. Now the degree of g x h equals the degree of g restricted to 
a regular level set of h9 and deg(g) =  deg(p)deg(F) #  0. Hence, deg(G) =  
deg(H) 0. E

There are many interesting applications of Theorem 6.15. For exam­
ple, let X  be an open n-manifold and X 0 c  X  a compact hypersurface.
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Suppose X 0 disconnects X  and let g  be an unbounded component of 
X  — X 0 with d g  =  X 0 (see diagram below).

D efinition  6.16. We say that g  is a bad end if there exists a map 
F : g  Y  onto an enlargeable manifold Y  so that F|*0 is of non-zero 
degree.

Theorem 6.17 (Gromov-Lawson [3]). Suppose X  is a spin manifold with a 
bad end $ . Then there is no complete metric on X  which has |Ric| bounded 
and k  uniformly positive on S.

Note. Actually, only the end g  needs to be spin.

Proof. Let X  be given a complete metric. Consider the double D(g) =  
$  kjXo g  with a metric which agrees, outside a neighborhood of the “seam” 
dg  =  X 09 with the given one. This manifold satisfies all the hypotheses of 
Theorem 6.15, and therefore cannot have |Ric| bounded and k  uniformly 
positive outside the compact neighborhood of X . ■

Theorem 6.18. A compact 3-manifold o f K(n , l)-type cannot carry a metric 
with positive scalar curvature. In fact, no compact 3-manifold which can 
be written as a connected sum with a K(n, l)-manifold, can carry positive 
scalar curvature.

Proof. Let I  be a compact K(n91) 3-manifold. We may assume that X  
is orientable and therefore spin. Choose an embedded curve y c: X  which 
is not homotopic to zero, and consider the covering space X  -> X  cor­
responding to the cyclic subgroup of n xX  generated by [y]. There is a 
lifting of y to an embedded curve y a  X  which generates TtyX. Note that 
X  is a l)-manifold. In particular, n^X  £  Z and the inclusion y a  X
is a homotopy equivalence. (It is not possible that n^X  =  Zm since 
H 2k{K(Zm, 1); Zm) = Z m for all k.)

Suppose now that X  carries a metric g  with k  >  0. Then g  lifts to a 
complete metric g  on X  of uniformly positive scalar curvature with |Ric| 
bounded.
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Choose a tubular neighborhood U of y, and set S  =  X  — U. We claim 
that S  is a bad end. To prove this, we first show that the inclusion d S  & 
induces an isomorphism on H v  This is an easy consequence of the 
Mayer-Vietoris sequence for X  =  U u  8  which gives

0 =  H 2( X ) -----► H x(d S )  ► H XS  ® H X0  ► H xX  ► 0.

(Recall that the inclusions y a  U a  X  are homotopy equivalences.) By 
general theory the surjective homomorphism n x£  -► H^S*) s  Z ® Z is 
represented by a continuous map F \ S  -> S l x S 1 =  K(Z  ® Z, 1). Re­
stricted to d& =  S1 x S1 this map induces an isomorphism on n u and 
therefore has non-zero degree. Thus, $  is a bad end, and the first state­
ment of Theorem 6.18 is proved.

For the second statement consider a compact oriented 3-manifold Z  =  
X  # Y  where X  is as above. Let s :X  # Y -+ X  be a map given by collapsing 
the T-summand to a point * e X .  Choose y c  X  — {*} and pass to the 
covering n : X  -► X  with the lifted curve f c l a s  above. Taking the fibre 
product of s and n gives a commutative diagram

:x J y  — ^  x

X # Y  X

where ft is a covering map and s is proper. The map s simply consists of 
collapsing a family of “ y-summands” to the discrete family of points x(*). 
The neighborhood U of y can be chosen to lie in X  — n ~x(*) where s is a 
diffeomorphism. Thus we can lift U back to X  jf Y  and consider the end 
S' == X  ft Y  — s~ x{U). By restriction we have a proper degree-one map 
s : ^ '  -» $  onto the end $  constructed above so that s :d&' is a
diffeomorphism. Composing with the map F .8  -* S 1 x S 1 above shows 
that the end S ’ is a bad one, and Theorem 6.17 applies as before. ■

Recall that every compact orientable 3-manifold has a “prime decom­
position”

where the manifolds have finite fundamental groups (in S 0 4) and where 
each K j is a K(7t,l)-manifold (see Milnor [4] and Hempel [1]). The theorem 
above says that i f  X  carries positive scalar curvature, then there are no 
K{n,l)-factors in the prime decomposition o f X . There are alternative proofs 
of this fact using minimal surfaces (see Gromov-Lawson [3], Schoen-Yau 
[1]). If standard conjectures in the theory of 3-manifolds were true, this 
result combined with Proposition 4.3 would settle the question of which 
3-manifolds carry k  > 0.
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Arguing as in the proof of Theorem 5.5, we see that a compact 3-mani- 
fold X  with k ^  0, which does not carry k > 0, must be flat. There are 
six such manifolds up to diffeomorphism. (See Calabi [1].)

Results for non-compact 3-manifolds M can be obtained by these 
methods. We say that M contains an incompressible surface if there is an 
embedding £  Af of a compact surface of genus >  0, such that the 
induced homomorphism -> n ^M )  is injective. We say that M  carries 
a small circle if there is an embedding S 1 M  whose class is of infinite 
order in H t(M;Z) and such that the class of the small normal circle is of 
infinite order in H X(M  — S1; Z). Thus, S1 x U2 carries a small circle, but 
S l x S2 does not. From 6.12 and 6.13 we see that any 3-manifold which 
carries an incompressible surface cannot carry a complete metric with k > 0 
(a result due originally to Schoen and Yau [6]). Furthermore, any
3-manifold which carries a small circle cannot carry a complete metric with 
k ^  1. In particular, the manifold S l x  U2 carries no such metric (see 
Gromov-Lawson [3]).

§7. The Topology of the Space of Positive Scalar Curvature Metrics

Fix a compact m-dimensional manifold X  and let J d X )  denote the space 
of all riemannian metrics on X . Note that J t(X )  is a convex cone in the 
linear space T (T *X  ® T*X) and is therefore contractible. It is acted on 
naturally by the group DiflpO of diffeomorphisms of X .

We consider here the subspace 8P{X) c  J t{X )  of those metrics which 
have positive scalar curvature. This subspace is stable under DiffpO, and 
as we have seen, could possibly be empty. The first results on the topology 
of &>(X) were due to Hitchin [1] who defined for spin manifolds X  a hom o­
morphism

h m ^ . m X ) )  ► K O - - ”( pt) (7.1)

for each n ^  1 as follows. Suppose a e 7i„_ x{^ (X ))  is represented by a map 
/ :  Sn~ 1 -► &>(X). Since M (X ) is contractible, we can extend this to a map 
/ : / ) ” -> M (X ) where S”" 1 =  dDn. (This extension process realizes the 
isomorphism nn-fjP (X ) )  nn(M (X \^ (X )) .)  Fix a spin structure on X  
and associate to each metric f{y)  the canonical C£m-linear Atiyah-Singer 
operator for that metric. This gives a family of elliptic operators over 
Dn which at each point of dDn are invertible (since the scalar curvature is 
positive). The invertible operators form a contractible space, so we can 
deform/ to be constant on S"“ l . Taking indm of the resulting family gives 
an element h (f) e K O -m{D \S n~l) s  JfCO‘ m(Sw) s  K O ~m^ n{pt) which de­
pends only on the homotopy class of / .

Hitchin is able to show that his homomorphism (7.1) is often non­
trivial by the following means. Fix a metric y e &>(X) without isometries 
and consider the embedding iy: Diff(2f) ^  @>{X) given by iy(g) =  g*(y).
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§7. SPACE OF METRICS WITH k  > 0 327

Composing with h leads to a homomorphism -» K O ~n~m(pt)
whose value on an element u e 7cw_ 1 (Diff(AT)) is «a/(Ztt) where Z u -> Sn is 
the fibre bundle with fibre X  constructed by clutching together two copies 
of Dn x X  along Sn ~ 1  x X  via u. Using deep results from topology, Hitchin 
is able to construct sufficiently many non-trivial examples to prove the 
following:

Theorem 7.1 (Hitchin [1]). Let X  be a compact spin manifold o f dimension 
n with &>(X) 7* 0 ,  then

7to(0>(X)) t* 0 if n =  0 or 1 (mod 8 )

n ^ i X ) )  7 * 0  ifn  = 0 o r —l (mod 8 )

Note that these classes do not survive to the quotient &>(X)/Diff(X).
A slightly different approach to the study of the topology of &>(X) was 

given in Gromov-Lawson [3]. The cleanest statements require the Rela­
tive Index Theorem 6.5. However, the basic idea is based on the following 
elementary construction. Fix y e &>(X) and suppose Y  is a compact 
manifold with dY  =  X. We say that y extends to Y  if there exists a metric 
y e  &>(Y) which coincides with the product metric y + d t 1 on a collar 
neighborhood U «  X x (0,1] of the boundary. This extendability depends 
only on the homotopy class of y in 0>(X). To see this, consider a smooth 
family of metrics yt e &>(X ), t  e R, which is constant for t  ^  0  and for t  ^  1 . 
It is easily checked that the metric yt/c +  d t 2 on X  x IR has k  >  0 for all suf­
ficiently large constants c. Adding the collar X  x [0, c] (with this metric) 
to Y  shows that y0 extends to Y  if and only if yx does.

Proposition 7.2. Suppose that X  is a spin manifold. Let {ya}aeyi <= &>(X) 
be a family o f metrics, and suppose that there exists an associated family 
{ y j a 6 i 4  o f compact spin manifolds with dYa =  X  such that ya extends over 
Yafor each oce A. I f

A(Ya v x ( - Y p) ) * 0  for all a # j ? ,

then ya is not homotopic to yp in &>(X) for all a 7* P-

Proof. If ya is homotopic to yp in ^ ( X ), then ya extends over both Ya 
and Yfi. The extended metrics fit together to give a metric of positive scalar 
curvature on Ya u  ( — Yp), and therefore A(Ya u  ( — Yp)) =  0. ■

The “extension pairs” (ya,Ya) discussed above are not difficult to con­
struct. There are two good sources.

Lemma 7.3. Let n :V  -* X  be a riemannian vector bundle o f (fibre) dimen­
sion k over a compact manifold X , and let D(V) =  {v e  V:\\v\\ =  1}. I f  
k > 2, then there exists a metric y e &>(dD(V)) which extends over D(V).
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328 IV. APPLICATIONS

Proof. Choose an O k-invariant metric y0 o n  R* which has k  ^  1 and is 
isometric to the standard product metric on Sk~l x  [l,oo) outside the 
unit disk. Choose an orthogonal connection on V and let denote the 
corresponding field of horizontal planes on V. Choose any metric y t on 
X  and lift this metric to via n. Introduce the metric y0 on the fibres 
of V. Using the formulas of O ’Neill [1], the sum yx +  t2y0 is seen to have 
positive scalar curvature for all t >  0 sufficiently small. ■

More elaborate arguments prove the following in any manifold Y:

Theorem 7.4 (Carr [1]). The boundary o f a regular neighborhood U o f any 
smoothly embedded finite subcomplex o f codimension > 2 in 7, admits a 
metric o f positive scalar curvature which extends over U.

E xam ple  7.5. Let V -+ S4 be a real vector bundle of dimension four with 
Euler number x and Pontrjagin number p v  It is elementary that if % =  ±  U 
the manifold Ev =  dD(V) is a homotopy sphere. M ilnor showed that 
Ev == S7, the standard 7-sphere, if and only if p\ =  4 (mod 896). Let Vk 
be the bundle with x =  1 and =  4 +  896/c. Calculations in Milnor [7] 
show that

A(Vk u  D8) =  k for each fc.

From Lemma 7.3, for each k we can construct a metric yk on S7 which 
extends over Vk. By Proposition 7.2 these metrics are mutually non­
homotopic in ^ (iS7) and so we have that

n J fP iS 1)) is infinite.

Since 7r0(Diff S 1) is finite, we also have that

7r0(^ (S 7)/Diff(S7)) is infinite.

The analogous comments apply to each of the non-standard Milnor 
spheres Ev.

E xam ple 7.6. Fix an integer n > 1 and let Y  denote the compact 4n- 
manifold with boundary constructed by plumbing together eight copies 
of the tangent disk bundle of S 2n according to the Dynkin diagram for £ 8. 
Let Yk denote the boundary connected sum of fc-copies of Y. It is ele­
mentary to see that E =  dY  is a homotopy sphere. By the finiteness of 
the group of homotopy spheres, there is an integer m =  m(n) such that 
dYkm = E #  - - • § E  (km-times) ^  S4"” 1 for all fc. Using Theorem 7.4, we 
can construct for each fc a metric yk e &>(S4" " l) which extends over Ykm. 
On the other hand, as shown in Carr [1],

i ( y kwu ( - y k, j ) # o  if fc# fc\ (7.2)
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§7. SPACE OF METRICS WITH k  >  0 329

In fact, since Ykm u  (— Yk.m) is a (2n — l)-connected 4n-manifold, its A -genus 
and its L-genus are both certain universal (non-zero) multiples of pn, the 
nth Pontrjagin number. It suffices therefore to show that the signature #
0. Since sig(Y) =  1, we see that sig(l*m u  (— Yk>m)) = (k — fc')m. This 
establishes (7.2) and from Proposition 7.2 we conclude that

n0(^ (S 4"” 1)) and Tto^S^-^/D ifflC S4" - 1)) are infinite

for all n > 1. From this we can deduce the following:

Theorem 7.7. Let X  be any compact spin manifold o f dimension 4n — 1 ^  7 
with &>(X) 0 .  Then n0(&>(X)) is infinite.

Proof. Let Z k =  (X  x [0,1]) tJ Ykm where denotes boundary connected 
sum. Note that dZk =  X II (X  # S4rt" l) «  X  U X . Fix a metric y e &>(X) 
and take connected sum with the metric yk constructed above on the 
component “X  ^ S 4"-1 ” (cf. 4.3). This metric extends over Z k. (Essen­
tially this extension is constructed by taking the connected sum of the 
product metric on X  x  [0,1] with that on Y*m and modifying it; see 
Carr [1] for example.) Since Z k u  ( ~ Z k.) =  (X x S 1) § (Ykm u  
we have A(Zk u  ( ~ Z k.)) =  A(Ykm u  (— Yk.J )  #  0 and 4.3 applies. ■

The arguments given above can be nicely encapsuled by using the 
Relative Index Theorem. Let X  be a compact spin manifold of dimen­
sion 4n — 1. For each pair of metrics g0,gi e &>(X) we define a relative 
index i(g0,g e Z as follows. Introduce o n X x R a  metric g which equals 
the product metric g0 -F dt2 on X  x ( — oo,0] and gx 4- dt2 on X  x  [l,oo). 
Set

'(0o>0i) =  ind(0+)

where |)  + : r ( ^ +) -> T(^") is the Atiyah-Singer operator on X  x  IR. By 
Theorem 6.5 this index is independent of the choice of g in X  x [0,1]. If 
0o is homotopic to gx in &>(X\ then we can choose g to have k  > 0 (as 
above) and so i(g0>gi) =  0. Thus, i(g0,gi) measures components in &>(X). 
It is shown in Gromov-Lawson [3] that

K9o,9i) + i(9u9i) + K92>9o) =  0

for all 0 o.3 i . 0 2  e
Suppose further that X  =  dY. Then given g € 9>(X) we introduce a 

complete metric on Y — dY  which is the product g + dt2 on the boundary 
collar d Y  x [0,oo) =  X  x  [0,oo). Using the Atiyah-Singer operator for this 
metric we define an invariant:

Kg, Y) =  in d (0 +)
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which by 6.5 is independent of the extension and which has the property 
that

i{g,Y) =  0 if g extends over Y.

By the Relative Index Theorem we have that

i(g,Y) -  i(g,Y') =  A (Y  u  (— F))-

Using Browder-Novikov Theory and proceeding as above, one can 
detect non-trivial elements in for higher values of j.

§8. Clifford Multiplication and Kahler Manifolds

Until now we have paid little attention to complex manifolds. This is not 
because the topic is irrelevant to spin geometry. In fact combining com­
plex and spin structures yields the richer study of Spin' manifolds, which 
are discussed in Appendix D. In this chapter we restrict attention to the 
fundamental case of Kahler manifolds.

If Clifford multiplication enters naturally into riemannian geometry and 
leads to basic identities, then in Kahlerian geometry it should enter in an 
even more interesting way. This is indeed true. For Kahler manifolds there 
is a rich algebraic formalism which relates Clifford multiplication and the 
complex structure. We shall sketch here the principal results. We refer the 
reader to Michelsohn [1] for complete details.

Let X  be a 2n-dimensional manifold equipped with an almost complex 
structure, that is, equipped with a bundle automorphism J : T X  -* T X  
such that J 2 =  — Id.

D efinition  9 .1 . A riem an n ian  m etric  < •, • )  o n  X  is sa id  to  be Kahlerian if 
J  is po in tw ise o rth o g o n a l, i.e., <JF, J W y  =  <F, w y  fo r all V,W  e TxX  a t 
all p o in ts  x, a n d  if

VJ =  0

where V denotes the canonical riemannian connection.

Note. It is a basic fact that if X  admits a Kahler metric, then the al­
most complex structure is integrable, i.e., it comes from a system of 
holomorphically related coordinate charts on X .

Suppose now that X  carries such a metric and let D -.r(C €(Z)) -» 
r(C€(X)) denote the associated Dirac operator on the complexified Clif­
ford bundle Cf(X) = C i(T X )  <g)K C of X  (considered as a real manifold). 
The first interesting fact is that there is a natural decomposition

D =  3  + 3

where 3  and 3) are first-order operators which are formal adjoints of one 
another (3 *  =  3 )  and satisfy

330 IV. APPLICATIONS

3 2 =  0, 3 2 =  0. (8.1)
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§8. k Ah l e r  m a n if o l d s 331

Similarly, the zero-order operator L defined in Chapter II can be expanded 
into a pair of operators 3  and 3  which are formal adjoints of one 
another and which canonically generate an sI2(C)-subalgebra. In partic­
ular, if we set 3¥  =  \ 3 ,  3 ] ,  then the three endormorphisms of Cf(A') 
satisfy the identities

[ J f ,  3~\ =  2 3 ,  [JT, 3 ’] =  -  2 3 ,  [ 3 , 3 ]  =  Iff. (8.2)

These operators are defined by setting

@<P = X  efiejV @<P = %

3 (p  =  -  £  Ej(f>6j 3 (p  =  -  £  Zj<P£j

where

Sj = \  (ej — iJej) and £j =  \  (ej -f iJej)

for any local orthonormal frame field of the form euJ e l9 . . .  ,en9Jen. These 
complex vector fields satisfy the “supersymmetry” relations

SiSj +  SjSi =  SiSj +  SjSi =  0 

Bfij +  £j£i =  — &ij

The endomorphism J : T X  T X  extends to C l(X ) as a C-linear map 
which is a derivation with respect to Clifford multiplication. If we set 
#  =  — iJ, then the commuting endomorphisms #  and &£ are each 
diagonalizable with integral eigenvalues, and we can define the sub­
bundles

C t p'q(X) = {cpe C 1{X) : f{q>) =  pep and 3tf(<p) =  q<p)

The representation theory for sl2(C) is used to show that these bundles
are non-zero exactly for pairs (p,q) e Z x Z with \p +  q\ ^  n and p + q = 
n (mod 2). This gives us the bigraded “Clifford diamond” below.

<z

n 
•  •

& l  ' .
•  •

  ------------------------------------   ► P
- n  . . n

•  •

g r '  . . Sg,
•  •

— n
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332 IV. APPLICATIONS

with “raising” and “lowering” operators:

.S?: C C '- W  ► C t™ +2{X), & : C€P>,(X) — ► C£p'4" 2(*),

and with the differential operators 3  and 3  acting diagonally

3 : r(cep>«) — ► r(Cfp+1>,+1), 3  r(C£p-«) — *■ r(ctp~ Uq~ *).

The bigrading is nicely related to multiplication. One has that

C£p’* ■ C£p/’* <= C£p+p'-*

for all p,p', and furthermore that

(C ip,q • C£p'-«' =  {0} if q -  q' *  p + p', and 
|C f p’4 • CCp'’4_(p+p,) cz dp+p'-v-p'

for all p,p',q,q'. These facts follow easily from the identities

£ < p  — (ocp — (pw; # F (p  =  oi(p +  (po)

where by definition 2ico =  £  ej ' J ej f°r any orthonormal tangent frame 
. . .  ,e„,Jen} as above.

We now examine the differential operators. It is easily seen that when 
restricted to any diagonal line in the Clifford diamond, 3  gives an elliptic 
complex

. . .  r (C fp _ li,~1) -£-*  r ( c e p-«) r(C £p+1-«+1) - £ - + . . .

D efinition  8.2. The quotient ^ * ’*(20 == ker 3 / lm  3  is called the 
Clifford cohomology of X.

The general Hodge Decomposition Theorem gives us the following. We 
define a ^-laplacian  A by

A =  3 3 )  -f 3 ) 3 ,

and consider the associated harmonic spaces

W 'q{X) =  (ker A) n  r(C £p^(A:)).

Theorem 8.3. I f X  is compact, then 3tf*'*(X) is finite dimensional and there 
are natural isomorphisms

# ep'\X )  s  K p’q(X)

for all p,q.

R em ark  8.4. If W  is a holomorphic vector bundle over X , then the 
algebraic formalism above carries over easily to C£(X) ® € W  and leads to 
Clifford cohomology groups J4?p,q(X;W) with coefficients in W. If X  is 
compact, Hodge Theory applies to give finite dimensional harmonic spaces 
Hp'q(X;W ) isomorphic to J ^ p,q(X;W ) for each p,q.
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We assume from this point forward that X  is compact. O ur main point 
now is that the Clifford formalism of Chapter I leads easily to interesting 
structure in Clifford cohomology. The simplest operation is that of com­
plex conjugation c : Ct(X) <C£(X). One easily checks that c ° / o c  =  
—#  and that c °J^<>c  =  This leads to the following “Serre Duality” 
Theorem:

Theorem 8.5 (Michelsohn [1]). Complex conjugation in C l(X ) induces iso­
morphisms

#ep'\X) s
for all p,q. More generally, there are isomorphisms

#e*'\X\W) £ 3tf-p'-q(X;W*)
for any holomorphic vector bundle W over X .

Let ★: Ct(X) C£(X) denote the C-linear antiautomorphism given 
by the transpose. Recall that for generators vl9. . . 9vp e TxX , we have

" ’ Vp)  =  Vp - " V v

Theorem 8.6 (Michelsohn [1]). The transpose antiautomorphism induces 
isomorphisms

* :H p« (X )-----► Hp'~q(X)

for all p,q.

Clifford multiplication leads to the following interesting duality. Let (•, ) 
denote the usual L2-inner product on sections.

Theorem 8.7 (Michelsohn [1]). The C-bilinear pairing defined on
W 'q{X) x W '~ \X )  by

!%></') =  (<?•'/', 1)

is non-degenerate.

In all of the above we have considered <C£(AT) as a left module over itself. 
Considering Cf(A") as a right module produces a different Dirac operator 
D" (as in II.5) and a corresponding decomposition £)" =  © " +  3>". These
are related to 2  and ©  by the antiautomorphism ★:

2"' =  ★ o 3) o ★ and — ★ ° 3) o ★.

This leads to cohomology groups and there are iso­
morphisms

3 ^ P’\X ; W )  s  # e p - \ X ; W Y

§8. KAHLER MANIFOLDS 333
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for any holomorphic vector bundle W. The operators 9  and 9  enter 
naturally when considering the sI2(C)-structures

Proposition 8.8. Let W  be a holomorphic vector bundle over X . Then the 
following relations hold on C l(X ) <g> W:

9< e +  & 9  =  o 9f£  +  & 9  = o

9 f £  + & 9  =  =  9 ~

\#e& \ =  9  =  9
|> r,A ] =  4A

Theorem 8.9 (Michelsohn [1]). The cohomology groups J4?p,q(X;W ) admit 
an intrinsic filtration

{0} s  & i'q £ srp2'q £ . . .  £ #ep'q{X\W)

where

& { 'q ss {(>] e  j e p'q(X ;W ): Sek<p = 0}.

Furthermore, the representation o f the Lie algebra preserves the
subspaces

J p'q(X;W) = ker(A) n  ker(A^) n  T C lp'q{X\W ) =  Hp'q(X;W ) n  Hp'q(X ;W y

In the basic case when W  is trivial it is shown that A =  A", and so we 
have the following:

Theorem 8.10. The Lie algebra acting on TCZ(X) preserves the
subspace ker(A) =  H*'*(X). Hence, there is a canonical $l2(C)-structure on 
the Clifford cohomology o f X .

The induced operators on cohomology are of the form

^ I epMX) =  #
& : n p'q( X ) -----► Hp>q+2(X) & : W 'q( X ) ----- ► H™ “ 2(*).

D efin itio n  8.11. A class <pe K p'q(X) is called primitive if SFq> =  0.

Theorem 8.12 (Michelsohn [1]). For all q >  0 and all p, the qth power 
J&q:Hp'q(X) -> HP’” %Y) is an isomorphism. Every (p e W 'q(X) can be writ­
ten uniquely as

<p =  Z  & k<PkkZ 0

where cpk e W ,q+2k(X) is primitive.

334 IV. APPLICATIONS
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§9. PURE SPINORS 335

One might imagine that there is a direct relationship between Clifford 
cohomology and the standard Dolbeault cohomology of X . This is indeed 
true. There is an explicit element in the Hodge automorphism group 
which relates the two. This is computed in Michelsohn [1]. It shows in 
particular that

W - a’u- r-%X;W) £  £  Hr(X;Qs(W )l

and so the Clifford cohomology is independent of the Kahler metric 
chosen on X. The role played by Clifford multiplication in does
however depend on the metric.

§9. Pure Spinors, Complex Structures, and Twistors

Thus far we have said relatively little about the role of spinors in local 
riemannian geometry although there remains much to be discovered in 
this area. There are, however, several places where spinors enter naturally. 
For example there is a notion due to E. Cartan of spinors of “pure” 
type which are related to almost complex structures. These spinors are 
also related to the calibrations introduced in Harvey-Lawson [3]. The 
interesting fact is that the simplest spinors give rise, under “squaring,” 
to the most complicated differential forms.

Whenever there is a parallel spinor on a manifold, there is a reduc­
tion of the holonomy group. Via Bochner’s method, spinors play a central 
role in constructing and understanding manifolds with reduced holonomy. 
This is particularly true of the exceptional cases of G2 and Spin7 
holonomy.

This section and the next one are devoted to a discussion of the topics 
just mentioned. We begin with the notion of a pure spinor. Fix IR" with its 
standard inner product < v >  and extend this metric C-linearly to C" =  
IR" <g)K C. Let Cf„ =  C ln C be the associated Clifford algebra, and let 
$c be a fundamental C f ,,-module, i.e., an irreducible complex spinor space. 
For each spinor <x e $c , we consider the C-linear map

j „: C " -----► $c given by = v  a. (9.1)

Generically, this map is injective. However, there are interesting spinors 
for which dim(ker j„) > 0, and it is these that we shall now examine. We 
begin with the following definition.

Definition 9.1. A complex subspace V a  C" is said to be isotropic 
(with respect to the bilinear form < •,•»  if <t>,w> =  0 for all v,w e V.

We define a hermitian inner product (•,•) on C" by setting (u,w) =  
<u,vv). Clearly, if V c  C" is an isotropic subspace, then V 1  V  in this
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336 IV. APPLICATIONS

hermitian inner product. In particular, therefore, we have

2 dimc F  ^  n. (9.2)

Lemma 9.2. For any non-zero spinor <7, the subspace ker j 0 is isotropic.

Proof. If v e  =  w-cr =  0, then ( v  w +  w-i;) • o =  — 2<i;,w><x =  0. ■

D efin itio n  9.3. A sp in o r a is pure if k e r j a is a  m ax im al iso tro p ic  su b ­
space, i.e., if d im (ker j ff) =  [n /2 ].

Denote by P$ the subset of pure spinors in $c , and denote by the set 
of maximal isotropic subspaces of €". Both P$ and &„ are naturally acted 
upon by the group Pinn, and the assignment o h-> ker j a gives a Pin„- 
equivariant map

K : P $  > £ n. (9.3)

To see that K  is equivariant note that for v e €" and <r e Sc , we have 
g(v)-g'<r =  g 'V -g ~ l 'g -o  =  g - v o  for all g e Pin* c: C£* . Hence, 
ker j go =  g{ketja) as claimed.

R emark  9.4. Note that in fact we can define a Pinw-invariant “filtra­
tion” of the spinor spaces

$0 C  $1 C  $2 c  . . . <Z $[n/2] =  (9*4)

where $k =  { a : dim(ker j a) ^  [n/2] — k} for each k. The subset P$ = $0 — 
{0} consists exactly of the pure spinors. The subsets $k are not linear 
subspaces. As we shall see, there are orthonorm al bases of $c which con­
sist entirely of pure spinors.

At this point our discussion divides as usual into the two cases, n even 
and n odd. We shall discuss in detail only the even case. (The reader can 
easily carry over the arguments and constructions to the odd case.) From 
this point on we shall assume that n =  2m is an even integer, and further­
more that (R2m is oriented.

D efin itio n  9.5. An orthogonal almost complex structure on R 2m is an
orthogonal transformation J :U 2m R2m which satisfies J 2 =  —Id. For 
any such J, an associated unitary basis of IR2m is an ordered orthonormal 
basis of the form {euJex, . . .  ,em9Jem}. Any two unitary bases for a given 
J  determine the same orientation. This is called the canonical orientation 
associated to J.

Let c6 m denote the set of all orthogonal almost complex structures on 
R2m. It is easily seen that is a homogeneous space for the group 0 2m. 
It falls into two connected components <&+ and where s  S 0 2m/U w 
consists of those almost complex structures whose canonical orientation 
is positive (i.e., agrees with the given one on R2m).
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§9. PURE SPINORS 337

Associated to any J  e c€ m there is a decomposition

C2m =  V(J) ® F(jj, where

V(J) == {v e € 2m : Jv  =  — iv) =  {i>0 +  iJv0 : t>Q e R2m}. (9.5)

For any y0 e R 2m we have that (v 0 +  iJv09 v0 +  Uv0)  = (v0,v0} — 
(J v 0iJv0y +  2i(v09Jv0> =  0, and so the space F(J) is isotropic. Con­
versely, given any m-dimensional isotropic subspace V c  C 2w, there is a 
unique J  e so that F  =  F(J). To see this note that if one writes C2m =  
R 2m ®  i‘R2m, then F(J) is just the graph of J. Hence, there is an 0 2m-equi- 
variant bijection

(9.6)

which associates to J  the isotropic subspace F(J). Let / 2+w denote the 
component corresponding to <6*.

Recall now that with respect to the complex volume element coc =  
\meY- • • e2m we have a decomposition $c = $c ® $ c  into +  1 an<i 
eigenspaces respectively.

Lemma 9.6. If  a e $c is pure, then either a e or a e $ ^ .

Proof. Let Vj =  (l/^j2)(ej -f (/}), 1 ^  m, be a hermitian orthonormal
basis of F =  ker j a. Since ^  1  v} for i #  j  and 1  ^  for all i9j 9 we see that 

u • • • A»>/m is an orthonormal basis of R2m. Note that (ej 4- ifj)<r =  0 
=> iejf/r  =  a  for each j. Hence, imexf  t • • • ew/ m<r =  ±coco =  a, and 
c g Sc or o e $ c  as claimed. ■

This lemma gives a decomposition P$ = P $+U P $~ oi the pure spinor 
space into positive and negative types. Let P(P$ +) denote the projectiviza- 
tion of the positive pure spinor space, i.e., P (P #+) =  P $ * /~  where we say 
that a ~  o' if a =  to’ for some t e C. Each of the spaces P(P$ *), and 
J^2m are acted upon by Spin2m, in fact by S 0 2m.

Proposition 9.7. The maps o i—► K((t) and J  i—► V(J) induce S 0 2m-equi- 
variant diffeomorphisms

W +) - 4 *  S L  -4r* <#: and P (P$~) .

Proof. The second line follows immediately from the first by a change of 
orientation. The map V has already been shown to be an equivariant 
bijection between homogeneous spaces, and is therefore a diffeomor- 
phism. It remains only to show that the equivariant map K  is a bijection. 
We construct K ~ 1 as follows. Fix V * S L  and let J  e be the associated 
complex structure. Choose a unitary basis {ei9Je l9. . .  9em9Jem} of R2m 
and set

ej = f a j  -  ije j) t j = f a j + Uej)
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as in §8. Define

coj =  —s jSj and ooj =  — EjSj (9.7)

and note that by (8.3):

All o f the elements coj9 a>k for  1 fg j 9k fg n, commute in C l 2m. (9.8) 

Furthermore, by (8.3) these elements satisfy the identities

(a)j<p, i//) = (Sj<p, Ejip) =  {(p, (O jip) for all q>,ij/ e $c (9.13)

for each j , where (v,w) denotes any Spin2m-invariant hermitian inner 
product in $c .

These identities easily imply the following. Fix any j  and let IF be a 
linear subspace invariant under multiplication by e} and Jej. Then there 
is a hermitian orthogonal direct sum decomposition

Wj = coJ-W  = k e r ta - U  and W'j =  o>}-W  = k e r ^ j j

and where fif j : W  -> W  is defined by nBj(w) = Sj-w. By (9.12) we see that 
H ej  maps Wj to W '• isomorphically and so

dim Wj =  dim W).

We first apply this process with W  = $c and j  = 1 to obtain a decom­
position $c =  Si ®  Si where Si =  ker is invariant under e2iJe2, . . .  ,em, 
Jem. We next set W  =  $ x and j  = 2 to obtain a decomposition $ x =  
$2 ©  $2  where $2 =  ker(/%2) n  k e r (^ )  and dimc#2 =  2m~2. Proceeding 
inductively we eventually construct

$m =  ker(ju^) n  . . .  n  ker(jUsJ  with dimc#m =  1. (9.14)

The complex volume form wc =  • ■ • emJem has the value + 1  on
$m because: z p  =  0 => —iejJep  =  a. Therefore, $m c  $£

We clearly have that V(J) =  ker j a for cr e  #m. Hence, $m is independent 
of the choice of unitary basis and the map V  h+ [$m] gives the desired 
m a p X " 1. ■

(Oj +  <5j =  1

co] =  (Oj and 65] =  65j 

(Oj65j = 65p)j = 0 

epjj =  65p j

(9.9)

(9.10)

(9.11)

(9.12)

W = W j ®  W'j
where
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§9. PURE SPINORS 339

Globalizing this result to manifolds gives the following:

Proposition 9.8. Let X  be an oriented riemannian manifold o f dimension 2m. 
Then the orthogonal almost complex structures on X , whose canonical 
orientation is positive, are in natural one-to-one correspondence with cross- 
sections o f the projectivized bundle P(P$+) o f positive pure spinors on X . 
In particular, X  is K'dhler if  and only if there is a parallel cross section o f 
P  (P$+).

Note. P(P$+) is an S 0 2m-bundle and is globally defined whether or not 
X  is a spin manifold.

Definition 9.9. The bundle x(X) =  P(P$+) is called the twistor space of
X.

The total space of x(X) carries a canonical almost complex structure 
defined as follows. Note to begin that the fibres of the projection n : x(X) -> 
X  are naturally homogeneous complex manifolds S 0 2m/U m). The rie­
mannian connection of X  determines a field of horizontal planes for 
n, that is, it determines a canonical decomposition

T(x{X)) =

where is the field of tangent planes to the fibres. As noted, has an 
almost complex structure integrable on the fibres. The bundle has a 
“tautological” almost complex structure defined, via the identification 
7t*: -+ T#X, to be the structure J  itself. (Here we consider x(X) as the
bundle of positively oriented almost complex structures on the tangent 
spaces of X.)

In spinor terms the almost complex structure on t(2Q can be written 
as follows. Note that =  n*T X  and so =  Now
whenever, a vector bundle is pulled over its own projectivization, a line 
bundle splits off tautologically. Let X# denote the tautological line bundle 
in n*$£(X) and let h y  denote the line bundle in $£ (1 0  corresponding to 
the complex structure on the fibres. Then the line bundle X =  Ly ®  X# c  
$£(10  ® $ £ ( * )  c  $£(1T ®  #e) =  #+(t(X)) gives the projective pure 
spinor field defining the almost complex structure on x(X).

We now consider the question of integrability. Let J  be an almost com­
plex structure defined over an oriented riemannian 2m-manifold X , and let 
V cz T X  ® C be the associated field of totally isotropic m-planes. The 
structure J  is said to be integrable if it comes from an honest complex 
structure on X , i.e., if there is a holomorphically related system of local 
complex coordinate charts so that in each coordinate system z u . . .  ,zm, 
the field V is given by V =  spanc {d/dzu . . .  ,d/dzm}.
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The fundamental theorem of Newlander and Nirenberg states that J  is 
integrable if and only if

j  £  T(V) (9.15)

i.e., if and only if for any pair of complex vector fields v9w with values 
in V, the Lie bracket [i?,w] again has values in V.

Suppose now that a is a (locally defined) pure spinor field whose pro­
jective class defines J. Then since V =  ker j a we see that locally

r{V) = {v e  T (T X  <g> € ) :  v a  =  0}.

Proposition 9.10. The almost complex structure defined by a pure spinor 
field o is integrable if  and only if  o satisfies the equation

v • Vw<7 — w • Vvo =  0. (9.16)

for all v9w e T(F) where V =  ker j a.

Proof. Fix v9w e  T(F) and differentiate the condition w-<r =  0 with
respect to v. This gives the equation

0 =  V„(w(j) =  (V^wJ-o- +  w* Vvo.

Interchanging v and w and then subtracting shows that

0 =  (Vwvv — Vwt;) • o +  w • Vvo — v • VW(X.

Since Wvw — Vwv =  we conclude that v • Vwo =  w • Vvo o
[i?,w] • <r =  0 o  [ v9w] e T(V). ■

Note that the equations (9.16) depend only on the projective class of 
o', since for any smooth function / ,  we have (tr Vw — w- V„)(/(r) =  
f ( v 'V w — w V > ,  The equations (9.16) also depend only on the conformal 
class of the underlying riemannian metric.

Proposition 9.10 has an interesting reformulation in terms of the twistor 
space x(X). As mentioned above, r(X) carries a canonical almost complex 
structure. Now a C^-map between almost complex manifolds/ :(X 9J x) -► 
(Y9J y) will be called holomorphic if its differential / *  is everywhere J-linear, 
i.e., if / *  o J x = J Y ° f  *.

Theorem 9.11. (Michelsohn [3]) Let X  be an oriented («even-dimensional)
riemannian manifold with an almost complex structure determined by a pro-
jective spinor field s e  r(i(X )). Then this almost complex structure is inte­
grable if  and only if s is holomorphic.

Note. More succinctly one could say that cross-sections o f t(X) induce 
almost complex structures, and holomorphic cross-sections induce integrable 
ones. However, the condition that a cross-section s be holomorphic is not
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§9. PURE SPINORS 341

linear since the complex structure on X  depends itself on s. It is rather 
of the form: 5ss =  0, where ds denotes the Cauchy-Riemann operator 
associated to s. In this form the equation is reminiscent of many basic 
equations in geometry, such as the minimal surface equation Aff  =  0, 
the Yang-Mills equation AVRV =  0 (cf, Lawson [1], [2]), and the condition 
for balanced metrics (d ^ c o  =  0 (cf. Michelsohn [2]).

Proof o f Theorem 9.11. It suffices to work locally, so we may choose a 
positive spinor field a e T{P$+) with [er] =  s. Let V =  ker j a be the field 
of (0,l)-subspaces as above. The condition that s =  [<r] be holomorphic is 
equivalent to the condition that

Vva =  kvo for all v g T{V) (9.17)

where kv is a function depending on v and where V is the riemannian 
connection on P $ +. We must show that conditions (9.16) and (9.17) are 
equivalent. Let {fij,. . .  ,e„} be a local hermitian frame field for V, and 
recall from (9.14) that the complex line field s is given by s =  n f ker(^). 
Now equation (9.16) and the fact that ef =  0 show that — sfijVj/F =  
eftiVejCr =  SjSjVep =  0 for all ij . Therefore we have <r e
n  k e r(^ ) =  s c  $ +, and since e $ " , we conclude that

® ôr J- (9*18)
Condition (9.16) says that the C°°(Y)-bilinear form on T(V) given by
)8(i?,w) =  wVya is symmetric. Hence, (9.18) => ft = 0, and we conclude that
Vvo e ker(/%f) =  [a ] for all v e T(F). Therefore, (9.16) => (9.18) => (9.17). 
On the other hand if (9.17) holds, then wVv<r =  0 for all v,w g T(K) and so 
(9.16) holds. ■

R em ark . Theorem 9.11 could be modified by changing the almost com­
plex structure on t (X )  to be the one induced by s  itself, i.e., by lifting 
Js uniformly to all horizontal spaces above each point (instead of twisting 
along the fibre). At the point s  e r ( X )  these two complex structures agree.

In low dimensions these constructions are particularly interesting for 
the following reason:

R e m a rk  9.12. In dimensions 2m <  6 every non-zero positive {or negative) 
spinor is pure, i.e., P # 1 =  $c ~  M - This is simply because the group 
Spin2m acts transitively on the unit sphere in $£ in these dimensions. 
(Transitivity also holds for 2m =  8 if one restricts to the real spinors ^ ±, 
but it does not hold for the complex ones.) As a consequence we have 
the following fact:

Proposition 9.13. On an oriented manifold o f dimension four or six, every 
nowhere-vanishing spinor field uniquely determines an almost complex struc­
ture (via {9.3)).
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Let X  be an oriented riemannian 4-manifold. A 2-form q> on X  is said 
to be self-dual (of anti-self-dual) if*<p =  <p(*<jf>=— respectively). Since 
the Hodge *-operator satisfies (*)2 =  1, there is an orthogonal decom­
position

A2(* ) =  A + ® A .

where A ± = {q> e  A2(2Q : *(p = ±<p}. Now the twistor space x(X) = 
P{P$+) =  P(^c) can be identified with the bundle of unit self-dual 2-forms 
by associating to a complex structure J  its Kahler form (Oj e A+ (given 
by yf2coj(U9W) = It is a 2-sphere bundle over X  with a canon­
ical almost complex structure.

The following theorem has played an im portant role in understanding 
the structure of the self-dual Yang-Mills equations over riemannian 4- 
manifolds. The seminal ideas for these applications were due to R. Penrose 
and R. W ard (see W ard and Wells [1]). A riemannian 4-manifold is called 
self-dual if its Weyl conformal tensor W  is self-dual, i.e., if *W  =  W  where 
W  is considered as a 2-form with values in Horn(T X 9TX).

Theorem 9.14 (Atiyah-Hitchin-Singer [1]). The canonical almost complex 
structure on the twistor space o f a riemannian 4-manifold X  is integrable 
if  and only if X  is self-dual

We refer the reader to the original paper for details. The arguments in­
volve the so-called “twistor equation” which is roughly the complement 
of the Dirac equation.

One class of manifolds whose twistor space always has an integrable 
complex structure is the set of manifolds of constant sectional curvature. 
For the case of the sphere S2m, one has x(S2m) ^  * f2m+i =  S 0 2m+ i/U 2m 
=  S 0 2m+2/U m+1. The map n : ^ 2m+1 S2m associates to an isotropic 
m-plane F c = C 2m+1 the unit vector e e R 2m+1 such that C2m+1 =  
V © V  © Ce. (This determines e up to sign. Since R2m+1 =  
Re{K © V} © Ue9 this sign is determined by fixing an orientation on 
R2m+1.) In two beautiful papers, E. Calabi [2], [3] used x(S2m) to classify 
the harmonic maps from S2 to S". He first showed that a harmonic map 
<p:S2 -> Sn must lie in a geodesic subsphere of even dimension. He then 
showed that any harmonic map q>: S2 -*■ S2m lifts to a holomorphic map 
® :S 2 -* *?2m+i which is horizontal for the projection n.

We now return to the question of almost complex structures. Suppose 
that <j e r(# c )  is a field of pure spinors over a 2m-manifold X . Then as 
we have seen, the projective class [a ] e T(P(P$c)) determines an almost 
complex structure on X . However, the field itself carries more information. 
It determines a trivialization of the canonical bundle A™V associated to 
the structure. To see this we need the following lemma. Let $c be the ir­
reducible complex representation for C l2m. For any o e $c we define the
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§9. PURE SPINORS 343

isotropy group of a by
G„ = {g e  Spin2m: go =  o}.

Lemma 9.15. For any pure spinor o e P$ +, one has that

G ,=  SUM

where SU m c  Spin2w is conjugate to the lifting o f the standard embedding 
SUm c= S 0 2m.

Proof. Set V =  ker j a a  <C2m as above, and note that if go =  o9 then 
g(V) =  7, where by definition g(v) =  g ' v g ~ l =  Adg(t>). Now 7  =  
{x +  iJx  : x e R2m} where J  is the complex structure determined by a. The 
action of Spin2m on C2m =  U2m ® iR2m given by Ad, preserves real and 
imaginary parts. Therefore, if g e Ga, then g(x +  iJx) =  g(x) +  ig(Jx) e V 
for all x, and so

g(Jx) =  J{g(x)) for all x e R2m.

Hence, the image of Ga under the covering map A d: Spin2m -► S 0 2m is 
contained in the subgroup U OT =  {y e S 0 2m: yJ  =  Jy}.

We now show that Ad(G<y) g  SUW. Given g e G09 there exists a unitary 
basis {el9Je l9. . .  9em9Jem} for lR2m which “diagonalizes” g9 i.e., so that 
g(ek +  iJek) =  ei20k(ek +  iJek) for real numbers 0 ^ 6 k < n  and 1 ^  k ^  m. 
This means that

9 — ± F I  (cos ek -  sin ek ^ e k).
k

Now, (ek +  iJek)o =  0 => eko =  — iJeko => ekJeko =  — io for each k. 
Hence,

go =  ± f l  (cos +  isin 0k)o =  ± e iL0ko .
k

Since 0 <x =  <x, we have 2 £  0* =  0 (mod 2rc) and so detc(g) =  ei210k =  1 
as claimed.

The above argument shows that for any g e A d- 1 (SUOT) we have that 
ga =  ± ( 7 . Since SUm is simply-connected, A d_ 1 (SUm) has two connected 
components. The identity component fixes <x, the other component con­
tains — 1 and hence cannot fix o. m

Alternatively we could consider the Lie algebra

^ ^ { ( p € A 2U2m:q>o = 0}

of Ga. For any cp e g*, there is a unitary basis of R2m so that q> =  
Y  h e k J e k- Since ekJeko =  — io9 we have that

<jOff =  - i £  V

and so £  Xk =  0. This condition characterizes sum in um.
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It is incidentally not true that: Ga £  SUW => a is pure. For example, in 
dimension eight we could take a =  <j 0 -f <r'0 where <t0 and <x'0 are pure 
and determine almost complex structures J 0 and — J 0 respectively.

For any 2m-dimensional spin manifold X> Lemma 9.15 implies

Proposition 9.16. Each globally defined pure spinor field a on X  determines 
a unique reduction o f the structure group o f X  to SUm.

Proposition 9.17. X  admits a pure spinor field which is parallel i f  and only 
if  X  is Kahler and Ricci flat.

Proof. If a is parallel, then the holonomy group of X  is contained in 
AdfG,) =  SUm. This means that the almost complex structure is parallel 
and the canonical bundle is flat.

Conversely, if X  is Kahler and Ricci-flat, then $c =  AgfA") and both A£ 
and Ac provide parallel pure spinors. ■

Corollary 9.18. Suppose dim(2Q =  4 or 6. Then X  admits a non-zero paral­
lel spinor field if  and only if  X  is Kahler and Ricci-flat.

Proof. If o e r $ c) is parallel, then each component a ± g T($£) is parallel, 
and as noted in 9.12 each component is pure. ■

Using II.8.10, we now conclude the following:

Theorem 9.19. Let X  be a compact spin 4-manifold with A(X) ^  0. Then 
any riemannian metric on X  with scalar curvature k  ^  0 is Kahler and Ricci- 
flat. In fact, any such metric admits a parallel quaternion structure, i.e., 
parallel orthogonal complex structures I  and J  with IJ  =  — JI.

Proof. If k  ^  0, then by II.8.8 and II.8.10 and the Index Theorem, we see 
that X  carries a parallel spinor field a. Each component <r+ and cr~ is 
also parallel. Assume that cr+ ^  0. Since $£ is an H-line bundle (and the 
H-structure is preserved by the connection), we see that <r+, ia +, j o + and 
ktt+ give a complete parallelization of $£, that is, if one positive spinor 
is parallel, then all positive spinors are parallel. We conclude that X  car­
ries a family £  P ( ^ )  =  S 2 of parallel complex structures, each of which 
makes X  into a Kahler manifold. ■

It should be pointed out that by Yau’s solution of the Calabi Conjec­
ture [2], [3], we know that Ricci-flat Kahler manifolds exist in all 
dimensions.

R emark  9.20. A theorem similar to 9.19 was asserted in Hitchin [1] 
for all dimensions. It was based on an incorrect calculation that Gff =  
SUW for all a. Indeed, one finds counterexamples already in dimension 
eight. This will be discussed in the next section.
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We conclude this section with a remark about what happens in odd 
dimensions. Let $c be one of the two irreducible complex spinor spaces 
for C f 2 m + 1  and let a e JSC be a pure spinor. The totally isotropic subspace 
V — ker j„ cz C2m+1 has dimension m and we get a hermitian orthogonal 
decomposition

C2m+1 =  K ©  P ©  Ce 

where e e R2m+1. This gives an orthogonal decomposition

R2m+1 = Jr © Re

where Vu ®  C =  V  © V (i.e., VK has a complex structure). Assuming 
||e|| =  1, we see that e e V* is determined up to sign. A choice for e cor­
responds to a choice of orientation on R2m+*. In summary then, each pure 
spinor a e $ c determines a pair (e,J) where e e R2m+1 is a unit vector and 
J  is an orthogonal almost complex structure on e1. A global pure spinor 
field <7 on a spin (2m +  l)-manifold X  determines, as above, a reduction 
of the structure group to SUm. If V<x =  0, then X  splits locally as a rieman­
nian product X  s  X 0 x  R where X 0 is Kahler and Ricci-flat.

In dimensions three and five every non-zero spinor is pure.

§10. REDUCED HOLONOMY AND CALIBRATIONS 345

§10. Reduced Holonomy and Calibrations

The holonomy group of a connected complete riemannian n-manifold X  
is defined as follows. Fix a point x  e X  and to each piecewise smooth loop 
y based at x, let hy: TxX  -» TxX  be the orthogonal transformation given 
by parallel translation around y. These transformations form a subgroup 
#CX c  O (TxX) = O n whose conjugacy class as a subgroup of O n is inde­
pendent of the choice of base point x. This conjugacy class is called
the holonomy group of X . Its identity component J^(X )°  is called the local 
holonomy group of X  (see Kobayashi-Nomizu [1].) If X  =  Yk x Z n~k 
is a riemannian product, then one easily sees that # f(X )  =  ,W(Y) x 
#?(Z) c  O t x 0 „_ t c  O n, and if ̂ (X )  =  0, then by a theorem of de Rham 
the converse is true. It is therefore sensible to consider manifolds which are 
irreducible. This means the universal covering is not a riemannian product. 
In 1955 Marcel Berger [1] classified the possible holonomy groups for 
irreducible riemannian manifolds. There has been subsequent work refin­
ing Berger’s list (see Bryant [1], [2] for a brief history). We now know 
that if X  is irreducible and not locally symmetric, then 3^(X)° must be 
one of the following:

SOH (the generic case)

Um (n =  2m; Kahler) Spj • Spm (n =  4m; Quaternionic Kahler)

SUm (Kahler and Ric =  0) Spm (Quaternionic Kahler and Ric =  0)
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or must be one of the two exceptional cases:

G2 (n =  7) Spin7  (n =  8 )

where by definition Sp^Sp*, =  Spx x S p J Z 2 and Z 2 is generated by 
( - 1 , - 1 ) .  Metrics of each of the above types are known to exist.

We have already seen that:

c  Um <=> there exists a parallel projective pure spinor field on X

Jtf(X) c= SUm <=> there exists a parallel pure spinor field on X .

In this and the next section we shall show that parallel spinors are also 
related to the existence of Spm, G2, and Spin7  holonomy metrics. These 
results are due to the authors and Reese Harvey (see Michelsohn [3]). 
The fundamental elementary point is the following:

Proposition 10.1. Let X  be an n-dimensional (riemannian) spin manifold on 
which there exists a globally parallel spinor field o. Then at any point x  
the holonomy group satisfies

J^x czG ax (10.1)

where Gax =  {g e Spin(TxX ) : gox =  ox}. In other words,

JT(X) <= Ga

where Ga denotes the conjugacy class o f G0x in Spin„ (which is defined 
independently o f x  because a is parallel).

Conversely, i f  (10.1) is satisfied for a spinor ox at some point x, then ax 
extends to a globally parallel field <r on X .

Proof. If Va =  0, then the holonomy transformation hy e Spin(TxX )  
generated by parallel translation around any loop y must preserve o. Hence, 

cz Gax. Conversely, if 2ftx c: GCx, then parallel translating ox from x 
to y  is path-independent and defines a globally parallel field. ■

We know that on any spin manifold with A  ^  0, any metric with zero 
scalar curvature has parallel spinor fields. Therefore in light of Proposition 
1 0 . 1 , it would be interesting to understand the structure of the isotropy 
groups Ga <= Spinn. For n ^ 6 we have already seen in §9 that Ga c= SU[w/2], 
so the first interesting case occurs when n =  7. Recall that the irreducible 
real representation $ of Spin7  has dimension 8 . Furthermore, Spin7  acts 
transitively on the unit sphere giving a diffeomorphism S 7  s  Spin7 /G 2  (see 
1.8.2 forward). Hence, all non-zero spinors are essentially equivalent, and 
we have the following:

Proposition 10.2. Let $ be the irreducible real spinor space for  Spin7. Then 
for any non-zero cr e $,

g, = g2

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



§10. REDUCED HOLONOMY AND CALIBRATIONS 347

Corollary 10.3. A 7-dimensional spin manifold has holonomy c  G2 if and 
only if  it carries a non-trivial parallel spinor field.

The group Spin8  has three irreducible 8 -dimensional real representations

A + :Spin8  -----► SO ($+)
Ad: Spin8  — ♦ SO(R8) .

A :Spm 8  -----► SO(# )

related by the triality automorphism (see 1.8). Each is transitive on the 
unit sphere and therefore determines a unique conjugacy class of sub­
group. That is, in each representation the isotropy subgroups of any two 
non-zero elements are conjugate.

Proposition 10.4. There are three distinct conjugacy classes o f subgroups

^  Spin7
Spin7  c  Spin8

^  Spin7

defined as the isotropy groups Spin7  =  GV9 Spin* =  Ga± for non-zero 
elements v e U 8 and o ± e $ ±. These three conjugacy classes are cyclically 
permuted by the triality outer automorphism o f  Spin8. Furthermore, the 
conjugacy classes Spin* are conjugate in the enlarged group Pin8. In 
fact,

Spin7  =  e • Spinf • e~ l (10.2)

for any e e S 1 c  Pin 8  (where S 1 c M 8 a  C t9 are the standard embeddings). 
The covering homomorphism A d : Spin8  -► SOg gives embeddings

A d: Spin * c— ► SOg (10.3)

which are not conjugate in SOs but which are conjugate in O s .

Proof. Let Z  «  Z 2 ©  Z 2  denote the center of Spin8. Then the non- 
conjugacy of Spin7, Spin7  and Spinf follows from the fact that they 
intersect Z  in three distinct subgroups (cf. 1.8). Since the representations 
are permuted by triality, so are these subgroups. Given e e  S 7 c  IR8, and 
o e $ +9 we have that eo e $~ and clearly that Ge<f =  eGae~ l. This proves 
(10.2).

To see that (10.3) is an embedding, note that (ker Ad) n  Spin7  =  {1}. 
To see that Ad(Spin7 ) and Ad(Spinf) are not conjugate in SOg, note 
that: 0 Ad(Spin7  )g~l =  Ad(Spinf) for some g e  SOg would imply that 
y Spin7  y *” 1  =  Spinf for y e Spin8  with Ad(y) =  g. On the other hand 
(10.2) shows that Ad(Spin7 ) are conjugate by elements Ad(e) (=  reflection 
in the hyperplane e1) in O g. ■

The embeddings (10.3) give a single conjugacy class of the subgroup 
Spin7  c  O s and it is exactly this representation which appears in Berger’s 
list. Consequently we have
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348 IV. APPLICATIONS

Corollary 10.5. An 8-dimensional spin manifold has holonomy a  Spin7 if 
and only i f  it carries a non-trivial parallel spinor field.

Note that if a  is a parallel real spinor field on an 8-manifold, then o 
decomposes o =  <r+ +  o~ where both o + and o~ are parallel. If both 
and or” are non-trivial, we get a further reduction of the holonomy group 
to Spin7 n  Spinf =  G2- (To see this, note simply that under triality we 
have Spin7 n  Spinf s  Spin7 n  A d“ 1(S 0 7) s  Gff for <7 as in Proposi­
tion 10.2.) Recall that the complex spinor spaces $£ for Spin8 are just the 
complexifications of the real ones. Write $£ =  $ + © i$ + and consider an 
element <xc =  <r0 +  iox e $£. Then for g e Spin8, goc =  <rc if and only if 
go0 =  o0 and =  o l9 and so

Gac =  G,0 H Gffl

If 6 ^ + are linearly dependent (over R), then G„c £  Spin7. If they are 
linearly independent, then G„c =  Spin6 £  SU4. In this second case G„c 
remains unchanged if we replace ac by ac = d0 + iff, where {ffo.ff,} is 
any orthonormal basis of spanK(ff0,ffj). Up to real scalars this orthonor­
mality is equivalent to the fact that <ffc , <tc> =  0. One easily checks that 
in this dimension, the pure spinors are exactly those which are isotropic 
with respect to the natural real structure on $£.

R em ark . It should be pointed out that R. Bryant [1], [2] has found a 
number of beautiful examples of manifolds with G2 and Spin7-holonomy.

We shall now show that the propositions above give a simple neces­
sary and sufficient condition for the existence of a topological G2 or 
Spin7-structure. By this we mean the following. Let X  be a differentiable 
n-manifold and fix a Lie group G <= GL„(R). Then by a topological G- 
structure on X  we mean a topological reduction of the structure group 
of T X  from GL„(R) to G. This is defined to be a G-equivariant embedding 
PG c  Pgl(X) of a principal G-bundle into the frame bundle of X . Reducing 
the structure group to On c  GL„(R) is equivalent to choosing a riemannian 
metric on X . If G <= 0„  is a closed subgroup, then reducing the structure 
group from 0„  to G is tautologically equivalent to finding a cross-section 
of the bundle

P0(X )/G -----► X

whose fibres are the homogeneous spaces OJG.

Theorem 10.6. Let X  be a differentiable 7-manifold. Then X  carries a topo­
logical G2-structure i f  and only i f  it is a spin manifold.

Proof. If the structure group of T X  can be reduced to G2, then because 
n t G2 = 0, X  is a spin manifold (see Remark 1.1.10). Conversely, suppose
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X  is spin and let $ be the irreducible real spinor bundle of X . Then since 
fibre-dim($) =  8 >  dim(X), there exists a nowhere vanishing cross-section 
g of $ (cf. Milnor-Stasheff [1]). By Proposition 10.2 we can identify the 
unit sphere bundle in $ with PSpin(X)/G2- Therefore the normalized sec­
tion cr/||(r|| gives us a G2-reduction. ■

Note that if X  is a spin 7-manifold, then the topological G2-structures 
on X  are in one-to-one correspondence with global spinor fields a  e  T(#) 
such that ||oj| =  1. The story for Spin7-reductions is quite similar.

Theorem 10.7. Let X be a differentiable 8-manifold. Then X carries a to­
pological Spin7-structure if and only if  X is spin and either x($+) = 0 or 
X(S~) =  0, where $ ± denote the irreducible real spinor bundles on X. Equiv­
alently, X carries a Spinn-structure if and only i f  Wi(-Y) =  vv2(X) =  0 and 
for an appropriate choice o f orientation on X we have that

Pl(X)2 - 4 p 2(X) + 8X(X) = 0- (10.4)

Note. Reversing the orientation of X  leaves the Pontrjagin classes un­
changed but reverses the sign of %{X) in H 8{X). Thus, condition (10.4) 
could be replaced by the condition that for any orientation on X , one of 
the two equations

Pl(X)2 - 4 p 2( X ) ± 8 X(X) = 0

holds in H 8(X).
Note that for manifolds of the type X 8 =  S1 x 7 7, equation (10.4) is 

automatically satisfied. Furthermore, X s is spin iff Y 1 is spin, and Theo­
rem 10.6 applies. There are other special cases of some interest.

Corollary 10.8. Let X  be a complex manifold o f dimension 4. Then X  carries 
a topological Spin^ -structure if and only if

Ci[cJ — 4clc2 4- 8 c3]  =  0

Corollary 10.9. Let M  and N  be compact spin 4-manifolds. Then the pro­
duct X  =  M  x. N  carries a topological Spin ̂ structure if and only if

9sig(M)sig(JV) =  4x(M)x(N)

In particular, M  x M  has such a structure i f  and only if

3sig (M) =  ± 2  x(M).

Proof o f Theorem 10.7. If X  is spin and x($+) =  0, then there is a nowhere 
vanishing section o e F($+) which, via Proposition 10.4, reduces the struc­
ture group of Spin^. In fact, by 10.4 we have the identification
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^sPi„8W/Spin7+ s  S($+) (10.5)
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350 IV. APPLICATIONS

where S($+) denotes the unit sphere bundle in $ +. Hence, the S p in ,- 
reductions are in one-to-one correspondence with spinor fields a e  F ($+) 
such that ||<r|| =  1. If x($~) =  0> the analogous discussion holds.

Suppose conversely that the structure group of T X  has a Spin,- 
reduction, i.e., suppose there is a Spin7-equivariant embedding P Spin7 <-+ 
P0t(X) of a principal Spin7-bundle into the orthogonal frame bundle of 
X  (for some riemannian metric). Since Spin7 is simply-connected, this 
determines a  spin structure: PSpingW  -> PsOsP 0  <= P0i(X), in which P Spin7 
lifts to a Spin7-equivariant embedding PSpin7 <= PSpi„8(X), which in turn 
corresponds by (10.5) to a cross-section of S(#+). Hence, x($+) — 0.

Note. The reader may find the lack of ambiguity in this last paragraph 
somewhat unsettling. If so, let us examine the argument more closely. In 
saying that P Spj„7 <= P0s{X) is “Spin7-equivariant” we must specify an 
embedding Spin7 c: O g. This choice is im portant only up to conjugation 
in O s. (To see this, fix g e O g and consider the map g : P0a{X) -» P 0,(.Xj 
which converts the given 0 8-action to the conjugated “g 0 8p - ^ ’-action.) 
Now the two subgroups A d(Spin,) are conjugate in 0 8 but not in SOs . 
We choose an embedding whose class in SOg is Ad(Spin|). Since Spin, 
is connected, the embedding PSpin7 Po8P 0  clearly fixes an orientation 
on X , i.e., it selects a sub-bundle PSOg(X) c  PQa(X). With this choice of 
orientation, PSpi„7 lifts to PSpin+ c  PSping(AT). Suppose on the other hand 
that we had chosen an embedding Spin, <= SOg of Ad(Spinf)-type, which 
differed from the first choice by an element g e O B (with det g =  — 1). O ur 
given reduction / :  PSpin7 ^  P0s(X) must now be conjugated to g ° /  o g ~ 1; 
PSpin7 ^  Po8W . This new reduction chooses the opposite orientation on 
X  and lifts to a Spinf -subbundle of PSping(Z).

The proof that xf#*) =  Pi(X)2 — 4p2(X) +  8y(AT) is a good exercise in the 
algebra of characteristic classes, which we leave to the reader. ■

It is an interesting fact that spinors in dimensions seven and eight are 
also related to certain exceptional geometries of subvarieties introduced 
in Harvey-Lawson [1], [2], [3]. The fundamental idea is this: Let cp be 
a differential p-form on a riemannian manifold X  normalized so that

for every oriented tangent p-plane P  on X . This is equivalent to the con­
dition that

for every oriented p-dimensional C 1-submanifold Z  of finite volume in X. 
If such a manifold Z  has the property that

<p\P volp (10.6)

U S  vol(z ) (10.7)

Jz <p =  vol(Z) (10.8)
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§10. REDUCED HOLONOMY AND CALIBRATIONS 351

then Z  is called a ^-submanifold. These creatures are interesting for the 
following reason. Let Z  c  X  be a compact oriented p-dimensional sub­
manifold, possibly with boundary. We say that Z  is homologically volume- 
minimizing if vol(Z) ^  vol(Z') for all such Z ' with the property that Z  — Z ' 
is a boundary (of some singular (p 4- l)-chain in X). When Z is not com­
pact, it is called homologically volume-minimizing if this property holds 
for every compact subdomain-with-boundary in Z.

Proposition 10.10. Suppose cp satisfies (10.6) and dq> =  0. Then every q>- 
submanifold is homologically volume-minimizing in X .

Proof. Let Z  be a compact (^-submanifold and Z ' a competitor with 
Z  — Z ' =  dc for some singular chain c. Then by (10.7), (10.8) and Stokes’ 
Theorem, we have

vol(Z) =  Jz cp =  Jz, cp g  vol(Z'). ■

This proposition shows that every (^-submanifold is in particular a 
minimal submanifold, i.e., its mean curvature vector field is identically 
zero. It is therefore roughly as regular as X  itself. For example, if X  is 
real analytic, so is any <p-submanifold. The above definition extends im­
mediately from submanifolds to integral currents (see Harvey-Lawson 
[3]). The “tp-subvarieties” can then have singularities, although they 
remain homologically volume-minimizing.

Definition 10.11. If <p satisfies (10.6) and dcp =  0, then cp is called a 
calibration. The pair (X,cp) is a calibrated manifold and the family of cp- 
submanifolds is the associated calibrated geometry.

Calibrations are interesting for the special cases, not the general one. 
We know that few topological reductions of the structure group of a mani­
fold are “integrable” in the sense that they are holonomy reductions. Simi­
larly, few calibrations are “integrable” in the sense that the associated 
geometry of submanifolds is large. However, many interesting examples 
do exist.

Example 10.12 (Kahler geometry; U„-case). Let X  be a Kahler mani­
fold of complex dimension n. Fix p, 1 ^  p ^  n, and consider the 2p-form

where co is the Kahler form of X . Then <pp is a calibration and the asso­
ciated family of <pp-submanifolds (<pp-subvarieties) consists exactly of the 
complex analytic submanifolds (subvarieties) of dimension p in X. Propo­
sition 10.8 says that every complex analytic subvariety is homologically 
volume-minimizing in X  (a result due to H. Federer [1]).

<P» =  — Ct)p Vp p! ™
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352 IV. APPLICATIONS

E xam ple  10.13 (special lagrangian geometry; SU„-case). Let AT be a 
Ricci-flat Kahler manifold of complex dimension w, and assume that the 
canonical line bundle x = A£T * X  is trivial. Consider the n-form

A = Re(Q)

where Q is a parallel holomorphic n-form (i.e., section of k). Then A is a 
calibration and the associated geometry is called special lagrangian. It is 
shown in Harvey-Lawson [3] that the special lagrangian subvarieties are 
as plentiful as the complex subvarieties.

There are three rich exceptional geometries which appear in dimensions 
seven and eight.

E x am p le  10.14 (associative and coassociative geometry; G2-case). Con­
sider euclidean space R7 =  Im ©, where 0  denotes the Cayley numbers, 
and define a parallel 3-form cp on R7 by setting

<p(x,j/,z) =  <x-j/, z>

Then cp is a calibration with a rich geometry of submanifolds. It is called 
the associative geometry because the submanifolds are also defined by the 
vanishing of the associator [x,y,z] =  (xy)z — x(yz). The dual form

ij/ = *(p

gives a geometry of 4-folds called the coassociative geometry.
These geometries exist (and are rich) on any riemannian 7-manifold 

with G2-holonomy. Note that cp and \// are clearly G2-invariant since they 
are defined using Cayley multiplication. In fact (p and \// are the only non­
trivial exterior p-forms, 0 <  p <  7, which are G2-invariant. Any riemannian 
7-manifold with G2-holonomy carries parallel forms cp and \j/ which at 
each point are equivalent (over SO?) to those given above. Furthermore, 
in any such manifold the geometry of associative 3-folds and coassociative
4-folds is vast. In particular, every analytic submanifold of dimension 
two is contained in an associative submanifold (whose germ along the sur­
face is uniquely determined).

E x am p le  10.15 (Cayley geometry; Spin7-case). Consider euclidean 
space R8 =  0  and define a parallel 4-form O on R8 by setting

<J>(x,y,z,w) =  <x x y x z, w>

where the triple cross product is defined by x x y x z =  i{x(yz) — z(yx)}. 
Then d> is a calibration which, as shown in Harvey-Lawson [3], has a 
rich geometry of submanifolds, called the Cayley geometry. It includes as 
special cases all complex submanifolds and all special langrangian sub­
manifolds for a 6-dimensional family of complex structures on R8. If we 
consider R7 c R8 as Im  0  =  l 1 c 0 ,  then ®|K7 =  ^  and 1 L 0  =  (p.
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§10. REDUCED HOLONOMY AND CALIBRATIONS 353

The form <I> is Spin7-invariant. It is, in fact, the unique Spin ̂ invariant 
p-form on U8f o r 0 < p <  8. Any riemannian 8-manifold with Spin7-holo- 
nomy carries a parallel 4-form of this type and has a large geometry of 
Cayley submanifolds.

The forms <X> and (p above were first discovered by Bonan [1].
There is a direct and intimate relationship between spinors and cali­

brations. It comes about by what can be roughly termed the process of 
“squaring.” We shall examine this process to the point that meets our 
needs here. For further discussion the reader is referred to the book of 
Reese Harvey [1].

Let n =  2m be an even integer and recall the fundamental algebra 
isomorphism

/**C£2m * Homc(#c ,#c) =  $c ® $* (10.8)

We introduce on $c a Pin2m-invariant hermitian metric (',*) by which we 
can identify $£ with $c . ( is the same real vector space as $c but with 
the opposite complex structure, i.e., with scalar multiplication by t in $c
replaced by f.) The identification $c ® $c = Homc(#c ,#c) is then
determined by associating to a pair of spinors o uo2 e $c , the elementary 
endomorphism

K ,  ® aaW =  (T> for * 6 $c .

Inverting (10.8) now gives the following:

Proposition 10.16. There is an isomorphism

$C ® h  2m

which associates to a pair o f spinors o x,o2 e $ c , the unique element, 
(p g  Ct 2m such that <pmx =  (t,<t2)o'1 for all x e $c . Under this isomorphism 
we have for each ifr e C l2m, an identification o f endomorphisms

p# ®  Id «  L^ and Id ® p ^  «  R^

where and R^ denote respectively left and right multiplication by if/ on 
CC2m, and where \j/* =  a(^*)- F/a 7.7.5 the isomorphism above determines a 
canonical identification

$C ® h  A*C2m (10.9)

which is Pin2m-equivariant, where g e Pin2m acts on $c ® $c by pg ®  Pg, 
and on A*C2r" by the complexification o f the standard representation o f 0 2m 
on forms.

Proof. All assertions but the last are easily checked. For the last, one need 
only recall that a{g‘) =  g ~ l for g e Pin2m and therefore pt ® pg =  pg <g) 
P(g-\y =  Ad9 3  the standard representation of g on A*C2m.
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There is a corresponding real version of this result. For simplicity we 
shall consider only the cases where C ln is a real matrix algebra. Suppose 
n =  6 or 8 (mod 8) and let $ denote an irreducible real C£n-module. Then 
Clifford multiplication gives an isomorphism

p : Cl„ ► Hom R($, $).

When n = 7 (mod 8), there are two distinct isomorphisms

p * :C Z *  ► Hom K(£±,£ ±)

where $ + (and $~) are the irreducible real C£n-modules on which the 
volume form co acts by Id (and -Id respectively), and where C l*  =  
(1 ±  co) • C tn. Inverses to these maps are given explicitly as follows:

Proposition 10.17. Let $ be an irreducible real C ln-module where n =  6 or 8
(mod 8), and assume $ is provided with a Pin ̂ invariant inner product <*,*). 
Then assigning to a pair <t,t e $ the endomorphism L a0 t (-) =  <-, t}<t deter­
mines an isomorphism

$ ® $ - ^ > C l n (10.10)

under which p^ ®  p̂ ,* «  L ^ ®  where i//* =  o#*)- Vm  this gives
a canonical Pin„-equivariant isomorphism

$ ® $ - ^ A * U n (10.11)

where g e P in n acts on $ ® $  by pg ® pg. The isomorphism (10.11) 
decomposes into two isomorphisms:

0 2$ ©  A pUn (10.12)
p s  3 or 4(mod 4)

A 2$ - — *■ 0  APR" (10.13)
P s  1 or 2 (mod 4)

under the canonical decomposition $ ® $ =  (® 2$) © (A2#) into symmetric 
and skew-symmetric 2-forms respectively.

When n =  7 (mod 8), all analogous statements hold with $ replaced by $ + 
(or $~) and with C ln replaced by C l f  (or C £“ respectively).

Proof. The initial statements are similar to those in Proposition 10.16 and 
are proved analogously. For statements (10.12) and (10.13), we note first 
that under the isomorphism (10.10), symmetric tensors go to self-adjoint 
transformations and skew-symmetric tensors go to skew-adjoint trans­
formations. On the other hand Clifford multiplication by a p-form cp has 
the property that (p j*  =  (—1 )^pip+1)p(p. This proves (10.12) and (10.13). 
Details of the case where n == 7 (mod 8) are left to the reader. ■
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For any spinor o in $ (or $ + if n = 7 (mod 8)), this proposition gives a 
decomposition of the “square”:

o ® o =  <jp0 +  <P3 +  <P4 +  +  9s  +  • • • +  i +  +  • • • (10.14)
with <pp g ApUn for each p. Under special assumptions about o, certain 
of these components will vanish or be related to one another by the Hodge 
♦-isomorphism. We shall first consider the case where n =  8.

Theorem 10.18. Let $ denote the irreducible real C l s-module, and let 
$ = $ + ©  $~ be its standard decomposition into ±l-eigenspaces for the 
volume form co. Then for any unit-length spinor o e $ +, the decomposition
(10.14) becomes

( T ®  (7 =  1 +  0  +  W

where ® g  A4(R8 is the Cayley 4-form defined in 10.13.

Proof. To begin consider a ® o g  CZs. Since wo =  a , we have by Proposi­
tion 10.17 that a ® o =  (wo) ®  o =  w(o ®  o) and similarly that o ®  o =
0 ® (wo) = (o ® o)- ol(w*) =  (o ® o)w. Now left and right multiplication 
are related to the Hodge *-operator by (5.35) of Chapter II. This shows 
that if we write o ® o =  £  q>p as in (10.14), then

p(p-1) p(p+ i )

X ( - i )  2 =  =  2 * ( p P-

Hence <pp =  0 for p /  0,4,8, and furthermore *<p4 =  q>4, *(p0 =  <p8. 
The identity element 1 6 C f8 can be written as 1 =  £  where
{ffj <r16} is any orthonormal basis of $. It follows by choosing o 1 — a,
that <1, a ®  <r) =  1. Therefore <r(g)<T =  l +  <I> +  ft)for some d> e A4R8. 
(We are using here the inner product on C t8 for which 1 and eh • • • et ,
1 g  ij <  . . .  <  ip, form an orthonormal basis. This differs from the stan­
dard one on Hom(IR16,R16) by a factor of ^<)

Observe now that since the isotropy subgroup of any nonzero element 
< re$+ is S p in ,, the image Ad(Spin,) c: SOs must leave invariant each 
component of a ® a. In particular $  is a Spin^ -invariant 4-form. This 
identifies it as a multiple of the Cayley 4-form. To determine which multiple, 
we proceed as follows. Fix orthonormal vectors e t  eA. Then

<<r ® a, . . .  e4> =  <<r <g> <T,e1 . . .  e4 - 1) = <(e4 • • ■ exa) ®  a, 1)
=  <c4 - - - c1(t, <7 > ^ | H | 2 =  1. (10.15)

This proves that the A4-component of a <2> <r is a calibration, i.e., it satisfies 
(10.6).

Note that we have equality in (10.15) if and only if e4 • • • e1a =  a. Set 
w =  ex • • • e4. Since w2 =  1 and w $+ =  $ +, we can decompose $ + =  
$X ©  $ -  into the +1 eigenspaces of w. Multiplying by ete5 maps 
isomorphically onto $ t ,  so dim =  4. The group Spin, is transitive
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356 IV. APPLICATIONS

on the unit sphere in $ + so we may assume a e $X- Hence equality does 
occur in (10.15) for some choices of el9 . . . 9e4. This proves that the 
A4-component of a 0  a is exactly the Cayley 4-form. ■

Entirely analogous arguments prove the following:

Theorem 10.19. Let $ be the irreducible real C ln-module on which the 
volume form co acts by +1. Then for any unit spinor a g $, the decomposition
(10.14) becomes

< T 0 c 7 = l  +  <p +  ^  +  cy

where cp e A3R7 is the associative calibration and =  *cp e A4(R7 is the 
coassociative calibration.

It is clear that squaring spinors is a natural way to produce interesting 
calibrations in all dimensions. (This interesting fact was first noticed and 
proved by Dadok and Harvey [1].) The method is efficient both locally 
and globally on a manifold. It is also efficient for analysing the condition 
dcp =  0 as we shall now see.

Let O be a Cayley 4-form and consider the orbit G L8 • O c  A4R8. This 
orbit is independent of the choice of O and of the underlying inner prod­
uct. It consists precisely of all 4-forms whose isotropy group in G L8 is 
isomorphic to Spin7. We call the forms in Ca =  G L 8*0, the 4-forms of 
Cayley type. Note that any such form O' determines uniquely an inner 
product on R8 which makes O' a Cayley calibration.

Theorem 10.20. Let X  be a smooth oriented 8-manifold, and suppose O is 
a smooth 4-form on X  which is o f Cayley type at each point. Then O 
is closed i f  and only if  O is parallel in the riemannian metric it determines.

Therefore, to find a closed 4-form of Cayley type is to find a metric 
with holonomy <= Spin7.

Proof. Introduce the metric for which O is a Cayley 4-form. Let a be a local 
spinor field so that < 7 0 0 - = l + O  +  m. Since *0  =  0  we see that 
d<b = 0 o  d*O =  0 o  DO =  0 <=> D(cr 0  o) =  0 where D £  d +  d* is the 
Dirac operator on C i(X ) discussed in Chapter II, §5. Let 0  denote the 
Atiyah-Singer operator on the real spinor bundle $. Theorem 10.19 will be 
a direct consequence of the following lemma:

Lemma 10.21. For any o e  T($) with ||<r|| s  1, we have

\\D(a ®  <x)||2 =  H H I 2 +  I N I 2-

Proof. From 10.17 we see that

D{o <g> a) = £  ejVe.(o ®  <x) =  ( £  e}Vejo) ®  o + £  (e/r) ®  (Ve/r)
=  ipo) ®  a +  £  (ep) ®  (Ve/r).
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Since ||<x||2 =  1, we see that <V(7,(t) =  0. Furthermore <ei<x,e/r> =  
— (eyep, ay =  8^. It follows that

\\D(a ® a)||2 =  \\H>a\\2 +  £  <*!<*, e/r><V€<(X, Veja}

= \ \ M \2 + E M l 2 = M 2 + IIVctH2. -
In analogy with the above we define a 3-form cp e A3R7 to be of associa­

tive type if =  {# g G L 7 : g*cp = cp} is isomorphic to G2. Bryant observed 
that the set of such 3-forms is open in A3R7. Each such 3-form determines 
a unique inner product on R7 which makes it an associative 3-form. 
Arguing as in the proof of 10.20 gives the following:

Theorem 10.22. Let X  be a smooth oriented 7-manifold and suppose cp is a 
smooth 3-form on X  which is o f associative type at each point. Then for the 
riemannian metric determined by cp, the form <p is closed and coclosed if  and 
only i f  it is parallel

Therefore, to find a metric with holonomy <=G2 it suffices to find a 
closed 3-form cp, pointwise of associative type, such that

d(*<p<p) =  0

where *y is the Hodge *-operator for the metric determined by cp.
Characterizations of this type were formulated and used in the funda­

mental work of Bryant [1],[2].
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§11. Spinor Cohomology and Complex Manifolds with Vanishing 
First Chern Class

In this section we shall examine the geometry of Dirac bundles over 
complex manifolds. We shall recapture a number of classical results and 
prove some new ones. As an application we shall show the existence of 
compact manifolds with Sp„-holonomy. The results here are due to the 
second author and can be found in Michelsohn [1].

Fix a compact Kahler manifold X of dimension n, and let S be a 
holomorphic bundle of left modules over Cl(X) equipped with a hermitian 
metric and its associated canonical hermitian connection V. (This is 
the riemannian connection determined uniquely by the condition that 
a e T(S) is holomorphic if and only if VJva =  iVva for all v e TX; (see Wells 
[1].) We assume that this metric and connection make S a Dirac bundle 
over X .

We define operators 3t and 9) on F(S) by setting

® = i Ejv tj ® = i e j v ej
j =i j =i

(ii.i)
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358 IV. APPLICATIONS

where {el9. . .  ,g„} is any local hermitian frame field defined as in §§8 and 
9. The curvature Rs of the canonical hermitian connection is of type (1,1), 
i.e., R l tSj =  RlifEj =  0 for all i j .  From this and the identities (8.3) it fol­
lows that

& 2 = 0 and @2 = 0  (11.2)

These operators are easily shown to be formal adjoints of one another.

Proposition 11.1. There is a parallel orthogonal direct sum decomposition 
o f S into holomorphic sub-bundles

S =  S° ®  S 1 ©  . . .  ® Sn

with the property that

a>: r(S‘) -----► r(S f+1) and S :  T  (Sf+*)------► T(Sl)

for all i.

Proof. Let el9Je l9 . . .  ,en,Je„ be a local unitary frame field on X  and define 
ej — 2  (ej ■" J ej) as above. Consider the family of commuting elements 
cou . . .  ,g)w, col9. . .  ,a>n defined as in (9.7) by setting o)j =  — fijfi} and cdj =  
— SjEj. To each (possibly empty) subset /  =  {il9. . .  9ir} c= ( 1 , . . .  ,n} with 
complementary subset { j l9. . .  9j n- r} we associate the element

<*>/ = " '“> jn -r
and we denote \l\ =  r. From the relations (9.9)—(9.11) we can write

n n

1 =  n  H  +  =  Z  n r
j = l  r=0

where
nr = Y  co, (11.3)

I Ip r
The operators nr are independent of the choice of unitary frame field and
are therefore globally defined on X . They have the following basic prop­
erties for all r, s and j :

Vti, =  0 (11.4)

n; = nr (11.5)

7tr7is — 0 if r  #  s (11-6)

(jira, t> =  <<7,7trT> for a,x  e S (11-7)

SJJtr _ j =  and =  7lr£j. (11.8)

Properties (11.5)—(11.8) follow directly from (9.8)—(9.13), as does the fact 
that nr e C l0,2r~n(X) for each r. Since 0 =  V(l) =  £  Vjtr and V preserves 
sections of the subbundle C l p,q(X), we then obtain property (11.4). We
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§11. SPINOR COHOMOLOGY: MANIFOLDS WITH c, = 0 359

now define
S' = nr - S r =  0 ,1 , . . .  ,n

From the properties above we see that the nr’s form a parallel family of 
orthogonal projection operators. Therefore by (11.3) we have the orthog­
onal decomposition S =  © r S'.

We now show that each S' is holomorphic. Let a e  T(S) be a (local) 
holomorphic section, and write ar = nra. Then for any v e T X  we have 
that V,„(<rr) =  7tr(VJpff) =  7tr(iaj =  ior. Hence, each ar is holomorphic, and 
one sees immediately that the space of such local cross sections spans the 
fibre of S' at each point. Therefore S ' is_a holomorphic sub-bundle.

The fact that S>(T(Sr)) c: r(Sr+1) and S>(T(S')) c  r(S,_ ‘) follows directly 
from (11.3) and (11.8). ■

We now have defined a complex

with adjoint complex

o <—  r(s°) *2- r (s1) —  * 2 -  r(S") <—  o. (i 1.10)

This complex is elliptic, i.e., at any non-zero cotangent vector the symbol 
sequence is exact. To see this note that the principal symbol of &  at 
£ e T X  is given by Clifford multiplication =  <JC' =  i(£  — Sim­
ilarly we have o£3>) =  f c -. The exactness of (11.9) follows from the iden-

D efinition  11.2. The rth cohomology group of the Dirac bundle S is the 
quotient

From the ellipticity of the complex (11.9) it follows that each of the 
vector spaces 3#*(X,S) is finite dimensional.

Taking S =  C£(2Q and using both and we essentially recover the
Clifford cohomology groups of X  (see §8).

This viewpoint gives a simple unified approach to the fundamental 
vanishing theorems of Kahler geometry. Let us define elliptic self-adjoint 
operators ?*V and V*V on T(S) by

with e j , . . .  ,e„ as above. They have the property that J <V*Vo-, ct) =  J |V«r|2 
where V is defined by V„<x =  j(V„ — iVJv)a. Consequently we have that

o — •• r(s°) r(s‘) r(sn) — >o (ii.9)

v * v  =  - £  v ^  v * v  =  -  £  % ,tj 
7=1 / =1

ker(V*V) =  {holo. sections of S}, ker(V*V) =  {antiholo. sections of S}.

ypr(x  m _  kerj^lrcy))
( } s ’f n s ' - 1))'
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360 IV. APPLICATIONS

We now define associated curvature operators
n _  n

=  X  £j  ’ * C  =  X  £j  *
M=1

Applying the arguments of II.8 and using the fact that RsejtSk =  =  0
for all i,j9 gives the following (Michelsohn [1]).

Theorem 11.3.

3)Q> + 3)3) = V*V + <RC = V*V + Kc.
Taking the average of these two formulas gives a formula of the type 

presented in §8 of Chapter II.
We now consider a holomorphic hermitian line bundle, A, over X . 

The curvature R A of A is an imaginary valued, J-invariant 2-form (i.e.,
(l,l)-form) on X. In terms of a hermitian frame field eu . . .  ,e„ as above, 
we have

d A _    d A   d A

for all j,k; that is, the matrix aJk =  Rij<tk is hermitian symmetric. If this 
matrix is positive definite at each point, then A is called a positive hermitian 
line bundle. (If aJk is negative definite at each point, then A is called nega­
tive. In this case A* is positive.) It is straightforward to see that any closed 
imaginary (l,l)-form representing the first Chern class of A is the curvature 
form of a hermitian metric on A. We now have a vanishing theorem of 
“Kodaira type.”

Theorem 11.4. Let X  be a compact Kahler manifold and let S be a holomor­
phic Dirac bundle as above. Then for any positive line bundle A there exists 
an integer N  such that for  m ^  N

j e r(X, S ®  Am) =  0

fo r  all r > 0.

Proof. The curvature of the bundle S ®  A” is given by

Ry%fi”'((T ®  <f) =  <S> (  +  mo ®  (Ry Wf).

Since A is positive we may choose local hermitian frames so that R£Jttk =  
—XjdJk where 0 <  1, ^  A2 ^  ^  A„. It follows that

Am(o- ®  (?) =  £  ejekRlJMa <g> t  +  m £  (s ^ o )  ®  (££ ,* /)
\ j , k  J  j.k

= SRcfi7) (S> €  — ® ^

— C^cO7) +  mTff] ® t
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§11. SPINOR COHOMOLOGY: MANIFOLDS WITH c x -  0 361

where r  =  —£  =  J] A/ŵ . Note that for any a e S  we have

(tor, <t) =  £  A/co/r, (t) =  X  A/o^cr, <x) =  £  ÎK̂ H2
=  Z IK̂ II2 = Z (o>/x,<x) =  ^i(wct,(t)

where w =  J] cô . This element has the fundamental property that

which follows from the elementary fact that G)fa), =  co, if i e I  and =  0 
otherwise. Consequently, if a e Sr, i.e., if nra =  a, then w<7 =  r<7. It follows 
that on T(S' ® Am)

where A >  0 is the minimum of Ax on X . For r ^  1 and m sufficiently large 
we have SRc0Am >  and it follows from 11.3 that 3D& -f >  0 on 
T(Sr ® Am). ■

There is also a vanishing theorem of “Nakano type” for the Clifford 
bundle. We refer to Michelsohn [1] for the proof.

Theorem 11.5. I f  A is a negative line bundle over a compact Kahler manifold 
X 9 then

for all q <  0.

Let us now suppose that X  is a Kahler spin manifold, i.e., that c^AT) =  0 
(mod 2), and let $c be the bundle of complex spinors on X  with its canonical 
riemannian connection. This bundle is holomorphic; in fact, it is equiva­
lent as a complex vector bundle to A£T *X  ®  S1/2 where <5~1 =  A£T * X  is 
the canonical bundle (see App. D.). Since X  is Kahler, the canonical con­
nection on $c is also the canonical hermitian one. We can therefore apply 
Theorem 11.3. To compute the terms 9tc and 9lc which appear there, we 
need to know the curvature tensor of $c . From (4.37) of Chapter II we see 
that this can be expressed in terms of the Riemann curvature tensor R of 
X  by the formula

where q l9. . .  9r\ln is any real orthonormal basis of the tangent space. 
Choosing a unitary basis e i9Je l9. . .  ,en9Jen and writing {ej} as above, we 
can reexpress this as

W7r, =  rn.

5R£0Am ^  (5R£ +  mrX) ®  1

J? p'q(X 9A) =  0

In

n
Rv,w — X  {(Rv,wej*ek)8j * e*' +  * fik’}

j,*=l
= 2 <RVtW8pSkySj •£*• + ]£ (RVtWGj9Sjy
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362 IV. APPLICATIONS

where we use the fact that tf ik + eke} =  —5Jk. It follows that

* c =  t  A  (11-11)jfk-1

=  2 I  R Jklm S j ' h ' Z l '  £m' + Z  R ]klPj • V  
jXUm j,k,l

where Rjkl„ denotes ^R Iheksh em}. Now the Bianchi identity states that 
Rjkim =  R]ikm +  R-ikjm =  Kjfc*. That is, RJkWI is symmetric in k and I  But 
skst =  and so equation (11.11) becomes

« C  =  S  ^ k X ^ j  * V -
jX l

This relates to the Ricci form of X , which for tangent vectors V  and W  
is given by

Ric(F,W0 =  - Z  {<Rej,rej, W> +  <.RUj,yJeit W }}

= - 2 i Z < W F«^>-
j

Thus, we are able to write SRC as

* C = - 4 Z  Ric(e,-,et)£j • ek\
** j>k

Since Ric is hermitian symmetric we can choose our basis so that 
Ric(sp£k) =  tyjSjk where Xj =  Ric(e =  Ric(J ej,J ej) for j  =  1 , . . .  ,n are 
the eigenvalues. As before, we write —zfij =  coj and carry out a similar 
analysis for 9ftc. Thus we obtain the following:

Theorem 11.6. Let X  be a Kahler manifold equipped with a spin structure. 
Then on the bundle o f spinors $c

+ 2>3> =  V*V + 1 Z  Xjcoj =  i  Z

where X ^ . . .  ,Xn are the eigenvalues o f the Ricci tensor.

Taking the average of these two formulas gives the Lichnerowicz 
Theorem (II.8.8). To see this we observe that

V*V +  V*V =  ^V*V and Z  +  ®j) =  I  Xi = \  K2 j j 2
(11.12)

where k =  traceR(Ric) is the scalar curvature of X . Theorem 11.6 easily 
gives the following:

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



Corollary 11.7. Let A be a hermitian line bundle over a Kahler manifold 
X  with curvature form  RA, and assume that X  is spin. I f  Ric >  2RA, then

2fT(X, $c <g> A) =  0 (11.13)

for all r > 0. Similarly, i f  Ric >  —2RA, then (11.13) holds for all r < n.

Proof. Straightforward computation shows that the terms 9tc and SRC in 
Theorem 11.3 for the Dirac bundle $c <3) A are exactly given by Clifford 
multiplication by the elements

§11. SPINOR COHOMOLOGY: MANIFOLDS WITH c, = 0 363

* c  =  l ( - 2  Ric*k +  RI^ jeJek

* c - £  RicJ* -

Choosing a basis which diagonalizes the hermitian form ^Ric — R  with 
eigenvalues p u . . .  ,p„ we find that $RC =  X  P P j- This proves the first state­
ment. The second is proved similarly. ■

Taking the average of the two formulas of Theorem 11.3 in this case 
and applying (11.12) gives the formula (cf. Theorem D.12)

4 ( 9 8  +  8 9 )  =  V*V +  +  fiA (11.15)

where £2A is the Clifford element corresponding to the curvature 2-form 
of A.

Theorem 11.8. Let X  be a compact Kahler manifold equipped with a spin 
structure, and let A  be a hermitian line bundle over X . I f  the scalar curvature 
k satisfies the inequality \k > |Aj| +  • • • +  |2„| at each point, where . . .  ,X„ 
are the eigenvalues o f the curvature form o f A, then the cohomology groups

J? r(X ,$  C ® A )  =  0

for all r. In particular, by the Atiyah-Singer Index Theorem,

{ch A •£ (* )}  [JT] =  0.

It is interesting to specialize our discussion to the case where A =  Sr/S 
where 5 = A ^ T X  is the anticanonical line bundle of X  (the line bundle 
generated by the global section et • • • e„ in C£(2Q). An easy adaptation 
of the arguments given for D.2 shows the following (see Michelsohn [1]):

Lemma 11.9. Suppose c f X )  = kx where k is odd and a e H 2(X;Z) is indivi­
sible (i.e., not a non-trivial integral multiple o f any other class in H 2(X;Z)). 
Then for any odd integer m, there is a bundle o f the form $c <g> 5m,2k globally

(11.14)
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defined on X  where locally $c is the bundle o f spinors with its canonical 
connection.

For any rational number t, the curvature of 3‘ with its natural metric 
is just tR* where for any unit vector e, R* Je =  Ric(e,e) =  Ric(Je,Je). If we 
choose a unitary basis euJeu . . .  ,en,Je„ so that Ric(ej,ek) =  Xj5jk, then 
R'tU  =  tRic(Cj>ek) = (t/2)XjdJk, and applying (11.14) gives the following:

Lemma 11.10. On T($c ®  <5,/2)

-  -  1 n9 ® + g>® = v*v + - (l + 1) £ Xpj

=  V*V +  ^ ( l - t )  i  XjCQj 
4 J = 1

where Xu . . .  ,Xn are the eigenvalues o f the Ricci tensor on X .

R emark  11.11. The operators which appear here can be diagonalized as
follows. Suppose that o e $rc 0  dt/29 i.e., that nra =  o. From the fact that
nr =  £ |/ |= r  (Oj and that

fa)/ if i s  I  _ fO if i e I  
(0 if i $ I  jco7 if i $ I,

we see that on $rc ® St/2 we have

X =  X  XjQjj and A.j(°j ~  X  Xj'Oj
j  U p r  j  | / R r

where

Xj =  X(t +  • * * *+■ Alr and Xj> =  Xi +  • • * +  X„ — Xj (11.16)

when I  is the multiindex {iu . . . ,  ir}. It follows from (9.9)—(9.13) that multi­
plication by the elements coj constitutes a family of orthogonal projections 
onto mutually perpendicular subspaces of $€ ®  5t/2. These formulas give 
a delicate and precise analysis of what conditions are necessary for the 
positivity of and Note in particular that the numbers
{X j: |/ | =  r} are precisely the eigenvalues of Ric acting on ArT X  as a 
derivation.

We see from Lemma 11.9 that Sc ®  ^ 1/2 always exists globally. It cor­
responds naturally to the bundle A 0,*T *X  (see App. D), and there is an 
isomorphism J f r(X, Sc ®  <̂1/2) =  Hr(X,0)9 where 0  is the structure sheaf 
of X.

+ = V*V +  ^ Y
2 |/|=r

364 IV. APPLICATIONS

Corollary 11.12. On T($rc ® <51/2),
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In particular, if  Ric >  0, then J ^ r(X, $c ®  <51/2) =  0 for all r >  0 and 

{ch <51/2 • M(X)}[X] =  Td(X) =  1.

Arguing as above, we can conclude the following:

Theorem 11.13. Let A b e  a hermitian line bundle over X  and suppose that 
(1 +  t)Ric 4- 2R A >  0. / /  $c ®  51/2 ®  A exists globally on X , then

JT(AT, $c ®  S112 ®  A) =  0 (11.17)

for all r > 0. Similarly, if  (1 — t)Ric — 2RA >  0, then (11.17) holds for all 
r < n.

We now average the formulas of Lemma 11.10 and obtain

Theorem 11.14. Let X  be a compact Kahler manifold with cx(X) =  fea, 
fee Z + where o lg H 2(X;Z) is indivisible. Let $c ® d p/2k be the twisted 
bundle o f spinors where S1,2k is a local holomorphic 2feth root o f the anti- 
canonical bundle and where p 4- fe =  0 (mod 2). Then on r(#k  ®  5p,2k)

4 ( 2 2  +  2 2 )  =  V*V +  Y  l(k +  p)X, + ( k -  p)Ar ]w,.
2fe |Jj = r

In particular, if  Ric >  0, tfeen

•#"■(*, $c <g) <5'/2k) =  0 /o r all r 

whenever \p\ < k and p 4- fc is even.

We apply the Atiyah-Singer Theorem to the complex S* ®  &p,2k t0 get

Theorem 11.15. Let X  be a compact complex manifold such that c t(X) = fca, 
fee Z + , where a is indivisible. / /  AT admits a Ricci-positive Kahler metric, 
then the Hilbert polynomial

Px(t) =  {<**« • A (Z )}[Z ]

vanishes for all integers t such that |f| <  fe and t 4- fe is even.

From Yau [2], [3] we know that X  carries a Ricci-positive Kahler 
metric if and only if c^d) =  c fX )  is represented by a closed positive
(l,l)-form.

To illustrate Theorem 11.15 we consider complex projective n-space 
Pn(C) and let co e H 2(P”(C); Z) =  Z denote the standard generator. Then 

=  (n 4- l)co and a direct calculation shows that

This is predicted by Theorem 11.15 since PW(C) carries a Kahler metric 
of positive curvature.
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From the work of Yau [2], [3] we know that the hypersurface Vn(d) c  
p>w+i(C) carries a Kahler metric of positive Ricci curvature for d ^  n +  1. 
Furthermore, for n ^  2, c^ V ^d ))  =  (n +  2 — d)co where co is a generator 
of H 2(Vn(d); Z). It follows that the polynomial P J f)  on Vn(d) has zeros at 
n — d — 2j for j  =  0 , . . .  9n — d.

Theorem 11.15 has the following consequence:

Corollary 11.16. Let X  be a compact complex manifold o f dimension n. I f  
X  admits a Kahler metric o f positive Ricci curvature, then k ^ c ^ X )  for  
k > n +  1.

Proof. The Hilbert polynomial of 11.15 is of degree ^  n and can have 
therefore no more than n zeros. ■

One case of Theorem 11.14 is of particular interest since it involves only 
the scalar curvature k  =  2 +  • • ■ +  X n).

Corollary 11.17. Let X , 5 and k be as in Theorem 11.14. I f  the scalar 
curvature k  o f X  satisfies k  > 0, then

J ^ n(X 9 $c ® 5p/2k) =  0 for all p > - k

# e \ X 9 $c ® Sp/2k) =  0 for a llp  < k

where p +  k is even. Similarly, if  k  < 0, then

3tfn(X, $c ®  Sp/2k) =  0 for all p < - k

J^° (X 9 $c ®  6p,2k) =  0 for all p >  k

where p + k is even. In particular if  k  > 0, then all the plurigenera o f X  
are zero (cf. Yau [1]).

This last statement follows by setting p = k — 2kg for g e Z \  The 
£th plurigenus of X  is exactly the dimension of J^° (X 9 $c ®  SJ~g) =  
H °(X9e)(d-g)).

Note that the formula in Theorem 11.14 is particularly simple when 
Ric =  0. From Yau’s proof of the profound conjectures of Calabi we know 
exactly when such metrics exist.

Theorem 11.18 (Yau [2]). Let X  be a compact complex manifold which 
admits at least one Kahler metric. Then X  carries a Ricci-flat Kahler metric 
if  and only if  cx(X) = 0.

We can now apply the Splitting Theorem of Cheeger and Gromoll [2] 
to conclude that any compact Ricci flat Kahler manifold X  has a finite 
covering X  which decomposes into a Kahler product

X  =  T  x X 0
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§11. SPINOR COHOMOLOGY: MANIFOLDS WITH ct = 0 367

where T  is a flat complex torus and where X 0 is a compact Ricci-flat 
manifold which is simply-connected.

When Ric =  0, Theorem 11.14 gives us the following simple identity 
between operators

a a  + 3 a  = v * v  ( 1 1 . 1 8 )

on $c . In this case there is a canonical connection-preserving isometry 
$* =  A°’*(AT) =  A £ T X  of graded bundles, which carries ®  to S  and 
therefore identifies 3tfr(X 9$c) with Hr(X,0) (cf. App. D). Equation (11.18) 
therefore implies the following:

Proposition 11.19. On a compact Ricci-flat Kahler manifold, any harmonic 
spinor field is parallel Equivalently, any harmonic (0,r)-form is parallel

Suppose now that X  is a compact simply-connected Ricci-flat Kahler 
manifold of dimension n. Then the line bundles $q £  A0,0 and $nc s  A0,n 
are trivial (they have parallel cross-sections). The index of the elliptic 
complex (11.9) in this case is just

A(X) =  £ ( - l)rdim J T (X,$c) =  £ ( - l)rdim Hr(X,<9) =  Td(X)

and dim =  dim 1 =  1. Moreover, by the generalized Hodge Decom­
position Theorem (cf. III.5.5) we have J ^ r( X j c) s  k er(® ^  -F Q 3f) |r(^r} =  
k e r^ V jr^ rj) . Consequently, if Td(AT) #  1 *F (—1)", then there must exist 
non-trivial parallel sections of $rc (i.e., parallel (0,r)-forms) for some r #  0,n. 
This implies that the local holonomy group G of X  is properly contained 
in SU„. If G is a product of two non-trivial groups, then X  is a product 
manifold. Otherwise G belongs to the list of Berger discussed in §10, and 
we conclude that either X  is locally symmetric or G =  Spw/2, for n even and 
>  2. It is elementary that locally symmetric, Ricci-flat manifolds are flat 
(and therefore not simply-connected in the compact case). Combining the 
three paragraphs above proves the following general structure theorem.

Theorem 11.20 (Michelsohn [1]). Let X  be a compact simply-connected 
Kahler manifold with c^X )  =  0. Then there is a finite covering manifold X  
o f X  which is biholomorphically equivalent to a product o f compact Kahler 
manifolds with vanishing first Chern class

X = T x X i x - x X k x Y

where T  is a complex torus and each o f X l9. . .  ,X k,Y  is simply-connected, 
where

Td(X  \ =  1° odd
1 (2 if  dim X j is even

and where Y  admits a metric with Spm-holonomy.
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This decomposition theorem is a wonderfully effective device for de­
tecting manifolds with Spm-holonomy.

Corollary 11.21. Let X  be a compact simply-connected Kahler manifold o f 
dimension 2m with c^X ) = 0. I f  Td(Y) ^  0 or 2* for some k, then X  carries 
a metric with Spm-holonomy. Alternatively, i f  X  is not a product and 
Td(X) ^  2, then the same conclusion holds.

Theorem 11.20 with its corollary first appeared in Michelsohn [1] in pre­
publication form. Before printing, it was modified due to the publication 
of an announcement of the non-existence of compact manifolds with 
Spm-holonomy for m ^  2. This announcement was subsequently found to 
be in error. The first counterexample was produced by A. Fujiki using 
the results above. To construct this example we first take the symmetric 
square of a Kummer surface. This is the compact analytic space X 0 =  
V 2(4) x V 2(4)/Z2 where Z2 is generated by the interchange of factors in 
the product. Resolving the singularities along the diagonal gives a compact 
complex 4-manifold X. Alternatively, we could construct X  by first blow­
ing up the diagonal (i.e., by replacing the diagonal by its projectivized 
normal bundle) and then dividing by the natural extension of the “flip” 
to this space. The manifold X  is a certain component of the Hilbert scheme 
of 0-cycles on V 2(4). It is straightforward to see that X  is simply-connected 
and algebraic (hence Kahler) and that c^X ) =  0. However, further com­
putation shows that Td(X) =  3. Consequently the Calabi-Yau metric on 
X , given by Theorem 11.18, has Sp2-holonomy. (See Beauville [1] for 
further discussion and examples.)

§12. The Positive Mass Conjecture in General Relativity

The classical theory of gravity, as enunciated by Einstein, is a subject 
formulated in the language of differential geometry. In many ways it 
stands apart from other theories of modern physics. One of its curious 
features is that there seems to be no satisfactory way of defining an energy 
density for a gravitational field. Nevertheless, there is a concept of the 
total energy of a gravitating system, which is defined in terms of the 
asymptotic behavior of the field at large distances. It is in many ways 
essential to the theory that this energy be ^ 0  (and =  0 only on flat 
Minkowski space).

The proof of this “positive mass conjecture” has a long history during 
which many special cases were established. The key case of space-times 
admitting a maximal space-like hypersurface was first proved by Schoen 
and Yau [3] using minimal surface techniques. Using Jang’s equation 
they subsequently adapted their techniques to prove the general result [5].
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§12. POSITIVE MASS CONJECTURE 369

Of interest here is the fact that an alternative proof of this theorem can 
be given using the Dirac operator on spinors. This proof was found by 
E. Witten [1]. Very roughly the idea is as follows: Consider a space-time 
X  (i.e., a 4-dimensional Lorentzian manifold), with a properly embedded 
space-like hypersurface M c l ,  We assume that X  satisfies Einstein’s 
equations

Ric — \ q k  =  T

where the energy-momentum tensor Tis positive on time-like vectors. It 
is assumed that as one goes to infinity in Af, the geometry of M  cz X  is, 
in a very explicit way, asymptotic to the standard geometry IR3 c  IR3,1 in 
Minkowski space. In this context Witten considers the following problem. 
Let S denote the spinor bundle of X  with its canonical connection V, and 
consider the restriction of (S,V) to the hypersurface M. On this bundle 
one has a Dirac operator defined by

0 =

where eue2,e3 is any local orthonormal frame field on Af. One now applies 
Bochner’s method and writes

p  =  V*v +  3  (12.1)

where, since V is the metric connection of X  (and not of M), the term 3  
involves the second fundamental form of the hypersurface M in X. Com­
putation shows that the positivity of the tensor T  on the normal vectors 
to M  implies the positivity of 3- This in turn shows that on suitable sub­
spaces of T(S) the operator $ is invertible. Since S is asymptotically flat, one 
can consider solutions of the equation $<r =  0 which are asymptotically 
constant. Witten shows that there are unique solutions for each constant 
value at infinity. Let o be such a solution and consider a region Q c M  
with smooth boundary 3Q. From (12.1) we have

°  = Jn {<V*V<T,<7> + <3(a),<7>}

=  - £ n(<r) + Jn {||Vff||2 +  <3(<T),<r>}

where JEn(ff) is an integral over dSl which satisfies

£„(<r) 0 (12.2)

since 3 ^ 0 .  Witten shows that the inequality (12.2) viewed asymptoti­
cally, establishes the positivity of the energy of the system.

For the complete story the reader is referred to the original paper of 
Witten [1] and also to the rigorous account of Parker and Taubes [1].

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



APPENDIX A

Principal G-Bundles

Let X  be a paracompact Hausdorff space and G a topological group. A 
principal G-bundle over X  is essentially a bundle of “affine G-spaces” over 
X . To be precise, it is a fibre bundle n :P  -*■ X  together with a continuous, 
right action of G on P which preserves the fibres and acts simply and 
transitively on them. Thus, the fibres are exactly the orbits of G. M ore­
over, every point in X  has a neighborhood U and a homeomorphism 
hv :n~*(U) U x  G of the form hv(p) = (n(p),y(p)) and with the prop­
erty that h(pg) — (n(p), y(p)g) for all g e G .  Thus, the bundle is locally of 
the form

U x G

1
U

where G acts by multiplication on the right.
Two principal G-bundles n : P  -* X  and n ':P ' -* X  are said to be 

equivalent if there is a homeomorphism H : P  -> P' so that

\ /
X

commutes and so that H(pg) =  H(p)g for all g e G .  The equivalence classes 
of principal G-bundles over X  will be denoted by Prine(X).

Example. Let n : P  -+ X  be a 2-sheeted covering space of X,  and let 
G =  Z2. The group Z 2 acts on P  by interchanging the sheets. This is 
clearly a principal Z2-bundle. In fact it is not difficult to see that 
Prin22(X) s  Cov2(X) for any manifold X.

More generally, any normal covering of a manifold is a principal 
T-bundle where T is the group of deck transformations of the covering 
(with the discrete topology).

Example. Let £  be a real n-dimensional vector bundle over X,  and let 
PGl(£) be the bundle of bases in E, i.e., the bundle whose fibre at x e X  
is the set of all bases for the vector space Ex. This is a principal GL„- 
bundle where GL„ is the group of invertible n x  n real matrices. The action
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PRINCIPAL G-BUNDLES 371

of GL„ on PGl(E) is defined as follows. Fix a matrix g =  ((ay)) in GL„. 
Then given a basis p =  (vt , . . .  ,v„) of Ex at a point x, we set pg =  
(v’u • • • X ) where

v'j =  £  vkakp j = l , . . . , n
k

This action is clearly continuous and is simple and transitive on the fibres.
If E is oriented, we may consider the bundle P  GL+ (E) of oriented bases 

in E . The construction above makes this a principal G L + -bundle where 
GLn+ = {g 6 G L,,: de% ) >  0}.

I f  E  is riemannian, we can consider the bundle P0(£) of orthonormal 
bases. This is a principal 0,,-bundle where Ob is the orthogonal group. If 
X  is oriented we get the bundle Pso(£) of oriented orthonormal bases, 
which is a principal SO„-bundle, where SO„ =  {g e  On : det(^) = 1} .

There are natural complex and quaternionic analogues of these 
constructions.

Recall that a general fibre bundle B  A  X  with fibre F  and 
structure group G £  Homeo(F) is given by the following data. There is 
an open cover =  {Ua}aeA of X , and over each U„ there is a local 
trivialization n ~ l(Ua) -+ Ua x F  so that pr ° ha = n (where pr is pro­
jection onto UJ. The change of trivialization over U„ n  U„ is of the form 
([/„ n U p) x  F  ^ (l /a n U fi) x  F  where h, ° h f l{x ,f)  =  (x,ga„{x)f) 
and gafi:U ar \U p -+ G are continuous functions called the transition func­
tions of the bundle. They satisfy the cocycle condition

9 a p 9 f iy 9 y a  ==  ̂ (̂ * )̂
in Uan U fin  Ur  The bundle can be reassembled from this data by pasting 
together the local products {Ua x F}aeA with these homeomorphisms.

Any fibre bundle B with structure group G as above has an associated 
principal G-bundle PG(B). It is obtained by simply replacing F  by G in the 
local products and then pasting together the {Ua x G}aeA by the same 
transition functions, where gafi(x) acts on G by multiplication on the left. 
Note that we are free to multiply on the right by elements of G. Since 
right and left multiplication commute, this multiplication by elements of 
G on the right makes sense when we assemble the bundle PG(B). Note, 
however, that while each fibre looks like G, there is no preferred element,
i.e., no “identity.”

The original fibre bundle B can be recaptured from PG(B) as an asso­
ciated bundle, that is, B ^  PG(F) x ^ F  where cp: G -► Homeo(F) (see II.2).

We now observe that every principal G-bundle over X  can be presented 
by transition functions gafi: Ua n  Ufi -» G multiplying G on the left as above. 
Of course a principal G-bundle is a fibre bundle and therefore is always 
given by a family of transition functions : Ua n  Up ->■ Homeo(G) over
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372 APPENDIX A

some open cover {Ua} of X . Since the bundle is principal, these functions 
must commute pointwise with right multiplication by G. Let gap(x) =  
Gap(x)( 1). Then Gafi{x){g) =  Gafi{x)(l)g =  gaP(x)g and we are reduced to the 
simpler case, as claimed.

Thus, we have seen that every principal G-bundle on X  is given by a 
pair 9{gaP}) where m  =  {Ua}aeA is an open cover of X  and where 
g<xpm-Ua n  Ufi -► G are continuous functions satisfying the cocycle condi­
tion (A.l). Such a pair can be thought of as a Cech 1-cocycle with coeffi­
cients in G (or, more precisely, in the sheaf of germs of continuous maps 
to G). One can easily check that two such bundles, constructed from 
cocycles {gap} and {g'aP} on <*11 are equivalent if and only if there exist 
continuous maps ga:Ua -+ G for each a such that

dafi da * dafi * dfi (A » 2 )

in Ua n  Up for all a, /?. (This can be considered a “Cech-coboundary” 
condition.)

Therefore, we define two 1-cocycles {gap} and {g'ap} on <3/ to be equiva­
lent iff there is a “Cech 0-cochain” {ga}aeA such that (A.2) holds. The set 
of equivalence classes will be denoted by JFf1(̂ S/; G). This set naturally 
represents the equivalence classes of principal G-bundles on X  which can 
be trivialized over the open sets of 4ll.

Suppose now that (if, j )  is a refinement of i.e., i f  is an open cover 
of X  and j : i f  -► %  is a map such that V £  j(V ) for all K e i T .  Then by 
restriction we get a map i y * : G) -> H \ i f ; G) which can be shown
to be independent of the refinement function j. These maps satisfy the 
relation / y ^  =  j y ^  ° for successive refinements O f  -*• i f  Thus 
we can take the direct limit

H l(X;G) = l i m t f ^ G ) .

This limit naturally represents the equivalence classes of principal 
G-bundles on X . That is,

PrinG(^ ) £  H l(X;G).

If G is abelian, H 1(X; G) is simply the first Cech cohomology group of X  
with coefficients in G.

E xam ple . Let G =  Z 2. Then Z2-bundles over X  are precisely the two­
fold coverings of X , and the correspondence Cov2(X) H 1(X; Z 2) is 
just the isomorphism given in Lemma 1.1.

R em ark  A. 1. If X  is a C°°-manifold and G is a Lie group, we can 
require all the maps gafi,ga, etc. in the discussion above to be differen­
tiable. The resulting set, denoted H \X \  G)*,, represents classes of smooth 
principal G-bundles over X . The natural m ap H 1(X;G)00 -* H 1(X; G) can

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:39 PM



be shown to be a bijection so we shall in general drop the reference to 
smoothness.

An analogous remark can be made concerning complex manifolds X  
and complex Lie groups G where the maps gafi and ga are required to be 
holomorphic. In this case, however, the corresponding map to H x(X;G) 
is far from a bijection in general. (An exception is the case where X  is 
Stein.)

Note that if G is not abelian, H 1(X; G) is not a group. It is merely a set 
with a distinguished element given by the trivial G-bundle. Nonetheless, if

1 -----► K  - L * G -+-> G ' ► 1 (A.3)

is an exact sequence of topological groups, the standard arguments in 
Cech cohomology theory (cf. Hirzebruch [1, Ch.I, §2] show that for para- 
compact spaces X , there is an exact sequence:

{*}---- ► H°(X; K) H°(X; G) H°(X; G')
 ► H l(X; K) H \X ;  G) H 1(X; G')

of pointed sets. H°(X; G) is the set of 0-cocycles and is easily identified 
with the space of continuous maps from X  to G. The maps i* and j * are 
given in the obvious way by coefficient homomorphisms. Note that for a 
principal G-bundle P, the corresponding principal G'-bundle j*(P) can be 
obtained by dividing P by the action of K  on the right.

R e m a rk  A.2. If the  g ro u p  K  in (A.3) is abelian , then  H 2(X;K) is defined 
an d  the  exact sequence (A.4) can  be ex tended  to

. . . -----► H l(X\ K )  *• H \X ;  G )  ► H \X ;  G ')-----► H 2(X\ K) (A.5)

E x am p le  A.3. For the sequence

0 — ► S O „----- *• On  »• Z 2  ► 0,
the induced map

W l:H l(X ;O n)  > H \X -,Z z)

is just the first Stiefel-Whitney class. Clearly wt(P) =  0 if and only if P 
comes from an SO„-bundle, i.e., if and only if P  is orientable.

E x am p le  A.4. For the sequence

0 -----► Z2  *• Spin* SO „ »• 0,

the induced cobundary map

w2 : H 1{X; SO„) > H 2(X ;Z 2)

is the second Stiefel-Whitney class. Clearly w2(P) =  0 if and only if P 
comes from a Spin„-bundle, i.e., if and only if P  carries a spin structure.

PRINCIPAL G-BUNDLES 373
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374 APPENDIX A

There is a caution, however. As shown in §1, distinct spin structures may 
give abstractly equivalent principal Spin„-bundles.

Note that the definition of a Cech coboundary leads to a nice com­
binatorial definition of w2(P). Let (̂ U, {gap}) be a cocycle representing P, 
where each set U„ n  Up is simply-connected. Lift each map gap to a map 
gap:U a n  Up -* Spin,,, and define

wapy =  gxp§pygya (A.6)

in [/„ n  Up n  Ur  Since £o(w«jjy) =  we see that

wapy: Ua n  Up n  Uy -* Z2.

This Z2-cocycle represents w2(P).

E xam ple  A.5. Consider the sequence

0 -----► Z ------*• R -----► S 1 -----► 0.

Since all groups here are abelian, the exact sequence in cohomology con­
tinues indefinitely. It is an elementary exercise to show that H ‘(X;U) =  0 
for all i >  0 and for any manifold X . (Here R carries the standard, not 
the discrete, topology.) We thereby get an isomorphism

: H \X ;  S l) h 2(X; Z) (A.7)

called the first Chern class. This shows that the equivalence classes o f 
principal S 1-bundles are in natural 1-to-l correspondence with elements o f 
H 2(X;Z)

Note. For a full and clear discussion of the basic subject of fibre bundles 
the reader is referred to the classic book of Steenrod [1].

We conclude this section with some remarks about transferring bundles 
from one space to another. Let p A l  be a principal G-bundle 
over a space X  and let / :  Y -+ X  be a continuous map. Consider the set 
of points

f * p  S  {(y, P) e Y x P : f ( y )  = n(p)}, (A.8)

in the product Y x P, and note that projection of Y x  P  onto its factors 
induces maps on f * P  which make the following diagram commute:

j * p  _ JL ,. P

a * (A.9)

y  — s— * x

We now observe that n : f * P  -*• Y  is a principal G-bundle over Y. It follows 
directly from definitions that G acts on f * P  and is simple and transitive
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on the fibres of ft. The map /  commutes with this action. Any set of local 
trivializations of P over a family of open sets %  =  {Ua}aeA in X  naturally 
determine local trivializations of f* P  over the family of open sets 
f* q i  =  { f ^ i Ua}a€A in Y. The transition functions {gafi} for this cover lift 
back to transition functions

f*9a» = 9 a fi° f  (A. 10)

for f %aU.

D efinition  A.6. The principal G-bundle f * P  -» Y  is called the bundle 
induced from P  -* X  by the mapping / .

It is clear that if two bundles P  and F  are equivalent on X , then f* P  
and f * F  are equivalent on Y. (Lift the equivalence.) Thus we have a map

/ * :  PrinG(X ) ► PrinG(y). (A.11)

From equation (A. 10) we see that the cocycle for f * P  is just pull-back 
via /  of the cocycle for P. Thus, (A. 11) corresponds to the usual induced 
mapping on Cech cohomology groups:

f * : H \ X ; G ) -----> H l(Y;G).

This “pull-back” mapping on principal bundles has two important 
properties:

Proposition A.7. For continuous maps X  -4 Y  A  Z, the induced maps 
PrinG(Z) £  P rin^T ) ^ P r in G(J^) satisfy

(A. 12)

Proof. That f*{g*P) =  (g ° f)* P  is obvious from the definition. ■

Proposition A.8. Let Y bea  compact Hausdorff space. I f  two maps f 0 :Y-+ X  
and f x :Y-> X  are homotopic, then

/ $ = / ? .

We leave the proof as an exercise for the reader.
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APPENDIX B

Classifying Spaces and Characteristic Classes

The point of this appendix is to briefly summarize the basic facts from 
the theory of classifying spaces and characteristic classes for principal G- 
bundles. Details can be found in Milnor-Stasheff [1] and Husemoller [1].

For simplicity we shall assume throughout this appendix that G is a 
Lie group. Furthermore all spaces will be assumed to have base points, 
and all maps will be base-point-preserving. All spaces will also be assumed 
to have the homotopy type of a countable CW-complex.

D e fin itio n  B.I. A classifying space for the group G is a connected topo­
logical space BG , together with a principal G-bundle EG  -> BG , such that 
the following is true. For any compact Hausdorff space X , there is a one- 
to-one correspondence between the equivalence classes of principal G- 
bundles on X  and the homotopy classes of maps from X  to BG , given 
by associating to each m ap f : X ~ >  BG , the induced bundlef* E G  over X  
(see the end of App. A).

Thus the induced bundle construction gives a natural bijection

PrinG(X )^  [X,BG]. (B.I)

Note that as a special case we have

PrinG(S") s  7zJtBG). (B.2)

Given two different classifying spaces for G, say B0G and B XG, there 
must exist mappings f 0 :B0G -+ B XG and / x: jBxG -> B0G such that 
/* E i+1G £  E f i  for i e Z2. This implies that ( f i+1 ° f ^ E f i  £  £ fG, and 
therefore f i+x o f .  is homotopic to the identity on B f i  for i e Z2. Thus B0G 
and BXG are homotopy equivalent, i.e., BG is well defined up to homotopy 
type.

The bundle EG -► BG is called the universal principal G-bundle. This 
bundle has the following homotopy characterization (see Steenrod [1] for 
example).

Theorem B.2. Let E -> B be a principal G-bundle with the property that 
the total space o f E is contractible. Then (B, E) is a classifying space for  G.

The theory has definite interest due to the following:

Theorem B.3. For any Lie group there exists a classifying space.
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CHARACTERISTIC CLASSES 377

The general construction of classifying spaces for principal bundles is due 
to Milnor [1,2] and proceeds as follows. Given a group G, we consider 
the n-fold join G* ••• *G. (The join of two spaces X  and Tis obtained 
from X  x Y x [0,1] by collapsing ( x } x f x  {0} to a point for each x  
and also collapsing X  x {y} x {1} to a point for each y .)

[0,1]

X  X Y  X [0,1] X  * Y

Y x Y x [ 0 , l ]  >X*Y.

The space G * • • • * G is (n — l)-connected. It also has a free G-action ob­
tained by multiplying simultaneously on the right in each of the factors. 
We pass to the limit as n -* oo, and define EG = G * G * G * - - .  This 
is infinitely-connected and has a free right G-action. We set BG = EG/G 
with n : EG -» BG the quotient map. From Theorem B.2, this bundle is 
classifying.

Of course this construction of Milnor can (and has) been carried out 
in enormous generality.

It should be noted that since EG is conuactible, the long exact sequence 
of homotopy groups for a fibration implies that

nn^ ( G ) ^ K n(BG) (B.3)

for all n ^  1. Thus, the homotopy groups of BG present nothing new. 
However, the homology of the space is quite interesting.

We begin the discussion with the following. Consider the singular 
cohomology H*(BG; A) with coefficients in a ring A.

D efinition  B.4. Each non-zero class in H*{BG; A) is a universal charac­
teristic class for principal G-bundles.

Fix a class c e Hk(BG\ A). Then for any principal G-bundle P  -*• X  there 
is a map f P : X  -* BG so that P = f*E G . We define the c-characteristic
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378 APPENDIX B

class of P  to be the class

c(P) =  /J ( c ) G if fc(X; A). (B.4)

Since f P is well defined up to homotopy, the class c(P) is uniquely defined.
Observe that any such characteristic class transforms naturally in the 

following sense. Given a principal G-bundle P -► X  and a continuous map 
F : Y  -> X , the c-characteristic classes satisfy:

c{F*P) =  F*c{P) (B.5)

To see this we simply note that / F*P =  f P o P, and so c(F*P) =  /?*P(c) =  
F*/?(c) =  F*c(P).

Given a continuous homomorphism <p: H  -> G of Lie groups, there is 
a corresponding continuous map

B cp .B H  > BG (B.6)

which classifies the principal G-bundle over BH  associated to the repre­
sentation q>. That is,

(Bcp)*(EG) = EH x v G

where EH x ^ G  denotes the quotient of EH  x G by the action of H  given 
by setting <t> h(p,g) =  (ph~1,hg) for p e EH, g e G  and h e  H. This associa­
tion also transforms naturally. That is, for any composite homomorphism 
H ^ K ^ G ,  we have

B(ij/ © q>) =  B(\l/) o B((p).

If the homomorphism (p :H  -+ G is a homotopy equivalence, then so 
is the mapping Bq>: BH  -> BG. This is easily seen by applying the 5- 
lemma to the induced map on the long exact homotopy sequences of the 
fibrations

H  ► E H  > BH  and G  ► E G  ► BG.

(Recall that BH  and BG are assumed to be homotopy equivalent to 
countable CW-complexes.) This gives the following result:

Proposition B.5. Let G be a connected Lie group and X £  G a maximal 
compact subgroup. Then BG s  BK, that is, the classifying spaces o f G and 
K  are homotopy equivalent.

Proof. It follows from the Iwasawa decomposition of G (cf. Helgason [1]) 
that the inclusion K < ^ G is a homotopy equivalence. ■

It follows, for example, that BO„ ^  BGL„(IR), BSOw s  BGL„+ (IR), 
BU„ s  BGLn(C), BSUn s  BSLn(C), BSpn s  BSpn(C), etc.
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Note that, in general, each mapping of the type Bcp: BH BG induces 
a transformation (B(p)*: H*(BG; A) -> H*(BH; A) of universal characteris­
tic classes. Any non-zero element which goes to zero under this transforma­
tion is a universal obstruction to the reduction of the structure group 
from G to H . That is, if c is such a class and if P -> X  is a principal 
G-bundle with c(P) ±  0, then P cannot be written as an associated bundle 
P = P' x  ̂G (as above) for any principal H-bundle F  -> X.

The cases of basic interest here are those of the compact classical 
groups. For these cases there are useful alternative constructions of the 
classifying spaces.

For K  = IR, C or H, let GK(n, N) denote the Grassmann manifold of all 
n-dimensional K-linear subspaces of K N. There are natural inclusions 
G*(n, N) cz GK(n, N  +  N') induced by the “first-coordinate” inclusions 
K N c: K n+n'. Taking the direct limit, we get

the Grassmannian of K-planes in X 00.
There is a canonical K-vector bundle E„ GK(n, oo) whose fibre at a 

plane P e GK(n, oo) consists of all the vectors in that plane. We shall show 
that

The principal fibrations in each case are obtained by taking the appro­
priate bundle of bases (orthonormal, unitary, or symplectic) in the ca­
nonical bundle E„. Thereby, Ew becomes the universal (real, complex or 
quaternionic) n-plane bundle over the classifying space (BOw, BU„, or BSp„ 
respectively).

We begin our proof of these claims with the real case. For this we note 
that for any AT, we have Gw(n, N) s  O n/(O n -„ x Ort). The bundle of ortho­
normal frames for the canonical n-plane bundle E„ -► GR(n, N) is just the 
Stiefel manifold 0 N/ 0 N- n. Hence, the bundle of orthonorm al frames for 
E„ -> Gu(n, oo) is just the direct limit over N  of the principal Ow-bundles

It is an elementary exercise, using the fibrations Ok -► Ofc+1 Sk, to see 
that 0 N/ 0 N_rt is {N — n — 2)-connected. Hence the infinite Stiefel mani­
fold UniN On/O n is contractible, and the limiting fibration must repre­
sent the universal bundle EO„ -► BOw by Theorem B.2.

GK(n, oo) =

BOn s  G > ,  oo) 

BUn s  Gc(n, oo) 

BSpn =  GM(n, oo).

(B.7)

 ̂ O iv/(Ojv-w x O w)
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The arguments for BUW and BSp„ are entirely analogous. Here one 
uses the facts that G ^ i V l ^ U ^ f U ^ x U J  and GH(n,N  
SpN/(SpN_n x Sp„). We omit the details.

The reader has undoubtedly noticed that BO„ can be considered as the 
classifying space for real n-dimensional vector bundles. That is, for a com­
pact Hausdorff space X , the equivalence classes of such bundles corre­
spond one-to-one with elements of [X , BO„] by associating to f : X  -> BOn 
the vector bundle /*E„. This follows easily from the discussion above by 
passing to the bundles of orthonormal bases. The corresponding remarks 
hold for BU„ and BSP„.

It should be noted that the fact that GK(n, oo) is a classifying space for 
n-dimensional vector bundles (over K) can be proved by a direct geometric 
construction (see Milnor-Stasheff [1]).

We now examine the cohomology of the basic classifying spaces. These 
spaces are infinite-dimensional and have non-zero classes in arbitrarily 
high dimensions. Nevertheless, as rings under the cup-product multiplica­
tion, they are quite understandable. Basic references for all the following 
results are Milnor-Stasheff [1], Steenrod-Epstein [1], and Borel [2]. We 
begin with Z2-cohomology.

Theorem B.7. The cohomology ring H*(BO„;Z2) is a Z 2-polynomial ring

Z 2[wt,w2, . . .  ,w„]

on canonical generators wk e H \B O n;Z 2) for k — 1 , . . .  ,n.

Note. The classes wl5. . .  ,w„ are characterized inductively by the following 
fact. The kernel of the homomorphism H*(BO„;Z2) — //*(BOw_ 1; Z2) 
induced by the standard inclusion Ow, is the principal ideal
<w„>. Analogous statements characterize the canonical generators in the 
subsequent theorems.

The class wk is called the universal kth Stiefel-Whitney class. Thus to any 
n-dimensional real vector bundle E X  classified by a map f E: X  -> BOn, 
we have the associated fcth Stiefel-Whitney class of E , wk(E) =  / | ( w k). An 
im portant concept is that of the total Stiefel-Whitney class w =  1 +  +
. . .  +  wn. It satisfies the Whitney product formula for the sum of two 
bundles

w(£ ® £') =  w(£) u  w(£') (B.8)

which translates in longhand to the equations

wk(E ® E ’) = t  wf(£) u  _,(£')
/ = 0
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for k =  1,2 This can be considered as a statement about the induced
map on cohomology induced by B(Om x On.) -+ BO„+„. under the usual 
“diagonal block” inclusion On x Ob. c  Ob+„..

Given a smooth manifold X,  we define the kth Stiefel-Whitney class 
of X  to be wk(TX). It is an important fact that the Stiefel-Whitney classes 
o f a compact smooth manifold are invariants o f the homotopy type o f the 
manifold. That is, given a  homotopy equivalence f : Y - * X  between com­
pact smooth manifolds, we have that f* w k(X) — wk(Y) (see Milnor- 
Stasheff [1], p. 131.) This will not be true of many other characteristic 
classes of manifolds.

Consider now the space BSOn. This can be realized as above as 
the Grassmannian of oriented n-planes in IR00. There are natural maps 
BSO„ -» BO„ -♦ BZ2 =  K (Z2, 1). This sequence is a fibration, and we have 
the following:

Theorem B A  The cohomology ring H*(BSO„;Z2) is a Z 2-polynomial ring

Z2[w2, . . .  ,w j

where wk denotes the lift o f the universal kth Stiefel-Whitney class by the 
map BSO„ -» BO„.

Finally we consider the space BSpin„ which sits in a fibration BSpin„ -+ 
BSO. -> K (Z2,2).

R em ark  B.9. The cohomology ring //*(BSpin„;Z2) is quite complex 
and since its precise structure is not used here, we refer the interested 
reader to the basic paper of D. Quillen [1]. (The “stable” groups 
H*(BSpin; Z2) were first computed by E. Thomas [1].)

The Z2-cohomology of the spaces BU„ and BSp„ is merely the mod 2 
reduction of the integral cohomology, and we have the following:

Theorem B.10. The cohomology ring J/*(BU„;Z) is a Z-polynomial ring

Z[cj,c2 c„]

on canonical generators ck e  H 2*(BU„;Z) fo r k =  1 n.
The class ck is called the universal kth Chern class. Thus to any n- 

dimensional complex vector bundle E -* X  classified by a  map f E :X  -* 
BU„, we have the associated kth Chern class ck(E) =  f E(ck). There is the 
concept of the total Chern class c =  i +  c2 +  c2 +  . . .  +  cH, and again 
there is a product formula

c(E e  £ ') =  c(E) u  c(E'). (B.9)

Given any complex manifold X , the tangent bundle is a complex vector 
bundle. We call ck(X) =  ck(TX) the kth Chern class of X.
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There is now a ring isomorphism //*(BU„; Z2) =  Z2[c i c„] where ck
is of degree 2k for each k. The class ck is the mod 2 reduction of ck. The 
natural inclusion U„ c  0 2n induces a map BUn -*■ B 0 2b. It can be shown 
that under this map w2k ck and, of course, w2k+1 -> 0. Hence, for any 
complex vector bundle £ ,

w2k(E) a  ck(E)(mod 2) and w2k+1(£) =  0

for all k.
The picture is much the same for quaternion bundles.

Theorem B.11. The cohomology ring H*(BSp„;Z) is a Z-polynomial ring

Z [ > i , . . .  ,<xB]

on canonical generators ak e H 4k(BSp„;Z) fo r  k  =  1 n.
Under the natural map BSp„ -> BU2b we have that c2k •-*• ok and

c 2k + l  0*
The integral cohomology of BO„ is a more complicated story due to the 

presence of 2-torsion. However, away from the prime 2, things become 
nice.

Theorem B.12. Let A be any integral domain containing 2 (e.g., Z[£] or Q). 
Then H*(BO„;A) is the polynomial algebra

A[Pi, • • . ,P[B/2j]

on canonical generators pk e  / f 4*(BO„; A) for k = 1 , . . .  ,[n/2].

Choose A =  Q. Then the class pk is called the universal fcth rational 
Pontrjagin class. Given a real vector bundle E -* X  classified by f E:X  -+ 
BOb, we define the fcth rational Pontrjagin class of £  to be pk(E) =  f* (p k). 
There is a total rational Pontrjagin class p =  1 +  p k + . . .  +  p[ll/2] and a 
product formula

p(£ ® £ ') =  p(£) u  p(E') (B.10)

in H*(X; Q). There are rational Pontrjagin classes of a smooth manifold 
which, in the compact case, are homeomorphism invariants.

To understand the integral case we must examine the Bockstein homo­
morphism. The coefficient sequence 0 - » Z - » Z - + Z 2 - >0  gives rise to a 
long exact sequence

. . .  — ► H k(X; Z) H k(X; Z) — » H \ X ; Z2) Hk+1{X ; Z) — ► • • •

where /? is called the Bockstein. N ote that the kernel of /? is the set of 
classes in H*(X; Z2) which are m od 2 reductions of integral classes.
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Theorem B.13. The integral cohomology H*(BOn;Z) is an additive direct 
sum

AjPn  • • • >P[»/2 ]] © Image(/?)

where pk e H * \BOw;Z) becomes the element pk o f Theorem B .I2 under 
tensor product with A, and where /? is the Bockstein homomorphism.

The class pk is called the universal kth integral Pontrjagin class. These 
classes have the following property. Consider the homomorphism O w 
U„ induced by complexification. The Chern classes lift back over the in­
duced map BO* -► BUW. The classes c2k+1 go to zero, and

P* =  ( - D kc2*. (B.I 1)

It is conventional to define the Pontrjagin classes of a real vector bundle 
E by this formula, i.e., by setting

pk(E) =  ( - l ) ‘c2* (£ ® C ). (B.I 2)

Observe now that the subset /?(//*(BO„;Z2)) c  //*(BO„;Z) consists en­
tirely of 2-torsion elements. Im portant among these are the classes

Wk = p{wk.  J  (B.13)

which measure whether the (k — l)st Stiefel-Whitney class is the mod 2 
reduction of an integral class. Of course all the Ŵ ’s vanish when pulled 
back to BU„ or BSp„ under the maps BU„ -> B 0 2b and BSp„ -* B 0 4b. 

We now examine BSO„.

Theorem B.14. Let A be an integral domain containing Then for each n, 
there are ring homomorphisms

H*(BS02b+1; A )  =  A [ p j , . . .  ,p „ ]

H*(B S 0 2M; A) =  A [p„ . . .  ,p„xl/<X2 ~  P«>

where pk e  H 4k(B SO ,; A) and where % e  //"(B S02n; A).

The elements pk are the images of the A-Pontrjagin classes (of Theorem 
B.12) under the map BSO„ —*■ BO„. The class x is called the universal Euler 
class. It can be defined as usual for any oriented vector bundle E -* X  by 
setting y(£) =  /J(x). (For odd-dimensional bundles it is defined to be zero.) 
There is a product formula

X(E e  £ ') =  x(£) u  X(F). (B.14)

There is a natural definition of x as an integral cohomology class, (see 
Milnor-Stashefif [1]). Under the map BU„ -*■ B S02b, the class x  pulls back 
to cB. Under mod 2 reduction, x  becomes w„ in /f"(B S02B;Z 2).

The analogue of Theorem B.13 holds for H*(BSOb;Z).
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APPENDIX C

Orientation Classes and Thom Isomorphisms 
in K-Theory

The point of this appendix is to examine the notion of an orientation class 
for K-theory, XO-theory, or KR-theoxy on a vector bundle. Such classes 
exist only on bundles with an appropriate structure, and when they exist 
they determine a “Thom isomorphism” for the given theory. These can be 
compared with the standard Thom isomorphism for cohomology via the 
Chern character. For more elaboration of the matters discussed here the 
reader is referred to the book of Karoubi [2].

Let n : E ->• X  denote a vector bundle over a locally compact space X. 
This bundle may be real or complex, or even Real (when X  is provided 
with an involution). Let k~* denote any of the theories X c~f, K O ~pf or 
XRCpf. (This last theory is defined only for spaces with an involution. We 
shall let the reader make the obvious adaptations of the exposition to fit 
this case.)

Proposition C .l. Via the projection n :E  -* X , k~*(E) is canonically a 
k~*(X)-module.

Proof. Given any two locally compact spaces A  and B, the outer tensor 
product induces a graded, bi-additive map

k~*(A) x  k~*(B )-----► fc-%4 x B)

defined as follows. Fix elements [V0,Vu<r] e k(A x  Rm) =  k~ m(A) and 
[Wo.Wjjr] e  k(B x  R") =  k~ n(B). Choose extensions of the isomorphisms 
<r: V0 -> V1 and x : W0 -* Wu which are defined outside compact subsets, 
to all of A x  Rm and B x R "  respectively. Fix a metric in each of the 
bundles, and let o*:V1 -* V0 and x* : Wx -> W0 be the adjoint morphisms 
to a and r. Let Vt M Wj denote the outer tensor product, i.e., V{ |x] Wj =  
(Pr i Vi) ® (prf Wj) where p r t and p r2 are the projections of A x B x  R"+m 
onto j f x R "  and B x R "  respectively. Then the product of [F0,Fi;<r] and 
[yV0,W1;x'] is defined to be [U 0,U 1;p'] where

U0 =  (V0 0  W0) ®  (Ki S  W,), I / ,  =  (Kt 0  W0) 0  (V0 m  W,)
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and where
_  f o  0  1 - 1 0  x*\

P _ \ l  S t f f * i l  / '
From the fact that

f f (7*01 +  l | t * I  0 \
0 0*0 0  1 +  1 0  xx*)

we see that p is an isomorphism at any point where either a  or x is an 
isomorphism. Hence, p is an isomorphism outside a  compact subset of 
A  x B  x R"+m. All choices involved in this definition are unique up to 
homotopy, so the product is well defined.

The desired module multiplication is now given by the composition

k~*(X) x k~*(E )-----► k~*(X  x E )  ► k~*(E)
where the second homomorphism is induced by the proper map (ji x Id): 
E  -» X  x E. Verification that this multiplication is associative and dis­
tributive is left to the reader. ■

From this point on we shall assume that X  is compact.

D efinition  C.2. A class u e k{E) =  k°(E) is said to be a fc-theory orien­
tation for the bundle E if k~*(E) is a free fc_*(Ar)-module with generator u.

E xam ple  C.3. Let E  =  X  x Cm A  X  be a trivialized hermitian vector 
bundle and define

u =  [ A r n€ m, AoddQm; <r] 6 K cpl(E) (C.1)

where £ m s  n*E denotes the trivial m-plane bundle on E and where

ox v(q>) — v a  q> — v* L(p

for (x,u) e X  x Cm and cp e  A ccnCm. By using the identification R2m s  Cm 
and taking the canonical orientation, this element can be rewritten as

m =  [$c (C.2)

where $c = $c ®  $c = n*$c(E) *s the irreducible complex graded C f2m'
module (extended trivially over E) and where

Mx,.(<P) = v<P
is given by Clifford multiplication. The fundamental assertion of the Bott 
Periodicity Theorem is that u gives a K -theory orientation on E  (see 9.20, 
(9.8) and 9.28 of Chapter I).

E xample C.4. Let E =  X  x  R 8m A  X  be a trivialized riemannian vec­
tor bundle, and define

u = [£ +, p] e  KOcpl(E) (C.3)

THOM ISOMORPHISMS IN K-THEORY 385
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386 APPENDIX C

where $ =  $ + ® $ =  n*$(E) is the irreducible real graded C£8w-module 
(extended trivially over E) and where

VxA<P)z=v' (P

is given by Clifford multiplication. The Bott Periodicity Theorem (see 
9.22, (9.8) and 9.28 of Chapter I) states that u is a KO-theory orien­
tation for JE.

E xample C.5. Let £  =  X x C m =  X x  (Rm © iUm) A l b e a  trivial­
ized Real vector bundle over a compact space X  with trivial involution. Set

u =  [<CC C C ; R + iL ] e K R cpt(E) (C.4)

where C lOT =  CC° © is extended trivially over E and where

(R +  iL)XtU+iv((p) = (p-u + ivcp

at any point (x, u +  iv) e  X  x (Rm ® iUm). From the (l,l)-Periodicity 
Theorem of 1.10 we see that u defines a KR-theory orientation on E.

We now return to the general case of a vector bundle over a compact 
space X .

D efinition  C.6. A class u e  k(E) is said  to  have th e  Bott periodicity 
property if u determ ines a  fc-theory o r ien ta tio n  in any  local triv ia lization  
o f E  over a  closed subse t C a  X , i.e., if k~*(E\c) is a  free /c'*(C)- 
m odu le  genera ted  by u, w henever E\c is trivial.

Theorem C.7 Let n :E  -» X  be a vector bundle over a compact space X . 
Then any class u e k{E) with the Bott periodicity property is a k-theory 
orientation for E.

Proof. Let {Cj}jmi be a covering of X  by closed subsets such that E\Cj 
is trivial for each j. We proceed by induction on N. For N  =  1 the state­
ment is obvious. Suppose we have proved the assertion for E restricted 
to A =  C x u  • • • u  C tf-i (or to any closed subset of A). Set B =  CN. For 
each theory there exists a Mayer-Vietoris sequence with connecting 
homomorphisms of degree 1 (see Karoubi [2]). One easily checks that 
multiplication by the appropriate restrictions of u gives a morphism of 
exact sequences:

 > k~%A kjB)-+ k ' \ A )  ®  k - \B )  -+ k~ l(A rsB)-+  k ' i+1(̂ 4 u  B) -+ • • •

i  i  i  i

By inductioin the vertical arrows are isomorphisms from k~*(A), 
and k~*(A n  B) (since A n  B  is a closed subset of A). By the 5-lemma we
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conclude that the vertical arrows are isomorphisms also from k~*(A  u  B). 
The same argument clearly also applies to any closed subset of A <j B. 
This completes the proof. ■

Theorem C.7 has the following immediate consequences:

Theorem C.8 (The Thom isomorphism in K-theory for U..-bundles). Let
n :E  -» X  be a complex hermitian vector bundle over a compact space X . 
Then the class

A -i(E ) =  [ n * A r aE ,n * A ^E ;o -\ e Kcpt(E)

where cre((p) =  e a  <p — e* L q>, is a K-theory orientation for E. In particular, 
the map i ,: K(X)  -+ K epi(E) given by

h(a) = (n*a)- A _ t(£)

is an isomorphism.

Proof. By Example C.3, A -i(E \ has the Bott periodicity property. ■

Theorem C.9 (The Thom isomorphism in lif0-theory for Spin8m-bundles).
Let n : E -+ X  be a real 8m-dimensional bundle with a spin structure, over 
a compact space X . Consider the class

S(E) =  ,* •* - ;« ]  6 KOcpl(E)

where $ =  $ + ©  is the irreducible graded real spinor bundle o f E and 
where pe{q>) = e-<p is given by Clifford multiplication. Then S(E) is a KO~ 
theory orientation for E. In particular, the map it : KO{X) KOept(E) given 
by

i,(a) =  (7t*a)-S(E)

is an isomorphism.

Proof. By Example C.4, S(E) has the Bott periodicity property. ■

Theorem C.10 (The Thom isomorphism in A7?-theory for Real bundles).
Let n :E 0 - » X  be a real vector bundle over a compact space, and let 
E  — E0 ®  C =  E0 © iE0 be the associated Real bundle (with trivial invo­
lution on X). Then the class

U (E) =  [n*Cl°(E0), ifiC lH E Ji R + «L] e  K R epi(E)

is a KR-theory orientation for E (where (R +  iL)(cp) = <pe — ie'<p a te  + ie' 6 
E0 0  iE0 above a point in X). In particular, the map ij: K R (X ) -» K R cpl(E) 
given by

it(a) = (n*a) • U(£)

is an isomorphism.

THOM ISOMORPHISMS IN K-THEORY 387
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Proof. By Example C.5, U(E) has the Bott periodicity property. ■

Remark C .ll. For a general Real bundle n :E  -► X  over a compact 
space X  with involution, the class A - i(£ )  given in C.8 defines an element 
in K R cpt(E) which is always a K R -theory orientation for E (see Atiyah [2]).

Theorem C.12 (The Thom isomorphisms in X-theory for S 0 2m-, Spin2m- 
and Spin2m-bundles). Let n : E  -> X  be an oriented real vector bundle o f 
dimension 2m over a compact space X . Then the class

8(E) =  [7r*Cr(£),7c*Ce-(£);/x] e K cpt(E) <g> Q

defined in (III. 12.12) is a (K  ® Q)-theory orientation for E. I f  E has a spin 
structure, then the class

s(£) =  e  Kcpl(£)

defined by (l l l .1 2 .l i ) is a K-theory orientation for E. This remains true for  
any Spinc-structure on E where $c(£) =  $c(E) ©  $£ (E) is the associated 
irreducible spinor bundle (see App. D). The associated maps

i,: K(X)  0  Q  ► Kcpt(£) 0  Q given by i,(a) =  (n*a) • 8(E)

and

i ,: K ( X )  >• K cpt(E) given by i,(a) =  (jt*a) • s(E)

(in the Spinc-case) are isomorphisms.

Proof. Consider first the spin (or Spin4) case. In any local trivialization 
of E, say E\c A  C x IR2”, the class s(E) becomes the element

<E\C) =  [$ £ ,$ £ ;pi] e  K cpt(C x  R2")

which is the pull-back to the product of the canonical generator of 
Kcp,(R2m) given by the Atiyah-Bott-Shapiro Isomorphism. Hence, s(E) has 
the Bott periodicity property for K-theory.

Suppose now that E is not necessarily spin. From  the isomorphism: 
C t2m =  Homc(#c ,# c) =  0  $£, we see that in any local trivialization
£ |c A  C x R2m, the class 8(E) becomes

<5(£|c) =  ®  ®  $ c >  / t ]

— [S ch e ll* ]  ■ m

=  2ms(E).

Hence, after tensoring with Q, 8(E) has the Bott periodicity property, and 
the proof is complete. ■
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The Thom isomorphisms given above can be compared to the standard 
Thom isomorphism in cohomology via the Chern character. Formulas 
for this are given in Chapter III, §12 (see (111.12.14) and (111.12.15)).

Remark C.13. Each of the Thom isomorphisms given above can be 
extended to bundles defined over a locally compact space X . The orienta­
tion classes given explicitly in the Theorems C.8-C.12 do not define classes 
in k(E) when X  is not compact. Nevertheless, one can easily show that 
they do pair with elements in k(X) to give elements in k(E). Basically, these 
orientation classes have compact support in “vertical slices” and elements 
of k(X) lift to classes with compact support in the “horizontal directions,” 
and so the product has compact support on E.

The reader has probably noted that if X  is a manifold and E  =  T * X  
is its cotangent bundle, then the orientation classes given in the theorems 
above are the principal symbols of certain fundamental differential opera­
tors. In particular, Theorem C.8 shows that on any 8m-dimensional spin 
manifold, the principal symbol of the Atiyah-Singer operator is an orien­
tation class for the KO-theory of the cotangent bundle. Similarly, if X  is 
any even-dimensional spin (or Spin') manifold, then by Theorem C.12 the 
principal symbol of the complex Atiyah-Singer operator gives an orienta­
tion class for the K-theory of the cotangent bundle. Viewed in this way, 
it is clear that the Atiyah-Singer operator is a fundamental one. Twisting 
this operator with a general coefficient bundle generates the KO- theory 
(or K-theory) of T * X  freely as a module over KO(X)  (or K(X)  respec­
tively). Otherwise stated, at the level of principal symbols, every elliptic 
operator on X  is an Atiyah-Singer operator with coefficients in some 
bundle.

The proof of Theorem C.7 carries over directly to give the following 
useful case of the Leray-Hirsch Theorem. Suppose E  -+ X  is a complex 
vector bundle over a compact space X,  and let p : P(E) -* X  be the asso­
ciated projective bundle, i.e., the bundle whose fibre at each point x is the 
projective space of all complex lines through the origin in Ex. Note that 
H*{P(E);I) becomes an H*{X  ;Z)-module under the homomorphism p*. 
Consider now the “tautological” complex line bundle (  -* P(£) whose 
fibre at / 0 e  P (£ J  <=. P(£) consists of all vectors o e ^ c  Ex. Set 
u = c1(O e H 2(P(E);I).

Theorem C.14. Suppose E -* X  is a complex vector bundle o f rank k. Then 
H*(P(E);Z) is a free H*(X\ Z)-module with basis I,m,m2, . . .  ,w*-1 .

Proof. When E  is the trivial bundle, this follows directly from the Kunneth 
formula. In general one chooses a covering {Cj}jal  of X  and proceeds 
by induction using the Mayer-Vietoris sequence exactly as in the proof 
of Theorem C.7. ■
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APPENDIX D

Spirf-Manifolds

The notion of a Spinc-manifold is an im portant one, but it was not treated 
in the main body of the text to avoid too much congestion in the expo­
sition. It is essentially the “complex analogue” of the notion of a spin 
manifold, and much of the discussion of this case can be carried out in 
parallel with the spin case.

We begin with the complex version of a question mentioned in the 
introduction. Let X  be an oriented riemannian manifold, and ask whether 
there exists a bundle of irreducible complex modules for the bundle C£(AT). 
If X  is spin, the answer is certainly yes. (One merely takes the associated 
bundle $c == PSpin(X) x Ac V where V is an irreducible complex C£„- 
module.) However, the existence of a spin-structure is not necessary for 
the construction of such bundles. To see this we examine the complex 
representations of Spin* more closely.

Suppose Ac :Spin„ -» U N is a complex spinor representation, i.e., one 
coming from an irreducible C£„-module. Let z : U t U N denote the cen­
ter, i.e., the scalar multiples of the identity. Then we get a homomorphism 
Ac x z:Spin„ x U x -► U N which clearly has the element ( —1, - 1 )  in its 
kernel. Dividing by this element gives the group

Spin' =  Spin, x Z2 U x. (D.l)

Note that there is a short exact sequence

0 -----► Z 2 — *• Spins SO, x U i  ► 1 (D.2)

where the subgroup Z 2 <= SpinS is generated by the element [(—1,1)] =  
[(1,— 1)]. Now we have

SpinS <= Ci„ 0  €

as a multiplicative subgroup of the group of units. (In fact it is obtained 
by “tensoring” Spin, with the unit complex numbers.) To construct the 
bundle of irreducible complex modules over X  we proceed as in the spin 
case. With the sequence (D.2) in mind, we ask: Does there exist a principal 
SpinS-bundle over X  which admits a  SpinS-equivariant bundle mapping:

PS p in ' > Pso(^0 x PVi (D.3)

for some principal U nbundle PVi over X I  By “equivariant” we mean that
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SPIN'-MANIFOLDS 391

Z(pg) =  £(p)£(g) for all p e  PSpinc and all g e  SpinJ. We analyse this in the 
spirit of Appendix A. Consider the exact sequence

H \ X ; Spin') - U  H'(X; SO„) © H l(X; U ,) H 2(X; Z2) (D.4)

determined by the coefficient sequence (D.2). The coboundary map asso­
ciates to a pair (PSo»Pu,) the element h'2(Pso) +  Ci(P0l) where Cj is the 
mod 2 reduction of the first Chern class of PVl (see Example A.5). Under 
the isomorphism (A.7) this coboundary map can be rewritten as

H \X ;  SO„) © H 2(X; Z) H 2(X; Z 2) (D.5)

where p : H 2(X;Z)  -*• H 2(X; Z2) is mod 2 reduction. Consequently, given 
the frame bundle PSo(X), we can find the bundle (D.3) provided that 
w2(PSo(X)) =  p(u) for some u e H 2(X;Z), i.e., provided that w2(2T) is the 
mod 2 reduction of an integral class.

Of course this argument carries over to any principal SO„-bundle.

D efinition  D .l .  Let Pso „ be a principal SO„-bundle over X . A Spinc- 
structure on Pson consists of a principal U nbundle PVl and also a principal 
Spin'-bundle PSpi„c with a Spin'-equivariant bundle map

Pspin' ► PsO„XP jj,.

The class c 6 H 2(X; Z) corresponding to PVl under the isomorphism 
H 2(X; Z) s  PrinUl(Ar) (cf. A.5), is called the canonical class of the Spinc- 
structure.

The argument given above proves the following:

Theorem D.2. A principal SO„-bundle P carries a Spincn-structure if and 
only if  w2(P) is the mod 2 reduction o f an integral class, that is, if  and only
if

W3(P) =  0.

(See B.13 for a discussion of the classes Wk)
It should be noted that Theorem D.2 could be established in the spirit 

of Theorem 1.4ff by considering the appropriate 2-fold coverings of the 
spaces Pso„ x P Vt.

D efinition  D.3. An oriented riemannian manifold with a Spin'-struc- 
ture on its tangent (frame) bundle is called a Spin'-manifold.

The theorem above has the following immediate corollary:

C orollary  D.4. An orientable manifold X  carries a Spine-structure (i.e., 
X  can be made into a Spinc-manifold), i f  and only i f  the second Stiefel- 
Whitney class w2(X) is the mod 2 reduction o f an integral class, i.e., i f  and 
o n l y i f W3(X) = 0.
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392 APPENDIX D

If a manifold carries one Spinc-structure, it often carries many. They 
are parameterized by the elements in 2H 2(X;Z) ©  H l(X ;Z 2).

There are two im portant cases where a Spin'-structure exists and is 
canonically determined:

Example D.5. Any bundle with a spin structure carries a canonically 
determined Spinc-structure. The Spinc-bundle is obtained as PSpinc =  
Pgpin x Z2 Ui where Z2 acts diagonally by ( - 1 , - 1 )  and where of 
course denotes the trivial circle bundle. We see then that any spin manifold 
is canonically a Spinc-manifold.

Example D.6. Any complex vector bundle E carries a canonically deter­
mined Spine-structure. To see this, note first that w2(E) = c f E)  (mod 2), 
and so Theorem D .l implies that E  carries Spin'-structures. To see that 
there is a canonical one we proceed as follows. Introduce a hermitian 
metric in E  and let PVn(E) be the principal U nbundle of unitary frames. 
There is a canonical homomorphism

j :  U „(— » Spinc2n (D.6)

which we shall construct explicitly below. It is a lifting of the homomor­
phism U„ -» S 0 2„ x U t given by g i-» (i(g), det(g)) where i : U„ ^  S 0 2n is 
the standard inclusion. Thus, we have a commutative diagram

Spi 2" 

Un -\^ * d c t *

S 0 2„ x U j

The canonical principal Spin* bundle for E  is now constructed as the 
associated bundle.

Pspin'(P) s  Pv„(E) Xj Spin2„ (D.8)

Note, incidentally, that the associated U nbundle in this case is

P Vl{E) = PVnm ^ 6 t i U 1. (D.9)

This is the principal bundle of the complex line bundle A"E whose first 
Chern class is cfE) ,  i.e., c1(AnE) = c^E).

One consequence of this discussion is that every complex manifold, in 
fact, every almost complex manifold, is canonically a Spinc-manifold.

Before moving on we shall provide the details of the homomorphism 
(D.6). It can be shown to exist by proving the existence of the lifting (D.7) 
using covering space theory. However, it can be given explicitly as follows. 
Let g e U„ and choose a  unitary basis {eu . . .  ,e„} of C" in which g has the 
form: g = diag{e'®‘, . . .  Let {e^Je^ , . . .  ,e„,Je„} be the canonically
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associated orthonormal basis of U2n =  Then

M  =  f t  (̂ cos y  +  sin y  x e2 E#k (D.10)

in S pin^ =  Spin2n x Zj S1.
We have seen that spin manifolds and complex manifolds are all Spin'- 

manifolds. In fact, it requires some searching about to find an orientable 
manifold which is not Spin'. Note, for example, that P4"+1(R), although 
neither spin nor complex, is Spin'.

It was observed by Landweber and Stong that perhaps the simplest 
manifold which is not Spin' is the orientable 5-manifold SU3/S 0 3 whose 
only non-zero mod 2 cohomology classes are 1, w2, w3 and w2 - w3. Since 
Sq‘(w2) =  w3 #  0, one concludes that W3 =£ 0.

E xam ple D.7. (Universal non-Spin'-manifolds) We shall construct here 
a family of open simply-connected n-manifolds U"(p) which are not Spin' 
for each n ^  9. These examples are universal in the sense that every simply 
connected non-Spin'-manifold of dimension n 't. 9, carries some U"(p) as 
an open submanifold.

We fix a positive integer p and consider the cell complex
£  =  S2 u , D 3

where the map 3D3 =  S2 -*» S2 is of degree 2P. We can embed this com­
plex into R6. In fact there is a natural PL-embedding given as follows. 
Consider S2 =  8A3, where A3 denotes the standard 3-simplex, and embed 
the mapping cone Cp =  S 2 S2 -* S2 * S2 «  S s in the obvious way. Here 

denotes the join. This clearly extends to an embedding S2 D3 «-» 
S 2 * D 3 »  D6.

Let C/£ be a regular neighborhood of £  in R6. This is an open parallel- 
izable manifold. We now claim that there is a 3-dimensional real vector 
bundle £ - + ( / j  which restricts to be the non-trivial bundle on S2 <= £. 
Since Uz retracts onto £, we need only find a map -> B S 0 3, which 
when restricted to S2 represents the non-zero element in 7t2(B S 03). How­
ever, since 7t2(B S03) s  ti^SO j) s  Z2, any map f : S 2 -* B S 0 3 extends to 
£. Therefore this bundle exists.

We define the manifold W(p)  as follows. Consider £  embedded in the 
total space of £  as a subset of the zero section; i.e., £ c l / E c £ .  For each 
n t 9 ,  let U"(p) be a regular neighborhood of £  x {0} c= £  x R"-9 .

Theorem D.8. The manifolds U"(p), p t  1, are not Spinc. Furthermore, any 
simply-connected manifold X" o f dimension n t 9  is not Spin'  i f  and only if  
for some p t  1, there exists an embedding

U"(p) X "
as an open submanifold.
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Proof. Fix p ^  1 and n }z 9 and set U =  U"(p). Let S2 c  U be the non­
trivial 2-sphere. Then 7TI|S2 =  £ |s2 © (trivial), and so w2(U)[S2] =  
w2(£)[S2] #  0 by construction. Since H 2(U; Z) =  0 and jij(U) =  0, we see 
that w2(U) is not the mod 2 reduction of an integral class. (Note that U is 
homotopy equivalent to 2.) Hence, U is not Spinc.

Of course any open submanifold of a Spinc-manifold is Spin*. Hence, 
we need only show that a simply-connected n-manifold X" which is not 
Spinc must contain some U"(p) as an open submanifold. Since n^X  =  0, 
we have an isomorphism n2X  A  H 2(X; Z). Since X  is not Spinc, the homo­
morphism w2 6 H 2(X; Z2) =  Hom(re2X ,Z 2) is not the mod 2 reduction of 
an element in H 2(X; Z) s  Hom(n2X ,Z ). Hence, w2 is non-zero on some 
torsion class a of order 2P in n2X . Now a is represented by a map f : S 2 - * X  
which extends to a map F : U"(p) -*• X  (since 2pa =  0 in n 2X). The induced 
bundle F *T X  is clearly equivalent to £  ©  (trivial) s  TU"(p). Hence, by 
Smale-Hirsch immersion theory, F  is homotopic to an immersion U"(p) <■+ 
X". The immersion can be made an embedding by putting 2  into general 
position and shrinking U"(p) to a small neighborhood of 2. This completes 
the proof. ■

We did not need to invoke Smale-Hirsch Theory here. The embedding 
U"(p) <-* X n which is homotopic to F  can be built explicitly. A tubular 
neighborhood of S 2 <= U"(p) is diffeomorphic to a tubular neighborhood 
of S 2 c  X", since the normal bundles are equivalent. Completing the em­
bedding to a neighborhood of D3 <= U"(p) is straightforward.

For compact examples we add a boundary to U"(p) and consider the 
double

Z"(p) =  U "(p)ua U"(p)

where U"(p) =  U"(p) u  5U"(p).
Let us return our attention to manifolds which are Spin*.
There is an alternative approach to this concept which comes from 

considering vector bundles.

Definition D.9. Let X  be a Spinc-manifold of dimension n. By a com­
plex spinor bundle for X  we mean a vector bundle S associated to a repre­
sentation of Spinc by Clifford multiplication, i.e.,

S =  PSpiJ X )  X A V

where V  is a complex C£„-module and A : Spin' -» G L(F) is given by 
restriction of the C€„-representation to SpinJ <= C£„ ®  C. If the represen­
tation of C£n is irreducible, we say that S  is fundamental.

These spinor bundles are bundles of complex modules over Cl(X).
When n is even there exists only one fundamental spinor bundle for X, 

denoted S(Ar). It splits into .a direct sum

S(X) =  S +(X)  ©  S~(X) (D .ll)
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where S*(X)  =  (1 ±  a>c)S(A) and where coc =  i"l2e t ••• e„ is, as usual, the 
volume form. Multiplication by a non-zero tangent vector maps S ±(X)  to 
ST(A) and is invertible.

When n is odd, there are two irreducible complex representations of Ct„. 
However they are equivalent when restricted to Spin'. Hence, there is only 
one fundamental spinor bundle S(X) for any Spin0-manifold X .

For a spin manifold X , the bundle S(A) is just the usual complex spinor 
bundle.

For a complex manifold X  with its canonical Spin'-structure, we have 
that

S(X)  =  AI T X  s  A0-*

that is, S(X)  is simply the direct sum of the complex exterior powers of 
the tangent bundle, considered as a complex bundle (which, in turn, is 
isomorphic to the direct sum of the bundles of (0,q)-forms, 0 ^  q £  n). 
This follows directly from the interpretation of the complex spinor repre­
sentation given in I.S (see I.S.25 and the attending discussion). In partic­
ular, from this we see that the Clifford multiplication C£(A) <g>„ S(X)  -*• 
S(X) is generated as follows. For each tangent vector v, consider the linear 
map A£TxX  ^  A £TxX  given by

pv{q>) = VA(p-V*l<p
where v* is the 1-form corresponding to v under the hermitian metric on 
X . Repeating this operation gives

MfVvV) =  -IM IV ,

and so by the universal property of Clifford algebras, the map p extends 
to a representation of C£(A). Since each pv is complex linear the repre­
sentation is complex.

It is instructive to examine these fundamental spinor bundles as one 
varies the Spin'-structure on a given manifold. To do this it is good to 
have clearly in mind the elementary isomorphisms:

Vect1(A') 2  PrinUt(A) 2  H 2(X; Z) (D.12)

where Vect^A) denotes the set of equivalence classes of complex line 
bundles on X  and where the map to H 2 is given by the first Chern class 
(see Example A.5).

E xample D. 10. Let A  be a  spin manifold with its canonical Spinc- 
structure. We can change this structure by changing the U nbundle as 
follows. Pick an element o te i f2(A;Z), and let P Ut(«) e  Prinsi(A) and 
X„e Vectj(A) be the corresponding elements under (D.12). Then we de­
fine the ath Spin'-structure by

P Spin '(a )  =  P SpinC^O X Z2 P U|( ° 0 (D.13)
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Note that this has a Spin'-equivariant map

P spinc(a ) * P so iX )  x  P vj,(2a) (D.14)

where Pui(2a) =  -PU l ( a ) / ^ 2  is the “square” of PVl{a). (In particular X2a =  X2.)
We now let Sx(X) be the fundamental spinor bundle for the ath Spinc- 

structure on X.  Then it is easy to see that

Thus, changing the Spinc-structure on X  by an element a e H 2(X;Z)  
amounts to twisting the fundamental spinor bundle by the complex line 
bundle Xa.

This is a general fact. The group H 2(X; Z) acts on the set of Spinc- 
structures on a Spinc-manifold X,  by tensoring the fundamental spinor 
bundle with complex line bundles (modulo this action, the Spinc-structures 
correspond one-to-one with elements of H 1(X; Z2).) Notice that tensoring 
with line bundles preserves the fibre-dimension and thus takes one bundle 
of irreducible modules over Cl(X)  to another.

A good example of this phenomenon is the following. Suppose X  is a 
complex manifold which is also spin. This means that w2(X) = c t(X) =  0 
(mod 2). Now the class — Cj(2f) e  H 2(X; Z) corresponds to the complex line 
bundle k  = A cT*X,  called the canonical bundle. Since —c t(Z) = Cj(k) is 
even, there exist square roots k 1/2 for k . The different square roots are 
parameterized by elements of H \X \  Z2), corresponding to choices of spin 
structure. Now the canonical spinor bundle S(2f) =  A * T X  for A" as a 
Spin'-manifold, and the canonical spinor bundle $C(X) for AT as a spin 
manifold are related by the equation

Much of this business of Spinc-manifolds becomes transparent when 
viewed in terms of the fundamental spinor bundles. For example, let us 
return to the original problem of trying to construct a fundamental spinor 
bundle (i.e., a bundle of irreducible complex modules for Cf(X)) over a 
manifold X.  Locally of course we can always do it. Let {U„}aeA be a cov­
ering of X  so that l / „  n  • • • n  U,k is contractible for all a t , . . .  ,a„. On 
each Ua, bundles can be trivialized and we can find a fundamental com­
plex spinor bundle of the form Ua x V  where V  is an irreducible Ci„ <g> 
C-module. Now in passing from Ua to Ufi we look for transition functions 
g , f : Ua n U f -* Spin„ so that = gxf : Ua n U „ - >  SO„ are the cor­
responding transition functions for Ps0(Ar). Now the existence of a com­
patible set of choices is equivalent to the vanishing of the Cech cocycle

Sa(X) =  S(X)  ®  Aa. (D.15)

$C(X) =  5(2Q ®  k112. (D.16)

Waffy = dafldfiyOya ■ U„ n  Uf  o  C7y  ► Z 2 =  ker(0 (D.17)

in H 2(X;Z2).
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Suppose now that the class [w] e H 2(X; Z 2) is the mod 2 reduction of 
an integral class i!Te  H 2(X;Z), and let A be the complex line bundle cor­
responding to i f .  Consider the problem of finding a square root of A, i.e., 
a line bundle A1/2 with (A1/2)2 =  A. Let yaP: Ua n  Up S1 be the transition 
functions for A. Since Ua n  Up is contractible we can extract a square root 

n  Ufi -* S1. However, the compatibility is just the Cech
cocycle

Wtfy =  yaftyfiyha-U* n U p n U y  ► Z2 =  ker(<r) (D.18)

where

0 -----► Z2 ------► S1 S1 ----->0

and cr(z) = z 2. The class [ w ' ] e H 2(X; Z2) is just the coboundary of 
A e S1) under the associated long exact sequence in cohomology. In 
fact, consider the following commutative diagram:

H 1(X;S1) —^  H 1(X;S1) H 2{X\ Z2)

» « II

H 2(X;Z) - 2 -  t f 2(X;Z) H 2(X ;Z2)

It is clear that our obstructions agree, i.e., [w'] =  p(ct(A)) =  p ( ^ )  =  [w]. 
And so [w] +  [w'] =  0 in the wonderful world of Z 2.

This means essentially that while we cannot construct the spinor bundle 
and we cannot construct A1/2, we can construct their product. Adjusting by 
coboundaries we can choose gaP and yaP so that waPy =  w'aPr Thus the tran­
sition functions

Uap* Ua ^  Up * Spin,, x 22 S1

defined by Gap =  gap x yap have wa/?y =  GapGPyGya =  0, and thus determine 
a global bundle we may think of as

S(X) =  S0(X) 0  A1/2 (D.19)

where S0(X) is the fundamental spinor bundle for the possibly non-existent 
spin structure on X,  and where A1/2 is the possibly non-existent square root 
of A with Cj(A) ss w2(X) (mod 2).

Since S(X) is a bundle of modules over Cl(X)  we need only introduce 
an adapted metric and connection to make it a Dirac bundle. We do this 
as follows. Fix any line bundle A as above and choose a unitary connection 
on A. This induces a connection on the bundle A1/2 when it exists. Locally 
both S0W  and A1/2 exist and S0(X) carries a canonical (riemannian) con­
nection. We give the bundle S(X) =  S0(Af) ® A1/2 the tensor product con­
nection. It is not difficult to see that this connection is well defined globally.
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It is easy to check, using the arguments of §4, that this connection makes 
S{X) into a Dirac bundle.

Notice that the line bundle X corresponds to the principal U nbundle 
P Vl associated to the Spinc-structure, i.e., P Vl(X) =  PSpin*P0 XP where 
p:Spin£ -* U i is induced from the projection Spin„ x U x -♦ Let us 
summarize:

Proposition D .ll .  Let X  be a Spin0-manifold with associated complex line 
bundle X. Then to each U ̂ connection co on X there is a canonically asso­
ciated connection on PSpinc. It is just the lift o f the product o f the canonical 
riemannian connection with co via the covering map Pspin* Pso x P u ,(4  
This connection makes any complex spinor bundle for X  into a Dirac bundle.

Associated to any unitary connection on X there is the curvature 2-form 
Q. This is a closed 2-form, and the class [(27i)“ 1 £2] e H 2{X; R) represents 
cx{X) or more precisely the image of cfX)  under the map H 2(X; Z) -+ 
H 2(X ; R). We call this the real Chern class of X.

The curvature form is defined as follows. For a local trivialization of 
P Vl(X)9 the connection 1-form becomes simply a real-valued 1-form co. 
Then

£2 =  dco.

If we change trivializations by a transition function g : V n  V' -> U l9 then 
the new connection 1-form is co' =  co +  g ~ 1 dg. Locally we have g =  ew for 
some function 6. The equation above becomes co' =  co +  i dd. It follows 
that dco' = dco, that is, the curvature 2-form Q is well defined globally.

Suppose now that cox and co2 are two different connections on X with as­
sociated curvature forms and Q2. Then it is easy to see that cox — co2 =  a 
for a globally defined 1-form a. Hence, £l1 — Q2 =  da, and we see that 
the de Rham class [£2] is independent of choice of connection.

We are now prepared to derive the Bochner-type identity for these 
spinor bundles.

Theorem D.12. Let X  be a Spin0-manifold with associated line bundle A, 
and fix  a connection on X with curvature 2-form Sl. Let S be a bundle o f 
complex spinors on X  with the canonical connection, and let D be the Dirac 
operator on S. Then

where k  denotes the scalar curvature o f X  and where £2 denotes Clifford 
multiplication by the 2-form Sl.

Proof. The computation is local, so we can assume S(2Q =  S0(X) (g) X112 
where S0(X) is a spinor bundle for the local spin structure. We may now
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apply Theorem II.8.17, and it is sufficient to compute the term 9tA1/2. Recall 
that

We used here the fact that the curvature of the induced connection on 
A1/2 is {Cl. We also use the fact that R itW{Z) =  f2(v,w)iz. Note that Clifford 
multiplication by iQ is a hermitian symmetric operation.

Given this theorem, the following lemma is relevant:

Lemma D. 13. Let A be a complex line bundle on a manifold X . Then any 
closed 2-form Q which represents the real Chern class o f A can be realized 
as the curvature form o f a U  ̂ connection on A.

Note D.14. This means, in particular, that if c t(A) is a torsion class in 
H 2(X;Z), then A admits a flat connection.

Proof. Choose any -connection co0 on rj and let £20 be its curvature 
form. Since Q and Q0 represent the same de Rham class, there is a 1-form 
a so that da =  £2 — Q0. Let co =  co0 +  a. Then the curvature of co is 
Q0 +  da =  ft. ■

Suppose now that X  has even dimension and consider the Dirac operator

D +: TS+( X ) -----► T S ' i X )

for the splitting (D .ll). Using (D.19) and the Atiyah-Singer Formula, we 
obtain the following:

Theorem D.15. Let X  be a compact Spinc-manifold o f even dimension, and 
let D denote the Dirac operator o f the fundamental complex spinor bundle.

where c is the canonical class o f the Spinc-structure, i.e., c =  c^A) for the 
associated complex line bundle A.

<RAl/V  ®  z) =  X  (ejek(T) ®  Re'j'ek(z)
j< k

=  E  ®  (¥Kej,ek)iz)
j< k

=  ( i  t y e j S k ) W j  ® z

=  2 f Z  Q(ej,ek)ej a  ek)  <rl ®  z

=  j(Sl • a) ® z m

Then

ind(£)+) =  {<£ • A(X)}[Ar] (D.20)
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Combining this with D.13 and D.14 gives the following:

Corollary D.16. Let X  be a compact Spin0-manifold such that w2(X) is the 
mod 2 reduction o f a torsion class. I f X  carries a metric o f positive scalar 
curvature, then A(X)  =  0.

Corollary D.17. Let X  be a compact Spin0-manifold with canonical class c e 
H 2(X; Z). Let Sl be any 2-form representing the de Rham class o f c in 
H 2(X; Z) ® R. Then there is a riemannian metric on X  whose scalar curva­
ture satisfies

K >  2||Q||

only i / { / c i ( I ) } [ I ]  =  0.

Here the norm ||*|| is taken in the same metric. It is given by ||£2|| =  
£  \Xj\ where Q =  £  Xje2j - i  a  e2j for the diagonalizing orthonorm al frame 
eue2, . . .  at the point.

It is a nice exercise to apply this theorem to P"(C) with the standard 
Fubini-Study metric, and then to verify directly the vanishing of the 
“Hilbert polynomial” at certain integers.

It is interesting to examine the Dirac operator on a complex hermitian 
manifold X , considered as a Spinc-manifold. Recall that S(X) =  A0’*. The 
splitting S(X) =  S +(X) ©  S” (X) corresponds to the even-odd decomposi­
tion A0’* =* A0,cven © A0,odd. The Dirac operator can be identified with

d +  d* : A°’cven ► A°’odd

where d* is the hermitian adjoint of the operator d. The index of this 
operator is the Todd genus of X .

If c ^ X )  =  0 (mod 2), we can choose a spin structure on X,  i.e., we choose 
a square root k 1/2 of the line bundle k  =  An,°. Then the associated Dirac 
operator can be identified with

S  + d*: A0,cven ® k 112---- ► A°’odd ® k 1/2.

Here d is the standard operator on (0,*)-forms with values in the holo- 
morphic line bundle k 1/2 (cf. (D.16)).

Observe that Theorem D.15 has the following immediate corollary 
which was first proved by Atiyah and Hirzebruch [1].

Corollary D.18. Let X  be a compact Spin°-manifold. Then for any class 
c e H 2(X,  Z) such that c =  w2(X)  (mod 2), the (rational) number

{>A(X)}[X]

is an integer.
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As a final rem ark we point ou t tha t Spinc-bundles are bundles which 
have natural K -theory orientation classes, just as spin bundles have natural 
K O -theory orientation  classes. This makes them  sometimes useful in 
general theories.
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C*-algebra of a discrete group, 311 
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Stiefel-Whitney, 79, 81, 83, 84, 373, 380 
universal, 377 

Chern class
divisibility of ,281
first , 374
kth , 381
total , 277, 381
vanishing first , 367

Chern character, 234, 235, 237, 238
reduced ,316
 commutativity defect, 241

C£k-Dirac bundle, 140 
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differential, 215 
Fredholm, 217 
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classical pseudodifferential operator, 244 
classification of

 Clifford algebras, 27, 29
 irreducible representations of
Clifford algebras, 32, 33 

classifying space, 376 
Clifford algebra 7

 classification, 27, 29
 periodicity, 27
 representations, 30, 37

Clifford modules, 30
Grothendieck group of , 33, 40, 73
Real , 73
Z2-graded , 39, 73

Clifford
— bundle, 95
— bundle of a manifold, 111
— cohomology, 332
— diamond, 331
— difference element, 236
— group, 36
— index, 216, 217
— multiplication, 30 

coassociative geometry, 352 
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cocycle condition, 371 
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255, 258, 399
cohomology 
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with compact supports, 239 
Dolbeault, 335 
spinor, 357, 359 

cokernel, 192 
compact operator, 192 
compact support

bundle with ,313
cochain with , 239
cohomology with , 238
K-theory with , 66

compactly enlargeable, 303 
complex

— spinor bundle, 96, 394
— spinor representation, 36
— volume element, 34, 99, 135 

conformal invariance of the Dirac 
operator, 133
conjugate bundle, 227 
connected sum, 91 
connection, 101 

canonical riemannian —, 112
— 1-form, 101, 103
— laplacian, 154
— on spinor bundles, 110 
projected —, 282 
tensor product —,122

constant at infinity, 303 
contracting 

e — maps, 302, 317 
contraction, 24 
convolution product, 173 
covariant derivative, 102
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 as derivation, 107-8
 on spinor bundles, 110
riemannian , 103
second , 154

curvature, 101
— 2-form, 101, 398
— identities, 112, 126
— of sphere, 162
— on spinor bundles, 110
— operator, 158
positive scalar—, 160-165, 297-326 
Ricci —,156 
scalar—, 160
— transformation, 106

de Rham
— complex, 125
— cohomology, 125 

degree
— of a map (constant at infinity), 303 
pure —, 8

derivative 
co variant —,102 
exterior—, 123 
invariant second—, 154 
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spin structure-preserving —, 86 

difference element, 100
Clifford , 236
spinor------- , 238

differential operator 167
C£k-antilinear , 216
C£k-linear , 215
C£k-linear Z2-graded ,215
elliptic , 113, 167, 188
G-invariant------ , 211
See also: operator and elliptic operator 

dimension 
geometric — of a bundle, 47
— of some classical groups, 56 

Dirac bundle, 114
C£k , 140
rth cohomology group of ,359

Dirac laplacian, 113 
Dirac operator, 112

Atiyah-Singer , 121, 137, 256,
267, 274

C£k-linear , 140
conformal invariance of , 133
essential self-adjointness of , 117
kernel of , 116, 117
 on Clifford bundle, 123

principal symbol of , 169
self-adjointness of , 114

eigenspace, 196 
eigenvalues, 196 

growth of—, 196 
Einstein’s equations, 369 
elliptic complex, 332 
elliptic estimates, 194 
elliptic operators, 113, 168, 188, 191
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homotopy of , 204
product family of , 205
— pseudodifferential —,191 

enlargeable, 302ff.
A— , 309 
compactly —, 303 
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e dense, 196 
^-contracting, 302

 on 2-forms, 317
s-hyperspherical, 317 
e-local operator, 182
essential self-adjointness of Dirac operator, 
117
essentially positive self-adjoint operator, 
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Euller characteristic operator, 136 
Euler class, 227, 383 
even part of Clifford algebra, 9 
exceptional isomorphisms of Lie groups,
50, 56, 58
excision property, 248 
exotic spheres, 93, 162, 292 
exponential mapping, 13 
exterior

— algebra, 10, 24, 38
— derivative, 123

family of
 differential operators, 205
 elliptic operators, 206, 208
 real operators, 210, 270, 272
 riemannian manifolds, 269

fibre
integration over the —, 239 

filtered algebra, 10 
fixed-point

— formula, 267
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formal adjoint, 187, 194 
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Fourier transform 171 
frame bundle, 111 
Fredholm operators, 192, 201 

and K-theory, 208, 211, 222 
C£k-antilinear, 217 
C£*-linear, 217
families of , 208
G-invariant ,212

G2-structures, 347, 348, 357 
G-signature theorem, 264 
G-bundle, 259 
G-index, 212, 259

— theorem, 260 
G-manifold, 259 
G-spin theorem, 267 
G-structure

topological —, 348 
Gallot-Meyer Theorem, 158 
geometric dimension, 47 
good presentation of bundles, 171 
graded Hilbert module, 217 
Grothendieck group of Clifford modules, 
33, 40, 73 
group

— actions, 29 
Clifford —, 36 
isotropy —, 43 
K — , 59
— of units in a Clifford algebra, 12 
orthogonal—, 13
Pin—, 14
special orthogonal—, 17 
Spin —, 14 

Gysin homomorphism, 239

harmonic
— p-forms, 125, 195
— space, 332
— spinor, 160, 161, 367 

heat kernel, 198, 277
trace of— , 199 

hermitian line bundle 
positive —, 360 

higher /f-genus associated to w, 310 
Hilbert polynomial, 365 
Hilbert module

graded , 217
Hirzebruch

— L-sequence, 232
— Signature Theorem, 233, 256
— Riemann-Roch Theorem, 258

Hodge Decomposition Theorem, 195, 332 
Hodge laplacian, 123 
holonomy group, 345 

SpB— , 357, 367, 368 
homotopic elliptic operators, 204, 214 
homotopy sphere, 93, 162, 292 
hyperspherical, 317 
hypersurfaces Vn(d) 88, 90 

yf-genus of , 138

immersions into IR", 283, 286 
incompressible surface, 326 
index (analytic), 141, 142, 208, 312 

Clifford—, 216, 217 
G—, 212 
mod 2 —, 147
— of a C£*-linear operator, 141, 142
— of an elliptic operator, 135, 194, 254
— of a family, 208
— of a Fredholm operator, 192, 201
— on an odd-dimensional manifold, 257 

index (topological), 244
G— , 259
— of a family of operators, 269
— of a real family of operators, 272 
topological invariance of—,201

induced bundle, 375 
infinitely smoothing operator, 179, 186 
integrable almost complex structure, 339 
integrality theorems, 280, 400 
integration over the fibre, 239 
interior product, 24 
interpolation of Sobolev norms, 175 
invariant second derivative, 154 
invariant 

Atiyah-Milnor-Singer —, 144 
irreducible

— bundle of C£(£)-modules, 97
— manifold, 345
— representation 31 

isotropic subspace, 335 
isotropy group, 43

— of a spinor, 343

join, 377

kth power operation, 235 
/C-theory, 59 

equivariant —, 259 
higher groups, 61 
multiplication in —, 59, 66
— of a point, 62, 63, 149 
real —, 60
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Real —, 70 
reduced —, 60 
relative —,61
— with compact supports, 66 

K3 surface, 90
Kahler manifold, 330

— with Cj = 0, 367 
kernel, 192
Kervaire semicharacteristic, 143, 290 
Kervaire sphere, 162 
Kodaira-type vanishing theorem, 360 
Kuiper’s Theorem, 208 
Kummer surface, 90

L2-section, 116 
L-genus, 233 
L-sequence, 232 
L-operator, 24, 95, 128 
lagrangian 

special —, 352 
Laplace-Beltrami operator, 168 
laplacian 

Hodge—, 123 
connection—, 154 

Lefschetz number, 212 
Leray-Hirsch Theorem, 389 
Lichnerowicz Theorem, 160, 362 
Lie algebra of Spin,,, 40 
Lie groups (exceptional isomorphisms), 50, 
56, 58 
line bundle

tautological ,47
local trivialization, 371 
local holonomy group, 345 
loop space, 222

Minkowski space, 369 
mod-2 index, 147 
modules 

Clifford —, 30
decompositions of ,35
Z2-graded —, 39
Grothendieck group of Clifford —, 33, 
40,73 

multiplication 
Clifford —, 30 

multiplicative property, 249 
for sphere bundles, 252 

multiplicative sequence, 229 
A  231
Hirzebruch L-, 232 
Todd, 230

Nakano type vanishing theorem, 360 
negative hermitian line bundle, 360 
non-negative curvature operator, 158 
norm, 15 

uniform C*— , 172 
Novikov Conjecture, 312

odd part of Clifford algebra, 9 
operators 

adjoint—, 187, 194 
Atiyah-Singer—, 121, 137, 274 
bounded —, 192 
C£„-linear Atiyah-Singer—, 140 
compact —, 192 
differential —, 167 
elliptic—, 113, 168, 188 
elliptic pseudodifferential —,191 
essentially positive —, 219 
Euler characteristic —,136 
families of—, 204, 206 
Fredholm —, 192, 201, 217 
G— , 211 
heat —, 198
Laplace-Beltrami —,168 
positive self-adjoint —, 198 
pseudodifferential—, 178, 179, 186 
signature—, 136 
smoothing—, 179, 186 

orientation 
fc-theory —, 385 

oriented
— bundle, 78
— volume element, 21 

orthogonal
— almost complex structure, 336
— group, 13

parallel, 139
parametrix, 117, 190, 191 
Pauli matrices, 120 
periodicity

— in Clifford algebras, 27
Bott —, 62, 63, 67, 72, 73, 222, 225 

Pin group, 14 
plurigenus, 366 
Poincare duality, 239 
Pontrjagin classes, 228, 382, 383 
positive

— curvature operator, 158
— hermitian line bundle, 360
— self-adjoint operator, 198
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422 INDEX

positive scalar curvature, 160-165, 297-326
— and higher X-genera, 311 
obstructions to —, 301
— on bad ends, 324
— on compact manifolds, 299
— on complete manifolds, 306, 310, 319, 
322, 324
— enlargeable manifolds, 306, 310
— 3-manifolds, 324
— 4-manifolds, 344
— weakly enlargeable manifolds, 319
— under surgery, 299
the space of metrics with —, 326-330 

power operation, 235 
primitive cohomology class, 334 
principal bundle, 370

 of tangent frames, 94, 111
 of bases, 370
 of orthonormal frames, 78, 371
— spin —, 80 
universal , 376

principal symbol, 113, 168, 243
asymptotic , 245
 of a pseudodifferential operator, 186
regularly G-homotopic , 214
regularly homotopy of , 204

product 
convolution —,173 
interior —, 24
— in X-theory, 59 
smash —,61 
warped —, 321

projectivization of a bundle, 225 
pseudodifferential operators, 178, 179, 186

classical , 244
elliptic , 191
formal development of , 179
principal symbol of , 186, 188
symbol of , 177, 187

pure spinor, 336

Radon-Hurwitz Theorem, 45
rank of a spinor, 43
real

— spinor bundle, 96
— spinor representation, 35
— X-ring, 60 

Real
— X-group, 70
— module, 73
— space, 70

— vector bundle, 70
— Z2-graded module, 73 

reduced Chern character, 316 
reduced X-ring, 60 
reducible representation, 31 
refinement of a covering, 372 
reflection, 17
regularly homotopic principal symbols, 
204, 214
relative X-groups, 61 
Relative Index Theorem, 315 
Rellich Lemma, 173 
representations (See also “modules”.) 

adjoint —,12 
complex spinor —, 36 
± decomposition of—,35 
irreducible —,31
— of a Clifford algebra, 30, 37 
quaternionic—, 30
real spinor —, 35
— ring, 211 
twisted adjoint —, 14
unitarity of— of Clifford algebras, 35 
weights of a —,44 

Ricci
— curvature, 156, 308, 367
— form, 362 

Riemann-Roch-Hirzebruch formula, 258 
riemannian

canonical — connection, 112
— covariant derivative, 103
— curvature identities, 112, 126
— curvature of the sphere, 162 
Fundamental Theorem of — Geometry, 
112
— structure, 78

ring of virtual representations, 211 
Rochlin’s Theorem, 89

S1-actions, 291, 292, 295 
S3-actions, 291, 296 
scalar curvature, 160

positive------ , 160-165, 297-326
(See also “positive scalar curvature”.) 

Schwartz space, 171 
second fundamental form, 282 
second covariant derivative, 154 
self-adjoint operator, 195

essentially positive ,219
positive--------- , 199

self-dual 2-form, 342
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Serre duality, 333 
signature 

G—Theorem, 264
— of a manifold, 137, 266, 284, 288, 290, 
295, 349
— of a spin manifold, 89, 280
— operator, 136
— Theorem, 233, 256 
twisted — operator, 139

smash product, 61 
smoothing operator, 179, 186 
Sobolev 

basic — k-norm, 170
— s-norm, 171
— space, 170, 171
— Embedding Theorem, 172, 176 

special lagrangian geometry, 352 
special orthogonal group, 17 
Spinc-(manifold), (structure), 391 
spin

— cobordism, 90, 92, 100
— field, 18
— group, 14
— group as a covering group, 19, 20
— manifold, 85, 88, 89, 90
— structure, 80, 81, 82, 84
— structure preserving, 86, 266 

spinor bundle, 96
canonical complex-------of a spin
manifold, 121, 137
canonical complex-------of a Spinc
manifold, 394
complex and quaternionic structure 
on  , 98
 decompositions, 99
Z2-graded , 96, 98

spinor
— cohomology, 357, 359
— difference element, 238 
harmonic—, 160
pure —, 336
— representation, 35, 36 

Splitting Principal, 226, 237 
Stiefel-Whitney class, 380

first----- , 79, 83, 84, 373
second , 81, 83, 84, 373
k th ------, 380
total , 380

structure
riemannian —, 78 
spin —, 80

support of a pseudodifferential operator, 
183
surgery, 299 
suspension, 61 
symbol class, 169, 243

Real , 271
symbol 

asymptotic principal—, 245 
— of a pseudodifferential operator, 177, 
187
principal—, 113, 168, 243 
principal — of a pseudodifferential 
operator, 186, 188

tangent frame bundle, 111 
tautological line bundle, 47 
tensor product

 connection, 122
Z2-graded , 11

Thom class, 152
Thom isomorphism, 239, 240, 243, 271, 
387-89

 in K-theory, 243
Todd sequence and genus, 230, 367-8 
topological G-structure, 348 
topological index, 244, 269

— G— , 259
 of a family of Cf k-linear operators,
273
 of a family of complex operators,
269
 of a family of real operators, 272

torsion tensor, 112 
total characteristic class, 230 

A-, 231
A  231, 237, 238, 242, 254 
Chern, 227, 381 
Hirzebruch JL-, 232, 237, 242 
Pontrjagin, 228, 382 
Todd, 230, 242 

trace of the heat kernel, 199 
transition functions, 371 
transpose antiautomorphism, 12 
triality automorphism, 55 
tubular neighborhood, 299 
twisted

— adjoint representation, 14, 15
— Atiyah-Singer operator, 139
— signature operator, 139 

twistor space, 339, 342
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424 INDEX

uniform C*-norm, 314 
uniform Ck-norm, 172 
unitarity of Clifford modules, 37 
unitary basis, 336 
units

multiplicative group of —, 12 
universal 

characteristic classes, 377ff. 
n-plane bundle, 379 
principal G-bundle, 376

vanishing theorem, 155, 157, 158, 160, 164, 
360, 361, 363, 365, 366, 400 
vector fields

 on the sphere, 45, 46
 on manifolds, 288, 289

virtual bundles, 59 
volume element, 21, 33, 128 

complex , 34, 99, 135

warped product, 321 
weakly enlargeable, 318 
wedge product of spaces, 61 
weights of a representation, 44 
Workhorse Theorem, 180

Z2-graded
— algebra, 9
— bundle, 96
Grothendieck group of — modules, 40, 73
— module, 39, 73
— tensor product, 11

Brought to you by | Cornell University Library
Authenticated

Download Date | 7/1/17 9:51 PM



Notation Index

A, Ak, A, Ak 231 
A, 267
J n 92, 100, 152, 276
A(X), A (X \ A(X), A(X) 233, 138
AftU(X) 310
A(X;E) 139
j/(X ), J (X ,E )  276
i-deg(/) 309
ad, Ad 12
A3 12
a 9, 95, 127

b, (X) 144
BG 376
BO„, BSO„, BU„, etc. 378

C (the complex numbers)
C (n) 26
<  336
c,(£) 82,374
c(£), c»(£) 227, 381
ch, ch* 234
ch6, ch, 260
ch, 285

316
d *(V,q) 12
CUKq)  7 
C€°(K,«), Cl'(V,q) 9 
CC(V,q) 12
ce„, ct*, ce,.s 20
C£„ 27
c t f ,  34
C£(E), C£°(£), C t l(E) 95
C£±(£) 107
C€(AT) 111
C i(X) 330
C tH X )  128, 136
C l p'q(X) 331
coker( ) 192
Cov2(X) 78
X(E) 227,383

d, d* 123
D (Dirac operator) 112, 113 
D°, D1 135, 136 
D+, D" 136, 137
D 123
0 121
0°, I)1, 0 +, 138
$  140
0 , 331, 357
9%  9 -  333
D* 167
^  (Poincare duality) 239
deg(/) 303
Diff(*), Diff(£; X), Diff(£,F; X) 205 
div 115
3 (anticanonical bundle) 363 
6(E) 242,388
A (Hodge Laplacian,
Laplace-Beltrami) 123,168 
A„ a; ,  a;  35 
A f .A T .A r  36

[£,£; a] 64,67
[£0, ...,£„; <r„. . .  ,ff„] 64, 67
£G 376
8̂ , 8y 331

F, 261
5, g(//,,W2) 201
5 X 210

210
5c 212
5*. &  217
5*. 5k 219

G„ 9. 343
y, 118
T(£) 102
r cpt u s
H (the quaternions) 25 
H(n) 26

425
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426 NOTATION INDEX

H, Hp 125 
tfcpl 239 
H\X\G)_  372

se.se 331 
3tiP(X) (the holonomy group of X )  345 
j e p’q(X \ Hp'q(X), J f p'q(X; W)
Hp'q(X; W) 332
j ^ r(X,S) (spinor cohomology) 359 

i, 387,388
329 

336, 337 
ind 135, 194, 208
ind* 141,206 
indG, indff 212

J  330 
/  332

k x 14
k ~*(E) 384
ker 116,192
K(X) 59 
K(X,Y) 61 
K(X) 60
X "f(X), X -‘(X), K~'(X.Y) 61
K “*(pt) 62
x cpt(X), x ;P!(X), X-;(X,T) 66,67
KO(X) 60
K O 'U ), KO-^X), KO~\X.Y)  61, 62
KOcpt(X), KO-'(X), K O ^ X . Y )  66, 67
KR(X), /C/?"f(X), K R ~ \ X Y \
KRr,s(X,Y) 70,71 
XRcpt(X), KK&  72, 73 
/CG(X) 259 
k 160

L, L 24, 95, 128
L, L*, L, Lk 232
L(X), L(X), L(X), L(X) 233
L* 263
L, 265
L2 116
L2(E) 170
Ln( X \ L n( X J )  64
L„(X)cpt, L„(X,Y)cpl 67
Sen (in K-theory) 64
se, &(huh2) 201

203
«£?* (in operator theory) 223 
kt(E) 235 
A_! 240,387
ArK, A*K 10 
A*(X) 123

®i„, m? 33
®i„, 40
srr,.,, » i r m, m r,„ m , fS 73 
MSpin* 91
H 67, 69, 74, 75, 96, 97

O (the octonions) 51 
Ob, Op,  19
o  (V.q) 9
Opm(£,F), O p V ,^ )  205
co (connection) 101 
co (volume) 21, 128 
coc 34, 135
cqj, Wj 338, 358
CO/ 358
D (curvature) 101 
n ;pln 90
O f  92
Qg* 222

p(E), p,(£) 228, 382
PGL(£) 370
Pg l 4 E )  82, 371 
P0(E) 78,371
Pso(E% PSpm(E) 80, 371 
P  glPO 94
^ s o ^ ) ,  P sp in W  111 
FSpSnc(X) 370
P(V,q), P(V,q\ PiniV.q) 13, 14
Pin*, Pinr>a 19
PrinG(X) 370
P$, Ptf*, P(P* ±) 336, 337
&>(X) 326
P>(£) 225, 389
P"(R), P>"(C), P"(K) 47
7tr 358
U E )  236
H'COJE.F) 244
TOO m(EtF) 186
TOOm 178
TOOK.m 183

Q (the rational numbers)
Q CM3~ 228
<7,., 19
R (the real numbers)
R(n) 26
RytW 105, 106
Ry\W 110
R ’ 158
91 155
9?£ 164
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NOTATION INDEX

<RC, 360
R(G) 211
Ric 156
pn 39; c£(/>„), A'pn, (g fpn 94, 95
Pv 16
y  1 7 1
<$ 139
& <c 121
$c> $c 137
[S+,S-;/i],[S^Sc;^] 69,70
S 0  E 122
s(E) 238
s(£) 242,388
S(£), SC(E) 96
S°(£), ^(E ) 99, 135
S±(E), Sc(£) 98, 99, 129, 136
sig(AT) 137
sig(X;£) 139
sig(X,gf) 263
sig(X; E,g) 265
SLW(R), SL„(C), SL„(H) 55
SL„(R) 56
SLJ(K) 58
SO( K, q), SP( V, q) 17
SO„, SOr.s 19
so„, spin, 41
Spy, SU„ 49
Spin (V,q) 14
Spin„, Spinr>s 19
Spin°s 56
Spin* 390
sym (symbol of an operator)
Symw 177
<x( ) 186
<x( ) 243
<x4( ) 113, 168
U  ) 245
tTj (elementary symmetric functions) 227
oa (Pauli matrices) 120

Tn 306
TX, T*X  94
&~(V) 8
£(£) 241
Tdc, Td(X), Td* 230
top-ind 244, 269, 272
top-indG 259
x(X) 339
0  93

UB 49

V* 16
Vn(d) 88
V(X) 58

wt(E) 79, 373 
w2(E) 81,373
w*(£), wk(X) 85, 380
Wk(£) 383

£o 20
H0 41

<g> 11,40
O m 168
x p 371
# (connected sum) 91
★ 333
m  384
L 24
( ), 239, 241, 387, 388
( )" (in theory of multiplicative
sequences) 229
(") (Fourier transform) 171
(u a  w)(x) 41
[u,w] 40
u*v 173
II II* 170, 171
II He- 172
II Ike* 194
II lln.L> 194
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ERRATA

1. In Proposition 1.3, assume k  has characteristic zero.

2. On page 11, line 24, assume that and J?a re  filtered.

3. On page 43, line 10, the Lie group is also connected.

4. On page 192, line 22, change “Sobolev Embedding” to 
“Rellich.”

5. On page 257, lines 2 and 3 of Remark 13.11, add the following 
omitted line: “Any elliptic operator P can be converted to a 
pseudodifferential operator of degree zero.”

6. On page 278, line 33, “. . .  compact connected spin manifolds.”

7. In Definition 3.2 of Chapter IV, the action should be effective 
on each connected component of X.
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