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1. Introduction "Nature likes theories which are simple when stated in coordinate- free, geometric language." ■'■ These notes are based on a series of ten lectures given by Professor David Simms in London, in the autumn of 197^5 in which he outlined the "geometric quantization" programme^ of 3- Kostant and J-M. Souriau. The aim of the programme is to find a way of formulating the relationship between classical and quantum mechanics in a geometric language, as a relationship between symplecticmanifolds (classical phase spaces) and Hilbert spaces (quantum phase spaces). Though it is unlikely that a completely general and intrinsic quantization construction will ever be found, work on this programme has lead to new insights into the connection between the concepts of symmetry in classical and in quantum mechanics and into the ambiguities involved in the physicist's concept of quantization. Much work is still to be done, but already a coherent picture is emerging, at least for systems with a finite number of degrees of freedom (much less is known about field theories, and these will not be discussed here): the passage from classical to quantum mechanics depends on the introduction into the classical phase space of an additional geometric structure called a polarization (§7)- In certain cases, for example, if there is a natural configuration space or if there is a prescribed symmetry group (such as the Poincar^ group), the choice of polarization

is more or less fixed. But, in general, the quantization construction is not unique: the quantum systems obtained using different polarizations are identical only in the semi-classical limit. These notes begin with a very brief account of symplectic geometry and its role in Hamiltonian mechanics and continue with a more or less self-contained description of this quantization construction and its dependence on the choice of polarization. The notetaker (N.W.) has added some material to the original lectures (in particular, a collection of examples (§9) aJ^d three appendices). In addition, some minor notational changes have been made. It is assumed that the reader is familiar with the elements of differential geometry and the exterior calculus. The appendices contain brief accounts of some topics which are needed for a complete understanding of the main text and which are perhaps unfamiliar to some applied mathematicians and physicists.

Notation: On a smooth manifold M: 1) fl(M) denotes the complex exterior algebra 2) Q (M) denotes the space of complex k-forms 3) C (M) denotes the ring of smooth complex valued functions 00 / , , and C (D(M) the subset of real functions h) U(M) denotes the space of complex vector fields. The Lie derivative is denoted/t. In the exterior calculus, the sign conventions used here are fixed by: let a e fl (M), g £ fl (M) and 5 6 U(M). In local coordinates {x }: a = a , ... dx 8 dx abc 3 ^ ... dx^ 8 dx^ abc 3x (using the summation convention) and: 1) a - e = ar , .. . e ...^ ^^^ ^ ^^ 8 ... e ^■^'^'^(M) [ab cd J 2) da = 3r o^^ ...-J dx^ ^ dx^ -^ ... fe n^'^^(M) 3) ? _1 a = p. a(5,.,...,.) " ^' ^ "'abc ••• "i^ -- dx'^ ^ ... t n^~^(M), 3 Here square brackets denote antisymmetrization and 3 = a a 3x

The (complexified) tangent bundle to M is denoted TM (TM^ ), the (complexified) cotangent bundle, T*M (t*M ), and the (complexi fied) tangent space at m e M, T M (T M''- ). mm T The transpose of a matrix a is denoted a.

2. Symplectic Geometry and Hamiltonian Mechanics The geometric formulation of classical mechanics begins with the concept of a symplectic manifold, that is a pair (M,a)) of which i) M is a smooth manifold ii) 0) is a real nondegenerate closed 2-form on M. In local coordinates {x }, u is given by: a b a) = a),dX'>dx 2.1 ab where 3r u^ -[ =0 (since u is closed) 2.2 det (o) , ) ^0 (since u is nondegenerate) 2.3 ao 2n As an example, consider the Cartesian space M = (R with the natural coordinates {q.''',q.^ ...q., p,p ...p} and the canonical symplectic 2-form a 2.k 0) = dp - dq. a In this case:

2KJ= ' '" 2.5 -1 C n where 1 is the n x n unit matrix : o) is certainly closed and nondegenerate. This example is basic in that every symplectic manifold looks like this locally; stated precisely: Theorem^ (Darboux): Every symplectic manifold (M,a)) admits an atlas of canonical coordinates. That is, near each point m e M, there are local coordinates {q.-'-, ...,q., p,...,p} (called canonical coordinates) in which o) takes the form: 0) = dp - dq. . 2.6 a The theorem can be paraphrased by saying that if u is thoiight of as a (skew symmetric) metric tensor then it follows from the closure of u that M is essentially flat. Put another way, locally any symplectic manifold is completely determined by its dimension (which must be even since u is non-degenerate). The ideas of symplectic geometry arise in mechanics because the (momentum) phase space of a classical system carries a natural symplectic structure (which is closely related to the Poisson bracket concept). For example, let X be the configuration space of a holonomic, conservative, time independent classical dynamical system with finitely many degrees

of freedom. It will be assumed that X is a C manifold. The velocity phase space of the system is then represented by the (real) tangent bundle of X, that is the set TX of pairs (x, 5) where x € X and 5 e T X is a real tangent vector at x. The dynamics and the transition to momentum phase space and the Hamiltoniaji formulation are determined by a Lagrangian, that is by a real function: L : TX ^ (R on velocity phase space. Explicitly, the canonical momenta are given by the fibre derivative of L: for each (x,5) £ TX, the restriction of L to the fibre T X is a function on the fibre, so its gradient <i(L|^ ^) X is a 1-form on the fibre and '^^^It^x^(x,5) « is an element of the dual space T X to T X, that is, a covector at x. Now the cotangent bundle T X is the set of all pairs (x^p ) where x e X and p G T X, so the map (called the fibre derivative of L) defined by: FL: (x,5) I * (x,d(L|^ X^(x,5) * * is a map from velocity phase space to T X: in physical terms T X is the

momentum phase space and p = d(L| T X^(x,5) X is the canonical momentum corresponding to (x,5)' In classical mechanics, FL is referred to as the Legendre transformation. It is usual to assume that FL is a diffeomorphism. « The function h = A-L:TX->-(R , where A(x,p) = ? J p ; (x,5) = FL ^(x,p). is called the Hamiltonian of the system: it will be shown later how h generates the orbits of the system in (momentum) phase space. Now if pr denotes the projection: pr : TX ->- X : (x,?) i > x and if {x } are local coordinates on X then each 5 can be written 5 = V , so that q = x © pr and v can be taken as local coordinates^ 3x^ on TX. Then: L(x,5) = L(q^,v^) 2.7 and X dV

If pr also denotes the projection: « pr : T X ->- X : (x,p) i ^ x then each p can be written p = p dx and so q = x o pr and p can be a a « used as local coordinates on T X. With these (customary) choices, the Legendre map takes on the coordinate form: ■nx /aa\ /a\ , & 3L ^ FL : (q ,v ) y-^ (q ,p ) = (q , —-) 3V which is familiar from elementary mechanics. In this system, the natural symplectic structure referred to above « is constructed from the canonical 1-form 9 on T X. This may be defined in several equivalent ways: l) If T e T/ \ (T X) is a tangent vector to T X at (x,p) then 9 is ■(x,p) defined at (x,p) by its value on t : ^ ^ ^x,p) = P ( pr, T ) 2.9 where pr^ is the induced map of tangent vectors defined "by pr. 2) Equivalently, if a : X->- T X is any section of T X (that is, any . . . * . . 1-form on X) then 9 is the unique 1-form on T X satisfying: a (9) = a . 2.10 3) Equivalently, in the local coordinates{q ,p } defined above: a

10 9 = P dq^ 2.11 a « The natural symplectic structure o) on T X is given by 0) = d9 2.12 This 2-form is certainly closed; it is also non-degenerate, since, in the coordinates introduced above: 0) = dp ' dq^ 2.13 a (from which it also follows that these coordinates are canonical). In the next section, it will be shown how this symplectic structure is related to the classical concept of the Poisson bracket. First, however, it is necessary to point out that (T X,o)) has a particularly simple structure since o) is not only closed bit exact (since, u = d9) and that other symplectic manifolds for which this is not true also arise in classical mechanics (for instance, as the phase spaces of particles with internal degrees of symmetry, see §9). In particular, the concept of a Kahler manifold makes frequent appearances. A simple exajnple of a KShler manifold is complex projective space M = P (C , This is defined as the set of rays in C , that is as the quotient of C - {0} by the equivalence relation:

11 whenever: z^ = Aw^ ; A e C* = C - {0} 2.1U One can introduce local complex coordinates on M by: Z^ = z^/z"""^^ a = 1,2 ... n 2.15 The domain of these is the whole of M less the hyperplane on which z = 0 (of course, by successively interchanging z and each z one defines coordinate patches covering this hyperplane also). The real and imaginary parts of the Z 's can be used as real local coordinates on M: thus M is an n-dimensional complex manifold and a 2n dimensional real manifold. There is a natural symplectic structure on M. In these local complex coordinates it is given by: 0) = i -^^ __ dZ^ ' dZ^ 2.16 3Z^ 3Z^ where: f(zl, ... z"") = ln(l + I |Z^|2) . 2.17 a=l A short calculation reveals that u is closed and non-degenerate; however it is not exact (since M is compact^). More generally, an almost Kahler manifold is defined to be a triple (M,J,a)) of which (M,a)) is a symplectic manifold and J is a tensor field of

12 type ( 1 ): that is, for each m e M J: T M ->- T M m m is a linear map. This tensor field must satisfy: 1) j2 = - 1 (a tensor field with this property is called an almost complex structure) 2) The bilinear form g defined by: g(5,?) = a)(5,J?); ?,? 6 \M 2.18 is a (real) positive definite Riemannian metric. 3) For each m € M: a)(J5,J?) = w(5,?) V ?,? € \M 2.19 In particular, complex projective space is an almost Kahler manifold with the almost complex structure defined by: j(J_) = i -i_ j(-i_). = _ i _L- 2.20 3Z^ 3Z^ 3Z^ 3Z^ or, if Z^ = x^ + iy^, by 3x^ 3y^ 3y^ 3x^

13 If (MjJjU) can be given the structure of a complex manifold in such a way that, in local complex coordinates, J is given as in eq.n. 2.20 then it is called a Kahler manifold. It follows from a theorem^ of Newlander and Nirenberg that this will be so if and only if the tensor field S (the torsion of J) vanishes, where S(5,?) = [?,?] + J[J?,?] + J[?,J?] - [J?,J?] 2.22 (5 and Z are vector fields on M). Both the cotangent bundle and the Kahler manifold are exceptional examples of symplectic manifolds in that they both have naturally defined polarizations: this will be explained in §7-

14 3. The Lie Algebra C°°(m) : Poisson Brackets On any symplectic manifold (M,a)) , the symplectic form defines an isomorphism: « TM ->-TM : 5t-*-5jia) =-2a)(5,. between the tangent and cotangent spaces at each point m e M. There is thus a natural identification between L((M) (the space of complex vector fields on M) and q'^{M) (the space of complex l-forms). Elements of L((m) corresponding to exact l-forms are called globally Hamiltonian vector fields, and those corresponding to closed l-forms, locally Hamiltonian vector fields. This relationship can be expressed diagramatically: d Im(d) ^—>Ker(d) ^—>n^{M) > q'^{M) „ J^t I 1 0 ->- £ ^ > C (M) > A(M) C ^ A (M) C ^ U(M) o Here A(M) is the set of globally Hamiltonian vector fields and A (M) is the set of locally Hamiltonian vector fields; Im(d) tz. ^■'■(M) is the image of d, that is the set of exact l-forms, and Ker(d) the set of closed l-forms. The horizontal arrow C (M) ->■ A(m) is the map (f) \—^ 5. where (f) e. C (M) and 5 . is the globally Hamiltonian vector field given by:

15 5, J w + d<t> = 0 3.1 If (j) is the (real) Hamiltonian function of a system with phase space (MjO)) then the orbits^ of the system in M are the integral curves of E. : it is in this way that the Hamiltonian generates the dynajnics of 9 the system. With each pair of functions (^,}jj e C (M), there is associated a third function [<t,,^] = E^W 3.2 called the Poisson bracket^ of (ji and tp: the Poisson bracket gives C (M) the structure of a Lie algebra over <C . The globally Hamiltonian vector fields also form a (complex) Lie algebra (with the Lie bracket as skew product) and the map (f) i ^ Ex is a Lie algebra homomorphism (that is, it is linear over (C and preserves brackets). To prove these statements, first note that eq.n. 3.2 can be rewritten: b,ii -5^(^) =-5^ J (5^ J 0.) =2a,(?^,?^) 3.3 so that the Poisson bracket is certainly skew symmetric and bilinear (over C). In local canonical coordinates {q ,p }, 5 is given by: ^<t. 3p . a _a 3p a 3q Sq. a and the Poisson bracket assumes its familiar form:

16 The other properties of the Poisson bracket are most conveniently established using the relations: i^ = 5 J d + d 5 J -^ 3.6 f n,? 6 U(M) [5.n] = ig n J - nJ ;^^ J 3.7 between^ >t c ' "^ ^^^ 5 J > regarded as operators acting to the right on the exterior algebra fl(M). Two lemmas are needed: 3.1 Lemma: If n e U(M) then n £ A (M) if, and only if, / u = 0 o '- ri Proof: n e A^(M) ■^—^ d(n J u) = 0 o ;^a)-nJdw = 0 (using 3. -n < > ;^ 0) = 0 (since o) is closed), •n 3.2 Lemma: If ?,n€ A (M) then fc »nl = 2r , , e. A(M), Proof: [?,nj J 0) = ^^(n J u) - n J i^ u (using 3.7) = (i(?j(n J 0))) + Cj(d(n J 0))) (using 3.6 and lemma 3.1) = 2 d(a)(n,?)) = 2(5,(,,,))-i - a.

17 It follows from lemma 3.2 that the commutator of two'Hamiltonian vector fields is globally Hamiltonian and that: that is, the map (j) i—^5, preserves brackets. Thus all that remains to be shown is that the Poisson bracket satisfies the Jacobi identity. In fact, this is a direct consequence of the closure of u: 0 = dio(5^,?^,5^) ; <t.,<|;,x e C (M) I(?^(a>(?^,?^)) -a>([?^,g,5^ = 7 I([*,[^.x]] - [[^,x],*J) = lU, [^.xll 3.9 where 2, indicates cyclic summation over (t),>|) and x-

18 k, Observables In classical mechanics, an observable plays two roles. In the first place, it is a measurable quantity, represented by a smooth function on phase space; in the second place, at least locally, it is the generator of a one parameter family of canonical transformations. For example, in Newtonian mechanics, the fundamental observables, energy, momentum and angular momentum, act in phase space as the generators of time-translations, space-translations and rotations. This duality emerges very clearly from the geometrical machinery developed in the last section. For suppose that (M,a)) is the phase space of some classical system. Then, associated with each smooth real function (ji e C.n(M), there is a real vector field 5j, ^ U(M) which satisfies (lemma 3.1): i^ 0) = 0 k.l 9 This is precisely the condition that the local diffeomorphisms of M generated by E^ should be canonical, that is that they should preserve u. 9 For certain observables (those for which 5 is complete) this works globally: they generate canonical transformations of the whole of M. Going in the other direction, however, that is deciding which 'measurable quantity' is associated with a given one parameter group of canonical transformations, is a more subtle problem; a detailed treatment will be postponed until §8. For the moment, I shall just

19 illustrate the nature of the problem (which is essentially the same in quantum mechanics^1) with a familiar example. Suppose that the rotation group G = S0(3) acts on M as a group of canonical transformations. Each element of the Lie algebra G of G generates a one parameter subgroup of G; hence, by lemma 3-Is each X e G gives rise to a locally Hamiltonian vector field 5 € A (M). jL O Explicitly, (5„(<t>)) (m) = 1^ {<t>((exp(- t.X)).m)}| ; m £ M, <t. & C°°(M) k.2 't=o From the definition of the Lie bracket in G, one has: [5„,5J = 5ry yi x,Y e G k.3 'X'^Y-i [x,y] so that the map a defined by: a : G ^ A (M) : X(->5^ O Ji. is a homomorphism of Lie algebras. Now the rotation group S0(3) has the special property that its Lie algebra satisfies-*-^ : G = lG,G] i h.k In fact, each Z £ G is of the form:

20 Z = [x,y] ; X,Y e G ^.5 (For example, the generator of a "rotation about the z-axis" is the commutator of the generators of "rotations about the x- and y-axis".] But, from lemma 3.2, if Z £ G is of the form Z = [x,y] , then the vector field a(z) = 5 [X,Y] CSx'Sy] U.6 is globally Hamiltonian. Thus, in this case, a maps G into the algebra A(M) of globally Hamiltonian vector fields. The problem of associating a measurable quantity with each one parameter subgroup of S0(3) is thus reduced to the problem of choosing a suitable map A : G ^ C,jj(M) which makes the diagram: o^in) A(M) commute. Fortunately, in this case there is a preferred map. It follows from another special property of S0(3), namely that the fii'st and second

21 real cohomology groups of its Lijs algebra are trivial (see appendix C), that there is a unique choice for A which makes this diagram into a commutative diagram of Lie algebra homomorphisms , With this choice, each X e G corresponds to a smooth function (j) = a(X) C C(ri(M) such that: 5x = h. ^-^ (The situation is not always so clear cut: for example, in the case of the Galilei group one must first go to a central extension of the Lie algebra before constructing A. More about this below). In a purely classical context, there is no overwhelming reason for insisting that A should be a Lie algebra homomorphism, that is that condition (2) (eqn, k.8) should hold. However, this condition does play a central role in the quantization procedure. Essentially, it is equivalent to the requirement of naturality, that is that a symmetry group in a classical system should also be a symmetry group in the underlying quantum system. This will be clarified later. The first stage of the quantization programme is to construct a Hilbert space representation of the Lie algebra of classical observables; that is, to construct a Hilbert space H on which each classical observable (that is, each element of Cj^(M)) is represented as a Hermitian operator in such a way that the Poisson bracket of two classical observables is represented by the commutator of the corresponding quantum operators. In

22 its simplest form, the idea which will be developed below is to construct H from the space of complex valued functions on phase space. Indeed, this is precisely what is done when the phase space is the cotangent bundle of some configuration space. However, if more complicated systems are to be included (such as particles with internal degrees of freedom) it is necessary to modify this a little: H is constructed not from the complex valued functions but from the sections of a certain line bundle over phase space. The additional formalism needed for this modification is introduced in the next section; the construction itself will be described in §6. As a byproduct, this approach yields a synthesis of the classical and quantum concepts of observable. In the construction, each observable appears as a vector field on the line bundle and from this representation one can derive with equal simplicity its three roles as a function on the classical phase space, as a generator of a family of canonical transformations and as an operator on the quantum Hilbert space.

23 5. Herinitian Line Bundles Informally, a line bundle over a smooth manifold is a 'twisted' Cartesian product of the manifold with the complex numbers. In the more precise language of the general theory of bundles (which is outlined in appendix B) a line bundle is a vector bundle with a'one dimensional complex vector space as fibre. Any line bundle has the property that it is equivalent, if its zero section is deleted, to its associated principal bundle. Because of this, it is possible to state the defining properties in a relatively simple form and to bypass, for the moment, some of the technicalities of the general theory. Explicitly, a line bundle over a smooth manifold M is a triple (L, it, M) where: (1) L is a smooth manifold and it is a smooth map of L onto M (2) For each m g M, L = it (m) has the structure m of a one dimensional complex vector space (l m is called the fibre over m) (3) There is an open cover {U. | j & A} of M (in- J dexed by some set A) and a collection of C maps s . : U ■ ->■ L such that: J J (a) For each j £ A, it o s . = 1 (the J J identity map on U■). J (b) For each j 6. A, the map }jj. : V ■ x. C ->■ IT (U.) : (m,z)» >z.s.(m) is a J 0 diffeomorphism (the multiplication is

24 scalar multiplication in the vector space L ). m The collection {U.,s.} is called a local system for L. A smooth map s : U ->- L from some open subset of M into L which satisfies IT o s = ly 5,1 is called a local section of L (or simply a section if U = M), Thus a local system is a cover of M by non-vanishing local sections. The set r(L) of all sections of L forms a C (M)-module, with the multiplication law: (<t)s) (m) = (j,(m) . s(m); .j, e C°°(m), s e r(L) 5.2 Here again, the multiplication on the right hand side is scalar multiplication in L . m The simplest example of a line bundle is the trivial or product bundle with L = M x <£ and it : L ->■ M the projection onto the first factor. As a local system for L, one can take the set {(M,s )} where: s : M ->- L t m 1—^ (m,l) is the unit section of L; r(L) is then isomorphic with C (M) since

25 any other section s is uniquely of the form: 5.3 for some (ji e C (M). In the general case, it is helpful to think of a section as a generalized complex valued function. The line bundles used in geometric quantization have two additional structures: 1) A Herfflitian metric : on each fibre there is a Hilbert space metric ( * , ') with the property that, for any s, t e r(L), the function (s,t) defined by: (s,t): M ^ C : mt—»• (s(m) ,t (m)) is smooth. 2) A connection : there is a map V which assigns to each vector field 5 e U(M) an endomorphism V : r(L) ->- r(L) satisfying: (a)Vs=Vs+vs 5.U (b) V^ ^ s = <t, V s 5.5 (c) V_(<t>.s) = (5<t>).s + <j,,v^ s 5.6 for each s £ r(L), 5,n £ U(M) and .j, e. C°°(M) . (The map V : r(L) -> r(L) is called the covariant derivative along 5 ; (a) and (b) are the usual requirements of linearity and (c) is the Leibnitz rule.)

26 These two structures are required to be compatible in the sense that, for each real 5 e U(M) 5(s,t) = (s, V t) + (V s,t) V s,t e r(L) 5.7 A line bundle with a connection V and a compatible Herfflitian metric is called a Herfflitian line bundle with connection. For example, the trivial bundle has a natural Herfflitian metric defined by: ((m,z^), (m,Z2)) = z^z^ ; (m,z^) € M x C. 5-8 One may also construct a connection on this bundle by choosing any a £ n^(M) and putting: V s = (5<t. + 2TTi(5 i a) . <t,) s^ 5.9 where s e r(L) and (ji 6 C (M) is defined by: s = (J) . s 5.10 ^ o This will be compatible with the natural Herfflitian metric if, and only if, a is real. This example is basic in the sense that, locally, any connection on a line bundle L has this form. To see this, choose a local system

27 {(U.,s.)} for L and, for each j, consider the map: J 0 U(M).C'"(U.) : 5-^^ ■ ^T \^i which is linear in E, over C (M) and so defines a 1-form a- € ^■'■(U.). It then follows from eqn. 5-6 that (V^ s)|y_ = (5 ^^ + 2TTi . (5 -1 a^) . <t>j) s^ 5.12 where s £ r(L) and (j). t C (U.) is defined by: 0 J s = (().. s. in U. . 5.13 The 1-form a. can be thought of as a 'Christoffel symbol' for the connection. On each non-empty intersection U. A U, , one has s. = c., . s 00 . for some function c., € C (U- n U, ) , so that the corresponding 'Christoffel symbols' a. and a, are related by: 1 ^ '^"k a. = a, + TT^ ■ ^ on U. n U, 5-1^^ J Tt 2tti c.^ j k (The functions {c, | j,k 6. A} are called the transition functions of the local system). Any collection of 1-forms a. g fl'''(U.) which are related as in eqn. ^.ik will define a connection on L. This can be used to give an

28 alternative and, in some cases, more convenient characterization of « a connection as a 1-form not on M, but on the space L obtained by deleting the origin from each fibre of L. For suppose there is given a connection V , and hence a collection a- e fl'''(U.) of l-forms « related as in eq.n. 5.1U. For each j, define g. e fl^(U. x <£. ) by: 3- = Pr * (a.) +^ . ^ 5.15 J 1 J 2tti z * * . . where C = C - {0} and pr : U. x £ ->- U. is the projection onto 10 o the first factor. Under the diffeomorphism >|;. : U- x f -y tt~1(U.), 0 0 0 -I * -I « g. is mapped onto a 1-form (>|). ) (g.) on it (U.) n L . It follows 0 iJ O O -1 * from eqn, 5.1U, that, for each j,k, the l-forms (>|). ) (g-) and 0 0 -1 * -1,-1.* ('I'v ) (^v) ^^"^ equal on it (U.) n it (U ) O L . Thus there is a « well defined 1-form a £ fl^CL ) satisfying: ^•*^=^0=^^ ^"0^ ^^•^^"'(U. xC*) for each j. Furthermore, the a.'s, and hence the connection, are 0 completely determined by a. In fact, the connection V is given directly in terms of a by: « V s = 2TTi (5 J s a) . s ; s e r(L) , ? fc U(M) 5.16 (at points where s = 0 this is only valid in the limit) since, on U.: 0 * 1 d(b ^ ,^ s a = a. + T—T- -^ 5.17 0 2tti <^

where: 29 . s. . 5.18 J By its construction, a has the two properties: « (1) It is invariant under the action of C (each non-zero complex number z defines a diffeomorphism « of L by scalar multiplication in the fibres. It follows from the expression for g. (eq.n. 5'15) that this diffeomorphism leaves a invariant.) (2) For each m e M, the pull-back of a under any * * * . non-singular linear map (C ->■ L ^^ L is 1 dz * •r—:- . — (L is L with the origin deleted). 2tti z m m By reversing the argument, it is not hard to see that ajiy 1-form a e ^■'■(L ) with these two properties will define a connection via eq.n. 5.16. The compatibility condition (eq.n. 5.7) can now be put in a more concise form. A Hermitian metric (• , •) on L is completely determined by the function: H : L ^ (R : a \ ^{!i,!L) . 5-19 If V is a connection on (L, it, M) then V and (• , •) will be compatible if, and only if, H ajid the connection form a of V are

30 related by: -^ = 2TTi(a - a) 5-20 h. To see this, let s: UciM—tL be any non-vanishing local section and let 5 be a real vector field on U. Then: 5(s,s) = 5(H o s) = ((s^5) J dH) o s 5.21 and, from eqn. 5.l6 (V s,s) + (s,V s) = 2TTi(5 J (s a - s a)). (s,s) (2TTi H . (s^5) J (a - a)) c s 5-22 whence it is clear that: ?(s,s) = (V_s,s) + (s,V s) 5.23 5 5 for every choice of 5 and s if, and only if: f^ = 2TTi (a - a). 5.2U Suppose now that there is given a line bundle (L,tt,M) and a connection V. In general, there wiH exist vector fields 5, n € U(M) for which the operators V and V do not commute and

31 the connection will have ciirvature. Formally, given two vector fields 5, n e U(M), one defines the operator curv(L,v) (5,n) "by: curv(L,v) (5,n) (s) =^ ^1^^5'V ' ^r?,nl^ ^ ^"^^ where s e r(L). The right hand side of this equation is skew symmetric m 5 and n and linear over C (M) m 5,n and s. Thus the left hand side must be of the form: curv(L,v) (5,n) (s) = n(5,n) • s 5,26 for some 2-form Q 6 ^^(M); Q is called the curvature 2-form of the connection. It follows from eqn. 5.15 that: IT in) = da 5.27 and that, in each U.; J n|y = da. 5.28 so that fl is closed. However, the crucial result is that, for any connection V, the curvature 2-form fl = curv(L,V) is always integral, that is, the result of integrating it over any closed two dimensional contour in

32 M is an integer. A somewhat technical proof of this result, which is called the integrality condition, is given in appendix A. However, it is possible to gain some geometrical insight into its meaning by introducing the idea of parallel transport. _ « A smooth curve T: [a,bj ->- L is said to be parallel (or horizontal) if its tangent vector S satisfies: •^ J a = 0 5.29 Alternatively, r is parallel if there exists a section s: M ->- L and a vector field 5 e U(M) such that 1) ? = TT* (El) on TT(r(|a,b|)) 5.30 2) r([a,b]) o s(M) 5.31 3) V s =0 on TT(r([a,b1)) 5.32 5 r 1 ■ ■ * If y: [a,bj ->- M is any smooth curve ajid if S, €. L , ^ then ^ ■, « there is a unique parallel curve r : ]_a,bj -> L through j, satisfying : IT c r = Y 5.33 This is certainly true if y([ajt]) is contained in some U. since if

33 5 is the tangent to y and a = z . s.(a) then r is given explicitly by: r : t I > ^Ayit), z(t)) where: [a,b] ->. C : t * ^ z(t) is the unique solution of the differential equation; f[^=-2.i . 5(t)a a. with the initial condition: z(o) = z o It is also true globally since y( [^,^1) can always be covered by a finite subset of {U.}. If r: [a,bJ->-L is a parallel curve covering y : [a,bj ->■ M (that is, satisfying eqn. 5.33) then the point r(b) is said to be reached from I(a) by parallel transport along y. Now suppose that y : fajb"] ->- M is a closed curve (so that Y(a) = y(13)) spanned by a 2-surface W which is diffeomorphic with |R2 _ « Under parallel propagation around y, each point H 6 \(g.) -"-^ mapped « onto a second point P(S.) € Ii./ -yThe map P is linear in I, so that

34 there is a non zero complex number z such that: Y Fin) = z .1 \{ I e L / . Y Y(a) The trick is to express z as a surface integral over W; first a lemma: Lemma: Let (L,tt,M) be a line bundle with connection V. If the open set U c: M is smoothly contractible to a point then there exists a nowhere vanishing local section s: U ->■ L. Proof; That U is smoothly contractible means that there is a point m £ U and a smooth map F: U x [.0,l] ->- U such that, for every m e U: l) F(m,l) = m 2) F(m,0) = m ' o « To construct s: U ->- L, choose an arbitrary point 5, fe. L and, for o m o each m £ U, define s(m) by parallely propagating i along the curve F(m,t) □ . Now the surface W is smoothly contractible so it must lie in an open neighbourhood U which is also smoothly contractible. Let

35 s: U ->- L be a non-vanishing local section and let V: [a,b] ->- L be the unique parallel curve through s(Y(a)) which satisfies: IT o r = Y Since s is non-vanishing, r is given by r(t) = ^(t) . s(Y(t)); t 6 [a,b] - * for some function >|; : [a,bj ->- C. • The condition that r be parallel then translates into the form • % <j,(t) = - 2TTi(5(t) a s a). <t>(t) where E, is the tangent vector to y- Hence: z = (t)(b)/(j)(a) = exp(- 2TTi 0 (5 J s a) dt) exp(- 2TTi (D s a) the integral being taken around y- By Stokes' theorem, this contour integral can be written as a surface integral over W. The result is: z = exp (- 2TTi Y d(s a)) = exp (- 2TTi n) where the orientation of W is chosen to be compatible with that of y-

36 It is now possible to understand the geometrical origin of the integrality condition. Suppose, for example, that S is a closed 2-surface in M diffeomorphic with the sphere S^. Choose a smooth closed curve y : [a,b] ->- M on S which divides S into the union of two 2-surfaces W and W , each diffeomorphic with ^ (together with their common boundary y( C^jT^j )) • By the argument above, the complex number z which determines the result of parallel propagation around y is given by the two expressions: 1) z = exp(- 2TTi 2) z = exp(- 2TTi Y a) a) Taking into account the orientations of W and W , it follows that; 12 exp(- 2TTi a) so that U must be an integer. is Geometric quantization begins with the converse of this result, which is the content of Weil's theorem. Theorem-*-^ (Weil). If fl is a closed real integral 2-form on a manifold M then there exists a line bundle (L,tt,M) with a Hermitian metric (. , .) and a compatible connection V such that curv(L,v) = a.

37 A proof of this is also given in appendix A together with a prescription for determining the number of essentially different line bundles with these properties in terms of the topological data of M. In particular, it is shown that if M is simply connected then V and (. , .) are unique up to equivalence. The concept of equivalence used here is the following; two line bundles (L. ,tt.,M. ) with connections V. and metrics, (, , .)., Ill 1 SVJ'j^J defined by functions H. : L. ->- {R , (i = 1,2) are equivalent if there exists a diffeomorphism T : L ->- L 1 2 whi ch: l) commutes with projection: > L 2) Restricts to a linear isomorphism T : (Lj^^ (L ) m 1 m 2 Di for each m e M, 3) Satisfies t (a ) = a and H o t = H , 2 1 2 1

38 6. Preq^uantization A symplectic manifold is said to be quantizable if its symplectic form is integral. The justification for the use of this suggestive term is this: if (M,a)) is quantizable then, by weil's theorem, it is possible to find a Hermitian line bundle (L,tt,M) with connection V and curvature 2-form equal to o). In this section, it will be shown that there is then a natural way of constructing a Hilbert space H from the space r(L) of sections of L and that there IS a natural representation of the Lie algebra C,o(M) by Hermitian operatojs on H. Thus if a classical system has a quantizable phase space, this procedure (it is called prequantization) can be used to construct the Hilbert space and observables of a corresponding quantum system. Unfortunately, this is not the whole story. There is a difficulty concerned with reducibility of the representation: this difficulty, and a way of circumventing it, will be dealt with later. In detail, prequantization works like this. Suppose that (M,a)) is a quantizable symplectic manifold and that (L,tt,M) is a Hermitian line bundle over M with connection V and curvature 2-form equal to u. The set r(L) of smooth sections of L forms a vector space over C under the operations: (1) (s^ + s^) (m) = s^(m) + s^(m) 1 s^,S2 € r(L) , m 6 M 6.1 (2) (z.s^) (m) = z.s^(m) J z e (C . 6.2

39 Now there is a natural volume element on M given in terms of the symplectic form by^"*: a)=a)'-...'-a) 6.3 This is used to define the inner product on r(L) : explicitly, if s,t e r(L) then <s,t> is the (not necessarily finite) complex number: <s ,t> = I (s(m), t(m)) J^. 6.k The subspace of r(L) of sections s for which <s,s> is finite forms a pre-Hilbert space H ; the Hilbert space of prequantization is the completion H of H . The first step in the construction of the quantum operators on 00 H is to replace the classical Lie algebra of observables Cjj^lM) by a natural isomorph, namely the set e(L,v) of all real vector fields n « on L which have the properties: « (1) They are invariant under the action of £. (2) They satisfy: jk a = 0 and n H = 0 6.5 « where a is the connection form and H: L ->- R5 is the function: H : a t ^i!i,!i).

40 (This set forms a Lie algebra under the Lie bracket operation on vector fields.) The isomorphism between C((^(M) and e(L,V) is constructed by mapping each classical observable (ji €. Cj^vM) onto the unique real « vector field n, e U(L ) which satisfies: 9 1) 7r,(n^) = ?^ G.G 2) n^J CI = d) o IT 6.7 9 That rii is, in fact, an element of e(L,V) follows by direct 9 * computation: first, it is clear that n, is C -invariant since a 9 * • • 1 c; itself IS ^ invariant. Secondly, one has-^^: l) I „ a = d(n, J a) + n, J da = d((j) o it) + n, -i IT (w) « IT (d(j) + 51 u) = 0 2) n, H = 2TTi H (n^ J (a - a)) = 0 6.9 <t> 9 so that n, also has the second defining property of e(L,v). 9 Next, it must be shown that the map 6\—^r\ preserves 9 brackets. Again, a direct computation gives:

41 (1) -*([n,,n^]) = [vg=5^,,x] (2) fn,,n ] J a = n,(n J a) - 9 X 9 X (5JX)) O TT [*,x] ' <t>,X t C"^(M) 6.10 6.11 Finally, since it is clear that the map C^(M) ->- e(L,V) : (jit »-n, is one to one, all that remains to be shown is that it is also surjective. To do this, suppose that n g eCLjV) is given. * • ■ • °°/ *\ Since n and a are C invariant, the function n J a & C (L ) must be of the form: n i a = 9 o IT 6.12 for some (fi e C (M). But, n H = 0, so that: n J(a - a) =0, 6.13 that is, (j) is real. Also jt a = 0, so one has: d(n -I a) + n -i da =0 6.1k Hence: d(j) + (tt^ n) J w =0 6.15

42 at each point of M. Thus iT^(n) = 5. and 1 = 1,, and the map (j) 1 ^n, is indeed an isomorphism of Lie algebras. These results can "be summarized in a commutative diagram of Lie algebra homomorphisms: e(L,V) 0 > IR A(M) -> 0 Cfl^(M) Here the vertical arrow is the natural isomorphism 6 \—^ n, • The 9 upper and lower sequences are exact (that is the kernel of each map is the image of the previous map) and the lower sequence is the real part of the one mentioned in §3. In the upper sequence, the map K ->■ e(L,V) sends each r 6. iR to the vertical vector field n which generates the flow: L* X (R ^ L* : (J!,,t) I—^ e^"""- "^ I The map e(L,V) ->- A(M) is simply the projection tt^. It is now quite simple to see how a classical observable (j) € Cjq(M) acts as an operator on r(L) and hence on H. Each section « s 6. r(L) defines a function f : L ->- C according to: f {l).% = s(m) ; m £ M, S, £ L 6.16

43 Conversely, any function f : L ->- <C with the homogeneity property: _ 1 ^ ^ tiz.l) = z .t{l) ; il e. L , z e C 6.17 defines a section s e r(L) (via eqn. 6.l6). Thus^^ r(L) can "be identified with the subspace of C (L ) of functions satisfying eqn. 6.17. Now if (j) e C(n(M) then n, is C -invariant and, for any section s e r(L), the function x\ f £ C (L ) satisfies eqn 6.17 and thus m S defines a section^'' - 2TTi. 6^ s g r(L) . The map 6^ : r(L) ->- r(L) is <t> 9 linear and Hermitian (since n, is real); it is called the quantum 9 operat or ■'■^ corresponding to (ji. It follows from the fact that Is/ \—>n , is a Lie algebra isomorphism that: 1) zd) d 6.18 ') '(*+x)='*"'x ^ *.x eC^(M), zeC 6.19 3) - 2TTi.6 [-t-'x] 6.20 Thus the map 6 which sends a classical observable i/ to the corresponding quantum operator 6 defines a representation of the Lie algebra C^(M). To summarize, each classical observable (ji g C_,(M) is

44 « represented as a vector field n , on L . One recovers (ji by contracting n. with a and by projecting n, into M one obtains the 9 9 generator 5 of the corresponding family of canonical transformations. Finally, (j) emerges in its role as a quantum operator through the natural action of n, on the sections of L. 9 « Example: Suppose that M = T X is the cotangent bundle of a configuration space X. The canonical 2-form u on M is exact, so that (M,a)) is quantizable: in fact, the line bundle (l,tt,M) is simply the trivial bundle (see appendix A) and, when the space of sections r(L) is identified with C (M), the connection V is given by: v^ X = ?x + 2TTi(5 J 6) . X ; ? e U(m), x e c (m) 6.21 where 9 is the canonical 1-form. The corresponding connection form « « on L = M X (C is: a = 9 +-ir . ^ 6.22 2tti z « and the vector field n, € U(M x C ) generated by a classical 9 observable (ji 6. C[p(M) is: r\ — 7^ n, = ?, + 2TTi z.(<t) - A) -r 2TTi z . (<t) - A) — 6.23 * * 3z g-

45 where A is the 'action' function of i> A = 5 J 9 £ C^(M) . 6.2U For future reference-"-^, note that the integral curves of n . are of 9 the form: * * t H-^ (Y(t), z^ exp(2TTi I (<t> - A) dt)) € M X C o where y is an integral curve of E^ and the integration is along y. □, 9 In the form in which it is defined, 6, is not very useful in 9 explicit calculations: it is more convenient to express it directly as an operator on r(L). This is done as follows: suppose that 00 <t> € ^Ir('^) ^^^ that s e r(L) is a section which does not vanish in ... . * -1, ^ some open set U o M. Then s(U) is a smooth surface m L n it (U) and the vector field: ?A = '^A ~ s« ■^« ^x - ^i. ~ ^« 5a 6-25 on s(u) is vertical, that is, it is tangent to the fibres in L . Also: h ^s = \ ^s °" ^(U) 6.26 since f is constant on s(u). s Now choose m €. U and consider the map:

46 « « A : C -*■ L • z (—^ z . s(m) « Since (c ) / \ is tangent to L , one has; ^(() s(m) ^ m' o Z « for some y e (£. . But, for each z e. (C. : z = (f^(A(z))) ^ 6.28 s o that y = (?Jfs^)) (s(m)) (? ff )) (s(m)) s (n.(fJ) (s(m)) 6.29 (1) S Now the map A is linear, so: * 1 dz A a = -r—;- . — 2tti z by the second defining property of the connection 1-form. Thus y is also given by: y = 2TTi (? J a) (s(m)) 6.30

47 Hence, on s(U): n,(f ) = - 2TTi(?^ J a) = - 2TTi(n^ - s^ ?^) J a = 2TTi(5, J s a - (b) o TT 6.31 9 implying: - 2TTi.6,s = V_ s - 2TTi(t).s 6.32 in U. By continuity, this formula is also true sections which do vanish in U. Thus the identity: - 2TTi.6^ = v^ - 2TTi.<t) 6.33 holds globally. Prequantization is thus a general procedure for constructing a representation of the Lie algebra C[n(M) by Hermitian operators on r(L) and hence on the Hilbert space H . However the construction is, as yet, incomplete. This is best illustrated by the example introduced above which is central to the physical interpretation of the theory. Consider a classical system consisting of a free particle moving in a configuration space X*, the corresponding phase space « is the cotangent bundle M = T X of X. In this system, a distinguished 00 role is played by the subalgebra L of Cm(M) consisting of functions

48 which are linear m momentum, that is of functions x £ ^fl?''^' °-^ the form: X (m) = ? ^ a p + f(x); (x,p) = m e. M, x e X, 6.3h where ? is a real vector field on X and f is a smooth real function on X. This subalgebra is spanned by the generators of: « 1) The transformations of the phase space T X which leave the fibres invariant « 2) The transformations of T X induced by infinitesimal diffeomorphisms of the configuration space X. The Dirac problem, which was originally stated for systems in which X had a natural linear structure, can be formulated in this general context as the problem of finding a Hilbert space representation of the Lie algebra of classical observables (or of some suitable subalgebra) such that L is represented irreducibly (that is, no subspace of the Hilbert space is invariant under its action). A representation satisfying this condition will provide a kinematical model for the underlying quantum system. The irreducibility condition reflects the fact that, in the classical system, L generates transformations of the phase space under which any state (point in M) can be mapped into any other nearby state. The corresponding quantum system should have an analogous property: in physical terms, no linear subspace of

49 the quantum phase space (the set of rays in the Hilbert space) should be invariant with respect to changes of position and momentum. Now on applying the quantization procedure one obtains a representation of C(p^(M) by operators on C (M) (which is isomorphic with Till), in this case). However, L is not represented irreducibly: m particular the subspace of C (M) of functions which are constant « on the fibres of T X = M (that is, of functions which are independent of momentum) is invariant under the action of L, and is maximal with respect to this condition. This example both illustrates the problem and suggests its solution. One must construct the representation space not from the whole of C (M) but from the subspace of functions which are constant on the fibres: that is from the wave functions on configuration space rather than phase space. Though this will restrict the class of observables which can be quantized, it will result in an irreducible representation of L. A similar problem arises in other situations, in particular when the classical system admits a transitive symmetry (or invariance) group, that is, a Lie group G which acts on the phase space as a group of canonical transformations without leaving any subset invariant. Such a system is called an elementary system for the group. (For example, a free particle in Minkowski space is an elementary system for the Poincare' group). When the prequantization procedure is carried out, the Lie group reappears as a group of

50 unitary transformations of the quantum Hilbert space (this will be discussed further in §8): that is, one obtains a unitary representation of the group. Unfortunately, the resiilting quantum system will not, in general, be an elementary system for the group, in the sense that the group representation will be reducible: it will be possible to express the Hilbert space as the direct sum of two or more G-invariant sub- spaces. The quantum system will be a composite system for the group: it will split up into a number of subsystems each admitting G as a symmetry group. Fortunately, it is often possible to obtain irreducible representations by choosing a suitable polarization of phase space. The defining properties of a polarization allow it to play a role « analogous to that played by the fibres of T X in the first example.

51 7. Quantization Definition: A polarization of a symplectic manifold (M,a)) is a map P which assigns to each point m € M a subspace P d (T M) of the mm complexified tangent space at m, satisfying: (1) P is involutory: that is, the set of vector fields Ut,(M) = {£ e U(M) I £ e P V m e M} is closed under r 'mm the Lie bracket. (2) P is smooth: VmeM, p = {^ Igg. U„(M)}. m m ' P (3) P is maximally isotropic: V m e. M, a)(P ,P ) = 0 jjj jjj C and no other subspace of (T M) which contains P m m has this property. (In particiilar, if M is 2n dimensional, then P is n dimensional). m (k) Vm€M, D =PnP has constant dimension k. m mm Two examples have already been encountered. In the first k = n, in the second k = 0: « I) A cotangent bundle M = T X has a natural polarization given by: P = D*^ ; m e M 7-1 m m where D is the complexified tangent space to the fibre through m; P is called the vertical polarization. The defining properties of a polarization are established for P

52 as follows: a vector field 5 e. Up(M) is characterized by the condition: 5(f o pr) = 0 V f £ C°°(X) and has the property: 5 J 9 = 0 7.3 « Here pr: M = T X ->- X is the natural projection and 9 eQ,^i^) is the canonical 1-form. Thus if 5, ^g Up(M) then: f5,?J (f o pr) = 5(?(f o pr)) - ?(5(f c. pr)) = 0 \/ f 6 C°°(X) 7.U so that [Sj?] ^ U (M), that is, P is involutory. Also, P is isotropic since if 5,? fc Up(M) then: ^(5,?) = ?(? J 6) - ?(5 J 9) - [5,?] J 9 = 0 7.5 (using 0) = d9). Finally, P is maximally isotropic since D is n-dimensional over C and smooth since the fibres (that is, the cotangent « spaces) are smooth submanifolds of M = T X. One can introduce local canonical coordinates {x ,p } into M by EL lifting local coordinates: {x } from X (see §l)*, D "^ is then spanned m

53 by the set { /3p } and that P is isotropic is simply another way of a saying that each of the Lagrange brackets: -|{V3P , Vsp^} = a)(^/3p , Vap, ) 7.6 vanishes identically. This polarization is real in the sense that for each m £ M, P = P and k - n. m m II) A Kahler manifold (M,a),J) has a natural polarization defined by: P„ = {5„ e (T M)**- I J 5„ = i 5„} ; me M . 7.7 m m m ' m m m In local complex coordinates {z }, P is the linear span of the set 3 -a { /3z } of antiholomorphic coordinate vectors at m. This example is extreme in the sense that P o P = {0} for each ■^ mm m e. M. A polarization with this property is called a Kahler polarization. In the case where the phase space (M,a)) is the cotangent bundle « T X of a configuration space X, the idea is to construct the Hilbert space of the underlying quantum system out of the functions on M which are constant on the integral surfaces of the vertical polarization P « (that is, on the fibres in T X). These can be thought of as wave functions on the base space X, which is naturally identified with the factor space M/P (the space of integral surfaces).

54 * . . Unfortunately, a function on T X which is constant on the fibres will not "be square integrable with respect to the natural volume element u (unless, of course, it is zero) so that the pre-Hilbert space structure used in prequantization is of no use here. The direction in which one should proceed is suggested by a re-examination of the Schrodinger prescription, which is applicable in the special case where X is Euclidean space (and so has a preferred class of coordinate systems). Here, the wave functions are most naturally regarded not as functions on X but as square integrable ^/ -densities. . . * ff- * (L To be explicit, let B X denote the frame bundle of T X : that is, each point of B X is an (n + l)-tuple (x, a , ..., a ) consisting of a point X e X and a basis {a ,a , ..., a } for the complexified 12 n ^ if* cotangent space T X at x (as a vector space over (C ). In the language * C . . • • of fibre bundle theory, B X is the associated principal bundle of * C T X : its structure group is the general linear group GL(n,C)' An r density (r is a real number) on X is a smooth function « B X which transforms under the action of GL(n,(C) on B X (by right translation) according to: <t> o g = |A I ""..t, •, g : B X**-^ B X% g e GL(n,C) 7-8 O where ^ is the determinant of g. If r = 1 then (j) is simply a density. O There is a natural inner product <. , .> on the space of ^/2 - densities. If ^ and >|) are ■'■ / - densities.

55 then the product (j).^ is a density, <(t)5>|)> is defined by integrating^" (j).^ over X. The quantum phase space corresponding to the configuration space X is modelled on the pre-Hilbert space formed by the square integrable I/2-densities (that is, the l/2-densities (ji for which <(t),(t>> is finite). Of course, when X is Euclidean space, there is a natural volume element which can be used to identify ■'■/2-densities with functions m C (X). But m the case of a general configuration space X, there will be no such natural identification; it is then more useful to think of the quantum wave functions as I/2-densities (which have a natural inner product) rather than as smooth functions (which do not). To make use of this idea when M is not a cotangent bundle, or when P is not the vertical polarization, one must first lift the construction « to T X, that is, one must identify the 1/^-densities on X with a « suitable class of objects on T X. This is done by introducing the concept of a ■'■/2-P-density: P * (T Let .B denote the set of all bases for P C (T (T X)) at m mm « m = (x,p)e T X (X is now a general configuration space) and put: P * II P B (T X) = U* {m} X B ; mtT X P * B (T X) is called the frame bundle of P. It is a principal GL(n,C) bundle. A 1/^-P-density is a function V : B^(T X) ^ C which transforms under the action of GL(n,C) according to:

56 V o g = |A r^v ; g : B^(T X) ^ B^(T X); geGL(n,C) 7-9 o * c Each basis a ,a ,...,a e B X at x e. X defines a basis 12 n X 5 ,...,5 at m = (x,p) in the fibre above x, specified by: « ?i a 0) + pr (a^) = 0 . 7.10 1 1 * Thus, each ^/2-density y on X defines a ^/2-P-density v on T X, given by: V (m, 5^, ..., 5jj) = y(x, a^,..., a^) 7.11 However, not every ■'■/2-P-density can be identified with a ■*■/2-density on X; those that can be have the property that they are constant on « the fibres in T X in a sense which needs some explanation. Suppose that the n complex valued functions z , z , ..., z 4. C (x) have gradients which are linearly independent (over C. ) in some open set V c X. Then the functions: 00 « j). = z. o pr e C (T X) 7.12 * are constant on the fibres of T X, so that the corresponding Hamiltonian vector fields £. ... £. are tangent to the fibres. 9i 9 -1 ^ n . f Hence if m = (x,p) e pr (U) then (5^ ,... 5^ ) is a basis in B d), d) m IT •^1 ^n and, if y is a ■'■/2-density on X, then the corresponding ■'■/2-P-density

57 \) IS given by: V ^(-'(5^ '••• S ^m) =P(x,(dz^,...,dzJJ 7.13 Thus the function 1- ^1 ^n « is constant on the fibres of T X. Conversely, a given ■'■/ -P-density v will be of the form V = V for some 1/ -density on X if it has the property: for any open *__ ■ an set V c. T X and for any collection {? ,... 5 } of locally Hamiltoni « vector fields in Up(T X) which are linearly independent in V, the function: V. C : m^v(m,(5^)^,... (5JJ « is constant on the fibres of T X. This follows by reversing the argument above since, locally, any set of vector fields {5 ^...^5 } with these properties must be of the form: ?■ = 5, ; <t'. 6 c°°(T*x) 7.1U 1 9j_ 1 where: j>i = z^o pr ; z^ fe C (X). 7-15

58 This condition can be put into a more concise form by introducing the Lie derivative of a ^/2-P-density. The definition of this needs a little care and, as the concept is needed later, I will explain it in the general context of a 2n-dimensional symplectic manifold (M,a)) P with a polarization P. Here the frame B (M) of P can be introduced P in precisely the same way as before. It is helpful to think of B (M) as a submanifold of the bundle E(M) of n-frames: each point of E(m) is an (n + l)-tuple (m, ? ,...j ? ) consisting of a point m fe M and n linearly independent vectors 5 ... 5 e (T M) . Now any (real or complex) vector field n € U(M) lifts naturally to a vector field rf on E(M) . If n is real then n is the tajigent vector field to the flow on E(M) defined by dragging n-frames along n• ■v . . ... When n IS complex, n is defined by lifting its real and imaginary . . 'V . parts separately. Explicitly, n is given as follows. Let {5 ... 5 } cr U(M) be vector fields, linearly independent in some open set U d M: these define a local section: a : U^EdyD"^ : m^-^(m,(5J„, ... (?„)„) 1 m n m ofE^M) (the condition that a(u) en B^(M) is that 5 ,..., 5 should belong to U {M)). The value of n on a(U) cE(M) is given by: n = cr„(n) + v 7.16 where v is the vertical^■'■ tangent vector to the flow

59 ^{^fxIR ^E(M) : ((m, ? ... ?^),t)i—>(m, q + t[5^,n],...,?j^ + t[5j^,n]) If, therefore, n preserves P in the sense^^: i 5 € U (M) V 5 £ U (M) (for example, n might be in Up(M)) then n is tangent to B (M) c kW and n lifts to a vector field on B^(M). The Lije p derivative along n of a l/2-P-form v : B (M) ->- C is the 1/2-P-form: ; V = n V 7.17 Returning to the case M = T X, if 5 ... ^ & U (T X) are locally Hamiltonian, then: inh-° ^-^8 « for every locally Hamiltonian vector field n ^ U (T x). Thus the l/^-p-densities v which are of the form v = v for some ^/2-density p on X are precisely those which satisfy in" =° 7.19

60 « for every locally Hamiltonian vector field n 6 Up(T x). In terms of the geometry of phase space, therefore, the wave functions of the Schrodinger prescription are the 1/2-P-densities which are constant on the integral surfaces of the vertical polarization in the sense of eq.n. 7.19. By analogy, in the general case, the Hilbert space of a quantizable symplectic manifold should be constructed, not as in prequantization, from the sections of the line bundle L alone but from the products of sections of L with the 1/2-P-densities of some polarization P: a subset of these objects which are constant in the directions in P will have a natural pre-Hilbert space structure. This scheme can be (and has been) carried through. However, rather more fruitful results are obtained using a slight variation in which objects called ■'■/2-P-forms are used in place of I/2-P- densities^^^ jjj ^^le simplest cases (such as when the phase space is the cotangent bundle of an oriented configuration space) this is a technicality which can be largely ignored. However it does play an important role in the more complex systems. Essentially, a ^/2-P-form on a symplectic manifold (M,a)) with P arization P, is a function v : B (M) -> <£, \i under right translation by GL(n,C) according to: P a polarization P, is a function v : B (M) ->- <£ which transforms -a _ „P,..N ^P, o g = (A ) = V ; g : B (M)^ B (M) •, g e. GL(n, C) O To make this precise, one must remove the ambiguity in the

61 square root. This is done by replacing the general linear group by its double cover, the metalinear group: one takes the "square root of the group" rather than of the determinant. Explicitly, the metalinear group ML(n,C) is the subgroup of GL(n +1,0 of matrices of the form: •g 0 0 z J where g ^ GL(n,C) and z^ = A . The covering map a: ML(n,C ) ■> GL(n,(n) O is defined by: a ( g 0' 0 z ) = g 7.20 It is a double cover since a '(g) g 0 0 ±z g £ GL(n,€); z = (A )' g 7.21 There is also a natural group homomorphism x • ML(n,£) ->■ C (the multiplicative group of complex numbers) given by: X( g 0 0 z This gives rise to the commutative diagram:

62 MLCn,C ) V GL(n,€ ) so that X is a well defined 'square root of the determinajit'. the ■'■/2-P-forms are functions defined not on the frame bundle B (M), but on a double covering B (M), called a metalinear frame bundle. To be precise a metalinear frame bundle pr: B (M) ->■ M for P is a principal ML(n,(u ) bundle together with a covering map p : B (M) -> B (m) which makes the diagram B (M) X ML(n,C) ^ B (m) B^(M) X GL(n,C) > B^(M) commute. The horizontal arrows are the natural group actions (right translation), the second vertical arrow is the covering map p and the first is the product of p with a. There is no guarantee that B (M) exists and, even when it does exist, it will not, in general, be unique. The existence condition is that a certain class in H^(M, "2,) associated with P (the 'obstruction') should vanish; when it does vanish, the

63 various possible choices for B (M) are parameterized "by the cohomology group h1(M,2 ), This is explained in detail in appendix B. Though the construction of B (M) given in the appendix is rather abstract, one can gain some geometrical insight into its meaning by P looking at the local trivializations of B (M). A local trivialization p of B (M) is simply a set of vector fields {5 ,... 5 } "^ U(M) which form a basis for P at each point m of some open set Uci M. Each m p element (m, 5 , ... 5 ) of B (M)|u is then represented by a pair: (m,g) where g is the n x n complex matrix in GL(n,C) defined by: ^r ^^i^mSij 7.23 Associated with (m, ?, ■•• ? )> there are two points of B'^(M) represented by the pairs: (m. ■g 0' 0 z. ) and (m. g 0 ,0 -zJ where z is one of the square roots of A , One can think of these two g pairs as the two 'meta-frames' corresponding to (m, ? ... ? ) (there is a close analogy in general relativity where there are two spin frames corresponding to a given null tetrad). The subtlety arises when one replaces (5 , ... 5 ) by a second

64 set of vector fields (5 , 5 ) given by: (5.) = (5.) . li..(m) ^0 m ^1 m ij 7.2U where h: M->- GL(n,<C) is some smooth map. Then the pair (m,g) representing (m, t, ,..., t, ) transforms according to: 1 n (m,g)l *(m, h(m)g) However, what is less clear is which of the two pairs: (m. hg 0 0 wz ) and (m. hg 0 0 -wz ) ; w^ = A^ represents in the new local trivialization the same metalmear frame as (m. g 0 0 z did in the old. The vanishing of the obstruction is simply a precise formulation of the condition that a consistent (but not necessarily unique) choice can be made here for every change of local trivialization, so that there is a well defined concept of a 'meta-frame'. Having chosen a metalinear frame bundle B (M) (that is, assuming that the obstruction does vanish) one defines a l/2-P-form to be any

65 smooth function v: B -> <£. which transforms under the action of ML(n,C) according to: V o g = v(g) .V 7.25 where g : B (M) ->- B (M) is right translation "by g e ML(n,C ). Alternatively, one can regard the 1/2-P-forms as sections of P the line bundle ir: L ->- M with bundle space: L^ = U W X L- me.M P m P '^P '^P Here L ^^ is the set of functions v: B ->- £ . (B is the set of meta-frames at m € M) which transform under the action of ML(n,C) according to: (tg) = x(g) ^-vCt); 13 €. B^ , geML(n,(L) p The elements of L are called 1/,-P-forms at m. m ^ The Hilbert space for the quantum system is to be constructed P from the sections of^"* L 8 L , where L is the line bundle used m p prequantization, that is from the vector space r(L 8 L ) of formal products p s.v ; s e r(L), vfer(L ) modulo the equivalence relation:

66 (<t)s).v = s,(<j,v) ; (j) 6 C°°(M) Pursuing the analogy with the Schrodinger prescription, the first stage in this construction is to define the Lie derivative of a 1/2-P-form along a vector field n which preserves P. Now n lifts p naturally to a vector field as B (M) (as before) and hence to a vector "Vp -Vp p field n ' on B (M) (since the double covering B (M) ->- B (m) is a local diffeomorphism). Thus, as with 1/2-P-densities, one can define^^: I V = n' V 7.26 P where v "• B (M) ->- <C is a l/2-P-form. The analogues of the wave functions of the Schrodinger p prescription are thus the sections i^ £ r(L 8 L ) which can be represented in the form >|; = s.v where: fr ^ V =0 and v^ s = 0 7-27 for every locally Hamiltonian vector field 5 6 Up(M), The set of all these sections forms a complex vector space, denoted W . The next step is to define an inner product on W^: again pursuing the analogy with the Schrodinger case, the natural thing to do would be to factor out the integral surfaces of P and to define the inner product as an integral over M/P. This is all very well when

67 the polarization is real (tho\igh it is still a strong additional requirement that M/P should be a manifold) but when P is complex, it does not have any integral manifolds even locally (for example, even thoiigh the anti-holomorphic vector fields on a Kahler manifold are in involution, they are not surface forming). To overcome this^^, it is necessary to look again at the motivation for introducing ■'■/2-P-forms in the first place: they were introduced because, in general, sections of L which are constant in the directions in P are not square integrable with respect to the natural volume element of M. However, in very crude terms, it is only the real directions in P which give the trouble and only these need be factored out. In the other directions, it is quite in order to integrate using the natural volume element. In a more precise language, this is achieved as follows. For any polarization P, the map D which assigns to each point m € M the real subspace: D = P n P n T (M) 7.28 m m m m of T M is involutoiy. Also, by the fourth defining property of m a polarization, D has constant real dimension k. Thus D is m surface forming. It is now necessary to make the additional (very strong) assumption that these surfaces are simply connected and that the factor space M/D (the space of integral surfaces) is a

68 Hausdorff manifold: X = M/D can be thought of as M with the real directions in P factored out. It is the analogue of configuration space in the Schr'odinger case. Each pair }jj = s .v , ipr, - s .v of 'wave functions' in W defines a density on M/D, Explicitly: let m 6 M ^ -vp "v p and let b 6 B be a metaframe at m such that p(b) = (£,,...,£ )€ B m > 1 n m and E ... r, is a basis for D , Choose r ,...,r g T M *^ so that {£,... E , ? — C } is a symplectic basis, that is ^1 ^n 1 n so that: a.(q,?j) =0 = .U.,,.) ; a>(?.,?j) =6,. 7.29 Then c = {vr^i ^^^^), • - , Vr^iE,^), Pr^(?^) ... pr*(?^)} will be a 3 for T X at X = pr(m) (here pr: M ->- X projection). The density (>|) ,>|) ) is defined by: i^^,^ ) (x,c ) basis for T X at x = pr(m) (here pr: M ->- X = M/D is the natural ■V 'V (s^,s^)(m).| .^-^ U^^^, l^^^, 5i,,,,...5,, gr v^(b).v (b) 7.30 n-k * . where o) =a)AWA.'. au and c is the dual basis to c. It must be shown that {ili ,i}i ) is a well defined density. First, suppose that b is replaced by bg, where g e ML(h;C ). If bg is to have the same properties as b then g must be of the form:

69 ■v g = a 0 0 , b 0 0 0 z 7.31 where ae GL(k,(R), b fc GL(n - k, (C ) and z^ = A . A . Then c is a b replaced ch, where 'U e GL(2n - k, <L ) 7.32 and h has determinant: A^ = A^ A A, = A h b a D a 7.32a But, from eqn. 7.30 i^^A^) (x,(ch)*) *T -In \\ . \l^ X(g) ^ X(g) ^ ■ (^^,^2^ (x,c*) |i|2. (A^ . \)' . i^,,^^) (x,c ) l\ I (^1,^2^ (x,c ) 7.33

70 so that (^l'-,,^!',) does indeed have the transformation properties of a dens ity. Secondly^^, it follows by extending 5 ,... K-\^ '^■° locally 1 -K Hamiltonian vector fields in Up(M) that the definition of {tp ,-ip ) at X 6 X is independent of the point m e pr (x) at which eq.n. 7-30 is evaluated. Finally, the inner product <i)-.,^2^ ^^ defined by integrating {ip^,ip ) over X: <^^,^2^ = J ii>^,i>^) 7.3U The subspace of W^ of wave functions ip for which <ifi ,ifi > is finite P P P forms a pre-Hilbert space, denoted H . The completion H of H will be taken as the quantum Hilbert space. Unfortunately, in reducing the Hilbert space of prequantization in this way, one also reduces the class of observables which can be quantized. In fact, the only classical observables which can be dealt with directly are those which preserve P, that is, the observables (ji ^ Co(M) which satisfy : (for example, in the Schrodinger case, (ji must be at most linear in ■v the momentum). The quantum operator & corresponding to an observable (j) satisfying this condition acts on W^ by:

71 6^(s.v) = (6^s).v-^.s. ^ V 7.35 This is clearly Henrdtian: the one parameter unitary group generated ■v _ _ « by 6, corresponds to draggiig s along n, in L and v along £ ' in 9 9 9 'Vp B (M). Before turning to the question of how observables which do not preserve the polarization are to be quantized, I will first deal with a closely related problem: to what extent is the quantization procedure independent of the choice of polarization? More formally: given two polarizations P-^ and P2, is it possible to construct a P P. 1 2 unitary isomorphism U: H ->- H with the property that, for each real observable (ji which preserves both P and P„ , the corresponding quantum operators 6''' and 6 are related by; ■v. 'Vn -1 .2 6l = U 6 U 7.36 For real polarizations, and in a purely formal sense, the answer is yes: ignoring problems of convergence and so forth, it is possible, under certain conditions, to write down an expression for U which generalizes the familiar Fourier transform between the p and q representations of elementary quantum mechanics. However, it must be emphasized that no complete answer is available and that this part of geometric quantization theory has yet to be put in its final form. In detail, the idea is this: if P and P are real and transverse (that is, if they span the whole of T M at each point m £ M) then it is possible to construct a Hermitian 'pairing':

72 P P 1 2 W X W ^ C (M) : i^^,^^)t-^^^ « ^2 which is linear in \}i , antilinear in ifi and is related to the corresponding pairing of W with W by: ^1 * ^2 = *2 * ^1 • "^'^"^ P P 12... . . . If W and W were finite dimensional, this would be sufficient to define a unique linear transformation: satisfying: ?1 ^2 U : W ^ W 12 J- P <'!' ,^> = \ 'I' * (U'l', ) • w"^ V'I', £ W ^ 7.38 ^1 where < , > is the inner product m W . In the infinite dimensional case, the question of whether or not Up p (it is called the BKS transform) exists is a difficult analytical problem which, in the present state of knowledge, can only be dealt with case by case • The first step in the construction is to define a joint metalinear 29 structure for P and P . Since B-^ and P2 are assumed to be transverse ^1 each real basis {5 ,...,5 } € B at m e M extends uniquely to a real symplectic basis {£,,...,£ , ?,»•••, C } for T M in such a way that '^1' '^n ^1 ^n m P^ 'V 'V {?^,...,?^} d Bj^ . When {5^ ,...,5j^} is replaced by {5^,,,,,5^}, where:

73 ?• = ?j^ g^j ; se GL(n,(t.) 7.39 {C ,...,? } transforms into {r ,...,r } where: ^0 ^j=^i'Si5 ^-^^ Pi _ P2 Thus each basis in B defines a basis in B and conversely: ?! P2 B (M) and B (M) are natiirally isomorphic and the choice of a 'vi'l Pi metalinear frame bundle B (M) for B (M) automatically defines a metalinear frame bundle for B (M), Suppose, therefore, that a choice has been made for B (M). •vPi Then each ■'■/2-P -form v can be regarded as a function v : B (M) ->- which transform under the action of ML(n,C) (by right translation) according to: •v ■v ■v P-j^ P. •v v^ « g = X(g) v^; g : B (M) -> B (M); g £ ML(n,<C) 7.U1 Thus, if V is a ^/2-P -form, the quantity: v,(b) V (b) •vPi where bg B is a real (i.e. p(b) is real) metaframe at m e M, depends only on m and is independent of the particular metaframe at

74 m on which v and v„ are evaluated. In other words, corresponding to each v fe r(L ) and v £ r(L ), there is a well defined function v,.v fe C°°(M), If ^ = s ,v e W C. r(L 8 L ) and >|) = s ,v <£ W o r(L 8 L ) then the function >|) * >|)„ is defined by: rnri/ ^^ * ^^ = e . (s^,s^) . v^v^ 7.U2 rnri/i^ (The factor e ensures that }jj * tp = ijj * ili holds: this can be seen clearly in the second example at the end of this section). For a ^ ^2 certain subset of W x W the complex number: 1 2 Jm 1 2 will be finite and, with luck, will define a unitary transformation: ^ ^2 Up p : H ' ^H ^ 1 2 It should be remarked that there is at least a reasonable hope that the right hand side of eqn. 7.^3 will converge on a sufficiently ?! ^2 large subset of W x W ■ ib and }b can be chosen to be 'test ^1 ^2 wave functions', that is so that they vanish outside of pr (U ) and pr~^(U ) respectively, where U, d X, = "^/P, and U^ <c X^ = ^/F 22 111222 are compact and pr : M ->- X and pr : M ->- X are the natural 1 12 2 projections. In this case, }jj * ijjy will vanish outside of the set pr~^(U ) n Pr~^(U ). 11 2 2

75 In some cases, at least, the BKS transform does give a unitary map W ->- W with the required property (see the first example at the end of this section). It also provides a formal solution^^ to the problem of quantizing observables which are not polarization preserving, (at least in the case of real polarizations). Suppose that (M,a)) is quantizable, that P is a real polarization and that ^ e C(n(M) is an observable. If 5, is complete, it will generate a one parameter family of canonical transformations and, for small t e (R , a new polarization P. can be defined by dragging P a distance t along P.- 9 The observables which can be quantized in this formal sense are those which fulfil the additional requirement that P and P are transverse for each small t € IR. One can thus define a family of p unitary transformations W ->- W as follows: let >|) = s.v e ^• P ^t Each basis in B (M) is dragged by 5 into a basis in B (M), thus v is dragged by 5 into a ^/2-Pj^-form v . Similarly, by dragging s along * . . (t) . . n. m L , one obtains a new section s. which is covariantly constant 9 t in the directions in P. . Combining these two operations, i^ is dragged . (t) (t)(t) I't . . by r^ into a section ii = s .v of L 8 L : it is not hard to see ^t) P, that <!) 6 W and that ■v. P. * : W^ ^ W * : (t) 6 : W ->- W : T^ —>■ >|) is unitary. On taking the composition of this with the BKS transform Up p : W ->- W , one obtains a family of linear transformations:

76 * : W^ ^ W^ 6 When the BKs transform is well defined, - (tt"^) times the generator of this family will be a (hopefully Hermitian) operator 6^ on W : 9 this is taken to be the quantum operator corresponding to (ji. Unfortunately, this procedure suffers frrom a number of serious drawbacks: 1) It works only for observables generating complete Hamiltonian vector fields, 2) It works only for observables for which P and P. are transverse for each small t. 3) Even if P and P are transverse for every small 1:; Xi the BKS transform may not be well defined and even if it is, it may not be unitary. k) In general: ^^^•^[^,^1 ^ P^'^^ '^t 5) In general, &. is not a one parameter group of 9 unitary transformations (this is disastrous in the group theoretic context). Nevertheless, as the second example illustrates, the procedure yields the physically 'correct' operator in certain familiar classical problems.

77 Examples: I) Consider a free particle moving in the Euclidean space X = iR . The corresponding phase space is M = (R with the canonical symplectic form: 0) = dp A dq. a 7.UU Here the q. 's are the natural linear coordinates on |R and the p 's a are the corresponding components of momentum. As before, M is quantizable and the line bundle L is the trivial bundle L = M x C with the connection form: , a 1 dz a = p dq. + TT-:- . — a 2Tri z 7.U5 Sections of L are simply smooth functions on M. In this case, M admits two naturally defined polarizations 1) The vertical polarization, P , spanned by {3/3p } 1 a 2) The horizontal polarization^P^iSpanned by {3/ a}. There is only one possible joint metalinear structure for P and P2 and that is the trivial one: the vector fields {3/. } define a P, S^a P, global trivialization of B (M) and so any point of B (M) can be represented by a pair (m. g 0- 0 z ) "g 0- 0 z ML(n,C)

78 The I/2-P -form V defined by: ^(m. 1 0 0 1 ) = 1 V m e M 7.U6 vanishes nowhere and is constant in the directions in P . Hence any P wave function >|; £ W can be written: l- = <t'^- V ■' <t> € ^'"(M) 7.U7 where i = 5 <t, = 0 V 5 £ Up '■ 1 (M) , 7.U8 that IS, (j) IS independent of the p 's, 1 -p ^ 2 Similarly, any >|) <= W can be written uniquely m the form: ^2 = *2-^2 7.U9 'vl'l Where v, is the l/2-P„-form, given as a function on B (M) by: V (m, 2 1 0 0 1 )=1 V m 6 M 7.50 and where 5 "^2 5 <t. + 2Tri(5 J 9) . 4 = 0 V 5eU (M) , 7-51

79 Since 9 = p dq. , a must be of the form j, = exp(- 2-ni p^^ q.^) . X^^^^J '''•52 00 . . g^ where x £ C (M) is independent of the q 's. Now 2 7.53 V, . V (m) = 1 V m £ M 1 2 P, P, so the pairing W x W ->■ C (M) is given by ip * ^^ '^l^'^g) = exp (- ^) . exp(- 2Tri.p^q^) . <j, (q^) . X (Pg,) '''•5^ P^ P2 from which it follows that the HKS transform W ->- W is given by (j) ^ i^ X = F((t>, ) where F is the ordinary Foiirier transform. II) As a second example, consider the problem of quantizing a free particle moving in a complete oriented Riemannian manifold (X,G). « Here the phase space (which is certainly quantizable) is M = T X, the Hamiltonian is h: M^ \R : h(q^,pJ = ^/^ ^ P P^ 7-55 a ^ a D (in local canonical coordinates) and there is a natural polarization P (the vertical polarization). The problem is to write down the quantum operator on W corresponding to the classical observable h.

80 Now 5, is certainly complete but, unfortunately it does not fulfil the second requirement: in general P and P. are not transverse for any t e IR . In the generic case, for any real t, and for any « X € X, there will always be a covector p e T X such that exp (tp) is conjugate to x along the geodesic through x with tangent p, so that if Y '• t v--> yCt) is the integral curve of 5 through (x,p), then P id P. will not be transverse at Y('t)' Undaunted, I shall ignore this problem and proceed with a formal ■v computation of 6, . First, the metalinear structure for P: since X is oriented, it is possible to find, in some neighbourhood U of each point x t X, a set of vector fields: ^1 ?n which define an oriented orthonormal frame at each point of U . The dual bases, which form an orthonormal set of covector fields {a^, ... a } on U , lift to a collection {£ ... g } of vector fields X ^-^ ^n on pr (U) € M, given by: * i 5^ J 0) + pr (a ) = 0 « (where pr: T X ->- X is the projection). The 5-'s are tangent to the P • ~l fibres in M and so define a local trivialization for B (M) in pr (u). P -1 Each point b = (m, n ... n ) £ ^ (pr (u)) is then represented by a

81 pair (m,g) where m e M and g£GtL(n,<C) and ^0 = ^^i^. «iO 7.56 There is an essentially trivial metalinear structure for P in which the two metaframes covering (m,(r ) ... (£ ) ) at each point m C M are ^1 m n m represented by the (n + 2)-tuples (111,(5 ) ••• (5 ) > l) and (m,(5 ) ... (5 ) , -1); (they correspond to the pairs: 1 ni ^ m (m. 1 0 0 1 and (m. 1 0 0 -1 in the local trivialization defined by E ... E ). This is consistent ^1 ^n since on the intersection U n U , of two of the neighbourhoods in X, the corresponding sets of orthonormal vector fields {? ... ? } and 1 n ^^i' ?'. } are related by: J ?'.=?. h.. 0 1 10 7.57 where h: U n U , ->- SO(n) (that is, for each y € U n U ,, h(y) is a XX XX real orthogonal matrix with unit determinant). It is thus possible to define a nowhere vanishing section p V : M ->- L by: o 'o^-^'^hK--- (5,),, 1) -1 in Pr- (Uj 7.58 Since v is constant on the fibres in M (in the sense of eqn.

82 7.27) and since the line bundle L is trivial, each wave function tp e. ^ can be written in the form: ^ = <t>.v^ 7.59 00 . . where (ji £ C (M) is a smooth function independent of momentum. The inner product on w is then given by: where >|; =(t).v, ^ =(t).v and n is the metric volume element. Now in U X Pr*(4 5i) = ?i T.61 ^h Thus for small positive t: It") n/^ (\) . V ) (m) = t + higher order terms. o o Also, if f: M X (R ->- M is the flow generated by c then: (t) (m) = <t>(f(m,-t)) exp(-2Tri | (A-h)) 7.62 -' o where A ( = 2h in this case) is the action function and the integral is taken along the orbit t >—> f(m,t). Thus, if >|) = (ji . v , then:

83 (t) niri/;^ n/2 <>|) ,>|)> = e t I <t>(m).<t.(f(m,-t)).exp(-2Trif (A - h))a)'^ 7-63 if (j) is taken to be a test function with support contained in some U , then this integral can be simplified by introducing (non-canonical) -1 , V coordinates into pr (U ). These are defined by first choosing arbitrary coordinates q. in U . The vector fields r ,..., c are X ^1 n then given by: 3q. and the dual bases by: 1 1 -, a a = a dq. a The coordinates of (y,p) e pr (U) are taken to be (q.'*,p ) where q." a a N , a are the coordinates of y ajid P = P^ ?^ dq^ = P^ a 7-65 In these coordinates, the volume element u is given by: nJn,n t c£ a)=gdqdp 7-do where g = det(g , ) and the integral (eqn. 7-63) becomes:

84 (t) niri/i^ n/^ rr -Trit(p 2+ ... + p^) <i) ,^> = e t \\ ^ ^ ^ 'l'(l) (t)(exp (-tp)) X g^ d"q d"p 7.67 niri/i^ -n/2 ff -iri(p^2+ ,_ ^Pn^/* e t e . <|>(a).<t)(exp (-p)) X g^ d\ d\ 7.f by a change of variable. ■v To find the quantum operator 6, , one could compute from this the (T) (t) ^ BKS transform tp of ip for each t and then take the generator of the one parameter family of unitary maps ^ \ ^ $ . However, at least formally, this can be achieved more simply by differentiating eq.n 7.68 with respect to t and taking the limit as t ->- 0, using the lemma: _1 ,• 2 Lemma: If f(u,t) = t ^ exp(- ^^^^~-) then 1) f(u,t) ->- 2e 6(u) as t ->- 0 (as a generalized function) 2) For each t £ fi^ , -^ = k-ni — . 3u Proof: The first part follows by applying the general test^° for 6 convergent sequences, using the classical integrals of Fresnel. The second part is trivial.

85 Thus differentiating eq,n. 7.68 and taking the limit as t ->- 0: 2^i <6j^^,^> =^ ^^ ij 6(p^) ... 6"(p.) ... 6(p^)) ^(q) <t.(exp^(-p)) g^ (f^q d\ Now, from elementary differential geometry: —2 U(exp (-p)) 3p. '^ p=o where V is the metric connection on (X,g). Integrating over p therefore: h ^ i^ (^ *) • ^o where A is the Laplace-Beltrami operator.

86 8. Invariance Groups Historically, the theory of group representations played a central role in the development of quantum mechanics. This was a reflection of the axiom that a symmetry group (such as the Poincare or Galilei group) which appears at the classical level in some physical system must also act as a symmetry group in the underlying quantum system: in any quantization scheme, a classical group of canonical transformations must emerge as an invariance group in the quantum phase space ^■'■. This thinking has led to an approach to quantum theory which bypasses Hamiltonian mechanics altogether, at least at the kinematical level. In order to find a quantum model of, for example, an elementary relativistic particle, it is unnecessary (so the argument goes) to quantize the corresponding classical system. All one need do is to find a suitable irreducible unitary representation pf the Poincare group. In the past, however, the detailed connection between this and the more conventional methods of quantum theory has often been obscure. First, because there was usually no obvious natural relationship between a quantum Hilbert space built up, for example, out of the wave functions on the classical configuration space and one constructed abstractly using group theoretic techniques (though, of course, there are general theorems which state that they must be the same) and

87 secondly because it was not often clear what the corresponding classical system was in any case. Indeed, for a long time it was thoiight that certain elementary particles (such as those with spin) had no analogues in classical mechanics. By exploiting the geometrical techniques outlined in the preceding sections, Kostant and Souriau have gone a long way towards clearing up this obscurity. The cornerstone of their work is a method (due originally to Kirillov) for finding all the elementary classical systems which admit a particular group as an invariance group, that is all the classical phase spaces which admit the group as a transitive group of canonical transformations32. rjhe corresponding elementary quantum systems can then be found by geometric quantization: in other words, one and the same technique is used for finding an irreducible representation of the group as for quantizing the corresponding elementary classical system. Their idea is to build up the elementary classical systems of a « given invariance group G from the orbits of G in G (the dual of its Lie algebra). Each of these is naturally a homogeneous symplectic G-manifold, that is a symplectic manifold on which G acts as an invariance group. In detail, it works like this: let G be a connected simply connected Lie group (discrete symmetries will be ignored) and let G be the Lie algebra of G: G can be identified with the tangent space to G at the identity, e 6 G. Each g e G defines a diffeomorphism T of G which preserves the identity: g

88 -1 T : X I ^gxg ; X e G O The derivative of t at e is therefore a linear transformation of G, O denoted Ad ; the map g t—»Ad is called the adjoint representation g g of G; it satisfies Ad , = Ad Ad , for all g,g'€ G. gg g g Thiis G acts on G as a group of linear transformations. This « action induces a second action Ad' on the dual space G , called the coadjoint representation. Explicitly: (Ad' f) (X) = f(Ad _iX); feG,XeG,g6 g For simplicity. Ad' . f will be written g . f. O Suppose now that Mf = {g . f^ I g C G} ; f^ 6 G* 8.2 o « is an orbit in G and that f^ M . Each X e G generates a one o parameter subgroup of G and hence defines a flow on M^ ; let 5 be the tangent vector field to this flow. The map: G .T^M^ : x^—^X^=(?^) o f is linear and surjective (since the action of G on M is transitive), o Also, if X, X' 6 G, then ^ = X' if, and only if.

89 X = X' + Z where Z € G is such that exp(tz) leaves f invariant for each t e IR. From the form of the coadjoint representation, this is equivalent to: f([z,x]) = 0 V X 6 G 8.3 Thus the quantity a)„, given by: a)^(X^,Y^) = f([x,Y]) ; X, Y £ G 8.U is a well defined skew symmetric bilinear form on T„ M ; it is also non-degenerate since, if X € G then: a)^(X^, Y^) = 0 V Y e G 8.5 if, and only if, each exp(tx) leaves f invariant, that is, if and only if, X^ = 0, As f varies, a)„ defines a non-degenerate 2-form o) 6 fl^(M ); o to show that u is, in fact, a symplectic structure, it is only necessary to prove that du = 0, Not surprisingly, this follows from the Jacobi identity in G , In fact, if X,Y fc G then: C5^,5Jf = [x.yJ. 'X' ^Y-i f

90 Hence if X, Y, Z <L G then: cyclic The Second term is zero by the Jacobi identity in G. The first term can be computed using the fact that, for fixed X e <3, the rate of change of f(x) along 5 , where Z e G, is f([z,x]) since, for small t e IR : ((exp(-tZ)).f)(x) = f(exp(tZ),X) = f(x + t[z,x]) + 0(t2) 8.8 Thus: X^(a)(5Y,?2^^ = f([x,[Y,z]] 8.9 and so the first term also vanishes by the Jacobi identity. Finally u is invariant under the action of G on M since, for o any X, Y, Z e G : ((La.) (5^,5,))^ = X^(a)(5Y,?2)) ~ '^([Sx'^'^Z^f ~ '^U^,[^^,^^)^ = f([x, [y,z]]) + [z,[x,y]] + [Y; [z,x]]) = 0 8.10

91 « Thus each orbit in G has the structure of an (albeit abstract) classical phase space on which G acts as a transitive invariance group. The importance of this result is that essentially all classical phase spaces which admit G as a transitive invariance group (that is all homogeneous symplectic G manifolds) arise in this way. To understand the qualification 'essentially' it is necessary to return to the problem^which was first raised in §U, of associating a classical observable with each generator of a given symmetry group. First, some notation, A symplectic manifold (M,a)) is called a Hamiltonian G-space for a Lie group G if there is given a Lie algebra h omomo rph i s m: A : G ^ Cbj(M) : X e <t>^ from the Lie algebra of G into the space of real functions (observables) on M such that^^: 1) Each Hamiltonian vector field 5=5 is complete 2) Any two points m , m, fe M can be joined by an integral curve of 5 for some X 6 G, Every Hamiltonian G-space is also a homogeneous symplectic 3it . .... G-manifold: the action of each ge G is defined by integrating the (complete) Hamiltonian vector field of the corresponding generator in G , Moreover, and this is the important point, every Hamiltonian G-space is a covering space of an orbit m G . The proof of this is almost trivial: if (M,a)) is a Hamiltonian G-space then the map

92 « M ->■ G : m>->f m defined by: .f (X) = (j, (m) ; m e M, X £ G 8.11 * commutes with the actions of G on M and G and so maps M onto an orbit « in G . It is not hard to see that it is, in fact, a covering map. Suppose now that there is given a classical system with a phase space (M,a)) and a transitive invariance group G, If it is possible to find a map A : G ->- Cjg(M) which generates the action of G and which makes (M,a)) into a Hamiltonian G-space, then (M,a)) can be identified * ,. . . with a covering space of an orbit in G (m fact, if M is simply connected then it must actually be an orbit in G ); (M,a)) can then be classified purely in terms of the structure of G. For A to exist, two conditions must be satisfied (it is these that are embodied in the qualification 'essentially'). First, each generator X € G of G defines a one parameter group of canonical transformations of M, and hence a locally Hamiltonian vector field 5 : for A to exist, each 5 must in fact be globally Hamiltonian. X X This will be so if M is simply connected or (as in the case of S0(3)) if G = [f3,G'j (for example, if G is semi-simple). Secondly, even if (j) can be found for each X fc G individually, it will not necessarily follow that A preserves brackets, that is that: [K,K] V X,Y 6 G . 8.12 '[x,y] = l-^x'%

93 The condition that each <!)„ can be chosen so that this is true involves the cohomology of G : it is explained in appendix C. However, it is always true (provided the first condition is satisfied) that A can "be found for some central extension of G (again, see appendix C). At the purely classical level, therefore, this construction provides an elegant classification scheme for the elementary systems with a given invariance group. At the quantum level it assumes a more important role. For Suppose that (M,a)) is a quantizable symplectic manifold and that G is a transitive invariance group. The symmetry axiom requires that G should act as a symmetry group on the phase space of the underlying quantum system; also, according to the argument given in §5, this action should be irreducible. If (M,a)) is, in fact, a Hamiltonian G-space, and G is simply connected^^, then the first part, at least, will automatically be achieved by geometric quantization: each generator X £ G is associated with a classical observable (ji and hence with a vector field n^ = n, on the prequantization line bundle, L. X <t>x This vector field will be complete (since 5 is complete) and will generate a one parameter family of unitary transformations of r(L). Thus exp(x) and hence G has a natural action on r(L). An irreducible action can usually be achieved by choosing a G-invariant polarization of M. The condition that (M,a)) should be a Hamiltonian G-space for its invariance group thus plays two roles. First, it allows (M,a)) to be « identified with a (covering space of) an orbit in G and secondly it ensures that the quantization procedure is natural, that is that G is also a symmetry group at the quantum level.

94 9. Examples This final section contains three examples which illustrate both the usefulness of the theory and its limitations. I. Free particles and the WKB approximation: Consider a classical conservative system with configuration space X (a smooth n-dimensional manifold). The system has as phase space^ « the cotangent bundle M = T X^and it can be quantized using the vertical polarization by the method described in §7: in local canonical coordinates {q. ,p } (defined by coordinates {q. } on X) the wave functions El have the form: ^ = Hl^) id"" q)= 9.1 However, the vertical polarization P is not the only possible choice. Other polarizations can be constructed as follows: let f: X ->- (R be any smooth function. At least locally, the image A o'f the map : X^ T X : X i-^ (x, (df)^) 9.2 « is an n-dimensional surface in T X. Furthermore,

95 « (t) (e) = df 9,3 (where 9 is the canonical 1-form) since, for any tangent vector ?eTXatx^X: X « ? J ((t> e) = (<t)«?) J 9 = (pr^ (t>« ?) J df = ? i df 9A « (here pr : T X ->- X is the projection map). Thus: t)a) = d(<t)9)=0 , 9,5 In other words, the (complexified) tangent space to A is a maximally isotropic subspace of (T M) at each m € A . m It follows that any n-parameter family of smooth functions S : X^ IV? : X t—:^S(k,x); k = (k ,.. k ) € \R'^ ■n- in with the property that the images of the maps: j>^ : X^ T X : X ^_:y (x, (dS^^)^) fill out an open set in T X^wiH (at least locally) define a polarization Q of T X; for each m = (x,p) g T X, 0 is the m (complexified) tangent space to the (ji, (x) through m. This polarization

96 (again, only locally) will be transverse to P. If, additionally, the function S is chosen so that for each kc (fe-. h » (j) = const. 9.6 where h: T X ->- (R then 5 will be tangent to the leaves of Q (the surfaces (j, (X)) and h can be quantized directly. Now eq.n. 9.6 can be rewritten in local coordinates: 3S li((l^, —^) = const. 9.7 3<1^ which is nothing more than the time independent form of the Hamilton- Jacobi equation: the functions S, must form a complete integral of the Hamilton-Jacobi equation. Complete integrals always exist locally, though there may not be any well behaved global solutions. However, one can still proceed with the quantization by restricting attention to a small portion of phase space in which there is precisely one surface (j) (X) through each point (however, see note 37). (It sometimes happens, that, even thoiigh the functions S, are well defined only locally, the local polarization Q can be extended to a global polarization. For example, a free particle moving in X = jl^ - {0} has Hamiltonian h =r(Pr^ + P^/r^) 9.8

97 (in polar coordinates), A complete integral of the corresponding Hamilton-Jacobi equation is: S^ = e(9) + R(r) 9.9 where k = (h,J!,) £ (R2 and: (e')2 = Jl2; (r')2 = 2h - J!,2/r2. 9.10 « The 2-svirfaces in T X defined "by: Pa^ = <^^; p 2 = 2h - 5,2/^.2 9_-Li o r are the leaves of a well behaved polarization Q, but the functions S, are singular and are either double valued or not defined at all in the large. The singularities correspond to the points where Q is not transverse to P.) Working locally and choosing the prequantization line bundle as before, the Q wave functions have the form: -2Tri,S((i^,k ) 1 ^(tl^.k ) = <t.(k )e ^ . (d^k)^ 9.12 El ct where {q. 9k } are used as local non-canonical coordinates on M, a

98 Since E is tangent to the leaves of Q: &^^ = h^ 9-13 Now it is always possiMe to choose one of the parameters k (k , say) a n to be h. When this is done, the distributional wave function , . -2^i S(k^°^q^) ^(a^,kJ = (k -k^°^)e ^ (d"" k)= 9.1U "" ( ) ( ) will be an eigenstate of 6 , with eigenvalue h = k (here the k 's are constants). A calculation similar to that used in §7 a (example I) shows that, under the BKS-transform, >|) is mapped onto the P-wave function -2i^S(k_|°^<l^) .2. i , 1 X = e ^ . |det {-^ )| (d" q)= . 9-15 Sq 3k^ 1 ab If h = — g p p. is the Hatniltonian of a free particle, x is not £1 a ID an eigenfunction of the corresponding Laplace-Beltrami operator (acting on — -forms). It is a second order WKB-approximation to an eigenfunction. (To be precise, if one replaces 2ir by Min eqn. 9-15 and if one ignores terms of order h^, then x will satisfy |-*2 ^ ^ + h^°x = 0 9-16 where A is the Laplace-Beltrami operator.)

99 One caxi turn this around axid ask: given an observable k, for example, a homogeneous polynomial in the momenta, what differential operators 6 on W have eigenfunctions with WKB approximations of the form 9-15? Locally, such an observable has the form k(<i,p) = K^^---<i p^p^ ... p^ 9.17 _8.tD CL where the k ' * * s are the components of a symmetric tensor of type say); a short calculation reveals that 6 must have the form U K. ^(^|d\|^) = (2^ir^ K^^---'^ 3^3^ ... 3^^ + iN(3^ K^b...dj g^ ^^^ g^^ l^n^l^ ^ 6'j^U|d\| = ) 9.I8 where 6 is a differential operator of degree N-2 (again, strictly, one should replace 217 by ■'■/fi and expand in powers of <&, keeping only the first two terms). Thus, if all choices ofS are treated equally, the quantization of k as an operator on W^ is ambiguous: the answer is only determined up to the addition of an operator of degree N-2. This same result can be obtained in a slightly different way: an observable k of the form 9.17 can be written as the sum of products of observables of the form z(q, p) = ?%^ 9.19 a

100 where ? = ? 3 is a real vector field on X,and can thus be quantized by replacing each z by 6 (which is well defined since 5 preserves P). z z More formally, k can be quantized by identification with an element of the universal enveloping algebra U of the Lie subalgebra of observ~ ables which preserve P. Unfortunately, the identification of k with an element of U is not unique: /there are many different ways of writing k as a sum of products of obs/ei-vables of the form 9-19 aiifl, in general, these will lead to differeiit quantizations of k. However the result of this procedure is that k is quantized as a differential operator on w of the form 9'l8: the ambiguity is the same. The conclusion to be drawn from this is that in a general mechanical system, the quantization procedure depends critically on the choice of polarization. Quantization in an arbitrary polarization will result in only a semi-classical approximation to the 'true' quantum theory. In certain situations this is not a serious difficulty. For example, for scalar particles and for spinning particles in Minkowski space (see below) there is a naturally defined polarization. For more complex systems (such as spinning particles in curved space^^), there is no such polarization and no obvious natural way of constructing the'quantum theory from the classical data alone^^: one must be content with a WKB approximation. What happens when one tries to extend the ideas introduced above to a global treatment of the WKB approximation? The canonical 2-form « on T X is exact in the large, so the sections of the prequantization

101 line bundle can still be represented by complex valued functions on « T X. Further, near a point where its leaves are transverse to the fibres of T X, any real polarization Q tangent to 5 can be represented as before by a complete integral of the Familton-Jacobi equation. CThis follows by reversing the reasoning which lead to eq.n. 9-5-) The trouble comes at points where Q is not transverse to P: these points correspond to the caustics in the congruences classical trajectories of E, which lie in the leaves of Q. Though nothing goes wrong with the Q-q.uantization at these points, the BKS-transform becomes singular: the expression on the right hand side of eq.n. 9-15 blows up. The idea which rescues the scheme is to interpret this expression as a distribution which is well defined even at the non-transverse points. I will not give the details here; I will merely sketch the essential role which the i-forms play in making this idea precise. First, returning to the local treatment, suppose that there is a third polarization Q generated by an n-parameter family of functions S'V; (not necessarily satisfying the Hamilton-Jacobi equation). Then the BKS-transform of the Q-wave function -27Ti^(£(°),C^^ is the P-wave function 9.20 X = e ^ det {-^~-)\ {d\y 9.21 aq^afej^

102 ¥^ ol Using the method of stationary phase, the inner product m r of X and X is, at least in the WKB approximation (where one assumes that the phase factors in eqns. 9-15 and 9-SI are rapidly varying). <X,;^> = e--^(^)/^ ,2.i(s(.^)-^(,^)) i I 1^^^ ^|i ^,22 where: (a) s(q ) = S(k ,q ) and s(q ) = S(k' ',q ) a a ^ (b) the q 's are the coordinates of the point where = ^ a ,^ a 3q 3q (geometrically, this is the point of intersection of the k^°^ leaf of Q with the £^° leaf of Q: of course, if a a there is more than one point of intersection there will "be other contributions to eqn. 9.22). (c) A = |det-^|^ a^d A^=|det-4^r ^ 3q^3k^ ^ 3q^3kj^ g2g g2^ (d) A is the matrix ; sign (A) is the signature a a '^^ 3q 3k^ 3q 3k^ of A. One might hope to obtain this inner product directly by pairing i> and '^ -Go. ii as elements of the wave function spaces W and W • In fact, this gives the same expression as on the right hand side of eqn. 9.22, but i'n'siffn(A)/U without the factor e ° . To obtain this factor, more care must be taken in assigning metalinear structures to Q and Q, and in defining the pairings between P,Q and Q. The "joint metalinear structure" introduced in §7 only works for a pair of transverse polarizations.

103 In the present case, it can only be used locally, that is, in an open sulamanifold of M in which Q and Q are transverse to each other and to P. Instead of using this naive approach, one must find a way of assigning metalinear structures to all real polarizations simultaneously. This is done by introducing a metaplectic structure on M, as follows: The bundle of (real) sympHectLc bases over M has structure group SP(n,lR) (the group of linear transformations 'of (R which preserve the 2-form L. _-, )• Like the linear group GL(n,C ), this group has a double covering MP(n,iR) (the meta-pLectic group), so that, just as before, one can introduce the idea of a metaplectin-frame bundle and the idea of a metauLectic frame at each m € M: each metapHectic frame corresponds to two sympLectic frames at m. Further, a choice of meta- plecticstructure defines a unique metalinear structure for each polarization. In particular, if X is oriented, there is a trivial metapLecticstructure and the use of the corresponding metalinear struc- tures on Q and Q gives the correct exp(iTTsign(A)/U) factor in the pairing of Q and Q: the pairing between Q and Q is defined as in §7 except that the product at m 6 M of a i-Q-form with a i-Q-form is computed by introducing metalinear frames for Q and Q at m which together form a metapQectic frame. The point of all this is that it is now possible to define the BKS transform x C w of the W wave function i); (defined by eqn. 9.1^) even if the k -leaf of Q is not everywhere transverse a « to the fibres in T X: the value of x at m€ M is given by first pairing i)) with the wave functions of some local polarization Q (defined in some neighbourhood of m) transverse to P and Q and then identifying

104 ^ . J' . . the elements of W with W wave functions as m eqn. 9-21: thus x is defined as a distribution near m by testing it against W wave functions of the form 9-21. The result is independent of the choice of Q, at least in the stationary phase approximation. (Of course, this is only an outline: to do this in detail one must take much more care over the domains of definition of the various wave functions and so on.) The only practical difficulty is that it is hard to find a simple explicit form for MP(n,iR). This problem can be avoided by introducing an almost-KShler structure J on M and restricting attention to symplectic frames {? , ... 5 > ?,> •.• ? } which satisfy J(?^) = ?^. 9.23 These will be called unitary frames. The structure group of the bundle of unitary frames is isomorphic to the unitary group U(n). It is the subgroup of SP(n, (R) of matrices of the form A B -B A where A and B are real n x n matrices and A + iB 6 U(n). The unitary group is, in fact, the maximal compact subgroup of SP(n,K). It is easy to give an explicit form for the corresponding subgroup of MP(n,R): it is simply the double cover of U(n), that is, the group of (2n + l) X (2n + l) matrices of the form

105 where Z^ = det(A + iB). This double covering is all that is needed, though, unfortunately, there is now the additional complication of having to decide how the results depend on the choice of J. To summarize, the introduction of metap3ectic structures and 5-forms allows one to carry the WKB approximation through the caustics in the classical trajectories in an entirely natural way. This treatment is equivalent to Maslov's. It automatically incorporates the correct phase jump at the caustics and it leads to Maslov's modification of the Bohr-Sommerfeld rule (see notes 19 and 23).

106 II The harmonic oscillator: The second example is the quantization of the n-dimensional _ 2n harmonic oscillator. Here the phase space is M = iK with coordinates {q ,p }. The symplectic 2-form is: a 0) = dp '^ dq^ 9.2^ El and the Hamiltonian is: a b h = - (p^ + w2q2); p2 = 6^ p^ p^, q2 = 5^^ ^^ ^ ^_^^ The vertical polarization P, spanned at each point by {3/3p } a is not invariant under the action of 5 . However M can be given the structure of an n-dimensional complex vector space by introducing the coordinates: z = p - iwq ; z = p + iwq 9•2fe The antiholomorphic polarization P (spanned at each point by the

107 vectors {3/3z }) is then Lie propagated "by 5 and the quantization El 11 procediire can be applied directly^^. In the new coordinates: 0) = d9 = hr: idT.^ -^ dz ) 9-27 ZiM a where e = -n^ (z^ dz - z dz^) 9-28 Uiw a a (note that 9 is real). Since o) is exact, the prequantization line bundle L can be represented as; L = M X c 9-29 with the connection form: a =9.^ (f) 9.30 (using {z ,.., z , z} as coordinates on M x C ). Also, the Hamiltonian can be expressed in the form: 1 a - h=-z z^ 9.31 so that 5h = --(^'ri -\7-) 9.32 d Z dZ a

108 This vector field has integral curves: t ,—y z^(t) = e ^"^ . z^(0) 9.33 and its action function is given by: A = 5j^j 9 = h 9.3U Polarized sections m—^ (m, (j)(m)) of L are given by functions (b: M ->- C of the form: -(tt/.J z^ . , . - z a „/ a> 2W a „ ^^ : z ♦—> f(z ) e 9.35 where f : M->-C is holomorphic. Thus the P-wave functions i); can be written: 1 "(■"■/„ )zz 2 ,);(z^,z ) = ^(z^,z ) . v^ = f(z^).e ^"^ ^. ^' 9-36 El ct where v is the holomorphic n-form: ^ =eabc ••• ^^^ ^ "^"^ ^ ^"^ ^ ••• 9.3T 1 (v, and hence also v^, is Lie propagated by the vector fields 3/3z ). a On applying the formula eqn, I.Sh, one obtains the inner product of the two wave functions: -(tt/ ) z^ z 1 ii = f . e . v^ 9.38

109 X = g • e .V 9-39 in the form: f _ "(it/ ) z z .<i);,X> = fg e "" ^ . o)"" 9AO -'m which (modulo,minor conventional differences) is the same as the expression given by Bargmann . To determine the permitted energy levels, it is only necessary to solve for h the eigenvalue equation: 2TTi 61);= [(V - 2TTi h)<^]v^ + (L v^; ^h ^h 1 2TTi,h (J) v^ 9.U1 o ^ where ^ is as in eqn. 9.28. Now: £ V = - iwn .V 9-^2 ■5h so that 1 ( 2 iwn 5 , ^ K V = - -2- . V 9.Us ^h Thus the eigenvalue equation reduces to: 5j^ f - ifi . f = - 2,Ti h^ . f 9.UU However, the orbits of 5 have period 2tt/w so that, for solutions of

110 eq.n 9.36 to exist W O 2tt 2 ^ -^ must be an integer. Eqn 9.36 then becomes: 3z^ This has nonsingular solutions only for N 5 0, in which case f is a homogeneous polynomial of degree N. Thus the energy levels are given by: \ =17 ("^ "" ^'l^ ' N = 0, 1, 2 ... 9.UT with multiplicities (^/^ji) n(n + l) ... (n + N - l) (the number of homogeneous polynomials in n variables of degree N). This agrees with the usual Schrodinger treatment. The fact that the Kostant-Souriau procedure gives the correct answer seems to be a coincidence, closely related to the fact that the Bohr-Sommerfeld quantization (with the Maslov corrections^) also gives the correct energy levels for the harmonic oscillator.

Ill III The Poincare group: spinning particles: The final example concerns the Poincare"" group and the mechanical description of spinning particles. In the usual terminology, the Lie algebra G of the Poincare group G is spanned "by {p , p , p , p } (the generators of the translation subgroup) and {M, ; a ?^ "b = 0, 1, 2, 3} (the generators of the Lorentz subgroup). Since [G,G] = G and h2(G;^R) = 0, the Kostant-Souriau theory can be applied directly. The polynomials: n ab , a b , _ PS Pg, Pb' ^ "" ^ab ^ ^ 9.W (where w = — £ M, p and g is the Lorentz metric) can be « regarded as functions on G . It is not hard to see that they are Casimir polynomials (that is, they are preserved under the coadjoint « action of G on G ) and so are constant on the orbits of G. In fact, the orbits, which represent the possible classical phase spaces of elementary relativistic particles, are completely characterized by the values of p^ and w^ .- (i) p^ > 0, w2 5^ 0 (massive spinning particles). Putting m = p^ . sign (p ) (mass parameter) and s = - w^/p^ (spin ... * parameter), one has a unique orbit m G for every m ?^ 0 and s > 0: each is diffeomorphic with '^ x S^ and is quantizable for integral or half integral values of 2tts . There are two group invariant

112 polarizations (which are complex conjugates of each other), One gives the usual Wigner (m,s)-representations. The other gives nothing, (ii) p^ > 0, w2 = 0 (massive scalar particles). The orbits are all diffeomorphic with |fi? (and therefore quantizable). (iii) p2 = 0 (zero rest mass particles). Here the orbits are diffeomorphic with R"* x S^, These are labelled by the energy n = sign (p ) and by the spin s and the helicity x which are defined by: Wg^ = xs Pg^ ; s > 0, X = ± 1 9-i^9 (w and p are necessarily parallel when p2 = O). Again, the orbits El El are quantizable when 2tts is integral or half integral. The interpretation of these orbits as classical phase spaces, the application of the quantization procedure and the construction of the corresponding irreducible representations of the Poincare group are described in detail by Souriau, Renouard and Carey'*''. As an example, I shall describe here a slightly different procedure for the zero rest mass (positive energy) case using two component spinors'*^ and borrowing some calculations from Penrose's twistor theory"*^. Let 0 denote a fixed origin in Minkowski space X. In Lorentz coordinates, a (positive energy) zero rest mass particle is characterized by its position vector x , its momentum (a future pointing null covector p ) and its angular momentum about 0 (a skew a ab tensor M ). The Pauli-Lubaoski vector of the particle

113 1 t ,,Cd n c;n w=—e,,pM 9-50 a 2 abed ab is necessarily parallel to p , whence M has the algebraic structiire: a ,,ab ^abcd abba n m M = ys £ P n, + X p - X p 9.51 '^ c d for some null vector n , normalized so that: a n p^ = 1 . 9.52 a (Equation 9-^3 can be thought of as an alternative definition of the spin s (> 0) and the helicity x (= ± l)). In terms of the variables x , p and n , the symplectic structure El El is given by the 2-form: a = xs £ Pg^ n^ dp^ - dn^ + dp^^ -. dx 9-53 Tho\igh a is closed, it is degenerate. The phase (M,a) of the particle is constructed by factoring out the integral manifolds of the kernel. According to Souriau, this amounts to identifying (x , p , n ) with a a (x , p , n ) whenever: a a a '^a a X = X + xs z 9.5U P = P a a a '^a 1 , abed '^ '^ ^ ^b n = n + —fc P-u n z ^ + . p 2 bed 2 b z, a

114 for some z such that p z =0. (Thus a zero rest mass particle El cannot be localized: it occupies an entire null hyperplane). Eq.n. 9.^5 is the only possible choice for a : it is dictated by the requirement that the phase space should be a homogeneous space for G or, in other « words, that ( M,a) should be mapped onto an orbit in G as in eq.n. 8.11. In this form, the identification (eq.n. 9.^6) is not very transparent. It can be rewritten in a simpler form by introducing the spinors corresponding to x , p and n : a a a AA' X <—> X Pa^-*\V 9.55 ^^-^ ^A ^A- where it. and x are normalized so that TT^ e^ = 1 9.56 A There is an arbitrary overall phase factor in the choice of it., and x • This will be factored out later. If 0) is defined by: A A . AB' Q ^7 xse=a)-ix IT, y-X then a becomes (after some computation)

115 A - -A' a = i (do) - diT^ + diT^, - du ) 9.58 and the identification (eqn. 9.^6): AA' '^M' AA' X = X + sx z A ie '^A' 0) = e 0) AA' AA' - for some real 9 and z , such that z it it., = 0. Thus the particle A AA' can be described by the pair (o) , ■"'ai)' 'with the position x given by eqns, 9-^8 and 9.^9. However, o) and it., are not arbitrary: again from eqns. 9.^8 and 9.^9, they must satisfy: A - A' w TT^ + w TT^. = 2xs. 9.60 It follows that the phase space (M,a) can be constructed in this way: start with the complex four dimensional vector space"*^ T of ^A' arbitrary pairs (o) , it.,) and the symplectic form"*"*: A - -A' a = i(dw ''dTT.+ diT. , - dw ) 9.61 Then take the surface E given by: h = 2xs 9.62

116 A ~ —A' where h: T->-Ik :(a),iT.,) ->■ u it. +TT,a) and factor out the orbits of 5 , that is identify the pairs (o) ,TT.,) and (o) , it.,, whenever A ie '^A ie „ _, 0) = e 0) , TT^, = e TT^, -, 9 € (R 9.63 The factor space is M; a projects onto the symplectic fonn on M (also denoted a), The quantization of M is now almost trivial. First note that the Poincare" group is generated by functions of the fonn: , A >, . . ,,A B - -A' -B\ ,^ ^ , (o) , TT^i) * > 1 U 2 " '^A ~ B' '^A " ' (Lorentz group) A AA' - (o) , TT/v ,)« -> k IT. IT (translation group) A -A' These are at most linear in u and u , so the real polarization of T spanned at each point by the vectors {—r- , _ —} is group invariant. So) So) It is also Lie propagated by 5 and so projects to a polarization of M. Next, the prequantization line bundle L over M is constructed by taking the trivial line bundle E x C and the connection form: ^ 1 dz ,, ^ = '^2^-~ 9.6U

117 where A - -A' -A' - A = i/ (o) diT^ + iT^, do) - 0) diT., - IT. do) 9-65 and factoring out the integral curves of the vector field (on E x C , = 5, -2.i(5,J9)(.|^,-i|^) 9.66 The factor space L is a well defined line bundle over M provided only that the orbits of r, are closed. One then has: E X C E X.s -> L = (E ^ X C )/? -^ ^ = \,s/5h The condition that the orbits of z should be closed is that the integral of 9 around each orbit in E x <C should be an integer, X>^ that is that 2tts should be integral or half integral. When this condition is satisfied, the 1-form a projects into a connection form on L (since ? J a = 0 and i a = 0) with curvature a (since a = d9). Thus if 2tts is integral or half integral, M is quantizable: conversely if M is quantizable then the integral of 9 around each orbit of L in E is an integer (proof"*^: the integral '^ X,s of 9 around an orbit in E is equal to the integral of a over any X.s 2-surface'*^ spanning the orbit: under the projection E ->- M this

118 2-surface integral becomes a contoiir integral in M, since the boundary is mapped to a point; by the quantization condition, the contour integral is an integer) and so 2its is integral or half integral. Assume that 2tts is integral or half integral. Any function 6: E ->- C defines a section of E x C . If i, satisfies V- <t. = ?^ <t> - 2TTi h <t, = 0 9.6T ^h then this section will be parallel along 5, and will project into a section of L. If additionally: ,, A -A- - ^ w - ^ ""'^"^''a "'^^ V') (t)(a) ,0) >'^A"'^A^ ~ ^'^A'''^A^ ® 9- A —A' for some function f (independent of u and u ) then (ji will project into a polarized section of L. Clearly any polarized section of L can be represented in this way. Further, the 3-form on T: dp^ ^ dp^ ^ dpg y 9.( o is Poincare invariant, orthogonal to the polarization and projects to a 3-form on M (v is, in fact, the standard invariant volume element on the light cone). Thus the polarized wave functions on M can be represented by objects (on E ) of the form: X>^

119 I A- -A' ^ ^ = f . e . v^ 9.TO where f : E ->- C satisfies: So) So) (ii) 5j^ f = - 2TTi . 2xs . f . 9.T2 Eqn. 9-6U can be rewritten as the homogeneity condition: ^A ~=^ " V' i?~ = ^""^^ • ^ 9.T3 Finally, when x ^ ^ '^^^ correspondence with the conventional view of a quantized zero rest mass particle can "be recovered by introducing the spinor field (with Utts indices) on X: A- ~A' Vb'... (^^ = J - V ^B- ••• f ^ ^ 9.TU \' /a (here u and x are related (as before) by eqns 9.U8 and 9.^9). The homogeneity condition (eqn. 9.65) ensures that ^Aigipi ••• i^ well defined. The exponential factor is simply: AA -2TT1 : e 2TT1 X TT^TT^, SO that it follows from eqn. 9.66 that ^Aigipi ••• obeys the spin s

120 zero-rest-mass field equation: ^AA' V $A-'B'-'- = ° 9.T5 (where V. , is the (flat) spinor connection on X). When x < 0 one must replace it., "by tt in eqn. 9.66,

121 A: Cech Cohomology: Chem Classes and Weil's Theorem. Much of quantization theory is_ concerned with global properties of symplectic manifolds. In particular, in the prequantization of a symplectic manifold (M,a)), the line bundle needed for the construction of the quantum Hilbert space always exists locally (as the example in §5 shows): the difficulty arises in trying to patch together the small pieces to form a line bundle over the whole of M, Cech's cohomology theory provides a natural framework within which to discuss the limitations imposed on such patching constructions by the global topology of the underlying manifold. Briefly, it goes like this: Let M be a smooth manifold and let U = {U- | i 6 A} be a fixed open contractible cover of M (indexed by some set A): that is each of the open sets U. , U.nU., U. n U. n U, .... is either empty or 1 i 0 1 0 k can be smoothly contracted to a point (for example, the U.'s might be the normal neighbourhoods of some Riemannian metric). A k-simplex (in the sense of Cech) is any k + 1-tuple k+l (i , i , ..., i ) € A such that U- 0 U. a ... H U. i i . O 1 Jt 11 1, o 1 k Let G be an abelian Lie group. For the moment, it will be * assumed that G is X , (R , C or C (that is, the integers or the real or the complex numbers under addition, or the complex numbers under multiplication). A k-cochain (relative to U) is any totally skew map g: (i^, i^, ..., ij^)*--. g(i„, i^, ..., ij^) £ G

122 from the set of k-simplices into G. The set of all k-cochains is denoted C^(U,G). The cohomology theory arises from the existence of two natural k algebraic structures on the sets of cochains. First, each C (U,G) is an abelian group, with the group operation defined by: (g^ + g^) (i^, i^, ..., \) = g/io. i,. •••, \) + g,(i . i . •••. iv); g . g e C (U,G) A.l 2 O 1 £. 12 (the symbol + or . is used according the context). Second, there is a sequence of group homomorphisms 6 : C^(U,G) -> C^'^^(U,G) defined by: k+1 i 6g(i^,i^,...,ij^^^) = J^ (-1) g(i^,i,,...,i., ..., i^^^); G= Z, IR c A.2 k+1 . ,_^.o E (g(i^,i ,1 ..., i ) -, G= € 0=0 '■ A.3 ( /v means "omit")', & is called the coboundary operator. Note that 6^: C^(U,G) ^ C^'^^(U,G) is trivial. A cochain g £ C (U,G) such that 6g = 0 is called a k-cocycle. If, additionally, g = 6h for some h € C (U,G) then g is called a k-coboundary. The set of k-cocycles is denoted Z (U,G). The k- k coboundaries form a subgroup of Z (U,G) and the quotient:

123 H^(U,G) = Z^(U,G)/6(C^ \U,Q)) A.U is called the k cohomoloar group (relative to U): each element of U,G) is an equivalence class of cocycles any two of which differ by a coboundary. It is a standard theorem'*^ that H (U,G) is independent of U: a different choice of contractible covering will lead to isomorphic cohomology groups. One way of proving this is to construct an isomorphism between H (U,G) and a cohomology group constructed from a suitable class of differentiable forms on M (implicitly, a special case of this isomorphism (k = 2, G = IR) is used in the proof of ¥eil'« theorem below). For this reason, one often writes H^(M,G) for H^(U,G). More generally, one can allow g(i , i , ... i, ) to be a smooth 0 1 K. function U. H U. 0 ... n U. ->- G rather than a fixed element of G. ^o ^1 ^k The definitions go through in the same way (eqns, A.l - A.3 must now be understood as holding at each point). One denotes the resulting cohomology groups: H (U,G). (These cohomology groups are best dealt with using sheaf theory, where the information that the functions must be smooth is encoded in the topological structure of a sheaf over M; this is a technicality which will not be pursued here). Again, one can further extend these ideas by including non abelian groups. However, though the terminology is useful (for instance, in discussing fibre bundles), the theory is less complete"*^:

124 for example the group structure of U,G) does not, in general carry over to H^(U,G). Example: Choose a triangulation of M with vertices {x- | i €. A} and take U to be the set of star neighbourhoods of the vertices, that is U = {U.} where; U- = {x e M I X lies in the interior of a simplex in the 1 ' triangulation with vertex x.}. Then the incidence relations in the triangulation are reflected in the intersection relations in U , so that: X.,x.,... X, are vertices of a simplex in the triangulation 4^ XJ^ n U. ... O Ujj. 5^ 91 . Thus the simplices making up the triangulation are in one to one correspondence with the Cech simplices of the covering U (this explains Cech's terminology). Now let i)) be a complex k-form; i); defines a k-cochain (relative to U) according to: H^^,\,... V A.5 X- X. . . . X- 11 1, 0 1 k where x- x. ... x. is the simplex m the triangulation with vertices 111, 0 1 k

125 X. , X. , ... and x. . Using Stoke's theorem: o 1 k idi,) (i^,i,,...,ij^^^) = 6^(i^,i^,..., ij^^^) A.6 This association of k-forms with k-cochains sets up an isomorphism between the k (complex) de Rham cohomology group (the set of closed k k-forms modulo exact k-fonns under addition) and H {U,<L). As was remarked above, this isomorphism also exists (though it is harder to exhibit) for more general contractible covers. D, Now suppose that it : L ->- M is a line bundle and that {U. ,s. } is a local system for L. By passing, if necessary, to a finer cover, one may suppose that U = {U-} is contractible. The transition functions: c. - : U, n U. . C; U. O U. ^ 1 * will then define a 1-cochain c fc C'-{U,Q ); c will, in fact, be a cocycle since <=i0 <=ok \i =1 on U. n U. 0 Uk A-^ Thus L determines an equivalence class, [^c] £ H'''(U, C- )• Further- mo re^ if IT,: L, ->■ M and it ; L„ -s- M are two equivalent line bundles ^11 2 2 then the. corresponding cohomology classes are equal: by definition, there exists a diffeomorphism t : L —^ L^ commuting with projection

126 and which restricts to a linear isomorphism on each fibre of L . By choosing a sufficiently fine contractible covering U = {U-}, one can construct local systems {U., s .} and {U., s .} for L and L . If * (l) (2) {g. : U. ->- C } is the set of functions defined "by: s . = g. s . A,8 (l) (2) then the two sets of transition functions will be related "by: c - . = g- c . . g. A,9 o * The g.'s define a 0-cochain g G C (U, C ) and equation A.9 can be rewritten: c = 6g c (1) (2) « Thus L and L define the same equivalence class in h1(U,C. )• Conversely, given an equivalence class [c} fc h1(U,C ) one can construct a line bundle L with transit-ion functions in [cj : choose a set of maps;

127 « c- . : U. n U. ->- (C ; (ijj) is a Cech simplex in [c] (so that the cocycle condition A.7 is satisfied) and take L to be the disjoint union LJ U. x <L factored by the equivalence relation: (x^,z^) 'V (x^.z^) ; x^ € Uj^ . x^ i U^ ; ^l'^2 * *^ whenever: x^ = x^ = X (in M) and ^i ~ '^i i (^^ ^2 1 2 With the obvious definition of the projection, L is a line bundle over M. One can construct a local system {U.,s.} for L by defining: 3^ : U^ ^ L : X *—?.[(x,l)] ; (x,l) e U^ x C where [(x,l)J 6. L is the equivalence class of (x,l) under "^ . The transition functions of this local system are simply the c.'s. Clearly, a different choice of c in [c] will lead to an equivalent line bundle. Thus, for a given contractible cover {U-} = U, the set L of equivalence classes of line bundles over M for which it is possible to construct local systems of the form {U.,s.} is in one to one « correspondence with the set of cohomology classes E'-iU,C. )• (Additionally, this correspondence becomes a group isomorphism when the tensor product"*^ is used to define a group structure on L).

128 The correspondence assumes a more useful, and more readily interpretable, form when h1(U, t, ) is replaced by its natural isomorph h2(U,X) (which is equal to h2(M,Z.) since smooth integer valued functions are necessarily constant). The isomorphism e: h1(U, £, ) -> h2(U,'2.) is a consequence of the exact sequence of group homomorphisms: « « Where the map X ->-C is inclusion and the map C ->- C is given by: z ->■ e . (Exactness just means that the kernel of each map in the sequence is precisely the image of the preceding map). This induces the exact sequence: Hl(U, £) -> h1(U, C*) ^ h2(U,X) ^ h2(U,£:) -^ .. ■^ "s -a -:: e implying h1(U,C ) X h2(U,2.) since h1(U,C) = 0 and h2(U,C) = 0 (C is contractible). If L is a line bundle over M and g(L) is the corresponding element of h1(U,<C ) (for some suitable U), then the equivalence class c(l) = ee(L) € h2(U,7L) = h2(m,'2.) is called the Chem characteristic class of L. In less abstract terms, the construction of the Chem class goes as follows: choose a local system {U. , s.} for L (as abo've) with _ * transition functions c- - : U. O U. ->- C , The Chem class of L is then -L J -L J the equivalence class in H^(M,X) of the cocycle;

129 (i,0,k)H^^ (l.n c.. +ln c.^^ + l.n c^^) By the cocycle condition on the c. .'s, the right hand side is a -'-J smooth integer valued function on U- n U. n U, , and hence must be 1 0 k' constant. There is an ambiguity in taking the logarithms, but the equivalence class in h2(M, Z.) is independent of the branch chosen. An equivalent, and possibly more intuitive, definition of the Chem class emerges from obstruction theory. Clearly, a line bundle IT : L ->. M is trivial (equivalent to a product) if, and only if, it is possible to find a nowhere vanishing section s: M->■ L (since if such a Section exists then M x C ->- L : (x,z) I—>-z.s(x) is an equivalence of line bundles). Loosely speaking, one can regard the Chem class as a "measure" of how difficult it is to construct a non- vanishing section. The idea (which works for any bundle) is to choose a triangulation of M (fine enough for the portion of L above each simplex to be trivial) and to try and construct a non-vanishing section s: M ->- L by extending s successively from the 0-skeleton (set of 0- simplicies) to the 1-skeleton (set of 1-simplices) and so on until some obstruction is met. Thus, one first assigns an arbitrary non zero value s(x.) e. IT (x.) to each vertex x. in the triangulation. Extending s to the 1-skeleton is easy: if x.x. is a 1-simplex in the triangulation then the portion of L above x.x. is diffeomorphic with x.x. x C 1 0 10 To define s(x) for each x £ x.x., one simply chooses any curve from J s(x.) to s(x.) in x.x. x C which avoids the line x-x. x {0}. The 1 0 1 0 1 0

130 trouble arises in trying to extend s over the 2-skeleton: the portion of L above a typical 2-simplex A = x-x.x, can again be represented as a product A x C . The section s has already been defined on the 1 boundary 3A, and this boundary is homeomorphic to a circle S . if the image of s(3A) under the projection it : A x C ->■ <C winds around the origin, then it will be impossible to extend across A without allowing s to vanish. The map which assigns to each 2-siiiiplex A (or rather, to the corresponding Cech simplex) the winding number of TTes(3A) around the origin in C is a cocycle: unless this number can be made to vanish for every simplex in the 2-skeleton, it will be impossible to construct a non-vanishing section and L will be non-trivial. It turns out that the equivalence class c(L) of this cocycle in H^(M,'2[.) is independent of the precise values assigned to s on the 0- and 1-skeletons; it is not hard to see that c(L) is precisely the Chem class of L. Turning now to Weil's theorem^" suppose that L is a Hermitian line bundle with connection V . As in the example, choose a triangulation of M with vertices {x.} and put U. equal to the star neighbourhood of x.. It can be safely assumed that the triangulation is fine enough for there to exist a local system of the form {U.,s.}: in each U., the covariant derivative is defined by a 1-form a. as in eq.n, 5.12. On each non-empty intersection XJ. f\ U., d(a. - a.) = 0, so that: 1 0 1 0

131 a. - a. = df- . 1 0 ij for some function f. • : U. n U. —^C (since U. n U. is contractible) 1J -1- J i J By eqn. 5.1^s one can put: ^n-n =5^ an(c..; for some branch of the logarithm function. Since d(f. . + f., + f, ■ ) = 0, IJ JK. K.1 the function: a(i,o,k) = f.. +fjk-^fki •• UiOU. nUj^- C must be constant for each Cech 2-simplex (i,j,k): it was pointed out above that this constant is always an integer. Now the cohomology class of o) in h2(M,<C) is given by the integral: i)(i,0.k) ^ijk over each 2-simplex A- -, = x.x.x, in the triangulation. After a IJ-K- 1 J K. short calculation, using Stoke's theorem: a)(i,o,k) = 7 (2 I cd + I a. + 0 3A. ., ^3A--,. 3A.., ^ ijk ijk ijk ? [2(fij ^ fjk ^ \i^ (-i) ^ 2(f. . . f.^ . fj^,) (X.) .

132 + 2(f. . . f.^ . f^.) (x^)] - 7 t(fij(x,) . f,.(x.)) . (f.^(x.) . f.^(x,)) . (f^,(x,) . f^,(x.))] "i I I (a. +a ) +1 (a ^ a^) J (Oj^ + a.)! The first square bracket is the eocycle a(i,o,k) : by definition, this lies in the Chem class of L in h2(M,2.). The second two square brackets are simply coboundaries. Thus the cohomology class of o) is equal to the Chem class of L. In particular o) must be integral, that is its cohomology class lies in the image of the natural homomorphism 1 : h2(M,X) -> h2(m, <C), induced by the injection "S- '-—* C • Conversely, suppose that u is a real closed 2-form in ;(h2(M,Z)) czn'^iM, IR ). Triangulating M as above, on each star neighbourhood U.: 0) = d a^ for some 1-form a. (since U- is contractible) and on each

133 a. - a. = df. . 1 0 10 for some function f. . : U. n U. ->- fR . Again, since ij 1 0 e . d(f^j + t.^ + t^^) = 0, a(i,o,k) = f^j + fj^ + f^^ is constant on U. n U. 0 U, and the two cocycles: 1 0 k (i,0,k) I—?• I 0) ^i^j^ (i,0,k) \—^a(i,o,k) define the same equivalence class in h2(M, IR). But, by hypothesis, there is some cocyde b in this equivalence class such that b(i,j,k) is an integer for each 2-siiiiplex (i,o,k); thus .■ b = a + 6g ■v for some g £ h1(M,(R). If f. . = f. . + g(i,o) then: c. . = exp(2TTi f. .) : U. O U. ^ C iJ 10 1 0 will be a cocyde in h1(M, C ) since: •V "V -v Lj"jk"ki ""^ ^""'^ ij "*" jk <=ij^ik<=ki = ^^ [2.i (f. + f . fj^.)] = exp [2TTi (b(i,o,k))] = 1

134 As above, one can construct a line bundle L using the c. .'s as transition functions : if the a.'s are used to define a connection V 1 on L, then curv(L,V) = u. Further, since the transition functions * . all map into the unit circle in (H , L will have a natural Hermitian metric which can easily be seen to be V-invariant. The only freedom one has in this construction is to replace c.. J by: c.. = c,. h(i,o) where h £. C'''(M,T) is a cocycle and T is the circle group (the subgroup of C of complex numbers of unit modulus). If M is simply connected, h1(M,T) = {1} and L is unique up to equivalence; otherwise the possible equivalence classes of line bundles will be parametrized by h1(M,T). The different possibilities correspond to choosing different b's which define the same cohomology class in h2(M,|R) but different cohomology classes in h2(m,1L).

135 B: Principal Bundles and the Existence of Metalinear Structures. The purpose here is to demonstrate the existence conditions for the metalinear frame bundles used in quantization and to explain some of the related terminology. First, a few definitions. The line bundles encountered in §5 were special cases of a more general concept, that of a bundle over a manifold. Explicitly, it : B ->- M is a bundle over M if 1) B and M are C manifolds (B is called the bundle space, and M the base space) 2)' IT is a smooth map of B onto M (it is called the projection). The counter image B = it (x) of x M is called the fibre over x. If X the fibres are submanifolds and if each is diffeomorphic with some fixed manifold F, then it : B ->- M is called a fibre bundle with fibre F. A fibre bundle is usually denoted either as a quadruple (B,tt,M,F) or, where there is no possible ambiguity, by its bundle space B. A local trivialization of a fibre bundle (B,tt,M,F) is a pair ((j),U) where U is an open contractable subset of M and : U X F ^ TT~-'(U) o B is a local diffeomorphism which commutes with projection: U X F ^ TT~''(U)

136 Here pr : U x F ->- U is the projection onto the first factor. If there exists a collection C = {((ji-jU. ) | i € 1} (indexed by some set I) of local trivializations such that {U. | i £• 1} covers M then (B,tt,M,F) is said to be locally trivial; C is called an atlas for the bundle. If there is given a Lie group G which acts effectively^^ on F as a group of diffeomorphisms then one says that two local trivializations ($,U) and ("^jV) are G-conipatible either if U n V = 0 or if there exists a smooth map g: U n V ->- G such that, for each b ^ it (U n V) : pr (<t> \b)) = g(TT(b)).(pr^(iJ;~^(b))) where pr : (U n V) x F ->- F is the projection onto the second factor; 2 g is called the transition function between (ijijU) and (>|),V), The condition that the group action is effective ensures that g is unique if it exists. A G-atlas for a fibre bundle is an atlas C„ any two elements of which are G-compatible; C„ is complete if it contains all local trivializations which are G-compatible with all elements of C„. Any G-atlas can be extended to a complete G-atlas. Finally, a fibre bundle with structure group G is a locally trivial fibre bundle (B,tt,M,F) together with a fixed complete G-atlas C„; the elements of C„ are called admissable local u u trivializations.

137 A few exsurrples should clarify these ideas: 1) A line bundle it: L ->- M is a fibre bundle with fibre <C and structure * . . group CC . Any non vanishing local section s: U o M ->- L defines a local trivialization. 2) The tangent bundle of an n-dimensional manifold X is a fibre bundle with fibre |R and structure group GL(n,(R ) (The group of non-singular n X n real matrices). Any set {5 ... 5 } of vector fields which are linearly independent in some open set in X defines a local trivialization. 3) The complexified tangent bundle TX has fibre C. and structure group GL(n,(C ). h) A polarization P of a symplectic manifold (M,a)) can be thought of as a fibre bundle: its bundle space is U {x} K P C Tm'*' .• X xe. M its fibre is C and its structure group is GL(n,C)- More precisely, P is a sub-bundle of TM''-. si Two fibre bundles over M, (B ,tt ,M,F ) and (B ,tt ,M, F ) with the same structure group G are said to be isomorphic or equivalent if there exist diffeomorphisms:

138 e -. B ->- B , a : F ->- F 12' 12 Such that: l) e commutes with projection; * B, 2) ((t>,U) is an admissable local trivialization of (B ,TT ,M,F ) if, and only if, (p » (ji o a, U) is an admissable local trivialization of (B ,tt ,M,F ) where: a:UxF ->-UxF 1 2 (x,f^) ,-^{x,o{t^)) In general, the structure group of a fibre bundle^^ does not appear as an explicit part of the geometry: thoiigh one can pick out a preferred class of fibre preserving diffeomorphisms of the bundle space which coincide, in any local trivialization, with the action of some element of the structure group on each fibre, there is, in general, no way of associating a given element of the structure group with a particular transformation of the bundle space.

139 A familiar example is provided by the tangent bundle TX of a manifold X. Each non singular tensor field S of type ( ) defines a diffeomorphism of TX which preserves the fibres. The action of S is linear so that in any local trivialization S can be identified on each fibre with an element of GL(n,lR). However, there is no canonical way of associating a tensor field S with a given element of GL(n,lR), nor, conversely, is there a canonical way of representing a given tensor S as a field of n x n matrices. It is this that makes the concept of a principal fibre bundle so useful. A principal bundle is one in which the fibre and the group coincide, with the group acting on itself by left translation. (One also applies this term to a bundle which is isomorphic with a principal bundle). Every fibre bundle can be given an alternative representation in terms of an associated principal bundle, with the structure group appearing explicitly as a transformation group of the associated bundle space. The construction of the associated bundle depends on the fact that a fibre bundle is completely determined (up to equivalence) by its fibre and by the transition functions: g. . : U. O U. ^ G of some atlas of admissable local trivializations. Just as m the line bundle case, these functions satisfy the cocycle condition: hi Sjk = Sik °" u. 0 u. o u^

140 so that they can be thoiight of as defining an element [g] of h1(M,G): the reconstruction of the bundle from the cohomology class [g] is the same as in the line bundle case. Given a fibre bundle (B,tt,M,F) with structure group G, one obtains the associated principal bundle by choosing an admissable G-atlas, replacing F by G and applying this construction. Conversely, one can reverse the procedure and recover a bundle from its associated principal bundle: one simply has to specify the fibre and the group action. The structure group G acts on the bundle space B of a principal bundle by right translation: for each h £ G, h: B ->- B is defined by: h(b) = <t>(TT(b),gh) ; b e. B where (ji: U x G ->■ it (U) 3 b is an admissable local trivialization and (Tr(b),g) = (j) (b). The definition is natural (independent of (ji) and the action preserves the fibres of B. The corresponding definition of left translation does not mai.e sense unless G is abelian, in which case left and right translation coincide. A Second useful property of principal bundles is that their local admissable trivializations can be described in a very simple way. Explicitly, a local section of a bundle it: B ->- M is a map s: U «=• M ->- B (on some open set U c:. M) which commutes with projection:

141 If (B,tt,M,G) is a principal bundle and s: U<=.M->-B is a local section then <j, : U X G ^ B: (x,g) \—> g o s(x) is a local admissable trivialization; here g: B ->- B is the right translation by g. Conversely, a given admissable local trivialization (ji: U X G ->- B can be recovered in this way from the local section; s : U ->- B ; X 4—V (j)(x,e) where e 6 G is the identity. Because of this, it is common to call a local section of a principal bundle a local trivialization. A covering of M by local sections is called a local system. Example: A vector bundle is a fibre bundle with a vector space as fibre and the appropriate general linear group as structure group. The associated principal bundle of a vector bundle (B,tt,M,V^) (V^ is an n dimensional vector space) is isomorphic with the frame bundle tt; B ->- M; each point of B is an (n + l)-tuple (x, 5 ...? ) where X 6 M and {5 ... 5 } is a basis for it (x). A local trivialization 6 is defined by choosing n local sections r , ... r : U->- B of the vector bundle such that ? (x) ... r, (x) are linearly independent at each point X € U and putting:

142 : U X G ->- B: (x,g. .) t—> r. (x) g. . J 1 ij ■v Right translations of B correspond to making the same change of basis at each point of M. P The problem posed in §6 concerned the frame bundle B of a polarization P of a symplectic manifold (M,a)): P defines a vector p bundle over M with structure group GL(n,C) and B is the associated principal bundle. In the language introduced above, the problem is this: given the principal GL(n, C) bundle IT : B^(M) ->- M "" 'Vp is it possible to find a principal ML(n,(C) bundle it: B (M) ->- M ■vp p and a double covering p : B (M) -> B (M) such that: l) P commutes with projection: F(M) ^ > B^(M) 2) p commutes with right translation:

143 B (M) X ML(n,<C ) ^ B (M) ^ X a B^(M) X GL(n, ) -y B^(M) where the horizontal arrows are the group actions and a: ML(n,4l ) ->- GL(n,C) is the group covering map? This can be restated; given a contractible open cover {U.} of M and the set of transition functions: g. . : U. O U. ^ GL(n,C ) of B , is it possible to find a set of maps: z,. : U, O U. . C such that: l) Ag.. = (z. .)2 on U. n U. 2) z. . z., = z., on U. o U. n U, ' ij jk Ik 1 0 ' k If this is possible, then the maps;

144 g. . : U. n U. ^ ML(n,(C) : x v > -LJ -L J g..(x) 0 0 z..(x) -1-J will satisfy the cocycle condition and they can be used to constrvict B . Proceeding naively, for each g. . : U- O U- ->- GL(n,£), take « f. . : U. n U. ->- C to be one of the square roots of A^ .. There is no difficulty here, since U. D U. is contractible. Then: 1 0 (^io V^ki)^==^ Thus, if a(i,o,k) = f. . f., f, ., then: ' '"' ij jk ki a: (i,o,k) I—^a(i,o,k) £ 2.. is a cocycle and hence defines an equivalence class [a] £ h2(m,'F ) (Z is the group { + 1, - 1 } under multiplication). This equivalence class is independent of the choice of the f..'s since, if f. . : U. n U. ->- C IS a different choice then: iJ 1 0 a(i,o,k) = f^^ f^^ f^^ = a(i,,o,k) b(i,o) b(o,k) b(k,i) is equivalent to a, where: b(i,j) = fi./fi, : u, n u^ z,

145 * By construction, a is a coboundary in C^{11, (£. ) (U is the open cover {U. }") but, in general, a will not be a coboundary in C'^{11,%2') • If a is a coboundary in C^iU,'Z.2) then, ftor each Cech simplex (i,o,k): a(i,o,k) = c(i,o) c(o,k) c(k,i) for some cochain c <: C'''(U,2.,) and the problem is solved by putting: z. . = f. ./c. . Conversely, if z. .'s can be found then, on making the choice f. . = z... ij ij ij it is clear that [a] vanishes (that is, that [a] is the equivalence class of the cocycle: (i,0,k)»—>l in h2(m,Z2). Thus the construction of B (M) is possible if and only [a] vanishes in H^CM,'2.2)5 a, is called the obstruction cocycle. If the obstruction does vanish, then the only freedom available in the construction of B (M) is in the choice of c. Just as in the proof of Kostant's theorem, the various possible equivalence classes of B (M) will be parameterized by the various possible choices for [c] in Hl(M,-2.2). p Remark: The z. .'s are the transition functions for L . ij

146 C: Lie Algebra Cohomology and Central Extensions: This appendix is concerned with a detailed examination of the problem raised in §8: given a Lie group G, with Lie algebra G , a symplectic manifold (M,a)) and a Lie algebra homomorphism a : G ^ A(M) is it possible to find a lifting of a : X : G^ Cj2_(M) which mai.es C'"5^(M) A(M) into a commutative diagram of Lie algebra homomorphisms? The answer depends on the structure of G and, in particular, on its real cohomology. The cohomology theory of Lie algebras^^ bears a stroilg formal resemblance to Cech theory and, in fact, the topological structure of a Lie group is closely related to the cohomology of its Lie algebra

147 (see, for example, Chevalley and Eilenberg^^), However, all that is needed here are some basic definitions: the formal resemblance will be emphasized but not explained. Let L denote a real Lie algebra. A totally skew multilinear map: g;L =LxLx... X L->-fl^ is called a k-cochain and the vector space of all k-cochains is denot ed C^(L,fR). The Lie bracket in L gives rise to a series of linear maps 6 : C^(L, IR) -> C^'^^(L,rR) given by: 6f(x^ ... x,^^) = X (-i)^-^J f([Xi,x.], x^ ... ii ... 1 ... \,,] (here f € C^(L; |R) and X. 6 L; for k = 0 one takes 6f = O). In the same terminology as was used in Cech theory, 6 is called the coboundary operator; as before 6^ = 0. A cochain f such that 6f = 0 is called a cocycle. If, additionally, f = 6g for some g then f is k in k called a coboundary. The quotient H (L,iR) of the space Z (L,(R) of k-cocycles by the space 6{c (L,(R)) of k-coboundaries is called th k the k cohomology group of L. Each element of H (L,(R) is an eqiiivalence class ("cohomology class") of cocycles, any two of which differ by a coboundary. The usefulness of all this is that, first, the existence of the lifting X : G ->- C*^ (M) can be reduced to the vanishing of a certain equivalence class in h2(G,1R) associated with a and second that there

148 are a nximber of standard techniques for computing the cohomology groups of the Lie algebras encountered in physics. For example, for semi-simple Lie algebras (the case dealt with below), h2(G,IR) = {0} and \ always exists. The construction of the cohomology class associated with a goes like this: first choose an arbitrary linear map X^ : G ^ c'"fi^(M) such that C^(M) A(M) commutes (in general, X will not be a Lie algebra homomorphism). Next put: f(X,Y) = [X^(X),X^(Y)] - X^([x,Y]) £ c'^dVl) C.l where X,Y 6 G (the first bracket is the Poisson bracket, the second is the Lie bracket in G); crudely, f measures by how much X fails to be a Lie algebra homomorphism. Since a preserves brackets, ^f(X Y) ~ ° ^ A(M), so that f(X,Y) is constant for each X,Y 6 G .

149 Also, from the Jacobi identities in G and Cm(M), for any X,Y,Z e G f([x,Y],Z) + f([Z,x],Y) + f([Y,z],X) = 0 C.2 implying that f: G x G ->- IR is a cocycle. It is not hard to see that the cohomology class [fj € E.'^iG, S?) is characteristic of a, since the only freedom in constructing f is to replace X by X + h where h : G ^ IR is linear. The result is to replace f by f - "6h, leaving [f] unaltered. If X exists then, on taking X = X , one obtains f = 0 and the cohomology class vanishes. Conversely, if [f] = 0 then f = 6g for some g e Cl(G, IR) = G . Replacing X by X = X + g gives: [X(X),X(Y)] = [X^(X) + g(X), X^(Y) + g(Y)]; X,Y € G = X^( [X,Y] ) + g( [X,Y] ) = X(['X,Y]) C.3 implying that X is a Lie algebra homomorphism. To summarize, X

150 exists if and only if [f] = 0. It was remarked in §U that essentially the same lifting problem arises in quantum mechanics. This can now be clarified. The conventional group theoretic approach to the quantization of a classical system with invariance group G is based on the symmetry axiom, which states that the group G must also act irreducibly as a symmetry group on the quantum phase space. This phase space is the set H of rays in the quantum Hilbert space H . The action of each group element g £ G on H can be represented by any one of a family of unitary transformations of H, any two of which differ by an overall phase factor. The question of whether it is possible to choose a representative element of each family so as to obtain a unitary representation of G on H can be reduced in precisely the same way to a question concerning the cohomology of G. The difference between the conventional approach and the Kostant-Souriau quantization scheme is that the lifting problem is first encountered at the classical rather than at the quantum level (for more details, see Simms^'t). The usefulness of the lifting criterion is illustrated by its application to semi-simple Lie algebras (of which the Lie algebra of S0(3) is an example): a Lie algebra L is said to be semi-simple if its Killing form is non-degenerate. That is if the symmetric bilinear form <j> given by <,>: L X L ^ IR -. (x,Y) '^ <'X,Y> = tr(ad S. adY )

151 is nonsingulax (here ad is the adjoint representation of L on L defined "by ad X : L ^ L : Y ^ [x,y] .) An equivalent characterization of a semi-simple Lie algebra^^ is that it should contain no al^elian ideals other than {0}, In any semi-simple Lie algebra L, h2(L,IR) = 0. To prove this, first note that if L is semi-simple then^^ <[x,y] ,Z> - tr [(ad X ad Y - ad Y.ad X) ad z] = tr [ad X (ad Y. ad Z - ad Z . ad Y)] = <X, [y,z]> ; X,Y,Z £ L. C.5 Next, every linear map g: L ->- L which satisfies g([x,Y]) = [g(X),Y] + [x,g(Y)] V X,Y<£ L C.6 must be of the form g = ad Z for some Z t L (in more technical terms: every derivation of L is an inner derivation). This follows from the non degeneracy of <,> since the linear map L ^ IR : X 1-^ tr (g . ad X)

152 * IS an element of the dual space L and so must "be of the form X i-»-<Z,X> ; X fc L for some Z ^ L. Thus tr(g . ad X) = <Z,X> = tr(ad Z . ad X) V X € L C.7 and so; tr((g - ad Z) . ad X) = 0 V X e L. C.8 Putting u = g - ad Z, it must "be shown that u = 0. Now, from eqn. C.6 and the Jacobi identity: (ad u(x))Y = [(g - ad Z)X,y] ; X,Y € L = g([x,Y]) - [X,g(Y)] - [[Z,X],Y] = u(ad X(Y)) - ad X(u(Y)) C.9 implying: ad u(X) = u . ad X - ad X . u C.IO Hence, for any X,Y fe L:

153 <Y,u(x)> = tr(ad Y . ad u(x)) = tr(ad Y(u . ad X - ad X . u)) = tr(u(ad X . ad Y - ad Y . ad X)) = tr(u .. ad [x,y]) = 0 C.ll implying u(x) =0 V X € L. Finally, suppose that f €. C2(L,R) is a cocycle. That is, for any X,Y Z € L: f([x,Y],Z) + f([Y,Z],X) + f([z,x],Y) = 0 C.12 « Now, for fixed X € L, the map Y t-^»-f(X,Y) is an element of L and so is necessarily of the form Y i—^<g(x),Y> for some g(x) e L. Clearly X t-> g(x) is linear. Also, using eq.n. C.12, g satisfies g([x,Y]) = [g(x),Y] + fx,g(Y)] V X,Y ^ L C.13

154 Thus g = ad Z for some Z 6 L and so: f(X,Y) = <g(x),Y> = <[Z,X],Y> = <Z,[x,Y]> C.lU That is f = 6h where: h : L ^ tR: X <^^ <Z,X> and h2(l,|R) = 0. When H^(G,(R) does not vanish (as in the case of the Galilei group) one can still achieve the lifting by passing to a central extension of G. A Lie algebra E is called a central extension^^ of a given algebra L (by (R ) if there exists an exact sequence of Lie algebras: IT 0 ^ IR ^ E ^ L In other words, if there exists a homomorphism it: E ->■ L of E onto L with kernel isomorphic to {^ . The extension is trivial if the sequence splits, that is if it is possible to find an injection 1 : L ->- E which commutes with it ; diagrammatic ally: IT 0 ^ )R ^ E t L

155 This situation is trivial in the sense that E is then the direct sum (as a vector space) of two subalgebras: the one (i(L)) isomorphic with L, the other with (R (as a trivial Lie algebra) There is a natural concept of equivalence between central extensions of a given algebra L: it : E ->- L and it : E ->- L are ■v equivalent if there exists a Lie algebra homomorphism (j) : E ->■ E such that E 58 0 0 commutes. The point of this is that the inequivalent central extensions of L are parameterized by h2(l,(R): with each extension it : E ->- L, there is associated an equivalence class [f] t h2(L,(R) where f(X,Y) = [h(x),h(Y)] - h[x,Y] X,Y t L and h: L ->- E is any linear map commuting with it (f(X,Y) £ i]^ since TT(f(X,Y)) = 0: here (R is identified with the kernel of it). Conversely, given an equivalence class [^f] fc h2(l,(R), one can construct a central extension of L by taking E = L * (R (as a vector space) with the Lie bracket

156 [X + r, Y + s] = [x,y] + f(X,Y); X,Y £ L; r,s t1? C.15 together with the obvious definition of it. This will be trivial if and only if f is a coboundary: in fact if f= 6g then the splitting is given by: i(x) = X + g(x) e L » (R ; X e L- c.i6 Returning to the lifting problem, when |_f1 i- 0, one can still construct X by passing first to the central extension E = G * R (with the Lie bracket as in eqn. C.I5) of L defined by f. For if ■v a : E -J- A(M) is defined by: a(X + r) = a(x); X + r 6 E ■V 'V then the cohomology class [f] of a is related to f by: f(X + r, Y + s) = f(X,Y); X+r, Y+seE But in h2(E,(R), [f] = 0 : in fact f = 6g where g : E ->- R : X + r ^ r.

157 Notes 1. C.W. MLsner, K.S. Thome and J.A. Wheeler: Gravitation (Freeman, San Francisco, 1973)> p. 302. 2. B. Kostant; Lecture Notes in Mathematics, 170 (Springer, Berlin-, 1970). J-M. Soiiriau: "Structure des Systemes Dynamiques" (Dunod, Paris, 1970). 3. For example, see R. Abraham: Foundations of Mechanics (Benjamin, Reading, Mass., 1967) or A. Weinstein: Advances in Mathematics, 6_, 329 (1971) for a noninductive proof valid in infinite dimensional manifolds. h. It is sometimes clearer to make this distinction between « coordinates on X and coordinates on TX or T X, though this will not always have been done in the following. 5. In a compact symplectic manifold (M,a)), u cannot be exact, for if there existed a 1-form 9 such that u = d9 then the natural volume element n 0) = 0) " 0) would also be exact: in fact 0) = d(a)"...a)-^9) But then

158 ^ - n 0) =0 by Stokes's theorem (since M is compact). This is a c ont r adi ct i on. 6. S. Kobayashi and K. Homizu: "Foundations of Differential Geometry", p.1^9 (Interscience, New York, 1969). 7. In local canonical coordinates, the integral curves of 5 (for real (ji € C (M)) are given by Hamilton's equations: "a _ d±_ • d±_ 3P„ a a a aq 8. The Lagrange bracket {•,•} can also be defined in terms of 0) : if 5,? e U(M) then {?,?} is the C°° function: {5,?} = 2a)(5,?) ■ 9. The operator 5J : Q^{U) ->- a^~^{M) (where a^{U) is the space of complex m-forms on M) is defined by: m. 5J : a —>5 J a = m . a(5, ',...,•); a g fl (M). 10. The symbol E, retains the special meaning assigned to it in §3. 9 H. See appendix C. 12. [G,G] is the subspace of G spanned by all commutators. 13. B. Kostant: Op.Cit., p.133. lU. In local canonical coordinates, o) = d p d q..

159 * 15. The substitution of it ( u) for da is possible since V has curvature u- 16. There is an analogy in differential geometry: a vector field can be thought of either as a section of the tangent bundle or as a set of functions (components) on the bundle of frames. 17. The factor - 2TTi is conventional: in the units used, h = 1. 18. Of course, there is the usual problem that, in general, 6^ 9 is not a well defined operator on the whole of H. 19. If the dynamics of the system are generated by a Hamiltonian h and if the system is degenerate (that is 5 has closed orbits) then prequantization leads directly to the Bohr-Somnerfeld condition on the energy levels: these are given by the solutions h of the eigenvalue equation for 6, : (5j^ + 2TTi (5j^ J 9) - 2TTi.h)x = - 2TTi.h^ x On the surface h = h , this equation takes the form: 5j^X + 2TTi U^ J 9)x = 0 from which it is clear that for x 'to ^^ single valued, the integral of 9 around each orbit in the surface h = h must be an integer. This is the Bohr-Sommerfeld condition. According to R. Blattner ("Quantization and Representation Theory", Proceeding's of Symposia in.,Pure Mathematics (A.M.S.), Vol 26, 1975. The inclusion

160 of ■'■/2~forms and the use of the full quantization scheme leads to the Maslov correction to the Bohr-Sommerfeld rule (see V.I. Arnol'd: Funct. Anal, and its Appl., 1_, 1-13 (1967)- 20. The integral of a density y is defined locally (in coordinates {x^}) by: lj(x, dx-"-, ..., dx ) d X ; U<=X y = U U This is independent of the choice of coordinates by the transformation properties of y. The integral is defined globally using a partition of unity. 21. That is, tangent to the fibres in E(M). 22. This can be shortened to: / P = 0. 23. The ■'■/2-density scheme is presented by Blattner, who also introduces the concept of a ■'■/2-P-form: R. Blattner: Quantization and Representation Theory: in: A.M.S. Proc. of Symposia in Pure Math. 26_ (1973). The principal motivation for the introduction of ■'■/2-forms comes from Maslov's work on the asymptotic oscillatory solutions of partial differential equations: V.P. Maslov: Th6orie des Perturbations et Methodes Asymptotiques: Dunod-Gauthier-Villars, Paris (1972); see also: V.I. Arnol'd; Funct. Anal, and its Appl., 3^, 1-13 (1967); J.J. Duistermaat: Commun. Pure and Appl. Math., 27, 207 (197^^); L. Hgrmander: Acta. Math., 127, 79 (1971 )• Essentially, the use of ■'■/2-forms allows one to include within geometric quantization a phenomenon first described by Gouy;

161 namely that, in geometric optics limit (and also in the WKB approximation) the phase of the wave function jumps discontinuously at the caustics in the classical trajectories: L.G. Gouy: C.R. Acad. Sci. Paris 110, 1251 (1890). This phenomenon also leads to Maslov's correction to the Bohr-Sommerfeld condition (see note I9). A related motivation comes from Dixmier's work on solvable Lie algebras: the ■'■/2-form concept is closely linked to his idea of a 'representation tordue': J. Dixmier: Algfebres Enveloppantes: Gauthier-Villars, Paris (197^)- The way in which ^/2-forms enable one to deal with caustics is indicated in §9s example 1. P P 21).. L 0 L denotes the tensor product of L and L . See appendix A and note k9- 25. If 5,5 e U (M) then V s = 0 and V s = 0 implies V_ -, s = 0 since 10(5,?) = 0. Thus this condition is self consistent. 26. At this point one uses the condition that the integral surfaces of D are simply connected. 27. An alternative formulation of this condition is [f. [g, <t5] = 0 for all f,g e C (M) constant m the directions in P. 28. 'BKS' stands for 'Blattner, Kostant and Sternberg'. This construction is described in more detail by Blattner, who also describes the formal quantization of observables which do not preserve the polarization: R. Blattner: op. cit.

162 29- If P and P are not everywhere transverse, or if more than two polarizations are involved, a more complicated construction is needed: see §9, example 1. 30. I.M. Gel'fand and G.E. Shilov; "Generalized Functions", Vol. 1. (Academic Press, New York, I96U), p. 3U. 31. This point is discussed further in appendix C. 32. Of course, what this does not do is tell one how these elementary classical systems are to be interpreted physically. However, considerable progress has been made on this question by Souriau (op. cit., Ch. Ill) and, more recently, by Penrose (in the relativistic context): R. Penrose: "Twistor Theory": in: Quantum Gravity: eds: C. Isham, R. Penrose and D. Sciama (Clarendon Press, Oxford, 1975). 33. Condition 2) is stronger than necessary: see Kostant, op. cit., p. 177. 3k. Conversely, each orbit M is a Hamiltonian G-space: X is o defined by: (X(X)) (f) = f(x) ; f e M^ , X€ G . o 35- If G is not simply connected then this gives a representation of the universal covering group. For example if G = S0(l,3) then the construction gives representation of SL(2,(C) and thus leads naturally to the spinor concept. 36. These phase spaces are described by H.P. Rilnzle: J. Math. Phys. 13, 739 (1972).

163 37- For more information on this approach to the WKB approximation, see: J.J. Duistermaat, op. cit.; A. Voros: Semi-Classical Approximations (preprint, Saclay, 197^) and references therein. There is a possible cause for confusion in comparing the treatment given here with the discussion in Duistermaat's paper: when I define the local polarization generated by a family of functions S , I am implicitly assuming not only that there is just one surface <t>,^(X) through each point of the region of 3S phase space under consideration, but also that /. 5^ 0 in aK. a this region. 38. For an alternative treatment using a third polarization (which is neither real nor KShler) see: D.J. Simms: "Metalinear Structures and the Qjiantization of the Harmonic Oscillator"; in: International Colloquium on Sympletic Mechanics and Mathematical Physics (CNRS, Aix-en-Provence, 197^^)- Also, V.I. Bargmann: Commun. Pure Appl. Math., OA, I87 (I961). 39. V.I. Arnol'd: op. cit. kO. J.M. Souriau: op. cit., ch. V; P. Renouard: Thesis (Paris, 1969); A. Carey: Thesis (Oxford, 1975). kl. For an explanation of the notation, see: F.A.E. Pirani: "introduction to Gravitational Radiation Theory": in: The Proceedings, Brandeis Summer Institute, 1961)- (Prentice Hall, New Jersey, 1965); see also: R. Penrose: "The Structure of Space-Time": in: Battelle Rencontres: eds: CM. DeWitt and J.A. Wheeler (Benjamin, Hew York, 1968).

164 k2. R. Penrose: in: Quantum Gravity: eds: C. Isham, R. Penrose and D. Sciama (Clarendon Press, Oxford, 1975)• U3. T is 'twistor space': see note U2. UU. Note the strong formal resemblance to the harmonic oscillator / problem. U5. For more detail, see D.J. Simms: "Equivalence of Bohr-Sommerfeld Kostant-Souriau and Pauli quantization of the Kepler problem"; in: The Proceedings of the Colloquium on Group Theoretical Methods in Physics (CNRS, Marseille, 1972). k6. E jg is simply connected. A U7. R. Godement: "Theorie des Faisceaux" (Hermann, Paris); p. 213. U8. I. Vaisman: "Cohomology and Differential Forms" (Dekker, New York, 1973); p. 90. k9- The tensor product L 0 L_ of two line bundles L, and L (over M) is defined as follows: choose local systems {U., s .} and ^ (1)^ {U., s .} for L- and L_. If the corresponding transition 1 (2)1 functions are: (1) c. . : U. n U. -s-C ij 1 0 (2) c. . : U. o U- ->- <C- then the transition functions for L 0 L_ are: (1) (2) « c. . = c. . . c. . : U. n U. ->- C ij ij IJ 1 0 50. For more details of this proof, see Kostant, op. cit., p. 133. 51. That is: hf = f V f e F if and only if h is the identity in G.

165 52. In the following, the term fibre bundle will be used as an abbreviation for "locally trivial fibre bundle with structure group". 53. For more information on Lie algebra cohomology see: C. Chevalley and S. Eilenberg: Trans Am. Math. Soc, 63_, 85 (19U8); D.J. Simms: "Projective Representations, Symplectic Manifolds and Extensions of Lie Algebras" Mimeographed lecture notes (CNRS, Marseille, 1969) R. Hermann: "Vector Bundles in Mathematical Physics" (Benjamin, New York, 1970). 5U. D.J. Simms: "Projective Representations, Symplectic Manifolds and Extensions of Lie Algebras": Mimeographed lecture notes (CNRS, Marseille, 1969). 55. R. Hermann, op.cit.. Vol II, p.78. 56. It is an immediate consequence of eqn. C.5 that L = [l,l3 (for any semi-simple L). For suppose that L ^ 1]l,l] . Choose Z ?^ 0 €• £l,lJ (orthogonal complement with respect to <",*>). Then, for any X,Y e L: 0 = <[x,y],Z> = <X,[Y,z]> whence: [y,zJ =0 V Y e L, that is, ad Z = ,0. But then

166 <Z,X> =0 V X € L implying Z = 0, a contradiction, 00 57. For example, C^p_(M) is a central extension of A(M), 58. As a Lie algebra, E is the semi-direct sum of i(L) and (f^, in the sense that if J, e i(L)c: E and if r e (R c: E then Cr,i!.3e VR C.E, Since these notes were written, a number of new developments have taken place; some of these are described in: 1. Contributions by B. Kostant, E. Onofri, D.J. Simms, J. Sniatycki, J-M. Souriau, J.A. Wolf and N.M.J, Woodhouse in: The Proceedings of the Colloquium on Group Theoretical Methods in Physics, Nijmegen, 1975. 2. Contributions by R.J. Blattner, J. Ehlers, K. Gawedzki, B. Kostant, A. Lichnerowicz, E. Onofri, D.J. Simms, J. Sniatycki, J-M. Souriau and S. Sternberg in: The proceedings of the Conference on Differential Geometrical Methods in Mathematical Physics, Bonn 1975. 3. B. Kostant: "On the Definition of Quantization" (Preprint, MIT, 1975). h. J.H. Rawnsley: "Diagonal Quantization of Hamiltonians with Periodic Flows" (Preprint, Mathematisches Institut, Bonn, 1975).
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