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Preface

In the late 1920’s the relentless march of ideas and discoveries had carried
physics to a generally accepted relativistic theory of the electron. The
physicist P.A.M. Dirac, however, was dissatisfied with the prevailing ideas
and, somewhat in isolation, sought for a better formulation. By 1928 he
succeeded in finding a theory which accorded with his own ideas and also
fit most of the established principles of the time. Ultimately this theory
proved to be one of the great intellectual achievements of the period. It
was particularly remarkable for the internal beauty of its mathematical
structure which not only clarified much previously mysterious phenomena
but also predicted in a compelling way the existence of an electron-like
particle of negative energy. Indeed such particles were subsequently found
to exist and our understanding of nature was transformed.

Because of its compelling beauty and physical significance it is perhaps
not surprising that the ideas at the heart of Dirac’s theory have also been
discovered to play a role of great importance in modern mathematics,
particularly in the interrelations between topology, geometry and analysis.
A great part of this new understanding comes from the work of M. Atiyah
and I Singer. It is their work and its implications which form the focus
of this book.

It seems appropriate to sketch some of the fundamental ideas here.
In searching for his theory, Dirac was faced, roughly speaking, with the
problem of finding a Lorentz-invariant wave equation Dy = Ay compat-
ible with the Klein-Gordon equation [Jy = Ay where [] = (8/0x,)* —
(0/0x,)* — (8/0x,)* — (8/0x5)*. Causality required that D be first order in
the “time” coordinate x,. Of course by Lorentz invariance there could be
no preferred time coordinate, and so D was required to be first-order in all
variables. Thus, in essence Dirac was looking for a first-order differential
operator whose square was the laplacian. His solution was to replace the
complex-valued wave function  with an n-tuple ¥ = (¢4, . . . ,i,) of such
functions. The operator D then became a first-order system of the form

3 0
=L o
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where y,, . . . ,y3 were n x n-matrices. The requirement that

O
D*=
O
led to the equations
YWhu + Vuby = £20,,.

These were easily and explicitly solved for small values of n, and the
analysis was underway.

This construction of Dirac has a curious and fundamental property.
Lorentz transformations of the space-time variables (x,, . . . ,x3) induce
linear transformations of the n-tuples W which are determined only up to
a sign. Making a consistent choice of sign amounts to passing to a non-
trivial 2-fold covering L of the Lorentz group L. That is, in transforming the
¥’s one falls upon a representation of L which does not descend to L.

The theory of Dirac had another interesting feature. In the presence of
an electromagnetic field the Dirac Hamiltonian contained an additional
term added on to what one might expect from the classical case. There
were strong formal analogies with the additional term one obtains by
introducing internal spin into the mechanical equations of an orbiting
particle. This “spin” or internal magnetic moment had observable quan-
tum effects. The n-tuples ¥ were thereby called spinors and this family of
transformations was called the spin representation.

This physical theory touches upon an important and general fact con-
cerning the orthogonal groups. (We shall restrict ourselves for the moment
to the positive definite case.) In the theory of Cartan and Weyl the repre-
sentations of the Lie algebra of SO, are essentially generated by two basic
ones. The first is the standard n-dimensional representation (and its ex-
terior powers). The second is constructed from the representations of the
algebra generated by the y,’s as above (the Clifford algebra associated to
the quadratic form defining the orthogonal group). This second represen-
tation is called the spin representation. It does not come from a represen-
tation of the orthogonal group, but only of its universal covering group,
called Spin,. It plays a key role in an astounding variety of questions
in geometry and topology: questions involving vector fields on spheres,
immersions of manifolds, the integrality of certain characteristic numbers,
triality in dimension eight, the existence of complex structures, the exis-
tence of metrics of positive scalar curvature, and perhaps most basically,
the index of elliptic operators.

In the early 1960s general developments had led mathematicians to con-
sider the problem of finding a topological formula for the index of any
elliptic operator defined on a compact manifold. This formula was to gen-
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eralize the important Hirzebruch-Riemann-Roch Theorem already estab-
lished in the complex algebraic case. In considering the problem, Atiyah
and Singer noted that among all manifolds, those whose SO,-structure
could be simplified to a Spin,-structure had particularly suggestive prop-
erties. Realizing that over such spaces one could carry out the Dirac con-
struction, they produced a globally defined elliptic operator canonically
associated to the underlying riemannian metric. The index of this operator
was a basic topological invariant called the A-genus, which was known
always to be an integer in this special class of spin manifolds. (It is not
an integer in general.) Twisting the Dirac-type operator with arbitrary
coefficient bundles led, with some sophistication, to a general formula for
the index of any elliptic operator.

Atiyah and Singer went on to understand the index in the more proper
setting of K-theory. This led in particular to the formulation of certain KO-
invariants which have profound applications in geometry and topology.
These invariants touch questions unapproachable by other means. Their
study and elucidation was a principal motivation for the writing of this
tract.

It is interesting to note in more recent years there has been another pro-
found and beautiful physical theory whose ideas have come to the core of
topology, geometry and analysis. This is the non-abelian gauge field theory
of C. N. Yang and R. L. Mills which through the work of S. Donaldson
and M. Freedman has led to astonishing results in dimension four. Yang-
Mills theory can be plausibly considered a highly non-trivial generalization
of Dirac’s theory which encompasses three fundamental forces: the weak,
strong, and electromagnetic interactions. This theory involves modern dif-
ferential geometry in an essential way. The theory of connections, Dirac-
type operators, and index theory all play an important role. We hope this
book can serve as a modest introduction to some of these concepts.

H. B. LAWSON AND M.-L. MICHELSOHN
Stony Brook
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Introduction

Over the past two decades the geometry of spin manifolds and Dirac
operators, and the various associated index theorems have come to play
an increasingly important role both in mathematics and in mathematical
physics. In the area of differential geometry and topology they have be-
come fundamental. Topics like spin cobordism, previously considered
exotic even by topologists, are now known to play an essential role in
such classical questions as the existence or non-existence of metrics of po-
sitive curvature. Indeed, the profound methods introduced into geometry
by Atiyah, Bott, Singer and others are now indispensible to mathemati-
cians working in the field. It is the intent of this book to set out the fun-
damental concepts and to present these methods and results in a unified
way.

A principal theme of the exposition here is the consistent use of Clifford
algebras and their representations. This reflects the observed fact that
these algebras emerge repeatedly at the very core of an astonishing variety
of problems in geometry and topology.

Even in discussing riemannian geometry, the formalism of Clifford mul-
tiplication will be used in place of the more conventional exterior tensor
calculus. There is a philosophical justification for this bias. Recall that to
any vector space V there is naturally associated the exterior algebra A*V,
and this association carries over directly to vector bundles. Applied to the
tangent bundle of a smooth manifold, it gives the de Rham bundle of ex-
terior differential forms. In a similar way, to any vector space V equipped
with a quadratic form g, there is associated the Clifford algebra CL(V,g),
and this association carries over directly to vector bundles equipped with
fibre metrics. In particular, applied to the tangent bundle of a smooth
riemannian manifold, it gives a canonically associated bundle of algebras,
called the Clifford bundle. As a vector bundle it is isomorphic to the
bundle of exterior forms. However, the Clifford multiplication is strictly
richer than exterior multiplication; it reflects the inner symmetries and
basic identities of the riemannian structure. In fact fundamental curvature
identities will be derived here in the formalism of Clifford multiplication
and applied to some basic problems.
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Another justification for our approach is that the Clifford formalism
gives a transparent unification of all the fundamental elliptic complexes
in differential geometry. It also renders many of the technical arguments
involved in applying the Index Theorem quite natural and simple.

This point of view concerning Clifford bundles and Clifford multiplica-
tion is an implicit, but rarely an explicit theme in the writing of Atiyah and
Singer. The authors feel that for anyone working in topology or geometry
it is worthwhile to develop a friendly, if not intimate relationship with
spin groups and Clifford modules. For this reason we have used them ex-
plicitly and systematically in our exposition.

The book is organized into four chapters whose successive themes are
algebra, geometry, analysis, and applications. The first chapter offers a
detailed introduction to Clifford algebras, spin groups and their represen-
tations. The concepts are illuminated by giving some direct applications
to the elementary geometry of spheres, projective spaces, and low-
dimensional Lie groups. K-theory and KR-theory are then introduced,
and the fundamental relationship between Clifford algebras and Bott pe-
riodicity is established.

In the second chapter of this book, the algebraic concepts are carried
over to define structures on differentiable manifolds. Here one enters prop-
erly into the subject of spin geometry. Spin manifolds, spin cobordism,
and spinor bundles with their canonical connections are all discussed in
detail, and a general formalism of Dirac bundles and Dirac operators is
developed. Hodge-de Rham Theory is reviewed in this formalism, and
each of the fundamental elliptic operators of riemannian geometry is
derived and examined in detail.

Special emphasis is given here to introducing the notion of a C{,-linear
elliptic operator and discussing its index. This index lives in a certain
quotient of the Grothendieck group of Clifford modules. For the fun-
damental operators (which are discussed in detail here) it is one of the
deepest and most subtle invariants of global riemannian geometry. The
systematic discussion of C¢,linear differential operators is one of the
important features of this book.

In the last section of Chapter II a universal identity of Bochner type is
established for any Dirac bundle, and the classical vanishing theorems of
Bochner and Lichnerowicz are derived from it.

This seems an appropriate time to make some general observations
about spin geometry. To begin it should be emphasized that spin geom-
etry is really a special topic in riemannian geometry. The central concept
of a spin manifold is often considered to be a topological one. It is just
a manifold with a simply-connected structure group. This is understood
systematically as follows. On a general differentiable n-manifold (n = 3),
the tangent bundle has structure group GL,. The manifold is said to be
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oriented if the structure group is reduced to GL,} (the connected com-
ponent of the identity). The manifold is said to be spin if the structure
group GL, can be “lifted” to the universal covering group GL - GL,.
This approach is perfectly correct, but there is a hidden obstruction to
the viability of the concept: namely, the group GL (for n = 3) has no finite
dimensional representations that do not come from GL,}. This means that
in terms of standard tensor calculus, nothing has been gained by this re-
finement of the structure.

However, if one passes from GL, to the maximal compact subgroup
0O,, that is, if one introduces a riemannian metric on the manifold, the
story is quite different. An orientation corresponds to reducing the struc-
ture group to SO,, and a spin structure corresponds to then lifting the
structure group to the universal covering group Spin, —» SO,. Maximal
compact subgroups are homotopy equivalent to the Lie groups which
contain them, and there is essentially no topological difference in viewing
spin structures this way. However, there do exist finite dimensional repre-
sentations of Spin, which are not lifts of representations of SO,. Over a
spin manifold one can thereby construct certain new vector bundles, called
bundles of spinors, which do not exist over general manifolds. Their exis-
tence allows the introduction of certain important analytic tools which
are not generally available, and these tools play a central role in the
study of the global geometry of the space. It is, by the way, an important
fact that this construction is metric-dependent; the bundle of spinors itself
depends in an essential way on the choice of riemannian structure on the
manifold.

These observations lead one to suspect that there must exist a local
spinor calculus, like the tensor calculus, which should be an important
component of local riemannian geometry. A satisfactory formalism of this
type has not yet been developed. However, the spinors bundles have
yielded profound relations between local riemannian geometry and global
topology.

The main tools by which we access the global structure of spin mani-
folds are the various index theorems of Atiyah and Singer. These are pre-
sented and proved in Chapter III of the book. They include not just the
standard G-Index Theorem but also the Index Theorem for Families and
the C¢;-Index Theorem (for C&,-linear elliptic operators). There are in
existence today many elegant proofs of index theorems which use the
methods of the heat equation. These do not apply to the Cf,-Index
Theorem however, because of the non-local nature of this index. For this
reason our exposition follows the “softer,” or more topological, arguments
given in the original proofs.

Chapter IV of the book is concerned with applications of the theory.
There is no attempt to be exhaustive; such an attempt would be pointless
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and nearly impossible. We have tried however to demonstrate the broad
range of problems in which the considerations of spin geometry can be
effectively implemented.

It is of some historical interest to note that while Dirac did essentially
use Clifford modules in the construction of his wave operator, he was not
really responsible for what is commonly called the “Dirac operator” in
riemannian geometry. The construction of this operator is due to Atiyah
and Singer and is, in our estimation, one of their great achievements. It
required for its discovery an understanding of the subtle geometry of spin
manifolds and a recognition of the central role it would play in the general
theory of elliptic operators. Even the formidable Elie Cartan, who sensed
the importance of the question and, of course, authored the general theory
of spinors and who was not unaware of the fundamentals of global anal-
ysis, never reached the point of defining this operator in the proper con-
text of spin manifolds. In keeping with historical developments we shall
call the general construction of operators from modules over the Clifford
bundle, the Dirac construction, and we shall call the specific operator so
defined on the spinor bundle, the Atiyah-Singer operator.

It is this operator which in a very specific sense generates all elliptic
operators over a spin manifold. It introduces a direct relationship between
curvature and topology which exists only under the spin hypothesis. The
C¢,-linear version of this operator carries an index in KO-theory. In fact
its index gives a basic ring homomorphism QSpin 5 KO~ *(pt) which
generalizes to KO-theory the classical A-genus. The applications of this
to geometry include the fact that half the exotic spheres in dimensions
one and two (mod 8) do not carry metrics of positive scalar curvature.

The presentation in this book is aimed at readers with a knowledge of
elementary geometry and topology. Important things, such as the concept
of spin manifolds and the theory of connections, are developed from basic
definitions. The Atiyah-Singer index theorems are formulated and proved
assuming little more than a knowledge of the Fourier inversion formula.
There are several appendices in which principal bundles, classifying
spaces, Thom isomorphisms, and spin manifolds are discussed in detail.

The references to theorems and equations within each chapter are
made without reference to the chapter itself (e.g., 2.7 or (5.9)). Refer-
ences to other chapters are prefaced by the chapter number (e.g., I11.2.7
or (IV.5.9)).



CHAPTER 1

Clifford Algebras, Spin Groups and Their

Representations

The object of this chapter is to present the algebraic ideas which lie at the
heart of spin geometry. The central concept is that of a Clifford algebra.
This is an algebra naturally associated to a vector space which is equipped
with a quadratic form. Within the group of units of the algebra there is
a distinguished subgroup, called the spin group, which, in the case of the
positive definite form on R” (n > 2), is the universal covering group of SO,,.

It is a striking (and not commonplace) fact that Clifford algebras and
their representations play an important role in many fundamental aspects
of differential geometry. These include such diverse topics as Hodge-de
Rham Theory, Bott periodicity, immersions of manifolds into spheres,
families of vector fields on spheres, curvature identities in riemannian
geometry, and Thom isomorphisms in K-theory. The effort invested in
becoming comfortable with this algebraic formalism is well worthwhile.

Our discussion begins in a very general algebraic context but soon
moves to the real case in order to keep matters simple and in the domain
of most interest. In §§7 and 8 we present some applications of the purely
algebraic theory to topology and to the appearence of exceptional phe-
nomena in the theory of Lie groups.

The last part of the chapter is devoted to K-theory. Basic definitions
are given and fundamental results are reviewed. The discussion culminates
with the Atiyah-Bott-Shapiro isomorphisms which directly relate the
periodicity phenomena in Clifford algebras to the classical Bott Period-
icity Theorems. In particular, explicit isomorphisms are given between
K~*(pt) = @,K(S") (and KO~ *(pt) = @. KO(S™) and a certain quotient
of the ring of Clifford modules. Section 10 is concerned with KR-theory
which later plays a role in the index theorem for families of real elliptic
operators. This is a bigraded theory and the corresponding Atiyah-Bott-
Shapiro isomorphism entails representations of Clifford algebras C¢, , for
quadratic forms of indefinite signature.

§1. Clifford Algebras

Let V be a vector space over the commutative field k and suppose q is a
quadratic form on V. The Clifford algebra C&(V,q) associated to V and

Ly ]
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q is an associative algebra with unit defined as follows. Let
TV)= Zo Xv

denote the tensor algebra of ¥, and define £ (V) to be the ideal in 7 (V)
generated by all elements of the form v ® v + g(V)1 for ve V. Then
the Clifford algebra is defined to be the quotient

CyV,g = T (V)/FLV).

There is a natural embedding

V—ClV,q) (1.1)
which is the image of ¥ = (X)'V under the canonical projection
n,: T (V) — CYV,q). (1.2)

We prove that m,|, is injective as follows. We say that an element ¢ € 7 (V)
is of pure degree s if ¢ € XV. (Every element of (V) is a finite sum of
elements of pure degree.) We want to show that any element ¢ € £ (V) n V
is zero. Any such element can be written as a finite sum ¢ =) 4, ®
(v; ® v; + q(v;)) ® b; where we may assume that the a;’s and b;’s are of
pure degree. Since ¢ € V = (X)'V, we conclude that Ya @@ ®v)®
b, = 0, where this sum is taken over those indices with deg a; + deg b;
maximal. This equation implies, by contraction with g, that " a,.q(v;)
b, = 0. Proceeding inductively, we prove that ¢ = 0.

The algebra C{(V,q) is generated by the vector space V < C{(V,q) (and
the identity 1) subject to the relations:

v-v= —gq)l (1.3)
for v e V. If the characteristic of k is not 2, then for all v,w e V,
vew+w-v= —2q(v,w) (1.4)

where 2q(v,w) = q(v + w) — q(v) — q(w) is the polarization of q. The re-
lations (1.3) can be used to give the following universal characterization of
the algebra.

Proposition 1.1. Let f: V — &/ be a linear map into an associative k-algebra
with unit, such that

JO) fv) = —q)1 (1.5)

for all veV. Then f extends uniquely to a k-algebra homomorphism
f:ClV,q) » oA. Furthermore, CL(V,q) is the unique associative k-algebra
with this property.
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Proof. Any linear map f:V — & extends to a unique algebra homo-
morphism f: (V) » &. Property (1.5) implies that /=0 on S(V),
and so f descends to CE(V,q). Suppose now that € is an associative
k-algebra with unit and that i: V < € is an embedding with the property
that any linear map f:V — & (&f as above) with property (1.5) extends
uniquely to an algebra homomorphism f: @ — . Then the isomorphism
from V < CE(V,q) to i(V) < € clearly induces an algebra isomorphism
ClVg S5% m

This characterization of Clifford algebras is extremely useful. It shows,
for example, that they are functorial in the following sense. Given a
morphism f:(V,q) - (V',q), i.e., a k-linear map f: V — V’ between vector
spaces which preserves the quadratlc forms (f*q' = g), there is, by Propo-
sition 1.1, an induced homomorphism f:CE(V,q) - C&V',q). Given
another morphism g:(V',q')— (V",q"), we see from the uniqueness in
Proposition 1.1, that o f = §o f.

A particular consequence of this is that the orthogonal group O(V,g) =
{f € GL(V): f*q = g} extends canonically to a group of automorphisms
of Ci(V,q). We shall see later that this embedding

O(V,q) = Aut(CE(V,q)) (1.6)

actually lies in the subgroup of inner automorphisms.
An element here of particular importance is the automorphism

a:Cel(V,q) — CUV,q) 1.7
which extends the map a(v) = —v on V. Since a? = Id, there is a decom-
position

CYV,q) = C%V,q) ® CL'(V,q) (1.8)

where CLi(V,q) = {¢ € CU(V,9): a(p) = (—1)'p} are the eigenspaces of a.
Clearly, since «(@;¢,) = ®(¢,) - a(@,), we have that

Cti(V,g)- Cti(V,q) < C*{(V,9) (1.9)

where the indices are taken modulo 2. An algebra with a decomposition
(1.8) satisfying (1.9) is called a Z,-graded algebra. Note that C£°(V,q) is a
subalgebra of CE(V,q). It is called the even part of CE(V,g). The subspace
CL!(V,q) is called the odd part. It is an observation of Atiyah, Bott and
Shapiro that this Z,-grading plays an important role in the analysis and
application of Clifford algebras.

There exist some elementary and important relationships between the
Clifford algebra Cf(V,q) of a space and its exterior algebra A*V (whose
definition is, of course, 1ndependent of the quadratic form g). There is a
natural filtration F°c F' c F2c...c T (V) of the tensor algebra,
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which is defined by

F=3 @,
ssr
and has the property that #' @ F" < ZF"*". If we set F' = n (F") we
obtain a filtration F°'c Flc F2c...c ClV,q) of the Clifford
algebra, which also has the property that

FrFT F (1.10)

for all r,;. This makes CE(V,q) into a filtered algebra. It follows from
(1.10) that the multiplication map descends to a map (F'/F ™ !) x
(F/F°~) = (F7H3F 270 for all r,s. Setting G* = (P, 9" where
9" = F'/F"" 1, we obtain the associated graded algebra.

Proposition 1.2. For any quadratic form q, the associated graded algebra of
CU(V,q) is naturally isomorphic to the exterior algebra A*V.

Proof. Themap XYV 5 F' — F'/#F'~ !, whichis givenby v, @ - ®
v;, > [v;, - *v, ] clearly descends to a map A"V — F'/F"~! by property
(1.4). (When the characteristic of k is 2, we use the fact that v-w +
w-v =0, This map is evidently surjective and is easily seen to give a
homomorphism of graded algebras A*V — @*,

To see that this map is injective we proceed as follows. The kernel of
XYV — @’ consists of the r-homogeneous pieces of elements ¢ € F,(V)
of degree < r. Any such ¢ can be written as a finitesum ¢ =) a; ® (v; ®
v; + q(v;)) ® b; where v; € Vand where we may assume that the g; and b,
are of pure degree with deg a; + deg b; < r — 2. The r-homogeneous part
of ¢ is then of the form ¢, = ) a; ® v; ® v; ® b; (where deg a; + deg b; =
r — 2 for each i). Since v; Av; = 0 for all i, we see that the image of ¢ in
the exterior algebra is zero. Hence the map A"V — @" is injective. m

Proposition 1.2 says that Clifford multiplication is an enhancement of
exterior multiplication which is determined by the form g. Note that
CLUV,0) = A*V.

Proposition 1.3. There is a canonical vector space isomorphism
A*V — CUV,9) (1.11)
compatible with the filtrations.,

REMARK 1.4, The map (1.11) is, of course, not an isomorphism of al-
gebras unless g = 0. The point here is that the map is canonical. Thus we
may speak of the embeddings

AV cClV,q) forallr0. (1.12)
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Proof. We define a map of the r-fold direct product f:V x--- x V —
CL(V,q) by setting

1 .
f(vl’ ey vr) = ;'_ ; SIgn(a)va(l) T va(r) (1'13)

where the sum is taken over the symmetric group on r elements. (If the
characteristic of k is not zero, one must drop the factor 1/r!.) Clearly f
determines a linear map f: A"V — CE(V,q) whose image lies in &". The
composition of f with the projection F" — F'/F" ! is easily seen to be
the map discussed in the proof of Proposition 1.2. Hence f is injective,
and the direct sum of these maps (1.11) is an isomorphism.

We now take up the question of tensor products. Recall that if « and
2B are algebras with unit over k, then the tensor product of the algebras
o ® 2B is the algebra whose underlying vector space is the tensor product
of & and £ and whose multiplication is given (on simple elements) by
the rule (@ ® b) - (@’ ® b’) = (aa’) ® (bb'). If, however,

A=A DA' and RB=RB"D R
are Z,-graded algebras, then we can introduce a second “Z,-graded”
multiplication, determined by the rule

(@a® b): (@ ® b) = (—1)is®es@)qq") @ (bb') (1.14)

whenever b and a’ are of pure degree (even or odd). The resulting algebra
is called the Z,-graded tensor product and is denoted o @ 2.
The Z,-graded tensor product is again Z,-graded with

(A QB =A°® B° + A @ B!
(A RB =A' R B+ A° R B
It also carries a filtration F°c Flc F2c...c o ® B, where
Fr= Y FiAd) FiR).
i+j=r

The importance of the Z,-graded tensor product for Clifford algebras
is evident from the following proposition.

Proposition 1.5. Let V =V, @ V, be a g-orthogonal decomposition of the
vector space V (i.e., q(vy + v,) = q(v)) + q(v,) for all v, eV, and v, e
V,). Then there is a natural isomorphism of Clifford algebras

CYV,q) — Cl(V1,q,) ® CUV2.92)

where q; denotes the restriction of q to V, and where & denotes the Z ,-graded
tensor product.
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Proof. Consider the map f:V — C&(V,,q,) ® CU(V,,q,) given by f(v) =
v; ® 1 +1Q v, where v = v; + v, is the decomposition of v with respect
to the splitting V = V; @ V,. From (1.14) and the g-orthogonality of this
splitting we see that f(0) fU) =0, ®1+1 @) > =@ 1+1®
v3 = —(q,(v)) + g,(v2))l ® 1 = —g(v)1 ® 1. Hence, by Proposition 1.1,
S extends to an algebra homomorphism fiCuv,g) » CUV,q,) &
C2(V,,4,). The image of f is a subalgebra which contains C{(V},q,) ® 1
and 1 ® C&(V,,q,). Therefore, f is surjective. Injectivity follows easily by
considering a basis for C{(V,q) generated by a basis of V which is com-
patible with the splitting. = '

We finish this section by introducing a second fundamental involution
on the algebra. The tensor algebra Z (V) has an involution, given on
simple elements by the reversal of order, ie, v, ® - ® v, v, ®
-+ - ® v,. This map clearly preserves the ideal #(V,q) and so descends to
a map

( )y:CYv,g) — ClV,9) (1.15)

called the transpose. Note that () is an antiautomorphism, i.e., (py)' =

lp‘ (pl.

§2. The Groups Pin and Spin

We now consider the multiplicative group of units in the Clifford algebra,
which is defined to be the subset

Ct*(Vig) = {p e CUV,g): 3o™  with o™ lp = 9p~! =1}  (2.1)

This group contains all elements v € V with g(v) # 0. When dim V =
n < oo, and k is either R or C, this is a Lie group of dimension 2". In
general, there is an associated Lie algebra ¢[*(V,q) = CE(V,q) with Lie
bracket given by

[xy] = xy — yx. 2.2)

The group of units always acts naturally as automorphisms of the
algebra. That is, there is a homomorphism

Ad:CL*(V,q) — Aut(CL(V,9)) (2.3
called the adjoint representation, which is given by
Ad(x) = pxp™ 1. (2.4)

Taking the “derivative” of this gives a homomorphism
ad: d*(V,q) — Der(CL(V,q)) 2.5)



§2. PIN AND SPIN 13

into the derivations of the algebra, defined by setting

ad,(x) = [ y,x].

REMARK 2.1. Suppose Vs finite dimensional, and defined over R or C.
Then there is a natural exponential mapping exp:d*(V,q) - CL*(V.,q),
defined by setting

|
= — y" 2.6
exp(y) ».Z‘o ok (2:6)
Note that this series converges since for any choice of positive definite
inner product on CE(V,q), we have ||xy|| < ¢||x||||y|| for some ¢ > 0. It is
easy to see that
d
= Aderg(®fi=o = 2d(0) @7)
From this point on we shall assume that the characteristic of the field
k is different from 2. Under this assumption, we have the following
important facts concerning the adjoint representation:

Proposition 2.2. Let ve V < ClV,q) be an element with q(v) # 0. Then
Ad (V) = V. In fact, for all w e V, the following equation holds:

—Ad W) =w—2 q;’;;‘; o, 2.8)

Proof. Since v™! = —v/q(v), we have from (1.4) that

—q(v)Ad,(w) = —q(v)owr~!

= —v*w — 2g(v,wlv = q(v)w — 2q(v,w)r. ®

= DWV

This leads us naturally to consider the subgroup of elements ¢ €
CL*(V,q) such that Ad,(V) = V. By Proposition 2.2, this group contains
all elements v € V with g(v) # 0. Furthermore, we see from equation (2.8)
that whenever g(v) # 0, the transformation Ad, preserves the quadratic
form g. That is, (Ad¥q)(w) = g(Ad,(w)) = q(w) for all we V. Therefore,
we define P(V,q) to be the subgroup of CL *(V,q) generated by the elements
v e Vwith g(v) # 0, and observe that there is a representation

P(V,q) =% O(V,9) 29)
where
O(V,9) = {Ac GL(V): A*q = q} (2.10)

is the orthogonal group of the form g. The group P(V,g) has certain im-
portant subgroups.



14 I. CLIFFORD ALGEBRAS AND SPIN GROUPS

DeriNTION 2.3 The Pin group of (V,q) is the subgroup Pin(V,q) of
P(V,q) generated by the elements v € V with q(v) = + 1. The associated
Spin group of (V,q) is defined by

Spin(V,g) = Pin(V,q) n CL(V.q).

We observe now that the right-hand side of equation (2.8) is just the
map p,:V — V given by reflection across the hyperplane v' = {we
V: q(w,v) = 0}. That is, the map p, fixes this hyperplane and maps v to
—v. Unfortunately, there is a minus sign on the left in equation (2.8). This
means, for example, that if dim Vis odd, then Ad, is always orientation
preserving. This defect can be removed by considering the twisted adjoint
representation

Ad:Ct*(v,g) — GL(CL(V,9))
defined by setting
Ad,(y) = «(@)yep . @2.11)

Clearly, fA\&,Pm = '1\\51,,,l ° K&w and 'A\&w = Ad, for even elements ¢ (ie.,
for ¢ € CL%(V,q)). Furthermore, from (2.8) we have

Ad,w) =w—2 q(‘z”)”) 2.12)
We then define the subgroup
Bv,g) = {peCt*(V,g): Ad(V) = V}. 2.13)
It is clear that P(V,q) = B(V,q). Furthermore, we have the following.

Proposition 2.4. Suppose that V is finite dimensional and that q is nonde-
generate. Then the kernel of the homomorphism

B(v,q) == GL(V)
is exactly the group k™ of non-zero multiples of 1.

Proof. Choose a basis {vy,...,v,} for ¥ such that g(v)) # O for all i and
q(v,,v,) =0 for all i #j. Suppose @ € CL*(V,q) is in the kernel of Ad, that
is, suppose ¢ has the property that a(p)v = ve for all ve V. Write ¢ =
@0 + ¢, where ¢, is even and ¢, is odd, and observe that

VP = QoV

(2.14)

—0P; = @0
for all v e V. The terms ¢, and ¢, can be written as polynomial expres-
sions in vy,...,v, Successive use of the fact (1.4) that vp; = —vp; —

2q(v;,v;) shows that ¢, can be expressed as ¢, = a, + v,a, where a, and
a, are polynomial expressions in v,, .. .,0,. Applying a shows that a, is
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even and q, is odd. Setting v = v, in (2.14), we see that

v,a0 + via, = ag, + v,a,0,
= v,a, — v3a,.

Hence, v?a, = —q(v,)a; = 0, and so a, = 0. This implies that ¢, does not
involve v,. Proceeding inductively, we see that ¢, does not involve any
of the terms v,,...,v, and so ¢, =1t"1 for t e k.

The analogous argument can now be applied to ¢,. Write ¢, = a, +
v,ao, Where a, and a, do not involve v,. Note that a, is odd and q,
is even; and therefore, from (2.14), —v,a, —viay = a,v, + v a4, =
—v,a, + via,. Hence, a, = 0 and so ¢, is independent of v,. By induc-
tion, ¢, is independent of v,,...,v, and so ¢, =0.

Now we have o = 9o+ ¢, =t - 1lek. Butp #0,s0 pek™. m

Note that this proposition requires the twisted adjoint representation
and not the adjoint representation. The minus sign in (2.14) is crucial to
the proof.

Proposition 2.4 is false if we do not assume that q is non-degenerate.
To see this, consider the extreme case CE(V,0) = A*V. For all v,,v,€ V,
we have 1 + v,v, € CL*(V,0). In fact, (1 + v,v,)"* =1 — v,v,. However,
for any veV, we see that a(l + v,0)0(1 + vyv,)" ' =(1 + v,0,) "
v(1 — v,v,) = v. Hence, the kernel of the homomorphism includes many
non-scalar terms.

- We now introduce the norm mapping N:CE(V,q) - CE(V,q) defined
by setting

N(p) = ¢ - «(¢"). (2.15)

Here ¢' denotes the transpose of ¢ introduced in (1.15). It is easy to see
that «(¢’) = (a(¢))". Note that

N®) = q(v) forveV. (2.16)

The importance of the norm is evident from the following proposition.

Proposition 2.5. Suppose that V is finite dimensional and~that q is non-
degenerate. Then the restriction of N to the group P(V,q) gives a
homomorphism

N:B,g) — k* 2.17)
into the multiplicative group of non-zero multiples of the identity in C&(V ).

Proof. To begin we observe that N(P(V,q)) = k*. Choose ¢ € B(V,q) and
recall that by definition, a(@)vp = € V for all v e V. Applying the trans-
pose antiautomorphism, which is the identity on ¥, we see that

(0"~ 'va(@") = a(@)p 1.
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Hence,

P'u@e (@) ! = a[a(@)e]v[a(e)e]
= 'Avda(tp‘)v(v) =0

for all v € V. Hence, a(¢)e is in the kernel of Ad. Itis easy to check that
(") belongs to P(V,q), and therefore so does a(¢")p. Hence, by Proposi-
tion 2.4 we have a(¢")p € k™. Applying a shows that ¢‘a(¢) = N(¢*) e k™.
Since the transpose antiautomorphism preserves P(v,9), we conclude
that N(¢) e k™ for all ¢ € P(V,9).

We now observe that if ¢, € B(V,g), then N(py) = oya(y)x(e') =
eNWY)alo") = (@ )N(Y) = N(@)N(y). Thus, N is a homomorphism on
P(Vyg). m

Continuing to assume that dim ¥ < oo and g is non-degenerate, we
have the following.

Corollary 2.6. The transformations A\d,:V - V for ¢ € P(V,q) preserve
the quadratic form q. Hence, there is a homomorphism

Ad:B(v,q) — O(,9) (218)
Proof. To begin we note that N(agp) = N(¢) for ¢ € P(V,q) since N(agp) =
a(p)@*' = aN(¢) = N(p). Consequently, if we set

V* ={veV:q)+#0}, (2.19)
then for each ve V*(<=P(V.,q)), we have N(fA\d,,(v)) = N(p)o 1) =
N(@)N@)N(¢)™" = N(@)N(9)"'N(v) = N(v). Since N(¢) = g(v) for ve V
(cf. (2.16)), we see that Ad preserves all non-zero g-lengths. Applying Ad,,, 1

now shows that Ad (V" ) =V and so Ad leaves invariant the set of vec-
tors of zero g-length. Thus, Ad is g- orthogonal [ |

We now return to the group P(V,q) < P(V,q) and observe that by
definition

(V,q) = {vy - v, € CYV,q): v, ..., is a finite sequence from V*}.
(2.20)

Recall that the twisted adjoint representation gives a homomorphism
Ad:P(V,q) » O(V,q) such that

Ad,,...o,=po o op, (221)
where
puw) = w— 2309 2.22)

q(v)
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is reflection across v'. Thus the image of P(V,q) under Ad is exactly the
group generated by reflections. It is an important and classical result that
this is always the entire orthogonal group.

Theorem 2.7 (Cartan-Dieudonné). Let q be a non-degenerate quadratic
form on a finite dimensional vector space V. Then every element g € O(V,q)
can be written as a product of r reflections

g = Py, °" " ° Py,
where r < dim(V).

We refer the reader to Artin’s book [1] for the general proof. In the
special case where ¥V = R" and q(x) = ||x||?> is the standard norm, this
theorem is easily proved by putting the orthogonal matrix g in “diagonal”

form:

[R]
+1

+1

where each R,, is a 2 x 2 rotation matrix (which can be expressed as a
product of two reflections).

Theorem 2.7 says that the homomorphism Ad: P(V,q) = O(V,q) is sur-
jective. Furthermore, we could consider the group SP(V,q) = P(V,q) n
CLo(V,q) and, since dim V is finite, the special orthogonal group

SO(V,q) = {4 € O(V,g) : det(d) = 1}.

Theorem 2.7 also says that the homomorphism :A\&:SP(V,q) — SO(V,9)
is surjective. To see this, we first show that det(p,) = —1 for any ve V.
To prove this, choose a basis v, . . . ,v, such that v, = v and g(v,v;) = 0 for
j 2 2. It follows from the definition that p,(v,) = —v, and p,(v;) = v; for
j 2 2,andsodet (p,) = — 1 as claimed. Thus from Theorem 2.7 we conclude
that

SO(V.q) = {p,, o+ o p,, :q0) #0 and ris even).  (223)

From the definition (cf. (2.20)) we see that SP(V,q) = {v, - v,e P(V,q): r

is even}. The surjectivity of X&:SP(V,q) — SO(V,q) follows immediately
(see (2.21)).
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We now return to the groups Pin and Spin. Recall that these are the
groups generated by the generalized unit sphere S = {ve V:q(v) = +1}
in V. That is,

Pin(V,q) = {v, - - v, € P(V,9) : q(v)) = 1 for all j} (2.29)
and
Spin(V,q) = {v, - - - v, € Pin(V,q) : r is even}. (2.25)

In light of the above it is natural to ask whether the homomorphism Ad
restricted to Pin(V,q) and Spin(V,q) maps onto O(V,q) and SO(V,q) respec-
tively. This seems quite likely since at a glance one can see that

P = P (2.26)

for any non-zero scalar ¢ € k, and so one should be able to renormalize
any ve V> to have g-length + 1. Of course since q is quadratic, g(tv) =
t2q(v), and the equation t2q(v) = + 1, i.e., the equation t> = +afor a given
a, may or may not be solvable in a general field k. If k = R or C, of course,
it is always solvable. If k = @ (the rational numbers) it is very often not
solvable. (The group Q*/(Q*)? is infinitely generated.) If k is a finite field
of characteristic #2, then k* /(k )? = Z, and —1 may or may not lie
in (k*)2. In the cases where Ad is not surjective, we still have the following
general fact, which is interesting because the group SO(V,q) is often almost
a simple group (see Artin [1]). (The reader interested only in the real and
complex cases can skip this proposition.)

Proposition 2.8. Each of the images T&(Pin(V,q)) and X&(Spin(V,q)) isa
normal subgroup of O(V,q).

Proof. Recall (cf. (1.6)) that from the universal property of C£(V,q), the
action of O(V,q) on Vextends to automorphisms of C&(V,q). It is easy to
see that these automorphisms commute with a. Suppose then that we
have v,we V with g(v) # 0 and choose g e O(V,q). Then Adg(,,)(w)
aAgo)wl(gn) ™! = glav)wg(v™!) = g(a(v)g ‘(W ~!) = gAd,(g~'w).  Conse-
quently, we have that

Ad,,=goAdog! (2.27)
for all v € V with q(v) # 0 and for all g e O(V,q). The proposition now
follows immediately from (2.24), (2.25) and (2.27). =

We now come to the main result of this section. We are primarily in-
terested in the real and complex cases, so we shall focus on fields k that
have the property discussed above. We shall say that a field k of charac-
teristic #2 is spin if at least one of the two equations t> = a and t* = —a
can be solved in k for each non-zero element a € k*. That is, k is spin if
k* = (k*)* U (—=(k*)*). The fields R, C and Z, for p a prime with p =
3(mod 4), are spin.
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Theorem 2.9. Let V be a finite-dimensional vector space over a spin field
k, and suppose q is a non-degenerate quadratic form on V. Then there are
short exact sequences

0 — F — Spin(V,q) =5 SO(V,q) — 1 (2.28)
0 — F —> Pin(V,q) =5 O(V,q) — 1 (2.29)

where

F={zz={1,—1} ifJ/—1¢k

Z,={+1,+/-1} otherwise.

These sequences hold for general fields provided that SO(V,q) and O(V.,q)
are replaced by appropriate normal subgroups of O(V,q).

Proof. Supposep =v, *** v, € Pin(V,q) is in the kernel of Ad. Then pek”
by Proposition 24, and s0 @2 = N(¢) = N(v;)*** N(v,) = +1. This es-
tablishes the kernel of Ad in both cases. The surjectivity of the homo-
morphisms follows from Theorem 2.7, the fact that p, = p,,, and the fact
that since k is spin, any v € V™ can be renormalized to have g-length 1. =

It is interesting to observe that if k is a spin field, then either B(V,q) =
P(V,g) or P(V,q)/P(V,q) = Z,. The proof (which the reader may skip) is
as follows. Since P(V,q) is generated by V *, we know that t2q(v) € P(V,q)
for all t € k™ and v € V™. Since k is spin, this implies that P(V,q) contains
(k*)? or —(k*)? (and possibly more). In fact, if we set kg = {tek™:t- 1€
P(V,g)}, then from the above and from the definition of a spin field, we
see that k* = kg U (—kg). Thus, k™ /ky =0 or Z,. Now we have the
sequence

S P(V,g) € B(V,9) 25 O(V,9)

where k* = ker(Ad) and where ’A\&(P(V,q)) = O(V,9). It follows that
O(V,q) = P(V.q)/k* = P(V,g)/kg . Tt then follows without difficulty that
B(V,q)/P(V,g) = k*/k¥ = 0 or Z, as claimed.

We now examine the real case in some detail. Let V be an n-dimensional
vector space over R, and suppose g is a non-degenerate quadratic form
on V. Then we may choose a basis for ¥V = R" so that

Q) =x]+...+ X =Xy — . - X (2.30)

where r + s =n and 0 <r < n. It is standard notation to write: g,, =
g, O, = O(V,q) and SO, ; = SO(V,q). In accordance we write

Pin,; = Pin(V,q) and Spin, = Spin(V,q9). (2.31)

Similarly, it is conventional to write O, = O, o O, , and SO, = SO, , =
SOy,,. Thus, we set

Pin, = Pin,, and Spin, = Spin, ,. (2.32)
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We also write P, = P(V,q) and 13,.; = P(V,g), and note from the para-
graph above that

P,,=P,, (2.33)

It is a classical fact (cf. Helgason [1]) that SO, is connected and that
SO, ,, for r;s 2 1, has exactly two connected components. It is also a
classical fact that 7,(SO,)= Z, for n 23 and =,(SO?,) = =,(SO,) x
n,(SO,) for all r,s. Hence, n,(SOY,) = n,(SO?;) = Z, and =,(SO?,) =
Z, x Z, for all r,s 2 3. (Here SO?, denotes the connected component
of the identity.)

The main result of this section is the following.

Theorem 2.10. There are short exact sequences
0 — Z, — Spin,;, — SO, , —> 1
00— 7, » Pin,;, — O, , —> 1

for all (r,s). Furthermore, if (r,s) # (1,1), these two-sheeted coverings are non-
trivial over each component of O, ;. In particular, in the special case

0 —» Z, — Spin, =+ SO, — 1 (2.34)

the map &, = Ad represents the universal covering homomorphism of SO,
for alln = 3.

Proof. The exact sequences are a direct consequence of Theorem 2.9.
The kernel in each case is explicitly given by Z, = {1,—1}. To prove
that the coverings are non-trivial, it suffices to join —1 to 1 by a path in
Spin, .. Choose orthogonal vectors ej,e, € R* with gle;) = gle;) = +1.
(This is possible since (r,s) # (1,1).) Then y(t) = +cos(2t) + e, e,sin(2t) =
(e,cos t + e,sin t)(e,sin t — e, cos t) does the job. =

The above argument also shows that restricting Ad to the identity
component Spin?, of Spin, ; gives the universal covering homomorphism

0 —> Z, —> Spin?, —— SO, —» 1 (2.35)

forall r = 3.

§3. The Algebras C¢, and C¢, ,

We shall now study the Clifford algebras C¢, ; = CE(V,q) where V = R™**
and

ax)=x>+.. . +x2—x%,—...—x%, (3.1)
Of particular interest are the cases
Ct,=CtL,, and Cer = Ct,,. (3.2)
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One reason for studying these algebras is the following. As seen in §2, the
algebra Ct, , contains the groups Spin, ; and Pin, ,, and so any representa-
tion of the algebra C{, , restricts to a representation of these groups which
is non-trivial on the element — 1. (Such representations are therefore not
induced from representations of O, ; or SO, ;.)

These algebras have a simple classical presentation:

Proposition 3.1. Let ey, ... e, ., be any q-orthonormal basis of R'™** <
Ct, ;. Then CU, is generated (as an algebra) by ey, . .. e, subject to the
relations

+20; ifi>r. (33)

ee;+ eje = {
Proof. This follows easily from the discussion in §1. =

We also have a pretty decomposition in terms of the Z,-graded tensor
product.

Proposition 3.2. There is an isomorphism
CL,=Cl,®  RCLEICLHE - ®Cer (3.4)
where CL, appears r times and CL} appears s times on the right in (3.4).

Proof. Decompose R"** into one-dimensional g-orthogonal subspaces
and apply Proposition 1.5 inductively. =

It is not difficult to see that as algebras over R,
Cl,=C and ClI=RO®R (3.5)

It follows immediately that dimg(Ct, ;) = 2"**. Proposition 3.2 is, how-
ever, not so useful if we wish to represent Ct, , as a matrix algebra. For
this it is more useful to find decompositions in terms of ungraded tensor
products. We shall do this in the next section.

For the remainder of this section we shall examine some of the general
properties of the algebras Ct, ,. We begin with a discussion of the volume
element. Choose an orientation for R"** and let e,, . . . ,e,,, be any posi-
tively-oriented, g-orthonormal basis. Then the associated (oriented) vol-
ume element is defined to be

W =€y ey (3.6)

If €}, ..., ., is any other such basis, then ¢; = ; g,j¢; for g = ((g;)) €
SO,,. From (3.3) we easily see that e ---¢ ., =det(g)e; "' €4+, =
e, ‘' e,,s Hence the definition (3.6) is independent of the choice of the
basis.
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Proposition 3.3. The volume element (3.6) in CX, ; has the following basic
properties. Let n =r + s. Then

nn+1) +s
w*=(-1) * (3.7)
vw=(—1""twv forallveR", (3.8)

In particular, if n is odd, then the element w is central in CL, ;. If n is even,
then

o0 = wu(¢) (3.9)
forall peCE, ;.
Proof. Choose a g-orthonormal basis and apply the relations (3.3). =
We note that property (3.7) can be rewritten as

(—-1y if n = 3 or 4 (mod 4)
w?=
(=1*'  ifn=1o0r2(mod4)

We now make the following elementary but important observation.

@7y

Lemma 3.4. Suppose the volume element w in C8, , satisfies w* = 1, and set

nt =%(1 +w) and w” =%(1 — ). (3.10)
Then n* and n~ satisfy the relations
nt+n” =1 (3.11)
(n*)2=n"* and (") =n" (3.12)
atn” =a"at =0. (3.13)

Proof. This is a trivial consequence of the fact that w>* =1. m

This leads to two basic but important facts:
Proposition 3.5. Suppose that the volume element w in Ct, , satisfies w* = 1,
and that r + s is odd. Then Ct,; can be decomposed as a direct sum
Ct,,=Ct}, @ Ct;, (3.14)
of isomorphic subalgebras, where CLZE, = n* - CL,, = CL,, - n* and where

«CLE) = Cer,.

Proof. Since r + s is odd, we know from Proposition 3.3 that w is central.
Hence n* and n~ are central and the decomposition (3.14) into ideals
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follows directly from (3.11), (3.12) and (3.13). Since w is an odd element,
a(n®) = n¥ and so o(CLY) = CLF,. Since a is an automorphism, we con-
clude that these two ideals are isomorphic. ®

Proposition 3.6. Suppose that the volume element w in CL,  satisfies w* = 1
and that r + s is even. Let V be any Ct, -module (i.e., V is a real vector
space with an algebra homomorphism C¢,, - Hom(V, V)). Then there is
a decomposition

V=vVteVv" (3.15)
into the +1 and —1 eigenspaces for multiplication by w. In fact,
Vt=a*-V and V- =2V,

and for any ee R™** with q(e) # 0, module multiplication by e gives
isomorphisms

eVt — V- and e VT — V™, (3.16)

Proof. The decomposition (3.15) is a direct consequence of (3.11), (3.12)
and (3.13), together with the observation that

o -1t =+t

The isomorphisms (3.16) follow directly from the facts that by (3.8),

ent =-¢(1 +w)=%(1 —wle="n"e

ande‘e= —q(e):1. m

REMARK. The above construction will prove useful when we are dealing
with vector bundles in the next chapter.

We now come to an important and basic fact. Recall the even-odd
decomposition CE,, = CL2, @ Ct}, given in (1.8), where the subalgebra
Ct?, is the fixed-point set of the automorphism a.

Theorem 3.7. There is an algebra isomorphism
Ce,=Ce, (3.17)
for all r,s. In particular,
Ce, = Ce2,, (3.18)
for all n.
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Proof. Choose a g-orthonormal basis e,...,€,.,.; of R"***! so that

gle)=1for 1<i<r+1 and g(e)= —1 for i>r+1. Let R"**=

span{e;|i # r + 1} and define a map f:R"** —» Ce?, , , by setting
fle)=¢e.11

for i # r + 1, and extending linearly. For x = )., x;¢;, we have that:

f(x)2 = Z XiXi€r+1€i€p 4 1€;
i

=) XxXjee;
ij
=x'x=—q(x)1
sincee,,,°e., = —lande,, e; = —ee,,, fori#r + 1.1t follows from

the universal property (Proposition 1.1) that f extends to an algebra
homomorphism

f:czr,s B C£9+1.s'

Checking f on a linear basis shows that f is an isomorphism. m

We now specialize to the case of C¢,.

Proposition 3.8. Let L:Ct, —» Ct, be the linear map defined by setting
Lig) = _Z é;pe; (3.19)
J

where e, . .. sy is any orthonormal basis of R". Set L=aoL. Then the
eigenspaces of L are the canonical images of A? = APR" in CL,. In fact

Ljp» = (n—2p)d (3.20)
Jorp=0,...n

Proof. 1t suffices to consider ¢ = e, ‘- e,. Then

n

P
L(p) = —jzl ey e i — Y. eyt e

j=p+1

P n
= _.Z (—l)p'lefe,“-ep— z (—1)"9,?61"'8,
j=1 j=p+1

(1P 7"pe; e, +(—1)(n—pley ¢,
=(=1Y(n—2ple, -~ e, = (n — 2p)a(e) m

Under the canonical isomorphism C{, = A*R", Clifford multiplication
has a nice interpretation. Using the inner product on R" we can identify
R" with its dual. We can thereby talk about the interior product or con-
traction in A* R". For v € R”, this is a linear map (v L) : APR" - AP~ !R"
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given on simple vectors by
VL AL AD,) = i (=) o, )0y AL AB AL AD, (321)
i=1

where () indicates deletion. This gives a skew-derivation of the algebra,
ie, oL@ AY)=@LP)AY + (—1)¢ A (vL ¢) for any @ € APR". It is not
difficult to see that v L(v L) = O for any v € R". Hence, by universality the
interior product extends to all elements of A*R", i.e., to a bilinear map
A*R" x A*R" - A*R".

Proposition 3.9. With respect to the canonical isomorphism Ct{, = A*R",
Clifford multiplication between v € R" and any ¢ € Ct, can be written as
V'O VAQP—VLQ (3.22)

Proof. Choose an orthonormal basis ey, ..., e, for R" with v = te, for
someteR. Let p =¢;, ¢ foriy <---<i, Then

v = —te, e, X(vA —vl)p  ifi;=1
teje;, " e, =(VA —vL)p ifi, > 1.

Since (3.22) holds on an additive basis of C{,, it holds in general. m

§4. The Classification

In this section we shall give an explicit description of the algebras C¢, ; as
matrix algebras over R, C, or H (= quaternions). With little difficulty the
reader can check the first few cases:

Cto=C Clh,=R®R
Clo=H Cty, = R(2) 4.0
Ct,, =R(2)
where R(2) denotes the algebra of 2 x 2 real matrices.

The key facts to the classification are the following:

Theorem 4.1. There are isomorphisms

Cl,o ® Cly, =Cly ez @4.1)
Clon ® Clyo = Clyyzp 4.2)
C’er.s ® Czl,l = C£r+1.s+1 (4'3)

for all nyr,s = 0.

Note that here we are using the ungraded tensor product.
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Proof. Lete,, ... ,e,,, be an orthonormal basis for R"*2 in the standard
inner product, and let g(x) = —||x||>. Let e}, . . . ,&, denote standard genera-
0 1"

tors for C¢, , and let e ,¢; denote standard generators for C¢, , (in the sense
of Proposition 3.1). Define a map f:R"*? - C¢, , ® Cl, , by setting

e; ® eje; for1Zisn
fle) = { ;2

1®é€_, fori=n+1,n+2

and extending linearly. Note that for 1 <i,j <n, we have f(e)f(e;) +
fle)fle) = (eiej+ ee) (—1)=26;1 @ L,and forn+ 1 Saf<n+2
we have f(e)f(eg) + flep)fle) =1 ® (ez-n€p-n + €f_n€a—p) = 20,451 @ 1.
Also we see that f(e)f(e,) + f(e,)f(e) = 0. It follows that f(x)f(x)=
lIxlI>1 ® 1 for all x € R**2. Hence, by the universal property (Proposition
1.1), f extends to an algebra homomorphism f: Clg 4, = Cl, o ® Ct, ,.
Since f maps onto a set of generators for C¢,, ® C{, ,, it must be
surjective. Then, since dim C&, ,,, = dim C¢, , ® C¥, ,, we conclude
that f must be an isomorphism. This proves (4.1). The proof of (4.2) is
entirely analogous.

For (4.3) we proceed in a similar manner. We choose a g-orthogonal
basis e,,...,€4+1,61, . - - 841 fOr R™***2 such that g(e) = 1 and q(¢) =
—1 for all i,j. We then let €}, . . ., €,,€}, . . . ,&; and ef,e] be corresponding
bases for R"** and R?, and we define a map f:R"***2 - C¢,, ® C¢, ,
by setting

_ e ® efe] forl<i<r
f(e,-)—{1®e,l, fori=r+1,
and
_ )& ® efe] for1<j<s
ﬂsj)_{l@ﬁ’l’ forj=s+1,
and then extending linearly. We now apply Proposition 1.1 and complete
the argument as in the previous cases. =

To apply this basic proposition we shall need the following elementary
facts concerning the tensor products of algebras over R. For K =R, C
or H, we denote by K(n) the algebra of n x n-matrices with entries in K.
Proposition 4.2.

R(n) ® R(m) = R(nm) for all nym. 4.4)
R(n) ®g K~ K(m)  for K =C or H and for all n. 4.5)
CezgCCoC 4.6)
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C ®rH=C(2) 4.7
H ®g H = RA). (4.8)

Proof. The isomorphisms (4.4) and (4.5) are obvious. The isomorphism
C @ C —» C ® C is determined by sending

(LO)—3i(I®1+i®i),
0)—3i(1Q®1-i®i).

For the isomorphism (4.7) we consider H as a C-module under left scalar
multiplication, and we define an R-bilinear map ®:C x H — Homg(H,H)
by setting ®@, ,(x) = zxq. This extends (by the universal property of ®) to
an R-linear map ®:C @ H — Hom¢(H,H) = C(2). Since @, ;0 D, =
®,,  .» We have that @ is an algebra homomorphism. Checking @ on a
natural basis shows that it is injective. Hence, since dimg(C ®g H) =
dimg(C(2)), ® is an isomorphism.

The isomorphism (4.8) is proved similarly. Consider the R-bilinear map
¥:H x H - Homg(H,H) = R(4) given by setting ¥, ,.(x) = q,xq,. The
resulting R-linear map ¥:H ®z H - Homg(H,H) is an algebra homo-
morphism between algebras of the same dimension. The injectivity of ®
can be checked on a natural basisfor H @ H. =

We now come to the first main result of the section. Before stating the
result, we make the observation that for any (r,s), the complexification of
the algebra Ct, , is just the Clifford algebra (over C) corresponding to the
complexified quadratic form, i.e.,, C, , ® C = C¢(C"**, ¢ ® C). (This fol-
lows easily from Proposition 1.1.) However, all non-degenerate quadratic
forms on C” are equivalent over C¢,(C). Hence, setting

gez)= 3 22
=1

and defining
Ct, = CUC"q¢), 4.9
we have that

Ce,, = C‘E”’O ®R C = Ce,._l'l ®R C = ECEO_,, ®|R C (4-10)

Theorem 4.3. For all n Z 0, there are “periodicity” isomorphisms
Cl,i50=Ct,, ®Clg, 4.11)
Clonis =Cly, ® Clyg 4.12)
Ce,., = CL, ®cCtL, (4.13)
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where
Cts,o = Czo,s = R(16) (4.14)

Ct, = C(2). 4.15)

Therefore, by using the identities (4.4) and (4.5), all the algebras Ct,, ,, C&, ,
and Ct, can be easily deduced from the following table.

Table I

1 2 3 4 5 6 7 8

Cl,o| ¢ H HeH |HQ) c() R(8) | R8) ® R(8) | R(16)
Cl. [ROR | RQ cQ) HQ) | HQ) ® HQ) | HE) c®) R(16)
ct, lcaclce|cooce|cy | cowacw | c® | ce e ce) | cie)

Proof. From (4.1) and (4.2) we see that for any n, we have C{,, g0 =
Cl, o ® Cly, ® Ct, o ® Cly, ® CL, . Using (4.0) and Proposition
42 we see that Cl,,302CL,QH®HRRQ2)®RQ2)=CL,, ®
R(4) ® R@4) = C¢, , ® R(16). This establishes (4.11). The periodicity (4.12)
is proved similarly. To prove (4.13), note from (4.10) that C¢,,, =~
Clio®Cx=CL,,®Ct,, ® Cx=Ct, ®cCL,.

Using the isomorphisms (4.1) and (4.2), and the facts (4.4) to (4.8), one
can work out the first two rows of the table in “criss-cross” fashion (start-
ing with the initial data (4.0)). The third row of the table now follows by
taking the tensor product of corresponding terms in either of the first two
rows withC. =

Combining Table I with the fundamental periodicity isomorphism (4.3)
and the fact that Cf, , = R(2), we achieve the complete classification in
Table IL

By now the reader has probably noticed some of the intrinsic beauty
of this constellation of algebras and its interrelationships. There are some
observations one can make from the table that are interesting exercises
to prove. For example,

CE,,, = Cf’r—4,s+4 (416)
Cl vy =Cl 4y (symmetry about the axis y = x + 1). (4.17)

ReMARK. The above classification reduces the Clifford algebras to fa-
miliar matrix algebras over K = R, C or H. Of course it is also useful to
think of this result as introducing hidden and unexpected structure in the
algebras K(2™). This information can be quite interesting as we shall see
when we discuss vector fields on spheres in §8.
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§5. Representations

Most of the important applications of Clifford algebras come through a
detailed understanding of their representations. This understanding fol-
lows rather easily from the classification given in §4.

We begin with a general definition. Let V be a vector space over a
field k and let g be a quadratic form on V.

DEFINITION 5.1. Let K 2 k be a field containing k. Then a K-representa-
tion of the Clifford algebra C£(V,q) is a k-algebra homomorphism

p:CYV,q) — Homy(W,W)

into the algebra of linear transformations of a finite dimensional vector
space W over K. The space W is called a C{(V,q)-module over K. We
shall often simplify notation by writing

pleYwW)=o¢-w (5.1)

for ¢ € CE(V,q) and we W, when no confusion is likely to occur. The
product ¢ - w in (5.1) is often referred to as Clifford multiplication.

Note. By a k-algebra homomorphism we mean a k-linear map p which
satisfies the property p(oy) = p(¢) o p(¥) for all ¢,y € CL(V,q).

We shall be interested in K-representations of C¢,  where K = R, C or
H. Note that a complex vector space is just a real vector space W to-
gether with a real linear map J: W — W such that J2 = —Id. A complex
representation of C¢, , is just a real representation p: C&, ; — Homg(W,W)
such that

p(p) o J =J < p(9) (52

for all ¢ € Ct,,. Thus the image of p commutes with the subalgebra
span{Id,J} = C. (This algebra is called a “commuting subalgebra” for p.)

Strictly analogous remarks apply to quaternionic representations of
Ct, ;. Here the real vector space W carries three real linear transfor-
mations I, J and K such that

P=J=K*=-1d
U=-JI=K, JK=-KJ=I, KI=-IK=1J.

This makes W into an H-module. A representation p:C¢t,, -
Homg(W,W) is quaternionic if

pl@)eI=1I0p(p), pl@)oJ=Jcple), ple)eK=Kop(p)
(5.3)

for all ¢ € Ct,,. That is, p has a commuting subalgebra spang{Id,I,J,K}
isomorphic to H.
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REMARK 5.2. Any complex representation of Cf,, automatically ex-
tends to a representation of C¢, ; ®g C = C{,,,. Any quaternionic repre-
sentation of C¢, ; is automatically complex (by restricting to C = H). Of
course the complex dimension of any H-module is even.

The above remarks will prove useful when we carry these constructions
over to vector bundles in Chapter II

We now come to the notion of irreducibility.

DEFINITION 5.3. Let V,q,k < K, be as in definition 5.1. A K-represen-
tation p: C&{(V,q) » Homg(W,W) will be said to be reducible if the vector
space W can be written as a non-trivial direct sum (over K).

W'—'-'Wl@Wz

such that p(@)(W) € W, for j = 1,2 and for all ¢ € CE(V,q). Note that in
this case we can write

p=p @ p,

where p (@) = p(¢)|w, for j = 1,2. A representation is called irreducible if
it is not reducible.

It is more conventional to call a representation “irreducible” if it has
the property that there are no proper invariant subspaces. However, since
Ct,, is the algebra of a finite group (see the discussion following Proposi-
tion 5.15), the two concepts are easily seen to agree in this case.

Proposition 5.4. Every K-representation p of a Clifford algebra CE(V,q)
can be decomposed into a direct sump = p, @ - - - @ p,, of irreducible rep-
resentations.

Proof. If p is reducible, it can be decomposed as a direct sum p = p, D p,.
If either p, or p, is reducible, p can be further decomposed. This process
must stop because of the finite dimensionality of the module. =

We shall be interested here, of course, only in equivalence classes of
representations.

DErFINITION 5.5. Two representations p;: C8(V,q) - Homy(W,,W) for
j=1,2 are said to be equivalent if there exists a K-linear isomorphism
F:W; = W, such that F o p,(¢) o F~! = p,(¢) for all ¢ € C¢(V,q).

From §4 we know that every algebra Ct,, is of the form K(2™) or
K(2™ @ K(2™ for K =R, C or H. The representation theory of such
algebras is particularly simple.

Theorem 5.6. Let K =R, C or H, and consider the ring K(n) of n x n
K-matrices as an algebra over R. Then the natural representation p of K(n)
on the vector space K" is, up to equivalence, the only irreducible real repre-
sentation of K(n).
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The algebra K(n) @ K(n) has exactly two equivalence classes of irre-
ducible real representations. They are given by

Pi(@1e2) = pley)  and  py(01,02) = po3)
acting on K"
Proof. This follows from the classical fact that the algebras K(n) are sim-

ple and that simple algebras have only one irreducible representation up
to equivalence. See Lang [1]. =

From the classification of §4 (see Table II) we immediately conclude
the following:

Theorem 5.7. Let v, ; denote the number of inequivalent irreducible real rep-
resentations of CL,,, and let v$ denote the number of inequivalent irre-
ducible complex representatons of CL,. Then

_j2 ifr+1-s5=0(mod 4)
™~ |1 otherwise
and
c 2 if n is odd
vy = o .
1 if n is even.

This is a good time to recall (cf. Theorem 3.7) that there are isomorphisms

Ce,=C0y s (54)
for all r,s, and consequently
ce, = Ce,, (5.5
for all n. Since
Spin, , = CL2, = C2,, (5.6)

we see that it is the irreducible representations of C¢,_, ; and C&¢,,
that are relevant to constructing irreducible real and complex representa-
tions of Spin, ;.

From this point on we shall restrict our attention to the algebras
Ct,=Ct,, (and C¢, = Ct, ®g C) in order to simplify the exposition.
Corresponding facts for the general case C¢,; are easy to deduce if the
reader is interested. We shall begin with a summary of information easily
deduced from the classification theorem 4.3.

We begin with some definitions. For each n, let d, = dimg(W) where
W is an irreducible R-module for C%,. Similarly, let d¢ = dimg(W’) where
W’ is an irreducible complex module for C{, (and therefore for CE, =
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Ct, ®x C). Let K, = R, C or H denote the maximal commuting subal-
gebra for an irreducible real representation of CE,. Thus if K, = C, this
representation is automatically complex. If K, = H, it is automatically
quaternionic. (Note that in the cases where C£, has two distinct irreduc-
ible representations, d,, d€ and K, are the same for both.)

An object which will be of interest later on is the following. Let I, (or
ME) denote the Grothendieck group of equivalence classes of irreducible
real (respectively, complex) representations of C¢,. This is merely the free
abelian group generated by the distinct irreducible representations over
R (or C). Since any representation can be decomposed into irreducibles,
it naturally corresponds to an element in this group (with positive
coefficients).

Theorem 5.8. For 1 <n <8, the elements v,=v,,S,d,, dS, K,, M,
and MC (defined above) are as given in Table III.

Table II1

n ce, v, | d, | K, m, ce, e dS mE
1 C 1 2 C Zz cCopcC 2 1 762
2 H 1 4 H V4 C(2) 1 2 V4

3 H@H 2| 4| H |zez | cooc) | 2| 2| zez
¢ H() 1| 8| w z c@) 1] 4 z

5 Cl4) 1] 8] ¢ z coocy | 2| 4| zoz
6 R(8) 1 8 R z C(8) 1 8 z
7lre)oRe) | 2| 8| R |zoz | c®@c®) | 2| 8| zazZ
8 R(16) 1 |16] R z C(16) 1| 16 z

For n > 8 these elements can be computed from the following facts, which
hold for all mk = 1.

Vim+8k = Vm Vit 2k = Vi (5.7
Ao s 8k = 24kdm dﬁnk = 2kdm (5.8
My 4 51 = My, My o = iy, (5.9
Kpisx = K. (5.10)

Proof. This is a direct consequence of Theorem 4.3. =

We shall now consider the key role played by the volume element in
determining irreducible representations. Recall from §3 that the volume
element in Ct, is defined as

w=e; " e, (5.11)
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where e, ...,e, is an orthonormal basis of R". It is well defined up to
sign and is fixed after a choice of orientation on R". In the complex case
we have a corresponding element w¢ € C2, given by

n+1
[ 2 ]w, (5.12)

wc =1
called the complex volume element. Note that when n = 2m, we have
wc =1i"; """ ey

(Note also that we = w only in dimensions seven and eight modulo 8.
Other conventions for a complex volume element are possible. This one
is particularly useful in studying elliptic operators.)

Recall from Proposition 3.3 that if n is odd, then w and w¢ are central.
Furthermore, by (3.7) we have that

wl=1 if n=3 or 4 (mod 4), (5.13)
(we)>=1  foralln. (5.19)
Thus there are algebra decompositions
Ce,=Ctf @ Ct; for n = 3 (mod 4) (5.15)
Ct,=Ct @ Ce, for n odd (5.16)
where
Ctf=(11wCe, and CLf=(1+ w)Ct,. (5.17)

(see Proposition 3.5). These decompositions correspond to the ones given
in Table IIL

Proposition 5.9. Let p : C£, - Homg(W, W) be any irreducible real repre-
sentation where n = 4m + 3. Then either

plw)=Id or pw)=—Id

Both possibilities can occur, and the corresponding representations are in-
equivalent. (They represent the two generators of M,,.)
The analogous statements are true in the complex case for C&,, n odd.

Proof. Since p(w)? = p(w?) =1d, we can decompose W into W =
W* @ W~ where W* and W~ are the +1 and —1 eigenspaces for p(w)
respectively. Since w is central, the spaces W* and W~ are C{,-invariant.
By irreducibility either W* =W or W~ = W. This proves the first
statement.

The inequivalence of representations p, and p. with p(w)= +1d
is evident, since if F: W — W’ is an isomorphism and if p(w): W — W is
a scalar multiple of Id, then F o p(w) o F~! is the same scalar multiple of
Id.
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To see that both possibilities exist we take irreducible factors of C&€,
acting on Cf; and on C{, by multiplication from the left.
The complex case is proved in the analogous manner by using wc. B

Proposition 5.10. Let p:CE£, - Homg(W,W) be an irreducible real repre-
sentation where n = 4m, and consider the splitting

W=w*ew"-

where Wt = (1 + p(w)) - W (as in Proposition 3.6). Then each of the sub-
spaces W* and W~ is invariant under the even subalgebra CL2. Under
the isomorphism (3.18) CL2 =~ Ct,_,, these spaces correspond to the two
distinct irreducible real representations of CU,_,.

The analogous statements are true in the complex case for CL,, n even.

Proof. The invariance of W* and W~ under Ct? is evident from the fact
that @ commutes with everything in C£? (see (3.9)). Under the isomor-
phism C&,_, 5 Ct? given in (3.18), we see that the volume element o’ =
e e, of CL,_, goes to the vlolume element w € CL2. (To see this

note that (ese,) - (u- 1) = (= 1> " ey ey y(e N =e e,

since n = 4m.) It follows that o’ =~ Id on W* and o’ =~ —1Id on W~. Hence,
by Proposition 5.9 these representations of C¢,_, are inequivalent.

The complex case is proved in the same manner using the volume form
¢ for CL,. =

The representations of the algebras C{, give rise to important represen-
tations of certain groups.
Consider the spin group
Spin, = Ce? = C¢,. (5.18)
DEFINITION 5.11. The real spinor representation of Spin, is the homo-
morphism
A, :Spin, — GL(S)

given by restricting an irreducible real representation C£, — Homg(S,S)
to Spin, = C? = Ct,.

Proposition 5.12. When n = 3 (mod 4) this definition of A, is independent
of which irreducible representation of Ct, is used. For n # 0 (mod 4) the
representation A, is either irreducible or a direct sum of two equivalent irre-
ducible representations. (The second possibility occurs exactly when n = 1
or 2 (mod 8).) In the other cases there is a decomposition

A4m = A:m @ A;m (519)

where A}, and A, are inequivalent irreducible representations of Spin,,,.
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Proof. Recall that if n = 3 (mod 4), then the automorphism «:C¢, — C¢,

interchanges the factors CE,' and C¢, (since a(w) = —w). Consequently,
Ct? sits diagonally in the decomposition Ct, = C¢ @ C¢,, ie.,
CL2 = {(¢, alg)) € CL;} @ CL: 9 € CL; ) (5.20)

The two irreducible representations of C¢, differ by the automorphism
o, and are clearly equivalent when restricted to C£2. This proves the first
statement of the proposition.

It is evident from Table III that the restriction of an irreducible real
representation of C¢, to CL2 = C¢,_, is still irreducible if n = 3, 5, 6, or
7 (mod 8), and must be two copies of an irreducible representation when
n =1 or 2 (mod 8). When n = 0 (mod 4), we know from Proposition 5.10
that the restriction to C£? splits into two inequivalent irreducible repre-
sentations. To complete the proof we observe that any irreducible repre-
sentation of CE? restricts to an irreducible representation of Spin, because
Spin, contains an additive basis for C£2. m

REMARK 5.13. Note that the spin representations are complex for n = 2
or 6 (mod 8), and are quaternionic for n = 3, 4 or 5 (mod 8). (The maximal
commuting algebra is determined by C¢,_, =~ Ct2))

The analysis above carries over to the complex case.
DEFINITION 5.14. The complex spin representation of Spih,, is the homo-
morphism
AC:Spin, —> GL(S)

given by restricting an irreducible complex representation Cf, —
Homg(S,S) to Spin, = CE? = C¢,.

Proposition 5.15. When n is odd, this definition of AS is independent of
which irreducible representation of CL, is used. Furthermore, when n is
odd, the representation AS is irreducible. When n is even, there is a de-
composition

ASn = A%, ® AL, (5:21)
into a direct sum of two inequivalent irreducible complex representations of
Spin,.

Proof. The proof is entirely analogous to that of Proposition 5.12. =
It should be pointed out that the spin representations defined above
do not descend to the group SO, = Spin,/Z, since A, (—1) = —Id.

It is worthwhile noting that representations of C{,, also give rise to re-
presentations of the Clifford group. This is the finite group F, = C{)
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generated by an orthonormal basis ey, . . . ,e, of R". It can be presented by
the abstract elements e, ...,e,,—1 subject to the relation that —1 is
central and that (—1)2 =1, (¢)*> = —1 and ee; = (—1)eg; for all i #j.
The Clifford algebra is nearly the group algebra RF, of F,. More explicitly

Ct, = RF,/R-{(—1) + 1}

It is clear that representations of C£, correspond exactly to linear repre-
sentations of F, such that (—1) acts by —Id.
This group enables us to draw an important conclusion:

Proposition 5.16. Let C£, - Homg(W,W) be a real representation of Ct,.
Then there exists an inner product {:,-)> on W such that Clifford multipli-
cation by unit vectors e € R" is orthogonal, i.e., such that

(e wye-w)=<{w,w) (5.22)

Jor all ww' € W and for all ee R" with |le]l =1. If K, (=R, Cor H) is a
commuting subalgebra for the representation, then the inner product can be
chosen to be K ,-invariant, that is, so that J is orthogonal when K, = C and
so that 1, J and K are each orthogonal if K, = H.

In particular, the spin representations A, are unitary if n = 2 or 6 (mod
8) and symplectic if n = 3, 4 or 5 (mod 8).

Proof. Choose a K,-invariant inner product and average it over the finite
group F,. Note that if e = )" aje; where ) a} = 1, then
Cew,ew) =) allew,ew) + Y aalew,ew) = (w,w)
i#j

since {ew,ew) =<w,w) and for i#j, {ew,ew) = (eew, —w) =
{eejw,w) = — {e;w,e;w) = 0. For the last statement, recall that A, comes
from a representation of C€0 = C¢,_,. =

Corollary 5.17. Let {-,*) be the metric discussed in Proposition 5.16. Then
for any ve R",

v-w,w)=—{w,v-w) (5.23)

Jor all ww' € W. That is, Clifford multiplication by any vector ve R" is a
skew-symmetric transformation of W.

Proof. Assume v #0. Then {v-w,w) = {(v/llv]))- v w,(/|lv]])- W) =
M/lIlI)<0? - wyo - W) = —(w,o-w'). m

It is worth noting that the irreducible representions of C£,, have a par-
ticularly nice description. Introduce on C" the standard hermitian metric

(20 = ;21 z{;. (5.24)
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and use this inner product to define a complex linear contraction map
(L) : ARC"— AR7IC"
for v e C" by formula (3.21). We then define f,: AX¥C" — A%C" by setting
fl@)=vAp—vLo. (5.25)

Then since v Av =0, (vL)(vL)=0,and vL (v A @) = ||t||?¢ — v A (VL @),
we see that

Joo Sl@) = —|lv|e- (5.26)

Note that since the inner product is C-antilinear in the second variable,
the map v — f, is only R-linear. Nevertheless, writing R?" =~ C", we see
from universality (Proposition 1.1) that property (5.26) determines a unique
extension of f to a representation

f :Ct,, — Homg(A*C", A*C"). (5.27)

Since the complex dimension of this representation is 2", we see that it
must be the irreducible one.

We now make some remarks concerning tensor products. Suppose W
is a K-module for C¢, (where K = R or C) and let V be any vector space
over K. Then W @y V is also a K-module for CE, where by definition

¢ (w® )= (pw) ® v. (5.28)

Therefore, if W, and W, are K-modules for C¢,, then W, @x W, is a
K-module for C¢{, in two distinct ways. We set

AW @ wy) = (pw;) @ w,,
P¢(W1 ® wy) =w; ® (pw,).
Then A and p are commuting representations of C¢{,. Furthermore, the

product
D@y,.0:(W1 ® W)) = (91w;) ® (02w,)

is a representation of the (ungraded) tensor product C¢, ® C¢,.

Proposition 5.18. Let CL,, - Homc(S,S) be an irreducible complex repre-
sentation of CL,,. Then the tensor product representation of C{,, ®c C{,,
on S ®¢ S is equivalent to the representation ® on C&,, itself given by
setting

Dy (@) = 01" 0" 0
Proof. Since CU,, ®c CL,, = CLl,, (see Theorem 4.3), we see that
S ®c S must be an irreducible module for reasons of dimension. Since

dimg(S ® S) = 22" = dim(CL,,), the representations must be equivalent.
]
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Corollary 5.19. Let p, : Spin, — SO(R") denote the standard n-dimensional
representation of Spin,. Then in the complex representation ring of Spin,,,
(cf. Adams [1]) we have the equation

(ASw + AS,) - (A%, + AL,
=21 + pSm + A2p5m + ... + A" 1p5,) + A5,
where p$,, denotes the complexification of p,,,.

Proof. The tensor product A, ® AS,, is obtained by embedding Spin,,,
into C¢,, ® C¢,, diagonally (g— g ® g) and restricting the tensor
product representation. By Proposition 5.18 this is equivalent to the
adjoint representation ®,(¢) = gog' = gpg~' = Ady(p). Under the
correspondence Cf,, =~ AXC?™, this representation is equivalent to
(1 + pom + A203m + ... + A®™p,,) ® C. However, by Hodge duality
App2m = A2m—pp2m. u

Results analogous to Proposition 5.18 and Corollary 5.19 hold for the
algebras Clg,, and for the real spin representation Ag,, = Ag,, + Agp-

Note that the tensor product of irreducible real representations of CC,
and Cf4 gives an irreducible real representation of C¢,, s =~ C, ® Cl;.
Similarly the complex tensor product of irreducible complex representa-
tions of C¢, and Ct, gives an irreducible complex representation of
Ce,,, = Cf, ® CL,. In general, however, Ct, ® C¢,, is not a Clifford
algebra. Thus, to find a multiplicative structure in the representations of
Clifford algebras it is natural to consider the category of Z,-graded mod-
ules. A Z,-graded module for C%, is a module W with a decomposition
W = W° @ W! such that

Ce; . Wj c W(l'+j)(mod 2)
for0<i j<1.
Proposition 5.20. There is an equivalence between the category of Z,-
graded modules over CL, and the category of ungraded modules over CL,_,.

It is defined by passing from the graded module W° @ W*! over C&, to the
module W° over C¢ ~ C¢,_,.

Proof. The inverse procedure is given by assigning to a C£%-module
WP, the Z,-graded module

W = Cz,, ®Cl2 WO

(Left multiplication by CE, on Cf, makes W into a Z,-graded module.)
The remainder of the proof is straightforward. =

There is a natural definition of the Z,-graded tensor product of Z,-
graded modules W= W° @ W! and V=V°@ V! over C¢, and C¢,
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respectively. We set
WRVP=w'Q® V°+w!'® V!
WRVI=wQ V' + W' ® Ve
The action of C, ® C¢,, on W ® V is given by

(@ ®Y) (W ® v) = (—1)"(ew) @ (¥v)

where deg(y) =p and deg(w) = gq. Under the isomorphism C¢,,, =
Ct, ® Ct,, induced from mapping R" @ R™ - C0,,

e—e®1 ifeeR" = Ct,
e—1®¢ ife e R" = CL,,

V ® W becomes a Z,-graded module over C&,.,. This construction
holds for either real or complex modules.

In analogy with the above we define M, (MF) to be the Grothendieck
group of real (complex) Z,-graded modules over C¢,. Note that by Prop-
osition 5.20 there are natural isomorphisms

M,>M,_, and MM . (5.29)

The arguments just given have established the following:

Proposition 5.21. There are natural pairings

@n ®z @m - ﬁzn+m (5.30)
M ®; MZ — M7, (5.31)

induced by the Z,-graded tensor product. These pairings are associative
and give M, = P, M, and ME= P, 50 MS the structure of graded
rings.

These pairings are important in the relation of Clifford algebras to real
and complex K-theory (see §9).

§6. Lie Algebra Structures

This section shall be concerned with the Lie algebra of Spin,. Recall that
the group of units Cf,; is a Lie group with Lie algebra I, = (CL,,[*,'])
where [@,¥] = ¢ - ¥y — ¥ - . There is an exponential mapping exp: cl,; —
Ct,) given by the standard series (see Remark 2.1). The group Spin, is an
explicitly defined, compact subgroup of C¢,‘. We shall now investigate its
associated Lie subalgebra spin, in C¢,.
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Recall that there are canonical embeddings A’R" = C¢, for all p.

Proposition 6.1. The Lie subalgebra of (CL,,[,"]) corresponding to the
subgroup Spin, < CL,° is

spin, = A’R". 6.1)
In particular, A’>R" is closed under the bracket operation.

Proof. The Lie subalgebra spin, is the vector subspace of C£, spanned
by the tangent vectors to the submanifold Spin, at 1. Fix an orthonormal
basis e,,...,e, of R" and consider for each pair i <j, the curve y(t) =
(e; cos t+e;sin t) - (—e; cos t+e; sin t)=(cos?t —sin?t)+ 2e;e; sin t cos t=
cos(2t) + sin(2t)e;e;. This curve lies in Spin, by definition of Spin,, and its
tangent vector at y(0) = 1 is 2e;e;. Hence, spin, contains the vector sub-
space spang{e;e;};<; = A’R". Since dimg(spin,) = n(n — 1)/2, we conclude
they are equal. =

We now ‘recall that the Lie algebra of the orthogonal group SO, is ex-
actly the space

s0, = {A: R" — R": 1 is linear and skew-symmetric} 6.2)

~

There is a natural isomorphism A?R" 5 so, induced by associating to a
pair of vectors v,w € R", the skew-symmetric endomorphism “v A w” de-
fined by

v A W)(x) = (v, xd>Ww — {Ww,xD, (6.3)

and then extending by universality. Note that e; A e;, for i < j, corresponds
to the elementary skew-symmetric (i,j) matrix:

| |
A

L
i——0—— 1

0
l

This is a standard basis of so,.
Recall now that the adjoint representation gives a surjective homomor-
phism

Spin, —=» SO,.

(Since Spin, = Ct?, we have K‘&]s,,i,," = Ad|s,;,,.) This induces an asso-
ciated Lie algebra isomorphism

spin, —> so, (6.4)
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Proposition 6.2. The Lie algebra isomorphism (6.4) induced by the adjoint
representation is given explicitly on basis elements {e;e;};; by

Eo(eiej) - 26,- A ej. (6-5)
Consequently for v,w € R",

=-1

EolvAaw)= % [v,w] (6.6)

Note. This factor of 4 plays a delicate role in geometric applications.

Proof. Consider the curve y(t) = cos(t) + sin(t)e;e; in Spin, with y(0) =1
and y'(0) = e;e;. Then

Zolee) = 5 G00)

and to compute this we apply it to a vector x € R". Since

Eoy(®))(x) = y(O)xy() ™",
and since (y~!)(0) = —y'(0) = —e;e;, we have that
Eoleie))(x) = eejx — xee;
= ee;x + (ex + 2{e;,x))e;
= g;e;x — e;e;x — 2{e;,x)e; + 2{e;,x)e;
= 2(e; A ej)(x)

To prove (6.6), note that on basis elements, 1 [e;, ¢;] = %(eie; — eje;) = 3ese;.
]

This Proposition has the following immediate corollary:

Corollary 6.3. Let A:Spin, - SO(W) be a representation obtained by re-
striction of a representation CE, - Hom(W,W) of the Clifford algebra
Ct, o Spin,. Let A, :s0, — so(W) be the associated representation of the
Lie algebra (obtained by first pulling back so, to the double covering via

-1

Eo !). Then on the elementary transformations v A w € $0,,
A (v Aw)=%[vw]" 6.7
where the dot indicates Clifford module multiplication on W.
In terms of the standard basis {e; A e;};<;
Ale; A e) = 3ee; (6.8)

Suppose now that C¢, - Hom(W,W) is a complex representation of
C¢t,, and fix an element w € W. The subgroup

G, = {g € Pin,: gw = w} (6.9)
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is called the isotropy group of w. Its Lie algebra is the subalgebra
g, = {p € spin,: ¢ - w =0} (6.10)

Two elements w,w' € W are considered to be different as spinors (or more
precisely, to have distinct orbit types) if their isotropy groups G,, and G,
are not conjugate in Pin,. One crude measure of this difference is the
following:

DEFINITION 6.4. The rank of the (generalized) spinor w is the rank of the
Lie group G,,. This is the dimension of a maximal torus in G,, or, equiv-
alently, of a maximal abelian subalgebra of g,,.

In a compact Lie group, every abelian subgroup is contained in a maxi-
mal torus, and all maximal tori are conjugate (cf. Adams [1]). Hence any
maximal torus T,, of G,, is contained in a maximal torus T of Pin, which
we can assume to be the following standard one associated to a fixed
orthonormal basis {e,, . .. ,e,} of R™

[n/2]
T= { (cos 6, + sin O,e,—1€55) : 0 < 0, < 2= for each k}
k=1
The Lie algebra of T is given by
(/2]
t= { t A€ak—18; : A € R for each k}
k=1

We now use our distinguished orthonormal basis to decompose the
module W. For each k, 1 < 2k < n, define

W, = —iey 1€
and note that
Dy« o Dppy2) pairwise commute, 6.11)
w?=1  foreachk, (6.12)
W8, = — €Wy for each k. (6.13)

Suppose now that ¥V <= W is a linear subspace which is e,,_,-invariant
and e,;-invariant for some fixed k. Then by (6.12) we know that V =
V, @ V. where V, = (1 + w,)V are the +1 eigenspaces of w, on V. Fur-
thermore, by (6.13) we see that eV, = V_ and ¢, V_ = V,. In particular,
dim V, =4dim V.

We shall now use this process to decompose the module W. We begin
with the decomposition W = W, @ W_ by w,. Since w, commutes with
€3,€4, . . . &n, We see that each of the subspaces W, and W_ is e,, ... e,
invariant. Hence we can similarly decompose each subspace W, and W_
by w, to get W, = W,, ® W,_ and W_ = W_, ® W__. Each sub-
space W, , is es, ... e, invariant. Continuing inductively, we produce a
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decomposition
W=@W,...=PW, (6.14)

where dim W, = (dim W)/2("?! for each o and where o = (ay, . . . ,042)
ranges over the 2("2l.possibilities having o, = + or — for each k. (Note
that if W is an irreducible module, then dimg W, = 1 for all a.)

The maximal torus T preserves each subspace W,. In fact, given g =
[1(cos 6, + i sin 6,,) € T, we see that

g, = oiTu = oica,0)
Similarly for ¢ =) Aie,, -1, = 1) Lo, €t we have
Oly, =13 ey = i<, A (6.15)

The set of vectors 3a € t* are called the weights of the representation.
The § occurs because in general theory the weights are normalized by
relating them to the weights of the adjoint representation.

We now return to our given spinor w € W. With respect to the decom-
position (6.14) we write

w=) W,
From (6.10) and (6.15) we conclude the following:

Proposition 6.5. The maximal abelian subalgebra of G,, is
t, = {i Y. L, : (@A) = 0 for all « such that w, # 0}

Corollary 6.6. rank w = [n/2] — dim spang{a : w, # 0}

If w=w, for some a, i.e., if all but one component vanish, then w is
clearly of maximal rank. Those elements that take the simple form w = w,
for some choice of orthonormal basis in R", are called pure. Pure spinors
are related to complex structures, twistors spaces and calibrations. They
will be discussed in detail in Chapter IV.

§7. Some Direct Applications to Geometry

In this section we shall use the classification of Clifford modules given
above to construct families of pointwise linearly independent vector fields
on spheres, projective spaces and other elliptic space forms. We shall also
apply the methods to study the “hyperplane” bundle over complex and
quaternionic projective space. This allows us to estimate the geometric
dimension of TP*C). In almost all cases the families constructed in this
manner are maximal.
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We begin with the following observation:

Proposition 7.1. Suppose RY*! is a module for the algebra Ct,. Then there
exist n pointwise linearly independent tangent vector fields on the sphere S¥
and also on the projective space P(R) = S¥/Z,.

Proof. Choose an inner product in R¥*! so that Clifford multiplica-
tion by unit vectors in R" is orthogonal (see Proposition 5.16). Let SV =
{x e R¥**:||x||* = 1}. Choose a basis v,, . ..,v, for R", and to each v; as-
sociate the vector field ¥; on R"*! defined by

Vix)=v;-x j=1...,n

(where the dot denotes Clifford multiplication). Since the linear transfor-
mation x — v x is skew-symmetric (see Corollary 5.17), we have that
(Vj(x),x» = {vjx,x) = 0. Hence, the vector fields V; are tangent to SN It
remains to show that V,,...,V, are pointwise linearly independent. Fix
x € S¥ and consider the linear map i.:R" - T,.S¥ < R¥*! given by

iv)=v-x

The image of i, is the linear span of V;(x), . ..,V,(x), so it suffices to prove
that i_ is injective. However if i,v =v-x =0,thenv-v-x = —||v]|>x =0
andsov=0.

Since V(—x) = — V|(x), these vector fields descend to (pointwise linearly
independent) vector fields on P’(R). =

The question now is: given an integer N, what is the largest number of
independent vector fields on S¥ that can be constructed in this manner?
That is, what is the largest integer n such that R¥*! is a C¢,-module? We
recall that the dimension of an irreducible C¢,-module is always a power
of 2. Hence, we want to find the largest power of 2 which divides N + 1.
That is, we write N + 1 = p2™ where p is odd, and then we consult Table
III to find the largest n such that d, = 2™. The result is the following clas-
sical result of Radon and Hurwitz.

Theorem 7.2. On the sphere SN (and on the projective space PY(R)) there
exist n pointwise linearly independent vector fields where n is computed as
follows. Write N + 1 = 2***%2¢t +1),0 < b < 3. Then

n=28a+2—-1. (7.1)
Proof. One need only check this when a = 0, and then note that for each
increase of n by 8 the dimension of the vector space for an irreducible
representation of Cf, increases by 2*. Note that when N is even, the num-
ber of such vector fields is zero as it must be since the Euler characteristic
is non-zero in this case. Note also that this construction gives three vector
fields on S3, seven on S7 and eight on S5, m
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One of the deep results of algebraic topology is the following:

Theorem 7.3 (J. F. Adams [2]). The number of vector fields constructed on
S¥ above is the largest possible number of pointwise linearly independent
vector fields that can exist on SV.

It is worth noting that this construction also gives rise to vector fields
on many elliptic space forms. If the representation of C£, on R¥*! is com-
plex or quaternionic, then Clifford multiplication by v € R" commutes with
complex scalar multiplication. Therefore, if = e2*/? is a pth root of unity,
then the vector field ¥(x) = v x on SV has the equivariance property

V(Bx)= - V(x) (7.2)

for all x € SN. This means precisely that the vector field V(x) is invariant
under the diffeomorphism S¥ — SV given by scalar multiplication by .
The Z,-action on S" generated by f is free. From (7.2) we conclude that
V descends to a vector field on the quotient SV/Z, which is a lens space
of simple type L¥(p) = L¥(p;1,. . .,1).

Analogous remarks hold when the representation of C£,, is quaternionic.
Here we may replace Z, by any finite multiplicative subgroup of H. Such
subgroups are constructed as follows. The unit sphere S> = H is a Lie
group isomorphic to Spin; (see the paragraph below). Let &,:8° — SO,
be the 2-fold covering homomorphism. Then for any finite subgroup
T, = SO;, the inverse image I' = &5 *(Ty) is a finite subgroup of $° = H.
Of course, the symmetry groups of the regular polygons, the so-called di-
hedral groups, and the symmetry groups of the Platonic solids give many
examples of finite subgroups of SO;. The &; !-images of dihedral groups
are called binary dihedral groups. There are also the binary tetrahedral
group, the binary octahedral group, and the binary icosahedral group, cor-
responding to the £5 !-images of the symmetry groups of the tetrahedron,
octahedron and icosahedron, respectively.

From our remarks above we conclude the following two theorems.

Theorem 7.4. On each simple lens space L¥(p) = S¥/Z,, for p > 1, there
exist k pointwise linearly lndependent vector fields where, if N+ 1=
2™(2t + 1), then

k=2m-—-1

Moreover, this is the maximal number of pointwise linearly independent vec-
tor fields possible on LN(p) if m = 1 or 2 modulo 4.

Theorem 7.5. There exist q pointwise linearly independent vector fields
on SN/T" where T is any finite subgroup of S® = H and where if N + 1 =
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2"2t+1)and m=4a+b,2 <b <5, then

_{8a+b+1 ifb#S
T 8a+b+2 ifb=5

Moreover, this is the maximal number of pointwise linearly independent vec-
tor fields possible on the elliptic space form S¥/T if m is congruent to 1 or
2 modulo 4.

Similar constructions can be made for complex and quaternionic pro-
jective space. Of course in these cases the Euler characteristic of the mani-
fold is not zero, and so every tangent vector field must vanish somewhere.
However, we can pass to the stabilized bundle TX @ R™ where R™ de-
notes the trivial bundle of dimension m. Clearly there exists some bundle
Eover Xsothat TX @ R™ ~ E @ R™*" ¥ where n = dim X, k = dimg E
and k is as small as possible (for any choice of m). The dimension of E is
called the geometric dimension of TX.

Let P%(K) denote the n-dimensional projective space over the field K.
For K = R, C or H there is a tautological K-line bundle  — P"(K) whose
fibre above a point [¢] € P"(K) is the one-dimensional linear subspace
¢ < K"*! corresponding to [¢]. For K = R or C we have the following
fact:

TPK)DOK=n*® - ®n* (7.3)
(n + 1)-times
where n* is the dual bundle
n* = Homg(ny, K).
To see this, we first show that

T,,,P"(K) = Hom(¢, 24). (7.4)

Each one-dimensional K-linear subspace £ = K"*! can be canonically
identified with the (K-linear) orthogonal projection map =n,: K"*! — /.
Note that n = n,, n,n,. = num, =0 and n, + n,. = 1d. Let £, |t| <&, be
a smooth family of K-lines with ¢, = ¢, and set 7 = (d/dt)n,,~o. Then by
deriving the identities above we have that #,n, + 7,74, = #,, 1,7, + 7,7, =
fam, + nait, = 0,and 7, + 1, = 0. It follows that #,7,, = 0 and =%, = 0.
Hence 7, e Homy(¢,£*). On the other hand it is easy to construct an ele-
mentary basis of Homg(Z, /') as tangent vectors 7, for curves Z(t) with
20) =¢.
From the exact sequence

0—¢—> K" — ¢t — 0
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we obtain the exact sequence
0 — Homg(Z,¢) — Homy(¢, K"*') — Hom(¢,£*) — 0. (7.5)
From (7.4) this gives an exact sequence of bundles over P*(K):
0 — Homy(n,n) — n* @ - - @ n*—> TP(K) —> 0 (7.5)
(n + 1) times

which holds for K = R, C or H. When K = R or C, we have Hom(, n) =
n* @ n =~ K (= the trivial K-line bundle), and this establishes (7.3).

Suppose now that L:K"*! - K™ is a K-linear map (for any m = 1).
Then L defines a section of n* @ -+ @ n* (m times) as follows. Fix a
K-line ¢/ < K"*!, Then L|,:¢ — K™ is exactly m K-linear functions on ¢.
Thus, we have an embedding

Homg(K"* L, K« T(n* @ - ® n*) (7.7

m times

into the space of sections of the bundle n* @ - -+ @ n*. A section corre-
sponding to a K-linear map L is nowhere zero if and only if L(x) # 0 for
any x # 0. Similarly, L,, ... ,L, give pointwise linearly independent sec-
tions of n* @ -+ @ n* if and only if L,(x),...,L,(x) are linearly inde-
pendent at each non-zero x € K"*!. The K-representations of C¢,, give us
precisely p K-linear maps L,,...,L,: K" — K" which satisfy this condi-
tion of pointwise independence. Thus, by consulting Table III, we have
the following result analogous to that of Theorem 7.4 (cf. Lawson-
Michelsohn [1]).

Theorem 7.6. Let (n + )n* =n* @ - - - @ n* denote (n + 1)-copies of the
“hyperplane” bundle over complex projective n-space PYC). If n+ 1 =
2™(2t + 1), then there exist k sections of (n + 1)n* where

k=2m-1.
Therefore
Y6, < 2n —2m + 3

where Y0, denotes the geometric dimension of the tangent bundle TP"(C).

We also have the following result which is analogous to that of The-
orem 7.5.

Theorem 7.7. Let (n + 1)t* =&* @ - - - @ &* denote (n + 1)-copies of the
“hyperplane” bundle over quaternionic projective n-space P"(H). If n + 1 =



§8. APPLICATIONS TO LIE GROUPS 49
2™(2t + 1) then there exist k sections of (n + 1)£* where
2m —3 ifm =0 (mod 4)
k={2m——2 ifm= 3 (mod 4)
2m — 1 otherwise.

Therefore

gd,<{4n—-2m+6 ifm= 3 (mod 4)

{4n—2m+7 ifm =0 (mod 4)
4n—-2m+5 otherwise

where gd, denotes the geometric dimension of the bundle TP"(H) @
Homg(¢,<).

Note that we are unable to make a conclusion about the geometric
dimension of the tangent bundle itself because Homyy(&,€) is not trivial.

§8. Some Further Applications to the Theory of Lie Groups

It is interesting to note that the classification of Clifford modules gives
an immediate proof of certain well-known isomorphisms between low-
dimensional Lie groups. It also leads to the fact that S” = Spin,/G, and
to the principal of triality for Sping. We would like to thank Reese Harvey
for pointing this out to us.

We begin with some classical definitions. Let C" and H" carry the stan-
dard “hermitian” inner products

(xy) = ,2, X;¥; 8.1)

where for a quaternion x = x, + ix; + jx, + kx;, the conjugate is defined
by X = xo — ix, — jx; — kx;. Then we have the following definitions of
the classical groups:
U, = {g € Hom(C",C") : (gx,gy) = (x,y) for all x,y € C"}.
SUn = {g € Un : detC(g) = 1}
Sp, = {g € Homy(H"H") : (gx,9y) = (x,) for all x,y € H"}

Under the natural isometries R** =~ C2* ~ H" (and R?" = C") one finds
that

Sp, = SU,, and U, c SO,,. 8.2)
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Elementary linear algebra proves that
dim(SO,) = 3n(n — 1)
dim(SU,) =n? — 1 (8.3)
dim(Sp,) = n(2n + 1),

and it is not difficult to see that each of these groups is connected.

When the integers p,q,r are sufficiently large (say = 7), the groups Spin,,
SU,, Sp, are all distinct. However, in low dimensions there are certain
exceptional isomorphisms between these groups. These isomorphisms are
easily deduced from the Dynkin diagrams. However, the approach re-
quires the non-trivial classification of compact, simply-connected Lie
groups. The same isomorphisms can also be deduced from Table II, which
was comparatively easy to establish.

Theorem 8.1. There exist the following isomorphisms between low-dimen-
sional Lie groups:

Spin, =~ SU, = Sp,
Spin, = Spin; X Spin,
Sping =~ Sp,

Sping ~ SU,,

Furthermore, Spin, has a faithful 8-dimensional real representation, and
Sping has three inequivalent 8-dimensional real representations.

Proof. Recall that Spin, = C? =~ C¢,_,. Furthermore any representa-
tion of C¢,_, on C¥ or H" can be assumed to have the property that,
when restricted to the group Spin,, it preserves the hermitian inner prod-
uct (8.1). Consequently, since C£, >~ H has a faithful one-dimensional
quaternionic representation, we get an injection Sping < Sp,. The first
isomorphism follows easily. Since C£, & H @ H, we get an injective map
Spin, & Sp, x Sp,. Since dim(Spin,) = dim(Sp, x Sp,) and Spin, is con-
nected, we get the second isomorphism. Since C, = H(2), we get an in-
jection Sping < Sp, and the third isomorphism follows. Since Cf5 =~ C(4),
we get an injection Sping & U,. By the simplicity of (the Lie algebra of)
Sping, or by Lemma 8.5 below, we see that Sping must lie in the kernel
of the homomorphism detc: U, — U,. Thus, we have Sping & SU, and
the fourth isomorphism follows.

The existence of a representation of Spin, on R® is obvious since
Cl¢ =~ R(8). Furthermore, since Cl, = R(8) @ R(8), we see that the two
spin representations A7 and A of Sping are on R®, There is also the
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adjoint representation Ad of Sping on R8. To see that these representations
are all distinct, it suffices to consider the central elements. Set

Z={l,-lo,-0}=Z,®d2Z,

where w denotes the oriented volume element of C, = C£3. This group
lies in the center of Sping. (In fact it is the center.) From Propositions 5.9
and 5.10 we know that A (w) = Id and Aj(w) = —Id. Since A come
from representations of C£; we have

A (@) = 1d, Af(—w)= —1d, A (~1)=-Id (84)
Aj(@) = —-1d, Aj(—w)=1d, Aj(-1)= —-I1d. (85

From the definition it is clear that if Ad denotes the adjoint representation
of Cg on R8, restricted to Sping = CL3 =~ C{,, then

Ad(~1) = 1d.

Recall now that equivalent irreducible representations must agree on
central elements. (Note, for example, that if there exists an isomorphism
F:R® —» R® with the property that FoAJ(g)o F~' = A;(g) for all
g € Sping, then in particular, Ag (g) = Az (9) for all g € &.) Consequently
the three representations Ay, Ay and Ad are inequivalent. =

It is an interesting and often useful fact that two 8-dimensional rep-
resentations of C, can be explicitly generated using the Cayley numbers.
Recall that the Cayley numbers @ can be defined as pairs of quaternions
with multiplication given by

(a,b) - (c,d) = (ac — db, da + bc). (8.6)

The multiplication so defined is neither commutative nor associative.
However, every non-zero element has a multiplicative inverse. Further--
more, given a Cayley number x = (a,b), we write X = (a,—b) and define
real and imaginary parts of x by setting

Re(x) =3(x + %),  Im(x) = 3(x — X)

An inner product on O is defined by {x,y)> = Re(xy). It has the property
that |xy| = |x||y| for all x,y € O (where |x|* = {(x,x) as usual). An impor-
tant fact concerning the Cayley numbers is that any subalgebra of O gen-
erated by two elements is associative.

We now consider R? = Im(0) and R® = O with the above inner prod-
uct. For any v € Im(Q) we define a linear endomorphism 4, of R® by
setting

Ax)=v-x @7
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for x e O = R®, From the associativity of the algebra generated by x and
v, or by a direct computation from (8.6), we see that

A3 = —ll*d 8.8)

for all v € Im(Q) = R". Consequently, from the universal property (Propo-
sition 1.1), we know that A extends to a representation

4:CL; —> Homg(R8,R?) 8.9)

of C¢,. For dimensional reasons this representation must be irreducible.
The other irreducible 8-dimensional representation

p=Aoa

is generated by the mapping p,(x) = —v - x. Observe that under the con-
jugation map c¢(x) = X, p, becomes equivalent to right multiplication by
v, i.e., g, =co p,ocis given by

pX)=(—v-X)=—-X-0D=x"v

(since for v € Im O we have v = —v).

These two representations are equivalent when restricted to Spin,, but
they are inequivalent on Sping = C£3 = C¢,.

We now consider the action of Pin, on R® given by the representation
A above. From (8.7) it is clear that the orbit of 1 contains all elements
eeIm(0) with |e]=1. That is, this orbit contains the “equator”
S¢ = 87 N Im(0). It also contains e - S5, which is a great sphere passing
through the “north pole” 1, for each e € S°.

N7

Since the orbit Pin, -1 is a compact embedded submanifold of S7, we
conclude that it is S7. It now follows that the orbit of Spin, must be
7-dimensional and, hence, also equal to S”. We have proved the result of
A. Borel.

Theorem 8.2. The 8-dimensional spin representation of Spin, is transitive
on the unit sphere S’.



§8. APPLICATIONS TO LIE GROUPS 53

With a little more work it is possible to prove that the isotropy sub-
group {g € Spin,:A(1) = 1} of 1€ S7 is exactly the group G, = Aut(0)
(see Harvey-Lawson [3] for example). Hence, we have the diffeomorphism

S7 =~ Spin,/G,.

We pass on now to the group Sping. Recall from Theorem 8.1 that this
group has three distinct homomorphisms Ag, Ag, Ad:Sping — SOy with
kernels isomorphic to Z,. Writing the center Z = {1,— 1,0, — w} as before,
we have the following table (cf. (8.4) and (8.5)).

g ] -0 ~1

A (g) d | -1d | -Id
Asg) || -1d d | -Id
Adg) || -1d | -1d Id

(8.10)

We now consider the pair of homomorphisms A and A; . From general
covering space theory there must be a lifting of A; over Ay which takes
the identity to itself, i.e,, a map o:Sping — Sping such that the diagram

Sping
o lA: (8.11)

Sping —— SOy
Ag

commutes and ¢(1) = 1. The map o satisfies the condition

06(g919,) = 0(g,)a(g2) (8.12)

for all g,,9, in a small neighborhood of 1, since both A} and A are group
homomorphisms. In fact, the relation (8.12) holds for all g,,g, € Sping. To
see this note that both sides of (8.12) are well defined on Sping x Sping
and that the set where (8.12) holds is both open and closed. (Alternatively,
one could use the fact that (8.12) is an equation between real analytic
maps.) Thus, ¢ is a group homomorphism. Since ¢ is a covering map
between simply-connected spaces, it must be injective, and so o is a group
automorphism.

It is now clear from (8.11) that ¢ carries the kernel of Ay onto the
kernel of Ag. Since ker(Ag) = {1,—w} and ker(A7) = {1,w}, and since
a(1) = 1, we conclude that

o(—w)=w

Since w and —w are central, ¢ must be an outer automorphism.
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Lifting Ad over the homomorphisms Ay and A; and applying the
arguments above we construct outer automorphisms z* and 7~ of Sping
with the property that

t*(-1)=w and 17(-1)= —o. 8.13)

By definition we have that Af - t* = Ad and A§ o ¢ = A;. Furthermore,
the associated Lie algebra maps (Af), and Ad, are isomorphisms, and
we have that

2 =(Af"1oAd, and 1, =(Ag);!° (A7), (8.14)

At this point the automorphisms ¢ and t* are only defined modulo
inner automorphisms. To get concrete representatives we must choose
concrete representatives for the maps AF and Ad.

We shall give such an explicit construction for ¢. Choose an ortho-
normal basis ey, . . . ,e5 of R® and recall that the Lie algebra sping = A2R®
has an orthonormal basis {e; - ¢;};<; The map C; 5 CJ is induced by
the assignment

ej——)ejes j_—"-' 1,...,7. (8.15)
Consequently, the preimage of sping under this map is just
sping = R” @ A?R” = Ct, (8.16)

where e; - e;eg for 1 <i<7and whereee; > eegejeg =eejfor1 Si<j<7.

We now consider the two representations A and p of C¢, on R® = O
that were constructed above. Since 1,(x) =v'x and p,(x) = —v " x for
ve R’, we see that

_ 7
W2l vk @17
Now restricted to sping = R” @ A’R? we have that A= (A7), and
p = (Ag),. Consequently, o, = (Ag), ' - (Ag), has the property that
04(0) = {_z ;z 2 %R"' (8.18)
In particular, (¢,)*> = Id and so by exponentiation we have that
2 - 1d. (8.19)

We now let Og and I denote respectively the groups of outer and inner
automorphisms of Sping. There is a natural homomorphism

0s/Is —> Aut(Z). (8.20)

It is easy to see that Aut(Z) =~ Aut(Z, @ Z,) =~ S,. In fact, we have natu-
rally that Aut(%) =~ Perm(— 1,w,— ). Since o(—w) = w and o(Z) = Z,
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we have that either 6(—1) = —1 or o(—1) = —w. Since 6> = Id, we
conclude that

6(—1)=—-1 and o(w)= —o.
This information, together with (8.13), easily proves the following:

Theorem 8.3. The homomorphism Og/l; - Au(Z) = S, is surjective. In
particular, since Og/ly is a finite group (cf. Helgason [1]) there exists an
element in Og/Ig of order three.

Those readers similar with the classification of Lie groups know that
this map Og/Ig — S; is reflected in the representation of Og/I as the
group of symmetries of the Dynkin diagram of Sping. This representation
is faithful, and so Og/Ig = S;.

It can be shown that in fact there exists a non-trivial element 4 € Oy
such that

A*=1d.

This element is called the triality automorphism. Continuing with calcula-
tions as above, this automorphism can be constructed explicitly.

It has most likely occurred to the reader that the methods of Theorem
8.1 can be applied more generally to the groups Spin, , for any r and s.
Indeed, this does produce further exceptional isomorphisms between
low-dimensional Lie groups. We recall the following classical groups.

SL,(R)= {g € Homg(R",R") : dety(g) = 1}
SL,(C) = {g € Hom(C",C"): det(g) = 1}
SL,(H) = {g € Hom,(H"H") : det(g) = 1}

For the last definition we have fixed a presentation H" = (C2",J) where
J:C?* — C?"is C-antilinear and J? = —Id. We observe that the complex
determinant is in fact real-valued on Hom(H",H") = {g e Hom(C?",C?"):
goJ=Jog}. To see this, let c:C?" — C?" denote complex conjuga-
tion and set c(g) = c o g o c. Then since ¢* = 1 and since g and J com-
mute, we have detc(c(g) o c o J) = det(c o g o J) = det(c o J ° g). Hence,
detc(c(g)) = det(g) and since detg(c(g)) = detc(g), the determinant is real.
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Now, each of the groups SL,(K) is connected, and elementary linear
algebra shows that

dimg(SL,(R)) = n? — 1
dimg(SL,(C)) = 2(n* — 1) (8.21)
dimg(SL,(H)) = 4n? — 1.

Recall that for r,s > 0, the group Spin, ; has two connected components.

We let Spin?, denote the component containing the identity. It is obvious
that there is an isomorphism

Spin, ; = Spin,,,

and an elementary calculation shows that
. . 1
dim(Spin, ) = 2 r+s)r+s-—1) (8.22)

for all r,s. A careful look at Table II (p. 29) now proves the following.
Let SL,,(R) — SL,(R) denote the (2-sheeted) universal covering group for
nz3.

Theorem 8.4. There exist the followmg isomorphisms between low-dimen-
sional Lie groups.

Sping ; = SL,(R)

Sping ; = SL,(C)

Sping ; = SL,(H)

Spind , = SL,(R) x SL,(R)

Sping 5 = SL4(R)

Furthermore Spin, , has three inequivalent 8-dimensional real represen-
tations.

Proof. Recall from Theorem 3.7 that for r = 1 we have
Spin, , = Ce2, =~ CL,_, ..

Consequently, from Table II, we have the following embeddings: Spin, ; <
GL,(R), Spiny; « GL,(C), Spins; < GL,(H) x GL,(H), Spin,, <
GL,(R) x GL,(R) and Spin, 3 € GL4(R) x GL4(R), where GL,(K)
denotes the set of invertible elements in Homg(K",K"). We now observe
that in each of these embeddings the identity component Spin?, is actually
contained in the subgroup SL,(K) or in SL,(K) x SL,(K) for the latter
cases. This is an immediate consequence of the following lemma.



§8. APPLICATIONS TO LIE GROUPS 57

Lemma 85. Let p:Ct,_, ; > Homg(V,V) be any K-representation for
K=RorC.Ifr+s23,then

detx(p(g)) = +1
for all g € Spin, , < C¢,_, ..

Proof. If r + s 2 3, then every element g € Spin,, can be written as a
product g = g, * * - g,, Where g; € Spin, , satisfies

g?=+1 (8.23)

for all j. To see this, write g = v, - * - v,,, where v;€ R"** and g(v) = +1.
Write v,v, = Fov,o0v, where ve R™** satisfies q(v) = +1 and where
q(v,v,) = q(v,v,) = 0. Set g, = v,v and g, = Fov,. Then g? = v,ov,0 =
—v}v? = +1, and similarly, g2 = + 1. Of course v,v, = g,g,. Continuing
in this manner proves our claim.

Since dim,(V) is even, we see that for g =g, - - - g,, as above, we have

2
[detk(pg)]* = [TJI detx(pg;)] = fjl detg(pg})
= H dety(+Id)=1. m

The first, second and fourth isomorphisms of Theorem 8.4 now follow
from dimension considerations (cf. (8.21) and (8.22)).

For the fifth isomorphism, consider the image of SpinJ ; under the two
projections SL,(R) x SL,(R) =3 SL,(R). At least one of these must be
non-trivial and, therefore, locally injective by the simplicity of the Lie
algebra. Since dim(Spin, ;) = dim(SL4(R)) = 15, this projection is a cov-
ering map Sping ; — SL,(R). Since Spin3 ; is simply connected, it lifts
to an isomorphism Spin3 ; 5 SL,(R). The third isomorphism is proved
similarly.

Looking more closely we can see that the two projections Spind 5 =3
SL4(R) are both non-trivial and inequivalent. To prove this we consider
the volume element w =e, - - eg where el =e2 =3 = —e2 = —e? =
—e% = —1 (see Proposition 3.3). This element is central in Spin; ; and
satisfies w? = 1. It clearly lies in Spin; x Spin, = Spin; ; and is therefore
connected to the identity. The module ¥ ~ R® for C&; ; decomposes as
V=V* @ V™ where V* = (1 + w)V are invariant subspaces for Spin, .
Since w = +1d on V*, we see that the representations are inequivalent.
They are each non-trivial, since otherwise we would have the identity
o =1 (or o = —1) in Spin, 5, which is clearly false.

To prove the final statement we again consider the volume element
® = e, " eg in Spin, 4. As above we see that w is central in Spin, , and
is connected to the identity. Since w? = 1, the module W =~ R*S for C¢, ,
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decomposes as W = W+ @ W~ where W* = (1 + w)W are each invari-
ant under Spin, 4. Let A* denote these two 8-dimensional representations,
and consider the central subgroup

g = {1,—1,0),—0)} = ZZ @ Zz

in Spin, 4. Then A*, A~ and Ad have precisely the values given in the
table (8.10) derived above for the case of Sping. It follows that these three
8-dimensional representations of Spin, 4 are distinct. ®

The above arguments actually prove slightly more. Let
SLY(K) = {g e Hom(K",K") : detg{g) = 1}

where K' = K if K = R or C and K’ = C if K = H. There is a short exact
sequence

1 — SL,(K) — SL¥(K) =% 7, —> 0.
From the proof of Theorem 8.4 we can actually conclude that
Spin, ; = SL}(R)
Spin, ; = SL%(C)
Spins; = SL3(H)

Note. For further results of the type given in Theorem 8.4, the reader is
referred to the beautiful book of Reese Harvey [1].

§9. K-Theory and the Atiyah-Bott-Shapiro Construction

In this section we shall present the essentials of K-theory in a fashion
which will be useful later in our discussion of the Atiyah-Singer Index
Theorem (Chap. III). Following these basics we shall present the con-
struction of Atiyah, Bott and Shapiro which relates the Grothendieck
groups of real Clifford modules to the KO-theory of spheres and that of
complex Clifford modules to the K-theory of spheres. Their fundamental
isomorphisms explicitly identify Bott periodicity with the periodicity
phenomena in the theory of Clifford algebras. For an elaboration of the
details presented here, the reader is referred to Atiyah-Bott-Shapiro [1]
and Karoubi [2].

Throughout this section all spaces will be assumed to be compact. If
X is any such space, we denote by V(X) the set of all isomorphism classes
of complex vector bundles over X. The set V(X) is an abelian semigroup
if we define addition by direct sum. We let F(X) be the free abelian group
generated by the elements of V(X) and let E(X) be the subgroup of F(X)



§9. K-THEORY AND THE ABS CONSTRUCTION 59

generated by elements of the form [V] + [W] — ([V] & [W]) where +
denotes addition in F(X) and @ denotes addition in V(X).

DEFINITION 9.1. The K-group of X is defined to be the quotient
K(X) = F(X)/E(X).

Note that K(X) is an abelian group. The elements of K(X) are called
virtual bundles.

If V.and W are bundles over X and Y respectively then V ® Wis a
bundle over X x Y. When X = Y the diagonal map A: X - X x X can
be used to define an interior tensor product in K(X) by

[u] - [v] = A*[u ® v]. 9.1)
This gives us

Proposition 9.2, The group K(X) has a ring structure with multiplication
given by (9.1).

Let a: V(X) — K(X) be the composition V(X) & F(X) — F(X)/E(X).

Proposition 9.3. If G is any abelian group and f: V(X) —_G any semi-group
homomorphism, then there is a unique homomorphism f:K(X) - G such
that fo = f.

Proposition 9.4. K(X) is the universal group with respect to maps of the
type described in Proposition 9.3

Suppose that f:X — Y is a continuous map and consider the map
f*:V(Y) = V(X) given by the induced bundle construction. Since this
is a semi-group homomorphism, it descends to a homomorphism f*:
K(Y) = K(X). One easily checks that K thereby becomes a contravariant
functor from the category of compact spaces to the category of abelian
groups.

Suppose now that S is any abelian semi-group with unit and let
A:S — S x S be the diagonal map. This is a semi-group homomorphism.
If we let A7(S) be the set of cosets of A(S)in S x S, then H#7(S) is a quotient
semi-group. Since the interchange of factors in S x S induces an inverse
in A(S), A'(S) is actually a group.

DEFINITION 9.5. (X)) is defined to be A (V(X)).

Proposition 9.6. o (X) is isomorphic to K(X).

Proof. For an abelian semi-group S with 0 we define f5: S — #7(S) to
be s — (s,0) followed by the natural projection S x § = #'(S). If g:S - T
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is a semi-group homomorphism, then there is induced a map 5 (g): (S)—
H(T) so that A'(g) o Bs = Br o g. Now let S be V(X) and T be any abe-
lian group. Then f; is an isomorphism. This shows that J'(X) is uni-
versal with respect to semi-group homomorphisms from V(X) to abelian
groups. MW

Corollary 9.7. Every element of K(X) can be represented in the form [V] —
[W] where [V],[W] e V(X).

Lemma 9.8. Let n:V — X be a vector bundle over a compact Hausdorff
space X. Then for some N there is a continuous map f:V — CN which
is injective and linear on each fibre.

Proof. Cover X with a finite number of open sets U, ... ,U, over which
there exist trivializations o;: 7~ *(U;) 5 U; x C*and set a; = pr; o «; where
prj:U; x C* — C* is projection. Let {i/;}}-, be a partition of unity sub-
ordinate to {U,}j-,. Thenf = (Y,a,) ® - ® (Y,a):V > C* D --- @ C*
is the desired map. =

Corollary 9.9. To each bundle V over X there exists a “complementary”
bundle V* such that V @ V* is trivial. Hence, each element of K(X) can
be represented in the form [V] — [tV], where t¥ is the trivial bundle over
X of dimension N.

Proof. Let f:V — C¥ be the map in Lemma 9.8 and define V* =
Usex f(V)* Clearly V @ V* = X x C". Hence, [V]=[:"] — [V*] in
K(X) and an arbitrary element [W] — [V] in K(X) can be rewritten as
WweoV]-["]. =

DEFINITION 9.10. We define the real K-ring for X, KO(X), just as we
defined K(X) by replacing V(X) by Vi(X), the set of isomorphism classes
of real vector bundles. The same construction and considerations apply.
Analogues of the following definitions can also be made for KO-theory.
We will assume them without specifically stating them.

We would now like to use the K-groups to define a generalized coho-
mology theory. For this reason we now consider X to be a space with a
distinguished basepoint, pt € X.

DEFINITION 9.11. The reduced K-ring, K(X), is defined to be the kernel
of the natural projection K(X) — K(pt) = Z, so that K(X) is an ideal of
K(X).

In fact the exact sequence
0 — K(X) — K(X) — K(pt) — 0 9.2)

splits in an obvious fashion.
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DEFINITION 9.12. Suppose Y is a non-empty closed subset of X. Then
we define the relative K-groups as follows:

K(X,Y) = R(X/Y)
where X/Yis taken to have Y as its basepoint.
If Y is empty, X/Y is defined to be the space
X*=Xu{pt} 9.3)
where Pt is a disjoint point which will play the role of basepoint.

OBSERVATION 9.13. On a non-basepointed space X we have the identi-
fication
K(X)~ K(X*) = K(X, Q).

DEFINITION 9.14. We define the wedge X v Y and the smash product
X A Y of two spaces X,Y with basepoints pty and pty by

XvY=Xxpty)ulpty x Y)c X xY
XAY=XxY/XVY.
We also define the (reduced) suspension X(X) of X by
ZX)=S'A X.

Iterating this i times gives us the i-fold suspension Z/(X). For all i there is
a homeomorphism Z{(X) ~ §' A X.

DEFINITION 9.15. When X is a compact basepointed space, or when
(X,Y) is a compact pair, we define

K-i(x) = RE(X))
K~i(X,Y)= K7{(Xx/Y) = K(Z{(X/Y)).

For spaces X which are not necessarily basepointed we define, in the spirit
of 9.13,

K i(X)= K™ (X, &) = KE(X™)).

Since the functor K is representable (see Chap. III, Theorem 8.6) there
is an exact sequence for basepointed pairs (X,Y)

K(X,Y) — K(X) — K(Y)
which we may now extend to a Barratt-Puppe sequence (Barratt [1]):
oo — RO Y) 2 KX, Y) — RTI(X) — 9.4)
RY(Y)— - — Ro(X) — K°(Y).
We write K ~* for the graded functor R-ii>o0.
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REMARK 9.16. If Y is a retract of X, then for all i
0— K i{X,Y)— K {(X)— K~ {(Y)— 0

is a split short exact sequence and K~{(X) ~ K~{X,Y) @ K~{(Y). This
follows from the Barratt-Puppe sequence (9.4).

Now if X and Y are spaces with basepoints then
K XxY)KXAY)®Ki(X)® KY(Y)

since X is a retract of X x Y and Y is a retract of X x Y/X.
We would like now to use the ring structure on K(X) to enable us to
define a ring structure on K~ *(X).

Proposition 9.17. Given X and Y and i,j > O there is a pairing R X ®
K=i(Y) » K~""{X A Y) which is given by tensor product.

Proof. For a bundle E on S'A X and a bundle F on S A Y we have
the tensor product bundle E ® F on (S A X) x (S/ A Y). This induces a
pairing

RS'AX)®@ RS A Y)— K((S'A X) x (S A Y)).

But K((S'A X)A(S!AY)) is the kernel of {Z((S‘ AX)x(SAY)) >
K(S' A X) @ K(S A Y). So we have a pairing K(S' A X) ® K(S/ A Y) -
K(S*AX)AS'AY))=K((S*)A X A Y) as desired. =

Replacing X by X* and Y by Y* in Proposition 9.17 gives us a pairing
K (X) ® K™{Y) » K~ )X x Y). We easily conclude the following.

Corollary 9.18. The pairing of Proposition 9.17 makes K~ *(pt) a graded
ring. Furthermore, for any basepointed space (X,pt), this pairing makes
K~ *(X) a graded module over K™ *(pt).

Thus far everything we have said for K-theory holds equally true for
KO-theory. We will now describe periodicity and at this point the descrip-
tions must diverge. We will discuss the basic complex case first and then
proceed to the real case. We will simply state the results. A proof based
on the theory of Fredholm operators is given in §10 of Chapter III. For
alternative proofs the reader is referred to Bott [1], [4].

Bott Periodicity Theorem 9.19 (the complex case). The ring K™*(pt) is a
polynomial algebra generated by an element ¢ € K ~%(pt) = K(S?), i.e., there
is a ring isomorphism

K™*(pt) = Z[£]. ©.5)
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Note. The element ¢ is in fact represented by the virtual bundle { =~ [H] —
! € K(S%) where H denotes the “tautologically defined” complex line bun-
dle over §? = P!(C) and t* denotes the trivial line bundle.

The isomorphism (9.5) says in particular that the map p.: K™ /(pt) —
K~'~?(pt) induced by multiplication by ¢, is an isomorphism for all i. In
this form, the theorem extends to arbitrary compact Hausdorff spaces.
Recall from 9.18 that for any pointed space (X,pt) the ring K™ *(X) is a
module over K™ *(pt).

General Bott Periodicity Theorem 9.20 (the complex case). Let X be any
compact Hausdorff space. Then the map
pe KT — K7(X)

given by module multiplication by &, is an isomorphism for all i = 0.

Note. Replacing X by X/Y, we get corresponding isomorphisms
ke KX, Y) — K™7%(X,Y)

for any pair (X, Y) of compact Hausdorff spaces.

The situation in KO-theory is slightly more complicated.
Bott Periodicity Theorem 9.21 (the real case). The ring KO~ *(pt) is gene-
rated by elements
ne KO '(pt)y, yeKO *pt), xeKO ¥pt)
subject only to the relations
=0, n*=0, #ny=0 p>=4x
i.e., there is a ring isomorphism
KO™*(pt) = Z[n,y.x]/<2n, 1 ny,y* — 4x) 9.6)
As before we have that for any space X, KO ™ *(X)is a KO~ *(pt)-module.

Theorem 9.22. Let X be a compact Hausdorff space. Then the map
U : KO™{(X) — KO~178(X)

given by module multiplication by x € KO ~®(pt), is an isomorphism for all
iz0.

As before there are also isomorphisms KO ~{X,Y) 5 KO~'"%X,Y)
for any pair (X,Y) of compact Hausdorff spaces.
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The best explicit representatives for the elements 7, x and y in KO ™ *(pt)
are given via the Atiyah-Bott-Shapiro isomorphism. To present this iso-
morphism, and also to adapt K-theory easily to the theory of elliptic
operators, we present now an alternative definition of the groups K(X,Y)
and KO(X,Y). The discussion is completely parallel in the real and com-
plex cases. We shall just use the generic term “vector bundle.”

We begin with the following definition. We assume throughout that Y
is a closed subspace of X.

DEerFINITION 9.23. For each integer n = 1, consider the set Z,(X,Y) of
elements V= (V,, V3,...,V,;04,...,0,) where V,, ... ,V, are vector bundles
on X and where

gy g2 On
0— Ul 2 iy e g, 0

is an exact sequence of bundle maps for the restriction of these bundles to
Y. Two such elements V = (V,,...,V,;04,...,0,) and V' = Vi, ...,V
d’,...,0,) are said to be isomorphic if there are bundle isomorphisms
¢;:V; = Viover X so that the diagram

ai
Vf-lly Vily

' 9i ’
aly = iy

commutes for each i.
Anelement V= (V,,...,V,;6,,...,0,) is said to be elementary if there
is an i such that

(@ Vi=V,_.,and o;=1d
(b) V;={0}forj#iori—1.

There is an operation of direct sum @ defined on the set Z,(X,Y) in
the obvious way. Two elements V,V’' € Z,(X,Y) are defined to be equiv-
alent if there exist elementary elements E,, ... EF,,... F, e Z(X,Y)
and an isomorphism

VRE, @ @E,=2VOF, @ - @®F,.

The equivalence class of an element (V,, . .. ,V,;04, . ..,0,) will be denoted
by [Vo, ...,V 04,...,0,] The set of all equivalence classes in Z,(X,Y)
will be denoted by L,(X,Y).

The set L,(X,Y) is an abelian group under the operation @.

Our first main proposition is the following, whose proof is left to the
reader. Consider the natural map Z,(X,Y) —» &, (X,Y) which asso-
ciates to each element (V,, . . .,V,; 04, - . . ,0,) the trivially extended element
Vos -+ - sV 0504, . . . ,0,,,0).
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Proposition 9.24. For each n = 1, the induced map L(X,Y) — L,,(X,Y)
is an isomorphism.

We set L(X,Y) = lim L,(X,Y). Each inclusion L,(X,Y) - L(X,Y)is an
isomorphism, and it would have sufficed for many purposes to consider
only the case n = 1.

Our second main proposition is the following.

Proposition 9.25. There exists a unique equivalence of functors x: L(X,Y) —
K(X,Y) with the property that

R A B kz:o (=)V] whenY=g. 9.7)

Proof. This equivalence will be essentially determined by defining it on
L,(X,Y). Given an element V = [V,,V;;0] € L{(X,Y) we associate to it an
element (V) € K(X,Y) by the following “difference bundle construction”.
Set X, = X x {k} for k = 0,1 and consider the space Z = X, Uy X ob-
tained from the disjoint union X, II X, by identifying y x {0} with
y x {1} for all y e Y. The natural sequence

0— K(Z,X,) I K(2Z) <5 K(X,) — 0
is split exact since there is an obvious retraction
p:Z—X,.
Furthermore, there is an isomorphism
¢:K(Z,X,) — K(X,Y)

induced by the map of pairs (X,Y) — (Z,X,) which identifies X with X,.

From our element V = [V,,V;; 6] we define a vector bundle W over Z
(well defined up to isomorphism) by setting W/|y, = ¥; and identifying
over Y via the isomorphism ¢. Setting W, = p*(V;) we have [W] —
[W;] € ker(i*). Hence, there is a unique element x(V)e K(X,Y) with
j*o~'x(V) = [W] — [W,]. This defines the homomorphism y:L(X,Y) —
K(X,Y). It clearly has property (9.7).

It is now straightforward to verify that any homomorphism L,(X,Y) —
K(X,Y) with property (9.7) is an isomorphism, and furthermore, any two
such homomorphisms agree. The reader is referred to Atiyah-Bott-Shapiro
[1] for details. m

As a result of this proposition we shall henceforth drop the notation
L(X,Y). We will however discuss elements [V,,V;;0] € K(X,Y) whose
meaning is now obvious.

For our later discussion of elliptic operators it will be useful to note
that the multiplication in K(X,Y) can be realized explicitly in Z,(X,Y)
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as follows. Choose V = (V,,V;;0), W = (W,,W;;7) € £,(X,Y) and for con-
venience introduce metrics in each of the bundles. We then define the
tensor product U=V ® W e Z,(X,Y) to be the element U = (UO,U,, p)
where

U=l @ W)@ @W) U= W (e W)

<a®1 —l®t*)
pP= :

and

1®t o*®1

Under the construction above, this tensor product on £,(X,Y) carries
over to the standard product on K(X,Y).

This is a convenient time to introduce K-theory for locally compact
spaces. K-theory in this setting will be important for certain geometric
constructions we shall make in Chapter III.

DErINITION 9.26. For any locally compact space X we define
Ku(X) = R(X™)

where X* = X U {pt} denotes the one point compactification of X. The
higher groups are defined by setting

Koi(X) = Kp(X x RY)
fori= 0.

The groups K.,i(X) are functors on the category of locally compact
spaces and proper maps. Collectively they comprise the K-theory of X with
compact supports. They enjoy the multiplicativity properties that we pre-
sented above in the compact case. Note incidentally that if X is compact,
then K_i(X) = K~H(X).

Any element in K, (X) can be represented as the formal difference of
two bundles E and F on X, each of which is trivialized at infinity (i..,
trivialized outside some compact set in X). In fact, if @ < X is an open
subset of the locally compact space X, then there is a natural extension
homomorphism K, (0) - K,,(X) induced by the map X* — X*/
(X* — 0) = 0*. Taking products with R’ gives extension homomorphisms

Ke(0) — Kou(X)

for all i = 0. Of course for any closed subset Y = X we have the functorial
restriction homomorphism

cp!(X) - ch((Y)

The kernel of this map is defined to be the relative group ch,(X ,Y). For
any pair (X,Y) where X is a locally compact space and Y is a closed sub-
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space, there is a long exact sequence for the K i-groups, analogous to
(9.4) above. We leave as an exercise for the reader the verification of the
following isomorphism:

Ki(X,Y) =2 K ((X — Y) x RY).

There exist definitions of “L-type” for the groups K ,(X). In analogy
with the above we can define L,(X)., to be the equivalence classes
[Vos...sVuoy,...,0,] where V,,...,V, are vecctor bundles on X, and
where 0 —» V, 3 V; 3 -+ 3 ¥, - 01is an exact sequence of bundle maps
defined on the complement of some compact subset in X. As above there
are natural isomorphisms L(X).p > Ly(X)epe = ... Kep(X). Thus, in
particular, any element of K.,(X) can be represented by a triple [V,, Vy; 0]
where o:V, = V, is a bundle isomorphism defined in a neighborhood of
infinity.

All of the discussion above applies equally well to real bundles and
yields groups KO_i(X) for any locally compact space X.

The Bott Periodicity theorems carry over to locally compact spaces in
the following elegant form:

Kcm(X) = cht(X X C)
KO ,(X) = KOg(X x R®).

These isomorphisms are induced by multiplication by fundamental ele-
ments ¢ € K, (C) and x € KO,,(R®) respectively. In the last part of this
chapter we shall produce explicit representatives for these elements using
Clifford modules.

We are now in a position to discuss the isomorphism of Atiyah, Bott -
and Shapiro. Let W = W° @ W! be a Z,-graded module over the Clifford
algebra Ct, = C(R"). Let D" = {x € R":||x|| < 1} be the unit disk and set
S"~1 = 9D". We now associate to the graded module W, the element

@(W) = [Eo,Ey;u] € K(D",S"™Y) ©.9)

where E, = D" x W* is the trivial product bundle, and where u:E, 5 E,
is the isomorphism over S"~! given by Clifford multiplication:

9.8)

uxw) = (x, x : )

One easily checks that the element (W) depends only on the isomor-
phism class of the graded module W and, furthermore, that the map
W  @(W) is an additive homomorphism. Hence, (9.9) gives us a homo-
morphism

@:ME — K(D",$""Y) (9.10)

where MC is the Grothendieck group of complex graded C£,-modules
defined in §5.
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Consider for a moment the natural inclusion i:R" & R"*! given by
setting i(xy,...,x,) = (Xy,...,X,,0). This induces an algebra homomor-
phism i, :CE, C&,, . Restricting the action from C¢,., to Ct, thereby
induces a homomorphism i*: S, , — M.

Suppose now that W is a graded C£,-module which can be obtained
from a C&€,, ;-module in the above fashion. This means that the Clifford
multiplication of R" on W extends to all of R**!. Hence we may extend
the isomorphism y, defined on S"~! = D", to all of D" by setting

plew) = (%, (x + /1 — [xIPenss) " W)

where ¢,,, € R"*! is a unit vector orthogonal to R". Since this extended
map is-an isomorphism over all of D", the associated element ¢(W) must
be zero. It now follows that the homomorphism (9.10) descends to a homo-
morphism

@u: M/PME, | — K(D"S"Y) (9.11)

where i*: M, , — MC is the restriction map defined above.
Exactly the same construction applied to the real case, gives us a homo-
morphism
@, M, /i*M, ., — KO(D"S"~ ). 9.12)

The isomorphisms (5.29), defined by taking the even part, determine
isomorphisms

ME/*ME, | > ME_,/*ME and  WM,/i*M, ., = M,_,/i*M,

Set QF = ME/i*MS, , and Q, = M,/i*M, ,,. The periodicity pheno-
mena (4.11), (4.13) and (5.9) determine periodicity isomorphisms

Ori2 = Q7 and On+s = Q.
Elementary algebraic arguments show that

Z if n=0 or 4 (mod 8)
0,42, ifn=1or2(mod8)

= if n is odd
if nis o 0 otherwise.

cJZ ifniseven
0= {f
As an example consider Q, = M, /i*M, considered as the quotient of the
groups of ungraded modules. Since C¢, = C, the Cf,-modules are just
complex vector spaces, and the isomorphism 9, = Z is generated by
taking the complex dimension. Similarly, since Cf, = H, the C,-modules
are quaternionic vector spaces and I, > Z is generated by taking the
quaternionic dimension. The map i*: 9, — I, is generated by consider-
ing a quaternionic vector space to be a complex vector space under
restriction of scalars. Clearly this is just the map Z — Z given by mul-
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tiplication by 2, since the complex dimension is twice the quaternionic
dimension. Thus we have Q, =~ Z,.

The reader may find the verification of these isomorphisms in general
to be an interesting exercise. Full details are contained in Atiyah-Bott-
Shapiro [1].

We recall now from Proposition 5.21 that the graded tensor product
of modules gives a multiplication ME ® ME — ME, . for all m,n. This
makes (MS/i*ME, ) = P,z 0 (ME/i*ME, ,) into a graded ring.

On the other hand, by definition we know that

K(D",S"" ') = K(S") = K™"(pt)

and therefore the direct sum ), (K(D",S"~!) = K~ *(pt) is also naturally
a graded ring (cf. Corollary 9.18). (The analogous comments apply in the
real case.) One of the main results of Atiyah-Bott-Shapiro [1] is the
following.

Theorem 9.27 (the Atiyah-Bott-Shapiro Isomorphisms). The maps (9.11)
and (9.12) defined above induce graded ring isomorphisms:

@y (ME/*ME . ) — K~ *(pt)
@y (D, /%M, ) — KO~ *(pt).

Since the periodicity of the quotients ﬁjt,,,/i"‘il)‘\l,,ﬁr 1 is an elementary al-
gebraic fact, this theorem appears to give a new algebraic proof of the
Bott Periodicity theorems. However, the argument given in Atiyah-Bott-
Shapiro [1] to establish the isomorphisms of 9.27 actually invokes the
Bott result. Nevertheless the existence of these isomorphisms is a profound
and important fact. It goes a long way towards explaining the fundamental
role played by Clifford algebras in the index theory for elliptic operators.

REMARK 9.28. Theorem 9.27 gives us explicit generators for K~ *(pt)
and KO~ *(pt) defined via representations of Clifford algebras. For ex-
ample, let S¢ = S¢ @ S¢ be the fundamental Z,-graded representation
space for C¢,, where S = (1 + w¢)Sc. (The sign of the complex volume
element w¢ depends on a choice of orientation in R2") There is an iso-
morphism ME, = Z @ Z with distinguished generators given by S¢ and
its “flip” S¢, the same graded module with the factors interchanged. (This
corresponds to a reversal of orientation in R?") The generator of i*Mg, . ,
is [Sc] + [Sc]. Hence, the group K~ 2"(pt) = K, (R?") = Z is generated
by the element

6C,n = [Sé aSE; .u]

where p,:S¢ — S¢ denotes Clifford multiplication by x € R?".
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The real case is entirely analogous. Let S = S* @ S~ be the fundamen-
tal graded module for C2,, where S* = (1 + w)S. Then

O4n = [S+’S—;I"]

is a generator of the group KO~ *"(pt) = KO, (R*") = Z.
Using the structure of Clifford modules we can easily compute that

ocn=(0c,1)" 05n = (03)" and 405 = (0,)%.

§10. KR-Theory and the (1,1)-Periodicity Theorem

In this section we present a theory which, in a sense, contains both K-
theory and KO-theory. It was invented by Atiyah in the middle 1960s
and was motivated in part by the study of indices for families of real
operators. (There is a detailed discussion of this at the beginning of §16
in Chapter III.)

The higher groups in this theory carry a natural double-indexing KR"*,
r 20, s = 0. Interestingly, there is an isomorphism of the Atiyah-Bott-
Shapiro type given in §9, which relates K™*(pt) with real modules over the
Clifford algebra Cf,,. In this sense, KR-theory is the analogue of K-
theory and KO-theory suggested by passing from C¢, and C¢, to C¢, ;.
Basic references for this material are Atiyah [2] and Karoubi [2].

We consider here the category of Real spaces, i.c., spaces with involu-
tion. This is the category of pairs (X,cy) where X is compact and cy:
X — X is a map with ¢ = Idy. The map c, may itself be the identity.
Natural examples of such spaces are provided by complexifications of real
algebraic varieties where ¢ is given by complex conjugation. Such an
example is (P*(C),c) where in homogeneous coordinates c¢([z]) = [Z]. The
fixed point set here is P*(R) = P*(C).

DEerFINITION 10.1. By a Real vector bundle over a Real space (X,cy) we
mean a pair (V,c,) where n: ¥V — X is a complex vector bundle over X
and where ¢, : ¥V — V is an involution such that the diagram

V >V

X X, X

commutes and ¢, is C-antilinear on the fibres of V. We denote by VR(X,cy)
the abelian semigroup of isomorphism classes of Real bundles over (X,cy).
Proceeding as in §9 we then define the associated Grothendieck group
KR(X,cy). It is called the Real-K-group of X. We shall generally drop the
explicit mention of the involution ¢y and simply write KR(X).
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REMARK 10.2. Note that if cy = Idy, then we have a natural identifica-
tion KO(X) = KR(X). This identification associates to any real bundle Vg
on X, the pair (Vzy ® C,c) where ¢ denotes complex conjugation in the
fibres. V is recovered as the fixed-point set of c.

The groups ﬁ(X ) = ker(KR(X) = KR(pt)) and KR(X,Y) = 1’(71()( 1Y)
are defined exactly as in §9 and give functors on the obvious categories
of spaces. The higher groups: KRi(X) = KR(Z'X) and KR™{(X,Y) =
KRE(x /Y)), are also defined as in §9. We have the exact sequence for
compact pairs (X,Y):

...— KR™{(X,Y) — KR {(X) — KR™(Y) (10.1)
— KR~ Y(X,Y) —> ...

An interesting facet of KR-theory is that it carries naturally a doubly-
indexed family of higher groups. Let R*=R" @ R°*=“R" @ iR*™ be
the Real linear space with involution ¢(x,y) = (x,—y). A basic case is
R!! >~ C with complex conjugation. Consider now the compact Real
subspaces

D™ = {(x,y) e R™:|Ix|I” + [IylI> < 1}
8 = {(x,y) e R™: |Ix||* + [IylI* = 1},
and for any compact' Real pair (X,Y) define
K™(X,Y)=KR(X x D", X x S U Y x D™). (10.2)

(The order of (r,s) here is the opposite of that in Atiyah [2].) Note that
it is immediate from the definitions that

KR"® = KR! foralliz=0. (10.3)
The sequence (10.1) generalizes to give exact sequences
...— KR™"(X,Y) — KR"%(X) — KR"¥Y)

— KR 15(X,Y) —> ... (10.4)
for all s = 0. To prove this one establishes the exact sequence for compact
triples in K R-theory above, and then applies it to the triple (X x D%, X x
§%* U Y x D%, X x §%9).

One of the basic facts about KR*'* is that the exterior tensor product
induces a bigraded multiplication

KR"’(X, Y) ® KR"',S'(XI’ Y/) —— KR’ +r"s +s’(X//’ Yu) (105)

where X" =X x X'and Y”" =X x Y u X’ x Y. In particular, as in §9,
the “coefficients” KR*'*(pt) are a bigraded ring, and for any compact
space X, KR**(X) is a graded KR*'*(pt)}-module.
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_Consider for a moment the group KR''(pt)=KR(D''S"!)=
KR(P*(C)). One can show that this group is isomorphic to Z with genera-
tor ¢ = [H] — 1, where H — P*(C) is the tautological (or “Hopf”) com-
plex line bundle over P*(C) with its natural Real structure. (The fibre H,
for £ € P(C) is the line ¢ itself.)

One of the fundamental results in this theory is the following (see Atiyah

[2])

The (1,1)-Periodicity Theorem 10.3. Let X be any compact Hausdorff space.
Then the map _
pe: KR™(X) — KR™*1#*1(X) (10.6)

given by module multiplication by &, is an isomorphism for allr =2 0, s = 0.
Consequently, for any compact Real pair (X,Y) we have the isomorphism

pe: KR™(X,Y) — KR 15+1(X,Y) (10.7)

Corollary 10.4. There exist natural isomorphisms
KR™ ~ KR*~" (10.8)
for all r = s = 0 generalizing (10.3).

Using (10.8) we can extend the definition of KR~ to all integers i. The
exact sequence (10.1) then extends to infinity in both directions.

REMARK 10.5. There are many further internal symmetries in this the-
ory. Using the multiplication in the fields R, C and H, Atiyah [2] shows that
for any compact space X there are isomorphisms

KR(X x §%7) =~ KR™?/(X x §°7) (10.9)

for p =1, 2, and 4. (Recall that dim S®? = p — 1.) This isomorphism for
p = 1 gives the complex Bott Periodicity Theorem. From the case p = 4
one can deduce the real periodicity theorem.

ReMARK 10.6. All of the discussion in §9 concerning the functors L, and
their equivalence with K carries over to the Real situation. Therefore, in
particular, elements in KR(X,Y) can be represented by classes of the
form [V,,V;;0] where ¥, and ¥, are Real bundles on X and where
g:V, = V, is a Real bundle isomorphism defined over Y.

REMARK 10.7. If X is a locally compact space, then the groups KR, (X)
are defined exactly as in 9.26. This group is generated by Real bundles on
X which are trivialized at co. Using the L-construction, it can also be
generated by triples [V,,V;; 0] where ¥, and V, are Real bundles on X and
where ¢:V, - V, is a Real bundle isomorphism defined outside of some
compact subset of X.
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In this context the higher KR-groups can be written in a particularly
nice form:

KRG(X) = KR, (X x R™). (10.10)

Of course if X is compact, then KR (X) = KR™(X). If we identify C =
R!-! as before, then the (1,1)-Periodicity Theorem has the particularly nice
form:

KR (X) = KR (X x C) (10.11)
for any locally compact space X.

In light of the Remark 10.6 above it is natural to examine the Atiyah-
Bott-Shapiro construction in this theory. To do this we define the Real
Clifford algebra C{(R"™) to be the Clifford algebra generated by R™* and
the positive definite quadratic form q(x,y) = lIx[|* + [|yl|?, taken together
with the algebra involution c: CE(R™*) - CE(R"™*) generated by the involu-
tion (x,y) — (x,—y) of R™*.

DermniTION 10.8. By a Real module over the algebra CE(R™*) we mean
a finite-dimensional complex representation space W for C¢,, together
with a C-antilinear involution c: W — Wso that

c(o - w) = c(e) * c(w) for all ¢ € CE(R™) and all we W. (10.12)

If in addition W = W° @ W' is a Z,-graded module with the property
that ¢(W') = W' for i = 0,1, then W is called a Real Z,-graded module for
CE(R™).

We denote by MR, ; and @\Rm the Grothendieck groups of equivalence
classes of Real modules (and Real Z,-graded respectively) for CE(R™).

There is an important basic relationship between these Real algebras
and the algebras Cf, ; defined in §3. To begin, consider the complexifi-
cation CE(R™*) of C£(R™*) and note that the involution ¢ has a unique
extension to a C-antilinear involution on CE(R™). Any Real C{(R"™%)-
module is naturally a C¢(R™)-module by extension, and the condition
(10.12) continues to hold. Considering these algebras and their modules
is equivalent to considering those above.

Now the main claim is that C£(R"*) is the appropriate complexification
of Ct,,. Under the ordinary complexification, all the algebras C¢, ; with
the same value of r + s become isomorphic. However, if we also introduce
the involution, this is not so.

Recall that C¢, , is the Clifford algebra generated by R” @ R® with the
quadratic form g, (x,y) = [Ix|> — [Iyl|%. Let M, , and M, , denote the Gro-
thendieck groups of R-modules (and Z,-graded R-modules respectively)
for the Clifford algebra C&, ;.
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Proposition 10.9. There is a natural equivalence
M, — MR, (10.13)

for each (r,s) defined by assigning to a real Ct, -module W, the complex
module W ®g C with involution given by complex conjugation and with the
CY(R"*)-multiplication engendered by setting

xy) - w=xw+iyw  for(x,y)e R @ R (10.14)

Furthermore, under the natural inclusion i:R" @ R* & R"*! @ R°® given
by i(x1y ... sXpsV1s - -V = (X5 sX0¥15 - - . ,)5) the diagram

iInr+1..~: mth+l.s

j,.. l

sInr..s - mth,s

commutes. Hence, there are natural graded isomorphisms:
M, /*M, .1, —> MR, [i*TMR, , ., (10.15)
All the analogous statements hold in the Z,-graded case.

Proof. The multiplication given in (10.14) has the property: (x,y) - (x,y) *
w = —(||x||> + ||lyl|*w and therefore extends to C&(R™*). Furthermore, we
see that c[(x,y) - w] = (x + iy)w = (x — iy)W = c(x,y) - ¢(w) where both (")
and ¢ denote complex conjugation. Hence, the map (10.13) is well defined.
The inverse is given by taking the real module to be the fixed-point set
of ¢ and replacing multiplication by (x,y) € R" @ R*® with multiplication by
x — iy. The remaining details are left as an exercise for the reader. |

REMARK 10.10. As in previous cases the graded tensor product of mo-
dules makes MR, , and M, , into graded rings. The multiplication is
preserved by the equivalence (10.13) in the graded case. In particular, the
map

fn*,*/i*iﬁz*+ 1 m*.*/i*m*+ 1,% (10.16)
is a ring isomorphism.

The advantage of the groups W, s is that they are natural for extend-
ing the Atiyah-Bott-Shapiro construction given in §9. On the other hand,
the groups ‘.UI,  and the quotients ‘.Ul, S, ¢ are particularly easy to
compute by using the results of §§4 and 5.

Suppose that W = W° @ W! is a Real Z,-graded module for C¢(R"),
and consider the associated element ¢(W) € KR, (R™*) = KR"(pt) given
by

@(W) = [Eo,Ey; 1]
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where E, = R™* x W* for k = 0,1, are the trivial product bundles and
where u:E, — E, is defined by

wzw) =(z,z-w)

for z = (x,y) e R™* and for we WP, Since z-z-w = —||z||*w, the map u
is a bundle isomorphism outside the origin and so [Ey,E; #] is an ele-
ment of KR, ,(R™) (cf. Remark 10.7). This gives a graded ring homomor-
phism

@:MR,,, —> KR**(pt). (10.17)

Arguing as in §9 one can show that ¢ = 0 on i*MR, , , , and so ¢ des-
cends to the quotient. The arguments of Atiyah-Bott-Shapiro [1] then
carry through to prove the following (see Atiyah [2]).

Theorem 10.11. The map defined above,
@ MR, /i*MR, , ., —> KR**(pt),
is a graded ring isomorphism.

Via the isomorphism (10.16) this relates the groups KR"(pt) to the alge-
bras Cf, ;. In particular, the (1,1)-Periodicity Theorem is reflected in the
(1,1)-periodicity for these algebras (cf. (4.3) of Theorem 4.1). Furthermore,
since KR*(pt) = KR™*(pt) = KO~*(pt) and C¢,, =~ Cf, we recapture
here the real ABS-isomorphism of Theorem 9.27.

From (1,1)-periodicity we see that

KR*%(pt) = KR"(pt) = KR**(pt) = - - = Z.

For our later discussion of the C¢,-linear Atiyah-Singer operator (in I11.16)
it will be useful to have certain explicit generators for these groups, which
we shall now present. Recall that as a Real space R™" is just C" with
involution given by complex conjugation, and therefore we can write
KR™"(pt) = KR,,(C"). We will give an explicit generator for KR, (C")
by using the Clifford algebra C£, = C{(C") and its natural Z,-grading
Ct, = Ct? @ Ct:. For 9 eCt,, let R,:CL, —» Ct, and L,:C¢, —» C¢,
denote right and left multiplication by ¢ respectively. For x + iy € C",
we consider the map

(R, +iL)):Ct} —> C¢, (10.18)
y

which, since (R, + iL,)(R, — iL,) = —(l|IxII* + ||yl|?)1d, is invertible when
x + iy #0. This map (10.18) is clearly a Real endomorphism, ie.,
(Ry + iL,)p = (R, + iL_ ).

Proposition 10.12. The element
&, = [CL,CLY; R, +iL,] € KR, (C")
is a generator of the group KR, (C") = KR™(pt) = Z for all n 2 1.
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Proof. Because of the isomorphism of graded algebras Cf,=
Ct, ® - -+ ® CL, (which follows from Proposition 3.2) it suffices to con-
sider the case n = 1. The element ¢; can be shown to coincide with the
generator of the image of ¢ in Theorem 10.11 as follows. To begin note
that since C£Y = C - 1, right and left multiplication coincide on Cg9.
Consequently, ¢, = [C,C;m] where m, ,,:C — C is given by scalar multi-
plication: m, ,(w) = (x + iy)w.

On the other hand we have WL, >~ Z @ Z with generators given as
follows. For (x,y) € R}, define a C-linear map C @ C —» C @ C by the

matrix
0 —m
(m 0 ) (10.19)

At (x,y), the square is —(||x||> + ||y||*)Id. Hence, this action extends to
make C @ C (with involution given by complex conjugation) into a com-
plex Z,-graded C¢(R"'!)-module. This is the first generator. The second
generator is obtained by interchanging factors. That these are indepen-
dent generators is easily verified by working through the natural iso-
morphisms

Wu = ifnm =M,

(cf. Proposition 10.9 and Theorem 3.7). These isomorphisms commute
with i*, and working out the details for the simple case I, ,/i*M, ,
shows that either of our distinguished generators becomes a generator of
the quotient: MR, ,/i*MR, ; = KR!(pt). Clearly under the isomorphism
¢ of Theorem 10.11 our module above with multiplication 10.18 becomes
the element [C,C; m] as claimed.



CHAPTER II

Spin Geometry and the Dirac Operators

In this chapter one finds the soul of the book. It is here that we examine
the structures and concepts that are central to differential geometry—
manifolds, vector bundles, connections, curvature, etc. If one also intro-
duces metrics (in the sense of Riemann), then it is unavoidable that Clifford
algebras and spin groups will enter the discussion. This is for the following
reason.

There is a principle by which the natural operations on vector spaces
such as direct sum, tensor product, exterior power, etc., carry over canoni-
cally to vector bundles. In the same fashion, the natural operations for
vector spaces with quadratic forms carry over to vector bundles with
metrics. In particular, suppose that n:E — X is a riemannian vector
bundle. Then in each fibre, E, = n~!(x), the quadratic form ||v||* = {v,v)
can be used to construct a Clifford algebra CE(E,). The result is a bundle
CL(E) = X of algebras over X called the Clifford bundle of E. It carries
all the natural properties of Clifford algebras such as the Z,-grading, the
transpose endomorphism and the L-operator. This rich structure is basic
for the study of E itself.

In the light of Chapter I it is natural to ask whether one can also find
a vector bundle $(E) — X with the property that each fibre $(E,) is an
irreducible module over C{(E,). The answer is in general no. We shall
discuss the obstruction involved. By taking E = TX this will lead to the
notion of a spin manifold and spin cobordism. The bundle $(TX), when it
exists, plays a central role in the study of the global geometry and to-
pology of X.

In general, given any bundle of modules S over CE(TX), furnished with
a suitable metric and connection, one can associate to S a self-adjoint,
first-order elliptic operator D:I'(S) — I'(S) called the Dirac operator for
S. (This is done in §5.) From the algebraic operations of Chapter I one
can often construct natural splittings S = S* @ S~ with respect to which
the Dirac operator has the form

0 D
-5 )
where D*:T(S*) —» I'(S”) and D™ :I'(S”) — I'(S*) are formal adjoints of

one another. This gives a unified procedure for constructing all the “clas-

11
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sical” elliptic operators on a manifold, namely: the Euler characteristic
operator, the signature operator, and the Atiyah-Singer operator. Details
of this are given in §6.

In §7 we introduce the notion of a C{,-linear operator and discuss in
detail some of the basic examples. Over a compact manifold any C¢,-
linear Dirac operator D has an analytic index ind,(D) € KO ~¥(pt) defined
by applying the Atiyah-Bott-Shapiro isomorphism to the residue class of
the Clifford module [ker D] (see 1.9).

Roughly speaking, every Dirac operator represents the square root of
a Laplace operator. In euclidean space this statement is unambiguously
true. Over general manifolds, however, the difference D2 — V*V between
the square of the Dirac operator and the standard “connection laplacian”
is a certain universal expression involving curvature and Clifford multi-
plication. Deriving such formulas and using them to draw global con-
clusions about curvature and topology is referred to as “Bochner’s
method.” We shall show how our universal formula specializes to give
the classical Bochner formulas on exterior differential forms, as well as
the Lichnerowicz formula for spinors. Using curvature identities derived
in §5, we shall then give a succinct proof of the theorem of Gallot and
Meyer concerning curvature and homology spheres. We shall also derive
formulas for the Atiyah-Singer operator with coefficients in a bundle.
This will be quite useful later in studying manifolds of positive scalar
curvature.

§1. Spin Structures on Vector Bundles

Let n: E —» X be a real n-dimensional vector bundle over a manifold X.
We assume this bundle is equipped with a riemannian structure, that is,
a positive definite inner product continuously defined in the fibres. Such
a structure always exists.

We assume also that the bundle is oriented, i.e., that there is an orienta-
tion continuously defined on the fibres. This structure does not always
exist. To analyze the situation, we consider the bundle Po(E) of ortho-
normal frames in E. This is the principal O,-bundle whose fibre at a point
x € X is the set of orthonormal bases of E, = n~(x). The bundle of orien-
tations in E is then just the quotient Or(E) = Py(E)/SO,, where two bases
of E, are identified if the orthogonal matrix transforming one to the other
has determinant + 1. Note that Or(E) is a 2-sheeted covering space of X
and that E is orientable if and only if this covering space is the trivial
one. We recall now the following elementary fact:

Lemma 1.1. Let Cov,(X) be the set of equivalence classes of 2-sheeted
covering spaces of X. Then there is a natural isomorphism

Cov,(X) ~ H\(X; Z,). (1.1)
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Note. This is a special case of the isomorphism: H'(X;G) ~ {equivalence
classes of principal G-bundles on X}, which is proved in Appendix A.

Proof. Assuming X is connected, we can decompose the isomorphism
(1.1) as follows: HX;Z,) > Hom(H,(X),Z,) > Hom(n,(X),Z,) >
Cov,(X). The second isomorphism follows from the fact that H,(X) is
the abelianization of 7,(X). The third isomorphism is a restatement of
the elementary fact that 2-sheeted coverings of X are in one-to-one
correspondence with subgroups of index 2 in 7,(X). The case where X
is not connected now follows immediately. m

From (1.1) we now see that, for each vector bundle E over X, the 2-
sheeted covering space Or(E) determines an element w,(E) € H(X;Z,),
called the first Stiefel-Whitney class of E. Directly from the definitions
we have the following fact.

Theorem 1.2. A vector bundle E over X is orientable if and only if w,(E) = 0.
Furthermore if wy(E) = 0, then the distinct orientations on E are in one-
to-one correspondence with elements of H(X;Z,).

The second statement simply says that there are two possible orienta-
tions of E over each connected component of X.

The definition of w,(E) given above is in accord with the one given
via classifying spaces (see App. B). To prove this it suffices to show the
following:

(i) This definition of w, is natural, ie, w,(f*E) = f*w,(E) for any
bundle E over X and any continuous map [ : X’ - X.

(i) This definition of w,(E) gives the non-zero element in
H'BO,;Z,) = Z, when E is the universal n-plane bundle over the
classifying space BO,.

Fact (i) is obvious since Py(f*E) = f*Pq(E) and, therefore, Or(f*E) =
S*Or(E). Fact (ii) is true since otherwise every n-plane bundle would be
orientable.

By establishing properties (i) and (ii) it is possible to prove the equiv-
alence of a number of quite different definitions of w,(E). For example,
suppose X is connected. Then from the fibration O, — Py(E) — X, there
is an exact sequence.

0 — HOX;Z,) — HOPo(E); Z;) — H%(O,;Z,) —=> H'(X;Z,).
(1.2
We can define w,(E) = wg(g,) where g, is the generator of H%O,;Z,).

This definition of w,(E) has property (i) since the sequence (1.2) is natural
and property (ii) since the sequence (1.2) is exact and for the universal
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bundle E, Po(E) = EO, is contractible. From the exactness of (1.2) it is
clear that w,(E) = 0 iff Po(E) is disconnected, i.e., iff E is orientable.

We shall examine other equivalent definitions of w, later in this section.
At the moment we pass on to the next possible simplification of the
structure group of a bundle E. Note that if E is orientable, then choosing
an orientation is equivalent to choosing a principal SO,-bundle Pgo(E) <
Po(E). This embedding is, of course, compatible with the action of SO, =
O,. Having thereby made the structure group of E 0-connected, one
might ask whether it is possible to make the structure group 1-connected.
This leads us to the concept of a spin structure.

Let E be an oriented n-dimensional riemannian vector bundle over a
manifold X, and let Pgo(E) be its bundle of oriented orthonormal frames.
Recall that for n = 3 we have the universal covering homomorphism
¢o:Spin, —» SO, with kernel {1,—1} > Z,.

DEFINITION 1.3. Suppose n = 3. Then a spin structure on E is a principal
Spin,-bundle P (E) together with a 2-sheeted covering
¢ i Pgpin(E) — Pso(E)
such that &(pg) = &(p)¢o(g) for all p € Pg,;,(E) and all g € Spin,.
When n = 2, a spin structure on E is defined analogously, with Spin,
replaced by SO, and £,:SO, — SO, the connected 2-fold covering. When

n =1, Pso(E) = X and a spin structure is simply defined to be a 2-fold
covering of X.

Note that the diagram
¢
P, Spin(E) » P, SO(E)

\ / (1.3)
N A

where 7 and 7’ are the bundle projections, is commutative. Note also that
¢ restricted to the fibres corresponds to the covering £,. The diagram of
fibrations is

Spin, —=2—» SO,

=L

Pgyin (E) —— Pso(E)

A

On the other hand, suppose ¢&: Pg,;,(E) — Pso(E) is a 2-sheeted covering
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which is non-trivial on the fibres of X, i.e., so that the diagram

Spin, b, SO,

7
% j | j
Pgpin(E) —— Pso(E)

commutes. Then setting n’ = 7 o { makes Pg,;,(E) a fibre bundle over X.
To make this a principal Spin,-bundle we must lift the action of SO, on
Pgo(E) to a compatible action of Spin, on Pg,(E). The proof that this
lifting exists is a straightforward application of elementary covering space
theory. We conclude the following (even for n = 1 and 2).

Theorem 1.4. The spin structures on E are in natural one-to-one corre-
spondence with 2-sheeted coverings of Pso(E) which are non-trivial on the
fibres of n.

This can be reinterpreted via Lemma 1.1 as follows:

Corollary 1.5. Suppose X is connected. Then the spin structures on E are
in natural one-to-one correspondence with elements of H'(Pso(E); Zs) whose
restriction to the fibre of Pso(E) is non-zero.

We are now in a position to discuss the question of existence and
uniqueness of spin structures. Associated to the fibration SO, -5 Pg.(E)
5 X there is an exact sequence

0 — HY(X;Z;) —=> H'(Pso(E); Z,) — HY(SO,;Z,) ~= HY(X;Z,)
(1.4)

which can be deduced from the Serre spectral sequence. In analogy with
the definition of w, via the sequence (1.2) we make the following definition:

DEFINITION 1.6. The image w,(E) = wg(g,) € HX(X; Z,) of the generator
g, of H(SO,;Z,) = Z, is the second Stiefel-Whitney class of the oriented
bundle E.

To prove that this (or any other) definition agrees with the one given
via classifying spaces, it again suffices to show (cf. (i) ‘and (ii) above):

(') This definition of w, is natural.

(i) This definition of w,(E) gives the non-zero element in
H?*BSO,;Z,) = Z, when E is the universal oriented n-plane bundle
over the classifying space BSO,,.

Property (i’) follows from the naturality of the sequence (1.4). Property
(ii") follows from the exactness of (1.4) and the fact that Pg(E) = ESO,
is contractible.
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From Corollary 1.5 and the exactness of the sequence (1.4) we im-
mediately conclude the following.

Theorem 1.7. Let E be an oriented vector bundle over a manifold X. Then
there exists a spin structure on E if and only if the second Stiefel-Whitney
class of E is zero.

Furthermore, if w,(E) = 0, then the distinct spin structures on E are in
one-to-one correspondence with the elements of H'(X;Z,).

Note that this result holds for all n. When n = 2, the class w, is just the
mod 2 reduction of the Euler class. More generally, the following is true.

REMARK 1.8 (cf. Milnor-Stasheff [1]). If E is the real 2an-dimensional
bundle underlying a complex n-dimensional vector bundle E, then

wy(E) = ¢4(E)(mod 2)

where c,(E) is the first Chern class of E. (To see this, it suffices to observe
that the map H*BSO,,;Z,) - H*BU,;Z,), induced by the inclusion
U, < SO,,, is an isomorphism.)

REMARK 1.9. Note that the spin structure on a bundle E is independent
of the bundle metric on E in the following sense. A spin structure on E
uniquely determines a spin structure for any other metric. This follows
from Theorem 1.4 and the observation that the inclusion Pgo(E) <
Pg+(E), where Pg+(E) is the bundle of all oriented bases in E, is a
homotopy equivalence.

REMARK 1.10. To choose an orientation and a spin structure for E is
in particular to find structure groups for E which are respectively 0 and
1-connected. Conversely, suppose E is equivalent to a vector bundle with
a Lie structure group G. If G is connected, then E is orientable; and if G
is simply-connected, then E is spin.

It should be noted that the process of finding successively more highly
connected structure groups for E terminates at the spin level. This is
because for any simply-connected Lie group G, n,(G) = 0, and if 74(G) =
0, then G is contractible.

The conditions w; = 0 and w, = 0 can be interpreted geometrically as
follows:

Proposition 1.11. Let E be a vector bundle over a manifold X. Then E is
orientable if and only if the restriction of E to any circle embedded in X is
trivial.

The proof is obvious. There is an analogue for w,.
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Proposition 1.12. Let E be an oriented vector bundle of dimension = 3
over X. Then E is spin if and only if for any compact surface ¥ and any
continuous map f :X — X, the bundle f*E is trivial.

Suppose, furthermore, that X is simply-connected and of dimension > 4.
Then E is spin if and only if the restriction of E to any 2-sphere embedded
in X is trivial.

Proof. The group H,(X;Z,) is generated by maps f :X — X of compact
surfaces. Hence, w,(E) = 0 <> f*w,(E) = wy(f*E) = 0 for all such f <
S[*E is trivial for all such f (since an oriented bundle of dimension = 3
over a surface is trivial if and only if w, = 0). This proves the first state-
ment. For the second statement it suffices to note that when n, X = 0 and
dim(X) > 4, the group H,(X;Z,) is generated by embedded 2-spheres. =

REMARK 1.13. This second statement can be refined somewhat. If 7, X =
0, then H,(X;Z,) is generated by immersions of S, and if dim X > 4, the
immersions can be deformed to embeddings.

We now consider some alternative definitions of the classes w, and w,.
Recall that (cf. App. A) for any topological group G, we can view the
equivalence classes of principal G-bundles on X as elements in a “Cech
cohomology space” H!(X;G). As noted in Milnor [7] the short exact
sequence of topological groups

1— S0, —» 0,227, —0 (1.5)
gives an exact sequence
H'(X;S0O,) = H'(X;0,) 2> H\(X; Z,). (1.6)

Given an n-dimensional bundle E on X, we define the first Stiefel-Whitney

class by setting w,(E) = p,([Po(E)]). This definition is easily seen to have

properties (i) and (ii) and it therefore agrees with our previous definitions.
In a similar way the short exact sequence

0 — Z, — Spin, —> SO, —> 1 (1.7)
gives an exact sequence
H°(X;SO,) = H'(X;Z,) — H'(X;Spin,) -5 (1.8)

HY(X;SO,) = H*(X;Z,)

(cf. Hirzebruch [1]). Thus, for an oriented bundle E we define the second
Stiefel-Whitney class by setting w,(E) = d([ Pso(E)]). This definition has
properties (i') and (ii') and therefore agrees with our previous ones.

With this definition it is transparent that w,(E) = 0 if and only if Pgo(E)
is equivalent to the Z,-quotient of a principal Spin,-bundle on X.
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REMARK 1.14. This is a convenient time to inject a minor word of cau-
tion. It was pointed out by Milnor that the Spin,-bundles associated to
distinct spin structures on E may be equivalent as abstract principal bundles.
Recall that spin-structures on E are in one-to-one correspondence with
elements of H!(X;Z,). However, by (1.8) we see that the equivalence classes
of principal Spin,-bundles with Z,-quotient equal to [ Pso(E)] are in one-
to-one correspondence with elements of H!(X;Z,)/6°(H%(X;SO,)). Now by
definition we have that H%(X;SO,) = C(X,SO,), the space of continuous
maps from X to SO,. The map

8°:C(X,S0,) — HY(X;Z,) 1.9)
is given as follows. For a map f:X — SO,, set 6°(f) = f*(1) where 1 is
the generator of H(SO,;Z,).

The map (1.9) is often surjective. For example, any class which is the
mod 2 reduction of an integral class lies in the image. To see this let
fo:X — S! represent the integral class and define f =io fy: X = SO,
where i:S' & SO, is not homotopic to zero. Thus, if HY(X;Z,) =~
HY(X;Z) ® Z,, then 8° is surjective. Similarly if dim X < n, then 6° is also
surjective. To see this note that every class in H!(X;Z,) can be induced by
a map to P*R) = SO,. Thus, in either of these cases, all the principal
Spin,-bundles associated to distinct spin structures on E are abstractly
equivalent.

As an example of this phenomenon consider an oriented bundle E over
the circle S*.

Since H'(S';Z,) =~ Z,, there are two spin structures on E. However, any
principal Spin,-bundle over S! is equivalent to the trivial one since it
admits a cross-section (as does any fibre bundle over S* with connected
fibre).

Finally we mention a direct definition of w, and w, via homotopy
theory. From the sequence (1.4) there is a fibration

BSO, — BO, — BZ, = K(Z,,1).

A map f;: X — BO, (classifying a bundle E) has a lifting to BSO, iff w o f
is homotopic to zero. Recall that [X,K(Z,,1)] = H'(X;Z,). The class
w o fg is the first Stiefel-Whitney class w(E).

From the sequence (1.6) we have a fibration K(Z,,1) - BSpin, =,
BSO,. It follows that the cofiber of B¢ is K(Z,,2), i.e., there is a fibration

BSpin, — BSO, — K(Z,,2).

We can now define w,(E) as we defined w,(E) above.
We complete this section with an observation concerning Whitney sums.

Proposition 1.15. Given three vector bundles E', E" and E ~ E' @ E" over
a manifold X, a choice of orientation on any two of them uniquely determines
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an orientation on the third. Similarly, a choice of spin-structure on any two
of them uniquely determines a spin structure on the third.

Proof. The statement concerning orientations is obvious since for finite
dimensional vector spaces ¥V = V' @ V", an orientation on any two canon-
ically determines an orientation on the third.

Suppose now that E, E’ and E” are orientable. Then w,(E) = w,(E') +
w,(E"). Hence, if anv two are spin, so is the third.

Suppose under the correspondence of Corollary 1.5 @’ € H!(Pgo(E"); Z,)
and a” € H'(Pso(E"); Z,) represent spin structures on E’ and E” respec-
tively. Now consider the cartesian product bundle E’' x E” - X x X. We
let

A:Pso(E’ @ E”) -_— Pso(E, X E”)

denote the diagonal map. The class in H!(Pso(E' @ E”); Z,) which will
represent the spin structure determined by a’ and a” will be A*b where
b e H (Pso(E' x E"); Z,) will be the unique class which extends @’ x 1 +
1 x a” € H (Pgo(E') x Pso(E"); Z,) under the inclusion Pgo(E’) x Pgo(E”) =
Pyo(E' x E"”). That there is a unique b can be seen from the following
diagram:

0 —» HY(X x X;Z;) —> HY(Pso(E' x E"),Z;) —— HYSO,4n;Z,) — H¥X x X:Z,)

0 — HY(X x X;Z;) —» H'(Pso(E') x Pso(E");Z,) = H'(SO, x 8O,;2,) » HXX x X;Z,)

That any two of the classes @', a”” and A*b determines the third is now easy
to see. Let m, : Pgo(V) — X be the projection map where V = E, E' or E".
Then any spin structure y’ (under the correspondence of Corollary 1.5)
on E’ may be written @’ + n§.u’ and any spin structure y” on E” may be
written a” + n}u” for '’ € H'(X;Z,). Then following the above pre-
scription ¥’ and y” determine A*b + nf.gp.(u' + u”). Clearly any two of
these determine the third. =

§2. Spin Manifolds and Spin Cobordism

We are now in a position to discuss the notion of spin structures on mani-
folds. For convenience all manifolds are assumed to be of class C*.

DEFINITION. A spin manifold is an oriented riemannian manifold with
a spin structure on its tangent bundle.

The Stiefel-Whitney classes w{X) of a manifold X are defined to be the
Stiefel-Whitney classes of its tangent bundle TX. Hence, by Theorem 1.7
we have the following.
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Theorem 2.1. An oriented riemannian manifold X admits a spin structure if
and only if its second Stiefel-Whitney class is zero. Furthermore, if w,(X) = 0,
then the spin structures on X are in one-to-one correspondence with elements
of H\(X;Z,).

Recall (cf. Remark 1.9) that the choice of spin structure for one rieman-
nian metric on X canonically determines a spin structure for any other
riemannian metric on X. Here we are using the fact that, for any metric,
the inclusion Pgo(X) < Pgp+(X) of the bundle of oriented orthonormal
tangent frames into the bundle of all oriented tangent frames, is a homo-
topy equivalence.

Consider now a diffeomorphism f:X 5 X of a spin manifold X. If
f is orientation preserving, then there is an induced diffefomorphism
df: PG +(X) = PgL+(X) of the bundle of oriented tangent frames. This
map carries fibres to fibres and therefore induces a permutation of the
possible spin structures on X (considered as 2-fold coverings of Pg; +(X).)
If the given spin structure remains fixed, then f is called a spin structure-
preserving diffeomorphism.

It is a classical result of W.-T. Wu [1] that the Stiefel-Whitney classes
of a compact manifold X depend only of the homotopy type of X. There-
fore, the property of having or not having a spin structure is a homotopy
invariant, and in particular, it remains the same under changes of the dif-
ferentiable structure on X. Wu proves his result by giving a homotopy-
theoretic formula for the total Stiefel-Whitney class w=1+w; + w, +...
of X. Define v =1+ v, + v, +...e H¥X;Z,) by the requirement that

(v v a)[X] = Sq(a)[X]

for all ae HXX;Z,) where Sq =1+ Sq! + Sq% +... is the Steenrod
square automorphism, and where [X] € H,(X;Z,), n = dim(X), denotes
the fundamental class. Wu’s formula states that

w = Sq(v)

(see Milnor-Stasheff [1] for details). Since Sq'(a) = 0 if i > deg(a), we see
that v, = 0 for k > [dim(X)/2]. Thus, for example, if dim(X) = 3, we see
that v =1+ v, =1 + w,, and it follows that w, = w. In particular, if
X is orientable, then it is automatically spin. Suppose now that dim(X) = 4
andw; = 0.Thenv =1 + v, = 1 + w,, and we see that w, is characterized
by the fact that (w, U a)[X] = (a U a)[X] for all a € H(X;Z,).

We will now examine some examples of spin manifolds. For convenience
we shall use the expression X is spin to mean that w,(X) = w,(X) =0,
(i.e., that X carries at least one spin structure for any riemannian metric
on X). Recall that any complex manifold is canonically oriented. Further-
more, by Remark 1.8 we know the following:
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REMARK 2.2. A complex manifold X is spin if and only if its first Chern
class satisfies ¢,(X) = 0 (mod 2).

ExAMPLE 2.3 (the trivial examples). It follows immediately from Theo-
rem 2.1 that any 2-connected manifold carries a unique spin structure.
The obvious examples of this type include homotopy spheres, Stiefel mani-
folds, and simply-connected Lie groups. Of course, any manifold whose
tangent bundle is stably parallelizable is spin. This includes, for example,
the inverse image of any regular value of a smooth map f:R"*? — R?. It
also includes any Lie group and any orientable manifold of dimension < 3.

ExaMPLE 2.4. Let P"(k) denote the n-dimensional projective space over
the (skew) field k. Then

P*(R) is spin iff n = 3 (mod 4)
P*C) is spin iff n is odd
P*(H) is spin for all n.

To see this recall that the total Stiefel-Whitney class of PA(K)isw =1 +
wy+w, +...=(1+g)"*"! where g, the generator of the cohomology
ring, has dimension 1, 2 and 4 for K = R, C and H respectively. When
K = R, the conditions w, = 0, w, = 0 are equivalent to (n + 1) = n(n + 1)/
2 =0 (mod 2). The cases K = C and K = H are obvious.

ExampLE 2.5. The manifold SO, has two distinct spin structures given
as follows: P(SO,) = SO, x SOy where N = n(n — 1)/2. The two coverings
are:

P,(SO,) = SO, x Spiny
P(SO,) = (Spin, x Spiny)/Z,
where Z, acts on Spin, x Spiny by the map (g, h) > (—g,—h).

EXAMPLE 2.6. Let X, be a compact Riemann surface of genus g. As
observed in 2.4 above, this surface is spin. (The Euler characteristic c,(Z,)
is even.) There are exactly 22¢ distinct spin structures on X which can be
constructed as follows. Let H'(Z,;0*) denote the equivalence classes of
holomorphic complex line bundles on Z,. This is an abelian group under
the operation of tensor product. There is a short exact sequence

0 — J — H'(Z,;0%) —> H¥Z,;Z) — 0

where J =~ H'(Z;R)/H'(Z;Z) = T?. Let 1, € H'(Z,;0*) denote the tan-
gent bundle of £, and note that there exist exactly 22 elements t €
H(Z,;0*) such that 12 = 7,. Recall that for any complex line bundle ¢
the natural map t — 12 is of the form z — z? in the fibres. Hence, each
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bundle 7 with t? = 1, determines a 2-fold covering of Pso(Z,) < 7, which
is non-trivial on the fibres. These coverings realize all the distinct spin
structures on Z,.

This construction is a special case of the general fact (cf. Hitchin [1]
and App. D) that for any compact Kéhler manifold X with ¢,(X) =0
(mod 2), the spin structures on X are in one-to-one correspondence with
holomorphic square roots of the canonical bundle of X.

ExaMPLE 2.7. Let V*(d) denote the non-singular complex hypersurface
of degree d in P"**(C). That is, V"(d) is given in homogeneous coordinates
[Zo, - . sZ4+1] for P**}(C) as the zeros of a homogeneous polynomial
P(Zos - - . 2,4+ ,) of degree d which satisfies the condition (Vp)(Z) # 0 when
Z # 0 and p(Z) = 0. The diffeomorphism class of V*(d) is uniquely deter-
mined by the integers n and d.

The first Chern class of V"*(d) for n > 1 is

c,=(m+2—-d)-g

where g is the canonical generator of H%(V*(d); Z) (the Kihler form induced
from P"*}(C)). It follows that

V™d) is spin <> n + d is even.

ExampLE 2.8. Let V*(d,, ... ,d,) be the transverse intersection of hyper-
surfaces V"**=1(d,),...,V"*¥*1(d,) in P"*¥C). Then for n > k

Cl=(n+k+1—d1‘_..._dk)'g

where g is the canonical generator of H%(V"(d,,...,d,); Z) = Z. Hence,

k
V*dy,...,d)isspin < n+k+1+ '_Zl d; is even.

ExaMpLE 2.9 (N. Hitchin [1]). Let f: M — P?*(C) be a p-fold ramified
cover, branched over a non-singular curve of degree pg. Then M is spin
iff p is even and q is odd.

As we observed above, every oriented manifold of dimension < 3 is spin.
In higher dimensions the spin condition has a nice geometric interpreta-
tion. We shall restrict our attention to manifolds X with the property that
the homomorphism H,(X;Z) - H,(X;Z,), given by reduction mod 2, is
surjective. This holds whenever X is simply-connected.

Theorem 2.10. Let X be an oriented n-dimensional manifold as above. If
n 2 5, then X is spin if and only if every compact orientable surface embedded
in X has trivial normal bundle. If n = 4, then X is spin if and only if the
normal bundle to every compact orientable surface embedded in X has
even Euler class.
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Proof. Since H,(X;Z,) = H,(X;Z) ® Z,, the group H,(X;Z,) is generated
by maps of compact orientable surfaces. By the classical theorems of
Whitney, every map of a surface into X is homotopic to an embedding
if n = 5, and to a self-transversal immersion if n = 4. In this latter case,
we can remove small disks at each self-intesection point and attach an
embedded handle, thereby producing an embedded surface in the same
homology class. Consequently, H,(X;Z,) is generated by smooth embedd-
ings of compact orientable surfaces.

Let i:X & X be such an embedding. Then i*w,(X) = i*w,(TX) =
Wy(i*TX) = wy(TZ @ NI) = wy(TZ) + wy(NZ) = wy(NX). Evaluating
on the fundamental class, we have (w,(X),i,[Z]) = (*w,(X),[Z]) =
(w2(NZ),[Z]). Consequently, if w,(X) = 0, then w,(NX) = 0. On the other
hand, H,(X;Z,) is generated by such surfaces. We conclude that w,(X) =0
if and only if w,(NZ) = 0 for every compact orientable surface embedded
in X.

The normal bundle NX to X is orientable. Therefore, when dim(NX) = 3
(i.e., when n = 5), we have w,(NX) = 0 if and only if NX is trivial. When
dim(NZX) = 2 (i.e, when n = 4), we have w,(NX) = y(NX) (mod 2). This
completes the proof. m

Corollary 2.11. Let X be a simply-connected manifold of dimension = 5.
Then X is spin if and only if every 2-sphere embedded in X has trivial
normal bundle.

Proof. Since H,(X;Z) = n,(X) by the Hurewicz Theorem, we have that
H,(X;Z,) is generated by embedded 2-spheres. m

Corollary 2.12. Let X be a compact, simply-connected 4-manifold. Then X
is spin if and only if (y v y)[X] = 0 (mod 2) for each y € H*(X;Z) (i.e., the
intersection form is “even”).

Proof. Let y e H(X;Z) =~ [X,P>(C)] be given by a smooth map f:X —
P3(C). Make f transversal to a hyperplane P*(C) = P3}(C) and let = =
f~Y(P*C)). Then X represents the Poincare dual of y, and (y U y)[x] is
the self-intersection number of X, i.e., the Euler number of NX. =

From the classification of quadratic forms (e.g., Husemoller-Milnor [1])
we conclude that the signature of X must be a multiple of 8. This result
holds, in fact, for any topological 4-manifold with w; = w, = 0. For
smooth manifolds there is the following deeper result (see Chap. IV).

Theorem 2.13 (Rochlin). The signature of a smooth compact spin 4-manifold
is a multiple of 16.
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ExAMPLE 2.14. The complex hypersurface V4(4) = {(Zo,Z,,Z,,Z5): Z§ +
Z{ + Z% + 24 =0} = P3C) is a spin manifold with signature 16 (see
Example 2.7 above). This is the so-called Kummer (or K3) surface.

ReEMARK. The statement of Corollary 2.12 fails when 7,(X) # 0. How-
ever, the following is true. For a compact orientable 4-manifold X, the
intersection form is even if and only if w,(X) is the mod 2 reduction of a
torsion class in H%(X;Z). This was proved by N. Habegger [1] who also
showed the following. Let X = V%(4)/Z, be the quotient of the Kummer
surface by the involution (Zy, Z,,Z,,Z;3) = (Z1,—Z,Z3,—Z,). Then X is
orientable and has even intersection form; however, sig(X) = 8. Of course,
X cannot be a spin manifold. In fact, w,(X) is the mod 2 reduction of the
unique torsion class in H%(X;Z).

The remainder of this section will be devoted to a discussion of spin
cobordism. We begin with two observations which follow immediately
from Proposition 1.15.

Proposition 2.15. The cartesian product of two spin manifolds is canonically
a spin manifold. Any submanifold of a spin manifold with a spin structure
on its normal bundle is canonically a spin manifold.

In particular, if Y is a compact manifold with boundary dY, then any
spin structure on Y induces a spin structure on Y as follows. Let v be
the field of interior unit normal vectors along dY. Using v, one obtains
an embedding Pgo(0Y) = Pgo(Y), by completing each tangent frame to
dY with the given normal vector. The spin structure, considered for example
as a 2-sheeted covering, can now be restricted to Pgo(0Y).

DEFINITION 2.16. Two spin manifolds are said to be differentiably equiv-
alent if there is a difftfomorphism between them preserving orientations
and spin structures. A compact (not necessarily connected) spin manifold
is said to be spin cobordant to zero if it is differentiably equivalent to the
boundary of a compact spin manifold Y with (orientation and) spin struc-
ture induced from Y as above.

Let Q5i» denote the free abelian group generated by equivalence classes
of compact connected n-dimensional spin manifolds, modulo the subgroup
generated by elements [X,] + ... + [X,] where X, II.. . II X, is spin co-
bordant to zero. Q5PI" is called the n-dimensional spin cobordism group.

From Proposition 2.15 we know that the product of two spin manifolds
has a uniquely determined spin structure. This multiplication makes
Q5Fin = P, QP into a graded ring, called the spin cobordism ring.

Note that the equivalence class (and therefore also the cobordism class)
of a spin manifold X is independent of the choice of riemannian metric
on X.
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REMARK 2.17. Given two spin n-manifolds X, and X,, we can form
their connected sum X, # X, and equip it with a spin structure so that
X, #X, and X, II X, are spin cobordant. Thus every spin cobordism
class is represented by a connected manifold (see Milnor [7]).

The connected sum operation is a special case of the general procedure
of doing surgery on spin manifolds (see Milnor [5] and Kervaire-Milnor
[1]). In particular one can show that for n 2 3 every spin cobordism class
is represented by a simply-connected manifold. For n = 5, every spin
cobordism class is represented by a 2-connected manifold (see Corollary
2.11). Thus by Poincaré duality and the h-cobordism theorem Q5P = 0.

For the special case n = 1, a spin structure is defined to be a 2-fold
covering of Ps(S!) = S*. Consider S! as the boundary of the 2-disk with
its unique spin structure. Then the spin structure induced on S! is the
connected 2-fold covering. Interestingly, the disconnected 2-fold covering
is not cobordant to zero, although two copies of it clearly is (a good
exercise). Thus, Q5F" ~ 7,.

It is also true that the square of the circle with the bad spin structure
is not zero in Q$P'" =~ Z, (another good exercise).

We now briefly review the Thom construction. Let X" be a compact
n-dimensional spin manifold and choose a smooth embedding X" — S"**
k > n. The spin structures on X" and S"** determine a unique spin struc-
ture on the normal bundle N(X") of X" (see Proposition 1.15). Hence, there
is a bundle map

Nx") - E,

|

X" —L, BSpin,

classifying N(X"), where E, is the universal k-plane bundle. The map f
descends to a map of Thom spaces f: t(N(X")) — ©(E;) = MSpin,. If we
identify N(X") with a tubular neighborhood of X" in S"**, then T(N(X™)
is the space obtained by collapsing the complement of this tubular neigh-
borhood to a point. Thus we get a map =: S"*k  7(N(X")), and the com-
position f - n:S"** — MSpin, determines an element

(X" € n(MSpin) = lim ,, (MSpiny).
k-0

The classic result of Thom states that this map induces an isomorphism
QSpin = 7S(MSpin). 2.1

We observe now that there is a natural ring homomorphism
Py QPN — Q0 2.2



92 II. SPIN GEOMETRY AND DIRAC OPERATORS

where QS0 is the oriented cobordism ring. In fact, in low dimensions we
have the following (cf. Milnor-Stasheff [1; §17] and Milnor [7]):

n QSpin Qso

0 z z

1| z, 0

2 Z, 0

3 0 0

4 Z (generated by the Kummer surface Z (generated by P%(C))

surface V?(4) in Example 2.14)

510 z,

6 0 0

710 0

8 Z @ Z (generated by P¥(H) and a Z @ Z (generated by P#(C)
manifold L® such that 4L% is spin and P}C) x P*(C))
cobordant to V2(4) x V*(4))

Of course the non-zero element x € Q5P given by the circle with the
“bad” spin structure, goes to zero in Q3°. Hence, we have x - QFi" < ker p,,.
In fact, it can be proved that x - Q3P'* = ker p, (see Anderson-Brown-
Peterson [1]).

The cokernel of p, is not so simple to describe. For example, the signa-
ture gives an isomorphism Q$° =~ Z, and therefore using Theorem 2.13
and Example 2.14 we get a short exact sequence

00— QfFin 245, 00— 7,6 — 0.

Similarly,

00— QfFin 22, 0% —» 7., — 0

is exact. The map p,, tensored with the rational numbers is an isomorphism.
In fact, so is p,, tensored with Z[$] (cf. Milnor [5]).

It is known that the oriented cobordism class of a manifold is determined
by its Pontryagin and Stiefel-Whitney numbers. Similarly, it has been
proved that the spin cobordism class of a manifold is completely deter-
mined by its Stiefel-Whitney and KO-characteristic numbers (Anderson-
Brown-Peterson [1]). A fundamental such KO-invariant is the ring
homomorphism

of, . Q%P" — KO~ *(pt) 2.3)
which we describe in §3 of this chapter. Recall that

nmod8) | 0 | 1 [ 2 [ 3| 45|67
KOty | z |z, |z, |o|z|o]|ofo

The homomorphism 7, is an isomorphism for n < 7.
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One of the remarkable and very useful consequences of the Atiyah-
Singer Index Theory is that this invariant can be computed as the topolo-
gical index of an elliptic operator naturally defined on any spin manifold
in the cobordism class. This will be discussed in Chapter IIL

One of the interesting uses of the invariant & is the following. Let ="
be an n-dimensional homotopy sphere, i.c., a compact differentiable mani-
fold which is homotopy equivalent to the n-sphere $". Then X" is cobordant
to zero (cf. Kervaire-Milnor [1]), but it is not necessarily spin cobordant
to zero. In fact the homotopy n-spheres form a finite abelian group, ©,,
under the operation of connected sum, and Z,:0, » KO ~"(pt) is a homo-
morphism. The following is a consequence of deep results of Adams [3]
and Milnor [7].

Theorem 2.18. For n = 1 or 2 (mod 8) and n > 8, the homomorphism
'Sj;r:@n — 7,

is surjective.

§3. Clifford and Spinor Bundles

We begin this section by briefly describing the associated bundle construc-
tion. Let n: P —» X be a principal G-bundle over a space X, and let
Homeo(F) denote the group of homomorphisms of another space F. Give
Homeo(F) the compact-open topology. Then to each continuous homo-
morphism p:G — Homeo(F), we construct a fibre bundle over X with
fibre F as follows. Consider the free left action of G on the product P x F
given by
?4p.f) = (pg™",p(9)f)

for ge G and (p,f) € P x F. Define P x, F to be the quotient space (the
space of orbits) of this action. One easily sees that the projection P x F —
P 5 X descends to a mapping

n,:P X, F — X

which is the fibre bundle over X with fibre F. It is called the bundle asso-
ciated to P by p.

If X and F are manifolds, G is a Lie group, and P is differentiable, one
can consider continuous homomorphisms p:G — Difl(F), where Diff(F)
is the group of difftfomorphisms of F with the usual C* topology. In this
case, the associated bundle n,: P x, F — X is differentiable.

Note that if P is given by transition functions

gapZUaﬁUﬂ'—*G

for U,,Uy € %, where % is some open cover of X, then P x, F is given
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by the transition functions:
p ° gop: U, N Uy — DIfi(F).

Note also that if p: G — GL(V) is a linear representation on a vector
space V, then P x, Vis a vector bundle over X.

ExXAMPLE 3.0. Let X be a manifold and let p: X — X be its universal
covering space. Then X is a principal 7,(X)-bundle. Choose pe€
Hom(n,X,Z,) =~ HY(X;Z,), and consider Z, as the group of permutations
of the set {0,1}. Then X x, {0,1} is a 2-sheeted covering of X (sec Lemma
1.1).

ExaMPLE 3.1. Let X be a manifold and let P = Pg,;(X) be the principal
GL,(R)-bundle of tangent frames. Let p,: GL,(R) - GL(R") denote the
standard representation, and let p} denote the dual representation (p¥(g) =
Px(g™")). Then

TX = Pg(X) x,,R" and  T*X = Pgy(X) x5 (R")*

where TX and T*X are the tangent and cotangent bundles of X respec-
tively. Similarly,
AkTX = PGL(X) xAkp" AkR"

A*T*X = Pg(X) x Akpt (A¥R™)*
@TX = Pg(X) x ®%on (®:R")

where A*p,, A*p¥ and (X);p, are the induced exterior power and tensor
product representations.

ExaMPLE 3.2. Let X be an oriented riemannian manifold and let P =
Pyo(X) be the SO,-bundle of positively oriented orthonormal frames. If
P.:S0, —» SO(R") is the standard representation, then again

TX = Pso(X) Xp" Rn
AkTX = Pso(X) xAkp" (AkRn)
QTX = Pso(X) Xgrp, (YR

Note that in this case p} = p,. This corresponds to the canonical iso-
morphism TX = T*X given by the riemannian metric.

ExaMPLE 3.3. More generally, if E is any oriented riemannian vector
bundle over a space X, then

E = Pgo(E) x,, R”
AXE) = Pso(E) X Arpn (A*R")
&XV(E) = Pso(E) X grp, (X/R")

Again, since p, = p¥, E and E* are canonically isomorphic.
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These examples suggest the following. Recall that each orthogonal
transformation of R” induces an orthogonal transformation of CE(R") =
C¢,. (It maps the tensor algebra to itself and preserves the ideal.) This
induced map on C¢, clearly preserves the multiplication. Hence we get a
representation:

cf(p,): SO, — Aut(CE(R")). (3.1)

DErINITION 3.4. The Clifford bundle of the oriented riemannian vector
bundle E is the bundle

CE(E) = Pso(E) x ct(on) CUR")

associated to the representation (3.1).

E is a bundle of vector spaces with inner products, and CE(E) is just
the associated bundle of Clifford algebras. In fact C£(E) could be defined
as the quotient bundle:

CYE) = (20 @E) / I(E)

where I(E) is the bundle of ideals, i.e., the bundle whose fibre at x € X is
the two-sided I(E,) in Y2 o XVE,, generated by elements v ® v + ||v||?
forvekE,.

It is evident that CE(E) is in fact a bundle of (Clifford) algebras over X.
The fibrewise multiplication in C{(E) gives an algebra structure to the
space of sections of C{(E).

It is also evident that each of the notions intrinsic to Clifford algebras
carries over to Clifford bundles. For example, there is a decomposition

CU(E) = CL%(E) @ CLY(E) (3.2)

corresponding to the even-odd decomposition of the algebras. These are
the +1 and —1 eigenbundles of the bundle automorphism

a: C(E) —> CE(E) (3.3)

which extends the map E — E sending v to —v. There is also an intrin-
sically defined bundle map

L:C{E) — CY(E) 3.4)
which in any fibre C{(E,) is given by
Lig) =~ 3. ewe, (35)

where {e,, ... ,e,} is an orthonormal basis of E, (see Chap. I).
The following is an elementary but important fact:

Proposition 3.5. There is a canonical vector bundle isometry
A:A*(E) — CL(E) (3.6)
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under which

AMA"E) = CRYE);  MA°“E) = CLY(E) (3.7)
and

MAPE) = {p € CYE) : a o L(¢) = (n — 2p)o} (3.8)
forp=0,...n

Proof. The isomorphism A follows directly from the canonical isomor-
phism A:A*R" 5 C¢(R") and the fact that Ao A*p, = cf(p,) - A. Equa-
tions (3.7) and (3.8) follow from Proposition 3.8 in Chapter 1. =

As mentioned in the introduction, it is now natural to look for bundles
of irreducible modules over the bundle of Clifford algebras CE&(E). Such
bundles can be constructed if w,(E) = 0.

DEFINITION 3.6. Let E be an oriented riemannian vector bundle with a
spin structure £: Pg;,(E) = Pso(E). A real spinor bundle of E is a bundle
of the form

S(E) = PSpin(E) xp Ma

where M is a left module for C&(R") and where u:Spin, - SO(M) is the
representation given by left multiplication by elements of Spin, = C£(R").
Similarly, a complex spinor bundle of E is a bundle of the form

Sc(E) = PSpin(E) X, M¢

where M is a complex left module for C¢(R") ® C.
If the module M (or M¢) is Z,-graded, the corresponding bundle is said
to be Z,-graded.

ExaMPLE 3.7. Consider CE(R") as a module over itself by left multiplica-
tion . The corresponding real spinor bundle

Cf‘Spin(E) = PSpin(E) Xe Ce(R")

is a “principal CE(R")-bundle”, i.e., it admits a free action of CE(R") on
the right. There is a natural embedding Pgy,;,(E) = Clgy,;,(E) which comes
from the embedding Spin, = C£(R"). Hence, every real spinor bundle for
E can be captured from this one.

A similar remark holds for the complex case.

Of course, the bundle C&s;,(E) differs from the Clifford bundle CE(E).
They can be compared as follows. Consider the representation

Ad:Spin, — Aut(C{(R") (3.9
given by Ad(¢) = gpg ™" for g € Spin, = CL(R"). Clearly Ad _, = identity,



§3. CLIFFORD AND SPINOR BUNDLES 97

and so this representation descends to a representation Ad’ of SO,. One
easily checks that Ad’ is just the representation cf(p,) given in (3.1). It
follows that

CUE) = Pspin(E) % g CUR").

This leads to the following.

Proposition 3.8. Let S(E) be a real spinor bundle of E. Then S(E) is a bundle

of modules over the bundle of algebras CU(E). In particular the sections of

the spinor bundle are a module over the sections of the Clifford bundle.
The corresponding fact holds in the complex and Z ,-graded cases.

Proof. The diagram
Ps,i(E) x CYR™) x M —> Py, (E) x M

pr Jp;
Pg,i(E) x CER") x M — Py, (E) x M

given by

(P,(P,m) I — (P ’(Dm)

l |

(pg™ 909 ,gm) — (pg~".gom)
clearly commutes. Therefore, u descends to a mapping
u:CUE) @ S(E)— S(E), (3.10)

which is easily seen to have the desired properties. The corresponding
argument goes through in the complex and Z,-graded cases. m

We say that two spinor bundles of E are equivalent iff they are equivalent
as bundles of CE(E)-modules. A bundle of (real or complex, graded or
ungraded) C{(E)-modules is called irreducible if at each x the fibre is
irreducible as a (real or complex, graded or ungraded) module over CU(E,).

Recall that every module for C¢(R") can be written as a direct sum of
irreducible ones, and there are at most two equivalence classes of irreduc-
ible modules. Consulting §5 of Chapter I we obtain the following:

Proposition 3.9. Every spinor bundle of E (real or complex, graded or un-
graded) can be decomposed into a direct sum of irreducible ones. With the
assumption that X is connected, the number N of equivalence classes of ir-
reducible ones depends on the dimension n of E as follows.
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Real Complex Real Complex
n (mod 8) Ungraded Ungraded Graded Graded
1 1 2 1 1
2 1 1 1 2
3 2 2 1 1
4 1 1 2 2
5 1 2 1 1
6 1 1 1 2
7 2 2 1 1
8 1 1 2 2

Thus, for n even, there is only one irreducible, ungraded spinor bundle
of E (over R or over C). If n = 6 or 8 (mod 8), the complex one is just the
complexification of the real one. If n = 2 or 4 (mod 8), the complexification
of the real one splits into two copies of the complex one. This, and the
corresponding information for n odd, can be easily deduced from the
tables in Chapter I.

We now observe that in certain dimensions any real spinor bundle auto-
matically carries a natural complex or quaternion structure. This is a con-
sequence of the fact that for certain n, each irreducible real CE(R")-module
carries a compatible C or H structure, i.e., the module multiplication is
C or H linear (and hence, the complex or quaternion scalar multiplication
in M descends to the quotient P, X, M). The appearance of such struc-
ture is periodic in n and can be deduced from Table III in Chapter I. We
conclude the following.

Proposition 3.10. Let E be a real n-dimensional bundle equipped with a spin
structure, and let S(E) be any real ungraded spinor bundle of E. If n =1 or
5 (mod 8), then S(E) carries a complex structure such that Clifford multipli-
cation is complex linear in each fibre. If n = 2, 3 or 4 (mod 8), then S(E)
carries a quaternion structure so that Clifford multiplication is quaternion
linear in each fibre.

Let us now say a word about the Z,-graded case. There is a natural
one-to-one correspondence between classes of bundles of irreducible Z,-
graded modules over CL(E) = CL%(E) @ CL}(E) and classes of bundles of
irreducible modules over C£°(E). Given a bundle S(E) = S%(E) @ S*(E) of
the first kind, S%(E) is of the second. Given an S°(E) of the second kind,
the bundle

S(E) = CUE) Qcror) S°(E)

is of the first.
Suppose now that n = 2m and S¢(E) is the irreducible complex spinor
bundle of E. We shall show explicitly how to split S¢(E) into a direct sum

Sc(E) = S¢(E) @ S¢(E) (3.11)
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of CE%E)-modules. Interpreting S¢(E) as SYE) and S¢(E) as SL(E), or
the other way around, gives a Z,-graded module structure to Sc(E). The
two possibilities are the two inequivalent graded modules appearing in
the table. The construction is as follows. Consider the global section w¢
of C{(E) ® C which at x € X is given by

D¢ = i"'el ‘' Com (3.12)

for any positively oriented orthonormal basis {e, ... ,e,,} of E,. Then
we have

Wt =1 (3.13)
ewe = —wge (3.13)

for any e e C£}(E) ® C. We then define S¢(E) and Sg(E) to be the +1
and —1 eigenbundles for Clifford multiplication by wc. One easily sees
from (3.13) that these bundles have the same dimension and that they
form the Z,-graded modules as stated above.

These bundles can be written as associated bundles in the following
way. Let AS,, and AS,, denote the two fundamental complex representa-
tions of Spin,,,. Then

SE(E) = Pg;(E) X6t C™ ", (3.14)
P! 2m

For n = 0 (mod 4) there is an analogous construction in the real case.
Let S(E) be the irreducible real spinor bundle of E and define a global
section w of CL(E) by setting

w=e;"''"e, (3.15)

at x € X where {e,,...,e,} is any positively oriented orthonormal basis
of E,. Again, we have that

w? =1 (3.16)
we= —ew  for all e e CLE). (3.17)

For equations (3.16) and (3.17) it is necessary that n be a multiple of 4.
This again determines a decomposition

S(E) = S*(E) ® S™(E) (3.18)

into the +1 and — 1 eigenbundles of the operator given by Clifford multi-
plication by w. They make S(E) a Z,-graded module in two distinct ways,
thereby accounting for the 2 in Table 3.1 above.

If n=0 (mod 8), then S*(E) ® C = SZ(E). This corresponds to the
fact that in these dimensions, A are the complexifications of real
representations.



100 II. SPIN GEOMETRY AND DIRAC OPERATORS

If n =4 (mod 8), then S¥(E) ® C = SE(E) ® SE(E). In these dimen-
sions A} are quaternionic.
We now make a fundamental observation concerning these Z,-graded
bundles. Let
D(E)={ecE:|e| <1}
be the unit disk bundle of E with boundary
D(E) = {e€ E:|lell = 1},

the unit sphere bundle. Let 7: D(E) — X be the bundle projection. Assume
n is even, so that SZ(E) are defined. Then the pull-backs of these bundles
over D(E) are canonically isomorphic on D(E) by the map

He: (n*SE)e — (n*S¢)e (3.19)
given at e € D(E) by
Hlo)=e-o
that is, Clifford multiplication by e itself. Since e - e = —|je||> = — 1, each

map g, is an isomorphism. The pair of bundles n*SE over D(E), together
with the isomorphism pu:n*S¢ 5 n*Sg over D(E), given by (3.19), deter-
mine a “difference” element

ne(E) = [n*S&,n*Sg; 1] € R(«(E)) (320)

where 7(E) = D(E)/D(E) is the Thom space of E. Here K denotes reduced
complex K-theory (cf. 1.9).
If n =0 (mod 4), the analogous construction clearly goes through in
the real case. Here we obtain an element
n(E) = [n*S*,n*S™; u] € KO(x(E)). (3.21)

We are now in a position to define the map (2.3) discussed in the last
section. Let Eg, be the universal 8k-plane bundle over BSping, with its
unique spin structure. (Eg, is the pull-back of the universal 8k-plane bundle
over BSOyg, by the map B¢:BSping, — BSOg,.) Let

n(Egi) € k\é(MSPinsQ

be the class (3.21) defined above. Now fix n and choose k sufficiently large
that we have the isomorphism Q3P = 7, , ¢,(MSping,). Then a cobordism,
class [X] € QFi" determines a map fy:S"*® — MSping,. We define

o, QSPin — KO~ "(pt) (3.22)
by
A([X]) = f3n(Esy) € KOS+ = KO(S") = KO~ "(pt).
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§4. Connections on Spinor Bundles

Suppose E is a smooth riemannian vector bundle over a manifold X and
that &: Pg,;.(E) = Pso(E) is a spin structure on E. Then, of course, any
connection on Pgo(E) can be lifted via ¢ to a connection on Pg,;,(E), and
this, in turn, defines a connection on the associated spinor bundles. In
this section we shall give an explicit computation of this spinor connection
and its associated curvature tensor in terms of the connection on E.

We begin by briefly recalling some facts from the theory of connections.
Let n: P —» X be a smooth principal bundle over a manifold X with group
G. Then G is a Lie group whose Lie algebra will be denoted by g. G acts
freely from the right on P. Each element Ve g determines a vector field
¥ on P by setting

I7p = d/dt(p - exp(tV))|‘=o.
The map V - 17‘, gives an isomorphism
g7, 4.1)

where ¥, is the tangent space to the orbit through p. The orbits are the
fibres of =, and the plane ¥}, can be thought of as the “vertical” space
through p. A connection is then a choice of an invariant field of comple-
mentary “horizontal” spaces.

DEFINITION 4.1. A connection on P is a G-invariant field of tangent n-
planes 7 on P (n = dim(X)) such that the linear map n,:7, = T,,(X) is
an isomorphism for all p € P.

At each p € P, 7, determines a linear projection T,(P) — ¥/,. The ca-
nonical isomorphism (4.1) then gives a linear map

,: T, (P)—g. 4.2)

This defines a g-valued 1-form w on P, called the connection 1-form. It
has the following properties.

o(V)=V forall Veg. 4.3)

g*() = Ad;-:@ for all g € G acting on the manifold P. (4.4)

Note that given the connection 1-form w, one can recapture the connec-
tion by the relation

1, = ker(w,).

The curvature of the connection is the g-valued 2-form Q given by the
equation

Q = do + [0,0]. 4.5)
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(Note that by the skew-symmetry of the Lie bracket, [co,w](v,w)déf
[w(v),w(w)] is a g-valued exterior 2-form.) This form has the following
properties.

QV,)=0 forallVeg (4.6)
g*Q = Ad,-:(Q) forallge G 4.7)

EXAMPLE 4.2 (orthogonal connections). Let P = Pso(E) where E is a
smooth, oriented riemannian vector bundle. The Lie algebra of SO, is the
space so, of real, skew-symmetric n x n-matrices. Hence, a connection 1-
form w can be considered as an n x n-matrix of 1-forms w = ((w;;)) where
w;; = —wj;. The corresponding curvature is a matrix of 2-forms Q = ((Q;))
where

QU = da),'j + kgl Wy A wkj' (4.8)
For an orthogonal matrix g, Ad,(w) = gwg™".
Let e; A e; denote the elementary skew-symmetric (i,j)-matrix. If

{ey,...,e,} denotes the canonical basis of R", this corresponds to the
transformation

(e; A €))(v) = e, vPe; — {ej, v)e;. 4.9)
The connection and curvature forms can then be written as
w=—) w;eAe (4.10)
i<j
Q= —ZQ,-jei/\e] (4.11)
i<j

Given a connection on the bundle Pso(E) as above, we can define a rule
for taking derivatives of sections of E. For any smooth vector bundle E’
over X, let I'(E") denote the space of smooth cross-sections of E'.

DEFINITION 4.3. A covariant derivative on E is a linear map
V:I'(E) — I(T*X ® E)
such that
V(fe)=df ® e+ fVe 4.12)

for all f € C*(X) and all e € I'(E).

Thus, given a smooth vector field V on X, we obtain a map V,:I'(E) —
I'(E) called the covariant derivative with respect to V. At a given point
x € X, (Vye), depends only on V, and on the values of e in a neighborhood
of x.
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Proposition 4.4. Let w be a connection I-form on Pgo(E) as above. Then
determines a unique covariant derivative on E by the rule

Ve, = jzl By ® e (4.13)
where & = (ey, . . . ,e,) is a local family of pointwise orthonormal sections of

E, i.e., a local section of Pso(E), and where & = &*w.
This covariant derivative satisfies the rule

V<e,e) =(Vye,e) +<e,Vye') (4.14)
for all V e T(X) and e,e’ € T'(E), where <, -) denotes the inner product in
E.

Conversely, any covariant derivative on E satisfying (4.14) determines a
unique connection I-form by equations (4.13).

Note. A covariant derivative with property (4.14) will be called riemannian.

Proof. Let & = (ey,...,e,) be a frame defined on an open set U < X,
and let ((@;;)) be any skew-symmetric n x n-matrix of 1-forms on U. Then
equation (4.13) together with property (4.12) defines a unique covariant
derivative on E|,. (To see this, note that any section e of E over U can be
written uniquely as e =Y. fi; for f},...,f, € C*(U). Then by (4.12) and
(413)wehave Ve =Y df; ® ¢; + ). fih; ® e, = Y, {dfi + Y, &;f;} ® €.
This definition of V has properties (4.12) and (4.14) and is therefore a
riemannian covariant derivative on U.) Conversely, given & and a rieman-
nian covariant derivative V on U, we have a skew-symmetric matrix of
1-forms ((c3;;)) on U uniquely defined by (4.13).

Consequently, to define a global covariant derivative on E it suffices
to assign to each local frame field & a matrix of local 1-forms ((d;;)) sat-
isfying the following compatibility condition. Suppose & = (e, . . . ,e,) and
& =(e},...,e,) are two orthonormal frame fields over an open set U,
and let @ = ((@;;)) and &' = ((&;;)) be the associated matrices of 1-forms.
Then for each x € U, there is a unique orthogonal n x n-matrix g(x) =
((9:(x))) such that &(x) = &'(x)g(x), i.e.,

ex) = 3. e
Applying V and using (4.13) we find easily that

@(x) = g™ ' (x)@'(X)g(x) + g~ (x)dg(x). (4.15)

This transformation rule is the required compatibility condition.
Suppose now that Pgo(E) is provided with a connection 1-form w. Then
given a local section & = (e, . . . ,e,) of Pgo(E) over an open set U, we get
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a skew-symmetric matrix of 1-forms @& = ((d;;)) on U by setting & = &*w.
Note that & determines a local trivialization

¢:U x SO,—> 2~ (V)

of n: Pgo(E) — X by setting ¢(x,g) = &(x)g. Conversely, ¢ determines &,
since &(x) = ¢(x,e). Note that ¢ is SO,-equivariant.

We now observe that in this local product determined by ¢, the connec-
tion 1-form can be written as

(P*@)e,g = Ady-1(d) + g~ dg. 4.16)

To see this we first write p*w = w, + w; where w, = Y. a(x,g)dx’ for local
coordinates x' on X and where w, = b;{(x,g)dg,;. Properties (4.3) and
(4.4) imply that w, = g~ 'dg. By definition we have w, = &*w along
U x {e} c U x G. Property (4.4) then implies that w, = Ad,-:(d) =
g~ ! o @ o g at a general point (x,g).

If we choose a different cross section &’ = (e}, . . . ,e;) over U, we get a
new trivialization ¢’: U x SO, — n~!(U) by the formula ¢'(x,g) = &'(x)g.
The change of trivializations ® = (¢’)" !0 @:U x SO, » U x SO, is
given by

D(x,9) = (x,9(x)g) 4.17)

where g: U — SO,, is the change of frames as above, i.e., &(x) = &'(x)g(x).
Clearly we have that

o*o = O¥(¢™*w).
Using (4.16) and (4.17) we can re-express this as

Ad,-1(@) + g7 "dg = A - (@) + (9(x)g) ™ d(g(x)g) (4.18)
= Ad,-1{Ad,-1(@) + g~ (X)dg(x)} + g™ dg.

This equation immediately reduces to the compatibility condition (4.15).
Consequently, a connection 1-form on Pgo(E) determines a riemannian
covariant derivative on E, as claimed. Conversely, given a riemannian
covariant derivative, we obtain local 1-forms @& transforming according
to (4.15). This implies that the compatibility condition (4.18) for the ex-
istence of a global connection 1-form on Pgo(E) is satisfied. This completes
the proof. m

Given a covariant derivative V on E, it is natural to ask whether the
second covariant derivatives commute in an appropriate sense. For this we
consider the composition

IE) - T[(T* ® E) - [(A*T* ® E)
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where V is the natural prolongation of V defined on sections of the form
c®ebyVoe®e)=da®e—aAVe,and weset R=VoV

Proposition 4.5. Let w, & and V be as in Proposition 4.4, and let Q be the
curvature 2-form of the connection. Then

Re=Y Q;®e¢ 4.19)
=1

where Q = 8*Q.

Proof. From equation (4.8) we have

v(vei) = v( 21 (Ijﬁ ® e,)

Z dé; @ e; +
i=1 Js

= Z 0;Qe¢. m

=

C?)U A Cbﬂ ® e,,
1

Proposition 4.6. Let Q, & and V be as in Proposition 4.5. Then for local
tangent vector fields V and W on X, we have

Ry we = (VyVw — VyVy — Vi wyle. (4.20)
Proof. Note that
VyVwe, =V, (Z ew,,{W))
= jzk e (V)W) + ZJ: e;V - di (W)
and therefore
VvV — Vo Vy — Vi mes = ; eV @(W)—W-&;(V)— @ ([V,W])}
+ JZ; e{@;(V)BW) — &(W)B,{V)}
= Z e,{dc?)ﬁ(V,W) + ; Dy A DV, W)}
Z e (V,W). m @4.21)

Notice that from (4.14) we have the relation
<Ry’We, e’) + <e, Ry,we'> = 0. (4.22)

Notice also that from the above it follows that the expression (Ry ye,e')
is a tensor, that is, at any point x € X, it depends only on the quantities
Ve Wssex.e. and not on the local fields V,W,ee’ extending them. Hence,
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given two tangent vectors V,Wat x € X, the curvature gives a well-defined,
skew-symmetric endomorphism

RV.W . Ex -_ Ex (4.23)
called the curvature transformation associated to V and W.

Suppose now that n: P — X is a smooth principal G-bundle over X,
that p: G — SO, is a representation of G, and that

E,=Px,R"
is the associated riemannian vector bundle (cf. IL.3). Then given a connec-

tion on P there is a canonical connection induced on P(E,) as follows.
Note that

P(E,) = P x, SO,

where an element g € G acts on SO, via left multiplication by p(g). Given
a connection T on P, extend it trivially to P x SO, and then push it
forward to P x, SO,. One can easily see that this gives a connection 7,

on P(E,).
There is a canonical, G-equivariant mapping
i:P— P(E,) 4.24)
given by
p— [(pe)).

(where [(p,h)] denotes the class of (p,h) € P x SO, in the quotient P(E,).)
If the representation p is faithful, the mapping (4.24) is an embedding.
For simplicity we assume p to be faithful.

Proposition 4.7. Suppose w and Q are the connection and curvature forms
on P respectively, and let w, and Q, denote the corresponding forms for the
induced connection on P(E,). Then, considering P < P(E,) as above, we
have that

Wp|p = Py
and

Q| p= Pl
where p,:g — $0, is the Lie algebra homomorphism associated to p:G —
SO,,.
Proof. This follows straightforwardly from the fact that the embedding
(4.24) is G-equivariant, i.e., that i(p - g) = i(p)* p(g). ®

We are now in a position to discuss the connections on Clifford and
spinor bundles. Let E be an oriented riemannian vector bundle of dimen-
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sion n, and suppose E is furnished with a riemannian connection, i.e., a
connection t on Pgo(E). The Clifford bundle CE(E) is associated to E by
the representation (3.1):

cf(p,):SO, —> Aut(CE(R").

Therefore, by the construction above, 7 induces a unique connection, 7',

on C{(E). Note that since cf(p,) maps into the automorphisms of C£(R"),

we have that the associated Lie algebra homomorphism is a map
cl(p,), : 50, — Der(CL(R")

where Der(*) is the Lie algebra of derivations; i.e., c€(p,), has the prop-
erty that for each element A € so,

{cton A} (@ ¥) = ({ctlon)sA}0) ¥ + ¢ - ({cllpa)A}Y)  (425)

for all ¢, € CL(R"). Recall, furthermore, that under the canonical iden-
tification CE€(R") = A*R", the representation cf(p,) becomes A*p,. To-
gether with Propositions 4.4 and 4.7, this gives the following.

Proposition 4.8. The covariant derivative V on CE(E) acts as a derivation
on the algebra of sections, i.e.,

V(e -¥) =) ¥+ ¢ (V) (4.26)

for any two sections ¢ and y of CL(E).

Furthermore, under the canonical identification C{(E) =~ A*(E), the co-
variant derivative V preserves the subbundles AP(E) and agrees there with
the covariant derivative induced by the representation APp, (i.e., the usual
covariant derivative).

Corollary 4.9. The subbundles CL%E) and CL)(E) are preserved by V.
Furthermore, the “volume form” w = e, - - - e, is globally parallel; that is,

Vo =0.

Therefore when n = 3 or 4 (mod 4), the eigenbundles CL*(E) = {¢ € CY(E):
w@ = + ¢} are also preserved by V.

Proof. The first statement follows from the fact that CL%E) = A*"*"(E)
and CLY(E) = A*Y(E). The second statement follows from the fact that w
corresponds to the unit section of AYE). m

In the analogous way, Propositions 4.5 and 4.7 give the following.

Proposition 4.10. For any pair of tangent vectors V and W at x € X, the
curvature transformation

Ry w:CUE,) = CUE))
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is a derivation, i.e.,

Ryw(9 - ¥) =Ry w(9) ¥ + ¢ Ry w¥) (4.27)

for all oy € CYE,). Furthermore, R y, preserves the subspaces CL°(E,),
CLY(E,) and CL*(E,) as above.

Suppose now that E carries a spin structure £: Pg;,(E) — Pgo(E) and
let S(E) = Pgy;(E) X, M be an associated real spinor bundle. Here M
is a left module over C¢(R") and u:Spin, = SO(M) is the resulting repre-
sentation (cf. §3). The connection t on Pgy(E) lifts via the covering map
¢ to a connection 7 on Pg,;,(E). This in turn induces a connection and
therefore a covariant derivative on S(E). Recall (Proposition 3.8), that the
sections of S(E) form a module over the sections of CE(E).

Proposition 4.11. The covariant derivative V on S(E) acts as a derivative
with respect to the module structure over CU(E), i.e.,

Vg 0)=(Vo) o+ ¢ (Vo) (4.28)
for any section ¢ of CL(E) and any section ¢ of S(E).

Corollary 4.12. If n=3 or 4 (mod 4), the eigenbundles S*(E) = {¢p €
S(E):wp = + ¢} are preserved by V.

Proof of Proposition 4.11. The representations cf(p,) (= Ad) and u pre-
serve the module multiplication, that is, u(g)(¢ * 0) = {cl(p,)(g)e} - {u(g)o}
for all g € Spin,, ¢ € CE(R") and o € M (see the discussion surrounding
Proposition 3.8.) Differentiating at the identity, we get that for each element
A € 5o, = spin,

{neA}(@ - 0) = ({cl(p)4A}0) " 0 + ¢ - ({nyA}0). 4.29)
The argument is now completed using Propositions 4.4 and 4.7 as before.
n

We also have the analogous statement for curvature:

Proposition 4.13. For any pair of tangent vectors V,W at x € X, the curva-
ture transformation

Ry w:S(E,) — S(E,)
is a module derivation, i.e.,
Rywlo-0)=Rywlp) a+o: Ry wlo) (4.30)

for all ¢ € CYE,) and all o € S(E,). Furthermore, Ry y preserves the sub-
spaces S*(E,) when they are defined.
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We shall now proceed to explicitly compute the connection and cur-
vature forms on S(E). To do this we need to examine the representation

Recall that so, is ‘generated by the elementary transformations x A y;
x,y € R", given by the formula

(x A y)v) = {x, 0Dy — {y,V)x. (4.31)
From Chapter I, §6, we have
Be(x A y) = 3[xy] 4.32)

That is, p,(x A y)(6) = %[x,y] - o for all ¢ € M. Recall that on Spin,, we
have cf(p,) = Ad. Hence,

cllpex Ay=AdxAy= ad%(x,,.;. (4.33)

That is, Ad,(x A y)(¢) = 4[[x.y],¢] for ¢ € CE(R"). Note that equation
(4.29) follows immediately from (4.32) and (4.33).

Suppose now that & = (e,, . . . ,e,) is an n-tuple of pointwise orthonor-
mal sections of E defined over a contractible open set U < X. & is just
a section of Pgo(E) over U, and it can be lifted to a section & of Pgpin(E)
over U. There are two possible such liftings. They satisfy the relation:
(o8 =8.

The connection 1-form on Pg,;,(E) is just the lift £*w of the connection
1-form w on Pgo(E). To obtain a formula of the type given in Proposition
4.4 we want to pull £*o down to U by the local section &. This “pull-
down” is just

@ = E¥(E*w) = (¢ - H)*w) = E*(w).

Consequently, the scalar 1-forms @;; are just the 1-forms we obtained
earlier by pulling down the connection @ by the local frame field &.

Now for any spinor bundle S(E) we have a canonical embedding
Pgi(E) © Pso(S(E)). Thus, & can be considered as a section of Pgo(S(E)).
Let w*® denote the connection 1-form on Pgy(S(E)). Then to apply Propo-
sition 4.4 we want to compute &° = &*(w*). However, by Proposition 4.7,
we know that ® restricted to Pg,;,(E) < Pgo(S(E)) is just p,(¢*w). Con-
sequently, we have

@ = p, .
Writing & = — ) dje; A e; (cf. (4.10)) and using (4.32), we can rewrite
this as i<j
(5, = “‘% Zj éuelej. (4.34)

(Note that since ey, .. . e, are orthogonal, [e;,e;] = e;e; — eje; = 2ee;.)
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Finally, we note that the embedding Pg,;,(E) = Pso(S(E)) can be inter-
preted to mean that every point of Pgp;,(E) determines an orthonormal
frame in S(E). In particular, the local section & determines a local section
&P =(0y,...,08) of Pso(S(E)). (The other choice of lifting & just deter-
mines the negative frame —% =(—a,,...,— oy).)

Combining the remarks above, we have the following.

Theorem 4.14. Let w be the connection 1-form on Pgo(E) and let S(E) be
any spinor bundle associated to E. Then the covariant derivative V° on S(E)
is given locally by the formula

= % Z ® eie_,- *O0q4 (4.35)

where & = (ey, - . . ,¢,) is a local section of Pgo(E), & = &*(w), and where
& = (04, ...,0y) is a local section of Pso(S(E)) determined by &.

Note. The frame field & = (g4, . . . ,0y) is, in fact, only determined up to a
constant orthogonal change of framing, that is, up to a choice of ortho-
normal basis at some point. (This corresponds to a choice of basis in
the module M, i.e., on the matrix realization of the representation p.) This
family of framings is characterized by the following property. For any
I =(iy,...,i,), we have that ¢, - - ¢;,0; = Y Ck;o, where the coefficients
{C};} are constants.

An analysis similar to the one above can be carried out for the curva-
ture 2-form. Since curvature is a tensor, we do not need to be concerned
in this case with the distinguished frame field & on S(E). Hence, the cur-
vature of S(E) can be expressed in the following very pretty way:

Theorem 4.15. Let Q be the curvature 2-form on Pyo(E) and let S(E) be any
spinor bundle associated to E. Then the curvature R® of S(E) is given locally
by the formula
Ro=%3) Q;Ree; o (4.36)
i< J

where & = (e, . . . ,¢,) is a local section of Pso(E), Q = &*(Q) and where o
is any section of S(E).

In particular, for any two tangent vectors V and W at x € X, the curvature
transformation Ry, y: S(E,) — S(E,) is given by the formula

;,W(a) % Z {Ry, wle), ej>e (4.37)

i<j

where Ry y is the curvature transformation of E,.
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Note that the expression

Vow = 3 12; Ry wle) eee; (4.38)

is independent of the choice of an orthonormal basis (e;, ... ,e,) for E,
and is therefore invariantly defined. It is skew symmetric in ¥V and W.
Consequently, R* can be thought of as a 2-form on X with values in
CL(E). The formula (4.37) can now be succinctly expressed as

Ri/'w(a) = m‘:/'w * 0. (4.39)

It is interesting to note that the arguments above can be carried through
also for the Clifford bundle C{(E) by using the equation (4.33). For tan-
gent vectors ¥V and W at x € X we define the invariant operator

mf'l.w =1 ;j (Ry,wle) e j>ade,e, (4.40)

where, as before, (ey, . . . ,e,) is any orthonormal basis of E,. We then ob-
tain the following expression for the curvature tensor on CE(E) = A*(E)
in terms of Clifford multiplication.

Theorem 4.16. For any two tangent vectors V and W at x € X, the curva-
ture transformation R§} y,: CUE,) — CL(E,) is given by the formula

Ry (@) = Ry.w(0) (4.41)

where Rs'y, is the operator defined above in terms of the curvature trans-
formation Ry y of E,.

It is an easy exercise to check that the restriction of the operator Ry
to E, = CU(E,) agrees with Ry . One need only verify that 4[e,e;,e] =
(e;Aej)le) for e E,.

Note that Theorem 4.16 does not depend on the existence of a spin
structure on E. In fact, it does not even depend on the existence of an
orientation on E.

We conclude this section with some remarks concerning the situation
where E = T(X), the tangent bundle of X. In this basic case we abbre-
viate notation by setting Pgo(X) = Pgo(T(X)), the (orthonormal) tangent
frame bundle of X, and C{(X) = CU(T(X)), the Clifford bundle of X.

Suppose now that Pg(X) is furnished with a connection, and let V
denote the corresponding covariant derivative. Then there is an invari-
antly defined tensor field associated to V as follows. Let ¥ and W be
tangent vectors at a point x € X. Extend them to local vector fields (i.c.,
local sections of T(X)) and consider the expression

Tyw=VyW—V,V - [V,W] (4.42)



112 II. SPIN GEOMETRY AND DIRAC OPERATORS

where [V,W] is the Lie bracket. The value of Ty j at x can be easily
shown to be independent of the choice of vector. fields extending V, and
W, (see Helgason [1, Chap. I]). Ty y is clearly bilinear and skew-sym-
metric. It therefore defines a global 2-form on X with values in T(X) called
the torsion tensor of the connection. The following result can be found
in any basic text in differential geometry.

Theorem 4.17. (The Fundamental Theorem of Riemannian Geometry).
Let Pgo(X) denote the tangent frame bundle of a riemannian manifold X.
Then there exists a unique connection on Pgo(X) with the property that its
torsion tensor vanishes identically.

This connection will be called the canonical riemannian connection on
X. It induces a canonical connection on CE(X) = A*(X).

Note that if X admits a spin structure : Pg,;,(X) = Pgo(X), then by
lifting, we obtain a canonical riemannian connection on Pg,;,(X). This,
in turn, induces a connection on any spinor bundle associated to Pg;,(X).

This situation falls precisely into the general framework developed
above. Thus any spinor bundle for X is a bundle of left modules over
Cf(X), and the canonical covariant derivative is a derivation of the mod-
ule multiplication (see Proposition 4.11).

For most of the basic facts of riemannian geometry, the reader is referred
to the general literature which is extensive and quite good. However, there
is one fact we use sufficiently often that it is worthwhile to cite it here.

Proposition 4.18. Let R denote the curvature tensor of a riemannian mani-
fold X, i.e., the curvature tensor of the canonical riemannian connection on
the tangent bundle TX. Then R satisfies the following identities:

RU'yW + Rywa + RW.U V = 0, (4.43)
(RyyW,Y) =<Ry U, V) (4.44)

for all tangent vectors U,V,W,Y € T, X, at all points x € X.

§5. The Dirac Operators

Let X be a riemannian manifold with Clifford bundle C{(X), and let S
be any bundle of left modules over C£(X) (i.e., a vector bundle over X
such that at each point x € X, the fibre S, is a left module over the algebra
CL(X),.) Assume § is riemannian and is furnished with a remannian con-
nection. Then under these general hypotheses, we can define a canonical
first-order differential operator D:I'(S) — I'(S) called the Dirac operator
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of S, by setting

Do= ) ¢;V.o (5.0)
=1
at x € X, where e,,...,e, is an orthonormal basis of T,(X), where V

denotes the covariant derivative on S determined by the connection, and
where “-” denotes the Clifford module multiplication. The operator D? is
called the Dirac laplacian.

Recall that the principal symbol of a differential operator D:I'(E) — I'(E)
is a map which associates to each point x € X and each cotangent vector
¢ e T¥(X), a linear map o4D):E, — E, defined as follows. If in local
coordinates we have

lal
D= T AWz: and  E=Yadx,

lalsm

where m is the order of D, then
o/D) = i" ' 'Z: A (x)E

The operator D is elliptic if /(D) is an isomorphism for all £ # 0 (see
II1.1 for further details).

Recall also that the riemannian metric induces a canonical isomor-
phism between T(X) and T*(X). Throughout this section we shall con-
sider them as so identified.

Lemma 5.1. Let D be the Dirac operator of the bundle S defined above.
Then for any & € T*(X) = T(X) we have that

odD) = it (5.1)
adD?)=||¢|? (5:2)

where the symbol on the right denotes Clifford multiplication by the vector
& in (5.1) and the scalar ||E||* in (5.2). In particular, both D and D? are
elliptic operators.

Proof. Fix x € X and an orthonormal basis e, ... ,e, of T (X). Choose
local coordinates (x, . . . ,x,) on X at x such that x corresponds to 0 and
e; corresponds to (9/0x;), for each j. Under the identification T (X) =
T%(X) we have that e; also corresponds to (dx;), for each j.

For any local trivialization of § near x, we have that V,, = (6/0x)), +
zero-order terms. Hence, at 0 we have that D = )" e,(9/0x ,)o + zero-order
terms. Consequently, for any cotangent vector & =) £,(dx)), at 0, we
have by definition of the symbol that 6 (D) = i ) e;¢; = i&. This gives (5.1).
Then 64(D?) = 6,(D) > 6,(D) = —¢& - & = ||¢]||?, and the proof is complete.

n
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We now observe that in light of the basic examples it is natural to
require that the bundle S have certain additional properties. The first
property is that Clifford multiplication by unit vectors in T(X) be or-
thogonal, i.e., that at each x € X,

{eoy,e0,) = <04,0,) (53
for all 0,,06, €S, and all unit vectors e € T(X). Since e = —1, this is
equivalent to the requirement that

(e0,,0,) + {0y,€0,) =0 (5.3)

for all such o4, ¢, and e.

Recall (from the end of §4) that the bundle C&(X) carries a canonical
riemannian connection, whose associated covariant derivative will be
denoted by V. Our second requirement is that the covariant derivative
on S (which we also denote by V) be a module derivation, i.e., that

V(g -0)=(V9): a+ ¢ (Vo) (54)

for all ¢ € I'(CL(X)) and all o € I'(S).

There is a surprisingly large and important collection of bundles with
the properties described above. Although these bundles can be quite
varied in nature, a substantial part of the theory concerning them can be
treated in a uniform way. For this reason we introduce the following
concept:

DEFINITION 5.2. A Dirac bundle over a riemannian manifold X is a bun-
dle S of left modules over C¢(X) together with a riemannian metric and
connection on S having properties (5.3) and (5.4) above.

Before presenting examples of these bundles, we shall investigate some
of their elementary properties. Note that any Dirac bundle S has a canon-
ically associated Dirac operator. Furthermore there is an inner product
on I'(S) induced from the pointwise inner product {-,*) by setting

(01,09 = [, <01,02). (55)
Proposition 5.3. The Dirac operator of any Dirac bundle over a riemannian
manifold is formally self-adjoint, i.e.,
(Doy,0,) = (64, Do)
for all compactly supported sections ¢, and o,.

Proof. Fix xe X and choose an orthonormal tangent frame field
(es, . - - ,e,) in a neighborhood of x so that (V,e;), = 0 for all i,j. This can
be done for example, by extending a frame at x by parallel translation
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along geodesic rays emanating from x. Using properties (5.3), (5.4) and
(4.14), we have that at x,

{D64,03)5 = ; (Ve,01,0205 = —; (Ve,01,€02)5
= —; {ej{01,€j05) — 01,(V.£))0,) — 01,6}V, 02)}x
= =2 (e;<01,€;02)), + <01, Da,),
= diVEV.)x + <04, Da,),
where V is the vector field defined by the condition that
VW)= —(a,W-05)

for all tangent vectors W. The last line in (5.6) is established as follows
div(V), EY <V, Ve,
i

= ; {e,i(V’ ej) - <Va Ve,ej>}x
= ; {ej<V’ ej)}x
= "; {ej<oy,e;" 020}

The first and last expressions in (5.6) are independent of the frame field
(ey, - - - ,¢,). Hence, we have established the equation

on X. The proposition follows immediately. m

Note that if X is permitted to have a boundary dX, then the above
argument proves that

(Doy,03) = (0,,D0,) = [ <v-0,,05) (5.7)

for compactly supported sections ¢, and g,, where v denotes the outer
unit normal field to X in X.

It is a general consequence of the ellipticity of D that any weak solution
to the equation Dy = 0 is of class C® (cf. Theorem 5.2(i) of Chap. III).
Because of the formal self-adjointness this may be expressed as follows.
Let T'.,(S) denote the Frechet space of C* sections of § with compact
support. Then any continuous linear functional F on I';,(S) such that
F(Dg) = 0 for all ¢ € I';,(S), can be represented as F(p) = (¢,y) where
¥ € I'(S) and Dy = 0. In particular, any locally integrable section ¢ of S
which is orthogonal to DI";(S) (i.e., which satisfies the equation Dy =
0 weakly), is of class C* and satisfies the equation Dy = 0 in the usual
sense.
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Similar comments apply to D2,
With this in mind, we define ker D = {¢ € I'(S): D¢ = 0} and ker D? =
{® € I'(S): D*¢ = 0}, and observe the following:

Theorem 5.4. Let D be the Dirac operator of any Dirac bundle over a com-
pact riemannian manifold X. Then

ker D = ker D?
and this space has finite dimension.

Proof. Finite dimensionality is a direct consequence of elementary elliptic
theory (cf. Theorem 5.2(ii) of Chap. III). For the rest, observe that
D*p =0 = ||Dg|* = (Dp,D9) = (¢,D’¢9) =0 =Dp =0. m

The results above have an important extension to L2-sections of a Dirac
bundle over any complete manifold. We begin with the following pre-
paratory lemma.

Lemma 5.5. Let D, S and X be as above. Then for any f € C*(X) and any
¢ € I'(S), we have that

D(fp) =(grad f) - ¢ + fDo. (5-8)

Proof. D(fo) =Y. e;* V. (fo) =Y e;{(e;f)o + [V, 0} = (3. (e;)e;) 0 +
fDo) = (grad /) ¢ + fDp. =

REMARK 5.6. The relation (5.8) immediately extends to distributional
sections @ of S. To see this, consider ¢ € I'.,(S), and note that from (5.8)
and (5.3), (fD®,9)=(®,D(f9)) = (®,(grad f)- ¢ + fDg) = (D(f®) —
(grad f) - @, ).

We shall now consider the space L*(S) of L?-sections of S. This is the
natural completion of I',(S) in the Hilbert space norm introduced above.
We now consider D as a symmetric operator on I'_,(S) and take its closure
(also denoted D), in L*(S). This gives us an unbounded operator in L*(S).
Its domain dom(D) consists of all ¢ € L*(S) for which there is a sequence
{Pnyy = Ty fS) such that ¢, —» ¢ and Do, — ¥ = “De” in L*(S).

There is another extension of this operator to L*(S) which we shall
denote D*. The domain of D* consists of all ¢ € L*(S) such that the dis-
tributional image D¢ is also in L*(S). Of course, dom(D) & dom(D*).

We now observe that D* is simply the adjoint of D. Recall that y
L?(S) is in the domain of the adjoint D' if the function ¢ + (Do, ¥ is
continuous on dom(D). Since dom(D) is dense, there exists a unique ele-
ment D'y € L(S) such that (Do, ¥) = {¢, D'¥) for all ¢ € dom(D). Clearly
D% is just the distributional image of ¥ under D, and so D' = D*.
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We now prove that on complete manifolds, any Dirac operator is
essentially self-adjoint (cf. Wolf [1]).

Theorem 5.7. Let X be a complete riemannian manifold and let D be the
Dirac operator of any Dirac bundle S over X. Then the closure of D in
L*(S) is a self-adjoint operator. Furthermore,

ker(D) = ker(D?)
on L*(S).

Proof. Fix x, € X and let d(x) be a regularization of the distance func-
tion from x,. Choose y e C°(R)sothat0 S y < 1, x(t) = 0fort = 2, x(t) =
1fort<1,and || <2 Then set

) = 15 00

We want to show that dom D = dom(D*). It suffices to prove that
dom(D*) = dom(D) since the reverse inclusion is obvious. Choose ¢ €
dom(D*) and define ¢, = x,¢ for each positive integer n. Then by Re-
mark 5.6 we know that D¢, = (grad x,) - ¢ + x,D¢ for each n. Clearly,
D@ — Do in L*(S). Furthermore, if we let B, denote the metric ball of
radius p centered at x, in X, then

4
lerad z)-ol? < [, =

ozl =2
Consequently, D¢, — Do in L(S).

Thus, we are reduced to the case where ¢ € dom(D*) has compact
support. By a partition of unity over supp ¢ we can assume that ¢ has
compact support in a local coordinate system. Here, using Fourier trans-
form methods, we can construct a parametrix for D, i.e. a pseudo-dif-
ferential operator P such that

DP=1-% and PD=1-9%

where & and & are infinitely smoothing operators, and where P, & and
&’ all have Schwartzian kernels supported near the diagonal. Observe
now that since D¢ € L%(S), there exists a sequence {¥,>r; < I, (S),
with support uniformly bounded in this coordinate neighborhood, such
that Y, — Do in L%(S). We then set ¢, = Py, + & ¢ and observe that
since the Schwartzian kernels of P and & are supported near the diagonal,
each (smooth) ¢, has compact support. That is, we have (@, n=; <
I'.,(S). From the relations above, we see that ¢, — PD¢ + ¢ = ¢,
and that D¢, =DPy, + DF "¢ =y,— FY,+ DF ¢ - Do — FDo +
D¢ = D¢ (since, clearly, we have D&’ = & D). This completes the
proof of the essential self-adjointness of D.
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We now prove that ker(D?) < ker(D). That is, we shall show that any
(necessarily smooth) L2-section ¢ of S which satisfies the differential
equation D2%p = 0, also satisfies the equation Do = 0. To see this, let
1. be the sequence of functions above and note that

0 = (D¢, x2¢) = (Do, D(x2¢))
= (Do, 2x,8rad(x,) - ¢ + 22D)
= |[tLol* + 2(x,Do, grad(x,) - ¢).
Consequently, by the Schwartz inequality we have

Do|l* < 2||x.De| llgrad (x.) - @|.
Therefore,

|lx.Del| < 2|lgrad(x)- ¢|| = #llell,

and we conclude that ||Dg|| = lim ||x,D¢|| = 0. This completes the proof.
" n

Having discussed Dirac bundles in general terms, it is now time to look
hard at some important examples. We begin with the basic ones.

ExXAMPLE (an historical case). Let X = R", euclidean n-space, and let
S = R" x V where V is some finite dimensional module for Cf,. In this
case the Dirac operator is a constant coefficient operator (on V-valued
functions) of the form

where each 7, is a linear map y,:V — V and where

Vivk + V¥ = —205

for all j,k. If we choose a basis for V, these y,’s will be represented by
matrices. The relations above imply that

A 0

A

0 4
where A = — Y 82/dx} is the positive laplacian in R".
This particular operator has historical roots in physics. In the 1920s, the
physicist P.A.M. Dirac was searching for a Lorentz-invariant first-order

differential operator whose square would be the Klein-Gordon operator.
Thus he was essentially led to search for a first order operator D of the

D2=A'Idy.=-_.'
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form above which satisfied the equation D? = A. Realizing that the y,’s
must be matrices, he was led immediately by this equation to the above
relations, which we recognize now as the generating relations of a repre-
sentation of C¢,. See the beautiful book of Dirac [2] for a discussion of
the physics.

It is illuminating to consider this euclidean operator in low dimensions.

Let n = 1, so that C; = V= C. Then we have

p=i
0x,
the generator of a basic semigroup of unitary operators on L2,

Let n=2, so that C¢, =V =H =~ C @ C. The decomposition of H
into C @ C is natural and corresponds to the Z,-grading C¢, =
Ctd @ Cti. With respect to this Z,-grading, the Dirac operator inter-
changes even and odd parts. In particular if we identify C2£3 and C¢}
with C by setting u + ve,e, = u + iv = ue, + ve,, then D = e,(0/0x,) +
e,(0/0x,) has the form

0o -9
0z
D=
9
0z

where 0/0zZ = 0/0x; + i0/0x,. Thus, the Dirac operator on R? = C, con-
sidered as mapping even to odd spinors, is exactly the Cauchy-Riemann
operator.

Let n = 3, so that CL; = H @ H and V = H. Ct, has two representa-
tions on H given as follows. Identify R? with Im(H), and let {i,j,k} be the
standard basis of imaginary quaternions. Then the two representations
are generated by letting i,j,k act on either the right or the left in H.
Choosing multiplication on the left, we get the following expression for
the Dirac operator on H-valued functions

If we re-express left quaternion multiplication, with respect to the basis
{1,i,j,k}, as 4 x 4 real matrices, then D becomes

0 -9, -0, —0,4

0y 0 -0, 0,

0, 0 0 -0,

0y —0, 0, 0

where 0, = 0/0x,.
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Let n = 4, so that Cf, = H(2) and V = H? = H @ H. Here again the
splitting corresponds to a Z,-grading of the module ¥, and D interchanges
parts. To describe the full Dirac operator we consider first the following
quaternion analogue of the Cauchy-Riemann operator. Identify R* with
H under the standard basis {1,i,j,k}, and define the following operators
on functions from H to H:

o_o0 .0 .0 k 0 o _o0 .90 .0 ]
R A R e R T N N A ™
Then the Dirac operator can be expressed with respect to the splitting

H® H as

0o -2
D= %

9

oq

Note the analogy with dimension two.

Note that left quaternion multiplication is always complex linear with
respect to the complex structure given by multiplication by i on the right.
Thus, left multiplication by i, j and k on H = C2 could be represented by
complex 2 x 2-matrices 6, 6, and o, respectively. Under this conven-
tion, the operator 9/04§ becomes

0 0 0 0 0

5&;=a—%+016—)‘1+025;;+0'36—xa.

The matrices o, can be chosen to be the classical Pauli matrices:

(i 0 (0 -1 (0 i
1= i) 2T o) Tl oo

Note that these matrices generate the fundamental representation of C€,
in complex form.

We could continue this analysis. For general n, one can calculate
an enormous N x N-matrix whose entries are linear combinations of
0/0x,,...,0/0x, Here N is on the order of 2". This matrix will have the
property that its square is A - I where I is the N x N identity matrix. How-
ever, this explicit form of D is seldom, if ever, useful. It is always simpler
to use the structure of the Clifford module.

It is interesting to note that the concept of D as a generalized Cauchy-
Riemann operator is a useful one. Let us fix a dimension n, and let D
denote the euclidean Dirac operator acting on functions f: R” — V where
V is some fixed CL,-module. Recall that the fundamental solution for the
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Laplace operator on R", for n > 2, is ¢(x) = c,/||x||"~2 for an appropriate
constant c,. That is, we have

A¢=5o

where §, is the Dirac é-function at the origin. Since D?> = A - I, where I
is the identity on V, we have that

® = D(pI)
is the fundamental solution for D. That is,
D(D = 501 .

From this one can derive very pretty analogues of the Cauchy Integral
Formula, and the analysis of D becomes quite accessible.

We now examine Dirac bundles S over more general spaces. Let X be
an arbitrary riemannian manifold. Then there are two basic cases.

ExaMmpLE 5.8. (the Clifford bundle). Let S = CE(X) with its canonical
riemannian connection, and view C{(X) as a bundle of left modules over
itself by left Clifford multiplication. (Note that Property (5.4) was estab-
lished in Proposition 4.8.) The Dirac operator in this case is a square root
of the classical Hodge laplacian. Most of the remainder of this section is
devoted to a detailed analysis of this basic case.

ExXAMPLE 5.9. (the spinor bundles). Suppose X is a spin manifold with
a spin structure on its tangent bundle. Let S be any spinor bundle asso-
ciated to T(X). Then S is a bundle of modules over C{(X), and as shown
in §4, S carries a canonical riemannian connection which has property
(5.4) (see Proposition 4.11 and the discussion following Theorem 4.17).
The Dirac operator in this case was first written down by Atiyah and
Singer in their work on the Index Theorem. Finding this operator was a
major accomplishment, and for this reason we shall call it the Atiyah-
Singer operator.

Notation. For spin manifolds X of even dimension we shall denote the
(unique) irreducible complex spinor bundle by $¢; and when dim(X) # 3
(mod 4), we denote the irreducible real spinor bundle by $. In both cases
the Atiyah-Singer operator will be written P.

These basic examples each generate large families of new examples by
the following construction. Let S be a given Dirac bundle with connection
V5 over a riemannian manifold X, and let E be an arbitrary riemannian
vector bundle with connection VZ over X. Then the tensor product S ® E
is again a bundle of left modules over C¢(X), where for ¢ € C¢(X), 6 € S
and e € E, the module multiplication is given by setting

o (c®@e)=(p-0)®e.
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It is clear that in the tensor product metric on § ® E we have that this
Clifford multiplication by unit tangent vectors on X is orthogonal (i.e.,
Property (5.3) is satisfied). Furthermore, we can equip S ® E with the ca-
nonical tensor product connection, V = V5 ® VE, which is defined on sec-
tions of the form o ® e by the formula

V(e ® ¢) = (V56) ® e + g ® (VEe).

It is straightforward to verify that with this riemannian connection, the
bundle S ® E has the derivation property (5.4). Consequently, we have
proved the following.

Proposition 5.10. Let S be any Dirac bundle over a riemannian manifold X,
and suppose E is any riemannian bundle with connection. Then the tensor
product S ® E is again a Dirac bundle over X.

An interesting example of this construction is the following. Let X be
a spin manifold of dimension 8k, and let § be the canonical (real) spinor
bundle of X. Then under the above construction the bundle § ® $ is a
Dirac bundle over X in two canonical ways (by multiplication in the left
or the right factor). It follows from the representation theory (see 1.5.18
and IV.10.16-17) that

CUX)=8Q@8

where the two module structures correspond to multiplication on the left
and on the right (by the transpose) in C£(X).
Similarly, in all even dimensions we have

ClUX)® C =3 ® SE.

REMARK 5.11. The construction above does indeed give rise to a large
number of examples. As we shall see later (Remark II1.13.11), basically
every elliptic operator on a spin manifold can be constructed, up to homo-
topy and degree shift, as a Dirac operator of the form D:I'(S° ® E) —»
I'(S* ® E) where S = S° @ S* is the complex Z,-graded spinor bundle.

Note that in each of the basic cases above (Examples 5.8 and 5.9), the
Dirac bundles and their associated Dirac operators are canonically defined
in terms of the riemannian metric on X. Hence, any mathematical objects
constructed using these operators are invariants of the riemannian struc-
ture on X.

The remainder of this section will be devoted to an analysis of these
operators. We begin with the Clifford bundle C{(X).

Our first observation is that it is also possible to view C¢(X) as a bundle
of right modules over C£(X) (by right Clifford multiplication). Property
(5.4) also holds for right multiplication. Hence, we can also define a “right-
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handed” Dirac operator D on C&(M) by setting

Do =3 (V) ey (59)

This operator is also elliptic and formally self-adjoint. The principal sym-
bol o(D) is just right multiplication by i¢.

Recall now that there is a canonical isomorphism C¢(X) = A¥(T*(X)) =
A*(X). The bundle A*(X) also has two canonical first order operators,
namely the exterior derivative d: A*(X) — A*(X) and its formal adjoint
d*:A*(X) - A*(X). This adjoint is given by the formula

d* = (—1)"?*"* 1udx (5.10)
on AP(X), where *:AP(X) - A" P(X) is the linear map defined by the
condition that ¢ A * = (@, ¥>*1 where #1 is the volume form.

The Dirac operators and the exterior derivative are directly related as
follows:

Theorem 5.12. Under the canonical isomorphism C8(X) = A*(X), the Dirac
operators of CE(X) satisfy the following equations:

Dxd+d* (5.11)
Dx(—1P2d—-d*  onA"X) (5.12)

Consequently, since d* = (d*)* = 0, they also satisfy
D*=D*=dd* +d*d=A (5.13)
DD = DD. (5.14)

The operator A defined in (5.13) is called the Hodge laplacian.

Proof. Fix x € X and choose an orthonormal frame field (e,,...,e,) in a
neighborhood U of x with the property that (V, ¢), = 0. We first observe
the following:

Lemma 5.13. The operators d and d* are given in U by the formulas
d = Z ej A Vej
j=1
d* = - Z ej L Vej
=1

where “L” denotes contraction in A*(X).

Proof. Both expressions are invariantly defined; that is, they are indepen-
dent of the choice of frame field (e,, . . . ,,). To establish the first identity
it suffices to show that the operator on the right satisfies the following
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axioms for d:
(i) d’¢ =0
(i) dp AY)=do Ay + (—1Vp A dy
(ili) df = grad(f)
for all smooth functions f and all smooth p-forms ¢ and g-forms .
Property (iii) is obvious. Property (ii) is seen as follows:

do ni)= 3, ;A [TVop) AV +0 A (Tl

=do Ay +(—1)P¢ Ady.

(Here we use the fact that V acts as a derivation on A*(X).) To prove prop-
erty (i) we first note that from the independence of the choice of frame
field, it suffices to verify this at the point x where we have (V,e), = 0.
Furthermore, by linearity it suffices to consider a ¢ of the form ¢ =
ae; A ... A e, where a is some smooth function in U. Then one easily sees
that at x,

o= Y ([epa]alejne,ne n... e,
p<j<k
Since [e,e, ], = (V,ex — Ve.e))x = 0, property (i) is proved, and the first
equation is established.

For the second equation, we again consider ¢ = ae, A ... A e,. Hence,
at x we have that

4
d(x¢) = ij (eja)e; Aepry A...Ne,
Consequently, at x

*d* @)= .fl (ea)*(ejne ey AL . NE)
I

M

=Y (1) Yeale, AL AEA...Ae,

j=1

= (_l)n(pﬂ)j; (eja)e;L(ey A... A€y

= (= 1)+ j;l e;L (Ve,go).

This completes the proof of Lemma 5.8. m

We now recall that under the canonical isomorphism C£(X) & A*(X) we
have that
ecpxenp—elL@

prex(—1Plenp+eLq)
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for all e e A}(X) and all ¢ € AP(X) (see the discussion at the end of §3 in
Chap. I). Equations (5.11) and (5.12) now follow directly from Lemma 5.13.
This completes the proof of the theorem. =

This theorem has the following important consequences. On X the space
of harmonic p-forms is defined to be

H= @ H = ker(d)
p=0

Corollary 5.14. If X is compact and without boundary, then
ker(D) = ker(D) = ker(A)

In particular, under the isomorphism C8(X) = A*(X), the kernels of D and D
correspond to the space of harmonic forms on X.

Note that by applying Theorem 5.7 to a non-compact complete mani-
fold we conclude that a differential form which is in L? is harmonic if and
only if it is both closed and co-closed.

In the compact case the harmonic forms are related to the topology of
X as follows. Consider the so-called de Rham complex:

0 — T(A°X) — T(A'X) - T(Azx) - - - -

Since d? = 0 we can form the quotient: #*(X) = [ker(d)/image(d)]*. The
fundamental theorem of de Rham asserts that for each p =0,.. ., n, #?(X)
is isomorphic to H?(X;R), the pth singular cohomology group of X with
real coefficients.

Since we are given a riemannian metric, we can also consider tHe adjoint
sequence;

0 — I(A%X) <2~ I(A'X) < r(AZX) & ...

The fundamental result of harmonic theory is the following Hodge De-
composition Theorem (Corollary IIL5.6):

Theorem 5.15. Let X be compact, and without boundary. Then there is an
orthogonal decomposition

T(A*X) = H ® Im(d) © Im(d*)

(wWhere Im(-) denotes the image of the operator on I'(A*X)). In particular
there is an isomorphism

H? =~ HP(X;R)
for eachp=0,...,n.

A Note on Orientability. 1t is clear that orientability is not required for the
definition of D, and so the spaces H? can be defined for a non-orientable
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manifold X. Moreover, if X is compact the isomorphism H? ~ H?(X;R)also
holds. This is proved as follows. Let 7: X — X be the two-fold, orientable
covering manifold, and let I" = {1,9} = Z/2Z denote the group of covering
transformations of X. Then I' acts naturally on A*(X). The subspace
AX(X) of T'-fixed elements is preserved by d, and its cohomology is just
the cohomology of X. (Orientability is not required for the de Rham Theo-
rem.) We claim that the inclusion of this cohomology into the cohomology
of X is injective. Suppose ¢ € AXX) and ¢ = dy for some ¥ e A?~1(X).
Set ' = L(¥ + g*y). Then ¢’ € AL~ 1(X) and since d commutes with g*,
¢ = dy/'. This proves the injectivity.

Given a riemannian metric on X, we lift the metric to X. The harmonic
forms on X lift to I'-invariant harmonic forms on )Z ,and every I'-invariant
harmonic form is such a lift. That is, H*(X) =~ H¥(X). We now observe that
H*(X) corresponds to the subspace HX(X;R) = H*(X;R). To see this we
note that if ¢ is a harmonic form, so is g*¢. If ¢ is cohomologous to a
closed I'-invariant form, then ¢ and g*¢ represent the same cohomology
class. Hence ¢ = g*¢. We conclude that H*(X) ~ HX(X) @ H}X;R)
H*(X;R) as claimed.

The fundamental identities (5.13) and (5.14), established above for the
operators D and D, imply certain important identities for the curvature
tensor. In particular we have the following.

Theorem 5.16. Suppose X is a riemannian manifold, and let R denote the
Riemann curvature tensor acting by derivations on the bundle CE(X) =
A*(X).Then for any element ¢ € CE(X),

igj {eiejRe'.EJ((p) - Rei,ej((p)ejel} = 0 (5‘15)
Y eR,. . (Pe; =0, (5.16)
4J
where (ey, . . . ,e,) is any orthonormal tangent frame at the point in question.
In particular, from (5.15) we conclude that
‘Zj eiechl,ej((P) = - Z Re{,e_,((p)eiej (5'17)
< <j
1
5 & e;,e;((p)]
1
2 &= adE(EJ(Re( ej((p))

Note. Since {e; A e;};<; represents an orthonormal basis of A%(X), the
formulas above could be easily re-expressed without the use of (e, . . . ,e,).

Proof. Let us fix a point x € X and choose a local orthonormal tangent
frame field (e, . . . ,¢,) such that (Ve)), = 0 for each j. Then for any section
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¢ € I'(CE(X)), we have at x that
D2¢ = ‘zj: etve,(ejve,(l’)

= ‘Z,: eeV. V.o

= = VVep + 3 eefVeVe, ~ VoVelo

= —LVeVep + T eeReef0)
Similarly, we conclude that at the point x,

Do = —FV.Veo + Z, Rewef@leser

Since D? = D? (see (5.13)), we conclude that (5.15) holds at x, and therefore
everywhere.
The second equation is proved similarly. We observe that at x,

DDA(p = g ei(vegvej(p)ej

g ei(Ve,Ve.‘P)e j

Subtracting these equations and recalling that DD = DD completes the
proof. m

I

5D(p

Since equations (5.15) and (5.16) are for Clifford elements, each con-
stitutes 2" scalar equations. They include the Bianchi identities (consider
the A'-component.) They also include a large number of new identities
for the curvature transformation of the bundle A*(X). These identities
will prove useful in the Bochner-type vanishing arguments presented in
§8.

We now examine some of the basic operators on Cf(X) and analyse
their relationships with D and D. Recall that C¢(X) carries a canonical
bundle mapping

o: CYX) — CUX) (5.18)

which is, on each fibre C8(X), the algebra automorphism extending the
map — 1 on T(X). Since «? = 1, we obtain a decomposition

CY(X) = CLX) @ CEY(X) (5.19)

where C£%(X) and C8(X) are the 1 and — 1 eigenbundles of « respectively.
Under the isomorphism Cg(X) = A*(X), we have CL%(X) = A**"(X) and
Ce!(X) = A*%(X). For any non-zero vector e € T (X) left (or right) Clif-
ford multiplication gives an isomorphism e:Ce(X) > CE}(X). Hence,
if X admits a nowhere vanishing vector field, i.e., if the Euler characteris-
tic of X is zero, then the bundles C£%(X) and CL*(X) are isomorphic.
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There is a second canonical bundle mapping
L:CY{X) — CUX) (5.20)

which on C{,(X) is defined by the formula L(p) = —) 1, e;pe; for any
orthonormal basis e,, . . . ,e, of T,(X). This map is globally diagonalizable
and yields the canonical bundle decomposition

CUX) = @ AP(X). (5.21)
p=0
In particular,
L=(—-1)"n-2p) on A(X) (5.22)

for each p=0,...,n (see Chap. I). Clearly « and L commute, and their
composition satisfies

aoL=Loa=(n—2p) on AP(X) (5.23)
for each p.

Finally, we consider the section w of A*X) = CE(X) given at each point

x by setting
w=e; " e, (5.24)
where ey, ... ,e, is any positively oriented orthonormal basis of T,(X).

Since w is independent of the choice of basis we may for any x € X choose
local fields ey, . . . ,e, such that (Ve;), = O for each i. This shows that

Vo =0. (5.25)

The section w satisfies the relations

w?=(—1) T (5.26)
we =(—1)""tew (5.27)

for any section e of T(X) = C{(X).
We now define a canonical bundle map

2o CUX) — CUX) (5.28)
by setting
Ao(@) =" ¢
If n = 3 or 0 (mod 4), then A2 = 1 and we have a decomposition
CYX)=Cet*(X) ® CL~(X) (5.29)

where CL*(X) are the + 1 eigenbundles of 1,. From (5.27) we see that for
any non-zero vector e € T,(X) at any point x, left Clifford multiplication
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gives isomorphisms:

e:CeLi(X)— CLi(X) ifn=0(mod 4) (5.30)
e:CLI(X)— CLi(X) ifn=3(mod4). (5.31)

The bundles C€*(X) can be explicitly written as
CLE(X) = (1 £ w)CUX). (5.32)
Each such bundle is evidently a submodule under right Clifford

multiplication.

The above construction is particularly important since it generalizes
immediately to any Dirac bundle S over X. Again we have a bundle
isomorphism

Ap:S— S (5.33)
and a corresponding decomposition
S=8*®S"” (5.34)

where S* = (1 + w) - S. Moreover, for any non-zero e € T,(X), the for-
mulas analogous to (5.30) and (5.31) hold.

Note that for n =1 or 2 (mod 4), A2 = —1. Hence if we complexify
S and consider the operator il, we obtain a splitting S® C =
S®C)* ® (S ® C)". In these dimensions, 4, defines a complex struc-
ture in S, and this splitting is the usual (1,0), (0, 1)-decomposition for the
complex structure.

Let us turn our attention back to the Clifford bundle C£(X) and ex-
amine some of the elementary properties of the operators defined above.

Lemma 5.17. The operators a, L and A, satisfy the following relations

@) oL — La =0
(i) ady + (=1 A0 =0
(i) LA, + (—1)"4,L = 0.

Proof. (i) was observed above. For (ii) we note that a(we) = a(w)u(p) =
(—1)"wo(p). For (iii) we see that by (5.27), L(wg)= —), ejwpe; =
—(=1""'Y wejpe; =(—1)""'wL(p). =

It follows from (iii) and (5.22) above that 1,(A?(X)) = A" ?(X). In fact
A, is related to the x-operator (cf. (5.10)) as follows:

1
we = (__l)x:(n—p)+2 p(p+ 1)*
1 for ¢ € AP(X). (5.35)
00 = (_ 1)7 p(p+ 1)*(P
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To see this it suffices to consider ¢ = e, - - e,. Then *p =¢,,, - ** ¢, and
the computation is easy.

Lemma 5.18. The operators a,L and A, considered as sections of
Hom(C{(X),CE(X)), are globally parallel. That is,

[V,o] = [V,L] = [V,A,] = 0.

Proof. That « is parallel follows from the fact that —1 is parallel in
Hom(T(X),T(X)) and V is a derivation. That A, is parallel follows from
(5.25). For L we fix a point x € X and choose a local orthonormal frame
field ey, . .. e, such that (Ve)), = 0 for each j. Then at the point x, V(Lg) =

—VY ejpej=—Y {(Ve)pe;,+e(Vp)e;+e;p(Ve)} = =3 e(Vole;=L(Vo).
This completes the proof. =

Corollary 5.19. The subbundles AP(X) and CL*(X) (when defined) are
preserved by covariant differentiation.

We now examine the relationship of these operators to the Dirac
operators.
Proposition 5.20. Let D and D be the Dirac operators on CUX) defined
above. Then the following relations hold

(i) Da+aD=l3a+aD:=0 .
(ii) DA, + (= 17AuD = DAy — 4D =0
(iii) DL + LD = 2D; DL + LD = 2D.
Corollary 5.21. The operator A = D* = D? satisfies the relations
[0 A] = [44,A] = [L,A] = 0.

In particular we have that A, :H? 5 H"~?. This is the Poincaré Duality
Isomorphism.

Proof of Proposition 5.20. We shall consider only D. The arguments for
D are similar. Let ¢ be a section of C{(X). Then using the lemmas above,
we have

(i) D(agp) = Z eV, (ap) = z}: eo(V,0)
= —a(; ejVejrp) = —a(Do)
(i) D(wg) =} eV, (wg) =} eV,
J
=(-1)"'w) eV, 0 =(—1)"'wDp
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(iii) D(Lg) = ; eV (L) = ; e;L(V.,0)
= “j; e jek(ve,‘l’)ek
= —sz (—exe; — 26,)(V,0)ex
—L(Dg) + 2D(¢).

This completes the proof. =

The above arguments carry directly over to the following case.

Proposition 5.22. Let S be any Dirac bundle over X. Then the Dirac opera-
tor on S satisfies the relation

DA, = (—1y~14,D.

We shall conclude this section with some remarks on the variation of
the Atiyah-Singer operator under changes of metric.

Notice that all of the standard bundles of riemannian geometry—the
tangent bundle, the cotangent bundle, and their tensor products—have
structure group GL,(R). They exist independently of any metric con-
siderations. In fact, the introduction of a riemannian metric amounts to
a (simultaneous) reduction of the structure group of these bundles to SO,

When X is a spin manifold, the situation for the canonical spinor bundle
of X is completely different. The spinor bundle itself depends on the choice
of riemannian metric.

This last statement can be made precise as follows. Let Pg; +(X) be the
oriented frame bundle of X and suppose that dim(X) = n > 2. Denote by
GL}(R) » GL}(R) the 2-fold, universal covering group of GL;* (R). Since
X is spin, there exists a principal GL; (R)-bundle Pg;.(X) with a GL} (R)-
equivariant bundle map Pgi+(X) — PgL+(X). Introducing a riemannian
metric gives a reduction of the structure groups and a commutative
diagram

PSpin(X) - P&*(X)

| |

Pso(X) — Pgr+(X)

Now one could hope for the existence of a finite dimensional represen-
tation ¢:GL, (R) - GL(V) whose restriction to Spin, is an irreducible
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spinor representation. The associated vector bundle
S =Pgi+(X) x, V

would then be the canonical spinor bundle, and choosing a metric on X
would induce a metric on S (as in the case of the tensor bundles.). This
would give us a fixed vector bundle on which we could consider a family
of Atiyah-Singer operators associated to each variation of the riemannian
structure on the base. Unfortunately, this hope cannot be fulfilled.

Lemma 5.23. The Lie group f}\i: (R) (n > 2) has no finite dimensional
representations other than those which descend to GL, (R).

Proof. Consider the subgroup SL,(R) = GL*(IR) and its 2-fold, universal
covering group ST, (R) [ GL*(R) Since ST, .(R) contains the kernel of the
homomorphism GL*(R) - GL*(R) it will clearly suffice to prove the
assertion for this subgroup. Let ¢: ST +(R) = GLy(R) be any Lie group
homomorphism. Let ¢, : s[,(R) = gly(R) denote the associated Lie algebra
homomorphism, and consider its complexification ¢, ® C:sl,(C) —»
gly(C). Since SL,(C) is simply-connected, the elementary theory of Lie
groups tells us that ¢, ® C is induced by a homomorphism of Lie groups
@:SL,(C) - GLy(C). It follows that

¢ = Olsm)

in a neighborhood of the identity. By the uniqueness of analytic continua-
tion this identity holds everywhere, and so the representation descends
to SL,(R) as claimed. m

Note that the argument just given does not apply to the conformal
group C, = {ge GL,(R):g = Ag, for Ae R* and g, € SO,}. Indeed, con-
formal changes in the metric on the base manifold can be lifted to a fixed
spinor bundle, and one can study there the associated change in the
Atiyah-Singer operator. A basic and important fact is that the Atiyah-
Singer Dirac operator remains essentially invariant under all conformal
changes of the metric.

We now make this last statement precise. Fix a riemannian spin mani-
fold X with metric {-,"), and consider the conformally related metric

()= 62u<,’,>
where u is some smooth function on X. Let X’ denote this riemannian
manifold with metric {-,-)’. To each orthonormal tangent frame & =
{es,...,e,} on X we can associate the orthonormal frame Y(&)=
{e},....e,} on X', where e; = exp(—u)e; for each j. This gives us an SO,-
equivariant map ¥ : Pgo(X) — Pgo(X’) which lifts to a Spin,-equivariant
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map
l// :PSpin(X) - PSpin(X’) (536)

between principal Spin,-bundles. (We have chosen the spin structure on
X' which is topologically equivalent to the one given on X.) For any
fixed spinor representation u:Spin, - SO(M) we have associated spinor
bundles S = Pg,;(X) x, M and §' = Pg,;,(X") x, M, and the map (5.36)
gives us a bundle isometry

,:S —> S (5.37)

We now modify this isometry by setting
LIt T
Y=e 2y, (5.38)

The resulting map ¥:S — §' is a bundle isomorphism which is conformal
on each fibre. The basic result is the following:

Theorem 5.24. Let D:T(S) — I'(S) and P’ :T(S") — I'(S') be the canonical
Atiyah-Singer Dirac operators defined over the conformally related riemann-
ian manifolds X and X' respectively. Then

p':‘{’oﬁoq’_i (5.39)

Corollary 5.25. Let I and I’ be as in 5.24. Then
dim(ker P) = dim(ker P).

In other words the dimension of the space of harmonic spinors remains con-
stant under pointwise conformal changes of the riemannian metric.

Note. Suppose we have a decomposition S=S8*@®S ™~ defined by a canon-
ical volume element as in the next chapter. Then Corollary 5.25 applies to
each of the operators P* and P, that is, dim(ker P*) = dim(ker(P)*).

Proof of Theorem 5.24. We have two metrics {-,-)> and {-,-)’ defined
on the same vector bundle T = TX = TX'. Let V and V' respectively de-
note the associated canonical riemannian connections. It is straight-
foward to verify that for vector fields ¥ and W we have

VW=V, W+ V- )W + (W-u)V — (V,W)grad(u)

where the gradient is taken in the metric {-,"). (Check the axioms.) Sup-
pose now that & = {e,,...,e,} and Y(&) = {e},....e,} are local ortho-
normal frame fields for {*,*) and (-, ) respectively, and let w;; = (Ve;, ¢;)
and wj; = (V'e;,e})’ be the associated 1-forms. One easily finds that for
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any tangent vector V,
Wy(V) = wp(V) + (e; - u)kV,e;> — (e;- u)V, ep).

The local tangent frame field & = {e,, ... ,e,} determines a local frame
field & = {oy,...,0y} for S. Similarly, & = {e},...,e,} determines a
frame field &' = {7}, ... 0%} for §' where d; =y (o) for each j. From
(4.35) we see that the induced connections on S and §' are related as
follows:

Vo, = Z wi(V)eeol,

v B {'Z]l i V)eiejaa}

k

= % W,, {12} (wji(V) + (eu)<V, ej) - (eju)(V, ei>)eiejaa}

=y, {VV o, + % (gradw) vV — V- grad(u))a,}.

Since grad(u):V = —V-grad(u) — 2{grad(u), V), we conclude the
following.

Lemma 5.27. Let VS and V5 denote the riemannian connections on S and
S’ respectively. Then

V=y,0 {Vs - % V- grad(u) — % (V-u)} oy, L.
Corollary 5.28.
P = b {p+ 30— Deradta) oy
We now observe that for any constant, a,
D(e*o) = e""<¢a + o 21: (e,u)e,a)

= e®(Po + agrad(u) - o),

and therefore

n—1 n—1
YoPo¥i=e 2 YoPo (e_z_"‘/’»‘l)

= '//u ° <D +%(n - l)grad(u)) ) w;l = D'. [}
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§6. The Fundamental Elliptic Operators

In this section we shall use the Clifford bundle and its modules to sys-
tematically derive the fundamental elliptic operators in riemannian geom-
etry, that is, the Euler characteristic operator, the signature operator,
and the Atiyah-Singer A-operator.

The basic construction is the following. Let S be a Dirac bundle with
Dirac operator D over a riemannian manifold X, and suppose that § is
Z ,-graded. This means that there is a parallel decomposition

S=5@ St (6.1)

so that C¢(X)- S/ < S'*J for all i,j € Z,. From the definition (5.1) of the
Dirac operator it is clear that D is of the form

D= ( DOO %l) (6.2)

D°:T(S®) — I(S') and DU-:I(SY)—> I(SY).  (63)

Since D is self-adjoint, we see that D° and D! are adjoints of one another.

The ellipticity of D established in §5 implies that each operator D* is
also elliptic. In fact, the principal symbol of D* at a cotangent vector ¢
is simply Clifford multiplication by i, that is,

o DY) =il St —> S**'  forkeZ, 6.4)
(see Lemma 5.1). Since & - £ = —||¢||?, we see that 6 (D¥) is an isomorphism
for & # 0. It is a fact that over a compact manifold, the kernel and cokernel

of an elliptic operator P are of finite dimension, and a basic invariant of
P is its index which is defined as

ind P = dim(ker P) — dim(coker P). (6.5)

Since D! is the adjoint of D°, there is an isomorphism ker(D*) = coker(D°),
and so we have that

where

ind D° = dim(ker D°) — dim(ker D?). (6.6)
From (6.2) it is clear that
ker D = ker D° @ ker D. 6.7)

In particular, if D is injective, then ind D° = 0.

Whenever X is oriented and even-dimensional, we recall (cf. (3.11)ff) that
there is an important method for introducing a Z,-grading on any Dirac
bundle S. Let w¢ be the complex volume element, given in terms of a posi-
tively oriented orthonormal tangent frame (e, . . . ,e,,,) by

og =i"e; ey (6.8)
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where 2m = dim(X). This is a globally defined section of C{(X)=
CE(X) ® C with the following properties.

Voc =0, (6.9)
Wce = —ew¢ foranyee TX. (6.11)

Property (6.9) follows easily from the derivation property (4.26) of V. (Fix
x € X and choose e;’s with (Ve;), = 0.). For the rest, see Proposition 3.3
of Chapter 1.

Suppose now that S is a Dirac bundle over X (complex if m is odd).
Then S has a decomposition

S=S*®S"” 6.12)

into the + 1 and — 1 eigenbundles for multiplication by w¢. These bundles
can be simply expressed as

St = (1 + wg)S. (6.13)

From (6.9) we see that this decomposition is parallel, and from (6.11) we
see that for any ee TX,

e- St c S, (6.14)

This means that after identifying S with S* and S! with S, the decom-
position (6.12) gives a Z,-grading on S.
We now examine some important examples of this construction.

ExAMPLE 6.1 (the Euler characteristic operator). Let X be a compact
riemannian manifold and consider the basic case where

S = C(X) = CLX) ® CEY(X)

(cf. (3.2)). By Theorem 5.7 we see that under the canonical isomorphism
CU(X) = A*(X), the operator D°:T(C2°(X)) — I'(CL!(X)) corresponds to
the operator

d + d*:T(A®*"(X)) — T(A*%(X)).
Consequently, we have

ind D° = dim H°"*" — dim H°%¢
= the Euler characteristic of X.

EXAMPLE 6.2 (the signature operator). Let X be a compact, oriented
riemannian manifold of dimension 4k and consider again the basic case

S = CYX) = CL*(X) ® CL~(X)
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where the Z,-grading is now given as above by the complex volume ele-
ment w¢ = (— 1)* (see (6.12) and also (5.26)ff). There is a corresponding
decomposition

ker D =ker D* @ ker D"

Since wg is parallel, it preserves ker D and the subspaces ker D* are just
the + 1 eigenspaces under multiplication by w¢ on ker D. That is,

ker D* = (1 + wg)ker D.

Now, under the canonical isomorphism C£(X) =~ A*(X) we know that
kerD=H=H’@® - -+ @ H*, the space of harmonic forms (see Corollary
5.9). Furthermore, under this isomorphism, left multiplication by w¢ cor-
responds to the Hodge *-operator, that is, for ¢ € AP(X),

pp-1)

P 4 AL 5

o p=(=1)" 7 *0 (6.15)
(see (5.35)). Consequently, for each p = 0, . . . ,2k we have an isomorphism
we:HP —— H%*"P,

This, in turn, implies that the space H(p) = BH? @ H* 7, for p < 2k, has
a decomposition

H(p)=H"(p) ® H (p)

where the subspaces H*(p) = (1 + w¢)H(p) are of the same dimension. Since
ker D* =H* =H*(0) ® - - - ® H*(2k — 1) ® (H**)*, where (H¥)* =
(1 + wc)A?*, we conclude that

ind D* = dim(H?%)* — dim(H?*)~
= sig(X).

For this last statement we recall that the signature of X, denoted sig(X),
is defined to be the signature of the quadratic form

Qod) = [, 0 A v = ([o] v [VINIXD)
on H?* ~ H?4X;R). Since * = w¢ in dimension 2k and since
[0 nso =0l

we see that this signature is just the difference of the dimensions of the
+1 and —1 eigenspaces of * on H2*,

EXAMPLE 6.3 (the Atiyah-Singer 4-operator). Let X be a compact rie-
mannian spin manifold of dimension 4k and consider the complex spinor
bundle §. with Dirac operator P. We split $. =~ $§& @ $c under the
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complex volume element as above. Then it is a consequence of the Atiyah-
Singer Index Theorem in Chapter III that

ind(P*) = A(X)

where A(X) is a rational Pontryagin number of X called the A-genus. We
shall examine this invariant in detail in §11 of Chapter III; however, some
discussion of it is in order here.

The A-genus has an important multiplicative property like that of the sig-
nature. If X and Y are compact oriented manifolds. Then

AX x Y) = AX) x A(Y). (6.16)

The A-genus is, in general, not an integer. For example, for a compact
4-manifold X, it is a fact that

— () = 551800 = 52 p1(0) 6.17)

where p,(X) is the first Pontryagin number of X. In particular, for the
comp]ex projective plane [P’z(C), we have H%(P*(C)) = Z and so the sig-
nature is 1. It follows that A(P*C)) =~ —1/8.

The index of an elliptic operator is, of course, an integer. Hence, we
conclude the following result (cf. Atiyah-Hirzebruch [1]).

The A-genus of a compact spin manifold is an integer. (6.18)

Note also that from (6.17) we retrieve the basic fact that the signature of
a spin 4-manifold must be a multiple of 8 (see Corollary 2.12 and the fol-
lowing discussion). .

An important set of spin manifolds with non-zero A-genus is provided
by the hypersurfaces V2"(d) of complex projective space P2"*1(C) (see
Example 2.7). Recall that the manifold V2"(d) is spin if and only if the
degree d is even. It is a fact that (cf. Lawson-Michelsohn [1])

Aw@) = 20 1] @ - ok (619)
@2n+ 1)y )

Thus, each of the spin manifolds ¥2"(2d), for d > n, has non-zero A-
genus. Taking products of these gives further examples by (6.16).

Each of the fundamental examples above gives rise to a family of as-
sociated operators by the process of taking “coefficients in a bundle.” This
works as follows. Let S = S° @ S! be a Z,-graded Dirac bundle as before,
and let E be any riemannian bundle with connection over X. Then the
bundle

SE=(S°®E)® (S' ® E)

is again a Z,-graded Dirac bundle over X (see Proposition 5.10).
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EXAMPLE 6.4. Let S = C¢(X) = CL*(X) ® CL~(X) be as in Example
6.2. Then for any bundle E over X we can construct the twisted signature
operator D; :T'(CL*(X) ® E) » I'(CL™(X) ® E) whose index is

sig(X;E) = {ch,E - L(X)}[X].
This formula is explained in detail in Chapter III.

EXAMPLE 6.5. Let $. = $¢& @ $¢ be the complex spinor bundle of Ex-
ample 6.3. Then for any bundle E over X we can construct the twisted
Atiyah-Singer operator Py :I'(S¢{ ® E) —» I'(S¢ ® E) whose index is

A(X;E) = {ch E - R(X)}[X].
Again see Chapter III for details.

§7. C{,-Linear Dirac Operators

There is a variation of the constructions given above, due to Atiyah and
Singer, which has proved to be very important in riemannian geometry.
To introduce the concept we return to a point mentioned earlier (in
Example 3.7). Let Pg,,(X) be the principal Spin,-bundle of an n-di-
mensional spin manifold X. Then from the representation ¢:Spin, —
Hom(C¢,,Ct,) given by left multiplication, we have the associated vector
bundle

$(X) = PSpin Xe¢ Cen (71)

Since right multiplication commutes with ¢, we see that there is a right
action of the algebra C¢, on the bundle &(X) which preserves the fibres.
This action makes §(X) a bundle of rank-1 C¢,-modules.

The idea now is to construct elliptic operators and an appropriate index
theory which take into account this action of C€,.

We shall begin with the construction of such an operator in the basic
case of @(X). Note first that the action of C&, on &(X) clearly commutes
with Clifford multiplication by elements of C£(X).

Since &(X) is associated to Pg,,;,(X), it carries the canonical riemannian
connection, and as such it is clearly a Dirac bundle over X. In fact, as a
vector bundle @(X) is simply a direct sum of irreducible (real) spinor bundles
of X. (This comes from the decomposition of C¢, into irreducible modules
under left-multiplication.)

The right action of C¢, on &(X) is parallel in the riemannian connec-
tion, i.e., for any section ¢ € I'(@(X)) and any element ¢ € C¢,, we have
V(o - ¢) = (Vo) ¢. (This is evident since the holonomy in &(X) is left
multiplication by elements of Spin,. It can also be seen directly from the
methods of §4.)
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From the definition (7.1) we see that the decomposition CE, = Ct? @
Ce} gives rise to a parallel decomposition

BX) = &°X) @ '(X) (7.2)

which is not only a Z,-grading over the bundle C£(X) but also over the
free Cl,-action. That is, we have

@'(X)- Ct) = H(X) (7.3)

for all i, j € Z,.
Since &(X) is a Dirac bundle it carries a canonical Dirac operator P,
which, with respect to the decomposition (7.2) is of the form

P= <£0 1:) > (74)

Furthermore, this operator commutes with the action of C{,. To see this,
note that Blog) =) eV, (09) =Y, (e;V.,0)¢ = P(o)e, since multiplica-
tion by ¢ is parallel and commutes with multiplication by elements from
C2(X). This operator P is called the C&,-linear Atiyah-Singer operator of
X.

We now proceed as above and consider the restricted operator

P°:T(@E(X)) — T(@'(X)).

From (7.3) and the paragraph above we conclude the following:

Lemma 7.1. The operator D° is a real, elliptic first-order operator which
commutes with the action of C£2 = CE,_, on &(X) = °(X) ® &'(X).

This construction is sufficiently important that we shall axiomatize it.

DEeFINITION 7.2. By a C{,-Dirac bundle over a riemannian manifold X
we mean a real Dirac bundle & over X, together with a right action
Ct, & Aut(®) which is parallel and commutes with multiplication by
elements of CL(X).

This can be thought of as a Dirac bundle which carries “scalar multi-
plication” by C¢,. Notice that a C¢,- or Cl,-Dirac bundle is just a com-
plex or quaternionic Dirac bundle respectively.

DEFINITION 7.3. A C{,-Dirac bundle @ is said to be Z,-graded if it
carries a Z,-grading & = &° @ & as a Dirac bundle, which is simulta-
neously a Z,-grading for the C{,-action (that is, (7.3) is satisfied).

Any C{,-Dirac bundle & has a canonically associated Dirac operator
® which commutes with the C{,-action. If & is Z,-graded, then D de-
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composes as in (7.4), and we get an elliptic operator
D I(&%) — (&Y (7.5)

which commutes with the action of C€? = C¢, _,.

When X is compact, we can directly define an analytic index for such
operators as follows. Since ®° commutes with C¢ =~ C¢,_,, the kernel
of ®° is a finite dimensional C¢,_,-module, and thereby ker D° deter-
mines an element in the Grothendieck group 9M,_, of such modules.
Consider now the residue class of this element in M, _ ,/i*IN,, where i* is
induced by the homomorphism i, :C¢,_; — C¢, determined by the in-
clusion map i:R*~! < R¥ Recall (from Chap. I, §9) that these quotient
groups are naturally isomorphic to the KO-groups of a point.

DEFINITION 7.4. Let € = @° @ &' be a Z,-graded C¢,-Dirac bundle
over a compact manifold. Then the analytic index of the Dirac operator
D2: (&%) — I'(S), denoted by ind, (D), is the residue class

[ker D°] e M, _,/i*M, = KO ~X(pt).

We recall that the groups KO ™ *(pt) are the same as the stable homotopy
groups of the orthogonal group, that is,

Y4 k = 0(mod 4)
KO Mpt)={2Z, k =1 or2(mod 8) (7.6)
0 otherwise.

A standard argument shows that this index is constant under deforma-
tions of the operator. One of the deepest aspects of the work of Atiyah
and Singer is the computation of this index topologically (see III.16). The
applications of this result are among the most far-reaching in all of dif-
ferential geometry. For this reason we devote the remainder of this section
to a detailed examination of such operators particularly in the cases of
fundamental interest in geometry.

We begin with a remark which will be useful when studying the multi-
plicative properties of the operator. Recall from Chapter I (Proposition
5.20) that there is a natural equivalence between the category of (ungraded)
modules over C{,_; and the category of Z,-graded modules over C{,.
This equivalence induces a natural isomorphism

Wy o /1M, = T /i* Dy (7.7

where as before 9, denotes the Grothendieck group of finite dimensional
Z,-graded R-modules over C¢,. The map from the graded to the ungraded
case is given by taking the even part.

Given now a Dirac operator D:I(&) — I'(S) as above, we see that
ker(®D) is a Z,-graded Cf,-module. The even part of ker(D) is exactly
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ker(D°). This gives the following:

ALTERNATIVE DEFINITION 7.4. Let € = @° @ &! be a Z,-graded C¢,-
Dirac bundle over a compact manifold. The analytic index of the Dirac
operator D of S is the residue class

[ker D] € M, /i*M, ., = KO~ ¥(pt).

Via the isomorphism (7.7) this index coincides with the index [ker D°]
given in Definition 7.4.

This second definition is actually more natural and is important for
understanding the multiplicative properties of the index. With this second
definition we see that the Clifford index generalizes the classical one in
that indy(+) = ind(-) = dimg(ker:) — dimg(coker-). To see this, note first
that C¢, = Rand C¢, = C. A Z,-graded C£,-module is just a pair of real
vector spaces V° @ V. Now [V @ 0] = —[0 @ V] in M,/i*M, because
V@® V=V ®C extends to be a graded Cf,-module. Consequently,
ind (D) =[ker D° @ ker D'] = [ker D° @ 0] — [ker D' @ 0] as claimed.

REMARK 7.5. All of these constructions could be carried out in the
complex category. One could consider complex C{,-Dirac bundles, etc.
Here the index will be valued in

Z if k is even
-k _
K™y = {o if k is odd.

Unfortunately, this leads to nothing essentially new, so we have con-
centrated our attention on the real case.

Some examples are in order. The first and most illuminating one comes
by taking the “CE,-ification” of an ordinary elliptic operator.

ExAMPLE 7.6. Let S = S° @ S! be an ordinary real Z,-graded Dirac
bundle over a compact manifold X, and let

0 D!
2= )

be its Dirac operator. We now consider an irreducible real Z,-graded
module ¥V = V° @ V! over the Clifford algebra C¢,, and take the tensor
product

S=SQ®V

where V is here considered as the trivialized bundle ¥V x X — X. This
bundle is, in a natural way, a Z,-graded C¢,-Dirac bundle. The grading
S =8° @ ! is given by

S=S"RVY)eES'®V) and S'=E°RVH@ ('R V.
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Of course, multiplication by C¢, takes place on the V-factor. The asso-
ciated Dirac operator D on & is simply the extension of D, i.e.,

€ =D ®Id,.
Consequently, we have that
ker D° = ((ker D°) ® V°) @ ((ker D') @ V*),
and therefore
{ker D°} = bo{V°} + b, {V'} e M, _,

where b j = dimg(ker DY). In passing to the quotient M, _,/i*M, we see
that [V°] = —[V*] since V° @ V! is a C¢,-module. (Caution: one must
show that ¥° @ V! can be made a C{,-module in such a way that V°
and V! are invariant subspaces under the subalgebra C¢,_, = C¢,. This
requires a case by case check modulo 8.). Hence,

ind,(D°) = (b° — b")[V°] = ind(DY)[ V°] € KO~ ¥(pt),

and since [V, ] generates this group for each k (see 1.9) we conclude that

ind D° if k = 0 (mod 4)
ind,®° =<{ind D’ (mod 2) ifk=1or2(mod 8) (7.8)
0 otherwise.

This formula shows that, as one would expect, nothing essentially new
can be found by this trivial construction. The interesting examples are
those where the C{,-structure is more intrinsic to the geometry. This is
the case in the following:

ExaMPLE 7.7 (the Kervaire Semicharacteristic). Let X be a compact
oriented (riemannian) manifold, and take & to be the Clifford bundle
Ce(X) = CLY%X) & CL'(X) (considered as a Z,-graded Dirac bundle as
in Example 6.1). If X has dimension 4¢ + 1, then @ is naturally a C¢,-
Dirac bundle as follows. Consider the oriented volume form w =
e, " €4y, of X. This form is parallel and satisfies > = — 1. Hence, right
multiplication by w in C{(X) makes C{(X) a Ct,-Dirac bundle. Since w
is of odd degree, right multiplication by w interchanges C£°(X) and
Ce}(X). Hence, CE(X) is Z,-graded as a C¢,-Dirac bundle. Hence, the
operator D° = D° = (d + d*)|seven has an index in KO~ '(pt) = Z,. To
compute this index we want to find the residue class of ker D if My/i*M,.
Since Ct; = C and C{, = R, we easily identify M, as the Grothendieck
group of equivalence classes of real finite dimensional vector spaces, and
9, as the complex analogue. Hence i*IN, is given by spaces of even
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dimension, and we clearly have
ind,(®°) = dimg(ker D°) (mod 2)
= dzi!mn(n"”‘) (mod 2)

= ) by(X) (mod 2)
j=o

where b(X) denotes the ith Betti number of X. In other words, ind,(D°)
is exactly the Kervaire semicharacteristic of X, a basic cobordism invariant
of an oriented (4¢ + 1)-manifold.

Note that in order that the volume element w have square —1 and be
of odd degree, one is restricted to dimensions 47 + 1.

It should be pointed out that an exactly analogous construction fails
for the signature complex (Example 6.2), since the subbundles C£*(X) =
(1 £ wc)CE(X) are each invariant under right multiplication by any
Clifford element. Hence, this is never a grading for right multiplication.

We now pass to an example which illustrates this construction.

THE FUNDAMENTAL CASE (the Atiyah-Milnor-Singer Invariant). Let X
be a compact spin manifold of dimension n, and let &(X) = @°(X) @
@!(X) be the Z,-graded C¢,-Dirac bundle given by (7.1). It is a conse-
quence of the Atiyah-Singer theorem that ind, = ind(P°) is a spin cobor-
dism invariant of X, and in fact gives a graded ring homomorphism

QSein 2298 K0~ *(pt). (1.9)

This homomorphism coincides with the one defined homotopy-theoreti-
cally in (3.22). We shall return to this in Chapter III.

Because of their fundamental nature, it is useful to examine these C¢,-
spinor bundles §(X) in some detail. We begin with the simplest case where
n = 8k.

Consider an irreducible real left module Vj, for the Clifford algebra Clg,.
Let V,, denote the right Clg-module obtained from V,, by simply
multiplying by the transposed element, i.e., by setting v- ¢ = ¢’ v for
¢ € Clg, and v € V. Then there is an isomorphism of bimodules

Clg, = Ve ® Vipe (7.10)

To see this we recall from Proposition 5.18 of Chapter I, that in all even
dimensions we have the complex bimodule isomorphism

Clu = Vs ® V5 (7.11)

where VS, denotes the irreducible complex Cf,,-module and where
Ce,, = Ct,, ®g C. The assertion (7.10) follows from (7.11) since in dimen-
sions 8k the complex case is simply the complexification of the real one.
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We conclude from (7.1) that in these dimensions

&(X) = Pspin X ¢ Clax = Popin X agee 1 Vo @ Vi) (7.12)
= (Pspin Xagi Ver) ® Vax
= 3(X) ® Vay

where $(X) denotes the real spinor bundle of X, and where ¥, now be-
comes the constant (trivialized) ¥, bundle.

Recall now that Vg, has two inequivalent Z,-gradings, obtained one
from the other by interchanging the factors. Either one gives the same
Z,-grading on the tensor product Vg, ® V;,, and the bimodule isomor-
phism (7.10) is a Z,-graded one.

We are now exactly in the situation of Example 7.6. That is, P =
P ® 1d,, where P is the Atiyah-Singer operator on spinors. We can there-
fore read off from (7.8) that

indgy(P°) = ind(P°) = A(X). (7.13)

The situation in dimensions 8k + 4 is very much similar. The principal
difference is that in these dimensions the irreducible real module V.,
for Clg, 4 is also the irreducible complex module; that is,

Veksa = [ng+4]n- (7.14)

(Recall that Clg ., is a quaternion, and hence also a complex, matrix
algebra) From (7.11) we know that V§.,, ®c VEiia = Clgiy =
Clg; +4 ®g C, which yields the real bundle isomorphism

2Clg1s = Visa ®c Vira (7.15)

This implies, as above, that there is an isomorphism of real Z,-graded
Clg, 4+ 4-bundles

2@§(X) = 3o(X) ®c VGi+a (7.16)

where $c(X) is the complex spinor bundle of X and V§,,, is the tri-
vialized bundle. Hence, we have that 2P = P ®¢ Idyec. Using (7.14) and
the arguments above, it is not difficult to see that

indg; 4 4(P°) = 3A(X). (7.17)

Notice that implicit in equation (7.17) is the fact that in these dimensions
the A-genus of a spin manifold is an even integer. A direct proof of this can
be given by observing that the Atiyah-Singer operator in these dimensions
is quaternion linear, and so the complex dimensions of its kernel and
cokernel are even. This fact, in dimension four, is just Rochlin’s Theorem
2.13.
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We now examine this index in the interesting cases where it is an integer
modulo 2. We begin with dimension 8k + 1 and the observation that from
the classification of Clifford algebras we have

Clgi+y = Clg, ® C = Clg, @ i Cly,. (7.18)
In fact, the element i in this algebra corresponds exactly to the volume
form w = e, - - eg, 1, Which is clearly central and has w? = —1. Thus,

the decomposition in (7.18) gives the Z,-grading on Clg, , ,. In particular,
we have

ngk+1 >4 C£8k and Ceék'ﬂ'l =W Cegk.,. 1 = i C£8". (7-19)
These isomorphisms show that
Va1 = Vg ® C = Vg, @ iV
Veke1 = Ve and Vieer = 0V sy = iV
Combining this with (7.11), we find that
Clgis1 = Clg, = V§; ®c ng
= (Vax ® C) ®¢ (Vax ® C)
= (ngn ® C) ®c (ng+1 ® C)
= (ng+1 ® C) ®r ng+1
= Vak+1 ®r ng+1'
This implies as above that
B(X) = $(X) O Vst (7.22)

and that =P @ Idpo. It follows immediately that ker(P°)=
H° ® V9,.,, where H® = ker(P°). Thus we have that

indg, . (P°) = dimgH®  (mod 2). (1.23)

(7.20)

This index can be reinterpreted in more elementary terms as follows.
Observe that from the discussion above, we have in these dimensions
that the spinor bundle is the complexification of a real bundle, i.e.,
$(X) = $°(X) ® w $°(X). We can construct from the Dirac operator
DP°:T($°(X)) — I'($1(X)), an operator

P:T(3°(X)) — T($%(X)) (7.24)
by setting
P=ow-P° (7.25)

This operator is elliptic and skew-adjoint. To prove the skew adjointness,
we note that since w is parallel, commutes with ) and satisfies w? = —1,
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we have (Pa,1) = (0P%0, 1) = (0?P°%, w1) = — (P, w1) = — (0, P°wr) =
—(0,wP°t) = — (o, P1).

It is an elementary fact that the parity of a real skew-adjoint Fredholm
operator is conserved under deformations (cf. II1.10). Thus for a skew-
adjoint elliptic operator P on a compact manifold, the mod-2 index

indz,(P) = dim(ker P)  (mod 2) (7.26)
is well defined. The result (7.23) can be reexpressed as
indgys (B°) = indy,(P) (7.27)

where P is given by (7.25).
In the final case of dimension 8k + 2 there is a strongly analogous
situation. Here we have from the classification of Clifford algebras that

Clg+,2Clgy, ® H  and  CE3,,,xCl,, ®C, (7.28)
Ver+2 = Vo ® H and Vee2 2 Va ® C. (7.29)

Using (7.11) one can deduce from here that
Clgrsz = Vaisz ®n f;sk+2
= Vasz ®c Virra-
It follows as before that

B(X) = $(X) ®¢ Vi+2 (731)

with respect to which P =~ P ® Id;. Consequently, ker (P°)=
ker(P°) ®¢ V344, and so

indg; ; ,(®°) = dimg(ker P°)  (mod 2). (7.32)

Now since the representation Vg, , , is H-linear, the bundle $(X) carries
a parallel quaternion structure, i.e., there are parallel endomorphisms I,
J, K of $(X) which satisfy the standard quaternion relations: I? = J? =
K*= —1,1J + JI = IK + KI = JK + KJ = 0. The Z,-grading on $(X)
can be written in terms of these as

3(X) = $°(X) ® J(3°(X)). (7.33)
We can then define a skew-hermitian operator
P=Jop°
on the bundle $°(X), and as before we have
indg, 4 (P°) = ind,,(P) (7.34)

where indz,(P) = dimg(ker P) (mod 2).
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We shall now examine this mod 2 index of the Atiyah-Singer operator
in low dimensions. The computations here are of some importance since,
as we shall see, the map ind, : Q"™ — KO~ *(pt) is a ring homomor-
phism, and the non-zero element n € KO~ !(pt) has the property that: #x
and n?x are not zero whenever x is an odd multiple of the generator in
degree 8k.

EXAMPLE 7.8 (the circle as a spin manifold). Consider the circle S* with
a riemannian metric. The oriented orthonormal frame bundle is canon-
ically diffeomorphic to the circle itself, i.e., Pso(S') = S, since there is
exactly one oriented unit tangent vector at each point. A spin structure
on S! is a 2-fold covering Pg;,(S') = Pso(S?) of the circle. As we noted
in Chapter I, there are two such coverings, one connected and one with
two components; and it is the non-connected covering S! x Z, — §?
which is not spin-cobordant to zero. We shall refer to this as the interesting
spin structure on S*.

Notice that since C£; =~ C we have that
&SH=8'xC
where the product structure gives the connection. Of course C£ =~ R
and the Z,-grading on C{, is the standard decomposition C = R @ iR.
Thus, @°(S!)=S* x R and @&*(S!) = S! x iR. Sections of & are just
complex-valued functions f(s) on the circle, and the Dirac operator is
simply

B=ir (7.35)

where s is arc-length on S

The kernel of P°:I(@°% — I'(@!) is the set of real-valued constant
functions on S*. The dimension of this space as a C£° =~ R module is one.
Hence, we have that for the interesting spin structure on S,

ind,(SY) # 0, (7.36)
ie., ind,(S") is the generator of KO ~'(pt) = Z,.

EXERCISE. Show directly that ind; = 0 for the “uninteresting” spin struc-
ture on S'. Show also that the connected sum of the intersecting spin
structure with itself is the uninteresting one.

EXAMPLE 7.9 (the torus as a spin manifold). Let T = S* x S! be the flat
square torus. The oriented orthonormal frame bundle is canonically
trivialized

Pso(T) = T x S
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The spin structure on T given by squaring the interesting spin structure
on the circle is the covering:

1d x 22

Pspln(T) = T X S1 —_— T X S1 = Pso(T).

Since C¢, xH and CL? = C, we see as before that §(T)=T x H
and @°%(T) = T x C. The kernel of B is just the complex-valued constant
functions, and we conclude that

ind,(S§* x §') #0 (7.37)
where S carries the interesting spin structure.
Exercise. Compute ind, for the remaining spin-structures on T.
ExXeRCISE. Prove directly that ind,(S%) = 0.

It is a good time to summarize what we have established so far. To
each riemannian spin manifold X, we have associated the canonical bundle
&(X), given in (7.1). This is a Z,-graded C{,-Dirac bundle and its Dirac
operator has an index, which we denote ind,(X) in KO~ ¥(pt). We have
proved the following.

Theorem 7.10. Let X be a compact spin manifold of dimension n. When
n =1or 2 (mod 8), let H = ker(P) denote the space of real harmonic spinors,
that is, the kernel of the Atiyah-Singer operator on the irreducible real spinor
bundle of X. Then

dimcH (mod 2) ifn=1 (mod 8)

dimyH (mod 2) ifn=2 (mod 8)

14(X) ifn=4 (mod8)

AX) ifn=0 (mod8)

ind,(X) =

Furthermore, for the interesting spin structure on S and for its square on
St x S!, this invariant is non-zero.

We shall now investigate the multiplicative properties of ind,.. To begin
we recall the ring structure on KO ~™*(pt) which was discussed in Chapter
I, §9. We set

n = the generator of KO~ (pt) ~ Z,
y = the generator of KO~ %(pt) > Z (7.38)
x = the generator of KO " ¥(pt) = Z

Then the multiplicative structure on KO ™ *(pt) is given by the following
(cf. 1.9):

KO~ *(pt) = Z[n,y,x]/{2n, 1% ny, y* — 4x) (7.39)
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where the grading is fixed by the requirement that deg(y) = 1, deg(y) = 4
and deg(x) = 8.

Our next result is that ind, is, in fact, a ring homomorphism. More
specifically, we mean the following. The homotopy invariance of the index
shows that ind,(X) is independent of the choice of riemannian metric on
X. (Any two metrics are smoothly homotopic.) We consider then the free
abelian group MSPi" generated by spin-structure preserving diffeomor-
phism classes of connected spin manifolds. The sum M§Fi* = P, MsPin
is naturally a graded ring under the direct product of manifolds.

Theorem 7.11. The mapping
ind, : MEPi" — KO~ *(pt)
is a surjective graded-ring homomorphism.
Proof. The map ind, is additive by definition. To prove that it is
multiplicative, we use the Alternative Definition 7.4 of the index. Let X,
and X, be compact riemannian spin manifolds of dimensions n; and n,
respectively. Let ®,:I'(®,) = I'(S,) be the Atiyah-Singer operator for
the Ct, -Dirac bundle &, = §(X,) defined in (7.1), for k = 1,2. Let P:
I'(®) — I'(@) be the corresponding object for X = X, x X, with the
product riemannian and spin structure. For this structure we have
Pgpin(X 1 X X3) D Pgpin(X1) X z, Pspin(X2)

where Z, acts by (—1,—1) on the product. From here one sees easily,
using (7.1), that

=@, 08¢, (7.40)

the exterior Z,-graded tensor product. This is a Ct,,, ,,, = (C{,, ® C¢t,,)-
Dirac bundle, and one can straightforwardly verify that with respect to
(7.40), the Atiyah-Singer operator of & can be written as

$=$1®Idz+a1®$z
where a, : C,, = C¢,, is the automorphism extending —Id on R™. Since
0(1251 + %1“1 = 0, it fOllOWS that
%2 = %% ® Idz + Idl ® $%.

Each of the operators D2, P? and P2 is non-negative, self-adjoint and
elliptic over a compact manifold. It follows from standard spectral theory
that ker(D?) = ker(H?) @ ker(P3). Since ker(D;) = ker(P}), we conclude
that

ker(P) = ker(P,) ® ker(P,) (7.41)



§7. C{,-LINEAR OPERATORS 151

where the tensor product in (7.41) inherits the structure of a Z,-graded
tensor product of Z,-graded Clifford modules from the structure of (7.40).
This graded tensor product is exactly the multiplication in KO™* =~
M, /i*M, , ,. Thus, we have established that

ind,, +,,(P) = ind, (D,)ind, (P,)

and so ind,, is a ring homomorphism.

To see that ind, is surjective we need only show that it maps onto the
set of multiplicative generators {#,y,x} given in (7.38). Example 7.8 shows
that the circle with interesting spin structure maps onto 5. The K3-surface
Y given in Example 2.14 is a compact spin 4-manifold whose A-genus is 2.
Hence, ind,(Y) = $A(Y) = y. Finally, to produce a spin 8-manifold X with
indg(X) = x, we must find one such that A(X) = 1. For this one could take
X = M}, the almost parallelizable 8-manifold of index 224 constructed
in Kervaire-Milnor [1]. Alternatively, one could take the 4-disk bundle
E over S* with y(E) = 1 and p,(E)?> = 900. Then dE = S’, and the mani-
fold X = E Uy, D8, obtained by attaching an 8-disk along this boundary,
is a closed spin 8-manifold with A(X) = 1 (see Milnor [7]). This completes
the proof of Theorem 7.11. =

REMARK 7.12. To prove the index theorem for this fundamental case, it
remains only to prove that ind, is a spin-cobordism invariant. It will
then descend to a ring-homomorphism ind, : Q" — KO~ *(pt), which
can be seen to agree with the map (3.22) directly. (For the torsion part,
this requires some argument.)

It is worth noting that all of the above could be carried out with
coefficients in a vector bundle. Let X be a compact riemannian spin mani-
fold of dimension », and let E be a real vector bundle over X with an
orthogonal connection. Then the bundle &(X) ® E is naturally a Z,-
graded C{,-Dirac bundle with a Dirac operator which we shall denote by
®:. We shall denote

indg(X) = ind (D) € KO ~"(pt). (7.42)

Now we also have the fundamental real spinor bundle $ over X and we
can take the tensor product § ® E in the spirit of Example 6.5 above.
We denote the Dirac operator on § ® E by Pg. Then arguing exactly as we
did above proves the following.

Theorem 7.13. Let X be a compact spin manifold of dimension n, and let E
be a real vector bundle over X with an orthogonal connection. When n = 1
or 2 (mod 8), let Hy = ker(g) denote the space of real harmonic E-valued
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spinors. Then

dimcH; (mod 2) ifn=1 (mod 8)
dimyH; (mod 2) ifn=2 (mod 8)
HchE-EX)}[X] ifn=4 (mod3)
{ch E - R(X)}[X] ifn=0 (mod 38)

A topological computation of this index can be given as follows. Embed
X" < $"*8 for k sufficiently large, and identify the normal bundle v of X
with a tubular neighborhood of the embedding. The spin structure on X
determines a unique spin structure on v (via Proposition 1.15 and the
uniqueness of the spin structure on S"*8%), Let $*(v) and $~(v) denote the
canonical real spinor bundles of v (whose dimension is 8k). Lift $%(v) to
the total space of v by the projection n:v — X, and at each non-zero
vector n € v consider the isomorphism p,:7n*$*(v) 5 n*$~(v) given by
Clifford multiplication by n. Then the difference element

1, = [n*81 (), n* 8~ (v); 1]

represents a class in the relative KO-group KO(v,v — X), where X c v
is the zero-section. This is the KO-theory Thom class of v.
Given a real bundle E over X, we can consider the class

t(E) =1, [n*E] € KO(v,v — X).

Since v is embedded as a domain v = S"*8 we have an excision isomor-
phism j: KO(v, v — X) = KO(S"**, §"*# — X). Composing this with the
natural map i:KO(S"*%%,5"*% — X) — KO(s"**®) and applying Bott
Periodicity B: KO(S"*8) ~ KO(S") = KO~ "(pt), we obtain a class

Ag(X) = Boioj(z,E)) e KO "(pt)

One assertion of the Atiyah-Singer C£,-Index Theorem, proved in IIL.16,
is that

indz(X) =

Theorem 7.14.
indg(X) = Ag(X).

The “cobordism invariance” in this case asserts that this map ind = o/
determines a transformation

o, : Q5P"(BO) —> KO ~*(pt)
where Q3Pi"(BO) denotes the spin-bordism of the space BO.

REMARK 7.15. Itisinteresting to note thatin dimensions 1 and 2 (mod 8),
the index can be changed even by twisting with a flat bundle. (This is not
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true of the usual index.) For example consider the non-trivial real flat line
bundle £ over the circle (the M6bius band). Using the analysis of Example
7.8, one easily finds that @(S') ® £ = ¢ @ i¢. Since the kernel of P, =
“i(d/ds) consists of locally constant sections, we see that ker (P,) = {0} and

ind/{S") = 0.

Recall that ind,(S") # 0.

This sensitivity to flat bundles is a reflection of the interesting fact
that these (mod 2)-invariants are not local, i.e., they cannot be computed
by universal formulas involving only the local data of the operator, as
in the Gauss-Bonnet and Chern-Weil theorems. Another indication is
that the (mod 2)-invariants are not multiplicative under coverings (see
Atiyah-Singer [4]).

§8. Vanishing Theorems and Some Applications

Suppose X is a compact riemannian manifold and let D? be the Dirac
laplacian on the bundle C{(X). One of the major results in riemannian
geometry was the following discovery of S. Bochner. There exists a second,
naturally defined laplacian V*V on CE(X). It is self-adjoint, non-negative
and has the same symbol as D2 The difference, D?> — V*V, which is nec-
essarily an operator of order <1, is, in fact, of order zero and can be
expressed in terms of the curvature tensor of X. Using harmonic theory,
Bochner was thereby able to conclude the vanishing of certain Betti num-
bers of X under appropriate positivity assumptions on the curvature
tensor.

Following Bochner’s original paper, arguments of this kind have ap-
peared repeatedly in real and complex geometry. They are known gene-
rically as “Bochner’s method.”

In this section we shall give a systematic derivation of Bochner-type
formulas on general Dirac bundles. This will include the classical formu-
las on C£(X), although even here the algebra is vastly simplified by using
Clifford multiplication. It will also include the Lichnerowicz formula for
the Dirac laplacian on spinor bundles, and generalizations of this to spinors
with coefficients in an arbitrary vector bundle. This latter result is very
useful in the study of manifolds of positive scalar curvature (cf. Gromov-
Lawson [1], [2], [3]). Everything will follow from a single elegant formula
which applies to any Dirac bundle.

We begin with the definition of the operator V*V. Let E be any
riemannian vector bundle over X, and assume E has a riemannian con-
nection with covariant derivative V. Then to any pair of tangent vector
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fields ¥ and W on X, we associate an invariant second derivative V7 y:
I'(E) - T'(E) by setting
V%'.W(P =VyVypo — Vo, wo. &.1)

(Here, V, W is the riemannian covariant derivative on X.) At any point
x € X, the operator V2, depends only on the values V, and W, ie, it
is tensorial in these variables. This is evidently true for V, since it is a
general property of the covariant derivative. That it is true for W, follows
from the identity

Vlz’.W - V%’V,V = RV,W (8-2)

where R is the curvature tensor of E. Equation (8.2) is an immediate con-
sequence of the fact that V, W — V, V = [V,W].

Now given a smooth section ¢ of E, we see that V2.¢ is a section of
T* ® T* ® E; that is, at each point it defines a bilinear form on the tan-
gent space with values in E. The connection laplacian

V*V.TI'(E) — T(E)
is defined by taking the trace, i.e.,
V*Vo = —trace(V2.¢). 8.3)

In terms of a local orthonormal tangent frame field (e,, . . . ,¢,) on X,
V*Vo = ",; VZes®
It is easy to see that the symbol of V*V at a cotangent vector £ is

o (V*V) = [|¢]1%, (8.4)

and so V*V is elliptic. We shall now show that it is also symmetric and
=0.

Recall that the inner product (:,") on I'(E) is defined by integration:
(@, ¥) = [x {@,¥). Similarly, we define

(Vo, W) = [, Vo,V (8.5)

where (Vo, V{) is defined in terms of local orthonormal tangent frames
(e1 - - - »e,) by the expression Vo, V) =Y ; (V. 0,V ¥>.

Proposition 8.1. The operator V*V:I'(E) — I'(E) is non-negative and for-
mally self-adjoint. In particular,

(V*Vo,¥) = (Vo,VY) (8.6)
for all o,y € T'(E) provided that one of ¢ or Y has compact support.
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If X is compact, then V¥*Vo = 0 if and only if Vo = 0 i.e., if and only if
@ is globally parallel.

Proof. Fix x € X and choose a local orthonormal tangent frame field
(e, . . . ,e,) with the property that (Ve;), = 0 for all j. Then we have at the
point x that

<V*V¢9 W) = —; <Ve,Ve,(P, 'Il> (87)
—g {e<Ve, 00> — <Ve,0, Vo ¥}

—div(V) + (Vo,Vy>

where V is the tangent vector field on X defined by the condition that
KV, W) =<{Vyo,y¥) for all W e T(X). The last line of (8.7) is proved as
follows. At x,

div(V) = Y <V, V,e)
j
= ; ej<V, ej>
= ; ej<V¢j¢’ .l/>'

Equation (8.6) now follows by integration of (8.7). The remainder of the
proposition is a consequence of formula (8.6). m

Using arguments similar to those given for Theorem 5.7, one can show
that on a complete riemannian manifold the operator V*V is essentially self -
adjoint, i.., it has a unique self-adjoint closed extension on L%(S). Further-
more, the kernel of V*V on L(S) consists of the parallel sections of S, i.e.,
those which satisfy Vo = 0. If X has infinite volume, then no such sections
exist except g = 0, since ||g]| is constant.

We suppose now that S is any Dirac bundle over X, and we define a
canonical section R of Hom(S,S) by the formula

R(o) = %1;2_1 e; e’ R, o (0) (8.8)
where (ey, . . . ,e,) is any orthonormal tangent frame at the point in ques-
tion, where Ry is the curvature transformation of S, and where the dot
“.” denotes Clifford multiplication.

Theorem 8.2 (the general Bochner Identity). Let D be the Dirac operator
and V*V the connection laplacian for any Dirac bundle S. Then

D*=V*V + R |. 8.9)
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Proof. Fix x € X and choose a local orthonormal frame field (e, ... .e,)
such that (Ve;), = O for all j. Then using (8.2) we have at x that

D? = 2'; ¢ Ve:(ek Vel
Js
= Z ej'e," Vejvek
Jok
= Z € €’ VZ,.ek
jk
= _Z V:;.E; + Z ej. €x '(ng,ek - ng,ej)
J i<k

=V*V + R [

Recall that the Ricci transformation of T'(X) = A'(X) is defined by the
formula

RM@EW;RW@) 8.10)

where R is the curvature transformation of T(X). This determines a bilinear
form, called the Ricci curvature form, by setting

Ric(e, ) = (Ric(p)¥)- (8.11)

From the fundamental identity (4.44) for the Riemann curvature tensor,
the form Ric is seen to be symmetric.

A consequence of Theorem 8.2 applied to the bundle S = C{(X) is the
following

Corollary 8.3. Let A be the Hodge laplacian and V*V the connection lap-
lacian of the tangent bundle T(X). Then

A = V*V + Ric |. 8.12)

Proof. Consider T(X) = A'(X) = CE(X). Since D? = A it suffices to com-
pute the right hand side of (8.9) for vectors ¢ € A}(X). Note that since
[LV] =[L,A] =0 (cf. Lemma 5.18 and Corollary 5.21), both of the
operators V*V and A preserve the subbundle A'(X). Hence, so does the
operator R. Therefore, using the identities (4.43) and (4.44), we have

R(p) = % IZJZ eiejRe:.e;((P)

=3 I;k eiej<Re¢.eJ((p)’ ek>ek
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= % i#j;k#i <R¢(.ej(ek) + Rek.E((ej) + Re,,ek(ei)’ (p>eiejek

+% Zj elej<Re;,eJ((p)9 ej>ej + % g eie]<R¢¢.el((p)a ei>ei
_izj <Reg.e!((p)’ ej>ei == iz <R4p.e,(ei)9 ej>ei

s, . sJ
‘—.iZi: <Rej,¢(ej)9 ei>e‘ = —; Rej.o’(ej)

= Ric(p). ®

Note. As pointed out above, we know from (8.9) that R(AY(X)) = AY(X).
However, e;eje, € AX(X) if i # j # k # i. Hence, the third line of the com-
putation above constitutes a proof of the first Bianchi identity (4.43). In
Theorem 5.16 we saw more sophisticated examples of curvature identities
that also followed from operator identities and Clifford multiplication.

l

Corollary 8.3 has the following important consequence:

Theorem 8.4 (Bochner). Let X be a compact riemannian manifold without
boundary. If Ric > 0, then the first Betti number b,(X) is zero. The con-
clusion also holds if Ric = 0 and >0 at one point. .

Proof. Suppose b,(X) = dim H'(X;R) > 0. Then there exists a non-zero
harmonic 1-form ¢ € H! ~ H!(X;R) by Theorem 5.15. By Corollary 8.3
and Proposition 8.1 we have that

[ Ric.0) = —(V*Vo,0) = — Vo> (8.13)

If Ric = 0, we conclude that Vo = 0, i.e,, ¢ is parallel. In particular, ||¢]|
is constant. Hence, if at some point we have Ric > 0, then { Ric(p,) > 0
and we have a contradiction. =

Note that this argument also proves that when Ric = 0, every harmonic
I-form is parallel. Under the metric correspondence T*X =~ TX, the
parallel 1-forms become parallel vector fields. Thus we can conclude the
following

Theorem 8.5. Let X be a compact riemannian manifold of non-negative Ricci
curvature. Then b,(X) equals the dimension of the space of parallel vector
fields on X. In particular,

b,(X) < dim(X)
with equality if and only if X is a flat torus.

Proof. Let k = by(X). Then by the argument above, there are k linearly
independent parallel vector fields on X. Parallel vector fields are linearly
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independent if and only if they are linearly independent at each point.
Hence, k < dim(X), and k = dim(X) if and only if X has a globally parallel
framing. That X must then be a flat torus can be seen as follows. We may
choose parallel vector fields E,, . . . ,E;, which are pointwise orthonormal.
Since [E;,E;] = Vg,E; — Vg E; = 0 for all i,j, these vector fields generate
a locally free R*-action. Since k = dim(X), we see that X is an orbit of
this action, i.e., X = R*/A, where A is a lattice in R*. The metric on X
clearly agrees with the usual one on R*. m

Any parallel vector field generates an isometric flow, and its integral
curves are geodesics. Thus even when k = b,(X) < dim(X) (and Ric = 0),
we get a locally free action of R* by isometries on X with totally geodesic
orbits. We can also consider the dual basis ¢, . . . ,¢, of parallel 1-forms.
Integration of ¢ = (¢4,...,p,) gives a riemannian submersion J: X —
T* = R*/A where A is the lattice in R* generated by the “periods.” That
is, A= {ieR: 1= |, ¢ for some closed curve y in X}. By construction,
the map J is a covering map on each orbit. With a little more work one
can show that the universal covering space X of X splits as a riemannian
product X = R* x X, where X, is compact. The original manifold X is a
(possibly twisted) riemannian product of T* with X,.

REMARK. The first statement in Theorem 8.4 was considerably improved
by Myers [1]. Much stronger results for non-compact complete manifolds
with Ric = 0 were proved by Cheeger and Gromoll [2]. It is a deep
theorem of Gromov [1], that there exist explicit a priori bounds, depend-
ing only on dimension, for all the Betti numbers of a compact manifold
of non-negative sectional curvature. Such bounds do not exist under the
weaker hypothesis Ric = 0 (except for degree 1) by examples of Sha and
Yang [1].

As one might guess, theorems similar to 8.4 can be proved for the higher
Betti numbers. For each p, there is a positivity assumption on the curvature
tensor which guarantees that b,(X) = 0. For detailed statements of these
results the reader is referred to Bochner and Yano [1] and to Goldberg
[1]. However, one of the more quotable results of this type can be proved
rather easily using the Clifford formalism. We present this now.

Recall that the curvature tensor {Ry,y, V3, V,) is antisymmetric in
(V3, V,) and in (V3, V,) and symmetric under the interchange of these pairs
(see (4.44)). Hence, R can be considered as a symmetric endomorphism
R:A%(X) - A*X). We call this transformation the curvature operator and
say that it is positive (or non-negative) if all of its eigenvalues are <0
(or < 0 respectively).

Theorem 8.6 (Gallot and Meyer [1]). Let X be a compact riemannian n-
manifold (without boundary) with the property that its curvature operator
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is positive at every point. Then all the Betti numbers, b,(X) are zero for
p=1,...,n—1, ie, X is a real homology sphere. The same conclusion
holds if the curvature operator is =0 and >0 at some point.

Proof. It will suffice to prove that positivity of the curvature operator
implies that
{R(p).p> >0 for all non-zero p e A(X),p=1,...,n—1. (8.14)

The argument then proceeds as in the proof of Theorem 8.4. From the
curvature identity (5.17) we have that

(R(P)p) = ) {eiejRe (@) 9D

i<j

= % izj <[elej:Rege,((p)]’ ‘P)
= ""ZL i;j <REI,CJ(¢)9 [eiej’(p]>-

From Theorem 4.16 we know that the curvature transformation Ry :
CEX) » CYX) can be written as Ry y =4 Y,<; {Rywle) ead,,,
Hence,
(m(‘P), (p> = _% i;j <Reg,e,(ek)7 e{><adeqej((p)’ adeke,((p)> (8'15)
k<¢
= —% l;j <R(eiej)5 ekel><adegej((p)’ adek¢,(¢)>'
k<¢

Observe now that the elements {e;e;};; form an orthonormal basis of
A*(X)  CU(X). The last expression in (8.15) is clearly independent of the
choice of orthonormal basis. That is, we can write

(H(e) o) = -i‘azp CR(E,), £p> <ady(@), ad(@)) (8.16)

where {£,}, is any orthonormal basis of A%(X) = CE(X). We choose a
basis that diagonalizes R. Let {1;} be the eigenvalues of R and set 4, =
—312.. Then (8.16) becomes

(‘ﬁ((p), (p> = ; }w”adﬁa((p)”z

where 4, > 0 for all a. This proves that {R(¢), ) = 0 and equality holds
iffady(¢) = O for all £ € A%(X). Thus, it remains only to prove the following;:

Lemma 8.7. Consider a form o e AP(R") c C{(R") for 1 <p=<n— 1 If
ad() = 0 for all £ € A¥(R"), then ¢ = 0.

Proof. Recall that the representation ad, on AP(R") is just the standard
representation of the Lie algebra so(n) = A%(R"). This lemma is therefore
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equivalent to the well-known fact that these representations have no fixed
vectors for p # 0 or n. However, since an elementary proof is possible we
shall give it.

Let ey, . .. e, be the standard basis of R" and write ¢ = Y=, a;e;. By
assumption, [e;e;, @] = 0 for all i < j. One can see easily that

0 ifbothi,j¢ I
[e‘-ej, el] = 0 if bOth i,j € I
2eie5e, otherwise.

Ifi¢ 1andjel, then eeje; = te;y - ;- Therefore, [ee), 9] = 0 implies
that a; = 0 whenever i € I or j e I but not both i,j € I. Applying this for
all i < j shows that ¢ = 0, provided that p # 0 or n. This completes the
proof of the lemma and the theorem. m

We now take up the case of spinor bundles. From now on we assume
that X is a compact spin manifold with a fixed spin structure on its tangent
bundle. Let S be any spinor bundle for T(X) endowed with its canonical
riemannian connection.

Before stating the vanishing theorem in this case we recall one of the
simplest invariants of the riemannian curvature tensor, the so-called scalar
curvature, This is a function x: X — R defined by setting

K = trace(Ric) = —2 trace(R).

In terms of an orthonormal tangent frame (ey, . . . ,e,) at a point x € X,

K== 3 (Reelede. 8.17)
i,j=1

When X has dimension two, k coincides with the classical Gauss cur-
vature function.

Theorem 8.8 (A. Lichnerowicz [1]). Let X be a spin manifold and suppose
S is any bundle of spinors over X endowed with the canonical riemannian
connection. Let ) denote the Atiyah-Singer operator and V*V the connec-
tion laplacian on S. Then

PP=V*V +1ix|. (8.18)

This formula has the following striking consequence. We say that a spin
manifold X has no harmonic spinors, if ker ) = 0 for any spinor bundle
associated to T(X).

Corollary 8.9. Any compact spin manifold of positive scalar curvature admits
no harmonic spinors. In fact, the same conclusion holds if the scalar cur-
vature is =0 and >0 at some point.
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Proof of Corollary 8.9. This follows from formula (8.18) as before. Suppose
o € I'(S) satisfies Do = 0. Then by integration of (8.18) we find

Jy dlloli? = =(V*Va,0) = — IV

If k = 0, then we must have Vo = 0. Hence ||0]| is constant, and if x(x) > 0
for any point x, then | x||o]|*> > 0 and we have a contradiction. m

Note that we have also proved the following:
Corollary 8.10. On a compact spin manifold with x = 0, every harmonic
spinor is globally parallel.

Proof of Theorem 8.8. We need to compute the curvature term in equa-
tion (8.9) for the canonical spinor connection. In Theorem 4.15 we es-
tablished that for all V,W e T(X), the curvature transformation R} y:
S, — S, is given by the formula R} y =4 Y., (Ry wle)e.eie,, where
Ry w:T«X) — T(X) is the curvature transformation of X and where
(ey, - - . ,e,) is any orthornomal basis of T,(X). Consequently, using the
identities (4.43) and (4.44) we see that:

m = % g eiejR:bej

=% Z <Re¢.e,(ek),e;>e,-eje,‘e,
i,j,k,¢

= % ; {% l,‘j;k <R2(ej(ek) + Rekei(ej) + Relek(ei)’ el>e£ejek

distinet
+ :2} (R, e eyeee; + ‘2} (R..[e), e,)e‘eje,}e,
=% g_':l (R e er)ee,
= —%; Ric(e j,é,)e 2.
. m

K.

I
s

As a consequence of the Atiyah-Singer Index Theorem applied to the
fundamental spin complex (Example 6.3), we have the following:

Theorem 8.11. Let X be a compact spin manifold of dimension 4k. If X
admits a metric of positive scalar curvature, then A(X) = 0.

More generally, applying the same argument to the Dirac operator P
of the bundle (7.1), we find that in any dimension, positive scalar curvature
implies that the analytic index ind,(P°) must vanish (see Definition 7.4).
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From the C{,-Index Theorem, this implies the following:

Theorem 8.12. Let X be a compact spin manifold. If X admits a metric of
positive scalar curvature, then &/(X) = 0.

By Theorem 7.10 we know that this result implies Theorem 8.11 above.
However, it gives new information in dimensions one and two (mod 8).

Recall that o/(X) is an invariant of the spin-cobordism class of X. The
above results therefore explicitly present large classes of manifolds which
cannot carry metrics of positive scalar curvature. In particular, from
Theorem 2.8 we have the following striking result:

Theorem 8.13 (N. Hitchin [1]). In every dimension n=1 or 2 (mod 8)
where n > 8, there exist compact differentiable manifolds which are homeo-
morphic to the n-sphere but which do not admit any riemannian metric with

positive scalar curvature. In fact, they admit no metrics such that x = 0
but #£0.

Such spheres are hardly Platonic. This theorem can be perhaps best
appreciated in light of the current positive results. The standard metric
on the standard n-sphere S" = {x € R"*!:||x|| = 1} is of course the most
uniformly positively curved manifold. Its curvature transformation is given
by the formula —Ry =V A W, ie,

—Ry w(U) =V, UYW — KW, UDV (8.19)

for all U,V,W e T,(S"). Hence, Ric(V) = (n — 1)V and k = n(n — 1). The
most symmetric exotic spheres (see Hsiang and Hsiang [ 1]) are the Kervaire
spheres which have dimension 4k + 1. They can be constructed by taking
the boundary of the manifold obtained by plumbing together two copies
of the tangent disk bundle of §2**1:

p2k+l 5 p2k+l
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However, Brieskorn has proved that these manifolds can be described
algebraically as follows (see Hirzebruch and Mayer [1]). For each integer
d, consider the complex polynomial

PdZor-- -2 =20+ 23+ 22 +... + 22, .
Let V(d) = {ze C"*2:p,(z) = 0}; $?"** = {z e C"*2:||z|| = 1}; and set
M**(d) = V(d) n S*"*3, (8.20)

For n =2k and d = 3 or 5 (mod 8), M?"*(d) is a Kervaire sphere.

In this thesis Hernandez [1] proved that the Brieskorn manifolds
M?"*1(d) carry metrics of positive Ricci curvature. Moreover, Gromoll
and Meyer [2] have proved that a certain exotic 7-sphere carries non-
negative sectional curvature which is strictly positive on an open subset.
It is therefore something of a surprise that in dimension nine there exist
exotic spheres which carry no metric of even positive scalar curvature!

Manifolds which carry positive scalar curvature are not hard to find.
Any homogeneous space G/H, where G is a compact Lie group, carries a
metric with x = 0. Furthermore, it carries k > 0 unless G/H is a torus.
More generally one has the following:

Theorem 8.14 (Lawson and Yau [1]). Let X be a compact manifold which
admits an effective differentiable action by a compact, connected, non-abelian
Lie group. Then X admits a metric of positive scalar curvature.

Corollary 8.15. Let X be a compact spin manifold such that o (X) # 0. Then
the only compact, connected Lie transformation groups of X are tori. In
particular, this conclusion holds for any exotic sphere which does not bound
a spin manifold.

In dimensions 4k, it is a result of Atiyah and Hirzebruch [3] that a
compact connected spin manifold X with 4(X) # 0 does not even admit
an S!-action! (See 1V.3.)

REMARK 8.16. We point out that the results above definitely require
that X be a spin manifold. We know from (6.19) that the complex pro-
jective spaces P2(C) have

A(PC)) = (— 1)~ (2:) (8.21)

These spaces are all homogeneous; P*C) = U(n + 1)/U(1) x U(n — 1).
Hence, they have metrics with ¥ > 0 and large non-abelian Lie trans-
formation groups. However, as we saw in §2, P?%(C) is not a spin manifold.

Compact manifolds of positive scalar curvature are now rather well
understood. A thorough discussion will be given in Chapter IV,
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We conclude this section with an important generalization of the
Lichnerowicz formula (Theorem 8.8) to the case of “twisted” spinor
bundles. This result is also quite useful in applications as we shall see in
Chapter IV.

Let X be a compact riemannian spin manifold, and let S be a spinor
bundle for X with the canonical riemannian connection. Let E be any
vector bundle over X equipped with an arbitrary orthogonal connection.
Then the bundle S ® E, equipped with the tensor product connection, is
again a Dirac bundle over X (see Proposition 5.10). Here the Clifford
multiplication takes place in the “S-factor”. We now define a smooth,
symmetric bundle endomorphism

REESRE— SQ®E
by the formula

Rc @ o) =4 I‘Z: (ejes0) ® (RE,.2) (822)

J 1

on vectors ¢ ® ¢ of simple type. Here RE denotes the curvature of the
bundle E, and, as usual, (e,, . . . ,e,) denotes an orthonormal tangent frame
to X at the point in question. The sum in (8.22) is essentially the trace of
a bilinear object defined on A?TX.

Note. In the case that S is a complex spinor bundle, we may assume E
to be complex and endowed with a unitary connection. The tensor product
of S with E can then be taken over the complex numbers.

Theorem 8.17. Let X be a riemannian spin manifold with scalar curvature
K, and let S ® E be any twisted spinor bundle over X as above. Then the
Dirac operator Pz and the connection laplacian V*V of S ® E satisfy the
identity:

Di=V*V + ik + RE |, (8.23)

REMARK 8.18. Note that the operator RE depends linearly and uni-
versally on the components of the curvature tensor RE of E. Thus, if E is
flat, RE = 0, and if RE is small, then RE is correspondingly small by an
estimate depending only on dimension.

Proof. Recall that the covariant derivative of the tensor product con-
nection on S ® E acts as a derivation, i.e.,

Vo ® &) = (V50) ® ¢ + 0 ® (VEe)
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where V5, VE denote the covariant derivatives on S and E respectively.
The commutator of two derivations is again a derivation. This fact (or
direct verification) shows that the curvature transformation of S ® E is
also a derivation, i.e.,

R ® &) = (R%) ® ¢ + 6 ® (RE¢)

where RS and RE denote the curvature transformations of S and E
respectively.

We now wish to compute the curvature term R in the general Bochner
Identity (8.9). It is given by

m(o®s)=%j

=

ejekRe,,ek(a ® 8)

1

=1 Y ealR .00 ®c+0® (RE 0}

s

= (% Y. eeRS J',ka) e+t Y (ea0) ® (RE 0.
k=1 k=1

Now from the Lichnerowicz calculation (see the proof of Theorem 8.8),
we know that the first term in the last line above is just k. Hence from
(8.22) we conclude that

R(o ® &) = 4x(o ® &) + RE@o @ ¢),

and the proof is complete. m

E

-



CHAPTER III

Index Theorems

In this chapter we shall present the analytic underpinnings of the subject of
spin geometry. In particular we shall formulate and prove various forms of
the Atiyah-Singer Index Theorem. This will include the classical theorem
and its consequent cohomological formula for the index. It will also in-
clude the Index Theorem for G-Operators, the Index Theorem for Families,
and the Index Theorem for C{,-Linear Operators. This last result is one
of the deepest in the theory. It involves indices in KO-theory which are
in general not locally computable on the manifold. Our exposition of this
result differs somewhat from that which currently appears in the literature.

There are now in existence many beautiful and illuminating proofs of
the more classical index theorems which use the asymptotics of the heat
kernel. This is a method that was pioneered by Gilkey and Patodi in the
late 1960s. We have elected to present here instead the arguments which
originally appeared in Atiyah-Singer [1]-[5]. This is in part because the
Atiyah-Singer methods lead to the non-local results just mentioned (and
these results are not accessible by heat equation techniques). It is also,
however, because their arguments, which proceed in the spirit of Grothen-
dieck, are really quite beautiful and simple. The essential idea is this. One
observes that the index is an insensitive object, unperturbed by rather bru-
tal changes in the analytic data. Furthermore, the index is a “functorial”
object, which transforms nicely with respect to global operations such as
the embedding of one manifold into another, the addition and multiplica-
tion of operators, etc. Using an appropriate form of K-theory, one then for-
mulates a topologically defined index possessing the same transformation
properties as the analytic index. By performing manipulations allowed in
the theory, everything can be reduced to the trivial case where the mani-
fold is a point. Here the analytic and the topological indices are easily
seen to coincide, and it follows that they must coincide in general.

Our ambition has been to make the presentation in this chapter rea-
sonably self-contained. All the requisite material on pseudodifferential op-
erators is developed assuming only a knowledge of elementary Fourier
analysis. Along the way a proof of the generalized Hodge Decomposition
Theorem is given. Most of the material necessary for the derivation and
computation of the cohomological formulas is also presented in detail.

166
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The exposition in this chapter owes much to the writings of Atiyah and
Singer and also to Gilkey and Nirenberg. The reader is encouraged to con-
sult the excellent literature on the subject of pseudodifferential operators
and index theory which has appeared over the past twenty-five years.

§1. Differential Operators

This section presents the basic notion of a linear elliptic differential opera-
tor over a manifold X. We begin by fixing notation. For an n-tuple of non-
negative integers & = (&, . . . ,,), we set [a] = Y, &, and for each ¢ € R” we
set &% = £§1&%2 - - - €2 In local coordinates (x;, . . . ,x,) on X we define the
differentiation operators D* by iD* = ¢"!/0x* = 0"/0x5'0x%? - + - dxC~.
Recall that for a smooth vector bundle E on X, the symbol I'(E) denotes
the space of smooth (i.e., C*®) cross-sections of E.

DerNITION 1.1. A differential operator of order m on X is a linear map
P:T(E) —» I'(F), where E and F are smooth complex vector bundles over
X, with the following property. Each point of X has a nexghborhood U

with local coordinates (x;, . . . ,x,) and local trivializations: Ely > UxC?
and F|y > U x C%, in which P can be written in the form:
6'“'
P=Y A%(x) 5 (1.1)
lajsm

where each A%(x) is a g x p-matrix of smooth complex-valued functions
and where A* # 0 for some a with |a] =

A real differential operator of order m is defined similarly with C re-
placed by R.

Observe that if we make a change of the local trivializations of E|, and
Fly by smooth maps gz:U — GL,(C) and g,:U — GL(C) respectively,
then in these new trivializations P has the form

a am -1
P= gp(laém A ax“>gE
. alal
=) 4 pac

laism

where the 4%’s are again p x g-matrices of smooth functions of x and where
A® = gpA°g; ! for |a| = m. (1.2)

If we make a change of local coordinates X = X(x) on U, then using the
fact that s

n k .
— h
E 6 %, for each j,
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we find that P again takes the form

N
P - Iaém A (X) 63?“
where
- ox I
A=Y AFl == for || = m 1.3)
1BI=m 0x |g

and where [0%/0x]} denotes the symmetrization of the m™ tensor power
of the Jacobian matrix ((0%,/0x;)).

Equations (1.2) and (1.3) together imply that the coefficients {i"4%}4=pm
represent a well-defined section o(P) of the bundle (O"TX) ® Hom(E,F)
where © denotes symmetric tensor product.

DEerINITION 1.2. The section o(P)e I'((®™"TX) ® Hom(E,F)) is called
the principal symbol of the differential operator P.

Recall that for a vector space V, the space ©®™V is canonically isomor-
phic to the space of homogeneous polynomial functions of degree m on
V*, Hence, for each cotangent vector £ € T*X, the principal symbol gives
an element

64P): E,— F,. (1.4)

If we fix local coordinates and trivializations as in Definition 1.1, we find
that for & = Y&, dx,
oP)=i" ) AX(x)&. (1.5)
lal=m
It is now possible to present one of the fundamental concepts of this
chapter.

DEeFINITION 1.3. Let P be a differential operator of order m over a mani-
fold X. Then P is elliptic if for each non-zero cotangent vector ¢ € T*X,
the principal symbol a(P): E, — F, is invertible.

ExAMPLE 1.4. Let E = F be the trivialized line bundle and consider
the Laplace-Beltrami operator A : C*(X) — C®(X) of a given riemannian

metric on X. In local coordinates (x,, . ..,x,) we have
1 2 0 of
A - - k2
f \/— j,kz.—_:l 6x,- (\/ag 6x")

g

n az

Y. g* S + lower order terms
2

W21 0x;0%,
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where Yg, dx;dx, is the metric tensor and where ((g")) = ((g;))~*. For
a given cotangent vector ¢ = Y £, dx, we find that

oP) = =Y g"¢% = —||¢|?
which is certainly invertible (as a linear map C — C) for £ # 0.

ExAMPLE 1.5. Let S be a Dirac bundle over a riemannian manifold X
(see I1.5.2), and consider the associated Dirac operator D: I'(S) — I'(S). It
is straightforward to show that

a{D) =i

where “¢-” denotes “Clifford multiplication by £.” Since £ - ¢+ = —||¢]|*1d,
this map is certainly invertible for £ # 0.

ExAMPLE 1.6. Let S be as in Example 1.5 and consider the Dirac
Laplacian D?:I'(S) — I'(S). Then one has that

0D = [l 1a.

This shows, from the discussion in Chapter II, §5, that the Hodge La-
placian on exterior p-forms is an elliptic operator. The proof of the fol-
lowing statement is an easy exercise.

Proposition 1.7. Let P:I'(E) - I'(F), P':T'(E) -» I'(F)and Q:T'(F) - I'(L)
be differential operators over X where P and P’ have the same order. Then
for all £ € T*X and for all t,t' € R, one has that
O{tP + t'P) = ta(P) + t'c{P)
and
6{Q o P) = 6{(Q) o 6(P).

This proposition says that the symbol is a rather nice object when con-
sidered to live on the cotangent bundle. Given P:T(E) — I'(F), we pull
back the bundles to T*X via the projection n: T*X — X and consider
the principal symbol as a bundle map

o(P):n*E — n*F. (1.6)
If P is elliptic, this map is an isomorphism away from the zero section,
and we can assign topological data to the operator as follows. Fix a metric

on X and set DX = {¢ e T*X:||¢|| < 1}. Then via the construction given
in Chapter I, §9, the symbol of P defines a class

i(P) = [n*E,n*F,d(P)] € K(DX, dDX). (1.7)

IMPORTANT FAcCT 1.8. Suppose X is a spin manifold of even dimension
and that P is the Atiyah-Singer operator on complex spinors. Then the
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class i(P), when restricted to any fibre, becomes the element # which gen-
erates the Bott periodicity mapping in K(D?*, $2*~1) >~ K(S?*) = K(pt) (see
1.9). This means that on an even-dimensional spin manifold, the principal
symbol of the Atiyah-Singer operator gives a K-theory orientation on the
cotangent bundle, i.e., a generator of the Thom-isomorphism (see Appen-
dix C).

Similarly, on a spin manifold of dimension 8k, the principal symbol of
the real Atiyah-Singer operator gives a KO-theory orientation on the co-
tangent bundle.

§2. Sobolev Spaces and Sobolev Theorems

Let E be a hermitian vector bundle with connection V on a compact
riemannian manifold X. Given ueI'(E) we have VueI'(T*X ® E),
and using the tensor product connection on T*X ® E, we have VVu e
I'(T*X ® T*X ® E). This process continues, and for any k we can de-
fine the norm

k

2 — ce 2
lulli ‘,-;, X I.VV. Vul*, 2.1)
j times

called the basic Sobolev k-norm on I'(E). An easy exercise shows the equiv-
alence class of this norm to be independent of the choice of metrics and
connection. The completion of I'(E) in this norm is the Sobolev space
LZ(E). 1t is straightforward to verify the following:

Proposition 2.1. A differential operator P:T'(E) — I'(F) of order m extends
to a bounded linear map P:LE) — LZ_,(F) for all k 2 m.

Ultimately we shall see that if P is elliptic then these extensions have
finite dimensional kernel and “cokernel” which consist of smooth sections
and are independent of k.

Our aim at present is to establish some analytical tools. This is best
done using Fourier transform methods. To this end we select a good sys-
tem of trivializations of our bundle E. To start we choose a finite cover-
ing of X by closed coordinate balls y;:U; » B"={yeR":|y| <1}, =
1,...,N. Over each ball Uj, we choose a smooth trivialization of E

E|y, == Uy x C”

which possesses a smooth extension to an open neighborhood of U,. We

further assume that the open balls of radius 1/\/5 cover X, ie, X =
(UN_1 B; where By = {pe Uy : |yp)]* <3}
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We now change each coordinate y, to a local coordinate x; by setting
X = ! y
8= T3 Vs
V1= |yl?

Note that x;: U§ 5 R" and that x4(Bg) = B" = {x € R": |x| < 1}. Further-
more, under the given trivialization over U,, any smooth section of E re-
stricts to become a bounded function u:R"* — C?. In fact the function

|D*u(x)|(1 + |x]) is bounded for any a.
Let’s now choose a smooth partition of unity {y,};-, subordinate to
the covering {Bg}}- ;. Any section u € I'(E) can now be writtenasu = Y. u,

where uz = yu. In our system of coordinate trivializations, each u, be-
comes a smooth function with compact support in the unit ball B".

DEFINITION 2.2. Any system of local coordinates for X and local triv-
ializations for E, together with a partition of unity, all chosen as above,
will be called a good presentation of E. Good presentations of each of a
family of vector bundles over X having the same local coordinates and
the same partition of unity, will be called a good presentation of the family.

Using a good presentation of E, we can reduce the study of I'(E) to the
study of smooth C?-valued functions with compact support in B". Here
we can apply the classical Fourier transform

i(¢) = @n) ™ [ e Ou(x)dx 22)

whose elementary properties we summarize (see Taylor [2] as a basic ref-
erence). We assume all functions to be C?-valued, and define the Schwartz
space & = {u € C*(R") : Yo,k,3C,, such that [D*u(x)| < C, (1 + |x)~* on
R"}. (Recall that D* = i~'"9""/9x*.)

The Fourier transform defines an isomorphism (-)": % — &% whose
inverse is given by the following “Inversion Formula”

u(x) = (1)~ fw SEOHE) dE, @3)
Dau(g) = &a%). 24)

X“u(8) = Di(?). (2.5)

(u0)L2 = (B,0)12 (Plancherel’s Formula) (2.6)

where (4,0),. = | {u,v) is the usual L? inner product.

DerFINITION 2.3. For s € R and u € &, the Sobolev s-norm is the norm
[lull; given by the formula

iz = [t + Jeh )P de. @7

The completion of & in this norm is the Sobolev space L2.
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REMARK 2.4. Let s be a positive integer. Then there are constants c,
and ¢, so that ¢;(1 + [E)* S 1+ [¢2 +... + |¢** S c(1 + [&])*. Tt fol-
lows from formulas (2.4) and (2.6) that there are constants C, and C, so
that

Cyllull? < ||Zs f [D*u(x)|* dx < C,llull?. (2.8)
This means that the norm (2.1) (for the trivialized C?-bundle with the triv-
ial connection) is equivalent to the norm (2.7).

For any integer k = 0, let C* denote the space of k-times continuously
differentiable functions on R" equipped with the uniform C*-norm, defined
for u e C* by

lullzc=sup ¥ |D%u 2.9)
R" jajsSk

Our first main result is the following:

Theorem 2.5 (The Sobolev Embedding Theorem). For each real number
s > (n/2) + k, there is a constant K, such that

llullex = Kisllulls (2.10)
for all u e &. Consequently there is a continuous embedding
L2c C (2.11)

for each such s.

Proof. We begin with k = 0. For x € R", formula (2.3) gives
jux)] < @m)=" [la)]

= @02 [(1 + &)1 + ey de.
Since (1 + |£|)~2* is integrable if 2s > n we have by the Schwarz inequality
that

o2 < @0 [ (1 + [el)=2de [ (1 + [el)*a) dg
= K2|lull?.
Repeating this argument for each derivative D*u with |a| < s — (n/2) and
then summing, proves the result.
Observe that since (1 + |¢])** < (1 + |€])* if s’ < s we have that
llully < llull, Vs <s.

Hence there is a continuous inclusion L2 < L2 for all &' <s. When re-
stricted to functions with support in a fixed compact set, this inclusion is
“compact.”
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Theorem 2.6 (The Rellich Lemma). Let {u;}{>, be a sequence of functions
with support in B" such that |lujl|; < C for all j. Then for any s’ < s there
is a subsequence which is Cauchy in the norm ||-||, and therefore converges
in L2.

Proof. We begin by recalling another elementary fact concerning the
Fourier transform. Let ¢ be a smooth C-valued function with compact
support in R". Then for all integrable functions u,

pu=¢i and @i = Gh 2.12)
where “*” denotes the convolution product given by

o) = [ o — yuy) dy. 213)

Suppose now that supp u = B" and ¢ =1 on B". Then u = ¢u and so
i = @=ii. Taking derivatives gives the formula

D) = [(D°G)(E — myn)d,
and applying the Schwarz Inequality then gives
D<) < [(1 + )= >(DG[E — mydn [(1 + Inylan)? dn

= KLO)lulls

where K, (£) is the continuous function defined by the first integral.
Applying (2.14) to the given sequence {u;};2, shows that the sequence
{D*4;};~, is uniformly bounded on compact subsets of R" for any a. In
particular the sequence {#;}, is uniformly equicontinuous on compact
subsets, and by the Arzela-Ascoli Theorem there is a subsequence which
is uniformly Cauchy on compact subsets.
Fix r > 0 and split the integral

= wflz = [, (1 + |e)1a48) — a2 de
+ [ (4 1040 — o) g

IElsr
For |&| > r, we have that (1 + [¢])* = (1 + r)~2¢"*Y(1 + |&))*, and so the
first integral is < |ju; — u|2/(1 + r)?¢~) < 2C/r**~*), Hence, for any
given ¢ > 0 we can make the first integral less than ¢/2 for all j and k by
choosing r sufficiently large. The second integral is then bounded above
by a constant multiple of

sup [440) — 8O
8lsr

Hence, by the previous paragraph there is a J so that the second integral
is <¢/2 for all jk=J, and the sequence {u;}j>, is Cauchy in L2 as
claimed. =
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Combining the theorems above gives the following:

Corollary 2.7. Let {u;}%>, be a sequence in L? with supp u; < B" and
|lujlls < ¢ for all j. If s > (n/2) + k, then there is a subsequence which con-
verges to a function u € C¥ in the uniform C*-norm.

We denote by z - w = Y, z;w; the standard C-bilinear pairing on C”.

Theorem 2.8. The bilinear function
(o) = [a(e)- ()

is a perfect pairing on L? x L2, that is, it identifies L% ; with the dual of
L2, for any se R.

Proof. For uyp e &, we have
o) = [a@)(1 + &) - 621 + &) ae,
and so by the Schwarz Inequality,
|.0)] = [fes el -

Hence, the bilinear function has a continuous extension to L2 x L2 . In
particular, for any v € L%, we have that

Sup |@wv)] < [|o]] - (2.15)

It remains to establish equality. For this we choose u so that #(¢) =
8()(1 + |&])~2. Then we find |d4|*(1 + |¢])* = [6]>(1 + |¢])~2* so that
|lulls = ||v]| . Furthermore,

o) = [1612(1 + |¢)=2 d& = [l

Hence (u,v)/||ull; = ||vl| -5 and (2.15) can be made an equality. We have
established the isomorphism L2, = (L2)*. =

Corollary 2.9. Let T: & — & and T*: & — & be linear maps such that
(Tu,v) = (u, T*v) for all u,y € &. If for some s € R and some constant c, the
map T satisfies the condition

|Tull, < cllul|y, forallue &, (2.16)

then T* satisfies the condition

IT*v]|-s = ¢|lv||-s  Sforallve &L.
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In particular, if T extends to a bounded linear map T:L2 — L2 for all
positive integers k, then T* extends to a bounded map T*:L?%, - L2, for
all negative integers —k.

Proof. Given uve S we have |(T*v,u)|=|(v, Tw)| < |jo||-J||Tu|, <
cl|v]|-s|[u|ls- Hence, by Theorem 2.8 we find ||T*v||—, = sup{|(T*v,u)|:
llle = 1} < clfof] . =

There is a stronger conclusion possible here which is proved by the
interpolation methods of Calderon. Since we shall only need ||-||, for k € Z
in our work here, we simply state the result.

Theorem 2.10. Let T: & — & be a linear map such that (2.16) is satisfied
for s =5, and s = s,. Then T also satisfies (2.16) for all values of s between
s, and s,.

Corollary 2.9 gives the following key to transferring our local results to
global results on a compact manifold.

Proposition 2.11. Let A be a smooth matrix-valued function on R" so that
|D*A| is bounded for all a. Then the map T:& — & given by Tu = Au
extends to a bounded linear map T:L? — L? for all s € R.

Proof. By formula (2.6) we see that T*u = A'u where A'(x) denotes the
transpose of the matrix A(x). For any integer k = 0, the maps T and T*
are clearly bounded with respect to the classical norm

i = { 3, flovaf

which is equivalent to ||u||, (see 2.4). The result now follows immediately
from 2.9 and 2.10. =

For any open set Q c R", let L2, denote the ||-||,-closure of C3(Q) =
{ue & :supp u c Q}.

Proposition 2.12. Let Q, Q' be bounded open sets with smooth boundary in
R", and let ®:Q — Q' be a diffeomorphism. Then the map T:CP(Q) —
C&(Q) given by Tu = u o @, extends to a bounded linear map T: L2o — L2g
for all s.

Suppose similarly that ®:R" — R" is a diffeomorphism which is linear
outside a compact subset. Then the map T: & — & given by Tu=uo ®
extends to a bounded map T:L? — L? for all s.

Proof. We begin with the second statement. Note that (Tu,v) = (u,T*v)
where T*v = j(®)u - ®~* where j(®) denotes the Jacobian determinant of
@1, As above we easily see that T and T* are bounded for the norm
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I llk=]l [l for any integer k = 0. Hence, 2.9 and 2.10 apply to give the
result.

The first statement is proved similarly using the straightforward exten-
sions of 2.8, 2.9 and 2.10 to the case of Q= R". m

Proposition 2.13. Let P = Y , <., A%(x)D* be a differential operator of order
m on R" whose coefficients are bounded as in Proposition 2.11. Then
P:¥ — & extends to a bounded linear map P:L? — L2_,, for all s.

P
Proof. Consider P = D" Since |D*u|* = |£°|?|éi|?, we find immediately that
ID%ul|Z = § (1 + |&))*|€°1&)|* dE < ||ul|+ o for any & and s. Applying the
triangle inequality and (2.11) completes the proof. =

We are now in a position to globalize. Let E be a smooth vector bundle
over a compact manifold X and fix a good presentation for E with coor-
dinates x;: Uy — R", f = 1,...,N, and with partition of unity {y,} sub-
ordinate to the covering {B; = x; (B")} (see 2.2).

Since Yx; = 1, any u € I'(E) can be written as u = Yu; where uy = y,u.
For s € R, a Sobolev s-norm can be defined on I'(E) by setting

N
el = 2. Nl 217)

where ||u||, is defined in terms of the presentation: E|y, = R" x C”. The
following is a direct consequence of Propositions 2.11 and 2.12 which
assert the bounded effect of changes of coordinates and trivializations.

Proposition 2.14. For any s € R and any smooth vector bundle E over a
compact manifold, the equivalence class of the norm ||-||, is independent of
the good presentation chosen to define it. Furthermore, when s = k is a non-
negative integer, the equivalence class of |||, is the same as that defined by
(2.1) for any choice of metric or connection on E.

This justifies our use of the symbol ||-||, without subscripts to indicate
the presentation chosen. It is now straightforward to see that our main
theorems, 2.5-2.8 and 2.13, can be globalized. We summarize the result
here.

Theorem 2.15. Let E and F be smooth vector bundles over a compact mani-
Jfold X of dimension n.

(1) For each integer k = 0 and each s > (n/2) + k, there is a continuous
inclusion LXE) = CXE). Furthermore, every sequence {u;}i>, which is
bounded in the ||*||-norm, has a subsequence which converges in the uniform
Ck-norm. :



§3. PSEUDODIFFERENTIAL OPERATORS 177

(2) For any riemannian volume measure p on X, the bilinear map on
I'(E) x T'(E*) given by setting

(%) = [, w)dy

extends to a perfect pairing LYE) x L2 (E¥*) for all s.

(3) Multiplication T ,u = Au by any element A € I'(Hom(E,F)) extends
to a bounded linear map T ,: LXE) - L(F) for all s.

(4) Any differential operator P:T(E) — I'(F) of order m extends to a
bounded linear map P:LXE) — L2_,(F) for all s.

§3. Pseudodifferential Operators

The concept of a pseudodifferential operator has its roots in the following
observation. Let P = Y A%x)D* be a differential operator on R" acting
on functions u with, say, compact support. By Fourier Inversion (2.3) any
such u can be written as

u(x) = (2n) "2 f O de.
Applying P we find that
Pu(x) = 2m) ™" [ = Op(x,0i(?) de (3.1)

where

p(x.§) = | 'ES: A(x)¢" (3.2)
is the (total) symbol of P. Replacing p by a more general function of x
and ¢ defines a pseudodifferential operator. Note that in (3.2) the order of
P corresponds to the degree of p as a polynomial in £. In the general case
one must be careful with growth in the ¢-variable,

DEeFINITION 3.1. Fix m € R. A smooth (matrix-valued) function p(x,£) on
R" x R"is said to be a symbol of order m if for each a,a’ there is a constant
C, such that

IDDE p(x,8)| S Coo(1 + )11 (33)
for all x,&. Let Sym™ denote the space of these symbols.
Proposition 3.2. To each p € Sym™ the formula (3.1) defines a linear opera-

tor P:.& — &. If p has compact x-support, this operator has a continuous
extension P:L2,,, — L? for all s.
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Proof. If ue &, then il € &. For any integer N > 0, we have

xf2Pu(x) = (= 1) [[AY e p(x,£)0(E) d2
= (= 1" [0 AY[p(x, ()] de.

The second integral is bounded by (3.3) and growth properties of #1. Hence,
Pue &.
To prove the second part note first that integration by parts gives

¢ f exOp(x,E)dx = fe“"")D;p(x,f) dx.
Since p has compact x-support, (3.3) then implies that
[[e=opng x| < C(1 + [el)ym(1 + )~
for each t € Z*. It follows that
W) | [ ess=mpxg dx|(t + &)1 + ]y

SC(U+[E)( + nr( + € = n)~
<C(1+|E—n) e

where C, and C, are constants that depend on t. In particular there exists
a constant C such that

[wenaz<c  and  [weman<c

for all £ and #. Using the pairing from (2.8) we now compute that

(Pu) = [ Putn) - 6(n)dn

- f { f e~ K= Py(x) dx} - () dn
= [ { [exemppeg) dx}a(c) - 8(n) d€ dn.
Setting U(&) = #(¢)(1 + |&[)**™ and V(n) = (n)(1 + |n]) ™%, we find that
Puw)| < [[wEMUE) - Vindgdn
1 1
< { [ weEnvrde dn}z{ [[wEnvima dn}’

< C”u"s+m”0”~s'
Applying duality and interpolation completes the proof. m

The operators P given in Proposition 3.2 are called pseudodifferential
operators of order m on R”, and the space of all such is denoted by ¥DO,,.
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We shall study some of the properties of these “local” operators before
globalizing them to bundles on manifolds.

Note that a pseudodifferential operator can have order —m < 0. Such
an operator is said to be smoothing of order m. A linear map 7: ¥ - &
which extends to a bounded linear map 7:L; - L,,,, for all s and m is
called an infinitely smoothing operator. Note that by the Sobolev Embed-
ding Theorem 2.5, we have 17(L,) = C® for all s.

Two pseudodifferential operators P and P’ will be called equivalent if
P — P' is an infinitely smoothing operator.

We want now to examine what happens to the symbols of pseudodiffer-
ential operators under the operations of composition, of taking adjoints
and of changing coordinates. This is referred to as the “symbol calculus.”
To this end we make the following definition.

DEerFINITION 3.3. Let P be a pseudodifferential operator with symbol p.
Then p is said to have a formal development

P~ 2P
i=1
(each p; e Sym™ for some m;) if for each integer m, there is a K so that
p— Y% ,pjeSym ™ forall k 2 K.(Hence, the corresponding operator is
m-smoothing for all k = K.)

The utility of such formal developments is evident from the following
result.

Proposition 3.4. Any formal series ) >, p;, where p;e Sym™ and m; -
— 00, is the formal development of a pseudodifferential operator. This oper-
ator is unique up to equivalence.

Proof. By grouping terms we can assume m;, ; < m; for all j. Fix a smooth
function ¢@:R* — [0,1] such that ¢(f) =0 for t <1 and ¢(t) =1 for
t > 2. For any sequence of radii {r;}j, with lim r; = co the symbol

P8 = 3, elelirpsed)

is well defined since the sum is finite for each (x,£). Set @(&) = ¢(|¢]) for
¢ e R", and for each j define m; = (j + 1)"||@||c,. Recall that for each a0’
and j there is a constant C,,.; such that [DZD§p,| < C,p (1 + |&])™ 1. Let
C; = max{C,y;: |¢| <jand roc'| < j} and choose r; > m;2’C;. Then for any
k > j and for |o| <j, |o’| <j, we have
IDDEp)| < CAL + [¢]ym !
SC{L+ P + [gfym 1=

1 .
< __— myc = |a’]
< m,.zi(l )



180 III. INDEX THEOREMS
for all |&| = r;. Setting ¢ (&) = @(|¢|/r)), we see that

: 1 e
IDiDE @p)| < 25 (1 + [efy™ 1!

for all |of,|e’| < j < k and for all £ It follows easily that p = )" ¢,p; € Sym™
and, moreover, that for all k

k
p— jzl p; € Sym™+,

This proves the existence of the operator. Its uniqueness up to infinitely
smoothing operators is obvious. ®

Before beginning the symbol calculus it is useful to note that up to
equivalence any pseudodifferential operator can be made “local” in the
sense that Pu always has support in a neighborhood of supp u. For this
and many other basic calculations we shall need the following:

Workhorse Theorem 3.5. Let a(x,y,) be a smooth matrix-valued function
on R" x R" x R" with compact x- and y-support. Fix me R and assume
that for each By, there is a constant C,;, such that |DiD)Dla| <
Cap(1 + |E)"~1"\. Then the operator K:& — & given by

(Ku)) = @)™ [[erDaty,du(y) dy de (3.4)

is a pseudodifferential operator whose symbol k has asymptotic development
l’lal

k(x,8) ~ 3, o (PeD5a)(x.x,0). 3.5)

Proof. Note that the y-integral in (3.4) is a Fourier transform. Using the
rule uv = é+d (and neglecting constants (27) ™2 which will take care of
themselves), we find that

(Ku)x) = [[ ei=0atg —n,2)atn) dn d
= [l [feisd g —n,g)dg tn) dn
& [esmkiemin) dn

where d denotes Fourier transform in the second variable. The interchange
of integration is allowed since for each integer £ we have

|a0e,& —n.)| [am)] < CAL + E)y"(1 + |& — n)™(1 + [n]) ™",
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and the right hand side is integrable for ¢ sufficiently large. Formula (3.6)
shows that K is pseudodifferential with symbol

ko) = [=4=mageg —n,8) g
= [eé=Pa .t +nydc.

For each integer £ we have the Taylor expansion in the third variable:

jlel
AL+ = Y, — (D)L + RiAxLL+n)

lal<¢

where the remainder is given by the formula
I rm
RAx.t, =(+Di‘t! — | (D) (%Lt H1—tf dt
ALt =@+t 3 [ OG-y

Recalling that (-)" denotes the Fourier transform in the middle variable,
we find that

Je=omsamgned; = [ordiain
= [¢=ODDia)x Ln)dl

= (D5Dya)(x,%,1).
Consequently, the symbol of K can be written in the form

jlel
koo = Y = (DSDia)(exm) + rAxm)
iS¢ O

and by Proposition 3.4 it will suffice to show that
rAxn) & fe“"")R,(x,C,C +n)d{ € Sym™~¢+1

for each . To prove this we first show that for each a, B, and k there is
a constant C,g, such that the inequality

IDEDd(x,LL+ 1) S Copld + ¢ +n])™ 1L + [

is satisfied for all x,(,n. To establish this we first note that from our basic
assumption on a we have

|¢’DiD8d(x,.E+n)| = l f {(DEDEa)(x,y,{ +n)e P dy

- lf (D3DDa)(x,p,{ +me %> dy

s e (f(y-supp)(a) dy)(l + |Z + ,’l)m-ltﬂ
= CopL + [ + nym
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After setting { = ¢, the inequality follows easily. Using this inequality and
the above formula for R,, we calculate that

IDDER Ax,L,L +1)|

i L papB+us w1 — ¢ty
(¢+1) |u|=2c+1u! fo (DXDy T Ha)(x, Lt +mCH(1 — ¢ dt

< Coper [ (U4 [y @ D=L 4[4l 1 — o de
< Coparll + Iplym =@ DML 4 [L*17K
From this inequality it follows that there are constants C,z so that
DDA )| < Cagl1 + Iplym=+v=lat
Hence, r, € Sym™~“*1 and the theorem is proved. m
Theorem 3.5 has the following easy consequences:
Observation 3.6. If the function a(x,y,£) of Theorem 3.5 vanishes for all

(x,y) in a neighborhood of the diagonal, then the corresponding operator K
given by (3.4) is infinitely smoothing.

Proof. By (3.5) we have k ~0. m

For A = R" and ¢ > 0, we set 4, = {x € R": distance(x,4) < &}. An op-
erator P: & — & is said to be e-local if for all u e C

supp Pu < (supp u),. 3.7
Corollary 3.7. Given P € ¥DO,, whose symbol has compact x-support, and

given any ¢ > 0, there exists P, e ¥YDO,, which is equivalent to P and is
e-local.

Proof. Choose a smooth real-valued function y on R"” x R" such that
¥(x,y) = 1in a neighborhood of the diagonal, and y(x,y) = 0if |[x — y| = &.
Let p be the symbol of P. Then the operator

(Pad) = @)™ [[[ e Oy(ypixdui)dyds  (38)
is clearly e-local. By Theorem 3.5 P, is pseudodifferential with symbol
p. ~ p. Hence, P, is equivalent to P. ®
Corollary 3.8. Let x = (x1,x2) be a pair of real-valued functions with com-
pact support on R". Then for any P € ¥DO,, the operator P* given by

PX(u) = x, P(x,u) (3.9)
is also in ¥DO,,.
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Proof. The operator P* can be expressed in the form (3.4) with a(x,y,£) =
01X (). =

Theorem 3.9. Let P be a pseudodifferential operator and u a function in its
domain (in L? for some s, say). Then for any open set U — R",

ulueC“’ = PulveC“’.
Proof. Suppose ul p 18 smooth and fix x € U. Choose x = (x1,1,) as above
so that: x € supp x; < supp x»; X = 1 near x; and y, = 1 in a neighbor-
hood of supp ;. Since x,u € C3, we have x, P(x,u) € C®. Furthermore, by

3.6 we have that y,Pu — x, P(x,u) = x,P((1 — x,)u) € C*. Consequently,
x1Pu € C* and so Pu is smooth near x. m

The reader can probably see the potential usefulness of the above corol-
laries in trying to define and study pseudodifferential operators on general
manifolds. These considerations motivate the following definition.

DEFINITION. An operator P € ¥DO,, is said to have support in a com-
pact set K, if supp(Pu) = K for all ue C§y, and if Pu =0 whenever
supp un K = . The linear space of such operators is denoted ¥DOy ,,.

We now begin the local symbol calculus.

Theorem 3.10. Given P € YDOy , and Q € ¥DOy ,, with symbols p and q
respectively, the composition P o Q € YDOg ,.,, has symbol with formal
development

sym(P+ 0) ~ 3 5 0p019) 3.10)
Given P € ¥DOy ,,, we define its formal adjoint P* by setting
(Pu,v) 2 = (u, P*v);2 (3.11)
for all uy € & with support in K.

Theorem 3.11. Given P € ¥DOy,, with symbol p, its formal adjoint P* €
¥YDOy.,, has symbol p* with formal development

sla)
p* ~ Y, = DD’ (3.12)
where (-)' denotes the transposed matrix.

Theorem 3.12. Let ¢:U — V be a diffeomorphism between open subsets of
R". Then for each compact subset K < U, ¢ induces a map ¢,:¥YDOg,, —
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WYDO g, by setting
(6P)W) = Plu §) o ¢ (3.13)
Proof of Theorem 3.11. Choose u,v € C® with support in K, and note that
(Pu, o)z = [[ =0 px,D?), () d& dx
= [[[ e <px.Ouly), o) dy dé dx
= [[[ <uty), e px Vo)) dx de dy

= (u, P*v)

Fix a real-valued function ¢ € C§ such that ¢ =1 on K, and note that
since ¢u = u, we can write

(o)) = [[ €70 () o(x) dx de. (3.14)

This operator satisfies the conditions of Theorem 3.5 and therefore has a
symbol p* with formal development

jlel
P(x8) ~ 3~ DIy 2Y

ilal
= ¥ DiD3p(xd)

X=y

where we use the fact that ¢p* = p* because p has x-support contained in
K. =

Proof of Theorem 3.10. Note that
(PQU() = [ = p(x,5)0u(¢) ¢

and so we need a reasonable expression for @(6). To find this, note that
Q = (Q*)* and so from equation (3.14)

(Qu)(x) = [[e=—r O uy) dyde (3.15)

for x € K, where ¢* = sym(Q*). Now (3.15) is just an inverse Fourier trans-
form. Hence,

0u() = [e™Or(y,2uly)dy
where r = (g*)". It follows that

(PQu)(x) = [[ =7 p(x,O(y.Ouly) dy de



§3. PSEUDODIFFERENTIAL OPERATORS 185

to which Theorem 3.5 applies. We conclude that PQ is pseudodifferential
with formal development:

sla)
sym(PQ) ~ ¥ — — DIDip(x,2(1,0)

x=y
llal

!
- a2 ,,"% (DEp)(DID%r)
ﬂ
=2, Z TR (D 4p)(DIDADYy)
i
= ; F (Dgp)Dﬁ (zy: y_' DgD,"r)
i18l
~3 'ﬂ Dip)(Dig)

where the last line is a consequence of Theorem 3.11. =
Proof of Theorem 3.12. Write x = ¢(X) and X = ¢~ !(x) = Y(x). We note
that

£ = W) — Y0) = [ T ¥ex + (1 - D)t

=¥(x,y) (x—y)

where W(x,y) is a smooth matrix-valued function. Since ¥(x,x) = (0y/0x),
and y is a diffeomorphism, the matrix ¥(x,y) is invertible for (x,y) in a
neighborhood @ of the diagonal. We choose y € CP(0) such that y =1
in a (smaller) neighborhood of the diagonal.

Let J = det(dy70x) denote the Jacobian determinant of i, and note that

[(6PIJ9) = [P » $)))
= [[ec—ropzeuey) dyde
= [[ e ply(), () dyd.

Let & denote the integrand in this last integral, and write S = y% +
(1 — x)#. By 3.6, the integral of (1 — y).# represents an infinitely smoothing
operator. In the integral of y.# we can make a change of coordinates
& =[¥'(x,)]*{ = O(x,y) - { and find that, modulo infinitely smoothing
operators, we have

(64 Pu)0x) = [ ate,y,0u(y) dyde

where

alx,y£) = x(.y)(y)|det Olp(Y(x), O(x,y)).
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By the workhorse Theorem 3.5 we conclude that ¢, P is pseudodifferential.
]

Applying formula (3.5) and recalling that y = 1 near the diagonal, we
find that

jlal
sym(,P) ~ ¥ = DEDSJ(y)det ©|p(y(x),00)

xX=y

— 1 ax ' m-—1

= p(x(x), <&> C) (mod Sym™™?)
since @(x,x) = [(Oy/dx)]™! = (0x/0%) and |det O(x,x)| = J~'(x). Equa-
tion (3.16) states exactly that, modulo symbols of lower order, the symbol
of a pseudodifferential operator transforms like a function on the cotangent

bundle. More precisely, let the coordinates for the Fourier transform (X,£)
be considered as standard coordinates for 1-forms w = Y’ &;dX; on %-space.

DErFINITION 3.13. Let P € ¥DO,, have symbol p € Sym™. Then the prin-
cipal symbol of P is the residue class a(P) = [p] € Sym™/Sym™ . Our dis-
cussion above shows the following:

Corollary 3.14. The principal symbol o(P) transforms under diffeomorphisms
like a function on the cotangent bundle of R".

We are now in a position to consider global questions. Let X be a com-
pact n-dimensional manifold, and let E and F be smooth complex vector
bundles over X. We say that a linear map P:I'(E) — I'(F) is infinitely
smoothing if it extends to a bounded linear map P : L%E) — L2, ,(F) for
all s,m € R. This implies by (2.15) that P(L%(E)) < I'(F) (= C®-sections)
for all s. It is a straightforward exercise to show that given a riemannian
volume measure u on X, any infinitely smoothing operator can be written
as an integral operator:

Pu) = [, Kx.yu(y)duy) (3.17)

where K(x,y) e Hom¢(E,,F,) varies smoothly on X x X.

DEFINITION 3.15. A linear map P:I'(E) — I'(F) is called a pseudodiffer-
ential operator of order m if modulo infinitely smoothing operators P can
be written as a finite sum P =), P, where each P, can be expressed in
some system of local coordinates x,: U, — R" and smooth bundle trivi-
alizations as a pseudodifferential operator of order m with compact sup-
port. The linear space of all such operators is denoted ¥DO,(E,F). Two
such operators are called equivalent if they differ by an infinitely smoothing
operator.

Any differential operator P of order m is pseudodifferential.
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REMARK 3.16. Given a riemannian metric on X and P € ¥DO,,(E,F),
we see from 3.7 that for any ¢ > 0 there is an operator P, € ¥DO,(E,F)
which is equivalent to P and is s-local. (Of course, a differential operator
is 0-local.)

Using a good presentation of the bundles E and F (cf. 2.2), and patching
together local pseudodifferential operators with a partition of unity, one
can manufacture interesting elements in ¥DO,,(E,F) for any m € R.

Given a riemannian volume measure u on X, we can associate to any
operator P:I'(E) — I'(F) a formal adjoint P*:T(F*) — I'(E*) by setting

fx {Pu,v)du = fx {u, P*v) du (3.18)

for u e I'(E) and v e I'(F*). The following theorem is an immediate con-
sequence of the previous results of this section.

Theorem 3.17. Let E,F and G be smooth vector bundles over a compact
manifold X and fix operators P € ¥DO,,(E,F) and Q € YDOAF,G). Then the
following statements hold:

(i) P extends to a bounded linear map P:L%(E) — L2_,(F) for all s.
(ii) For any open set U < X,

u|u is C*® = Pulu is C®.

(iii) Q - P € ¥DO,,, AE,G).
(iv) P* e ¥YDO,,(F*,E¥) for any p.
(v) A diffeomorphism ¢ : X — X induces a linear map

¢,:¥YDO,(p*E,p*F) — ¥DO,(E,F)

by the formula ¢*[(¢,P)u] = P(¢p*u).

We now discuss some elements of the symbol calculus in the global
setting. Let z*E and #n*F denote the pull-backs of E and F respectively
to the cotangent bundle n: T*X — X.

DEFINITION 3.18. Let p be a smooth cross-section of the bundle
Hom(n*E,n*F) on T*X. Then p is a symbol of order m if in a good
presentation of E and F, p defines an element of Sym™ in each local co-
ordinate chart of the presentation (where the variables (¢,,...,&,) are
canonically identified with the coefficients of cotangent vectors in the basis
{dxy,. .. dx,}.

It is easy to see that this definition is independent of the good presen-
tation that is used.

We let Sym™(E,F) denote the vector space of all such symbols of order m.
From Corollary 3.14 and Theorem 3.10 we have the following conclusion.
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Theorem 3.19. Each P € ¥YDO,,(E,F) has an associated “principal symbol”
o(P) defined in the quotient space Sym™(E,F)/Sym™~ !(E,F).

It would be useful to be able to canonically construct for each ele-
ment p € Sym™(E,F) an associated operator P € ¥DO,,(E,F) with the same
principal symbol as p. This can be done after introducing a riemannian
metric on X and a connection V on E. We proceed as follows. Fix p > 0
sufficiently small that the exponential map exp,: T,X — X gives a smooth
embedding of the p-disk at each x. Fix a smooth “cut-off” function
¥:[0,p] = [0,1] with ¥ =1 near 0 and ¢ = 0 near 1. The riemannian
metric determines a Lebesgue measure in each fibre of TX and of T*X,
and we can define a “Fourier Transform” (-)":I'(E) — I'(z*E) as follows.
For ¢ € T*X, we set

) = fm e~ KVOUW)dV (3.19)

where U(V) = y(|V|)ii(exp,V) and where ii(y) denotes the parallel trans-
late of u(y) along the (unique, shortest) geodesic ray joining y to x, when
distance (y,x) < p. For |V| 2 p we set U(V) = 0. The function #(£) lies in
the Schwartz class of each fibre, T*X.

Given a symbol p € Sym™(E,F), we now define an operator P = p(V) as
follows. For u € I'(E) we set

Pux) = @)™ [ pOAE)dE. (3.20)

We leave as an exercise the proof that P € ¥DO,(E,F). A symbol cal-
culus for operators defined in this way has been worked out in Bokobza-
Haggiag [1] and Widom [1].

If we take X to be flat euclidean space, and E = F to be the trivialized
line bundles, and if we choose p(x,&) = Z A%(x)&?, then a direct calculation
shows that Pu(x) = Y, A%(x)D"u(x).

X

§4. Elliptic Operators and Parametrices

Recall that a differential operator P:I'(E) — I'(F) over a compact mani-
fold is called elliptic if its principal symbol 6P) is invertible at all non-
zero cotangent vectors £. In this section we shall prove the fundamental
result that modulo infinitely smoothing operators, an elliptic operator is
invertible.

To this end we consider the “local” case of pseudodifferential operators
on R" which map C*-valued functions to themselves.

DErFINITION 4.1 An operator P e ¥DO,, with symbol p is said to be
elliptic if there exists a constant ¢ > 0 such that for all |¢| 2 ¢ the matrix
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inverse of p(x,£) exists and satisfies
(&)™ S (1 + |¢)~™ (4.1)

For example, an operator P whose symbol is of the form p(|¢|)Id, where
p(t) is a polynomial with constant positive coefficients, is elliptic.

REMARK 4.2. It is straightforward to verify that if P:I'(E) — I'(F) is an
elliptic differential operator, then the local representations of P in a good
presentation of E and F are elliptic in the sense of 4.1.

Theorem 4.3. Let P € WYDO,, be elliptic. Then there exists an operator
Qe ¥DO._,,, unique up to equivalence, such that

PQ=Id—§ and QP=Id-S§ 4.2)
where S and S’ are infinitely smoothing operators.

Proof. Let p be the symbol of P and let ¢ be the constant in Definition 4.1.
Set go(x, &) = x(|€Dp(x, &)~ where x:R* — [0, 1] is a smooth function
with y(t) =0fort <cand y(t)=1fort=2c. m

Lemma 44. g, € Sym™".

Proof. We must show that for each « and f there is a constant C,; so
that |DzD{q,| < C,4(1 + |€))™™ .. Fora = B = 0, this follows immediately
from (4.1). For higher derivatives we first note that |[D%D4q,| is estimated
uniformly in x by derivatives of p~!. Taking derivatives of the equation
pp~*=p 'p=1 (for |¢| = c) and applying (3.3) and (4.1), we see that
|op~*/0¢;] = |p~*(@p/0&;)p~*| < C;(1 + |¢])~™ ! for each j. Taking further
derivatives, using (3.3), and applying straightforward induction complete
the proof of the lemma. m

Note that gop — 1 = pgo — 1 = 0 for |¢| = 2¢c. Consequently these func-
tions lie in Sym™ for all m and the corresponding operators are infinitely
smoothing. Unfortunately, pointwise multiplication of symbols does not
give rise to composition of operators. We have instead the complicated
formula (3.10):

ildl
sym(QP) = Y, — (Dig)(D3p).
Placing g, in this formula, we find from the above observation that at

least sym(Q,P — 1) e Sym™ ™!, This suggests proceeding inductively to
define a formal development

qa~ Y 4.3)
k=0
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where g, € Sym™ ¥ is defined by

k—1 tlal
Q= — ), [ Y = (Déq,-)(Dip)]qo- 44)
J=0 Lim+j=k &

By Proposition 3.4 there is an operator Q € ¥DO_,,, unique up to
equivalence, whose symbol has the formal development (4.3)—(4.4). Since
the composition of any pseudodifferential operator with an infinitely
smoothing operator is infinitely smoothing we are free to replace P and
Q with any operators equivalent to them. In particular, by Corollary 3.7
we may assume P and Q to be 1-local. Theorem 3.10 now applies to prove
that QP — I is an infinitely smoothing operator.

A completely analogous argument proves the existence of an operator
Q' € ¥DO_,, such that PQ’ — I is infinitely smoothing. Note, however,
that Q ~ Q(PQ) = (QP)Q' ~ @/, that is, @ and Q' are equivalent. m

The operator Q constructed in Theorem 4.3 is called a parametrix for
P. Its existence proves many of the basic important facts concerning elliptic
operators. Here is an example:

Theorem 4.5. Let P € ¥DO,, be an elliptic operator and choose u € L2, for
some s. Then on any open set U < R", it is true that:

PuisC*onU = uisC®onU. 4.5
Furthermore, if Pu = Au for some A € C and if m > 0, then u is smooth.

Proof. Choose a parametrix Q with Id = QP + S as above. By 3.9, if Pu
is smooth on U, then u = QPu + Su is smooth on U.

If P is elliptic, so is P — A Id for any A € C provided m > 0. Hence, by
the above, if (P — A)u = 0, then u is smooth. m

We pass now to the global case. Let E and F be smooth vector bun-
dles over a compact manifold X and consider an elliptic differential
operator P:I'(E) — I'(F) of order m. Choose a good presentation of the
bundles E,F with coordinates x,;: U; - R" where = 1,...,N, and with
partition of unity {,} subordinate to the covering {B,;} where B; =
{pe Uy: |x4(p)| < 1} (see Definition 2.2). In the fth system P defines an
elliptic operator P; € ¥DO,, for which there is a parametrix Q€ ¥DO_,,
satisfying

where S; and S} are infinitely smoothing. By (3.7) we may assume that

Q; and, therefore, also S; and Sj are 1-local. Now observe that for any
1-local operator R in the Bth coordinate system, the operators ;R and
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Ry, have compact support in 2B, = {x;: |x5| < 2}, and therefore define
global operators in WDO,(E,F). (In particular, if u € I'(E), we have
YsRu = Y4R(pu) + YzR(1 — @)u) = YzR(pu) where ¢ is any smooth cut-
off function with support in U, and with ¢ = 1 on 2By.)
We now define global operators Q,Q0'e ¥WDO_,(E,F) and S, €

¥YDO_ (E,F) by setting

Q = Z ‘/’ﬂQﬁ) Q, = Z Qﬂ'pﬁ’

S=Y¥sSp  S=YL S,
It follows immediately from (4.6) that PQ'u =) PsQ,(su) =Y Yu —
Y Spysu) = u — S'usince Y, Y, = 1. Similarly, one finds that QP =1d — S,
and therefore also that Q ~ Q(PQ’) = (QP)Q’ ~ Q', that is, Q and Q' are
equivalent. We have proved the following main result:
Theorem 4.6. Let P:T(E) - I'(F) be an elliptic differential operator of

order m over a compact manifold. Then there is an operator Q€
¥DO _,(F,E), unique up to equivalence, such that

PQ=1d-¥§ and QP=Id-S 4.7)
where S and S’ are infinitely smoothing operators.

The operator Q is called a parametrix for P.
Notice that the equations (4.7) imply that PQP =P — S’P =P — PS
and QPQ = Q — QS' = Q — SQ, and consequently that

PS=SP and QS =SQ. 4.8)
Furthermore, it is evident that
Sleerp = 1d and S'|er o = Id. 4.9)

REMARK 4.7. Theorem 4.6 carries over to pseudodifferential operators.
An operator P € ¥DO,(E,F) is said to be elliptic if its principal symbol
a(P) e Sym™(E,F)/Sym™~!(E,F) has a representative p which is pointwise
invertible outside a compact set in T*X and satisfies the estimate
[p(&)~!| < C(1 + |¢])~™ for some constant C and some riemannian metric
on X. A straightforward adaptation of the arguments above shows that
Theorem 4.6 remains valid if the word “differential” is replaced by “pseudo-
differential.” This fact will not be used here, so we leave the details to the
reader.

REMARK 4.8. Given a differential operator P:I'(E) — I'(F) of order m
and a riemannian volume measure on X, let P*:I'(F*) —» I'(E*) be the
formal adjoint given by (3.18). Then P* is again a differential operator of
order m whose principal symbol o(P*) is the pointwise transpose of o(P).
In particular, P is elliptic if and only if P* is elliptic.
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§5. Fundamental Results for Elliptic Operators

In this section we shall prove some basic theorems for elliptic operators.
These will include the fundamental elliptic estimates, the classical “Hodge
Decomposition Theorem,” the spectral decomposition for self-adjoint el-
liptic operators, and estimates for the growth of eigenvalues, used later
to establish the strong convergence properties of the heat kernel.

Throughout this section E and F will denote smooth vector bundles
over a compact n-dimensional manifold X. We shall prove our results
here for differential operators but many of them carry over to pseudo-
differential operators of positive order.

To begin we recall some basic concepts concerned with a bounded
linear operator T:H, — H, between Hilbert spaces. The kernel of T is
the subspace ker(T') = {v € H,: Tv = 0}, and the range of T is the subspace
Im(T)= {Tve H,:ve H,}. The cokernel of T is the quotient space
coker(T) = H,/Im(T) by the closure of the range. The operator is called
Fredholm if its kernel and cokernel are finite dimensional and its range is
closed. Its index is then defined to be the integer ind(T') = dim(ker T) —
dim(coker T).

At the other extreme from Fredholm operators are compact operators.
A bounded operator T:H,; — H, is said to be compact if the image of
each bounded sequence from H, has a subsequence which converges in
H,. By the Sobolev Embedding Theorem, the inclusion L2(E) < L*(E)
for s > s is compact. In particular any infinitely smoothing operator
S:L%(E) - LXE) is compact. The Fredholm operators are exactly those
which are invertible modulo the compact ones.

LemmaS.1. Let T:H, - H, and Q:H, — H, be bounded linear maps
such that QT =1d — S, and TQ = 1d — S, where S, and S, are compact.
Then T and Q are Fredholm operators.

Proof. Since Sy |verry = Id and S, is compact, ker(T) must be finite dimen-
sional. Taking adjoints, we find Q*T* = Id — S%, and since S% is compact
we conclude as above that dim(ker T*) = dim(coker T) < co. It remains
to prove that Im(T) is closed. By restricting to (ker T)* we may assume
that T is injective. Let v, = Ty, k=1,2,..., be a sequence such that
v, — v in H,. We want to show that v = Tu for some u € H,. We note
first that the sequence {u,};%, is bounded. Otherwise by passing to a sub-
sequence, we can assume that |ju,]] = oo and so T(u,/|ju,l]) = vi/ljul] = 0.
Since QT =1 — S, and S, is compact, we may assume by passing to a
subsequence that lim(u,/||u||) = lim S, (u,/|jusl]) = w where ||w|]| = 1. How-
ever, by continuity Tw = 0, and since T is injective, w = 0. We conclude
that {u,};°, must be bounded.
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Consider now the convergent sequence Qu, = QTu, = u, — S,(y;) —
Qv. Since {4}, is bounded and S, is compact we may assume, after
passing to a subsequence, that S,(u,) = u,. Applying T to the line above
we find lim(Tu, — TS,u,) = v — Tu, = TQv. Hence, v € Im(T) and we
have proved that Im(T) is closed. Therefore T (and by symmetry Q also)
is Fredholm. =

We now state our first main theorem:

Theorem 5.2. Let P:T(E) — I'(F) be an elliptic operator of order m over
a compact manifold X. Then the following is true:

(i) For any open set U = X and any u € LX(E),
PulueC‘” - ulueC“.

(ii) For each s, P extends to a Fredholm map P: LX(E) —» L2_,(F) whose
index is independent of s.
(ili) For each s there is a constant C, such that

lls = Cllels-m + [[Pefls-m)

Jor all u e L. Hence the norms ||||; and ||*||s=m + ||P*|ls—m on LZ are
equivalent.

Proof. Part (i) is a restatement of Theorem 4.5. For part (ii), note first
that by Proposition 2.13, P extends to a bounded linear map P: L%(E) —
LZ_,(F). That this extension is Fredholm follows immediately from the
existence of the parametrix (Theorem 4.6) and the lemma above. By part
(i), ker P consists of smooth sections and its dimension is therefore inde-
pendent of s. Similarly, the cokernel of P is isomorphic to the kernel of
the adjoint

L2 (F)* = LX(E)*
Ul aul (5.1
L2, n(F*) == L2 (E%)
which is easily seen to be the natural extension of the formal adjoint of
P. Since P* is elliptic (see 4.8), dim(ker P*) is also independent of s. This
proves part (ii).
For part (iii), let Q € ¥DO _,(F,E) be a parametrix as in Theorem 4.7.

Then u = QPu + Su, and since S is infinitely smoothing, |ju||, < ||QPul|, +
lisulls < C(l|Pulls-m + [lufls-m)-

The above proof shows the following. Let P:T'(E) — I'(F) be an elliptic
operator and P*. I'(F*) —» I'(E*) its formal adjoint (defined using any
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volume form on X). Define the index of P to be

ind(P) = dim(ker P) — dim(ker P*). (5.2

Corollary 5.3. The index of an elliptic operator P equals the index of any
of its Fredholm extensions P:L%(E) — L2_,(F).

Part (iii) of Theorem 5.2 is called a “fundamental elliptic estimate.”
Notice that if we solve the equation Pu = v, it allows us to estimate the
|| ls-norm of u in terms of the ||||,—,-norms of u and v. It will be useful
in later discussions to write down an important local consequence of this
result.

Theorem 5.4. Let P be an elliptic differential operator (of order >0) defined
on an open subset Q of R". Then for every compact subset K = Q and every
integer k 2 0, there is a constant Cy, such that for all solutions u of the
equation Pu = 0, one has that

llullk.cx < Crullula,2 (5.3)

where ||||x,c« denotes the uniform C*-norm on K and ||*||o,.> denotes the
L?-norm on Q.

Proof. Choose ¢ € CP(Q) with ¢ = 1 on K. Observe that P(pu) = ¢Pu +
Y. a,(x)(D%u)(x) where the sum is over |a| < m = order(P) and where the
coefficients a, depend only on P and ¢. Assume Pu = 0. Then the funda-
mental elliptic estimate 5.2(iii) applies to give

llullg.cz < lleullarz = Clleullacz.., + [|Poulla,rz..)
= Cllulla.cz.,

Taking a sequence K cc Q;, ccQ, cc - cc Qy=Q, applying the
argument repeatedly, and then using the Sobolev Embedding Theorem
2.15(1) completes the proof. m

It is often useful, when studying an operator P:I'(E) — I'(F) to consider
non-negative operators P*P and PP* where P*:T'(F) — I'(E) is the formal
adjoint defined via bundle metrics. For this reason we shall assume from
this point on that E and F are equipped with hermitian inner products and
unitary connections, and that X is furnished with a riemannian metric.
All connections will be denoted by V. The Sobolev norms ||-||, with ke Z*
will be given explicitly by (2.1).

Given an mth order differential operator P:I'(E) — I'(F) and bundle
metrics as above, we define the formal adjoint of P to be the map P*:
I'(F) —» I'(E) such that (Pu,v);2 = (u,P*v),. for all u € I'(E) and all v € I'(F).
Integration by parts shows that P* exists and is also a differential operator
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of order m. Furthermore, 6(P*) = o(P)* and so P* is elliptic if and only
if P is elliptic.

A differential operator P:T'(E) — I'(E) is then said to be self-adjoint if
P = P*. The Dirac operator of a Dirac bundle is always self-adjoint, and
so, of course, are its powers (see I1.5.3.). An important example for rie-
mannian geometry is the Dirac operator D on the Clifford bundle C£(X).
Under the canonical isomorphism C£(X) =~ A*(X) we have D =~ d + d*,
and so D? = dd* + d*d = A, the Hodge Laplacian (see 11.5.12).

Theorem 5.5. Let P:I'(E) - I'(E) be an elliptic self-adjoint differential op-
erator over a compact riemannian manifold. Then there is an L*-orthogonal
direct sum decomposition:

I'(E) = ker P@®ImP (54)

Proof. With respect to the decomposition L3(E) = ker P @ (ker P)* any
element u € I'(E) = L%(E) can be written as u = u, + u, with Pu, = 0.
Since u and u, are smooth, so is u,.

Consider now the Fredholm map P:L%*E) - L% ,(E) whose adjoint
P*:L2(E) - L*E) (cf. 5.1) is the natural extension of P itself. We clearly
have that (ker P)* = Im P* = P(L2(E)). Hence, we can write u, = Pii, for
ii, € LX(E). Since u, is smooth, so is i#; by Theorem 5.2. m

Consider the special case E = A*X and P = A = dd* +d*d (see 11.5.12
forward). Clearly, Im A = Im d + Im d*. However, since (d*q,dy);. =

(¢, d*Y),2 = O for all ¢y, this sum is L2-orthogonal. Letting H* = ker A
denote the harmonic forms we have the following:

Corollary 5.6 (The Hodge Decomposition Theorem). Let X be a compact
riemannian n-manifold. Then there is an L%-orthogonal direct sum decom-
position of the smooth p-forms

I'A?’X)=H ® Imd @ Im d* (5.5)
forp=0,...,n
Theorem 5.5 has another important consequence:
Corollary 5.7. Let P:T(E) — I'(E) be a self-adjoint elliptic operator over a
compact riemannian manifold, and let H:T'(E) — ker P be the orthogonal

projection given by the decomposition (5.4) Then there is an operator G:
I'(E) - I'(E) of degree —m, called the “Green’s operator,” such that

PG=GP=1d - H.

Proof. The map P:Im P — Im P is an algebraic isomorphism and has
aninverse P~!. Let G = P~ ! o (I — H). G obviously extends to a bounded
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map G: LYE) - L2, ,(E)which is a Hilbert space isomorphism on (ker P)*
foralls. m

We now consider the spectral theory for a self-adjoint elliptic operator
P:T(E) - I'(F). For A € C we consider the i-eigenspace of P given by

E, = ker(P — AI), (5.6)
and we say that 1 is an eigenvalue of P if dim E; > 0.

Theorem 5.8. Let P:T(E) — I'(E) be a self-adjoint elliptic differential op-
erator of order m > 0 over a compact riemannian n-manifold. Then each
eigenspace of P is finite-dimensional and consists of smooth sections. The
eigenvalues of P are real, discrete and tend rapidly to infinity in the fol-
lowing sense. If

dA) = dim( (—B El>, (5.6)
1AI=A
Then there is a constant ¢ such that
d(/\) é CA"("+2"'+2)/2"'. (57)

Furthermore, the eigenspaces of P furnish complete orthonormal systems for
L*(E), i.e., there is a Hilbert space direct sum decomposition

LAE) = D Ex (5.8)

Proof. The first statement follows immediately from the fact that P — Al
is elliptic. To see that each eigenvalue is real, note that if Pu = Au, then
Mull* = (Puu)2 = (4,Pu)r. = Afull.

To prove the estimate (5.7) we proceed as follows. Given ¢ > 0, we say
that a subset A = X is e-dense if for each point x € X there is a point
a € A with dist(x,a) < &. For each ¢ > 0, let N(¢) be the minimal possible
number of elements in an e-dense subset of X. One sees easily that for
some constant C.

N = Ce™ for all ¢ > 0. (5.9
Consider now a function u € E; and note that for each integer k > 0,

P*u = )*u. Hence by the elliptic estimates 5.2(iii) we see that there is a
constant C,, independent of u, such that

[l = Celllullo + [[P*ullo)- (5.10)

Set E(A) = @lll <A E; and write u € E(A) as u = Y a;u, where u, € E; has

uy|| = 1. Then P*u = ¥, a,4*u;, and since u; 1 u, for A # p, we have that
\Pull? = T |a:)*|A]** < T |ai|*A%* = A?||u|f3. Consequently, by (5.10) we
have that

lflme = Cild + A |0
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for all u € E(A). If we assume that mk > (n/2) + 1, the Sobolev Embedding
Theorem 2.15 gives us a constant C; such that

sup [Vu| £ Ci(1 + AY|lullo (5.11)
P’

for all ue E(A). Suppose now that for a given ¢ > 0 we have d(A) =
dim E(A) > N(e). Then there will be an element u € E(A) with ||ullo = 1
such that u = 0 on an e-dense subset of points in X. It then follows from
(5.11) that

sup Ju| < eCi(1 + A").
X

1
However, this is impossible if eC;(1 + A¥)vol(X)? < 1 since | lulf =1. We

conclude that d(A) < N(g,) where ¢;! =2Ci(1 + A¥vol(X)? < C{AX
Consequently, by (5.9) we have d(A) £ Cex" < ¢, A™. Choosing k =
[(» + 2m + 2)/2m] completes the proof of the estimate (5.7).

It remains to prove (5.8). Let ¥, denote the closure in L3(E) of the
subspace consisting of finite linear combinations of eigensections of P.
Note that by 5.2(ii) the map P:L%(E) - L2_,(E) is an isomorphism on
(ker P)*. Hence, P:V} — V__, is a Hilbert space isomorphism for all s.
We want to show that Vg = {0}. Let’s assume V§ # {0} and consider

“2 = inf{(qu, u) = ”Pu”% ‘ue Vé and |jull, = 1}.

Note that V3, is dense in V§ and so u? < oo. (This density follows from
the fact that L2,-orthogonality implies L3-orthogonality, V,,, is dense in
V, and L2, is dense in L3.)

Choose a sequence {u};>, < Vg with |ullo=1 for all k and
lim(P2uu,) = p2. Since [|u)]|3 + ||Pu|? is uniformly bounded we know
from Theorem 5.2(iii) and the compactness of the embedding L2(E) =
LY(E), that there exists a subsequence, also denoted {u,}%,, such that
u, — u in L3(E). We claim that

((P* = p?)u, v)g = (u, (P* — p®))o = 0 (5.12)
for all v € V3, = (V-,,)* If not, then there exists v € V3, with ||v]jo = 1
and ((P? — u®u,v) = —a < 0. For teR, consider the vectors u(t) =

u, + tv and note that

B i Ty O N R

0= Il 14 200) + 2

for |t| sufficiently small. This proves (5.12), which in turn proves that
P?u = p?u. Since P? is elliptic, the u2-eigenspace is finite dimensional and
P-invariant. Consequently it contains an eigenvector of P in contradiction
with the definition of V§. This completes the proof of Theorem 5.8. m
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A self-adjoint operator P is said to be positive if (Pu,u), = 0 for all
u € I'(E). Theorem 5.8 can be reformulated in the positive case as follows:

Corollary 5.9. Let P:T'(E) — I'(E) be a positive self-adjoint elliptic differ-
ential operator of order m > 0 over a compact manifold. Then there is a
complete orthonormal basis {u.}{>, of L3(E) such that

Lu, = Ay,  forallk (5.13)
where 0 < A, < A4, =... > 0. In fact for some constant ¢ > 0,
Ay = ckPmintnt2m+2)  for all k. (5.14)

Proof. The first statement is clear. For the second note that d(4,) = k. M

§6. The Heat Kernel and the Index

Let P:T'(E) - I'(E) be a positive self-adjoint elliptic differential operator
of order m over a compact riemannian n-manifold X. In this section we
shall explicitly construct the heat operator e **:T'(E) - I'(E), for t > 0,
which is an infinitely smoothing operator with the property that if u, =
e~ Py, for some u € I'(E), then u, satisfies the equation

d
i + Pu, = 0. (6.1)
We shall define e~*F as an integral operator of the form
(€™ u)() = [ Kilxyhu(y)dy (62)

where K(x,y):E, — E, is a linear map depending smoothly on x,y and t.
(Hence, K is a smooth section of the obvious bundle over R x X x X.)
This kernel X is called the heat kernel for P and is defined as follows. Let
{u}i>, be a complete orthonormal basis of L*E) consisting of eigen-
sections of P with Pu, = A, u, and 0 < 4, <4, <...— o0 as guaranteed
by Corollary 5.9. We set

K(x,y) = kZI e uyx) ® u(y) (6.3)
where v* € E denotes the element such that v*(u) = {u,v), for all u € E,.

Lemma 6.1. For any r = 0 and any closed interval I < (0,00), the series
(6.3) converges uniformly in the C"-topology on I x X x X.

Proof. Fix a positive integer s with ms > (n/2) + r. By the Sobolev Em-
bedding Theorem 2.15 and the Fundamental Elliptic Estimates 5.2(iii) we
have constants ¢ and ¢/, depending only on s, such that each u, satisfies
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the inequality:
e

where ||-||c- denotes the function C"-norm on X. By Corollary 5.9, 4, satis-
fies the inequality

o < ¢lunllms < ellfillo + [IPuello) = (1 + 45)

Ak
where y = 2m/n(n + 2m + 2). This implies that
e < () (ke)

for all k > (s/t)!". The uniform C"-convergence of (6.3) now follows di-
rectly from the convergence of the integral [ e *x*dx. ®

This lemma has the following immediate consequence:
Theorem 6.2. For each t > 0 the operator e~'F:T'(E) — I'(E) is infinitely

smoothing. Furthermore, given u € LX(E), for any s, the section u(t,x) =
(e""Pu)(x) is C* on R x X and satisfies the “heat equation,” du/dt = — Pu.

Proof. The first two statements are an immediate consequence of the fact
that K is C®. To see that du/0t = — Pu, note that
0 -
7t K(x,y)= “Z e” M hu(x) ® ud(y)
= —Pth(x’y)' n

For a given operator P as above, we introduce the following important
concept.

DEFINITION 6.3. The trace of the heat kernel for P is the function
trie™*f) = fx trace, [ K(x,x)] dx
— = e—lkt

which is defined and analytic for all ¢t > 0.
Note that trace,(u(x) ® u(x)) = |u(x)|*> and so the second equality
follows from the fact that |ju,||3 = 1 for all k.

ExaMPLE. Let X be the flat cubical torus R"/2nZ", where R" carries the
standard metric, and let P = —A = —Y" 92/067 acting on functions. The
normalized eigenfunctions are given by uy(f) = (2n)""2e¥® for N =
(Ny,...,N,) € Z". Note that —Auy = |[N|?uy, and so

K,(O, 91) = Z e—|N|21+i(N,0-—9’)
NeZn
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and

a(k)e™*

M8

tr(e”) =

0

where a(k) denotes the number of elements N € Z" with [N|* = k. Forn = 1,
we find

00
tre?) =) e ™ ~ Ju/t.
-

Let us return now to the case of a general elliptic differential operator
P:T(E) - I'(F) over a compact riemannian manifold X. We assume E
and F are equipped with bundle metrics, and we consider the “Laplace
operators”:

P*P:T(E)— T(E) and PP*:T(F) —> I(F).

Since (P*Pu,u), = ||Pul|} and (PP*v,v), = ||[P*1||3, we see that these
elliptic operators are seif-adjoint and positive. It is furthermore evident
that ker P*P = ker P and ker PP* = ker P*. Consequently, we have
(cf(5.2)) that

ind(P) = dim(ker P*P) — dim(ker PP*) (6.5)

On the other hand, the operators P*P and PP* have exactly the same
sequence of non-zero eigenvalues. To see this, set E; = {u € ['(E): P*Pu =
Au} and F, = {vel(F): PP*v = Av} for AeR. Observe that if ue E,, then
(PP*)(Pu) = P(P*Pu) = A(Pu); that is, P(E;) < F,. Similarly, we find that
P*(F,) c E,. Since P*P = ) 1d on E,, we conclude that P:E, 5 F, is an
isomorphism for all 4 # 0.

Let0< 1, £, <43 £... > o denote the common non-zero eigen-
values of P*P and PP* (listed to multiplicity). Then taking the difference
of the traces of the heat kernels, we get enormous cancellation(!):

tr(e™"*"P) — tr(e ") = (dim E, + ), e™*) — (dim F, + ), e~ ™)
= dim E, — dim F,,.
This proves the following:
Theorem 6.4. LetP:T'(E) — I'(F) be an elliptic differential operator over a

compact riemannian manifold, and let P*:T'(F) — I'(E) be defined via inner
products in E and F. Then

ind(P) = tr(e™"""F) — tr(e~"""")
for allt > 0.

Observe that as t — oo, the operator e converges strongly to the
orthogonal projection Hg:L*E) — ker P. Consequently the direct sum

~tP*P
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D, =e"""'"P @ (—e~'P"*) acting on I'(E @ F) can be thought of as a “ho-
motopy” of operators which, as t — oo, converges to Hy @ (— Hp), the
“difference of harmonic projections.” We see that for all ¢, D, is of trace
class and its trace, tr(D,) = ind(P), is time independent. It is useful to con-
sider the operator D, at the other end of the “homotopy,” as ¢t \ 0.

When deg(P) = 1, it turns out that as t \u 0, the heat kernel for P*P
has an asymptotic expansion

trace K (x,x) ~ Y. py(x)e="/2 (6.6)
k=0

Where p,(x) are densities on X which are locally and explicitly computable
in terms of the geometry of X and P. Theorem 6.4 says that the index of
P depends only on the coefficient p,(x) for the operators P*P and PP*.
Careful computations of these terms yields a proof of the classical Atiyah-
Singer Index Theorem.

§7. The Topological Invariance of the Index

The index of an elliptic operator is a quite stable object. It remains con-
stant during continuous perturbations of the operator and, in fact, it can
be shown to depend only on the homotopy class of the principal symbol.
A proof of this fact is one of the main objectives of this section. In succeed-
ing sections we shall consider elliptic operators with additional structure,
such as operators which are C¢,-linear for some k or operators which
commute with a given action of a compact Lie group. In each case we
shall define a refined index and examine its elementary homotopy invari-
ance properties.

The index of an elliptic operator P:I'(E) — I'(F) is the index of any of
its Fredholm extensions P:L*E) — L2_,(F). For this reason we begin
with a discussion of Fredholm operators.

Let H, and H, be separable Hilbert spaces and let & = £L(H,,H,)
denote the Banach space of bounded linear maps from H, to H, with
norm given by ||T|| = sup{||Tv||:|jv|| < 1}. It is elementary to verify that
the subset £ < £ of linear isomorphisms is open in the norm topology
(cf. Palais [1]). We are interested here in the subset § = §(H,, H,) of
Fredholm operators from H, to H, (see §5). To each Te §, we have defined
the index of T

ind T = dim(ker T) — dim(coker T).

Proposition 7.1. The map ind:§ — Z is locally constant on §, and induces
a bijection
ind: m(F) — Z

between the connected components of § and the integers Z.
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Proof. We begin the proof with a lemma which will be useful later on.

Lemma 7.2. Fix Ty € § and let V< H, be a closed subspace of finite codi-
mension with V N (ker T,) = {0}. Then there is a neighborhood U of T, in
& such that for all Tin U we have:
@) V ~(ker T) = {0},
(i) TV is closed in H,,
(iii) the subspace W = (T,V)* = H, projects isomorphically:
W= H,/TV.

Furthermore, the isomorphisms of (iii) assemble to give that:

(iv) The family UTEQ,(H 2/TV) = U, topologized as a quotient of U x
H,, is equivalent to the trivial bundle U x W — %.

Proof. To each Te & we associate the bounded linear map
T"WeV — H, (7.1)

given by setting T(w,v) = w + Tv. This correspondence T — T defines a
continuous map & — &£ (W@ V,H,) in the norm topology. Since T, is
an isomorphism, so is T for all T in a neighborhood % of T,. This estab-
lishes (i)—(iv). =

Corollary 7.3. § is openin L.

Proof. Choose V = (ker Ty)* in Lemma 7.2 and note that % < § by (i),
(ii), and (iii). =

Corollary 7.4. The index is constant on connected components of §.

Proof. Fix T, € §, set V = (ker T,)*, and let % be given by Lemma 7.2. It
will suffice to show that ind T = ind T, for all T € %. Fix T € % and con-
sider the (non-orthogonal) direct sum decomposition H,; = (ker T) @
Z @ V where Z = (ker T @ V)* (see 7.2 (i)). By the Open Mapping Théo-
rem, T induces an isomorphism between Z @ V and the closed subspace
TZ & TV. Setting coker T = (TH,)* = (TZ ® TV)*, we obtain the fol-
lowing factoring of T: "'~

H, 2 > H,
AUl l (7.2)
ker TO®ZOV —> coker TR TZD TV

Dividing by V = (ker T,)* gives an isomorphism
ker ToxkerT @ Z. (7.3)
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Dividing by TV and using 7.2(iii) (with W = coker T,) gives an isomor-
phism

coker Ty = coker T@® TZ = coker T® Z. (7.4)
It follows immediately that ind To =ind T. m

We shall examine this argument again when the maps have more struc-
ture. The proof of Proposition 7.1 is completed by the following:

Lemma 7.6. Any two operators T,, T, € & with the same index lie in the
same connected component of §.

Proof. Since ind(T*) = —ind T, it suffices to consider the case where
ind T, = ind T, = 0. To begin we note that any Te § withind T =20 is
homotopic in § to a surjective map. To see this, choose any linear surjec-
tion L:ker T— coker T = (Im T)*, and consider the homotopy T +
tL ,t = 0. We may assume therefore that Ty and T, are both surjective. Set
K; = ker(T;) and consider the decomposition H, = K; @ Kj for each j.
We have the isomorphism B = T;!T,:K§ > K, and since K, and
K, have the same finite dimension, we can choose an isomorphism
A:K, — K,. The direct sum C=A @® B:K, ® K » K, ® K} is an
automorphism of H, such that Ty = T,C. Suppose we can find a contin-
uous family of isomorphisms C,:H, - H,, 0 <t < 1, with C, = C and
C, =1d. Then T, = T,C, connects T, to T,. Therefore we are done when
we have proved the following:

Lemma 7.7. The set £ = £ *(H,H) of isomorphisms of Hilbert space is
connected.

Proof. We fix C € £ and show that C can be connected to the identity.
To begin we put C in polar form C = UA where A is the positive square
root of the positive self-adjoint operator C*C, and where (since U*U =
ATIC*CA™! = A™'4%47" = 1d), U is unitary. Since the positive bounded
self-adjoint operators form a convex set, we see that C is homotopic to
U. Now U has a spectral decomposition of the form U = [3* e**dn;, and
can be written as U = /" where T = [* Adn,. The homotopy U, =
e"T, 0 <t < 1, completes the proof of Lemma 7.7 and so also of Lemma
7.6 and Proposition 7.1. =

Note. When H, = H, = H, the composition of operators makes 7, a
semigroup. Interestingly, the map ind:n,& — Z is a group isomorphism.
To prove this we need only observe that

ind(S o T) = ind(S) + ind(T) (7.5)
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for all S,T € §. To begin let n: H — (ker S)* be orthogonal projection and
note that since T is homotopic to o T in § (by a linear homotopy) we
can assume that Image(T) < (ker S)*. The assertion is now easily checked.

Let us now return to the case of elliptic operators over a compact
manifold X. A family P,:I'(E) - I'(F), 0 < t < 1, of such operators is said
to be continuous if in any good presentation of the bundles the coefficients
of the local representations P, = A%(x,t)D* are jointly continuous in x and
t. Under this hypothesis the order of the operators must be a constant,
say m. Furthermore, for any s the map [0,1] —» §(LZ(E), L%_,(F)) given
by t — P,, is continuous in the norm topology. Consequently, ind(P,) is
constant in ¢ by Proposition 7.1.

Recall that two elliptic operators Py, P, :I'(E) = I'(F) over X are homo-
topic if they can be joined by a continuous family P,, 0 < t < 1, of elliptic
operators. Our remarks above can be restated as follows:

Corollary 7.8. The index of an elliptic operator on a compact manifold
depends only on its homotopy class.

An immediate consequence is this:

Corollary 7.9. The index of an elliptic operator on a compact manifold
depends only on its principal symbol.

Proof. If P,,P,:T'(E) — I'(F) have the same principal symbol, then so
does each element in the family P, = (1 — t)Py + tP;. ®

This result suggests making deformations of the principal symbol. Re-
call that the principal symbol of an elliptic operator is a section o €
I'[(O™TX) ® Hom(E,F)] with the property that

o::E — F is an isomophism for all { # 0. (7.6)

We shall say that two such symbols 04,0, are regularly homotopic if there
is a homotopy g, 0 <t < 1, joining them such that o, , satisfies (7.6) for
all .

Theorem 7.10. The index of an elliptic differential operator on a compact
manifold depends only on the regular homotopy class of its principal symbol.

REMARK 7.11. Using Theorem 3.19 and the subsequent discussion there,
one can generalize this result to elliptic pseudodifferential operators.

Proof. In light of 7.8 and 7.9 it will suffice, given a,, to construct a family
of operators P, with o(P,) = o,. This is evidently possible locally given
coordinates on X and trivializations of E and F. Patching together with
a partition of unity over some good presentation of E and F does the job
globally. m
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The question, manifest at this point, is whether the index of an elliptic
operator can be computed directly from its principal symbol. A procedure
for doing this was first given by Atiyah and Singer. It will be discussed
in detail in §13.

§8. The Index of a Family of Elliptic Operators

In this section we shall present the important concept, due to Atiyah and
Singer, of an index for families of elliptic operators. In examining the
topological invariance of this index we shall prove that the Fredholm
operators on Hilbert space constitute a classifying space for K-Theory.

Let A be a Hausdorff topological space, and let E and F be smooth
vector bundles over a compact manifold X. The definition given in §7 of
a continuous family P,:T(E) — I'(F), t € [0,1], of elliptic operators, can
be extended directly by replacing [0,1] with A. (We shall call this a product
family.) However, when A is homotopically non-trivial, it is important to
allow the manifold and the operators to twist globally over A (in the spirit
of the families of complex analytic objects considered by Kodaira and
Spencer).

For a smooth vector bundle E — X, let Diff(E;X) be the set of diffeo-
morphisms of E which carry fibres to fibres linearly. Note the homo-
morphism f§:Diff(E;X) — Diff(X) onto the diffeomorphism group of X.
Let 2 = DIff(E,F;X) be the subgroup of Diff(E @ F;X) which maps E to
E and F to F. This group acts naturally on the space Op™(E,F) of all
differential operators P:I'(E) —» I'(F) of order < m (by setting g(P) =
g2 o Pogi' for g =(g1,92)).

DEFINITION 8.1. A continuous family of smooth vector bundles over X
parameterized by the Hausdorff space A4 is a fibre bundie & — A whose
fibre is a smooth vector bundle E over X and whose structure group is
Diff(E; X).

From the homomorphism f: Diff(E;X) — Diff(X) we get an associated
fibre bundle & — A whose fibre is X and whose structure group is Diff(X).
Note that & is just a vector bundle over the total space of & which is
smooth on each fibre. Furthermore, this smooth structure is changing
continuously over A.

DEFINITION 8.2. By a continuous pair of vector bundles over X param-
eterized by A we mean a bundle & @ & — A4 whose fibre is a split bundle
E @ F over X and whose structure group is 2 = Diff(E,F;X).

Associated to such a pair is the family of differential operators of
order < m from E to F. This is the bundle Op™(&,%#) — A associated
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to the principal 2-bundle of & ® & by the action of 2 on Op™(E,F).
A continuous section P of such a bundle whose fibre is elliptic for all
ac€ A is called a family of elliptic operators parameterized by A.

ExampLE 8.3. Let X be a compact manifold and consider its asso-
ciated Jacobian torus J, = H!(X;R)/H!(X;Z). Recall the isomorphisms:
H'(X;R) ~ Hom(n, X,R) and H'(X;Z) ~ Hom(n, X;Z). Let X denote the
universal covering of X. Then we define a flat complex line bundle L over
X x Jy by taking the quotient

L= X x H'(X;R) x C/n,(X) x H'(X;Z) (8.1)
where the action of n; X x H(X;Z) is given by
P n(%0,2) = (Gxv+ h,e2™v@)z), 8.2)

We think of L as a family of flat line bundles on X parameterized by
Jx.

Suppose now that X is even-dimensional and oriented, and let S be
any Dirac bundle over X with associated Dirac operator D. (For example,
one could choose the Clifford bundle or the spinor bundle for some
riemannian metric on X.) Then SQ L=(S*® L)®(S” ® L) is a con-
tinuous pair of vector bundles on X parameterized by J. Using the given
flat connection on L, the Dirac operator on S extends to a family of Dirac
operators

D;:I'(S*®L)— T~ ®L,) 8.3

for v e Jx. For § = C{(X), this family was introduced by G. Lusztig [1]
is his proof of the Novikov Conjecture for n; = Z™.

Suppose now that P is a family of elliptic operators defined over a
compact Hausdorff space 4. Following Atiyah and Singer [3] we shall
define an analytic index ind(P) in the group K(A). If the dimension of
ker P, (and therefore also of coker P,) were locally constant on A, then
this index would simply be the formal difference of finite dimensional
vector bundles:

ind P = [ker P] — [coker P] € K(A). (8.4

In general these dimensions are not constant, and so we must stabilize
the picture. Let &, & and & be as above. For a € 4, let &, (and &,) denote
the fibre of & (and & respectively) at a. This is a smooth vector bundle
on X and we denote by I'(£,) its space of smooth cross-sections.

Lemma 8.4. There exists a finite set of sections {Wy,....wy} of F over
& such that for each aec A the map P,:C" @ (8, — I'(¥,) given by
Pty ... tno) =Y. twla, + Pu(o), is surjective for all a. The vector spaces
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ker P, form a vector bundle over A, and the element

[ker P] — [C"] € K(A4) (8.5)
depends only on the operator P.

Proof. From the local triviality of fibrations each point a, e A has a
neighborhood U in which P,, a € U, is a product family. For any s, this
family extends to a continuous map P:U — §LZ(E), L2_,(F)), and we
can apply Lemma 7.2. For W = ker(P7) this lemma shows that the maps
P,:W@® LXE) —» L2_,(F) given by P,(w,p) = w + P,() are all surjective
in a neighborhood U’ of a,. Theorem 5.2(i) implies that W < I'(F) and
that the restriction P,: W @ I'(E) — I'(F) is also surjective for all a e U".
Corollary 7.4 shows that dim(ker P,) is locally constant on U’.

We now globalize this construction. Let {wy,...,w,} be a basis for
W. Each w; can be considered as a (constant) section of & over U’, or
alternatively as a section of the vector bundle & over the open set
n~ ' (U') = & (where n: % — A is the fibration). Clearly each w; can be
extended to a global section w; of & over all of . Taking a finite
covering of A by such neighborhoods, and taking {wy, ...,wy} to be the
union of the sections constructed from each neighborhood, we establish
the first statement of the lemma. The local constancy of dim(ker P,) follows
by repeating the argument above with W replaced by the direct sum of
W’s from each neighborhood.

It remains to prove that the class (8.5) is independent of the choice of
global sections wy, ... ,wy. Let wi, ... ,wy. be another such choice, and
consider the family of maps P, C” ®CN @I(8,) —» I(#,) given by

Pt0) = Y. tw(a) + Y. t;wi(a) + P,(¢). We have a commutative diagram

kerB,c CY@®IE) —= (%)

n n ]
ker P cC'oCVor@E,) —— (%)

| #

cV = cV

where the map pr denotes projection. Since the map P, is surjective one
easily sees that the sequence

0 —> ker P, —»kerﬁ —sCV —0

is exact. It follows that [ker P] [CV*N] = [ker P,,] [CM] in K(A).

The argument applies symmetrically to the operators P .CV®r(s,) -
I'(#,) to prove that [ker P,] — [C"*"'] = [ker P,] — [C" ] and the
proof is complete. m
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We are now authorized to make the following definition:

DEFINITION 8.5. The analytic index of a family of elliptic operators
P over a compact Hausdorff space A is the element ind(P) € K(A) defined
by (8.5).

As one might imagine, this index enjoys invariance properties analogous
to those of the ordinary index. It depends only on the principal symbol
of the family, and in fact only on the homotopy class of the principal
symbol (all taken in the obvious sense; see Atiyah-Singer [3] for details).

This invariance is related to a basic and interesting fact. Let H be a
(infinite-dimensional) separable Hilbert space. Recall that any two such
spaces are isomorphic. Furthermore, there is Kuiper’s Theorem which
states that the group £ ™ = & *(H,H) of linear isomorphisms of H with
the norm topology is contractible. Consider a family of elliptic operators
P over A as above. This is a section of the bundle Op™(&;%) with structure
group 2. We can fix s and complete each fibre in the Sobolev norms to
get a bundle with fibre H = §(L2(E), L2_,(F)). This is the bundle asso-
ciated to the principle Z-bundle by the homomorphism 2 — £ *(H, H).
Since &% *(H,H) is contractible, this bundle is trivial as an £ *(H, H)-
bundle in a homotopically unique fashion. Under the trivialization, the
family P becomes a continuous map P: 4 - H = §(H,,H,) where H, =
L%E) and H, = L2_,(F).

Note that the set § = §(H, H) of Fredholm operators on a Hilbert
space H has a continuous associative semi-group structure given by the
composition § x F — &. For any topological space A4, this makes the
space [ 4, §], of homotopy classes of maps of A into §, into an associative
semigroup.

Theorem 8.6. (cf. Atiyah [4]). For any compact Hausdorff space A there is
a natural isomorphism
ind:[4,F] — K(4) (8.6)
It has the property that for any continuous map f :A' — A between such
spaces,
indo f* = f*oind 8.7)
Consequently, § is a classifying space for K-Theory.

This theorem completely generalizes Proposition 7.1 (where A = [0,1])
and is the foundation for proving the homotopy invariance of the index
for families.

Proof. Let T:A — § be a continuous map. By Lemma 7.2 and the
compactness of 4 we know that there is a closed subspace V < H of
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finite codimension so that for alla e 4
@) V n (ker T,) = {0},
(i) T,V is closed and of finite codimension in H, and
(iii) H/TV = J,e4 (H/T,V) is a vector bundle over 4.

One then defines
ind(T) = [H/V] — [H/TV] € K(A4), (8.8)

where [H/V] = [A x (H/V)] denotes the trivial bundle. We must show
that this element is independent of the choice of V. Let V' be another
such choice. Since V n V' is also a choice, we may assume V' < V. There
is then an exact sequences of vector bundles: 0 — V/V' - H/TV' —»
H/TV - 0, which shows that [H/TV] — [H/TV'] = [V/V']=[H/V] -
[H'V']. Hence, (8.8) depends only on T.

Given T:A4 — § and a map f: A’ — A, the subspace V chosen for T
also works for T o f and we evidently have ind(T o f) = f*(ind T).

Suppose now that T:4 x I - § is a homotopy between T, and T,
where T; = T o i;, and i;: 4 = A x I is the inclusion i{a) = (a,j). By the
above paragraph ind(T;) = i}(ind T) for j = 0,1, and it is a basic fact that
i = it in K-theory. This proves the homotopy invariance of ind.

It remains to show that (8.6) is an isomorphism. We show first that it
is a homomorphism. Let T:4 —» § and T': 4 — § be continuous maps
and choose ¥V < H for T as above. Note that T’ is homotopic to pr,o T’
where pr,:H — V is orthogonal projection. Hence, we may assume
T'H < V. Let V' be a choice of subspace for T’, and note that V' is also
a choice for the composition T o T'. Therefore we have

ind(T - T') = [H/V'] - [H/TT'V']
ind(T) = [H/V] — [H/TV]
ind(T") = [H/V'] — [H/T'V").
From the exact sequence: 0 — V/T'V’ 5 H/TT'V' - H/TV - 0 of vec-
tor bundles over A, we see that [H/TT'V']=[H/TV]+ [V/T'V'] =
[H/TV] + [H/T'V'] — [H/V]. Plugging this into the equation above
shows that ind(T o T") = ind(T) + ind(T") as required.
To prove that ind is surjective we first recall from Chapter I, §9, that
every element in K(A4) can be written as [C*] — [E] where E is a vector
bundle on 4 and C* denotes the trividl k-plane bundle. For each integer

k we define an operator S, € § of index k by fixing a complete orthonormal
basis {e;};2, of H and setting

Sie) = {gf"‘

The constant map T = S, on 4 has ind T = [C*] for k 2 0.

ifj—k>0
otherwise.
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Fix a vector bundle E over A and recall from Chapter I, §9, that for
some N there is a continuous map f: E — C¥ which is a linear injection
on each fibre. Let pr,: C¥ — CV denote orthogonal projection onto f(E,)
and let pr}f = Id — pr, denote projection onto the orthogonal comple-
ment. Then the map T;:4 — FC"® H,CN® H) given by setting
Ta)=pr, ® S_; + pr; ® Id has the property that ind Ty = —[E].
Choosing an isomorphism C¥ ® H=~ H yields an isomorphism
SC"®H,C"®H)x§. Since ind(S,o Ty =[C¥]—[E], we have
proved that ind:[4, §] — K(A) is a surjective homomorphism.

Our next step is the following. Let ™ denote the invertible elements

in §.

Lemma 8.7. If T: A — § has index zero, then T is homotopic to a map
T:A-F @

Proof. Choose a subspace V< H as above so that ind T=
[H/V] — [H/TV]. The hypothesis ind T = 0 means that for some k, we
have A x [(H/V) @ C¥] =~ (H/TV) @ C*. This implies that if we replace
V by a closed subspace of codimension k in ¥, we have the bundle
isomorphism

A x (H/V) = H/TV.

It is elementary to verify that there is a continuous map H/TV — H which
carries H/T,V isomorphically onto (T,V)* for each a € A. Combining with
the isomorphism above, we get a linear map T:4 — £(H/V, H) where
for each a, T+ is a linear injection of H/V onto (T,V)*. The direct sum

To=T; @ T,:(H/V)®V—H

defines a continuous map T*:4 — §™ < §. This map can be connected
to T in § by the homotopy T, = tT* @ T for 0 < ¢t < 1. This proves the
lemma. =

Using the theorem of Kuiper [1] that §* is contractible, we conclude
thatany T: A — § of index zero is homotopic to the constant map T = Id.
Hence ind is injective and Theorem 8.6 is proved. ®m

One of the important results of Atiyah and Singer is the establishment
of a topological formula for the index of a family P of elliptic operators.
We shall present this formula in §15.

As a final remark we point out that the arguments given above adapt
easily to prove the following real analogue of Theorem 8.6. Let §y =
Fr(Hg) denote the space of (real) Fredholm operators acting on real
Hilbert space Hpg.
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Theorem 8.8. For any compact Hausdorff space A there is a natural
isomorphism

ind : [4, §a] — KO(4) 8.9)

having the functorial property (8.7) above. Consequently, g is a classifying
space for KO-theory.

An important consequence of 8.6 and 8.8 is the following:

Corollary 8.9. For all k = 0, there are isomorphisms:
m(§) — R(S%) = K~ ¥(pt) (8.10)
1(Fr) — KO(S*) = KO ~X(pt). (8.11)

§9. The G-Index

In this section we shall study operators which are preserved by the action
of a compact Lie group G. To be specific we fix vector bundles E and F
over a compact manifold X together with an action of G on the triple
(X,E,F). This means a smooth action y:G x X — X of G on X together
with smooth actions of G on both E and F which carry fibres to fibres
linearly and which project to u. In this context we have the following
notion:

DEerINITION 9.1. A differential operator P:I'(E) — I'(F) is called a G-
operator if P(gp) = gP(¢p) for all g € G and all ¢ € I'(E).

A good example is given by the isometry group G, of X acting on
CUX)~ A*X. This action preserves both splittings CE(X) =
CLo%(X) & Ce'(X) and CE(X) = CL*(X) ® CEL~(X) and commutes with
the Dirac operator. Therefore both D® and D* are Gy-operators.

Similarly, if X is spin, then either G, or a two-fold covering of Gy acts
on the spinor bundle of X and commutes with the Atiyah-Singer operator.

The basic observation here is that if P is elliptic and a G-operator, then
ker P and coker P are finite-dimensional representation spaces for G. This
leads us to consider the representation ring (or the ring of virtual repre-
sentations) R(G) of G. This can be defined as the free abelian group gen-
erated by the equivalence classes of irreducible finite-dimensional complex
representations of G. Since every finite-dimensional representation of G
can be decomposed uniquely, up to equivalence, into a direct sum of ir-
reducible ones, R(G) can also be defined as the Grothendeick group of all
finite-dimensional representations. In other words, each element of R(G)
can be expressed as a formal difference [V] — [W], where [V] and [W]
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are equivalence classes of finite-dimensional representations of G, and
where [V] — [W] = [V'] — [W’] if and only if V @ W’ is equivalent to
Ve w.

The tensor product of representations is distributive over the direct sum
operation and makes R(G) into a commutative ring.

EXAMPLE 9.2. Let G = S! and let t™ stand for the 1-dimensional repre-
sentation: ¢,(c)z = ¢™z. Then R(S?) is easily seen to be the ring of Lau-
rent polynomials in ¢: R(S?) = Z[t,t™!].

DEFINITION 9.3. Let P be an elliptic G-operator on a compact manifold.
Then the G-index of P is the element

indg(P) = [ker P] — [coker P] € R(G).
Note that when G = {1}, R(G) = Z and we recover the usual index of P.

The G-index can be specialized to individual elements of G. Given a
complex representation p:G — GL(V) we define its associated character
to be the function y,(g) = trace(p(g)). This function completely determines
the representation up to equivalence, and it has the properties that
Xor+ps = Xoy F Xpas o1 ® p2 = Xp1Xpp» €tC. (se€ Adams [1] for details). For
this reason R(G) is alternatively called the character ring of G. Given a
G-operator P as above and given g € G, we can define

ind (P) = trace(g|k,', p) — trace(g|coxer p)- 9.1)

This is the difference of the characters of the two representations, ker P
and coker P, evaluated at g. Consequently ind, is the specialization of
indg to g as claimed.

Note that for D = d + d* : A**"(X) — A°%(X), and for g € Isom(X), the
number ind,(D) is just the classical Lefschetz number of g. The general
topological formulas for ind; given by Atiyah, Singer, Bott and Segal
represent generalizations of fundamental work of Lefschetz and Hopf.

Our object at the moment is to establish some elementary stability
properties of indg;. As before, the regularity theory of elliptic operators
implies that the spaces ker P and ker P* = coker P remain unchanged if
we pass to any Sobolev completion P: L%(E) - L2_,(F). Since G is com-
pact, we may choose metrics on X, E and F which are G-invariant. The
actions of G on I'(E) and I'(F) then extend to unitary representations on
L%(E) and L%(F) which commute with P and P*. This leads us to examine
the following concept.

Let H, and H, be separable complex Hilbert spaces equipped with
unitary representations G — U(H)),j = 1,2, of a compact Lie group G. Let
§e = §g(H,, H,) denote the space of all G-equivariant Fredholm maps,
i.e.,, all Fredholm maps T:H, — H, such that Tgv = gTv for all ge G
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and all ve H,. To each T € & we associate the index

indg(T) = [ker T] — [coker T] € R(G)

Proposition 9.4. The map indg: F; — R(G) is constant on connected com-
ponents of §;. Furthermore, if H, and H, are G-isomorphic, then indg
induces an injection

indg : 7o(Fq) ——» R(G). ©.2)

Note. The map (9.2) will be a bijection provided that each finite-dimen-
sional irreducible representation of G occurs with infinite multiplicity
in H; = H,. The map (9.2) is also an additive homomorphism since
indg(T - S) = indx(T') + ind4(S). This is proved exactly as above (see (7.5)).

Proof. The argument for the first statement is identical with the one given
for the first part of Proposition 7.1 above. It is only necessary to check
that all subspaces are G-invariant and that all maps (such as (7.2), (7.3)
and (7.4)) commute with G.

We now assume that H, = H, = H (as G-spaces). To prove the second
statement we must show that any two elements T, T, € §; with the same
G-index must lie in the same connected component of &;. We begin by
observing that any T € §; can be deformed to one which is “relatively
prime,” that is, one for which no non-zero subspace of ker T is G-isomor-
phic to a subspace of coker T = (Im T)*. Indeed, if such a G-isomorphism
L exists, it can be extended to a map L: H — H by defining it to be zero
on the complementary subspace. The family T + tL, t = 0, gives the de-
sired deformation.

We may assume now that T, and T, satisfy this “relatively prime”
condition. Consequently, the hypothesis indgTy = indgT, implies that
there are G-isomorphisms: ker T, = ker T, and coker T, = coker T,. We
now observe that given two finite dimensional, G-invariant subspaces
Vo,V €« H which are G-isomorphic, there exists a G-isomorphism
C:H — H with C(V,) = V. In fact, C may be taken to be the identity on
(Vo + V). The subspace V, N V, is G-invariant and its complements in
V, and V; respectively are G-isomorphic; so the existence of C is clear.

It now follows that there exists a G-isomorphism C:H — H which
carries Im(T,) isomorphically onto Im(T,). We define a second G-isomor-
phism C': H — H by taking the given isomorphism ker T, = ker T, and
extending by the map Tj!CT,:(ker To)'t 5 (ker T,)*. We find that
T, = CTo(C’)"?, and the existence of a homotopy from T, to T, is an
immediate consequence of the following:

Lemma 9.5. The set &g (H, H) of G-isomorphisms of H is connected.
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Proof. The argument here is identical to the one given for Lemma 7.7
above. One needs only to check that the entire construction is G-
equivariant. m

Arguing as in §7 we see that Proposition 9.4 has the following imme-
diate consequence. Let P:I(E) — I'(F) be an elliptic G-operator over a
compact manifold X.

Corollary 9.6. The G-index df P depends only on the homotopy class of P
in the space of elliptic G-operators. In particular, ind4(P) depends only on
the principal symbol of P.

Note that the action of G on X, E and F makes X = (O"TX) ® Hom(E,F)
into a G-bundle, i.e., a bundle with a smooth G-action which maps fibres
to fibres linearly (and isomorphically). The principal symbol of P is an
invariant section of Z, i.., a(P) € I'4(Z) where I'4(Z) = {ceI'(Z):g6 =0
for all g € G}. Two principal symbols of elliptic G-operators, ¢, = o(P,)
and o, = a(P,), are said to be regularly G-homotopic if there is a regular
homotopy a,,0 <t < 1, joining them (see (7.5) forward), such that o, €
I'¢(Z) for all ¢.

Theorem 9.7. The G-index of an elliptic G-operator on a compact manifold
depends only on the regular G-homotopy class of its principal symbol.

Proof. As in the proof of Theorem 7.10 we construct a family of elliptic
operators P, with o(P,) = g, for 0 < t < 1. Averaging over G, by integrating

Po=[ (P '0)dg = {fc g(P,) dg}co

with respect to Haar measure on G, produces a homotopy of G-operators
with o(P,) = o, for all t (since o, is G-invariant). The result now follows
from Corollary 9.6. =

§10. The Clifford Index

In this section we shall discuss, in general terms, elliptic operators which
are Cl,-linear for some k. Several important examples of such operators
have been introduced and discussed in detail in Chapter II, §7. Motivated
by these C{,-Dirac operators, we make the following definitions.

DEeriNITION 10.7. By a C{,-bundle on a space X we mean a bundle of
real, left C¢,-modules. This is a real vector bundle E over X together with
a continuous map ¥:Ct, x E — E such that ¥ (-) = ¥(¢,"):E - Eisa
bundle endomorphism for all ¢ € C¢,, and the restriction C¢, x E, — E,
makes the fibre into a Cf,-module for each x € X.
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Note that C£;-bundles and C£,-bundles are simply complex and qua-
ternion bundles respectively. In general, a C¢,-bundle is thought of as
having the algebra C{, as “scalars.”

ReEMARK 10.2. A C{,-bundle E will be called riemannian if it carries a
bundle metric which is preserved under multiplication by each unit vector
e € R* c C¢,. Starting with any metric and averaging over the Clifford
group, as in 1.5.16, makes any C¢,-bundle riemannian. Note that if E is
riemannian, then multiplication by any element w € R* = C&, is fibre-wise
skew-adjoint. Thus

w-ug,uy) + (ug,weuy) =0 (10.1)

for all u,,u, € I'(E).
Let us fix smooth Cf,-bundles E and F over a manifold X.

DeriNITION 10.3. A differential operator P:I'(E) — I'(F) is said to be
C¢t,-linear (or simply a Cf,-operator) if o P(u) = P(¢pu) for all ¢ € C¢, and
all u e I'(E).

Tensoring with C{, makes any differential operator trivially into one
which is C¢,-linear. More interesting examples, such as the C{,-Dirac
operators of I1.7, occur when there exists a Z,-grading. We say that a
Ct,-bundle E is Z,,-graded if there is a bundle decomposition E = E° @ E*!
making each fibre into a Z,-graded C¢,-module. A C¢,-linear differential
operator P:I'(E) —» I'(E) on such a bundle is called Z,-graded (or simply
graded) if with respect to the decomposition E = E° @ E!, it has the form

0 P!
P= (P° 0 ) (10.2)
Note that P°:T(E®) - I'(E') is CQ =~ Cf,_,-linear. When E and X are
riemannian, the operator P is (formally) self-adjoint if and only if
P! = (P%*,

We would like to define the analytic index of an elliptic operator of this
type. For this we recall the groups

M, _,/i*M, = W /i*M,,, = KO~ Xpt) (10.3)

where M, and M, denote respectively the Grothendieck groups of equiv-
alence classes of C¢, and Z,-graded C{, modules. (For detailed discussions
of these, see 1.5.20, 1.9 and I1.7.) Recall also that KO ~¥pt) =~ KO ~**8(pt)
for all k, and we have

k 1 2 3 4 5167
Ko™ |z, |z, 0| Z|O0|O]|O| Z
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Suppose now that P:I'(E) — I'(E) is an elliptic self-adjoint graded C¥,-
operator on a compact riemannian manifold X. Then ker P is a finite-
dimensional Z,-graded C£,-module, and we have the following:

DEerFINITION 10.4. The analytic Clifford index of P is the residue class

ind,P = [ker P] e WM,/i*M, ., = KO~ X(pt). (10.4)
Under the isomorphism (10.3) this element corresponds to the residue class
‘ind, P = [ker P°] € M, _,/i*M, (10.5)

where P° is given in (10.2). (The equivalence of these definitions is discussed
in detail in Chapter II. See 11.7.4.)

The category of self-adjoint graded C{,-linear operators is a natural
and important one as we have seen by examples in Chapter II. However,
there is a twin category which has some advantages when studying sta-
bility properties of the Clifford index. This is the category of graded op-
erators which are skew-adjoint and C{,-antilinear. A differential operator
P:T(E) » I'(F) between C{,-bundles is said to be C{,-antilinear if P(wu) =
—wP(u) for all we R¥ = C¢, and all u € I'(E). This is equivalent to the
requirement that

P(ou) = a(p)P(u) (10.6)

for ¢ € Ct, and u € I'(E), where a denotes the involution of C¢, engendered
byw— —w.

Suppose now that E = E° @ E! is a riemannian Z,-graded C{,-bundle
over a compact riemannian manifold X, and let P:I'(E) — I'(E) be a Z,-
graded elliptic differential operator which is C{,-antilinear and formally
skew-adjoint. With P written as in (10.2) above, this means that P! =
—(P°*. We define the analytic Clifford index of such an operator to be

ind, P = [ker P]e M/i*M, ,, = KO Xpt) (10.7)
and note as before that this is equivalent to taking [ker P°]in M, _,/i*M,.
Observation 10.5. There is a natural transformation between graded elliptic

differential operators which are formally self-adjoint and C&,-linear, and
those which are formally skew-adjoint and C&,-antilinear. It is given by

associating to
0 P!
P (o )

~ 0 -P!
r-(5 T)

the operator

Evidently, ind, P = ind, P.
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We shall now explore the topological invariance of these indices. To
begin we recall from 5.9 above that the elliptic self-adjoint operator P
above can be diagonalized on L?(E) with finite-dimensional eigenspace V,
and discrete eigenvalues A; with lim; || = co. Thus, P can be written as
P =Y A, where mn;: L3(E) - V; denotes orthogonal projection. In these
terms the (essentially) positive operator P? is written as P2 = ) A2x;. Note
that P? is C{,-linear and preserves the factors of the splitting L*(E) =
L*(E®) @ L*E"). We shall now define an associated C£,-linear operator
on L?(E) which preserves these factors by the formula

L L
(1+P) Z=Y (1+ ) 2n,

The operator

1
P=(1+P?) 2P (10.8)

is a Z,-graded Cl,-linear self-adjoint Fredholm operator on L*(E) =
L*(E®) @ L*(E'). We leave as an exercise the verification that this con-
struction associates to a continuous family P,, 0 <t < 1, of such elliptic
operators, a continuous family P,, 0 < ¢t < 1, of Fredholm operators.
The reader will note that if P is thel companion oflP in the sense of

10.5, then the operator P = (1 + P?) 2P = (1 — P?) 2P is a Z,-graded
Fredholm operator which is C¢,-antilinear and skew-adjoint. These con-
siderations motivate the following definitions.

Let H= H®° @ H! be an infinite-dimensional separable real Hilbert
space which is a graded module for the algebra C{,. Assume in addition
that for each unit vector e € R* = C{,, the corresponding map e:H — H
is a skew-adjoint isometry. Such a space will be called a graded Hilbert
module for Cf,. Examples are easily constructed by taking the tensor
product H=H' ® Ct, = (H ® Ct?) ® (H' ® Ct})for some real Hilbert
space H'.

Let &, = §w(H, H) denote the subset of those Fredholm operators
T:H — H which are Z,-graded (i.e, T(H°) € H' and T(H') ¢ H), C¢,-
linear and self-adjoint. Similarly, let &, = &gr(H, H) denote the subset of
graded operators which are C{,-antilinear and skew-adjoint. (As should
be obvious, an operator T € Fg(H, H) is called CL,-linear if T(ou) = ¢ T(u)
for all ¢ € Cf, and u € H. It is called C¢,-antilinear if T(pu) = a(p)T(u)
for all such ¢ and u.)

As in Observation 10.5 we have a natural homeomorphism §, = &,.
We define the Clifford index of an element T € &, (or &) to be the residue
class ind, T = [ker T] € M,/i*M, , ; = KO~ ¥(pt). Our first main result is
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the following:

Proposition 10.6. The Clifford index
ind,: F(= F) — KO *pt)
is constant on connected components of .

Proof. Fix T € &, and recall that since T is Fredholm, 0 is an isolated
point in the spectrum of T. Replacing T by an appropriate scalar multiple
we may assume that the non-zero spectrum of T lies outside [ —2,2], i.e.,
that T2 > 2Id on (ker T)*. Choose a neighborhood U of T in J, so that
for all S € U, we have spectrum(S?) = [0,3) U (1,00), and ||T? — §?|| < 1/2.

Fix S € U and let W < H be the range of the spectral projection of S2
onto [0,4]. We claim that orthogonal projection pr: H — ker T (= ker T?)
restricts to give an isomorphism

pr: W—— ker T. (10.9)

To begin, suppose ve W n (ker T)* and note that {(T? — S?)v,v) =
2 = Dllvll* = [lv||> Since ||T* — $?|| < 1/2 we must have v =0 and so
(10.9) is injective. Similarly any v € W+ n ker T satisfies {(S*> — T?)v,v) =
|lv]|? and is therefore 0. Hence, (10.9) is surjective and the claim is proved.

Observe now that W is a Z,-graded C{,-submodule of H, and fur-
thermore splits into graded submodules W =ker S @ V where V =
(ker S)* N W is S-invariant. One easily sees that the projection (10.9)
preserves the graded module structure, and so we have a graded C¢,-
module equivalence

kerS@® V~kerT.

It remains only to enhance the structure of V to that of a graded C¢,. ;-
module. This is done as follows. Let S,,: ¥ — V denote the restriction of
StoV. Tl}is is a symmetric, Z,-graded C{,-linear map, and so also is

J =[S%] "28,. Note that J2 = Id. With respect to the decomposition
V=V°@® V' we can write J in the form

0o Jt
=( )

The graded endomorphism of ¥ given by

- (0 —J
-0 o)

is Ct,-antilinear and satisfies J2 = —Id. It therefore makes V into a
graded C{, , ,-module as required. Hence ind, T = ind,S and the proof is
complete. ®
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Consider now an elliptic differential operator P:I'(E) — I'(E) which is
Cl,-linear and graded. Note that its principal symbol is also C{,-linear
and graded. In this context a regular homotopy of symbols is required to
preserve these additional properties. Arguing as in Theorem 7.10 and using
the proposition above directly proves the following. Assume, as before,
that P is defined over a compact manifold and is self-adjoint.

Theorem 10.7. The Clifford index of P depends only on the regular homo-
topy class of its principal symbol.

Proposition 10.6 implies that ind, induces a map on the connected
components of §,. In previous cases this map was a bijection, and the
analogous result is almost true here. However, we need some preliminary
adjustments. To begin, we shall assume for each k that H = H° @ H!
is a graded Hilbert module for C¢, ., and is considered to be a graded
Ct,-module under restriction to C{, = C{,.,,. (This algebra inclusion
is induced by the euclidean space inclusion R* = R¥*? as the first k-
coordinates.) This assumption assures us, for example, that when k =
O(mod 4), each of the two distinct irreducible graded C{,-modules appear
with infinite multiplicity in H.

For each k, we now define a new space &, as follows. If k # — 1(mod 4),
then §; = §. =~ §. If k = — 1(mod 4), then we consider for each T € &,,
the associated operator w(T) = e, - * - ¢,T|40 Where e,, ... e is a fixed
orthonormal basis of R* = C¢,. Note that w(T): H® - H° is a self-adjoint
Fredholm operator. We now decompose §, into three disjoint subsets
&S, &, and §, consisting respectively of those T’s such that w(T) is
essentially positive, essentially negative, or neither. (A self-adjoint operator
is essentially positive if it is positive on a closed invariant subspace of
finite codimension.) Each of these subsets is open in &, and hence is a
union of connected components of §,.

We now show that when k = —1(mod 4), the space &, is not empty.
Recall that H is a module for C¢, ., o C{,. Let ey, ... ,¢,,, be an exten-
sion of our orthonormal basis above, and write the action of ¢,,, on

H=H°@® H! as
L (0 -
k+1 — S 0 .

Then the map ¢, ,:H — H given by

0 s*
s,‘+1=(s 0) (10.10)

is Ct,-linear and self-adjoint. Furthermore w(g, ;) anticommutes with
€. +26¢+1, and so we have ¢ ,, € ;.
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The following striking result is due to Atiyah and Singer [5]:

Theorem 10.8. For each k, the Clifford index induces a bijection
ind, : mo(§) — KO~ ¥(pt). (10.11)

Proof. From Proposition 10.6 we know that the map (10.11) is well de-
fined. To show that it is surjective, let ¥V = V° @ V! represent an element
of M, /i*M, .., = KO Xpt), and let &, be as in (10.10) above. Then the
map &.; @ 0 is an element of F(H @ V) and has kernel V. Since
H @ V = H, this shows that the map (10.11) is surjective.

To prove injectivity, it is convenient to first divest ourselves of the
grading. Recall that the endomorphisms e = ¢e,, ... ,el_; = e,
make the subspace H® into an ungraded module over C¢,_, = Ct?. Let
&P denote the space of all skew-adjoint, C&, _ ,-antilinear Fredholm op-
erators on H There is a natural map

()& — & (10.12)
defined by setting T° = ¢, T|y0. It is easily checked that this map is a
homeomorphism. Passing from graded to ungraded modules as in (10.4)
and (10.5), we find that ind, T2 [ker T°].

Assume now that we are given two operators S,T € &, with ind,S =
ind, T. It will suffice to show that S° and T° are homotopic in §P. Our
first step is to observe that we may assume S° to be a Hilbert space
isometry on (ker S°)* (and similarly for T°). This is accomplished by
putting the operator in polar form and deforming away the “radial” part
as in the first step of the proof of Lemma 7.7. Properties of skew-adjoint-
ness and C{, _,-antilinearity are preserved. The operator S° now satisfies
(5%92 = —Id on (ker S°)*, and setting el = S° makes (ker S°) into a
C¢,-module. The same remarks apply to T of course.

Observe now that our hypothesis ind,S = ind, T implies that there
exist ungraded Cf,-modules V and W together with a C{,_-module
isomorphism

kerS°@ VxkerT° @ W. (10.13)

We now claim that the module V can be realized as an S°-invariant
subspace of (ker S°)*. This means simply that ¥ is isomorphic to a C&,-
submodule of (ker S°)* where e acts by S° as above. When k #
—1(mod 4), all irreducible Cf,-modules are equivalent, and our claim
is obvious. When k = — 1(mod 4), there are two equivalence classes of irre-
ducible Cf,-modules and we must show that each of them appears with in-
finite multiplicity in (ker S°)*. Recall that these two representations are
distinguished by whether the central element w =e?---ef acts by 1
or —1. There is a splitting (ker S)* =M = M* @ M~ where M* =
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(1 + w)M, and we want to know that dim M* = dim M~ = oco. However,
w=ed e =ef el S° = +w(S) where the sign depends only on k,
and so the desired property follows from our assumption that w(S) is neither
essentially positive nor essentially negative.

The same argument, of course, shows that W may be realized as a T°-
invariant submodule of (ker T°)*. We now consider the two orthogonal
decompositions:

H=(kerS)®VAV =kerTOD W W.

It is clear from the discussion above that V' and W’ are isomorphic as
Ct,-modules. This means simply that there is a C¢,-linear Hilbert space
isomorphism L:V’ SW’ such that S° = L™'T°L on V'. By the obvi-
ous homotopy we may assume that S =0 on Vand T° =0 on W. Ex-
tending L by the isomorphism (10.13) gives an isomorphism L: H® — H°
such that §° = L™!T°L.

The theorem now follows from the fact that the group of CE,-linear
isometries of H® is connected. This fact is proved by suitable adaptation of
the argument given for Lemma 7.7 above. ®

REMARK 10.9. The mapping (10.12) above gives a natural transforma-
tion between graded and ungraded operators. All the previous discussion
of this section could be so transformed. Consequently we find that there
exists a parallel index theory for real elliptic operators which are skew-
adjoint and (ungraded') C{, _ ,-antilinear.

Let us examine some examples. Let P be the operator. If k = 1, we find
that ind, P = dimg(ker P)(mod 2). (Thus, every real skew-adjoint elliptic
operator has a well-defined index in Z,!) If k=2, then kerP is a
C¢, =~ C module and we find that ind,P = dimg(ker P)(mod 2). If k = 4,
then Cl; =~ H @ H and the bundle E on which P is defined splits as
E=E* ® E~ where E* = (1 + w)E and o = e,e,e;. By antilinearity,
P(E*) c T(E¥) and we split P into P* and P~ = —(P*)* as before.
Note that ker P = ker P* @ ker P~ and that ind,P =0 if and only
if dimy(ker P*) = dimy(ker P~). (This is because the + spaces are the
two distinct C€;-modules.) It follows easily that ind,P = dimy(P*) —
dimy(P~) = the index of P* considered as a quaternionic operator.

We conclude this section with a discussion of a nice result of Atiyah
and Singer which states that the spaces §, form a “spectrum” (in the sense
of homotopy theory). Together with the periodicity phenomena in Clifford
modules and Theorem 8.8, this will give a new proof of Bott periodicity.
To begin we notice that for each k = 1 there is a natural inclusion

Fi+1— B
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and a distinguished element

Ex+1 € Bk

given by (10.10). We extend this by convention to k = 0 as follows. Let
&, denote the space of all real Fredholm operators on H% and let §, & &,
be the map which associates to T € §, the operator T° = e, T|yo. (This
identifies §, with the space of all skew-adjoint operators in §,.) Set
g, =1Id € .

Let Q, denote the loop space of §, defined here to be the set of all
continuous paths y:[0,n] — &, with y(0) = &, and y(n) = —g,,,. This
space carries the compact-open topology. It is homotopy equivalent to
the space of all paths which both begin and end at ¢ ,.,. The following
is the main result of Atiyah-Singer [5] and is presented here without proof.

Theorem 10.10 (Atiyah and Singer). For each k = 0, the map
Si+1 — Qi
which assigns to T € &4, the path from & ., to —é&,,., given by
(cos t)gy 41 + (sin )T, 0<t<m,
is a homotopy equivalence.
This gives us a generalization of Theorem 8.8 above.

Theorem 10.11. For any compact Hausdorff space A and for any k there is
a natural isomorphism

ind,:[4, §] — KO~XA)
with the functorial property (8.7). Hence, §, is a classifying space for the
functor KO

Proof. The case k = 0 is just Theorem 8.8 algczve. For higher k we have

[4, 8] = [4, QFo] = [Z*4,80] = KO(Z*4) = KO~ A) where Z*A de-
notes the k-fold suspension of 4. =

Theorem 10.12 (Bott Periodicity). For each k = 0 there is a homeomor-
phism &) = Fy+s- Therefore, by 10.10 there is a homotopy equivalence
& ~ Q8F, which implies that

KO™A) =~ KO~**¥4)
for any compact Hausdorff space A.

Proof. Let H= H®° @ H! be a graded Hilbert module for C¢, as above,
and let V = V° @ V! be an irreducible graded (real) 1nodu1e for Clg. The
graded tensor product H ® V is a module for C¢, ® Clg = CE, 4.
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There is an isomorphism ¥V = R!® which yields an explicit identifica-
tion Clg =~ R(16). The fundamental results of Chapter I, §4, give an isomor-
phism C{, , s =~ Cf; ® R(16) (ungraded tensor product), where elements of
theform 1 ® pactby[d® pon H® V.

Let &£(H) denote the Banach space of bounded operators on H which
are C{,-linear and graded. Define a map ¥: Z,(H) » %, . s(H ® V) by
setting W(T) = T ® Id. This map is continuous and injective. Further-
more, we claim that it is surjective. To see this, fix T € £, ,5(H ® V), and
for each x € H consider the map T.:V > H® V defined by T,(v) =
T(x ® v). Since T, (pv) = ¢T,(v) for all ¢ € R(16), we conclude that
dim(Image T.) is either 0 or 16. It follows that Image(T,) =¢ ® V for a
unique 1-dimensional subspace # = H. Consequently, T(x @ v) = T(x) ® v
for a unique element T(x) € H. The map T:H — H is easily seen to be
bounded, C&,-linear and graded. Clearly W(T) = T. We have shown that
W is surjective and therefore by the Open Mapping Theorem that ¥ is
a homeomorphism. It is easy to check that W carries the self-adjoint
Fredholm operators in Z(H) onto those in %, ,.g(H ® V). This gives
the desired homeomorphism &, =~ Fis5. W

Kuiper’s results [1] show that the group of CeJ-linear isometries of
HP is contractible. This shows that the construction of the homeomor-
phism above is canonical up to homotopy.

Note that for each k = 0 we have isomorphisms

KO Xpt) «i— no(§,) —— My/i*M, , ,

where « is given by 10.11 and where f is the Clifford index defined in
10.4. It is shown in Atiyah-Singer [5] that the map a - ™! coincides with
the isomorphism given by the Aityah-Bott-Shapiro construction (cf. 1.9).

There is a natural ring structure in KO ™* where the multiplication is
induced by the tensor product of operators. This is defined as follows. Let
H, and H, be graded Hilbert modules for Cf, and C¢, respectively. The
graded tensor product H, ® H, is then a module for C¢, ® C¢, = C, .,
(see L5). Representing &, ., by §+AH, ® H,, H, ® H,), we define a map

®: T x §r — Tuve (10.14)

by requiring that for elements ve H, and we H, of pure degree with
respect to the grading,

(§&® T)o ® w)=(Sv) ® w+ (—1)*"v ® (Tw),

where S € &, and T € §,. One checks easily that § ® T is C¢,-linear and
Cflinear, and therefore C¥¢, , -linear. The inner product on H, ® H, is
given by (0 @ w, v’ @ W) = (o' ){w,w), and S ® T is clearly self-
adjoint. Since § and T interchange even and odd factors, so does S @ T,
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and one computes that
SRTP=s2@Id+I1d® T2

From this one sees that S ® T is Fredholm and that there is an
identification

ker(S ® T) = (ker S) ® (ker T). (10.15)

The graded tensor product of modules induces a multlphcatlon in
M, = @I, which descends to the quotient KO ~*(pt) = (W, /i*M, , ,).
Hence, (10.15) gives the following:

Proposition 10.13. For S € &, and T € §,, one has that
ind, , AS ® T) = ind(S) ® ind(T).

It is straightforward to check that the map (10.14) above preserves the
subsets §,, that is, it restricts to give a continuous mapping

®:3k X = Ex+e-

Applying the isomorphism KO7™%4) = [A4,&] of 10.11, we get a
multiplication

KO™XA) x KO~4(A) — KO~ *~¢(4)

defined for any compact Hausdorff space 4 and for all k, £ = 0. In fact,
for any pair of such spaces 4 and B, we have a transformation

KO~%A) x KO~4B) — KO *"(A x B)

given by associating to f:A — @, and g:— &, the map (fg)(a,b) =
f(@) ® g(b). (When A = B the multiplication is obtained by restricting to
the diagonal.) These transformations coincide with the ones convention-
ally defined in KO-theory (see 1.9).

REMARK 10.14. Recall that the homeomorphism (10.12) identifies §;
with the space F*¥ of all skew-adjoint Fredholm operators on real
Hilbert space. Consequently, Theorem 10.11 shows that F**¥ is a clas-
sifying space for the functor KO~ 1.

Similarly, the assignment T — &;T |40 associates to each element
T e §,, a Clg-linear map of the ungraded Hilbert module Hg for Ctg.
Note that C¢ = R(8) and we can take H to be the product Hg = H ® R®
with R(8) acting on the right-hand factor. Any R(8)-linear map of Hg is
then of the form 4 ® Id. This identifies &, with the space ™™ of
all self-adjoint Fredholm operators on real Hilbert space, and Theorem
10.11 shows that ™™ classifies the functor KO~7.
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ReMARK 10.15. The entire discussion of this section can be carried
through in the complex case. One considers complex Clifford algebras,
complex graded modules, complex Hilbert spaces, etc. All of the analogous
fundamental results remain true. One essentially recaptures the “classical”
index theory discussed in §§7 and 8. However, a new fact which emerges
is that the functor K! is classified by the skew-adjoint Fredholm operators
on complex Hilbert space. The analogue of Theorem 10.10 (also proved
in Atiyah-Singer [5]) leads to a proof of Bott Periodicity for the unitary
group.

§11. Multiplicative Sequences and the Chern Character

In this section we present some fundamental constructions in K-theory
and the theory of characteristic classes. These constructions will be needed
later when-we discuss the cohomological formula for the index of an
elliptic operator.

Throughout the section cohomology groups will be taken with rational
coeflicients, although much of what we do carries over to more general
coefficient rings.

There is a principle underlying much of what we do here. Roughly
stated it asserts that for computational purposes every complex vector
bundle is a direct sum of line bundles. Moreover, if the bundle is the com-
plexification of a real bundle, the non-trivial line bundles occur in complex
conjugate pairs. To make this precise we need the following result, often
referred to as the “Splitting Principle”™:

Proposition 11.1. Let E be a complex vector bundle over a manifold X. Then
there exists a manifold S and a smooth, proper fibration n: ¥y — X such
that

(i) The homomorphism n*: H*(X) — H*(S%) is injective.
(ii) The bundle n*E splits into a direct sum of complex line bundles:

PExl, @ @, (11.1)

Proof. Let p:P(E) - X denote the projectivization of E, i.e., the bundle
whose fibre at x is the projective space P(E,) of all complex lines in E,.
The bundle p*E contains a line bundle defined tautologically at a line
¢ < E, to be ¢ itself. Using some fixed hermitian metric in E, this gives us
a tautological splitting

PPE=C(D ¢t

The homomorphism p*: H¥*(X; Z) - H*(P(E); Z) is injective by the Leray-
Hirsch Theorem C.14 in Appendix C.
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We now repeat the process for the bundle #* and continue inductively
to complete the proof. m

There is a direct analogue of the proposition and its proof for the case
of real vector bundles. We shall not state this. However, we do want to
signal the following “hybrid” result.

Proposition 11.2. Let E be an oriented real vector bundle of dimension 2n
over a manifold X. Then there is a smooth proper fibration n: ¥z — X such
that n* : H¥(X) - H*(¥%) is injective and the bundle n*(E ® C) splits into
complex line bundles:
™MEQRC) =l @, D £, D7, (11.2)
whereZ; denotes the “inverse” or “complex conjugate” bundle to ¢ ; (see below).
In fact, there is a splitting
n*E=E, ® --®E, (11.3)
into oriented real 2-plane bundles such that E, ® C = ¢, @ £, for each k.

Proof. Suppose, to begin, that dimg(E) = 2. Fix a metric in E and let
J:E — E be the map which rotates each fibre by n/2 in the positive di-
rection. We let ¥z = X and note that

EQC=¢®7
where at xe X
le={v—iJv:veEy} and /. ={v+iJ,:veE]}, (114)

are the +iand —i eigenspaces of J ® C. Note incidentally that as com-
plex bundles we have the bundle isomorphism

Ex¢. (11.5)

For the general case we fix a metric in E and consider the bundle
p:G(E) > X whose fibre at a point x consists of all oriented 2-dimen-
sional subspaces of E,. Then there is a canonical splitting

p*E=E, ® Ef

where E, — G(E) is the tautological oriented 2-plane bundle whose fibre
at P € G(E) is P itself. The argument given for Theorem C.14 adapts im-
mediately to prove that the homomorphism p* : H¥(X; Z) - H*(G(E); Z) is
injective. Repeating the process for the bundle Ef and proceeding in-
ductively, we construct the desired splitting bundle &;. ®m

REMARK 11.3. An analogous result holds when dimg(E) = 2n + 1. One
must add a trivial line bundle onto the decompositions (11.2) and (11.3).
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For many purposes it is permissible to add a trivial real line bundle to E
and work directly in the even-dimensional case.

NoTE 11.4 (conjugate bundles). Recall that if E is a complex vector
bundle, then its conjugate bundle E is obtained from E by redefining scalar
multiplication. The new scalar multiplication by t € C is the old scalar
multiplication by #. For any given hermitian metric (-,) in E, the map
v = ¢,(') = (,v) identifies E with E* = Homg(E,C). If E = E, ® C is the
complexification of a real vector bundle E,, then there is a complex bundle
isomorphism E =~ E.

NoTte 11.5 (line bundles). The set £(X)=~ H'(X; S')of equivalence classes
of complex line bundles on a manifold X has a natural commutative multi-
plication given by the tensor product. Since / ® ¢ = ¢£* ® ¢ = trivial, the
multiplication is invertible, and #(X) is a group. The first Chern class
¢ L(X) - H¥X;Z) is a group isomorphism (see Appendix A, Example
AlS).

The Splitting Principle above can be applied directly to characteristic
classes.

OBSERVATION 11.6 (splitting the Euler class). Let E be an oriented real
vector bundle of dimension 2n, and let y(E) € H?>"(X; Q) denote its Euler
class. If E decomposes into a sum of oriented 2-plane bundles E =
E, @ - @ E,, then since y(E @ E') = y(E)x(E) we can write

LWE)=x," " x, (11.6)
where x, = x(E,) for each k. If we now complexify and write E® C =
(L,DELD DL, DL, then we see from (11.5) that

X, = ¢,(£)) for each k.

Using the Splitting Principle, formula (11.6) can, in fact, be used to define
the Euler class.

OBSERVATION 11.7 (splitting the total Chern class). Let E be a complex
vector bundle, and denote by

E)y=14c(E)+...+ ciE)

the total Chern class of E. Recall that ¢(E @ E') = c¢(E)c(E'). Hence, if E
decomposes as a sum of line bundles E=¢; @ -+ @ ¢, then

cE)=J] (1 +x) (117
k=1
where x, = ¢,(¢,) for k =1, ... ,n. In particular, we find that
C(E)=0j(x1,.... %)y j=1,....n (11.8)

where g; denotes the jth elementary symmetric function of x,, . .. ,x,.
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If E does not split as a sum of line bundles, we may lift it to the space
& where it does. The map H*(X) — H*(¥%) is injective and identifies c;
with o;(x,,...,x,) as in the previous case. Note that any symmetric
polynomial expression in the x;’s can be rewritten as a polynomial in
Gys...,0, (i€, in ¢y, ...,c,). This will enable us to define characteristic
invariants in a particularly useful way.

As a simple application note that since ¢,(£) = —c,(¢), we have

¢j(E) = (—1)Yc/(E) (11.9)
for all j.

OBSERVATION 11.8 (splitting the total rational Pontrjagin class). Let E
be a real oriented vector bundle of dimension 2n, and recall that the
rational Pontrjagin classes of E are defined by p(E) = (—1Yc,{E ® C),
j=1,...,n(Since E ® C = (E ® C), the Chern classes of odd degree are
zero by (11.9).) The total (rational) Pontrjagin class is defined to be

P(E) =1+ py(E) + ... + p,(E)

It has the property that p(E @ F) = p(E)p(F). If E ® C decomposes as a
direct sum, EQC=/, @7, ® D¢, D7/, then (EQ®C)=
[Te@de@) =11 — x?), and we find that

p(B) = ] (1 +3) (11.10)
=1

where x, = ¢,(¢,) as before. In particular, we have
Pi{E) = 0;(x%,... x2) (11.11)

for each j.

Let Q[[x]]" denote the set of formal power series in x with rational
coefficients and with constant term 1. It is easily seen that Q[[x]]" is a
group under multiplication. Fix an element f(x) € Q[[x]], and for each
neZ* consider the formal power series in n indeterminates given by
f(xy) "+ * f(x,). This is evidently symmetric in the x;s, and so it has an
expansion of the form

fxy) f(x)) = 1+ Fy(a,) + Fy(0, 05) + F3(01,05,03) + ...
where

OlXys o)=Y, XX, forl<k<n

<...<ig

denotes the kth elementary symmetric function in x,,...,x,, and where
F, is weighted homogeneous of degree k, i.c.,

Fi(to,, ... t%6) = t*F(0,,...,00) forallte Q.
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Each of the polynomials Fy (s, ...,5,) is well defined and independent of
the number of variables x;. This is easily seen by adding more variables
and using the obvious fact that o,(x,,...,X,0,...,0) = 63Xy, . . . ,X,) if
k < n,and o4(x;,...,%,,0,...,0)=0if k> n.

The sequence of polynomials {F(o,,...,0,)};%, is called the multi-
plicative sequence determined by the formal power series f(x). It has a
universal multiplicative property which we shall now describe.

Let B be a commutative algebra with unit over @, and assume that B
has a direct sum decomposition B = B® @ B! @ B? @ - - - with the prop-
erty that B*- B/ < B**/ forall k,/ 2 0. For example, B could be H*'(X;Q)
or H*'X;Q) for a space X. It could also be the polynomial ring Q[x]
with B¥ = Qx*.

Given such an algebra B, let B~ denote the set of all formal sums
1 + b, + b, +...where b, € B*for each k. Note that the finite sums (those
with only a finite number of non-zero terms) actually belong to B and
form a set which is closed under multiplication. This extends to B~ by
defining

(1+b1+b2+. . ')(1+c1 +C2+. . .)=1+(b,+cl)+(b2+blcl +02)+ ceey

that is, by defining the nth term of the product to be ) bc,,. Every
element of B™ has a multiplicative inverse, and so B~ is an abelian group.
As an example, note that if B = Q[x], then B~ = Q[[x]]".

Fix a multiplicative sequence {F,(o,,...,00)}i=,. Then to each alge-
bra B as above we associate a map F:B"~ — B~ by assigning to
b=1+4b, + b, +...€ B" the element '

F(b) =1+ Fy(by) + Foby,by) + ... . (11.12)

Lemma 11.9. The map F:B*. —» B" is a group homomorphism, i.e.,
F(bc) = F(b)F(c)
for all bc € B™.

Proof. In the polynomial algebra B = Q[x,, . . . ,x,] consider the element
c=(1+x) -(1+x,)=1+0,+...+ 0,€B". By definition of {F,}
we have that F(g) = f(x,) " f(x,) = 1 + F,(0,) + F5(0,,6,) +... . We
now increase the number of variables. Let B = Q[x,,...,X,+,]), and
consider the subalgebras B’ = Q[x,,...,x,] and B”" = Q[X, 41, - - - Xp4m]-

Let 0,0',6"” be the corresponding elementary products in each case. Then
we have

o=(1+x) 1+ x,4,)=00",

and
F(o) = f(x1) *** f(Xp+m) = F(d)F(0").
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The general result now follows easily from the algebraic independence of
the gj’s. m

It is easy to see that the universal multiplicative property 11.9 char-
acterizes the sequence. The formal power series is recaptured by taking
F(1 + x) = f(x) in the algebra Q[x].

The concept of a multiplicative sequence is due to F. Hirzebruch, who
established their importance in the theory of characteristic classes.

Basic CONSTRUCTION 11.10 (multiplicative sequences of Chern classes).
Let {F,} be a multiplicative sequence associated to the formal power series
f(x)e Q[[x]]". To each complex vector bundle E over a space X, we
associate the total F-class

F(E) = F(c(E)) e H¥'(X;Q)".
Since ¢(E @ E') = c(E)c(E’), this class has the property that
F(E @ E') = F(E)F(E), (11.13)
for any two complex vector bundles E and E’ over X. If we decompose
E=¢ @ -+ ® ¢, according to the Splitting Principle, then
F(E) = f(x1) - f(x,) (11.14)
where x; = ¢,(¢)) for each j.
ExaMPLE 11.11 (the total Todd class). Associated to the formal power

series

X _ 1 1,
td(x)=1_—e_;—l+§x+12x +...
is the multiplicative sequence {Td,} called the Todd sequence. The total

Todd class is denoted by Td. Its first few terms are:

1
Tdy(cy) = 3 ¢y
1 2
Td,(cysc2) = P (c2 + 1)

Tds(cy,¢25€3) = 55 €2€1.

24
If X is a compact complex manifold of dimension n, and if E = TX, then
the number Td(X) = Td,(TX)[X] (where [X] denotes the fundamental
class of X in H,,(X;Q)) is called the Todd genus of X.

Basic CoNsTRUCTION 11.12 (multiplicative sequences of Pontrjagin
classes). Let {F,} be a multiplicative sequence associated to the formal
power series f(x). To each real vector bundle E over a space X, we asso-
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ciate the total F-class
F(E) = F(p(E)) e H¥(X;Q)".

Given two such bundles E and E’ over X, we have p(E @ E') = p(E)p(E')
and so

F(E @ E) = F(E)F(E). (11.15)

Assume E is oriented and of dimension 2n, and decompose E ® C as
LDl D DL, D L, according to the Splitting Principle. Then

F(E) = f(x3) - f(x3) (11.16)
where x, = c,(4,) for each k.

ExaMPLE 11.13 (the total A-class). Associated to the formal power series

Jx/2 1 7

d)s—"-——=1—=x+5—5—
) sinh(y/x/2) 247 727325

is a multiplicative sequence {/f,,,} called the A-sequence. The first few terms
of the sequence are

x24+...

« 1

Ay(py) = 2% 121
- 1 )
Ay(p1p2) = 732,35 (—4p, + 7p1)

R 1
As(P1p2ibs) = 5157335757 (163 — 44p2py + 31p3).

Given a real bundle E, the total A-class of E is the sum

A(E) =1+ A,(p,E) + Ay(p,E,p;E) + . ..
Hwewrite EQC=¢, @7, @ @ ¢, ® £, as above, then from (11.16)
we see that

& nx2
A(E) = ];] Sinh(e2) (11.17)

where of course p;E = af(x}, ... x2).

Closely related to the A-sequence is the A-sequence {4,,} determined
by the power series a(x) = d(16x). One easily sees that 4,, = 16™4,, for
each m.

The Todd class and the A-class are intimately related.

Proposition 11.14. For any oriented real vector bundle E it is true that
Td(E ® C) = A(E)>
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Proof. We may assume dim E is even (see Remark 11.3) and we consider
a formal splitting EQ C=¢, @ ¢, @ - @ ¢, @ £,. Then by definition

Td(E ® C) =,ﬁ 5 =x)

=11 —e ™1 —e5

where x; = ¢,(¢;). Multiplying by e*/?e~*/2 in the denominator gives

2
Td(E ® C) = H l:ex,/—zxj—w]

x/2 |
j=1 | sinh(x J,/2):]

= [A(E)]z-
ExampLE 11.15 (the total L-class). Associated to the formal power series
\/; =1+ ! X L x2+.
tanh+/x 3© 4

is a multiplicative sequence {L,,} called the Hirzebruch L-sequence. The
first few terms of the sequence are

:]:

{(x) =

1
Li(py) = 3 D1
1 2
L(p1,p2) = 25 (7p2 — p1)

1
L3(p1:p2:p3) = 3557 (62p3 — 13p1p2 + 2p))

Given a real bundle E, the total L-class of E is the sum
L(E) = 1 + Ll(plE) + Lz(plE,sz) +...
Ifwewritt EQRC=¢, @7, @ @ ¢, ® 7, according to the Splitting
Principle, then from (11.28) we see that
n xj
j=1 tanh x-’ ’

L(E) = (11.18)
where p;E = 6fx3,...,x2).

Closely related to the L-sequence is the L-sequence {L,} determined
by the power series t’(x) ¢(x/4). One easily sees that L,, = 4"L,. For a
real oriented bundle E of dimension n, we have

a n 1/2 ,
L(E) = U Gh (11.18)
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Suppose we fix a multiplicative sequence {F,} as above. Then for each
differentiable manifold X we define the total F-class of X to be

F(X) = F(TX) e H¥(X;Q)

In particular, the examples above give us a total A-class A(X) and a total
L-class L(X).

If we furthermore assume that X is compact, oriented and of dimension
n, then we define the F-genus of X to be the rational number F(X) obtained
by evaluating F(X) on the fundamental homology class [ X] € H,(X; Q) of
the manifold. In other words:

- _ JEdpy(X), ... .pX))[X]  ifn=4k
F0 = FOOLX] = {0 l if n # 0 (mod 4)
(11.19)

From (11.15) one easily deduces that the F-genus is multiplicative in the
sense that

F(X x X') = FX)F(X') (11.20)

for any pair of compact oriented manifolds X and X'.

Suppose now that Y is a compact oriented manifold with boundary
dY = X. Note that TY|y = TX @ (trivial), and so p(Y)|x = p(X). Con-
sequently, F(Y)|x = F(X) and, since X is homologous to zero in Y, the
F-genus of X must be zero. This proves that the F-genus of a manifold
depends only on its oriented cobordism class. In fact the F-genus gives a
ring homomorphism

F: 0 —Q (11.21)

from the oriented cobordism ring into Q.

Two important examples here are the A-genus and the L-genus. An
important result of F. Hirzebruch says that for any compact oriented
4k-manifold X,

L(X) = sig(X).

This can be proved by direct verification on a set of generators for the
ring Q5° ® Q (cf. Hirzebruch [1]). It also follows from the Atiyah-Singer
Index Theorem.

Note in particular that L(X) is always an integer. This is not true for
A(X). The formulas above show, for example, that A(P%(C))=
—(1/8)L(P*(C)) = — 1/8. Nevertheless, it will follow from the Index Theo-
rem that A(X) is an integer when X is a spin manifold. It is a fact, inciden-
tally, that the A-genus is always an integer.

We now discuss the Chern character. Let E be a complex vector bundle
of dimension n over a manifold X, and via the Splitting Principle express
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the total rational Chern class of E formally as
«E)=1+¢, +...+cn=k1f[1(1+xk)
so that ¢, = a,(x;,, . .. ,x,). Consider the expression
ch(E)=e*+...+e"=n +j‘; x; + %j}::l x}+... (1122
The term of degree k in this expression is just the symmetric polynomial
Ch*E = — Z xk (11.23)

which can be rewritten as a universal polynomial expression in the ele-
mentary symmetric functions c,, . . . ,c,. In particular, ch E = n + ch'E +
ch?E + ... is a well-defined element of H?'(X;Q). It is called the Chern
character of E.

Note that if # is a complex line bundle, then

ch(f) = 1@ (11.24)

where c,(¢) denotes the first Chern class of 7.
The importance of the Chern character lies in the fact that it respects
the (semi) ring structure on the set of vector bundles.

Proposition 11.16. The Chern character has the following properties for any
pair of complex vector bundles E and E’ over X:

(i) ch(E @ E') = ch(E) + ch(E)
(ii) ch(E ® E') = ch(E)ch(E").

Proof. Consider formal splittings
o(E) = ka IT+x) oE)= jI_—Il 1+ xj

where as above the Chern classes are the elementary symmetric functions
of the x’s. Then we have corresponding splittings

«E ® E) = [[ (1+xk)£1(1+x})

dE ® E) =f[ [_1 (1 + % + %,

The first is obvious. The second is a consequence of the basic fact that
for complex line bundles ¢,(¢ ® ¢') = ¢,(¢) + ¢4(¢’). (Compare Note 11.5
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or (A.7) in App. A.) By definition we now have

ChE@E)= Y e*+ Y &% =ch(E)+ ch(E)
k=1 ji=1

ChE®E)= Y Y e*+%= ( 3 e"") ( 3 e"3) = ch(EXh(E) =
k Jj=1

j=1k=1 =1

Corollary 11.17. For any compact Hausdorff space X, the Chern character
descends to a ring homomorphism

ch: K(X) — H¥(X;Q).

REMARK 11.18. It is a result of Atiyah and Hirzebruch [2] that if, say,
X is a finite complex, then the associated map ch: K(X) ® Q - H*(X;Q)
is an isomorphism. They show, moreover, that this map extends to a ring
isomorphism ch: K*(X) ® Q 5 H*(X; Q) which carries K!(X) ® Q onto
H*(X; Q).

We now examine some basic constructions in K-theory. To make cal-
culations we shall always assume our bundles to be a direct sum of line
bundles. This is justified by the Splitting Principle 11.1 and 11.2 provided
the answer is independent of the splitting. We assume throughout that X
is a manifold or a finite simplicial complex.

CONSTRUCTION 11.19 (the exterior power operations). Let E be a com-
plex vector bundle of dimension n over X and for each k, 1 < k < n, con-
sider the bundle A*E. This operation on vector bundles has the property

AE® E)= Y (N'E)® (AE). (11.25)

i+j=k

To extend the operation to K-theory we consider the ring K(X)[[¢t]] of
formal power series with coefficients in K(X). Assigning to a vector bundle
E the element

ME)= 3 [AE]* (11.26)

gives a map with the property that
AE @ F) = A(E)A(F) (11.27)

by (11.25). From the universal property of K(X) the map (11.24) extends
to a group homomorphism

A K(X) — K(X)[[]]
The k-component of this map is called the kth power operation on K(X).
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For vector bundles, A,(E) is a polynomial and A,(E) is a well-defined
element of K(X) for all m e Z. For example, 1(¢) = 1 + t[¢] for any line
bundle ¢. For general elements of K(X) the above statement is false. Note,
for example, that A,(—[¢]) = (1 +¢t[£])~* =) ()" [¢]™

Fix a vector bundle E and consider a formal splittingE=¢, ® - - @ £,
with x, = ¢,(4,). From (11.27) we have that 4,(E) =[] 4(¢) =[] (1 + t[4]),
and so

ch(LE) = [] (1 + te™). (11.28)
k=1
In particular, we conclude that
ch(A_,E) = ch(A**"E — A°*E) = f[ (1 —e*). (11.29)
k=1

CoNSTRUCTION 11.20 (the Adams operations). Closely related to the
power operations are a family of ring homomorphisms ¥, : K(X) - K(X)
called the Adams operations. For a line bundle ¢, they are defined by
setting,

Yt = 2~ (11.30)

The extension is then determined by the Splitting Principle. Write E =
£, ® - @ ¢, and define Y (E) =% @ - - @ £*. We see that

YE @ E) = yY(E) ® l//k(E’),}
'/’k(E ® E’) = l.bk(E) ® wk(E’)-

The first is obvious. For the second, note that Y,[(¥7) ® (X ¢)] =
UW[Z4®G]=SU® ) =4¢)=CHOETH=
UilZ £) ® YulX £))-

Note that ch Y,E = ¥ e¥* = p,ch E where p,: H*'(X; Q) - H*'(X; Q) s
defined by setting p, = k™ on H?>™(X;Q).

The Adams operations transform naturally under the homomorphism
f*:K(X) - K(Y) induced by a continuous map f:Y — X.

It is an interesting exercise to show that Y=, (—t)Y(E) =
— {[(d/d0)(E))/3(E).

ConsTRUCTION 11.21 (the Clifford difference element). Let E be a real
oriented riemannian vector bundle of dimension 2n, and let wg =
i"e, -+ e,, be the oriented unit volume element in the complex Clifford
bundle C&(E) = CL(E) ® C. Since w} = 1, we have a splitting CL(E) =
CE*(E) ® CL™(E) where CL*(E) = (1 + wz)CL(E). We then define the
Clifford difference element

8(E) = [CL*(E)] — [CL™(E)] € K(X). (11.32)

(11.31)
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Suppose E’ is another such bundle. From the fact that C¢(E @ E') =
CUE) ® CUE’) and wg g = wgwg, one sees easily that
E @ E) = §E)S(E). (11.33)

The proof of the Splitting Principle 11.2 shows that we may consider E
to be a direct sum of 2-plane bundless E=E; @ - @ E,, and EQ C =
6LOOLD DD, wWhere E;QC=/¢; ¢, _

Consider therefore the case where dim E =2. Wehave EQ C=/® ¢
for some complex line bundle Z. In fact, if at a fixed point x € X we choose
an oriented orthonormal basis (e,,e;) of E,, then £, = C - (¢, — ie,) and
£, =C- (e, +iey). Clearly CUE)=C- 1D C-w®¢ @ ¢, and since
wg = ie e, we find that

CL*'E)=C-(1+wg)®7 and CL(E)=C-(1 —wp &7
Since the bundles C - (1 + wg) are trivial, we find that for dim E = 2,

8(E) = [7] - [£].

Applying the Splitting Principle and (11.33), we conclude that for E =
El @ “oe @ E”,

8E) = 1 (41~ [4)
and so
ch[S(E)] = ,,tll (e~ — %) (11.34)

where x; = ¢,(4) for k=1,...,n. From (11.6) we know that x(E) =
Xy * ** x,. Consequently, one verifies that

en(o(e)] = 68) [] ()

k
Xi/2 __ e - xk/2

=(—1) & € Xx/2 —Xk/2
(l)x(E)kIl( = )(e +em™)

n (sinh(x,/2)\?> [ x/2
=1( X2 )(tanh(x,‘/Z))

= (=2rx®) []
From (11.17) and (11.18') we conclude the following:

k

Proposition 11.22. For any oriented real vector bundle E of dimension 2n,
one has the relation

ch[8(E)] = (-2 W E)L(E)A(E)~2.
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CoNsSTRUCTION 11.23 (the spinor difference element). Let E and wg be
as in Construction 11.21 and suppose E carries a spin structure. Let S¢(E)
be the complex spinor bundle for E and consider the decomposition
Sc(E) = SE(E) @ SC(E) where SE(E) = (1 + wg)Se(E). We define the
spinor difference element to be

S(E) = [S¢(E)] — [SS(E)] € K(X). (11.35)

It follows easily from the material of Chapter I that if E’ is another such
bundle, then

S(E ® E') = s(E)s(E). (11.36)

As above we may now restrict attention to the case dim E = 2 where
E ® C = ¢ @ /. Recall from (11.5) that as oriented 2-plane bundles E = /.
The fact that E is spin is equivalent to the fact that y(E) = c,(¢) is even, i.e.,
that £ has a square root /2, The spinor bundle is given by

Sc(E) = (112 @ P12
One verifies that S¢(E) = 7'/* and Sg(E) = ¢!/, and so
S(E) = [£2] - [£12],.

Passing to the general case E = E; @ - -+ @ E, via the Splitting Principle
as above, we then have

s(E) = [ (771~ [4)),
and so

ch[S(E)] = kf[l (e~ 32 — gni2) (11.37)
This proves the following:

Proposition 11.24. For any real spin vector bundle E of dimension 2n, one
has that

ch[s(E)] = (—1)"y(E)A(E)~!

§12. Thom Isomorphisms and the Chern Character Defect

We present here some material relevant to understanding the general form
of the Index Theorem. It is not necessary, however, for understanding the
cohomological formula for the index in the basic cases.

Let X be an oriented n-dimensional manifold which is not necessarily
compact. Let H¥,(X) denote the cohomology of the complex of rational
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singular cochains with compact support on X. (A cochain ¢ has compact
support if there is a compact subset K < X such that ¢(¢) = 0 for any chain
o which does not meet K.) Poincaré duality states that there is a canonical
isomorphism

Dy HZ(X) — H,_,(X) (12.1)
for p=0,...,n (see de Rham [1]). If Yis another such manifold of di-

mension m, and if f:Y — X is a continuous map, then for each p with
p = m — n there is a linear map

fi: Hg(Y) — HE; ™™ "(X) (12.2)

called integration over the fibre (or the Gysin homomorphism). It is de-
fined by setting fi(u) = Dx 'f, Dy where f, is the usual map induced on
homology.

Animportant example is provided by the following. Let E be an oriented
vector bundle of fibre dimension k over X. Consider the maps

nE— X and i:X—E

where 7 is the bundle projection and i denotes inclusion as the zero sec-

tion. Since these maps are homotopy equivalences, 7, and i, induce iso-

morphisms on homology with n,i, = Id. Consequently, the maps
m:HiGME) — HL(X)  and i HE(X) — HEZXE)

are isomorphisms for all p. Since mj, = Dy 'n, DD i, Dy = 1d, we see

that

m = (i)~ (12.3)

DErFINITION 12.1. The map i;: H2,(X) — HZ2;(E) is called the Thom iso-
morphism of E for compactly supported cohomology.

Note that if X is compact, then H? (X) = H?(X). Furthermore, if Dy de-

cpt
notes the disk bundle of E, then by excision and Lefschetz duality we have

H$P(E) = H,_ (E) = H,_ (Dg) = H**?(Dg,0Dp). (12.4)
We thereby recover the Thom isomorphism in its more conventional form
(cf. Milnor-Stasheff [1]). We also have the following basic result:
Lemma 12.2. If X is compact, then for all u e H¥(X) = H%,(X), one has
i*i(u) = y(E)-u (12.5)
where x(E) is the Euler class of E.

Proof. We shall only outline an argument (for full details, see Milnor-
Stasheff [1]). Let Z = i,[X] = i,94(1) be the class of the zero-section in
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H,(E). The equation
AE) = i*i(1) = *Dg'Z

is one of the standard characterizations of the Euler class. To wit, if c e
H(X), then

(X(E) ) = (DE'Z,iy0) = (1,Z 0 iyc),

that is to say that y is given by intersection in E with the zero section.
For a general class u € H?(X), we fix ¢ € H,, ,(X) and note that

(UE) - u,c) = (X(E), Zxu 0 ) = (1, Z N i,(Dyu N ¢))
= (1, (i,Zxu) N i) = (Pg i, Dty i,cC)
= (i, i,c) = (*iju,c) =

In K-theory there is a group K,(X) analogous to the group H¥,(X)
discussed above. It consists of homotopy classes of triples [E, F; o] where
E and F are complex vector bundles over X and where ¢ is a bundle
isomorphism from E to F defined outside some compact subset of X (see
L9). If X is a compact manifold, then K., (X) = K(X). If U < X is an
open subset of any manifold, then there is a natural inclusion homomor-
phism K, (U) = K,(X).

Suppose now that n: E — X is a complex vector bundle of rank k over
a manifold, and let i: X — E be the inclusion as the zero section. Then,
as proved in Appendix C, Theorem C.8, there is a natural Thom iso-
morphism i;: K, (X) = K,(E) of the form

i) = Ay - *u

where A_, = [a*AZ"E, n*A¥E; ] and where o is defined at each non-
zero vector e in E by setting

g, =en — (e*)L.

(The element e* is the dual of e under some fixed hermitian metric.) If
X is compact, then A_; = i(1) is a well-defined element of K, (E). When
X is not compact, the product A_; * n*u can still be shown to be a well-
defined element of K, (E) (cf. Karoubi [2]). Roughly speaking, n*u has
compact support in the “X-directions” and A_, has compact support in
“fibre-directions”. If we restrict the element A_, to the zero section, we
recover the element A_,(E) € K*(X). This gives the following.

Lemma 12.3. If X is compact, then for all { € K(X) = K (X), one has
*i€) = A-4(E) - & (12.6)
where A_(E) = [A™*"E] — [A°%*E] € K(X).
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Assume now that X and Y are smooth manifolds and that f: X & Y
is a smooth proper embedding. Assume furthermore that the normal
bundle N to f(X) is equipped with a complex structure. (Hence, dim Y —
dim X is even.) Under these circumstances we can define a natural mapping

ﬁ:cht(X) - cht(Y)
by taking the Thom isomorphism i : K,,(X) = K.,(N) followed by the
map K, (N) = K., (Y) obtained by identifying N with a regular neigh-
borhood of X in Y.

Observe now that for any proper embedding f: X < Y of manifolds,
the normal bundle to the associated (proper) embedding f,:TX & TY
has a canonical complex structure. This normal bundle is just the pull-
back to TX of N @ N where N is the normal bundle to X. The first

factor is thought of as lying in “manifold-directions,” the second in “fibre-
directions.” The complex structure is given by

0 -Id
T= <Id 0 )
Consequently, for any proper embedding of manifolds f: X < Y, there is
an associated map
f: KepTX) — Ko (TY) (12.7)

which is of fundamental importance in defining the topological index of
an elliptic operator.

In the last section we defined the Chern character ch: K(X) —» H®"*"(X).
This homomorphism has a direct extension

ch: Kep(X) — H"(X)

to the case of compact supports. For any given complex vector bundle
n:E — X, we have defined Thom isomorphisms:

Kep(X) =5 K (E) and  H(X) — H,,(E),

and it is natural to ask whether iich = ch i,. This is not true in general
and the resulting “correction term” is of basic importance.

We assume from this point on that the manifold X is compact. Then
to each complex vector bundle n: E —» X we associate the class

UE) = nch ifl) (12.8)

Note that for any &e K(X) we have mchié = nch(i(l) n*¢) =
m[ch i(1) - ch n*¢] = [mch i(1)]ch ¢, and so, since 7, = (i)' on HE,(E),

(i)™ 'ch(i) = TE)ch ¢, (12.9)

That is, T(E) is just the “commutativity defect” mentioned above.
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Now it is not difficult to check that ¥(E) is natural, ie, f*I(E) =
I(f*E) for any continuous map between manifolds. Consequently I(E)
is a characteristic which we shall compute. Note that i;(E) = ch i(1) =
ch A_,. Applying i* and Propositions 12.2 and 12.3, we find that
YWE)YX(E) = i*X(E)=i*ch A_; =chi*A_; =ch A_,(E). This compu-
tation can be carried out for the universal bundle E over the classifying
space BU, whose cohomology ring is a polynomial ring generated by the

Chern classes ¢y, ... ,c,. Here we are authorized to write the equation
ch A_(E)

YE)=——FF7— 12.10

(B)=—=7% (1210)

If we split c(E) =[] (1 + x;) formally as in §11, we find from equations
(11.6) and (11.29) that
nl—e*

UE) =[]

k=1 X

From (11.11) and (11.9) we can rewrite this as
I(E) = (—1)"Td(E)* (12.11)

Assume now that E is a real oriented riemannian vector bundle of even
dimension over X. Then one can define the basic element

8(E) = [n*CL* (E), n*CL™(E); 4] € K () (12.12)

where p, = e- denotes Clifford multiplication by e. It is evident that
i*6(E) = S(E), the difference element considered in 11.21. Arguing as above
we see that: y(E)n,ch 6(E) = i*iyr,ch 8(E) = i*ch 6(E) = ch 6(E). Applying
the calculations of Proposition 11.22 then proves the following.

Propositon 12.4. For any oriented real vector bundle E of dimension 2n on
X, one has

nch 8(E) = (—2)'L(E)A(E) 2

If we now assume that E has a spin structure, we can construct the
element

S(E) = [1*SE(E), 7S5 (E); 1] € K op(E) (12.13)
where again p, = e- denotes Clifford multiplication by e. Clearly, i*s(E) =

S(E) = the element discussed in Construction 11.23. Arguing as above and
applying the calculation of Proposition 11.24, we find the following:

Proposition 12.5. For any real spin vector bundle E of dimension 2n on X,
one has

n,ch s(E) = (— 1)"A(E) !
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These last two propositions extend easily to the case of coefficients.
Given any element u € K(X), one immeidately verifies that

nch[6(E)- n*u] = (—2)"chu- L(E)A(E)~2 (12.14)

nch[s(E)- n*u] = (—1)"chu- R(E)~* (12.15)

Indeed, note that n,ch(8(E)n*u)=m,[ch §(E)ch n*u]=mn[ch 6(E)n*ch u]=

[m,ch 8(E)]ch u. If u = [E'] is the class corresponding to a complex vector

bundle E’ over X, then
8(E) n*u = [n*CL*(E)® E', n*CL~(E) ® E'; 1],

(12.16)
S(E) n*u = [n*SE(E)® E', n*SC(E) @ E'; u].

These elements 8(E) and s(E) are fundamental. Using them, one can define
Thom isomorphisms in K-theory for E as follows:

Proposition 12.6. Let n: E — X be an oriented real vector bundle of dimen-
sion 2n on X. Then the map

i K(X)® Q — K, (E)® Q given by il(u) = 8(E)- n*u
is an (additive) isomorphism. If E is spin, then the map
i: K(X) — K ,(E) given by ij(u) = S(E) - n*u
is an (additive) isomorphism.

For a proof of this proposition and a discussion of related results, the
reader is referred to Appendix C.

§13. The Atiyah-Singer Index Theorem

We present here the topological formulas of Atiyah and Singer for the
index of an elliptic operator on a compact manifold. We begin with the
general K-theoretic formula for which we give a detailed proof. Then,
using material derived above, we shall rewrite the formula in cohomo-
logical terms and work out the details in some important special cases.

Let X be a compact differentiable manifold of dimension n and consider
an elliptic operator P:I'(E) — I'(F) where E and F are smooth complex
vector bundles over X. Recall from §1 that the principal symbol o(P) of
P defines a class

o(P) = [n*E,n*F;0(P)] € K,(TX) (13.1)

where n: TX — X is the tangent bundle of X. (We have identified K, (T X)
with K(DX,0DX) since DX/0DX is naturally homeomorphic to the one
point compactification of TX.) Choose now a smooth embedding
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f:X o RN into some euclidean space, and consider the induced map
f11 KepTX) — K (TR (13.2)

defined in (12.7). Follow this by the homomorphism
q: K (TRY) — K(pt) = Z (13.3)

where g: TRY — pt is the canonical “scrusach” map taking TRY to a point.
Note that TR = R¥ @ RY = C" and q:C" — pt can be considered as a
vector bundle. Viewed in this way, the map g, is just the inverse of the
Thom isomorphism i,: K(pt) — K,(C"). (It is also just the Bott periodic-
ity map. For an alternative view, consider the embedding TRN = R —
SN = R*™ U {0} and the induced map K, (TR") —» K(S*¥) = K(pt).)
Applying scrunch-shriek to f; gives the index.

DEerINITION 13.1. The topological index of P is the integer
top-ind(P) = q,fi6(P). (13.4)

One must verify that this definition is independent of the choice of f.
To begin consider f =jo f where j:R¥ < R¥*¥ is a linear inclusion.
The induced map j;: K, (TR") = K, (TRY*") is just the Thom isomor-
phism for the bundle C¥*¥ — C¥, and one easily checks that §,f, = ¢,f;
where §: TR¥*N"  pt. If we are given two embeddings f: X < RN and
fi:X o R, then the embeddings jofo: X & RN*¥t and j, o fi: X —
RNe*Ni' defined as above, are isotopic. That is, F,=tj; o f; + (1 —
oo fo, 0<t<1, is a smooth family of embeddings. Applying the
homotopy invariance of K, completes the proof that (13.4) is independent
of the choice of f. One of the basic results in mathematics is the following:

Theorem 13.2 (The Atiyah-Singer Index Theorem [1]). For any elliptic
operator P over a compact manifold, one has

ind(P) = top-ind(P),
that is, the topological and analytic indices of P coincide.

Proof. For the purposes of the proof we introduce a special class of
operators. Let E and F be (smooth) com lex vector bundles over a com-
pact riemannian manifold X. An operator P € ¥DO,,(E, F) is called clas-
sical if its principal symbol is homogeneous of degree m in ¢ outside of
some compact subset of T*X, that is, P is classical if there is a constant ¢
s0 that 6,(P) = t"g(P) for all ¢ € T*X with ||¢|| 2 cand forallt 2 1. If X
is not compact, we define the classical operators to be those which have
this property over every compact subdomain of X. The set of all such
operators will be denoted WCO,,(E, F).
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Given an operator P € ¥CO,,(E, F) we can consider its asymptotic prin-
cipal symbol
. P
64P) = lim ———6",(" )
t— o t
defined for all ¢ in ODX = {£ e T*X : ||| = 1}. This gives us an exact
sequence

0 — ¥DO,,_,(E,F) — ¥CO,,(E,F) — I'(Hom(n*E,n*F)) — 0
(13.5)

where n:0DX — X is the bundle projection. The surjectivity of ¢ is seen
as follows. Given a section s € I'(Hom(n*E,n*F)), extend s smoothly to all
of T*X so that it is homogeneous of degree m in £ for ||&|| 2 1. Given local
trivializations of E and F over a coordinate chart U on X, one easily con-
structs an operator P in U with principal symbol s. Let {U,} be a finite
covering of X by such charts and let {x?} be a partition of unity subor-
dinate to this covering. Then the operator P = Y. x;Py; € WYCO,(E, F) has
principal symbol o(P) = s, and the surjectivity is proved.

Our first main step in the proof will be to show that the analytic index
makes sense at the symbolic level and, in fact, gives a well-defined homo-
morphism ind: K ,(T*X) — Z. We begin with a technical lemma which
will be useful later on. For this lemma, X is assumed to be a manifold
which is not necessarily compact but is of finite topological type.

Lemma 13.3. Let n: B — X be a smooth, real vector bundle over X. Then
every element in K., (B) can be represented by a triple of the form
(n*E,n*F;6) € £1(B).p where E and F are vector bundles on X which are
trivial outside a compact set, and where :n*E — n*F is homogeneous of
degree 0 on the fibres of B (wherever it is defined).

Note that outside a compact subset of X, ¢ is defined everywhere on
the fibres. At such points the homogeneity implies that ¢ is in fact con-
stant on the fibres.

Proof. We know from Chapter I, §9 that any element in K,(B) can be
represented by a triple (Eq, Fo; 6,) where 64: E, — F, is a bundle equiv-
alence defined outside a compact subset K = B. There exists a bundle
Ej on Bso that the sum E, @ E} is trivial, and we can replace (Eo, Fy; 0,)
with the equivalent triple (E, F;6) = (E, @ EL,Fo ® Ei;0 @ 1d). Then
there exist trivializations

TE-:EI(B—K) _i’ (B - K) X Cm and tf:ﬁl(n_x) —E_' (B el K) X Cm
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so that ¢ = 75! o 7;. (Let 7z be the assumed trivialization, and set 73 =
-1
Tgo 6 1)

Choose now a compact domain Q < X so that K = Bl Set E = i*E
and F = i*F where i: X & B is the zero-section, and let 7 and 7, denote
the restrictions of the trivializations 73 and 7§ to E and F respectively.
We claim that over B there exist bundle isomorphisms

fi:E —=> n*E and fe:F —=> n*F (13.6)

which are compatible with the given trivializations over B|x - g), i.€., Which
have the property that

fe=1t5to1; and fr=17'0o15

at points of Bl _q,. These isomorphisms are constructed as follows. Let
h:B x [0,1] — B be the homotopy defined by h(b,t) = tb, and set & = h*E
and & = h*F. Note that

Eloxio)=T*E,  Floxiy=7*F
g'sx(1)=E: y'sx(1}=ﬁ

Introduce connections on & and & which extend the canonical flat con-
nections (compatible with the trivializations) over B|x_q,. Parallel trans-
port along the curves b x [0,1] gives the desired maps (13.6). The bundle
map ¢ = fro o fg!:n*E — n*F is an isomorphism which is defined on
B — K and constant on the fibres of B — n~}(Q). Fix r > 0 so that K <
{b € Blo:||b|| < r}. We now redefine o in the set where ||b]| = r so that it is
homogeneous of degree zero (by setting o,, = o, for ||¢|| =r and ¢ = 1).
This gives the desired triple and completes the proof of the lemma. m

Suppose now that X is a compact manifold and choose an element
u € K.,(T*X). Represent u by an element (n*E, n*F; ¢) as in Lemma 13.3.
Fix an integer m. From the discussion above we know that we can choose
an (elliptic) operator P € WCO,,(E, F) whose asymptotic principal symbol
is exactly o, and so in particular a(P) = u. We now set

indu=ind P (13.7)

and show that this definition is independent of all the choices involved.
We know from §7 that ind P depends only on the homotopy class of its
principal symbol. Now if P’ € W¥CO,,(E, F) satisfies 6(P') = 6(P), then o(P’)
and o(P) are homotopic (rel c0). Therefore, ind P is independent of the
choice of P with a given asymptotic principal symbol. It is also indepen-
dent of the homotopy class of the representative (n*E, n*F; ¢) of u. To see
this suppose that (z*E’,n*F'; ') is another such representative and that
there exists an element a = (E, F;6) e £,(T*X x [0,1]).,c Whose restric-
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tionto T*X x {k} is (x*E®, n*F®; ¢®) for k = 0,1. The argument used for
Lemma 13.3 applies here to prove that a can be replaced with an element
of the form (n*E, n*F; &) where E and F are bundles on X x [0,1] and
where ¢ is homogeneous of degree zero outside a compact set. Given mth
order operators P and P’ associated as above to these representatives, one
can easily use the element (n*E, n*F; §) to construct a homotopy between
them and thereby show that ind P = ind P’ as claimed.

Suppose now that we have two distinct representatives u, =
(n*E,, n*F,; 0,) for our class u, and that we have chosen associated zero-
order operators P, where k = 0,1. By the definition of the equivalence
defining L,(T*X),.,, = K(T*X),,, this means that there exist elementary
complexes e, = (n*G,,n*G,;1d), k = 0,1, so that a, @ e, and a; @ e, are
homotopic. We can choose associated operators Py = P, @ Id fora, @ e,,
and one easily sees that ind P; = ind P, for each k. Hence, we have
ind P, = ind P,, and so ind u is well defined at least if we choose operators
of order m = 0.

The definition is also independent of the choice of the order m. To see
this, suppose we are given an elliptic operator P € ¥CO,,(E, F). Choose a
metric and a unitary connection on E, and let V*V be the associated
laplacian on E (see I1.8.3). Then for any integer ¢, we consider the com-
position P, = P o (1 + V*V)2 e ¥YCO,,, AE,F). It is easily seen that
é(P,) = 6(P) and since (1 + V*V)/? is invertible, that ind P, = ind P. It fol-
lows that ind u is well defined using operators of any order.

We have now shown that for any compact manifold X, the analytic
index (13.7) gives a well-defined homomorphism:

ind: K, (T*X) — Z (13.8)

Our task now is to prove that this coincides with the homomorphism
top-ind defined above. This will be accomplished if we can establish the
following two properties:

Property 1. In the special case where X = T*X = pt, the homomorphism
ind: K(pt) = Z is the identity.

Property 2. If X and Y are compact manifolds and f:X < Y is a smooth
embedding, then .

ind(u) = ind(fiu)
for all u e K. ,(T*X), where f, is the homomorphism (12.7).

To see that these properties suffice to prove the theorem, we first choose
an embedding f:X < SV and let j:pt & SV denote the inclusion of a
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point. By Property 2 we have ind(u) = ind(fj#) = ind(j,” *fu), and by Prop-
erty 1 we know that ind o j ! = j ! = q,. We conclude that ind(u) =
4,f{(u) = top-ind(u).

Property 1 is easily established. Each element in K(pt) can be repre-
sented in the form [C"] — [C*] where (C",C°) € &, (pt) is a pair of vector
spaces. An elliptic operator on this pair is just a linear map P:C" - C?,
and we see that ind P =r — s.

Property 2 is more difficult to establish. Following Atiyah and Singer
[1], we split this up into more easily established properties. The first one
shows that ind is well defined over open manifolds of finite topological

type.

The Excision Property 13.4. Let O be an open manifold, and let
f:0— X and [0 “—X

be two open embeddings into compact manifolds X and X'. Then ind o f; =
ind o f} on K ,(T*0).

Proof. Fix u € K,(T*0). By Lemma 13.3 we know that u can be repre-
sented by a triple (n*E, n*F; o) where E and F are bundles over @ which
are trivial outside a compact subset of @ and where ¢ is homogeneous
of degree 0 outside a compact subset of T*@. In particular, outside a
compact set Q = @ there are trivializations

15 Ele-qy — (0 — Q) x C" and 1;:F|p_q — (0 — Q) x C™
(13.9)

with respect to which o,, =0, = (tg); ! o (tg), at all points (x,£)e
T*(O — Q). This means that over T*(0 — ) the morphism ¢ comes from
a bundle map o,:E — F over the base. Moreover, with respect to the
trivializations (13.9), o, becomes the identity mapping, i.., 6¢(zy, . . . ,2,) =
(24, .. .,2,) at all points x € @ — Q. Recall that a bundle map o,€
I'(Hom(E, F)) is just a differential operator of order zero.

We now choose a zero-order elliptic operator P € WCO(E, F) which
has symbol ¢(P) = ¢ outside a compact set in T*@ and which is the
operator g, = Id in @ — Q. Such an operator clearly exists.

Suppose now that we are given an open embedding f:0 < X. Using
(13.9), we extend the bundles E and F trivially over X — f(0), and we
extend the operator P to be the identity there. This defines an elliptic
operator f,P on X with the property that

[e(fiP)] = fi[a(P)] = fiu. (13.10)

Clearly any element in ker(f,P) has support in Q and hence belongs to
the subspace ker P (under the natural embedding ker P < ker f,P given
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by extending by zero). Hence, dim(ker f,P) = dim(ker P). The same re-
marks apply to the adjoint (f,P)*. Assuming that X is compact, we con-
clude from this and from (13.10) that

ind(fiu) = ind(f,P) = dim(ker P) — dim(ker P*).

Since the right hand side is independent of f, our assertion 13.4 is proved.
]

The Multiplicative Property 13.5. Let X and Y be compact manifolds. Then
Jfor all elements u € K ,(T*X) and v € K.,(T*Y) we have that

ind(u- v) = (ind u)(ind v) (13.11)

Proof. Naively the argument goes as follows. We represent u and v as
above by first-order elliptic operators

P:T(E) — I'(P) and Q:T(E) — I'(F)

over X and Y respectively. We introduce metrics and define a “graded
tensor product”

D:I((EQE)® (F®F))— I'((PQE) ® (EQF)
by

_ (POl -1®0*
D—(1®Q P*®1> (13.12)

Note that E® E’, etc., here denotes the exterior tensor product over
X x Y. The operators P® 1, etc. are uniquely determined by requiring
that for ¢ € I'(E) and y € T'(E’) we have (P ® 1)(¢(x) ® ¥(y)) = (Po(x)) ®
¥(y). Using the fact that P® 1 and 1 ® Q commute, one easily computes
that

prp - (P*P®1+1©0%Q 0
B 0 PP*®1 + 1®00* (1313
pp* — (PP*@1+1©0%Q 0 )
- 0 P*PR1+ 1@ Q0*

Note that: D*D¢ =0 = (D*D¢,p) = (Dp,Dp) =0 = D¢p = 0. Hence,
ker D*D = ker D. Furthermore, since D*D is diagonal, it suffices to com-
pute ker D*D separately on each summand, E ® E' and F @ F'. leen
9 e'(E @ E), we see that: D*Do =0 = (P*P(p, o) + (0%00,0) =

|Po|* + ||Q<p”2 0 = Pp = 0 = 0 (where R denotes R ® 1 or 1 ® R
whichever is appropriate). Note that ker P n ker § = ker P ® ker Q.
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Continuing in this fashion we deduce that
ker D = ker D*D = (ker P ® ker Q) @ (ker P* @ ker Q*)
coker D = ker D* = ker DD* =~ (ker P* ® ker Q) ® (ker P ® ker Q%)
are therefore in K(pt)
[ker D] — [coker D] = ([ker P] — [coker P])([ker Q] — [coker Q]).

In particular we have
ind D = (ind P)(ind Q). (13.14)

Now the principal symbol of D is exactly the (outer) tensor product
of the symbols of P and Q. Therefore, naively we have established (13.11).
However, there is one technical flaw in the argument. This is the fact that
for P € WCO|(E, F),theoperator P ® 1 €e YDO,(E ® E', F ® E’)does not
in general belong to the class WCO,(E ® E', F ® E’) because its principal
symbol is not homogeneous outside a compact set in T*(X x Y).Itis only
homogeneous outside a uniform neighborhood of the “T*Y-axes” in
T*X x Y).

This flaw is repaired as follows. We shall construct a continuous fam-
ily of operators (P ® 1),e YCO,(E ® E', F ® E’) for ¢ > 0 such that
lim, o (P ® 1), = P ® 1, where this limit is taken in the space of bounded
linear maps from LE ® E’) to L{F ® E’). Applying the construction
to each entry in (13.12) will give us a family of elliptic operators D, in
¥CO! such that lim,., D, = D as bounded (Fredholm) maps between
Sobolev spaces. From the local constancy of the index (see 7.3.) we have

ind D, =ind D for all ¢ > 0.

On the other hand it will be evident from the construction that given any
compact subset K = T*(X x Y), there exists a constant ¢x > 0 so that
o(D,) = o(D) on K for all ¢ < ¢. It follows by excision that [a(D,)] =
[¢(D)] = u-v for all ¢ sufficiently small. Hence, ind(u-v) = ind(D,) =
ind(D) = (ind P)(ind Q) = (ind u)(ind v), and the property will be
established.

It remains to construct the operator (P ® 1),. This is done by multi-
plying the symbol of P ® 1 by a function ¥(|¢|,|n]) of the cotangent
variables (£,#) € T*X x T*Y. This function is constructed as follows. Fix
a C* function ¢:R* — [0, 1] such that ¢(t) = O for t < 1 and ¢(t) = 1 for
t > 2. Then for ¢ > 0 and for r,s = 0, set Y, (r,s) = 1 — d(e+/r? + 5?)P(es/r).
In multiplying the symbol of P @ 1 by y(|¢|,|n]), one can use a good co-
ordinate presentation or some symbol calculus. The choice of method is
not critical. It is a straightforward and worthwhile exercise to check that
the resulting family (P ® 1), has the properties claimed above. This com-
pletes the proof of 13.5. m
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We shall actually need the multiplicative property in the more general
context of twisted products, i.e., fibre bundles. However, we only need to
consider the special case of sphere bundles which arise from vector bundles
by adding a section at infinity. More specifically, let n: P — X be a prin-
cipal O,-bundle over a compact manifold X and consider the associated
bundles

V=Pxo R Z=Pxg 5" (13.15)

where O, acts on R" by the standard representation and acts on S" by
extending this representation to the one-point compactification on R".
(That is, O, acts on S" by trivially extending the standard representation
to R"*! = R" x R! and then restricting to the unit sphere.) We define a
product

cht(T*X) ® KO,(T*Sn)cpt - cht(T*Z) (13~16)

as follows. Choosing a metric in Z we get a splitting T*Z = n*T*X @
T(Z/X) where T(Z/X) = T*Z/n*T*X denotes the tangent spaces along
the fibres of the projection n:Z — X. This splitting gives us a multipli-
cation

cht(T*X) ® chlT(Z/X) - chl(T *Z)'

(Given a direct sum of vector bundles E @ E' on X, the map on
K. (E) ® K, (E') is defined by first taking the outer tensor product on
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E x E' over X x X and then restricting to the diagonal.) Combining this
with the composition

KO,.(T*s")cpt g KO,.(P X T*Sn)cpt - cht(P >(0.. T*Sn) = cht(T(Z/X))

gives the desired multiplication (13.16).

The associated bundle construction, which associates to a linear repre-
sentation p:O, — Oy the vector bundle ¥, = P x, R", extends naturally
to a homomorphism

ap:R(O,) — K(X) (13.17)

The ring K, (T*X) is naturally a K(X)-module. Therefore, via (13.17) it
becomes an R(O,)-module. We are now in a position to state the main

property.

The Multiplicative Property for Sphere Bundles 13.6. Let Z be an S"-bundle
defined as above over a compact manifold X. Then

ind(u - v) = ind(u-indo,v)
for all ue K ,(T*X) and v € Ko (T*S")cpy-

Proof. The proof of this fact follows very much the argument given for
13.5. We represent u and v by first-order elliptic operators P and Q re-
spectively. (Q is an O,-equivariant operator on O,-bundles.) Using local
trivializations of the bundle, we cover P by a finite number of product
neighborhoods {U; x O,}Y_,. We lift the operator P back over each pro-
duct and glue together with a partition of unity with respect to {U;} on
X, to get an O,-invariant operator P on P. We now consider the tensor
product operator D on P x S" defined as in (13.12) (with P replaced by
P). This is an O,-operator and can be pushed down to give an operator
D on the quotient Z. Notice that “pushing down” is equivalent to restricting
D to the subspace of sections coming from the base. It is easily checked
that o(D) represents the class u - v where the multiplication is that defined
in (13.16) above.

It remains to compute the analytic index of D in terms of ind P and
indo, Q. We shall work upstairs with the operator D restricted to sections
coming from the base. Using (13.13) and the arguments which follow it,
we see that:

ker D = ker D*D
= (ker(P ® 1) n ker(1 ® Q)) @ (ker(P* @ 1) N ker(1 ® Q%))

with an analogous statement for ker D* = coker D. Since the operators
P ® 1 and 1 ® Q commute, we can carry out the computation in steps,
that is, we first pass to the kernel of 1 ® Q (or 1 ® Q* whichever is rele-
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vant) and consider the operators P ® 1 and P* ® 1 acting there. For
example, on I'(E ® E') the space ker(1 ® Q) consists of those sections @
which when restricted to each factor {p} x S" = P x S", lie in the space
E,) ® ker Q. To say that ¢ comes from a section on the base means that
@ satisfies the transformation law: @(pg ~,gx) = p,@(p,x) for g € O,, where
p is the natural representation of O, on ker Q. This means precisely that
¢ corresponds to a section ¢ over X of the bundle E ® ker Q where ker Q
is the vector bundle on X associated via the principal bundle P to the
representation p. Therefore, in passing to ker(1 ® Q) and ker(l ® Q*)
the operator D descends to an operator on X on the form P, + P}, where

P T(E @ ker Q) —> I'(F ® ker Q), and
Pi:T(E @ ker Q*¥) — I'(F ® ker Q*).

It follows that ind D = ind P, — ind P} = ind[P ® (ker Q — coker Q)] =
ind[u - indo, v] as claimed. =

From the properties we have established, matters can be easily reduced
to computing some simple cases. However, it is unavoidable that one must
compute the index of some operator at some point. We do this now.

Lemma 13.7. Consider the n-sphere S" to be an O,-manifold under the re-
striction of the standard representation on R" @ R > §" (i.e., by rotations
about an axis). Let i:pt & S" denote the inclusion of one of the two fixed-
points of the action. Then

indo,(i;1) = 1 € R(O,)

Proof. Consider the operator D°:Cf° — C£! with respect to the stan-
dard metric on S". Recall that D° is just the de Rham-Hodge operator
d + d*: A" —» A%, Thisis an O,-operator and from Hodge Theory (I1.5)
we see easily that indg (D°) = [H°] + (—1)"[H"]. The action of O, on
H® = {constant functions} is always trivial. The action on H" = R{the
volume n-form} is trivial if and only if n is even. Therefore, we have

2 ~ ifniseven

: o_
indo, D7 = {1 —¢  ifnisodd

where ¢ represents the non-trivial 1-dimensional representation on O,.
We leave the details of the computation of the symbol class of D° to the
reader. One finds that in K, (S”)

2i(1) if n is even

[o(D)] = {(1 ~8i(l)  ifnisodd.

Combined with the above, this completes the proof of the lemma. m
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We now complete the proof of the Index Theorem. We have shown
that it will suffice to establish Property 2, namely that ind = ind - f; for
embeddings f: X < Y. By the Excision Property we may replace the com-
pact manifold Y with a tubular neighborhood of X in Y, which is diffeo-
morphic to the normal bundle of X in Y. Consequently it will suffice to
prove that

ind u = ind(fju) for all u € K, ,(T*X)

where V is a vector bundle over X and f: X & V is the inclusion of the
zero-section. Again by the Excision Property we may compactify V by
passing to the associated sphere bundle as in (13.15). We then apply the
Multiplicative Property for Sphere Bundles 13.6, with » = i1. Using
Lemma 13.7 we find that: ind(u - i)1) = ind(u - ind (i}1)) = ind(u). How-
ever, by definition fiu = u - i,1, and the proof is complete. =

The remainder of this section will be devoted to deriving certain co-
homological formulas for the topological index. The most general one is
the following:

Recall that for any manifold X, the tangent bundle TX is canonically
an almost complex manifold since T(TX) = n*TX @ n*TX = n*TX ®
C. This gives TX a canonical orientation as a manifold, A positively
oriented basis of T(TX) is of the form (e,,Je,,e,,Je,, ... e,Je,) Where
ey, ... e,1s a basis of n*TX and J carries the “horizontal” to the “vertical”
factor. With this orientation we can evaluate any element u € H25(TX)
on the fundamental class [ TX] of the manifold. The result is denoted by
u[TX].

Theorem 13.8. Let P be an elliptic operator over a compact manifold X of
dimension n. Then

ind P = (—1)*{ch o(P) - K(X)?}[TX] (13.18)

where fl(X ) denotes the total A-class of X pulled back to TX.

Proof. We consider first the scrunch map q: TRY = R¥ @ R¥ = C¥ — pt.
Consider this as a complex bundle and let i:pt <& CV be the inclusion
as the origin. Fix an element u € K,,(C") and apply the defect formula
(12.9) with u = i¢. Recalling that g, = (i)~!, that J(C") =1, and that
ch: K(pt) - H°(pt) is an isomorphism, we find that: g,ch u = qyu. Since g,
on HY, is just integration over the fibre, we find that

qu = ch u[ TRN]. (13.19)

Consider now a real vector bundle p:v — X and let i: X — v denote
the inclusion as the zero-section. Taking derivatives gives the bundle
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p: Tv - TX with zero-section i: TX — Tv. One sees easily that the bundle
p:Tv —» TX is equivalent to n*v @ n*v = n*v ® C. While TX is not
compact, the map i is proper and equation (12.9) can be shown to hold
for elements of K., (TX). Thus for any o € K, (TX) we have

pchig = J(v ® C)cho.

Evaluating on the fundamental class and recalling that p, is integration
over the fibre give the formula:

(ch i@)[Tv] = {3(v ® C)ch a}[TX]. (13.20)

Consider now an embedding f:X < RY with normal bundle v. We
identify v with an open tubular neighborhood of f(X) in R¥. Similarly we
have an open embedding

Tv < TR¥ (13.21)

as a tubular neighborhood of f(TX). Given any o € K,,(TX), the class
ijc has compact support in Tv and naturally extends to TR" under the
open inclusion (13.21). This extended class is, by definition, the element
fio € K.,(TR") given in (13.2). In particular we have
ch(i0)[Tv] = ch(fe)[TR]. (13.22)
Combining (13.19)—(13.21) gives
ind P = {J(v ® C)ch a(P)}[TX].

It remains to identify J(v ® C). For this we note that since v is the normal
bundle to X, we have TX @ v = (trivial). Since J is multiplicative, this
means that J(v ® C) = J(TX ® C)~ . Applying formula (12.11) we see
that

S(TX ® C)~! = (= 1)"Td(TX ® C). (13.23)

We have used here that TX ® C is self-conjugate. For the final step we
invoke Proposition 11.14. =

Integrating over the fibre immediately gives the following.
Theorem 13.8 (the cohomological formula for the index; Atiyah-Singer

[2]). Let P be an elliptic operator on a compact oriented n-manifold X and
let 6 = 6(P) € K,(TX) denote the symbol class of P. Then

n+

indP=(=1) * {ncho)- R(X)}[X] (13.24)

where n: TX — X is the bundle projection.
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nn+1)
Note. The factor (—1) > compensates for the difference between the
orientation on TX induced by the one on X, and the canonical orientation
described above.

We now consider two important special cases.
Theorem 13.9. Let X be a compact oriented manifold of dimension n = 2m
and consider the signature operator D* : T (CL*(X)) » [(CL™(X)). Then
ind D* = L(X) = sig(X)

More generally, if E is any complex vector bundle over X, then the index of
Dy :T(CL*(X) ® E) —» I'(CL ™ (X) ® E) is given by

ind(D}) = {ch,E - L(X)}[X] (13.25)
where by definition ch,E =) 2*ch*E.
;
Proof. Clearly we have that (D *) = 8(TX) where 6 is defined in (12.12).

By Proposition 12.4, mch 8(TX) = (—2)"L(X)&(X)~ 2. Applying the for-
mula (13.24) above, we find that

L(X) if m is even

. + _ AmT =
ind D* = 2"L(X) {0 if m is odd.

(A direct identification of ind D* with the signature of X was carried out
in I1.6.2). For the more general case we apply the formula (12.14) and
(12.16). We conclude similarly that

ind(D) = 2™{ch E - L(X)}[X].

Writing this out and using the fact that L,=2"%L, we find that
2™(ch E-L(X)}[X] = ¥ {2"ch*E- LX)}[X] = ¥, {2"~*ch*E - LAX)}[X]
=¥ {2*ch*E - L{X)}[X] since the sum is over (k,£) with 2¢ + k = m. This
proves (13.25). =

Similar arguments give the following in the spin case:
Theorem 13.10. Let X be a compact spin manifold Jf dimension n = 2m and
consider the Atiyah-Singer operator P*:T (3£ (X)) = T'(8c(C)). Then
ind p* = A(X).

More generally, if E is any complex vector bundle over X, then the index
of P} :T(8E(X) ® E) » I'($c(X) ® E) is given by

ind(P7) = {ch E - R(X)}[X]. (13.26)
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Proof. Note thato(D*) = s(TX) where s is defined in (12.13). By Proposi-
tion 12.5, mchs(TX) = (— 1)"'A(X )~ 1. Applying formula (13.24) above, we
find that ind P* = K(X)[X] = A(X).

For the more general case we apply formulas (12.16) and (12.15) to con-
clude that n,ch[s(TX) ® E] =(—1)"ch E - A(X)~ . Therefore ind(D}) =
{ch E - R(X)}[X] as claimed. m

REMARK 13.11. For a compact spin 2m-manifold X, formula (13.26) is
equivalent to the full Index Theorem. This is seen as follows. Any elliptic
zero, Py = (1 + P*P)™ /2P, which has the same index and the same symbol
class 6 € K,(TX). By the Thom isomorphism 12.6, & can be written in
the form ¢ = s(TX) - n*u for some u € K(X). (We use here that X is spin.)
Writing u = [E] — [F] for vector bundles E and F on X, we see that

o= [n*3¢ ® E,;n*$c @ E; u] — [n*3¢ ® F,n*$¢ @ F; ]

i.e., at the level of the principal symbol, P is equivalent to the difference
of two Atiyah-Singer operators with coefficients. This means essentially
that P @ Py is homotopic to Pz . Therefore, ind P = ind Pg — ind Py =
{(ch E — ch F)- K(X)}[X] = {ch u- K(X)}[X]. However, (12.15) gives
mo = m(s(X)n*u) = (—1)"ch u - K(X)~%, and ind P = {n,0 - A(X)?}[X] as
claimed.

For non-spin manifolds, one can argue similarly by using the signature
operator with coefficients.

One interesting corollary of the index formulas above is the following:

Theorem 13.12. On an odd-dimensional compact manifold, the index of
every elliptic differential operator is zero.

Note that this result does not remain true for pseudodifferential operators.

Proof. Consider the diffecomorphism ¢: TX — TX given by ¢(v) = —v and
note that if dim X is odd, then ¢, [TX] = —[TX]. Let P be an elliptic
differential operator of degree m with principal symbol o(P). Since g _ (P) =
(—1)"o4(P), we see that c*o(P) = (—1)"a(P). Since o(P) and —o(P) are
regularly homotopic (by a(t,P) = e"a(P), 0 < t < 1), they define the same
elements in K-theory, and we conclude that c*a(P) = o(P). Applying for-
mula (13.18) now gives

ind P = —{ch o(P) - &(X)*}[TX]
—c*{ch o(P)- R(X)}c,[TX]
—{ch c*a(P) - R(X)*}c,[TX]
—{ch o(P)- BX)?}(—[TX])
—indP. m

I
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Many important elliptic operators on a manifold X arise in the follow-
ing way. Suppose the structure group of X can be reduced to a compact,
connected subgroup G = SO,,, (Where dim X = 2m), and that P:I'(E) —»
I'(F) is an elliptic operator where E and F are vector bundles associated
to unitary representations, p; and p respectively, of G. To apply the index
formula (13.24) to P we must compute 7,ch 6(P) where #: TX — X is the
bundle projection.

To do this we pass to the universal case. Let n: T — BG denote the
universal 2m-plane bundle associated to the inclusion G = SO,,,, and let
E,F be the complex bundles over BG associated to the representations pj
and pj respectively. Let o = [n*E, n*F;0] € Ko T)be any elliptic symbol
from E to F. Then from (12.5) and the fact that 7, = (i) "%, we have that

x(T)mch ¢ = i*imch 6 = i*cho = ch E — ch F.

The algebra H*(BG;Q) always embeds in the polynomial algebra H*(BT;Q)
where T < G is a maximal torus. Therefore, if y(T) # 0, we can write:
nch o = (ch E — ch F)/y(T). Pulling back to X by the classifying map for
TX (with its G-structure) gives the following corollary to Theorem 13.8.

Theorem 13.13. Let X be a compact 2m-manifold with structure group
G < SO,,, as above. Let P:T'(E) — I'(F) be an elliptic operator where E and
F are associated to unitary representations of G. Suppose that the image of
the Euler class y under the map H*"(BSO,,,) — H>™(BG) is not zero. Then
the characteristic class (ch E — ch F)/x(TX) € H*(X; Q) is well defined, and

chE—chF

ind P = (—1)" -ﬁXZ}X.
( ){ T A0 X

ExAMPLE 13.14 (The Riemann-Roch-Hirzebruch Formula). Let X be a
compact complex manifold with a hermitian metric and let E be a holo-
morphic hermitian bundle over X. The Dolbeault complex

A0’0®E—_§""A0'1®E_5""'_5‘)A0'M®E (1327)
converts to an elliptic operator
AO ,even ® E AO »odd ® E

where 0* denotes the adjoint of 8. Theorem 13.13 can be applied with
G = U,, = SO,,, and with P = § + 0*. If we consider T = TX as an m-
dimensional complex vector bundle, then A%* = AET and we see that
ch A%¢ve" — ch A% = ch A_,(T). From (12.10) and (12.11) we see that
ch A_,(T)/uT) = (—1)"Td(T)"!. From Proposition 11.14 we have
A(X)? = Td([T]r ® C) = TA(T @ T) = Td(T)Td(T). Plugging into
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13.13 immediately gives the following:
ind(@ + 0*) = {ch E - Td(X)}[X]

where Td(X) = Td(T) is the total Todd class of X.

Observe that ker P = ker P*P = ker(90* + 0*0) = {p e A>*"*"Q E:
dp =0*¢ =0}, and similarly coker P =ker P* = {p e A>*“QE:
d¢ = 0*¢ = 0}. Applying the Hodge Decomposition Theorem (I1.5.6)
gives the following:

Theorem 13.15. Let H*(X;E) denote the kth cohomology group of the
Dolbeault complex (13.27) over the compact complex manifold X. Then

Y. (—1)*dim HYX; E) = {ch E - Td(X)}[X].

ExAMPLE 13.16. Let X be a compact oriented riemannian manifold of
dimension 2m, and consider the operator D°:I'(C£°X) — I'(C8'X) given
in I1.6.1. We leave as an exercise to the reader the verification that
ind D® = y(X).

§14. Fixed-Point Formulas for Elliptic Operators

The proof of the Index Theorem outlined above carries over, almost
without change, to the cases of G-operators, C{,-linear operators, families
of operators, etc. The main point is always to find the right K-theoretic
setting in which to work.

In this section we consider the case of G-operators and the associated
G-index Theorem. We assume throughout that X is a compact G-manifold,
i.e., a manifold equipped with a given smooth action u: X x G - X of a
compact Lie group G. By a G-bundle on X we shall mean a complex vector
bundle E — X with a G-action which carries fibres to fibres linearly and
projects to u. The Grothendieck group of equivalence classes of such G-
bundles (cf. 1.9) is called the equivariant K-theory of X and is denoted
K4(X).

Equivariant K-theory has the same properties as ordinary K-theory if
one restricts to the category of G-spaces and G-equivariant maps. Hence,
given a G-operator P on X, one can pass through the same constructions
as above (using a G-equivariant embedding X < R" and the Thom iso-
morphism) to define the topological G-index top-ind4(P) in K 4(pt) = R(G).

Theorem 14.1 (Atiyah and Singer [1]). For any elliptic G-operator P on a
compact G-manifold, one has that

indg(P) = top-ind4(P)
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The proof of this “G-index Theorem” follows precisely the arguments
outlined above for the basic case where G = {e}.

In the case that G acts trivially on X, there is a cohomological formula
for the index which is deduced in analogy with the basic case. An impor-
tant fact is that when G acts trivially on X, there is a natural isomorphism

K4(X) — K(X) ® R(G) (14.1)

determined as follows. Every finite-dimensional representation V of G can
be written in the form @), Homg(V,,V) ® V; where the direct sum ranges
over the set {V;} of equivalence classes of irreducible representations of G.
Similarly, if G acts trivially on X, then any G-bundle E can be written as

E = @ Hom(E,E) ® E; (14.2)

where E,; denotes the trivial bundle E; = X x V,. This association induces
the isomorphism (14.1) (see Segal [1]). Composing this isomorphism with
ch ® Id gives a homomorphism

chg: Kg(X) — H*(X; Q) ® R(G).

For non-compact spaces, such as TX, this extends to K-theory and coho-
mology with compact supports.

For each g e G there is a homomorphism x,:R(G) - C determined
by setting x,(p) = trace(p(g)) for each finite dimensional representation
p:G - Hom(V,V). Composing with ch; gives a homomorphism

ch,: Ks(X) — H¥X;C) (14.3)

which, for an element u =) u;®r; € K(X)® R(G) is written chyu =
Y (ch u)x,(r). The isomorphism (14.1) together with the arguments for the
basic case given in §13 show the following:

Proposition 14.2. Let X be a compact n-manifold on which G acts trivially,
and let P be an.elliptic G-operator on X with symbol class ¢ = o(P) €
K .o TX). Then one has that

indg(P) = (—1)"{chge - B(X)?}[TX]. (14.4)
In particular, for each g € G,
ind,(P) = (—1)"{ch,o - R(X)*}[TX]. (14.5)

In the case that G acts non-trivially on X, the formula (14.5) can be
replaced by one which involves the data of the action in a neighborhood
of the fixed-point set. The result is a grand generalization of the classical
Lefschetz Fixed-Point Formula for maps of finite order. The key to the
computation is a certain “localization” theorem of Atiyah and Segal [1].
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An excellent summary of the arguments involved and a large collection
of illuminating examples are given in the book of Shanahan [1]. This
exposition, together with the highly readable original literature, are recom-
mended to the reader interested in full details. We shall present the result
here in concise form.

To begin, we recall that for each g € G, the fixed-point set of g is defined
to be the set

F,={xeX:gx=x}

Since G is compact, we know by averaging that G acts as isometries for
some riemannian metric on X. An elementary argument using the expo-
nential map then shows that for each g € G, the set F, is a smooth closed
submanifold of X (see Kobayashi [1]). In general, however, F is not con-
nected and the dimensions of the components can vary.

We wish to derive a cohomological formula for ind (P), where P is an
elliptic G-operator. For this purpose, we may replace G by the closure of
the cyclic subgroup generated by g. This is a compact abelian Lie group
for which g is a “topological generator.” With this assumption we see that
F,={xe X :g'x = xforall g € G} = Fg, the fixed-point set for the entire
group. This is a trivial G-space; however, the normal bundle N of F, is a
non-trivial real G-bundle. The normal bundle to the induced embedding

i:TF, — TX

is the complex G-bundle n*N ® C (where n: TF, — F, is the bundle pro-
jection). The element A_,;(N¢) = A_(n*N ® C) is the Thom class for this
bundle and is used, as in (12.7), to define a homomorphism

i! . KG,cpt(TFg) — KG,cpt(TX) (14'6)

The fundamental result of Atiyah and Segal [1] is that after localizing at
g, i.e., after introducing formal inverses for all elements r € R(G) with
X4(r) # 0, the map (14.6) becomes an isomorphism with inverse given by
i*

._1 —

YOTILN

This leads to the following.

Theorem 14.3 (The Atiyah-Segal-Singer Fixed-Point Formula). Let X be a
compact G-manifold, where G is a compact Lie group, and let P be an elliptic
G-operator on X with symbol class 6 = a(P) € K ,,(TX). For each element
g € G, the “Lefschetz number” ind(P) = trace(gf;,, p) — trace(glcoker p) i
given by the formula
7%
ind,(P) = (— 1)'*{ chy(i*)

hGh ) 0)2}[” ] (14.7)



262 III. INDEX THEOREMS

where F, denotes the fixed-point set of g, where A_,(N¢) denotes the Thom
class of the complexified normal bundle of F,, and where d denotes the di-
mension of F, (an integer-valued function which varies from component to
component).

Note that G is not assumed to be connected; in particular, Theorem
14.3 applies when G is a finite group. Some of the most important appli-
cations of the result come from this case. This theorem also gives rise to
a number of intriguing relations between topology and elementary num-
ber theory (see Hirzebruch-Zagier [1]).

The most basic example of a G-operator comes from the de Rham com-
plex. Let G act by isometries on a compact riemannian manifold X, and
consider the Dirac operator D°: C£%(X) — CL(X). (Recall that this is ex-
actly the operator d + §: AZ**(X) —» A2¢(X)). This operator is G-equiv-
ariant and for each ge G, the number ind (D) is just the classical
Lefschetz number of g, i.e., indy(D°) = L(g) = trace(g|geven) — trace(g|goaa).
The symbol class of D° is just the class o(D°) = A_,(n*TX ® C). Re-
stricting to TF, we have n*TX ® C = (n*TF, ® C) ® (n*N ® C) -4
Te ® N, and 50 i*6(D%) = A_,(T¢ @ N¢) = A_1(Te)A-1(Ng). It follows
that ch(i*¢(D°)) = ch,(A_,(T¢))ch,(A- (N¢)), and formula (14.7) becomes

L(g) = x(F,).

In particular, if g has isolated fixed points, then L{g) = card(F,). This result
uses strongly the fact that g is contained in a compact group of diffeomor-
phisms. The general Lefschetz formula applies to any diffeomorphism f
with isolated non-degenerate fixed points, i.e., points where det(I — df) #
0. In this case points are added with the weight factor sign[det(I — df)], so
that the Lefschetz number becomes equal to the algebraic sum of the fixed
points.

One might ask whether the fixed-point formula (14.7) can be extended
to cover geometric automorphisms of an elliptic operator which do not lie
in a compact group. Such a formula was given by Atiyah and Bott [3,4]
for the case of automorphisms with isolated non-degenerate fixed points.

To give the reader some feeling for the fixed-point formula, we shall
work out the details for the signature operator D*:I(CL*(X)) —
I'(C27(X)) and the Atiyah-Singer operator DP*:T(§*(X)) — I'(87(X))
(where X is spin).

Let us suppose that X is a compact oriented riemannian manifold and
that g: X — X is an orientation preserving isometry. Let N denote the
normal bundle of the fixed-point set F,, and note that the differential dg
of g gives a bundle isometry

dg:N — N. (14.8)
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Fix x e F, and note that since g is an isometry, we have g(exp,v) =
exp,(dg-v) for all ve N,. It follows that dg-v # v for each v # 0, since
otherwise exp,(tv) would lie in F, for all t € R. Since g lies in a compact
abelian Lie group, we know from elementary representation theory that
there is an orthogonal decomposition N, = N () ® Po<s< N0),
where dg.|y ) = —Id, and where the space N,(6) splits into 2-dimensional
subspaces in which dg, rotates every vector by 0. This decomposition is
“constant” on each component of F,. This follows from (14.2) or by simply
observing that parallel translation along any curve joining x to y in F,
gives a g-equivariant isometry of N () with N(6). (This follows without
difficulty from the fact that g is an isometry.) Consequently, we conclude
that the bundle N admits a decomposition
N=N@x® @ N(6) (14.9)
0<0<=
where dg acts on N(z) by multiplication by —1, and where for each 6,
0 <0 < m N(9)is a complex bundle in which dg acts by multiplication
by €®.

REMARK 14.4. Note that the bundle N(n) may not be orientable but it
carries the same orientation class as F, i.e., for every loop y < F,, the
orientation of F, changes along y if and only if the orientation of N(r)
also changes along y. (This is because X is orientable and each N(6),
0 < 8 < =m, is complex and hence also orientable.)

For any real vector bundle E, we introduce the characteristic class

L.(E) = X(E)L™'(E) (14.10)

where L(E) is the total L-class of Hirzebruch and where x(E) is the Euler
class of E. If E is not orientable, then y(E) lives in cohomology with twisted
coefficients.

For any complex vector bundle E, and any 6, 0 < 6 < =, we define L(E)
to be the total class associated to the multiplicative sequence of Chern
classes with formal power series coth(x + 3i6). Therefore, f E=¢, @ ...
@ 7, is a formal splitting into complex line bundles with c,(£;) = x;, then

Ly(E) = f} coth(x; + }if) (14.11)
j=1

With these definitions we can state the following.

We recall now that if X is oriented and of even-dimension, then there
is a canonical splitting C&(X) = C£*(X) ® CL~(X) and the Dirac con-
struction gives the “signature operator” D*:T'(C¢*(X)) - I'(CL™(X)).
This operator is preserved by the group G of isometries of X. For each
g € G we denote

sig(X,g) = ind (D)
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to emphasize that this invariant depends only on X and g. If dim X = 4k
and g = 1, then sig(X, g) = sig(X).

Theorem 14.5. (The G-signature Theorem). Let g: X — X be an orienta-
tion-preserving isometry of a compact oriented 2m-dimensional manifold X.
Then

sig(X,g) = { Ly(N(0)) - L(F, y)} [F,] (14.12)

0<6sn
where N = @N(0) is the decomposition of the normal bundle to F, given in
(14.9).

Note. The cohomology class in (14.12) factors into a product of an ordi-
nary cohomology class with y(N(m)). As observed in Remark 14.4, N(r)
and F, have the same orientation type. Hence, the pairing in (14.12) is
well defined.

Proof. We begin with a remark on dimensions. Since g is orientation
preserving, we see that dimg(N(r)) is even. Hence we may write

dimF,=2d, dimN(@m) =2, dimgN(6) = 2s(6)

where d,r and s(f) are integers which vary from component to component
on F,.

Recall that ¢(D*) = &(TX), and therefore by the multiplicativity (11.33)
of & we have i*6(TX) = &(TF, @ N) = 8(TF,)6(N). By pushing forward
to F, and using Proposition 12.4, the Fixed-point Formula (14.7) becomes

ind,(D*) = 2'*{ chy(6(N))

S sl E] a4

It remains to evaluate the term chy(8(N)A_ (N ® C)™?'). Since every-
thing is multiplicative, we can consider the factors N(f) separately. Via
the Splitting Principle it suffices to compute in the case where v is an
oriented real 2-plane bundle on which g acts by rotation by 6. We write
v C=¢@ 7 where ¢/ is a complex line bundle, and we set x =
¢4(¢) = x(v). Then we have

ovm=7—¢ and A_,(0®C)=(l—2o)1—-2).
From the fact that ch,(¢) = ch(¢)e’® = e***, we find that

e—x-—io — ex+ia

(1 _ ex+ia)(1 — e—x—iO)
= coth $(x + if).

chy(d()A-,(v ® €)' =



§14. FIXED POINT FORMULAS 265

This leads us to introduce the multiplicative sequence of Chern classes
L, associated to the formal power series cothi(x + if). The above
computation shows that

ch,(6(N(O))1_,(N(B) ® ©)™*) = Ly(N(6)).

This computation is equally valid when 6 = = provided that N(z) is
orientable. In fact under this assumption we take a formal splitting
N(n)=v, @ - - @ v, into oriented 2-plane bundles, and with x; = x(v)
we find that

ch,(8(N(m))A-,(N(m) ® C)™!) = H coth 3(x; + in)

]j tanh(x,/2)

21 i)
, L 2 tanh(x;/2)
= AN@)L(N(m))~*
where #(N(n)) = 27"x(N(rn)). Assembling these calculations, we find that

sig(X, g) = 2¢ { I L/(N)) - i(F,,)} [F,]

where we have set L_ = £ - L~!. Multiplying the appropriate homoge-
neous component of this cohomology class by 24 allows us to remove the
hats from the L’s and gives us the desired formula (14.12). =

REMARK 14.6. This formula undergoes only minor modification if one
takes coefficients in a complex G-bundle E. Specifically, if Dj:
IN(CL* ® E) » T(CL~ ® E) is the twisted signature operator, then
setting sig(X,E, g) = ind (Dg), we have

sig(X,E, g) = {ch E - L}[F,] (14.14)

where & is the cohomological expression appearing in formula (14.12).

The applications of Theorem 14.5 are numerous and varied (see Atiyah-
Singer [2], Shanahan [1], and Hirzebruch-Zagier [1] for example). We
mention here just a few corollaries. Note to begin, that the expression
L, = x - L™ ! involves the Euler class. Consequently we have the following.

Corollary 14.7. Let X, D*, g, etc., be as in Theorem 14.5. If dim N(n) >
dim F, then sig(X,g) = 0

Note that when g is an involution, (i.e, g> = Id), we have N = N(zn). In
this case the corollary states that dim F, < 3dim X => sig(X,g) = 0. This
statement has a pretty generalization.
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Corollary 14.8 (Atiyah-Singer [2]). Let X be a compact oriented 4m-
mainfold, and let g: X — X be an orientation preserving involution with
fixed-point set F,. Let F, F, denote the closed oriented manifold obtained
by intersecting F, with (a generic displacement of) itself. Then we have

sig(X, g) = sig(F, - F,).

The right hand side of the formula is independent of the transversal
displacement of F, used to define F, - F,. It depends, of course, only on
the oriented cobordism class of F, - F,.

Proof. Since g?> =1d, we have N = N(n). One can verify easily that
{L(Fa)I‘—I(N)X(N)}[Fg] = {L(F )L~ 1(N)}[Fa "F,l= {L(Fa ) Fo)}[Fa " F,]
= sig(F, - F,). (We use here that N|; .p is the normal bundle to F,- F,
in F,.) Applying (14.12) completes the proof. m

The proof of the following corollary is left as an exercise for the reader.

Corollary 14.9 (Atiyah-Singer [2]). Let X be a compact connected oriented
4-manifold, and suppose that g:X — X is a diffeomorphism of odd order
(necessarily orientation preserving). Suppose F , consists of oriented embedded
surfaces S,, . .., S, and that for each k, dg rotates the oriented normal bundle
to S, through an angle 6,. Then

siglg, X) = [[ sin 23005, 5,

where S, S, denotes the homological self-intersection number of S,.

Our second basic set of examples will come from considering the
Atiyah-Singer operator P*:T(§¢) — I'(8c) acting on spinors over a com-
pact even-dimensional spin manifold X. We shall assume that G is a
compact Lie group acting by orientation preserving isometries of X. Note
that there is an induced action of G on the bundle Pgo(X) of oriented
orthonormal tangent frames. Recall that the spin structure is a 2-fold
covering P, (X) = Pso(X) which is non-trivial on the fibres. It corre-
sponds to an element u € H(Pgo(X); Z,).

DErFINITION 14.10. The action of G preserves the spin structure of X if it
lifts to an action on the bundle Pg,;,(X). An individual isometry g: X — X
is said to preserve the spin structure of X if the closed subgroup G =
Isom(X) generated by g preserves this structure.

Note that if g preserves the spin structure, then g*u = u, where ue
H'(Pgso(X); Z,) is the element corresponding to the structure.

If G is connected, then it follows from elementary covering space theory
that either G or a 2-fold covering group of G preserves the spin structure.
In particular, if 7;G = 0, then G preserves every spin structure on X.
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Whenever G preserves the spin structure, it acts on the bundle of spinors
and commutes with the Atiyah-Singer operator P* above. Foreachge G
one defines

Spin(X, g) = ind(P*),

and the Fixed-Point Theorem gives us a cohomological formula for this
invariant. Its expression involves the sequences of Chern classes &, asso-
ciated to the formal power series [2 sinh4(x + 6)] ! for0 <6 <n. If E
is a complex vector bundle with formal splitting E=¢;, @ ... @ ¢, into
line bundles with c,(£)) = x;, then

. q ' e%(x,ﬂo)
# = —k =
AG(E) 2 ]l;]l Sinh %(x] + iG) jl:‘ll ex!+i0 -1
In the special case where 6 = n we define a characteristic class & (E)
for any oriented real 2k-dimensional bundle E as follows. Let E =
E; ® ... ® E, be a formal splitting into oriented 2-plane bundles, and set
x; = x(E;). Then

o]

k
j=1sinh l(x, + im) =@ D cosh(xj/2)

Theorem 14.11 (The G-spin Theorem). Let g: X — X be a spin structure
preserving isometry of a compact even-dimensional spin manifold X. Then

Spin(X, g) = (— 1)"{0515, R,(N @) i(F,)} [F,]

where N = @ N(0) is the decomposition of the normal bundle to F, given in
(14.9), and where 6: F, — {0,1} is a locally constant function which depends
on the action of g on the spin structure.

ReMARk 14.12. In general the calculation of the sign function o is a
complicated and subtle affair. We refer the interested reader to Atiyah-
Bott [3],[4] and Atiyah-Hirzebruch [3] for details.

Proof. We proceed much as in the proof of the G-signature Theorem. Re-
call that 6(D*) = s(TX) and therefore by the multiplicativity (11.36) of s
we have i*e(D*) = S(TF, @ N) = s(TF)s(N). Pushing forward to F, and
using Proposition 12.5 converts the Fixed-Point Formula to

e [ chsN) g
ind (D )"{ch,(x_, N o) A(F,)}[F,].

Computing as before, we consider the case of an oriented 2-plane bun-
dle v with v® C=¢ @ /. Here we have that s(v) =72 — ¢'2 and
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A_i(v ® €)= (1 = ¢)(1 — Z), and therefore that ch,(s()i_,(v ® C)™!) =
+ [e%"‘“‘” - e‘%"‘“‘”] =1 if g acts on v by rotation by 6. It follows directly
that

ch,(S(N(6))A- {(N(6) ® ©)™*) = +A4(N(0))
for each 6, 0 < 8 < =. This completes the proof. ®

The G-Spin Theorem can be enhanced by taking coefficients in a G-
bundle E. The formula changes exactly as in the G-signature case (cf.
Remark 14.6).

§15. The Index Theorem for Families

Consider now a family of elliptic operators P on a compact manifold X
parameterized by a compact Hausdorff space 4. In §8 it was shown that
this family has a well-defined analytic index ind P € K(A4). On the other
hand the constructions of §13 can be generalized to define a topological
index in K(A). The main result of this section asserts that these two indices
coincide.

The topological index of the family P is defined as follows. Let n: & — A4
denote the underlying family of manifolds (recall that this is a bundle
with fibre X and structure group Diff(X)), and let T% — A denote the
associated family of tangent bundles (so that (T%), = T(¥',) where &, =
n~Y(a)). It is not difficult to see that for sufficiently large m we can find
amap f: & — A x R™ which restricts to a smooth embedding f,: ¥, &
{a} x R™ for each a € A. This induces a map TZ < 4 x TR™ which for
each a € A, restricts to an embedding TZ, & {a} x TR™ with normal
bundle N,® N, N, ® C. Here N, denotes the normal bundle of
fAZ ) = R™ pulled back to TZ,. We now define a map

ﬁ :cht(T%‘) I cht(A X Cm)
by taking the composition
chl(T'%') B chl(N ® C) E— cht(A X Cm)
where the first map is the Thom isomorphism, and where the second map
is induced via an embedding N® C & 4 x TR™ =~ A x C™, which is con-
structed fibrewise by identifying N, ® C with a tubular neighborhood of
fAZ,) in {a} x TR™ as before.

The projection g: 4 x C™ — A induces a Thom isomorphism (or Bott
periodicity map)

qi: Kp(A x C™) —=> K(A).
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The composition q, o f: K ,(TZ) — K(A) is independent of the choice of
the embedding f.

DEerINITION 15.1. Let P be a family of elliptic operators on a compact
manifold X parameterized by a compact Hausdorff space A4 as in §8. Let
o(P) € K, (TZ) be the class determined by the principal symbol of the
family. Then the topological index of P is the element

top-ind(P) = q, f\(6(P)) € K(A).

Straightforward generalization of the arguments given in §13 proves the
following:
Theorem 15.2 (The Atiyah-Singer Index Theorem for Families [3]). For
any P as above one has that

ind(P) = top-ind(P).

Applying the Chern character and arguing as in §13 establishes the fol-

lowing cohomological form of this result.

Theorem 15.3 (Atiyah-Singer [3]). If P is as above, then

nn+1)

m{ch o(P) - RA(T¥)?}

where n = dim X and where n: TZ — A is the natural projection.

ch(ind P) = (— 1"

Suppose now that 7: & — A is a family of riemannian manifolds, i.c., a
family of manifolds as above together with a family of riemannian metrics
introduced continuously in the fibres.

Corollary 154. Let n: & — A be a family of compact oriented riemannian
manifolds of dimension 2m, and let 2* :T(CL*(TX)) —» I'(CL(TX)) be the
associated family of signature operators. Then

ind(@*) = 2"n {L(T%)}.
More generally, if we take coefficients in a family of hermitian vector bundles

& with connection, then the associated operator 27 :T(CLHTX) @ &) —
IN(CL(TZ) ® &) has index given by
ind(@}) = 2"n{ch & - L(T%)].

Proof. The symbol of 2™ is ¢(@*) = §(TZ). Using 12.4 to push forward
over the projection ny: T — &, we find that (no),{ch 6(2 ™) - K(T%)*} =
(=2 (TX )A(Tel' )‘ZA(T%‘ )2 =(— 2)'”L(T9Z' ). Projecting on to A then
gives the first formula. The second formula follows similarly from the fact
that 6(2;) = 8(TZ) - n¥(&). m
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It is an interesting exercise to apply this formula to the Lusztig family
(8.3).

Carrying through the computations above with & replaced by s gives
the following.

Corollary 15.5. Let n: & — A be a family of compact oriented spin mani-
folds of dimension2m,andlet 25 . T(F*+ ® &) » I'(¥~ ® &) be the family
of Atiyah-Singer operators twisted by a family of coefficient bundles &.
Then

ind(@}) = n,{ch & - A(TZ)}.

All of these results go through for families of G-operators. One replaces
K by K in this case.

§16. Families of Real Operators and the C{,-Index Theorem

In discussing the Index Theorem thus far we have considered only com-
plex differential operators. Given a real operator, say P, defined using real
vector bundles, one can always complexify and apply the index theorem
in the form above. Since dimg(ker P) = dimg(ker P ® C) (and similarly
for P*), we see that the ordinary real and complex indices of p coincide.
Thus, in the basic case no information is lost under complexification.

This is not true, however, if one passes to the index theorem for families.
The index of a family of real operators takes its value in the group KO(A),
and the complexification map KO(4) — K(A) is not always injective. Note
for example that KO(S") & Z, for n = 1(mod 8), but K(S") = {0} in these
dimensions.

For this reason Atiyah and Singer established a separate index theorem
for families of real operators. It is a more subtle and profound result than
one might naively expect. The constructions and arguments outlined above
for complex families go through essentially unchanged in the real case,
provided one employs the appropriate “K-theory.” It is here that matters
become interesting, for the appropriate theory is not KO-theory, the
straightforward theory of real bundles. It is the more general KR-theory
which is defined on any space with involution and reduces to KO-theory
when the involution is trivial. Recall (cf. I. 10) that if X is a space with
involution f:X — X, then KR(X) is the Grothendieck group of pairs
(E.fg) where E is a complex vector bundle over X and where fz:E — E
is an involution which covers f and is C-antilinear on the fibres.

The introduction of this theory is motivated by the simple fact that the
principal symbol of a real operator is in general not real. Consider, for
example, the operator 9/06:C>(S') - C*(S') whose symbol is g, = i¢.
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Recall also that for any real Dirac operator D, one has that (D) = i£-
(cf. Example 1.5). The appearance here of the complex number i cannot
be ignored. It is essential in the calculus of pseudo-differential operators
and must be retained if the proofs discussed above are to carry over.

Suppose now that P:I'(E) — I'(F)is a real differential operator between
real bundles E and F over a compact manifold X. In local terms, we have
that P =Y A%x)0"*//ox* plus lower order terms, where the A* are real
matrix-valued functions. Consequently for any tangent vector &, we have
o{P) =Y A%x)(i¢)*, from which it follows that

o_{P) = o{P). (16.1)
This is the key to defining the symbol class of a real operator.

DErINITION 16.1. Given a compact manifold X, consider the tangent
bundle n: TX — X to be equipped with the canonical involution f: TX —
TX defined by f(£) = —¢&. Given any real bundle E —» X, consider
n*(E ® C) to be equipped with the antilinear involution defined by com-
plex conjugation. Then for any real elliptic operator P:I'(E) — I'(F) the
Real symbol class of P is defined to be the element

[**(E ® C), 7*(F ® C); o(P)] € KR.(TX). (16.2)

Here n*(E ® C) and n*(F @ C) are Real bundles on the Real space TX,
and (16.1) says that ¢(P) is an isomorphism of real bundles outside the
zero section of TX. Hence, (16.2) naturally defines an element in KR, (TX)

In general if one wants to remember that a given bundle is the com-
plexification of a real bundle, one carries along the associated complex
conjugation map. The new point here is that when the bundle is pulled
back over TX we think of this conjugation as covering the involution
¢ — —& With this little refinement everything works as one hopes.

To define the topological index of a real elliptic operator P we first
choose an embedding f: X & R™. The associated embedding TX & TR™
is compatible with the involutions i.e., is a mapping of Real spaces. If N
is the normal bundle to X in R™, then n*N @ n*N =~ n*N ® C is the
normal bundle to TX in TR™. We consider this to be a Real vector bundle
on TX as in Definition 16.1 above. For such bundles, the Thom isomor-
phism holds for KR-theory. (It is defined exactly as it was for K-theory
in §12. We need only note that the de Rham element A_, of a Real bundle
is itself Real. See Atiyah [2].) We can now define a map

£1:KR(TX) —> KR,,(TR™)

as before by composing the Thom isomorphism with the map induced by
the inclusion of the normal bundle as a tubular neighborhood of TX in
TR™. This inclusion can be easily chosen to be compatible with the involu-
tions.

cpt
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If - A is a family of smooth manifolds over the compact space 4,
this construction extends, by using local triviality of the family, to give
a map

fi: KR (TZ) — KR,,(A x TR™),

We now identify TR™ >~ R™ @ R™ =~ C™ by associating (x,£) to x + i¢.
Clearly the involution on TR™ becomes complex conjugation on C™. The
fundamental (1,1)-Periodicity Theorem (1,10.3), says that there is a natural
isomorphism

q;: KR, (A x C™) — KR(4)

for any compact (Real) space 4. As before, the composition g, o f; can be
shown to be independent of the choices involved in the construction.

DEFINITION 16.2. Let P be a family of real elliptic differential operators
on a compact manifold X parameterized by a compact Hausdorff space
A. Let o(P) e KR (TZ) be the symbol class of the family (where, as
before,  — A is the underlying family of manifolds). The topological
index of the family P is defined to be the element

top-ind(P) = q,f,6(P) € KR(A) = KO(A).

(Note that A carries the trivial involution.)

With this definition, the arguments for the Index Theorem discussed
above go through easily to prove the following. '

Theorem 16.3 (Atiyah and Singer [3], [4]). Let P be a family of real
elliptic operators on a compact manifold parameterized by a compact Haus-
dorff space A. Let ind(P) e KO(A) be the analytic index of the family de-
fined as in 8.5 by replacing complex objects with real ones. Then

ind(P) = top-ind(P).

It should be remarked that the index theorem for families is a useful
tool, much more powerful than the standard index theorem. A number
of applications are given in the next chapter.

One important consequence of this result is the derivation of a topo-
logical formula for the Clifford index discussed in §10. No such formula
appears in the current literature even though the derivation was known
to Atiyah and Singer. We shall present the details here.

Assume from this point on that E = E® @ E! is a real, Z,-graded C&,-
bundle over a compact riemannian manifold X. Assume E carries a bundle
metric for which Clifford multiplication by unit vectors in R¥ is orthogonal.
Let P:T'(E) - I'(E) be an elliptic self-adjoint operator and assume that
P is Cl,-linear and Z,-graded. In 104 we defined an analytic index
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ind,P € KO~ ¥(pt) for P in terms of the C¢,-module ker P. We shall now
give a topological formula for this index.

To do this we construct the following family 2 of elliptic operators
parameterized by R*. We assume that P has degree zero by replacing P
with (1 + P*P)~ /2P, We recall from 10.2 that with respect to the splitting
E = E° @ E! we can write P as

0 P!
P=( %)

where P! = (P%*. The product family 2 on R* x X is now constructed
by assigning to each v € R* the operator

#°:T(E°) - T(EY) (16.3)

defined by the restriction to E° of the operator
P,=v+ P (16.4)

where “v” denotes Clifford multiplication by v. Note that there is a “con-
jugate family” of operators 2, defined by #, = v — P. Since P com-
mutes with Clifford multiplication, we have that

PP, =2,P,=—{|v||* + P?}. (16.5)

In particular, 222 is invertible for all v # 0. Since the invertible operators
on Hilbert space form a contractible set, we could easily pass to a family
parameterized by S*. However, the calculations will be more transparent
if we treat 22° as a family with “compact support” in R¥, whose index lies
in KO,(R*) = KO ~X(pt). The main result is the following:

Theorem 16.4. Let P be an elliptic self-adjoint graded Ct,-operator on a
compact manifold. Then

ind,(P) = top-ind(#°)
where P is the family over R* defined by (16.4).

Proof. Set K° = ker P° « I'(E®) and K' = ker P! = coker P° c I'(E").
By Theorem 5.5 there are L2-orthogonal direct sum decompositions

ME)=V°@K®° and T(EY)=V'@®K" (16.6)

where P°: ¥° 5 V1! is an isomorphism. Since P commutes which Clifford
multiplication, we have that v+ K° = K* for all v # 0 in R*. Furthermore,
since multiplication by v/||v]| is L?-orthogonal, we have v - V° = V! for all
such v. It follows that the family #° = v + P°:I'(E°) — I'(E!) decom-
poses, with respect to (16.6), as a direct sum of two operators. By (16.5)
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the first summand o

VO 2 v, Vl
is an isomorphism for all v € R¥, and thus can be ignored for the purposes
of computing the index. The second summand is just

K° _#o=v, K!
This operator is independent of variables on X. Its index equals the index

of 2° and is given by the element
[K°K';v] € KO ,(R*) = KO~ ¥(pt).

Under the Atiyah-Bott-Shapiro isomorphism KO~ ¥pt) 5 i, /i*M, , ,,
this corresponds exactly to the element represented by the Z,-graded C¢,-
module ker P = K® @ K, i, it corresponds exactly to ind,P. ®

Theorem 16.4 can be applied to give topological formulas for the index
of any of the graded C{, Dirac operators discussed in Chapter II, §7.
In particular this includes the Atiyah-Singer operator whose index is a
basic invariant which we shall now discuss in detail.

Let X be a compact spin manifold of dimension n, and recall that X
carries a canonical graded C£, Dirac bundle

$(X) = PSpin(X) X lczm

whose associated Dirac operator P is called the Atiyah-Singer operator (see
equation (I1.7.1) forward). This operator has an index ind,(P) € KO ~"(pt)
which coincides, by 16.4, with the index of the family & on R" x X defined
by setting

90.3:: v+ ﬁx’

To compute the topological index of this family we must understand its
symbol class (@) € KR (R" x TX). For this we note first that 7: R" x
TX — X is a Real bundle over X whose fibre at x € X is R" x T, X with
involution (v,€) + (v,— &). The fibre of the bundle &(X) at x is the Clifford
algebra C{(T,X) =~ CL,. Vectors £ € T, X act by left Clifford multiplica-
tion as usual, and vectors v € R" act by right multiplication. The principal
symbol of & is the map o(P): I(n*@&Q) — ['(n*&L) defined by

6{,0(@) =0+ lf (= Ru + iLg),

where n*@k = n*@* ® C is treated as a Real bundle on R” x TX with in-
volution given by conjugation. The symbol class. [n*@&2, n*&L; 6(P)] when
restricted to any fibre R" x T.X =~ R" x R" = C", becomes exactly the
element,

[Ce2,CLy; v + i&] € KR ,(C")
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which, as we have seen in 1.10.12 is the generator of the group KR,,(C") =
Z. (It corresponds exactly to the deRham element A_; under the usual
isomorphism C¢* ~ A*,) Consequently the symbol class

o(P) = [n*@L, 1*@&L; 6(PD)] € KR, ,(R" x TX)

is a Thom class or “orientation class” for the bu