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Preface 

This book is addressed to the reader who wants, as an educated person, to have 
an outline of the present state of knowledge of the constituents of the material 
world; who has a logical cast of mind and wi ll follow a mathematical 
argument; but who may have little knowledge of physics and no intention of 
becoming deeply involved in the subject. In practice I have imagined this 
reader as a mathematics student taking a third-year undergraduate course in 

quantum mechanics such as is commonly offered as a part of the mathematics 

degree course in British universities. Only a minority of such students will be 
intending to pursue the subject further, and it seems more appropriate to aim 
fo r a wide su rvey of the interesting bits than to try to provide a sound basis for 
a training as a quantum mechanic. 

The em phasis in the book, therefore, is on providing a coherent account of 
the basic theoretical concepts of quantum mechanics and particle physics. 
Experimental detail, mathematical rigour and calculational facility are all 
given lower priority than conceptual coherence. However, I hope that I have 
given sufficient experimental reason for every major statement of theory; that 

the mathematics is honest, with gaps acknowledged and without the 
inconsistencies which can puzzle and dishearten (or arouse the scorn of) 
mathematics students; and that there are enough problems at the end of 
chapters to enable readers to test their grasp of the concepts. 

This approach to the subject has led me to omit several topics which would 
normally be included in a quantum mechanics course; for example, there is no 
scattering theory and little discussion of the Schrodinger equation as a 
differential equation. These topics may be indispensable to anyone who wants 
to work in the area, but they are not actually needed in explaining the results of 

the research in which they were tools. On the other hand, there are conceptual 
problems which can be (and often have been) ignored by the working physicist, 
but which seem much more important to the spectator who wants to 

understand more of the game. These metaphysical problems often arouse 
great interest in students, who find that it is poorly catered for in quantum 
mechanics textbooks (perhaps because the discussion is likely to be either 
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inconclusive or unconvincing, and quite possibly both). I have devoted a 
chapter to such problems; it is indeed inconclusive, and may well be 
unconvmcmg. 

The reading of mathematics and physics books is hopefully embarked upon 
more often than it is successfully completed. This fact of human nature is 
allowed for in the structure of this book , which has several points at which a 
reader can feel that they have reached the end of a journey. Thereafter the 
journey is started again, but in a different craft and at a different level. The first 
chapter is a general description of the structure of matter, leading to the 
introduction of quarks and leptons, and an account of the first ideas of 
quantum mechanics. This material will be familia r to many students, but not 
to all; it is included to make the book accessible to mathematics students who 
may have studied no physics, or have forgotten what they have studied, and to 
meet the complaint that books on particle physics a lways assume that you 
a! ready know about particles. At the end of this chapter the reader will know 
what the particles of matter are, and what forces act between them. 

The next two chapters contain the theoretical development of quantum 
mechanics, in the state-vector formalism with its standard interpretation. At 
the end of Chapter 3 the reader will know the basic assumptions and 
theoretical apparatus of quantum theory. Chapter 4 continues the study of 
quantum mechanics, but should perhaps be regarded as a prelude to the 
remaining chapters, being largely concerned with constructing more 
apparatus for later use (angular momentum theory, annihilation and creation 
operators), though it also contains the theory of the hydrogen atom as being of 
intrinsic interest. 

The last three chapters provide three independent journeys, which can be 
taken in any order. Chapter 5 goes over the ground of Chapters 2 and 3 again, 
examining the concepts of quantum mechanics more critically. This journey 
ends in a muddy river delta, the mainstream having split into nine mouths. 
Chapter 6 goes over the ground of Chapter 1, the language of quantum 
mechanics now being available for a more detailed description of particles. 
Annihilation and creation operators are used to give a simplified treatment of 
the forces between particles - a kind of quantum field theory without space 
and time. Finally, the ideas of quantum field theory proper are described in 
Chapter 7. The first half of this chapter is a continuation of the formal 
development of quantum mechanics, and carries on directly from Chapter 4. 

The second half describes how quantum field theory is applied to particle 
physics in quantum chromodynamics and quantum flavourdynamics, and 
constitutes a third passage over the ground of particle physics. 

Although the development is not formally axiomatic, the book does have a 
logical skeleton consisting of postulates (stated as such) and a chain of 
propositi-ons (marked by the symbol e) deduced from them. The bones are 
listed at the end of each chapter (except Chapters 1 and 6, which are 
cartilaginous). The. mathematical arguments are not as rigorous as they might 
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be, but the physical a rguments are slightly more rigo rous than they often a re. 
The mathematical style is mainly algebraic, being based on commutation 

relat ions: the notion of a wave function is not needed in this logical skeleton. 
(The spectrum of the hydrogen a tom is found by P au li's original method, 
which predates the Schrodinger equation.} However, since it would be an 
impoverished idea of quantum mechanics that did not include wave funct ions, 
and since students arc likely to have met them elsewhere, they are included 
from the beginning as an example of a type of state vector, and the usual 
assumptio ns about them (e.g. bounda ry conditions for the Schrodinger 
equatio n) are justified. 

Teachers of quantum mechanics arc d ivided, and no doubt always will be, 
about the suitability o f the sta te-vector formalism for a first course in quantum 
mechanics. Those who, lik e myself, first lea rnt quantum mechanics by reading 
D irac's immortal Pri11ciples have no doubt tha t the sta te-vector formalism is 

the best introduction to the subject.ln deference to the other half of the wo rld I 
ha ve to say that this book mighr be found difficult by students who have not 
taken a first course on quantum mechanics based on wave functions. 
F ormally, however, it requires no knowledge of any physics. Fo rmally, a lso, 
the only mathematics req uired is vector algebra and vector calculus; but the 
reader wi th no knowledge of linear algebra will probably find it heavy going, 

and an acquaintance with the idea o f a g roup and the elements o f analy tical 
mechanics will be helpful in places. U ntil Chapter 7 the o nly fact fro m special 

relativity that is used is the energy- momentum relation ( 1.5); for Chapter 7 the 
reader wi ll need the 4-vecto r formalism and a knowledge of Maxwell 's 
equations. 

Bold type is used to indicate that a word o r phrase is being defined, and the 

reader is no t expected to know what it means. The symbol • denotes the end 
of a proof (o r a proposition whose proof has already appea red ). Complex 
conjugatio n is deno ted by a n overbar (not by an asterisk). 

I would like to tha nk Ma rk Lawson, Chris Clarke, Richard Crossley, Peter 
Landshoff, Ian D rummond, Jeremy Rogers, Stephen McGahan, Alison 
Ramsay. Clifford Bishop, Denis Cronin, Ro land Hall, Anne Thompson and 
Steve Roberts, a ll of who m read parts o f the manuscript and made useful 
suggestions. I am gra teful to the Scientific Information Service of CERN, 
Geneva, fo r supplying me with photogra phs and for thei r permission to use 

them. Fina lly, I would like to record my appreciation of the sensitive and 
patient editorship of Simo n Capel in, and the care a nd fo rbea rance of Sheila 
Shepherd and the other staff of Cambridge University Press. 

Tony Sudbery 

York, July 1985 



1 
Particles and forces 

This book is primarily about the particles that make up the material universe, 
and the way that they interact with each other. To describe their behaviour, 
and even to name the particles themselves (i.e. to specify the properties which 
distinguish them from each other) requires the theoretical framework of 
quantum mechanics, which will be the concern of a large part of the book. 
Before embarking on the formal theory, however, we will give a general 
description of the constitution of matter and , in briefest outline, the reasons for 

believing that this description is true. This will introduce the particles which 
will be described in more detail in later chapters, and the forces between them; 
in the course of discussing the latter we will make a first qualitative encounter 
with the concepts of quantum mechanics. 

A. THE ANALYSIS OF MATTER 

1.1. Molecules and atoms It is an old speculation, traceable in western thought alone to Greek thinkers 
who lived some centuries before Plato, that matter is made up of small , simple 
particles of which there are only a few distinct types, the variety of everyday 
substances being caused by the different ways in which these particles combine 
together. This idea remained an isolated speculation until the nineteenth 
century, when it became possible to relate it to various laws of physics and 
chemistry. 

The laws of heat, and particularly the behaviour of gases, can be explained in 
terms of the laws of mechanics if it is assumed that any substance consists of a 

large number of particles called molecules, which in a gas are moving 
randomly. This explanation, which was demonstrated by means of the 

techniques of statistical mechanics developed by Maxwell , Boltzmann and 
Gibbs, is known as the kinetic theory of heat. It has the feature, usua lly 
regarded as a great advantage in a theory, that it reduces the number of 
primitive, unexplained concepts in physics: it enables heat and temperature to 
be identified with purely mechanical properties (heat being the total kinetic 
energy, and temperature the average kinetic energy, o f the particles). However, 
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Fig. 1.1. 
The periodic table of the 

elements. 

I Panicles and forces 

this is a purely theoretical advantage, and was not universally regarded as a 
good reason to believe in the reality of the molecules. For this, independent 
evidence was required. It was provided by Brownian motion. in which a grain of 
pollen moving in a liquid is observed to make sudden and random changes of 
direction, as if it was being jostl ed by the molecules of the liquid. In 1905 
Einstein showed that the observed quantitative features of this motion cou ld 

be deduced from the hypothesis that the liquid consists of particles, using the 
same methods and assumptions of statistical mechanics as were used in the 
k inetic theo ry of heat. 

From chemistry came the suggestion that molecules were themselves made 
up of smaller components. Every substance is a physical mixture of chemically 
pu re substances, which in turn can be made by the combination of chemical 

elements. Dalton's laws of chemical combination ( 1903) can be understood if 
the molecules of a chemical compound a re all alike, and are made up of smaller 
particles (called atoms) which are characteristic of the elements which combine 
to make the compound. This is the atomic theory of chem istry. Historically, it 
preceded the kinetic theory of heat, but it proceeds to a deeper level of analysis 
(atoms as opposed to molecules) and presents a simpler picture in that the 
number of different types of fundamental particle, instead of being equal to the 
enormous number of 'different chemical compounds, is replaced by the 

compa ratively small number of chemical elements (the classical figure is 92, 
but this has been increased by the manufacture of artificial elements). 

Nevertheless, 92 is rather a large figure for the number of basic constituents 
of matter. Moreover, the atoms are not simply featureless lumps of matter; 
there must be relations between them. as there are relations between the 
chemical behaviour of the elements. These are displayed in Mendeleev's 
periodic table (Fig. 1.1), in which the elements are laid out in a number of rows 
in order of increasing atomic weight, which is a measure of the mass of a single 
a tom. In this table the elements in each column show similar chemical 
properties, with a slight but regular progression as one moves down the 

I 

column; in each row there is a definite progression (e.g. a change in valency) as 
one moves along the row, and again the progression is regular. This pattern 
suggests that the atoms must have some internal structure in terms of which 
they can be compared, atoms in the same column having similar st ructures, 
while the st ructure changes in some regular way as one moves from left to right 
across the table. 

H He 

Li Be B c N 0 F Ne 

Na Mg AI Si p s Cl A 

K Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 

Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Xe 

Cs Ba La Hf Ta w Re Os lr Pt Au Hg 11 Pb Bi Po At 

Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf 
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1.2. Electrons, protons and T he first subatomic particle to be discovered was the electron (symbol e - ); the 

neutrons discovery was announced by J. J. Thomson in 1897. Large numbers of this 
part icle are given off by metals when they are heated or given a negative 
electric charge, or when light is shone on them. The particles are deflected by 
electric and magnetic field s; the direction of this deflection shows that they 
have a negative electric charge. By measuring the deflection of the particles in a 
magnetic field , their charge-to-mass ratio j, can be determined. Their charge is 
difficult to measure directly, but it is known from other sources (from 
Faraday's laws of electrolysis, and from Wilson's and Millikan's experiments 
on cha rged water and o il droplets suspended in an elect ric field) that electric 

charge always comes in integer mult iples of a basic amount e, whose value in Sl 
units is 1.6 x 10 - 19 coulomb. Assuming that this is the charge on the electron, 
its mass can be calculated as m = e/ j, = 9. 1 x 10- 28 g. This is a tiny fraction 

(about 5.5 x 10- 4
) of the mass of the lightest atom. the hydrogen atom. 

Since electrons can be produced from many different kinds of matter, it must 
be assumed that they exist inside the atoms of all elements. But a normal a tom 
is elect rically neutral, so it must contain some positively charged material to 
balance the charge o n the electrons. and since the elect rons are so light this 
positive material must account for most of the mass of the atom. J. J. 
Thomson's 'plum-pudding' model of the atom pictured it as a cloud of 
positively charged material with the electrons orbiting inside it; but this 
picture was shown to be false by Rutherford's experiments on the scattering of 
a-particles. These are positively charged particles (with charge 2e and mass 
about equal to that o f the helium atom) which are emitted by radium; Geiger 
and Marsden, under the direction of Rutherford, studied their motion when 
they were fired a t thin sheets of gold foil. Since the electrons in the gold a toms 
are so much lighter than the a-particle, collisions wi th them will have little 
effect on the a-particle's motion; the main effect will be p rovided by the 
electrical repulsion of the massive positively charged material in the a tom. If 
this is spread out throughout the atom, as in Thomson's model, most a­

particles will encounter some of it and wi ll be deflected by the encounter; but 
since the material is so diffuse the force on the a-particles will be small and so 
they will be deflected th rough small angles. The results of Geiger and Marsden 
were quite contrary to this: most of the a-particles went straight through the 
gold foil without being deflected at a ll , but o f those that were deflected quite a 
high proportion turned through large angles, so that some bounced back in 
the-direction they had come. 

Rutherford's interpretation o f this experiment was that rather than pushing 
their way through big, soft atoms, the a-pa rticles were colliding against small, 
hard objects inside the atoms, which were otherwise empty. He showed that 
the dist ribution of the a-particles as a function of their angle of deflection (t he 
scattering angle) agreed very well with the distribution calculated from the 
assumptio n that both the a-particles and the positive parts of the a toms were 
point particles. This led him to formulate his 'solar system' model of the atom, 
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in which the positive charge is concentrated in a small nucleus around which 
the electrons circulate as the planets orbit round the sun, the electrostatic 
attraction of the nucleus for the negatively charged electrons replacing the 
gravitational attraction of the sun for the planets. 

There are two difficulties with Rutherford's model. The first is tha t electric 
attraction is not quite like gravitational attraction, since it is associated with 
magnetism in a way which has no counterpart in gravity. According to 
Maxwell's theory of the electromagnetic field , an accelerating charged pa rticle 
like the electron in Rutherford's atom has a changing electric field which 
causes a changing magnetic field which in turn causes a changing electric field , 
and this feedback results in oscillations in the form of electromagnetic 
radiation which carries energy away from the accelerating particle. Thus the 
electron ought to lose energy and fall into the nucleus. 

The second difficulty is the nature of the radiation which is sometimes 
emitted by the atom. This happens when the electron, in its mysteriously stable 
orbit , receives energy from any sou rce; it will lose it again by emitting 
radiation, but only at certain special frequ encies which are characteristic of the 
atom. This set of frequencies is called the spectrum of the atom; the spectrum of 
hydrogen, for example, consists of the frequencies 

vm,=R[~2 -n12] (1.1) 

where R is a constant and m and n are integers. There is nothing in 
Rutherford's picture of an orbiting electron, which could have any frequency 
in its motion around the nucleus, to associate it with a discrete set of numbers 
like ( 1.1). 

These difficulties were resolved by the adjustments to classical ideas of 
mechanics which were brought about by quantum mechanics. Then this 
structure, atom= nucleus+ electrons, turned out to be sufficient for the 
explanation of the chemical relations between different elements, for the 
chemical behaviour of the atom could be explained purely in terms of the 
a rrangement of its electrons (we shall see roughly how the explanation goes in 
Chapter 4). The model shows that an important characteristic of an atom will 
be the charge on its nucleus (in units of the electron charge e), which is equal to 
the number of electrons in the atom. This was identified as the number of the 
element, counting along the rows of the periodic table; it is called the atomic 
number of the element and usually denoted by Z . 

But this could not be the end of the story; the nucleus, though small, must 
itself have an internal structure. If it did not, we would simply have exchanged 
92 different kinds of atom for 92 different kinds of nucleus. As well as this 
theoretical preference, there was the empirical evidence of radioactivity to 
indicate that the nucleus was made of smaller parts. 

Radioactive substances emit three different kinds of radiation, known as a-, 
{3-, and y-rays. a-rays consist of positively charged particles with charge 2e, 
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which we can now identify as the nuclei of helium atoms. {J-rays consist of 
electrons, and y-rays consist of electromagnetic radiation of extremely high 
frequency. Substances which emit a-rays or {J- rays change their chemical 
identity. If an atom of the element with atomic number Z emits an a -particle, it 
loses elect ric charge 2e from its nucleus, whose charge becomes (Z- 2)e; the 
atom then becomes an atom of the element with atomic number Z -2, with 
two extra orbiting electrons (which are likely to be removed from the atom 
soon after the radioactive emission). Similarly, if an atom em its an electron as 
part of {J-radiation, its nucleus loses the charge - e and the atom becomes an 
atom of the element with atomic number Z + 1, with an overall positive charge 
of + e because it has one electron too few. (Electrically charged atoms like 
these are called ions.) The source of radioactivi ty, then, is the atomic nucleus, 
which thus appears to contain a-particles and electrons inside it. 

T he process of emitting a particle is called the decay of the nucleus. 
Radioactive decay is inherently unpredictable; it is not possible to say when a 
particular nucleus will decay. However, it is possible to make a statement 
about the probability of a decay: for each type of radioactive nucleus there is a 
constant r such that the probability that a nucleus of that type wi ll decay in a 
small time dr is dt/r (radioactive decay is what is known in probability theory 
as a Poisson process). It follows that of a large number N of similar radioactive 
nuclei, the number that will decay in time dt is N dr /r, and so the change in the 
number of nuclei of the original type is 

( 1.2) 

Hence the number of nuclei remaining undecayed at time t is 

( 1.3) 

where N 0 is the number of nuclei at time t=O. The constant Tis called the 
lifetime of the nucleus. 

The mass of every nucleus is very close to an integer multiple A of the mass of 
the hydrogen nucleus, where A is always greater than the atomic number Z. 
This suggests that the hyd regen nucleus is a fundamental particle - it is called a 
proton (symbol p) for this reason - and that every nucleus is made up of A 

protons together with A - Z electrons to bring the total electric charge down 
to Ze. The masses do not quite add up as one might expect from this picture ­
tha mass of the nucleus is not exactly AmP+ (A- Z)m., where mP and m. are the 
masses of the proton and the electron, but somewhat less- but this can be 

explained by special relativity. Relativity theory states that mass is equivalent 
to energy according to the famous formula E = mc2

. Now if the protons and 
electrons in the nucleus are stuck together, the nucleus must have less energy 
than its constituent parts would have when separated, since in order to 
separate them work must be done against the forces that st ick them together. It 
follows that the mass of the nucleus must be somewhat less than the sum of the 
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masses of its constituents. The difference is called the binding energy of the 

nucleus. 
However, this simple picture cannot be quite right. As we will see in C hapter 

4, the angular momentum of the nucleus bas the wrong value for it to be made 

up of2A + Z particles; rather it must be taken to be made up of just A pa rticles. 
T hus we can still regard the electric charge of the nucleus as being contributed 

by Z protons, but the extra mass must come from A-Z particles of a new type, 
whose mass is close to that of the proton and which has no electric charge. 

This new particle is the neutron (symbol n). Its existence was conjectured by 
Rutherford in 1920 and experimentally demonstrated by Chadwick in 1932 

(though they both thought at first that it was made up of a proton and an 
electron, and did not. recognise it as an independent fundamental particle). 

Nuclei with the same number of protons but different numbers of neutrons 
a re called isotopes. They constitute different forms of the same chemical 
element. The symbol for a nucleus is A X, where X is the symbol for the 
chemical element and A is the total number of protons and neutrons, as above. 
If it is desired to draw attention to the numbers of protons and neutrons 
separately, this can be expanded to AzXA-z· Thus 3

1H 2 is an isoto pe of 
hydrogen which contains one proton and two neutrons (it is called tritium). 

At this stage we have a very simple picture of the world in terms of just three 
elementary particles. Everything is made of molecules; molecules are made of 
atoms; atoms consist of electrons o rbiting around a nucleus, which is made of 

protons and neutrons. 

1.3. Neutrinos There remains a problem associated with f)-radiation in radioactivity: if the 
nucleus does not contain electrons, how can radioactive nuclei emit electrons 
as f)-rays? Other puzzling questions about such radioactive decays arise from 
the following considerations of the velocity of the emitted electron. 

Suppose a nucleus A decays into another nucleus B by emitting an electron: 

(1.4) 

We will apply the principles of conservation of energy and momentum to this 
process. The energy and momentum of each body involved are given by the 
relativistic formulae 

Ev 
p= ­c2 

( 1. 5) 

(1.6) 

where E, p and v are respectively the energy, momentum and velocity of the 
body, m is the mass (i.e. the rest-mass) of the particle, and c is the speed of light. 
If the o riginal nucleus A was at rest, conservation of momentum requires that 
the emitted electron and the final nucleus B have equal and opposite 
momentum. Let the magnitude of this momentum be p; then the equation of 
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conservation of energy becomes 

rnAc2 = j (p2c2 +rna 2c4) + j (p2c2 + me 2c4). ( 1.7) 

Thus pis uniquely determined in terms of the masses rnA , m8 and me of A, Band 
the electron. Hence all electrons emitted by stationary A nuclei should have 
the same energy, which is given by 

(m 2_ m 2+m 2)c2 
£ = A B e 

c 2mA 
( 1.8) 

The experimental fact is that the electrons in a particular [J-decay have 
varying energies, ranging from a minimum of mcc 2 to the valu e which we have 

just calculated as a maximum (see Fig. 1.2). Thus energy appears not to be 

conserved in the decay. In 1930 Pauli suggested that the missing energy was 
carried away by another particle, which had not been observed since it was 
electrically neutral and had little interaction with matter. The existence of this 
particle would also resolve a discrepancy between the angular momentum of 
the original nucleus and that of the final nucleus and the emitted 
electron. Pauli called this particle a neutrino (symbol v), though today, for 
reasons which will emerge in the next section, it is known as an antineutrino 

(symbol v). Thus the decay (1.4) should be written as 

( 1.9) 

The simplest example of such a process is the decay of the neutron, which, 
when outside the nucleus, is an unstable particle and decays into a proton with 
a lifetime of about 15 minutes: 

n->p+e- +v. (1.10) 

Since the energies of the electrons emitted in the decay ( 1.9) come a rbitrarily 
close to the value (1.8) which they would have if no antineut rino was emitted, 
the energies of the antineutrinos must come arbitrarily close to zero. 

According to ( 1.5), this is only possible if the antineutrino's rest-mass m is zero. 

Fig. 1.2. n(E) f 
The /3-decay spectrum: n(E) dE 

is the proportion of electrons 
emitted in the decay of a 

nucleus which have energy 
between E and E + dE. 

E 
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( 1.5) and ( 1.6) together then give v = c; thus antineut rinos a lways travel at the 
speed of light. 

Because the antineutrino has very little interaction with other forms of 
matter, its existence was not confirmed by independent evidence until 1956, 
when Reines and Cowan observed the rare processes which occur when 

antineutrinos collide with nuclei (see ( 1.15) in the next section). 

1.4. Antiparticles: baryons The motion of the particles we are interested in is to be described using special 
and leptons relativi ty, as we have just seen, a nd quantum mechanics, as we wi ll be seeing at 

some length. Fo r most of this book quantum mechanics will be discussed in a 
non-relati vistic form , but in Chapter 7 we wi ll see (rudimentarily) how it is 
combined with special relativity in quantum field theory. We will see that this 
requires that for every type of particle there should exist another type of 

particle with the same mechanical properties (viz. mass and spin), but with the 
opposite electric charge. This is called the antiparticle of the firs t particle. 

The antiparticle of the electron is called the positron (symbol e +). The 
theoretical necessi ty for its existence became apparent in the two yea rs after 
the relativistic quantum equation describing the electron was discovered by 
Diract in 1928, and it was observed by Anderson in 1932. W hen an elect ron 

and a posit ron meet, they can annihilate each o ther, thei r mass being 
converted into the energy of electromagnetic radiation; conversely, in suitable 

circumstances an electron- positron pair can be created out of radiation. This 
pair creation leaves a cha racteristic signature in bubble chamber pho tographs; 

being oppositely cha rged, the electron and the positron will move with 
opposi te curvatures in a magnetic field, thus making the ram 's-horn shape that 

can be seen in Fig. 1.3. 
The antiparticle of the proton, the antiproton (symbol (p) could only be 

produced in conjunction with a proton in a pair creation of the type just 
desc ribed (though the energy need not come from electromagnetic radiation, 

but could be in the form of the kinetic energy of a bombarding pa rticl e). Since 
the proton is so much more massive than the electron, it takes much more 
energy to create a proton-antiproton pair than an electron- positron pair, and 
it was not achieved experimentally until 1955. 

Although they have zero electric charge, the neutron and the neutrino also 
have antiparticles fi and v. These are distinguished from the o riginals not by 

electric cha rge but by other properties which a re best understood in terms of 
radioactive {3-decay and various related processes, as follows. 

Like the electron, the positron is emitted by some radioactive nuclei, and is 
accompanied by a particle with zero rest-mass; it is this particle which is now 
called the neutrino. For example, there is a radioactive isotope of oxygen (with 
a nucleus containing eight protons and six neutrons) which decays to nitrogen 

t Dirac's original conception of the positron, which is still often presented as a valid 
description, was that it is a 'hole in a sea of nega tive-energy electrons'. There is no warrant 
for this in the present theory of antiparticles. 
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(seven protons, seven neutrons): 
140-+ 14N +e + + v. 

This can be compared with the {3-decay 

t4C-+ t4N +e- + ii 

9 

(1.1 1) 

( 1.12) 

(which is used in radiocarbon dating). The decay ( 1.1 2) can be regarded as 
being caused by the decay of one of the neut rons in the 14C nucleus: 

( 1.13) 

which, as we have seen, is the process by which free neutrons decay. Similarly, 
the decay (1.11) can be regarded as being caused by the decay of one o f the 

protons in the 140 nucleus: 

p-+n +e + +v. (1.14) 

Free protons do not decay this way, because the neutron has a greater mass 
than the p ro ton a nd so energy would no t be conserved if ( 1.14) occurred. 
However, inside the nucleus the energy of the neutron is reduced by the 
po tential of the attractive nuclear force, so the process can occur. (This shows 
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Summary: the first four 
particles 

I Particles and .forces 

that the decay of the neutron as in (1.11) should not be taken as a reason for 
thinking that the neutron is a composite object containing the pro ton inside it; 
the proton and the neutron must be regarded as being on the same footing.) 

Now consider the process by which Reines and Cowan first observed the 
antineutrino, in which an antineutrino from a decay like (1.1 2) collides with a 
proton, producing a neutron and a positron: 

p +ii ->n + e +. ( 1.15) 

A similar process is observed with neutrinos: 

n + v -> p + e - . ( I. 16) 

However, a process like (1.15) does not occur if the antineutrino is replaced by 
a neutrino (i.e. if particles produced by 1 4 0 are used instead of ones produced 

by 14C), and a process like ( 1.16) does not occur if the neutrino is replaced by an 
antineutrino. This shows that the neutrino and the antineutrino a re definitely 
different particles, and it also suggests a way to describe the difference. 

The processes (1.13)- (1.16) involve two distinct types of particle: the 
comparatively heavy particles n and p, and the light particles e-, e +, v and \1. 

These are called baryons and leptons respectively (from the Greek word s for 
'heavy' and 'light'). In each of the processes there is a baryon present both 

before and after, so the total number of baryons remains the same. This is not 
t rue of the leptons, but that is because antiparticles are involved; if we count 
the positron and the antineutrino as negative leptons, then the total number of 
leptons does remain the same in each case. 

To put this less mysteriously, define a property called lepton number which 
has the value + 1 for the electron and the neutrino, - 1 fo r the positron and 

antineutrino, and 0 for all other particles. Calculate the lepton number of a set 
of particles by adding the lepton numbers of the individual particles, just as 
you calculate the total electric charge. Then there is a fundamental law of 
conservation o.f lepton number just like the law of conservation of electric 

charge. 
Similar considerations apply to the baryons: if we define the baryon number 

to be + 1 for the proton and the neutron, -1 for their antiparticles, and 0 for 
all other particles, then baryon number is conserved in all processes. 

These three conserved quantities, the electric charge, the lepton number and 
the baryon number, are known as additive quantum numbers. 

The properties of the particles that have been discussed so far are summarised 
in Table 1.1. 

The unit of mass usually used for elementary particles is the MeV. This is 
actually a unit of energy- one electron volt (eV) being the energy acquired by 
an electron in being accelerated by a potential difference of one volt, and 
1 MeV= 106 eV - but it can be used as a unit of mass because of the 
equivalence expressed in the relativistic equation E = mc2

. (Thus the unit of 
mass should be written MeV /c2

, but the c2 is often dropped because of 
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theoretical physicists' belief that c = I - which after all is right: c = I light-yea r 
per year.) The rela tion of the MeV to the standa rd unit of mass is that I MeV= 
1.78 x 10 30 kg. However, the best way to appreciate its significance in this 
subject is probably to remember tha t the electron has a mass of about a half of 
an MeV, and the proton and the neutron have masses of about a thousand 
MeV. 

Larger units of mass (o r energy) are the GeV ( = 103 MeV) and the TeV 
(= 106 MeV). 

1.5. Quarks and leptons The four particles listed in Table 1.1 seem to provide the elements of a 
description of matter which is both satisfyingly simple and sufficient to 
account for all forms of matter known before 1935. However, observations on 
cosmic rays and experiments with particle accelerators revealed the existence 
of other particles at the same level as these four in the analysis of matter. These 
new particles a re not apparent in the make-up of ordinary matter, because 
they quickly decay (with lifetimes in the range from 10 - 6 to 10 - I 0 sec) into 
protons, neutrons, electrons and neutrinos; nevertheless, they are just as 
fundamental as the first four. 

The first of these new particles is the muon (symbol Jl -). This part icle 
appears to be exactly like the electron in all respects but its mass ( 106 MeV) 
and the fact that it is unstable, decaying as follows: 

11 - --> e- + v + v. ( 1.17) 

with a lifetime of2 x 10- 6 sec. This is not a very significant difference between 
the electron and the muon; it is simply a consequence of the muon's greater 
mass. which makes it possible for the decay to occur. 

Like the electron, the muon has unit negative electric charge and has a 
positively charged antiparticle J1 +. It has lepton number + I, and it can be seen 
that in the decay (1. 17) lepton number is conserved. In fact more than this is 
true, and ( 1.17) is an oversimplified representation of muon decay; for not only 

Table I. I. Properties of the first four particles and their antiparticles 

Date of discovery 

Particle, Mass Lepton Baryon Theoret- Ex peri-
antiparticle (MeV) Charge number number ical mental 

Electron e- 0.5 11 -I + I 0 
Positron e+ +I -I 0 1928 1931 
Proton p 938.3 +I 0 +I 1911 
Antiproton p -I 0 -I 1928 1955 
Neutron n 939.6 0 0 +1 1920 1932 
Antineutron ii 0 0 -1 1928 1956 
Neutrino v 0 0 +I 0 1930 1954 
Antineutrino ii 0 -I 0 1930 1954 
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does the electron have a doppelganger in the muon. bu t also the neutrino is 
copied by another particle. This is called the muon neutrino (symbol v~), and 
the original neutrino of § 1.4 is called the electron neutrino (symbol v. ) to 
distinguish it. The difference between the two lies solely in the processes they 
take part in: each of them will only undergo reactions involving its associated 
charged lepton, i.e. electron or muon. Thus we have 

and 

bu t 

and 

"e + n ___. p + e- l 
~~~ + n ___. p + .U - f ' 

vc+ n ++p+,u - l 

v~+n ++ p+e - f 

( 1.1 8) 

( 1. 19) 

When the neutrino and antineutrino in muon decay (1. 17) are identified as 
electron-type or muon-type, it is found that the decay is 

,u - _.e - +v~+v.. (1.20) 

The facts represented by ( J. J 8)-( 1.20) can be organised by refining the concept 
of lepton number into two distinct quantum numbers, called electron number 
and muon number, with e - and "• having electron number + J and muon 
number 0 , ,u- and v~ having electron number 0 and muon number + I, and the 
sign of both properties being reversed for antipa rticles, as usual. Then in 
( 1.18}--{1.20) both electro n number and muon number are conserved 
sepa rately. 

In 1975 a third kind of lepto n was discovered. It is known as the tau lepton 
(symbol r -, an tiparticle r +); there is a third k ind o f neutrino v, associated with 
it, and a new independen tly conserved quantum number attached to both the 
tau and its neutrino. 

New baryons were also discovered in the first cosmic ray investigations in 
the late 1940s. These carry another new quantum number called strangeness 
(the evidence for the existence of this quantum number is more complicated 
than for the lepton numbers, and will be discussed in the second part of this 
chapter); they also carry baryon number like the proton and neutron (unlike 
lepton number, baryon number is no t further subdivided). There are many 
more of these new baryons than the new leptons, and they are related in mo re 
complicated ways; the relations between them are best seen by means of 
d iagrams like Figs. 1.4 and 1.5, in which the particles are located on a plot of 
strangeness against electric charge. By using oblique axes we see that the 

particles fall into sets which have simple geometrical shapes (these diagrams 
have a mathematical significance which will emerge in Chapter 6). Figs. 1.4 and 

1.5 show only the lightest of the particles; there are a number of other groups of 
particles, a ll forming similar patterns. 

The same arguments that we used earlie r to suggest that atoms must have an 
internal structure can now be applied again to these baryons. There are too 



Fig. 1.4. 
The octet of baryons: these 

pa rt icles have lifetimes of the 
order of 10 - 10 sec. 

F ig. 1.5. 
The decu plet of baryons: these 

part icles have lifetimes of the 
order of 10 - 23 sec, except for 
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many of them to be regarded as t ruly elementa ry, and the pat te rns of Figs. 1.4 
and 1.5, like the periodic table, suggest that there must be some internal 
featu res which vary systematically from .ba ryon to baryon. Also the 
electromagnetic p roperties o f the proto n and the neutron indicate that they 
contain finite d istributions of cha rge and magnetisa tion extended over a 
region whose diameter is of the order of 10- 13 em (unlike the leptons, whose 

behaviour is that of point particles - at least on length scales down to 
10 - 16 em). A fi nal analogy with investigations of the structure of the atom is 

provided by ex periments in which very fast electrons are fi red at p ro to ns and 
neu trons; like the ex-pa rticles in Rutherfo rd's scatte ring experiment , an 
unexpectedly h igh proportion o f the electrons are deflected th rough large 

Strangeness S 

Q = - 1 Q =0 

s = - 3--------...,
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Q = I 
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Fig. 1.6. 
Quarks. 

1 Particles and forces 

angles. Just as the Geiger- Marsden experiment demonstrated the existence of 

a small, hard nucleus inside the atom, these electron-scattering experiments 
indicate that there are smaller constituent particles inside baryons. 

The positions of the baryons on the charge- strangeness plots of Figs. 1.4 
and 1.5 can be understood if each baryon is made of three smaller particles, 
and if these smaller particles come in three varieties with values of charge and 
strangeness as plotted in Fig. 1.6. These particles are called quarks (the word 
was coined by James Joyce in Finnegans l#tke, and is indefinite in meaning). 
Only two different kinds of quark are needed to make the proton and the 
neutron; they are called the up and down quarks (symbols u and d). Baryons 
with non-zero values of strangeness contain the third kind of quark, which is 

called the strange quark (symbols). All these quarks have baryon numbed-, so 
that three of them make up an object with baryon number 1. The possible 
combinations of three quarks then give all the values of charge and strangeness 
seen in the plots of Fig. 1.5. The extra particles in Fig. 1.4 arise because the 
quarks have the fu rther feature of spin: in the baryons of Fig. 1.5 all the quarks 
spin the same way, and Fig. 1.4 shows baryons in which two of the quarks spin 
in opposite directions. 

The baryons at the corners of the triangle of Fig. 1.5 are made of three 

identical quarks, which are all spinning in the same direction and, as we will see 
in Chapter 6, all move in the same orbit inside the baryon. But there is a 
fundamental law, the Pauli exclusion principle (see §2.6) which states that 
identical particles cannot be in the same state of motion. It follows that the 
quarks in these baryons cannot in fact be identical; there must be some further 
feature of the quarks which distinguishes them from each other. This feature is 
called colour: each of the quarks u, d and s of Fig. 1.6 exists in three form s, as if 
there were a red variety, a blue one and a yellow one. 

It is customary to warn the reader that the idea of the colour of a quark is not 
to be taken literally. I doubt if this caution is necessary.lt is more interesting to 
point out that the colour of quarks shares with visual colour the property that 
any colour is a mixture of three primary colours, but the choice of these 
primary colours is arbitrary: any colour can be regarded as primary. 

As well as combining with two other quarks to form a baryon, a quark can 
combine with an antiquark to form a particle with zero baryon number. Such 

Q = - i Q = i 
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particles are called mesons (from the Greek for 'middle', their masses being 
intermediate between those of leptons and baryons). The mesons formed from 
the quarks u, d , s are shown in Fig. 6.7; it will be seen that they form the same 
hexagonal pattern as the octet of baryons, with one extra particle. Baryons and 
mesons are known collectively as hadrons (from the Greek for 'strong'; the 
reason for this will be explained in §1.7). 

In 1974 the first particles in a new series of hadrons were discovered. These 
new particles have a new quantum number which is called charm; it is carried 
by a fourth quark, the charmed quark (symbol c), whose other properties are 
the same as the up quark. Three qua rks of any kind can combine to form a 
baryon; thus we obtain new baryons with the property of charm (whose value 
for a baryon can be 0, 1, 2 or 3 according to how many charmed quarks it 
contains). Again, a quark and an antiquark of any kind can combine to form a 
meson. 

The quantum numbers which distinguish the types of quark (like 
strangeness and charm) are called flavours. The four quarks u, d , c, scan be 
arranged in two pairs with identical properties except for their flavours: the 
pair (c, s) seems to be a copy of the pair (u, d) ,just as the pair of leptons (Jl , v~') is 
a heavier copy of the pair (e, v.). These repeated sets of apparently similar 
pa rticles, differing only in mass and flavour, are known as generations or 
families. 

Two further series of particles, discovered in 1979 and 1984, have shown the 
existence of fifth and sixth quarks band t. Their flavours are sometimes called 
truth and beauty, but it is commoner, unfortunately, to use the clumsy 
nomenclature of top and bottom for these quarks. The full set of quarks and 
leptons is displayed in Table 1.2. 

No quarks have ever been observed in isolation in the same way as leptons. 
It is thought that the forces which bind quarks in hadrons do not diminish with 
distance, so that quarks can never escape to become free particles. 

Of the three pairs of quarks and leptons, one pair of each- the quarks u and 
d and the leptons e- and v. - are necessary to make up the everyday world, and 

Table 1.2. Quarks and leptons 

Families 
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-I 
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a world which contained only these would seem to be quite possible. The 
existence of the other particles, and the relations between them, are mysteries. 

1 .6. Observation of particles The most direct, and most informative, methods of observation of particles are 
those which make the particle leave a visible track. These include: 

1. The cloud chamber. When an energetic charged particle passes through 
matter, it knocks electrons out of the atoms it meets, leaving a trail of positive 
ions behind it. In air which is supersaturated wi th water vapour, the 
condensation of the vapour is triggered by the ions, which thus become visible 
as a trail of water droplets. 

2. The bubble chamber. This uses the same principle as the cloud chamber, 
but the supersaturated water vapour on the point of condensing is replaced by 
a superheated liquid on the point of boiling. Again, the ions in the track of a 
charged particle provide nuclei round which boiling occurs, and the track 
becomes visible as a trail of bubbles. The bubble chamber has now superseded 
the cloud chamber for most purposes. 

3. The spark chamber. This uses the fact that electric discharges pass more 
easily through gas containing ions. Thus if a charged particle passes th rough 
the region between two plates and a voltage is applied between the plates, a 
spark will pass along the trail of ions left behind the particle, thus making its 
track visible. The gap between the plates must be fairly small, so spark 
chambers are usually used in large arrays. 

4. Photographic emulsion. A charged particle has an effect on silver bromide 
similar to that of light, and so it leaves a record of its passage through a 
photographic emulsion just like the record of incident light which constitutes a 
photographic image. This has been particularly useful in recording cosmic rays 
(very high energy particles reaching the upper atmosphere from outer space). 

Other kinds of particle detector are the scintillation counter, which uses the 
fact that some plastic materials emit a flash of light when a charged particle 
passes through them; the Cerenkov counter, which uses the characteristic 
electromagnetic radiation which is given off like a bow wave by a charged 
particle moving in a transparent medium at a velocity greater than that oflight 
in the medium; and the Geiger counter, which is similar in principle to the 
spark chamber, but uses the current in the discharge rather than the visible 
spark. These three pieces of apparatus are called 'counters' because they 
simply register the passage of a particle through the apparatus and give no 
informa tion about its path. 

Most of these methods of observation will only give direct information 
about charged particles; neutral particles must be observed indirectly, by their 
effect on charged particles and nuclei. The properties of charged particles can 
be measured from the tracks in the first group of apparatus: the charge can be 
deduced from the curvature of the track in a magnetic field, the momentum 
from the density of ionisation in the track, and the energy from the distance 
travelled by the particle if it stops in the chamber. 
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B. THE ANALYSIS OF FORCE 

1.7. Kinds of force We now turn from the constitution of matter to its behaviour. The process of 
analysing matter into smaller components, which was discussed in the first half 
of this chapter, carries with it a process of explaining the behaviour of matter at 
one level of the analysis in terms of the behaviour of its components at the next 
level. We have already encountered two examples of this: the kinetic theory of 
heat explains the thermodynamic behaviour of large bodies of matter in terms 
of the mechanical behaviour of their molecules, and quantum theory explains 
the chemical properties of substances in terms of the behaviour of the electrons 
inside their molecules. Another example is the explanation of the shining of 
stars in terms of reactions in the nuclei of their atoms. 

As different forms of matter are studied by different sciences, the effect of this 
analysis is apparently to reduce the number of sciences - in the above examples 
the study of heat is replaced by mechanics, chemistry by atomic physics and 
parts of astronomy by nuclear physics. This replacement is more apparent 
than real , because although the concepts of a higher science may be analysed in 
terms of a more fundamental science, they cannot be eliminated in favour of the 
latter without losing the understanding gained by the higher science. 
Nevertheless, in principle one can envisage a chain of analysis in which 
sociology is analysed into psychology, psychology into physiology, 
physiology into biology, biology into chemistry and chemistry into physics. 
(This view of science is called 'reductionism' by those who don't like it and 'the 
unity of science' by those who do.) 

There is another dimension of analysis which applies to the behaviour of 
matter at a given level, aiming to represent any behaviour as a combination of 
certain basic kinds of behaviour. The aim is always to reduce the number of 
independent laws of nature, either by showing that some laws can be explained 
in terms of others, or by giving two laws a unified description, i.e. by showing 
that they are aspects of the same underlying process. The latter occurred when 
Faraday and Maxwell showed that electric and magnetic forces were 
intimately related; the former when Maxwell explained light in terms of this 
unified electromagnetic force. 

At the level of the particles described in § 1.4 (protons, neutrons, electrons 
and neutrinos), the result of this analysis is that there are the following four 
fundamental forces: 

1. Gravitation. This acts on all particles, but is so weak compared with the 
other forces that it is only important when large numbers of particles are 

considered. Thus it is the dominant force in astronomy, it is significant in the 
behaviour of everyday macroscopic objects, and it is utterly negligible in 
considering individual elementary particles. 

2. Electromagnetism. This acts on all charged particles, and also on the 
neutron because it has a magnetic moment. It holds the atom together, and is 
responsible for the configuration of the electrons in the atom, and hence for all 
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chemical behaviour; it is a lso responsible fo r a ll forces between atoms a nd 

molecules. Thus a ll macroscopic forces can be reduced to gravitation and 
electromagnetism; between them these two account for a ll the behaviour of 
·shoes and ships a nd sealing wax, of cabbages and kings'. 

3. The weak force. This acts on a ll particles. and is responsib le for the 
p rocesses ( l.llH 1.16). Its ma in macroscopically significant efTect is in 
radioactivity; it a lso plays a catalyt ic role in the chain of nuclear reactions 
which take place in sta rs. 

4. The strong force. This does no t ac t on leptons, but only on p rotons and 
neutrons (more generally, o n ba ryons and mesons - this is the reason for the 
collec tive name 'hadrons'). It ho lds p ro to ns and neutro ns together to fo rm 
nuclei, and is insignificant at dista nces g reater than w -ts m. Its macroscopic 

manifestatio ns are restricted to radioactivi ty and the release of nuclea r energy. 
The three fo rces which are relevant to elementary particles can be 

recognised in the three kinds of radioactivity: a- radia tion is caused by the 
stro ng fo rce, {3-radia tion by the weak force. a nd y-radia tion by the 
electromagnetic fo rce. 

These fo rces a re summa rised in Table 1.3. The figu res given for the strength 
and range o f the fo rces come from a comparison of the efTects they produce on 
two p ro tons. In some respects these resemble an ordinary Newtonian force 
between the p ro to ns, varying with the d istance between them as if the force 

was derived from a potential function 
ke - rtR 

V(r)=- -
1" 

( 1.2 I) 

fo r some n. This is a n inverse-power fo rce which is d iminished by an 
expo nential facto r a t distances la rger tha n a certa in distance R. the range of the 
fo rce. The strength of the fo rce is measured by the constant k. Note that the 
weak force does no t appear to be particula rly weak o n this reckoning; the 
reason for its apparent weakness is its very sho rt range rather than its intrinsic 
strength. 

Table 1.3. T he fou r fundamental forces 

Force Part icles affected Range Strength t 

G ravitation All co 10 - 39 

Electromagnetic Electron 
Proton 00 7 X 10 -J 

Neutron 
Weak All 10 - 11 m 4 xl0 - 3 

Strong Proton 10 - IS m 
Neutron 

t The unit of strength is hc/2rr where h is Planck's constant and c is the speed of light. 
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On passing to the level of quarks and leptons a further simplification 
becomes apparent: the weak and electromagnetic forces are seen as aspects of a 
single force called the eltdroweak force. This unified theory is due to Weinberg 
and Salam. Before we can see how it works we will need to look more closely at 
the description of fo rces between elementary particles. 

1.8. Particles of force Two of the forces listed in the previous section, the forces of gravity and 
electromagnetism, are familiar from macroscopic physics. In that context they 
are described by fields. A field of force is a vector-valued function of position 
F(r) which gives the force that would be experienced by a part icle at the point r. 
That definition appears to give the field only a hypothetical existence, but the 
development of the theory of fields, and particularly Maxwell's theory of 

electromagnetism, gave reasons for thinking of fields as having their own 
independent reality. For one thing, Maxwell's theory shows tha t 
electromagnetic effects take a finite time to travel from one material body to 
another; as a result of this, the field must be regarded as having energy and 
momentum of its own, even at points where there is no matter. 

A field is a continuou s function of position, and so its energy and 
momentum are continuously distributed throughout space; they are like the 
energy and momentum of a fluid continuum and quite different from the 
energy and momentum of a system of discrete particles. But consideration of 

two separate problems, those of black-body radia tion and the pho to-electric 

effect, leads to the surprising and puzzling conclusion that although the energy 
in the field ca nnot be localised, nevertheless it only exists in discrete packets. 

The problem of black-body radiation comprises a theo retical contradiction 
between electromagnetic theory and the statistical mechanics which is used in 
the kinetic theory of heat. Rayleigh and Jeans applied these theories to the 
problem of an insulated system of matter and radiation at a given temperature 
(for example, the inside of a closed oven which has settled down to a steady 
state, so that energy lost from the matter by emission of radiation is balanced 
by energy that it gains by absorbing radiation). They calculated the 
distribution of energy between the different frequencies of radiation. Their 
answer had the absurd feature that the total energy in the radiation is infinite ­
in other words, equilibrium between matter and radiation in an insulated 
enclosure is no t possible at any temperature, and the matter will always cool to 
absolute zero by emitting all its energy in the form of radiation. 

In 1900 Planck found a formula for the distribution in the radiation which 
fitted the experimental data, and showed that this formula would follow from 
electromagnetic theory and statistical mechanics if, instead of assuming that 

energy was a continuous quantity as Rayleigh and Jeans had, one assumed 
that it only took values which were integral multiples of a certain minimum 
quantity, called a quantum of energy. The size of this quantum varies with the 
frequency of the radiation; if the frequency is v the quantum of energy is 

E = hv, ( 1.22) 
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Fig. 1.7. 
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where his a universal constant which is now known as Planck's constant. This 
refers to the energy which is exchanged between radiation and matter. In 1905 
Einstein, pursuing the theoretical implications of Planck's work, showed that 
it gave grounds for the stronger assumption that the energy in the radiation 
only existed in discrete quanta. and he supported this assumption t by showing 
how it explained the photo-electric effect. In the photo-electric effect 
electrons are emitted from the surface of a metal when electromagnetic 
radiation is incident on the metal. The effect is only observed if the frequency of 
the radiation is greater than a certain threshold value v0 (which depends on the 
metal). If this condition is satisfied, radiation with a given frequency produces 
electrons with a range of velocities which depends only on the frequency (see 
Fig. 1.7). Varying the intensity of the radiation changes the number of 
electrons produced , but does not affect their velocities. Einstein explained 
these facts as follows: Suppose that to be liberated from a particular metal an 
electron needs an amount of energy W; this may be different for different 
electrons in the metal, but must be greater than a minimum value W0 which is 
characteristic of the metal. Suppose also that radiation of frequency v consists 
of a collection of objects (called photons) each of which has energy hv. Then if 
hv < W0 , a photon cannot give any electron enough energy to escape from the 
metal. Thus the threshold is explained, and identified as v0 = W0 /h. Now if 
hv> Wan electron which absorbs a photon acquires enough energy to leave 
the meral and has some energy left over, which appears in the form of kinetic 
energy. Thus its velocity is given by 

! mv2 =hv- W~hv- W0 =h(v- v0 ) , (1.23) 

and so the maximum velocity is entirely determined by v. Finally, increasing 

t Einstein's explanation of the photo-electric effect does not prove the existence of photons. In 
fact the photo-electric effect can be explained perfectly well on Planck's assumption that 
energy is only exchanged in multiples of hv. Einstein's pape r (ter Haar 1967) was mainly 
concerned with the properties of radiation by itself. For a review of arguments for the 
existence of photons see Scu ll y & Sargent 1972. 

The photo-electric effect: the 
shaded region shows the 

possible values of the velocity Velocity) 

of the emitted elect ron and the 
frequency of the incident 

radiation. 

Frequency 



Fig. 1.8. 
A monochromatic wave. 
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the intensity of the radiation increases the number of photons in it and 
therefore increases the number of electrons tha t are produced. 

This is almost enough to show that the electromagnetic field is made up of 
material part icles - almost, but not qu ite, since photons do not have definite 

positions like particles but retain the field-like characteristic of being spread 
through space. They also retain the property of a field that it can be cancelled 
by an opposi te field; thus they exhibit the typically wavelik e phenomena of 
diffraction and interference. 

Diffraction is exhibited by waves when they meet an obstacle. Instead of 
being cut off sharply by the obstacle, they spread in all directions from every 
point on the edge of it. This has the result that the shadow cast by the obstacle 

is not clear-cut, but has a blurred border whose width is o f the order of the 
wavelength of the waves casting the shadow. 

Interference occurs in any form of wave motion when waves from a source 
can reach some point by two different routes. The phenomenon is clearest 
when the waves are monochromatic, i.e. when the waves repeat themselves 
regularly with a definite frequency and wavelength. Then at any instant the 
disturbance will be a function of distance from the source of the type shown in 
Fig. 1.8; the height of the crests may vary with distance from the source, but the 
distance between successive crests will always be the wavelength i .. At a given 

place the disturbance varies with time as a simple oscillation. For interference 
to occur the wave must be coherent, i.e. the pattern must be maintained over 
long distances and times. (An exactly monochromatic wave is automatically 
co herent; an incoherent wave is one which is almost monochromatic, but the 
regular alternation shown in F ig. 1.8 is occasionally disrupted , as in Fig. 1.9.) 

Now if two waves arrive a t the same point by two different routes the 

disturbance will be the algebraic sum of the disturbances in the individual 
waves. If they emanate from the same source and a re pa rt of the same coherent 
wave train, the result will depend on the difference between the distances that 

the two waves have travelled. If this is a whole number of wavelengths. the 
vibrat ions from the two waves will be in phase, i.e. they reach a crest or trough 



Fig. 1.9. 
An incoherent wave: 

disruptions like that at X 
mean that the distance 

between successive crests 
sometimes differs from J.. 

Fig. 1.10. 
The two-slit experiment : at X 

the path difference is AH 2 + 
H 2 X -(AH 1 + H 1 X) and is 

equal to one wavelength; at Y 
it is AH 1 + H 1 Y ­

(AH 2 +H 2 Y) and is equal to 
half a wavelength. 
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together and therefore reinforce each other. If, on the other hand, the path 
difference between the waves is half an odd number of wavelengths, then the 
vibration due to one wave reaches a crest when the other reaches a trough and 
therefore one wave reduces the disturbance due to the other, or may cancel it 
completely. This is illustrated in Fig. 1.10 for the two-slit experiment, in which 
the waves from the source at A can reach the line BC only by travelling 
through one of two holes H 1 or H 2 in a screen between the source and the line. 
At a point X on BC, the path difference is AH 1X- AH 2X; if this is a whole 
number of wavelengths the disturbance at X is large, while if it is half an odd 
number of wavelengths the disturbance at X is small. Fig. 1.10 shows the 
intensity of the wave at points on BC , which is related to the amplitude of the 
vibration at these points, as a function of position on BC. 

Note that the two-slit ·experiment also involves diffraction, which occurs at 

B 

Intensity on BC 

c 
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the ho les H 1 and H 2. In general. whenever diffraction occurs it will be 
accompanied by interference: when a beam of waves spreads into the shadow 

of an obstacle, there is interference between waves coming from different parts 
o f the edge of the obstacle. This causes a bright spot at the cent re of the shadow 
of a small disc; in general, whatever the sha pe of the obstacle, there will be a 
pattern of alternating bands of high and low intensi ty at the edge of the 
shadow. This pattern can be enhanced if the obstacle has a regular st ructure, 
like the series of parallel scratches that make up a diffraction grating. Such a 
diffraction pattern is observed, for example, when X-rays pass through a 
crystal. The regula rly spaced atoms in the crystal constitute the obstacle; the 
emerging X-rays are concentrated in some directions in which the 
electromagnetic waves reinforce each o ther, while in other directions they 
cancel. 

These phenomena, which a re characterist ic of waves, are ha rd to reconcile 
with the idea that electromagnetic radia tion consists of pa rticles, but they 
ceased to g ive any reason fo r distinguishing bet ween pho tons and the particles 
described in the first hal f of this chapter when it was discovered tha t the latter 
also displayed wavelike properties. In 1927 Davisson and Germer showed that 
a beam of electrons passed through a crystal will emerge in a diffraction 
pattern just as a beam of X-rays does. The electrons behave like a wave whose 
wavelength is determined by the momentum of the electrons according to a 
relationship previously proposed by de Broglie, 

h 
p=-x ( 1.24) 

Diffraction by crystals shows electrons and photons both behaving in the 
same wavelike way; another indication that they are very similar in nature is 
provided by Compton scattering, which shows them both behaving in the same 
particle-like way. Compton investigated the response of free electrons to the 
incidence of a pla ne wave of monochromatic radiation, with frequency v and 
direction of propagation k, say. He found that each electron moved as if it had 
collided with a particle with energy hv and momentum h1•kjc, energy a nd 
momentum being conserved in the collision. The momentum acquired by the 
electron may have a component perpendicular to k and is not predictable. It is 
related (via conservation of momentum) to the momentum of a photon which 
emerges, travelling in a definite direction, from the collision. (This is in sharp 
contrast with the predictions of the classical theory of the interaction between 
a charged particle and the electromagnetic field, accord ing to which the 

particle should acquire momentum in the d irection k and should emit 
radiation in the form of a spherical wave.) 

Since the field was origina lly defined in terms of the force on a charged 
particle, saying that the field consists of photons amounts to saying that the 
force on a charged particle is caused by its abso rpt ion of or collision with a 
photon, a s in the photo-electric effect or Compton scattering. Thus the electric 
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Fig. 1.11. 
Feynman diagram for the 

fo rce between two electrons. 
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repulsion between two electrons is understood as in Fig. I. II. One electron 
emits a photon a nd recoils; the second electron absorbs the photon and 
acquires its momentum. (A picture like Fig. 1.11 is known as a Feynman 
diagram.) 

We have now come full circle in our view of forces, and have returned to a 
pre-Newtonian view in which forces do not exist apart from matter, but 
consist of the action of particles of matter in contact. However, this view is 
only obtained a t the cost of accepting apparently contradictory properties fo r 
matter, which behaves like particles in some circumstances and like a field in 
o thers. 

Bohr and Heisenberg based their explanation of these cont rad ictory 
properties on the principle that it is impossible to think of any physical system 

as having an independent reality, divorced from the observer; a t the level of 
smallness we a re considering, the physical processes used to observe the 
system will involve an inevitable interference with the system, which has an 
ineradicable minimum whose magnitude is of the order of Planck's constant h. 

This means that one must be chary of assuming that a property revealed by an 
experiment is simply a pro perty of the system under study, as one would in 
classical physics; what an experiment reveals is a property of the system and 
appa ratus together. Thus an experiment appropriate for waves may well show 

wavelike properties, while an experiment appropriate for particles shows 
particle-like properties. These are indeed contradictory in that they cannot be 
shown simultaneously, but they cannot be contradictory if rega rded as 
properties of a collective (system+ apparatus), since they refer to different 
coll ectives. 

To illustrate this , consider the two-slit experiment (Fig. I. 10) wit h a beam of 

electrons, emanating from a source at A, passing through the holes H 1 and H 2 , 

and impinging on a fluorescent screen at BC. This is an experiment 

appropriate to waves, and it elicits wavelike behaviour in the fo rm of an 
interference pattern o n BC. This can only be understood by saying that the 
wave passed through both holes. A particle must pass th rough one hole or the 
o ther; but this particle-like behaviour can only be demonst ra ted by changing 

the experiment and putting detectors next to the holes. The detector wi ll 
register particles at either H 1 o r H 2 , never both simultaneously; but now of 
course the interference pattern is lost. When the interference pattern is present 
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it contains an indication of particle-like behaviour, since it is not actually 
continuous but is made up like a television picture of dots caused by indi vidual 
electrons, but it is not possible to understand the pattern on the assumption 
that each of these electrons must have passed through one slit or the other. 

Heisenberg's uncertainty principle is a quantitative statement of these ideas. 
It asserts that it is impossibl e to set up an experiment which will prepare 
particles with precise values of both the position x and the momentum p in the 
x-direction. In general there will be uncertainty in both quantities, so that the 
position is only known to lie in a finite interval ~x, and the momentum 
similarly to lie in a finite interval ~p. The uncertainty principle states that these 
obey the inequality 

h 
~x-~p>--

7 4n ' 

so that they cannot be reduced to zero simultaneously. 

( 1.25) 

Heisenberg originally explained the uncertainty principle in terms of the 
uncontrollable change in momentum which is caused by determining the 

particle's position, as if the particle had definite values of both position and 
momentum but we were prevented from knowing them by the inevitable effect 
of our a pparatu s on the particle. The principles of quantum mechanics which 
have emerged since then deny that a particle can have definite values of 

position and momentum simultaneously: it can acquire a value for either one 
of them when an experiment is perfonned to measure it , but the value acquired 
will be unpredictable, and it is this forcing of a particular value on the particle 
that constitutes the uncontrollable effect of an observation on the system 
observed. As we will see in §2.4, insofar as ( 1.25) can be derived from the 
principles of quantum mechanics, the uncertainties ~x and ~pare statistical 
measures of the scatter in the precise values of x and p that the particle might 

take up on measurement. 

The uncertainty principle can also be regarded as an expression of the 
conflict between wavelike and particle-like properties. If we use de Broglie's 
relation ( 1.24) to express momentum in terms of wavelength, the uncertainty 
principle (1.25) becomes 

I 
~x · ~k ";;:!; 

4
n , ( 1.26) 

where k = .1.. - I is the wave number (the number of waves per unit length). Eq. 
(1.26) can be proved to be automatically satisfied by any continuous function 

of x if ~xis a measure of the range of x for which the function takes values of an 

appreciable size, and !:!k is a measure of the range of k which must be used if the 
function is represented as a superposition of waves with wave number k (i.e. 
functions sin 2nkx). Thus ( 1.26) expresses the impossibility of describing 
simultaneously particle-like properties (with a function which is localised a t a 

definite position x) and wavelike properties (with a function which has a 
definite wave number k). 
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Fig. 1.12. 
T he force between an electron 

and a positron. 

Particles and forces 

It is intuitively reasonable that there should be some such relationship as 
this, since the function will need to have non-zero values over a range of values 

of x (at least a few wavelengths) in o rder to establish the existence of even a n 
approximate repetition with that wavelength. Similar considerations should 

apply to a function of time, so that there is a corresponding inequality 

(1.27) 

where vis the frequency of a phenomenon which varies in time. Using Pla nck's 
relation ( 1.22) to relate frequency to energy would give us 

h 
!J.t·!J.E ?:o-. 

4n 
(1.28) 

However, it is hard to interpret ( 1 .28) in quantum mechanics, since time is not a 
property of a particle as position is. The time-energy uncertainty relation does 
not have the character of a well-defined and reasonably simple statement 
which can be rigorously deduced from the basic postulates, as the position­
momentum uncertainty relation ( 1.27) does; nevertheless, echoes of ( 1.28) can 
be heard throughout quantum mechanics. 

The uncertainty relation makes it possible to understand how F ig. 1.1 1 can 
describe forces of attraction as well as repulsion. As it is drawn, F ig. 1.11 looks 
like a picture of repulsion, and the accompanying description seems to allow 
only for repulsion; both the recoil of the first electron and the impact of the 
second electron with the photon drive the electrons away from each other. But 
the attraction between an electron and a positron can now be described as 
foll ows: the electron emits a photon with momentum directed away from the 
positron, and recoils towards the positron. This statement entails a degree of 
definiteness in the momentum of the photon. By the uncertainty principle 
there is a corresponding uncertainty in its position: it might be on the other 
side of the positron, so tha t it can hit it and knock it towards the electron. This 
is pictured in Fig. 1. 12, in which both wavy lines represent the same photon. 
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However, this process of attraction is usually represented by the same diagram 
(Fig. 1.11) as is used for repulsion. 

T hus it is possible for a pai r of particles to exchange a photon whose 
momentum can be directed in either direction along the line joining the 
particles. Which of the two possibilities actually takes place depends, as in 
classical mechanics, on the nature oft he force; in the case of electromagnetism , 
on whether the pa rticles have the same o r opposite signs of electric charge. 

In the processes depicted in Figs. l.ll and 1.!2 the photons have so me of the 
potential energy classically associated with the fo rce between the electrons, 
and so their energy is different from that of freely moving photons. For this 

reason they are called virtual (as opposed to 'real'); they cannot exist on their 

own, but must eventually be captured by a charged particle so as to form part 
of one of these processes. t This informal description of forces comes from the 
formalism of quantum field theo ry. It will not be possible in this book to show 
the full workings of this theory, but some of the mathematical fea tures which 
are represented in F igs. 1.11 and 1.12 will be described in §6.5, and the way in 
which they are used in quantum field theo ry will be sketched in C hapter 7. 

The basic events in electromagnetic interactions, according to this picture, 
are the emission and absorption of photons by charged particles. They a re 
each represented by a single vertex in a Feynman diagram. The strength oft he 
fo rce between two particles is given by the intensity of the field, which is 

proportional to the number of photons; hence the greater the force exerted by 
(or on) a particle, the more photons it will emit (or absorb). It follows that the 
charge on a particle is proportional to the probability that it wi ll emit or 
absorb a photon. 

The two basic events are shown in F igs. 1.1 3(a, b). Figs. 1.13{c, d) show two 
further basic events invo lving electrons, positrons and photons: the 

annihilation of an electron and a positron to fo rm a photon, and the creation 
of an electron-positron pair out of a photon. These events cannot occu r with 
real particles (see problem 1.5); one of the particles involved must be a virtual 
particle which moves on to another basic event to complete the real process, as 
in Fig. 1.14 which shows a possible sequence of events by which Compton 
scattering can occur. 

T he relation between Figs. l.l3(a) and 1.13(c) is that the outgo ing electron 
line in 13(a) is replaced by an incoming positron line in 13(c). Such a 
replacement is always possible at a vertex of a Feynman diagram. This leads us 
to adopt a new convention in drawing these diagrams. The a rrows that we 
have put on the lines up to now are unnecessary if it is understood that time 

t It is often stated that in these processes the principle of conservation of energy is violated by 
an amount flE for a time flt satisfying ( 1.28). This is incorrect. The only nonconservation in 
these processes is of kinetic energy; as in classical mechanics, the total energy is the sum of 
the kinetic and potential energies and the principle of conservation of energy holds exactly at 
all t imes. It can appear to be violated because the energy does not always have a definite 
value. 
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Fig. 1.13. 
Basic elect romagnetic events. 

Fig. 1.14. 
Compton scattering. 
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always runs from left to right across the page. Instead, we will use arrows to 

identify electrons and positrons by putting an arrow on every electron line in 
the direction of time, and an arrow against the direction of time on every 
positron line. The basic vertex is then given by the single diagram of Fig. J .15, 
but the lines can go in any direction on the page. A complete Feynman 
diagram will then contain solid lines of which some pa rts represent an electron 
and ot her parts a posit ron, but the arrows on the line follow each o ther from 
one end of the line to the other. Thus the Compton-scattering process of Fig. 
1.14 is drawn as in Fig. l.l6(a). {It is amusing to think of this process as 

involving a single electron which at one stage travels backwards in time and 
a ppea rs as a positron). Another possible process for Compton scattering is 
shown in Fig. 1.16(b); both of these processes are included in Fig. 1.16(c). An 
indication of the mathematical justification for these Feynman diagrams will 

be given in Chapter 6. 
A description of th is type applies to each of the fundamental forces listed in 

§1.7; each of them is associated with a particle like the photon, a field quantum 

(a) (b) 

(c) (d) 



Fig. 1.15. 
The basic electromagnetic 

vertex. 

Fig. 1.16. 
Compton scattering revisited. 
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for the force. These particles belong to a class called bosons. The particles 
introduced in Part A of this chapter, on the other hand, are called fermions. 
The characteristics of these two classes of particles will be defined in §2.6. 

The force of gravity, insofar as it is like the electromagnetic force, is expected 
to be associated with a particle called the graviton which, like the photon, 
travels a t the speed of light. But there are two reservations to be made. First, 
because of the extreme weakness of the gravitational force between elementary 
particles, gravitons have not been and are not likely to be experimentally 
observed. Secondly, the classical (i.e. non-quantum) theory of gravitation is not 

like electromagnetic theory, but involves the subtleties of general relativity. 
The problem of combining this with quantum theory has not been fully solved, 
and so it is not absolutely certain that gravitons are required by theory (though 
it does seem overwhelmingly likely). 

The weak force is associated with three bosons, called W +,W - and Z 0 . The 
w± particles carry electric charge, as indicated by the superscript, and when 

(a) (b) 

(c) 
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Fig. 1.17. 
n+v-+p + e- . 

Fig. 1.18. 
n--+ p+e- + v. 
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they are emitted or absorbed by a particle they change its identity. The 
exchange of W ± particles is responsible for processes like ( 1.16), as illustrated 

in Fig. 1.17. 
A related description, also involving the W - particle, can be given for 

neutron decay ( 1.13). The process is shown in Fig. 1.18; it involves the creation 
of an electron- antineutrino pair out of the W - which is emitted by the 

neutron. 
As we have seen, the strength of a force is proportional to the probability 

that the particle exerting the force will emit the associated boson. Thus the 

weakness of the weak force implies that the decay shown in Fig. 1.18 is a rare 
event, and therefore that the neutron has a long li fetime. 

Fig. 1.18 incorporates the same convention as the Feynman diagrams for 

electromagnetic processes: a backward arrow on a ferm ion line denotes an 
antiparticle. It wi ll be seen that Fig. 1.18 is obtained from Fig. 1.17 by rotating 
the neutrino line. 

Since the neutron and the proton are not elementa ry particles, the processes 
shown in Figs. 1.17 and 1.18 are not fundamental processes but can be 
analysed in terms of processes involving quarks, the constituents of the proton 
and neutron. Now a neutron can be converted into a proton by changing a 

n 



Fig. 1.19. 
n .... p+ w- at the quark level. 

Fig. 1.20. 
The basic weak events: there 
are also events involving the 

muon and the T in place of 
the electron. 
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down quark into an up quark; thus the event at the vertex n-+ p + W - of Figs. 
1.17 and 1.18 can be understood as being due to an event d -+ u + W - at the 
quark level, as shown in Fig. 1.19. This illustrates how emission or absorption 
of a w ± by a quark changes the flavour of the quark. 

The basic events of the weak force at the level of quarks and leptons are 
given by the vertices of Fig. 1.20. Like the basic electromagnetic vertices, they 
can occur in Feynman diagrams with the lines in any orientation. The vertices 
invol ving the Z 0 , in which the fermion (quark or lepton) remains unchanged, 
give rise to forces between fermions in the same way as the similar events 

involving the photon give rise to electromagnetic forces; in fact there is a close 
rei a tion between the Z 0 and the photon in the Weinberg- Salam theory of the 

electroweak force. A new feature of the Z0 processes is that the force is 
experienced by the neutrino; the observation of this force on the neutrino 
provided the first experimental confirmation of the Weinberg-Salam theory in 
1974. Thew ± and Z 0 particles were observed directly in 1983. 

The vertices of Fig. 1.20 invol ve only the first family of quarks and leptons. 
Subsequent families are involved in very much the same way: for the second 
family, for example, the basic vertices can be obtained from those of Fig. 1.20 
by substituting the corresponding particles (i.e. Jl - fore -, v~' for v. , s ford and c 
for u). There are also vertices involving particles from different families, like 

tha t of Fig. 1.21(a). By means of processes in which these vertices occur, the 

particles of the higher families decay to those of the first family. Thus all 
had rons containing a strange, charmed, beautiful or truthful quark eventually 
decay into nucleons. 

In the unified Weinberg-Salam theory, the basic electromagnetic vertex of 

p 

n 

~ w- 1 w+ ~ z• ~ z· 

~ ~ ~ ~ 
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Fig. 1.21. 
The remaining electroweak 

vertices. 
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Fig. 1.15 goes together with the weak vertices of Fig. 1.20. Because the wr 
particles have electric charge, there are also vertices involving these particles 

and a photon , as shown in Fig. 1.21(b). There are also vertices in which the 

photon is replaced by a Z0
, and finally there are four-line vertices in which four 

bosons meet. The existence of these vertices which involve field quanta only is 

characteristic of the particular mathematical form of this theory, which is a 

non-abelian gauge theory. The meaning o f this phrase will be explained in 

Chapte r 7. 

As we have seen , the strength of a fo rce is proportional to the probability o f 

the basic event which occurs in the Feynman diagram for that force. The other 

characteristic of the forces lis ted in Table 1.3 , their range, can also be 

understood in terms of the exchange of field quanta, as in Feynman diagrams. 

The electromagnetic force, which has infinite range, is due to the exchange of 
photons, which travel at the speed of light and therefore have zero rest-mass. 

In 1935 Yukawa suggested that bosons with non-zero rest-mass tt, travelling 

slower than light , would not be able to move as far as a photon could from the 

particle that emitted them before being absorbed by ano ther particle. The 

force they give rise to would therefore have a finite rangeR; it is given in terms 

of J.l by 

h 
R= - (1.29) 

cp 

where i1 = h/2n (a combination which occurs in quantum mechanics more 
commonly than h itself). The inverse relation between distance and mass 

shown in this equation is cha racteristic of quantum mechanics; in general, 

short distances correspond to large mass, or equivalently high energy or 

momentum. The same relationship can be seen in de Broglie's equation (1.24) 

and the uncertainty relation ( 1.25). 

Yukawa's proposal was made in the course of the search for a theory of the 
strong force. The range R = 10 - I s m quoted for this force in Table 1.3 would , 

according to (1.29), imply that the field quanta should have a mass o f J.l = 
200 MeV. Particles of about this mass, and with other properties appropriate 

to field quanta of the strong force, were discovered soon after Yukawa's 

suggestion; these are the pions (symbols n- , n°, n+). They give rise to forces 

between baryons as in the Feynman diagrams of Fig. 1.22. However, at the 

deeper level of quark structure it appears that the pions are not elementary 
bosons but are composite objects each made up of a quark and an antiquark. 

y X 
(a) (b) (c) 



Fig. 1.22. 
Nuclear rorces. 

Fig. 1.23. 
Nuclear rorces at the quark 

level. 

1.8 Particles offorce 33 

The processes of Fig. 1.22 can be analysed into more complicated processes, 

shown in Fig. 1.23, whose basic components are forces between quarks. The 
forces between baryons shown in Fig. 1.22 now appear as a residual effect of 

the forces between quarks which hold them together inside the baryon, in the 
same way as the forces between molecules which make ordinary matter cohere 

(the van der Waals forces) are a residual effect of the basic electromagnetic 
forces which hold electrons and nuclei together inside atoms. 

The field quanta of the interquark force, represented by curly lines in Fig. 
J .23, are called gluons. Emission or abso rption of a gluon does not change the 
fl avour of a quark, but it does affect its colour. There are six gluons 
corresponding to the six possible changes of primary colour; there are also two 

other gluons which do no t change the colour of a quark. The mathematical 
description of the relation of these eight gluons to the colours of quarks will be 
given in Chapter 6; we will see that the gluons form the same pattern as the 
eight baryons shown in Fig. 1.4 (the gluons being arranged in a colour 
diagram , whereas Fig. J .4 is a flavour diagram). 

The basic vertex of this force as it affects quarks is shown in Fig. 1.24(a). The 
probability of this event, and therefore the strength of the force, is determined 

by the colour of the quark, in a generalisation of the way in which the strength 
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Fig. 1.24. 
Basic vertices of the colour 

force. 

1 Parricles and fo rces 

of the electromagnetic force on a particle is determined by its electric charge. 
Now gluons must also be regarded as coloured (since they carry colou r from 
one quark to another), and so they themselves experience the same force as 
quarks. This means that there is a three-gluon vertex, Fig. 1.24(b). There is also 
a four-gluon vertex, Fig. 1.24(c), like the four-W vertex in the electroweak 
force: the theory of the interquark force is also a non-abelian gauge theory. 

Like single quarks, single gluons have never been observed directly, and it is 
thought that they never will be because the fo rce that binds them in hadrons 
does not fall ofT at large distances, so that they cannot escape. (However, there 
is speculation a bout the possible existence of particles consisting of a number 
of gluons and no quarks: these are called glueballs.) This feature of confinement 
is a complicated (and so far unproven) secondary eiTect in a force which is 

primarily an inverse-square fo rce with infinite range, so that gluons are 
massless particles like photons. 

The quantum theory of the electromagnetic force, which gave us our 
paradigm for the description of forces by means of Feynman diagrams, is 
called quantum electrodynamics (or QED). By analogy, the theory of the 
interquark force is called quantum chromodynamics or QCD. The unified 
theory of the electro weak force is sometimes called quantum flavourdynamics. 
These forces and their associated bosons (which are called gauge bosons 
because all the forces are described by gauge theories) are summarised in Table 
1.4. Tables 1.2 and 1.4 include all particles which are currently regarded as 
elementary. 

Table 1.4. The fundamental forces and their bosons 

Discovery 

Particles Gauge Theoret- Ex peri-
Force affected bosons Mass ical mental 

Gravitational All Graviton 0 

Electroweak Leptons Photon y 0 1900 1857 
and w± 81 GeV 1968 1983 
quarks zo 93 GeV 1968 1983 

Quantum 
chromod ynamics Quarks 8 gluons 0 1974 

(a) (b) (c) 
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Further reading Fuller accounts of the structure o f matter a t the elementary level of this chapter 
can be found in Einstein & Infeld 1938 (on the general structure of physical 

theory) , Weinberg 1983 (on the first suba tomic particles), Davies 1979, 
Po lkinghorne 1979, Dodd 1984 (at a somewhat more advanced level ), and 

Sutton 1985. See a lso O 'Brien 1974. Accounts of quantum mechanics at this 
level can be found in Andrade e Silva & Lochak 1969, Zukav 1979 and 
Polkinghorne 1984. Heisenberg's own exposition (Heisenberg 1930) and 
Feynman's introduction (Feynman et a/.1965) are particularly recommended. 

Problems on Chapter I 1. In electrolysis metal ions in solution are auracted to a negatively charged 

plate (the cathode) . Faraday's law sta tes that the current is 

FM v 
1= - ­

At 

where M is the mass of meta l deposited on the cathode in timet, the integer u 
is the valency of the metal and A is its atomic weight, and F is a constant 

which has the value 9.65 x 107 coulomb kg - 1 if I is measured in coulombs per 

second. Calculate Avogadro ·s number (the number of atoms o f atomic weight 

A in a mass of A kg). 

2. Calculate the mass of the electron in kg. [A charge of I coulomb fa lling 

through a po tentia l difference of I volt acquires energy of I joule. The speed 

of light is 3 x 108 ms- 1. All other necessary infom1ation can be found in this 

chapter.] 

3. An elect ron is suspended against gravity by an electric field between two 

plates 10 em apa rt. Find the voltage between the plates. 

4. Obtain the expression ( 1.8) for the energy o f the electron in the hypothetical 

decay ( 1.4). 

5. Show that an elect ron and a positron cannot annihilate to form a single real 

photon while conserving energy and momentum. Show that they can 

annihilate to form two real photons, a nd draw the Feynman d iagram 

representing this process. 

6. Show that the potential V(r) = qe - w/r satisfies V2 V=j! 2 Vexcept at the o rigin, 
and that if R is any region containing the origin, 

f VVdS=j! 2 I Vd 3r-47tq 
~R JR 

where 8R is the boundary of R. 



2 
Quantum statics 

In this chapter we will develop the mathematical apparatus which is needed to 
describe a physical system according to quantum mechanics. Our approach is 
basically deductive: we list the mathematical objects to be used and the 
properties assumed of them, and give precise statements of the fundamental 
postulates concerning physical systems and their relation to these 
mathematical objects. We then derive consequences of the postulates, in a 

form which can be compared with experimental results. The original 
postulates are justified to the extent that their consequences fit with the 
experimental facts - in other words, the only justification for the postulates is 
that they work. There can be no watertight argument leading from the 
experimental facts to the basic principles of the theory. 

This order of presentation reflects the general logical structure of scientific 

theories, but it makes an uncomfortable situation for the student, who is asked 
to accept some pretty peculiar statements without being given any reason to 
do so at the time. I will try to soften the shock by leading up to the postulates 
with an indication of how they are suggested by experiment; but it must be 

remembered that these arguments are different in nature from those following 
the postulates. The arguments preceding the postulates are not proofs, and 
you have every right to find them unconvincing. On the other hand, the 
arguments following the postulates are intended to be proofs (and are labelled 
as such), and if you find them unconvincing then one or the other of us is at 

fault. The symbol e announces a proposition which is to be proved, and • 
indicates that the proof is complete. Sometimes the proof of a proposition can 
be found in the discussion preceding the statement of it, and in that case the 

symbol • is placed immediately after the statement. 
The arguments in the first section of this chapter are entirely of the first, 

heuristic, kind. The precise mathematical development starts in §2.2. 

2.1. Some examples The description of particles and their behaviour given by quantum mechanics 
is fundamentally probabilistic. It does not offer definite predictions about 
what will happen in given physical circumstances, but can only state what 
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events are possible and how probable each of them is. We have already seen a 
number of phenomena that seem to call for this statistical approach: 

1. Radioactivity 
As was described on p. 5, it is not possible to predict when a particular 

radioacti ve nucleus will decay. Two identical nuclei may survive for different 
lengths of time before decaying, and no features have been discovered which 
would dist inguish the condition of the shorter-lived nucleus from that of the 
longer-lived. The only statement which can be made about a particular 

nucleus is to give the probabili ty that it will decay in a given time interval. 

2. Compton scattering 
The response of an electron to an evenly spread plane wave of electromagnetic 

radiation is unpredictable: it may emerge from the encounter t ravelling in any 
direction. Note that th is is what we would expect if the radiation is described as 

a collection of particle-like photons; no t being able to pred ict the result of the 
collision is a result of not knowing the precise positions of the photo ns. But if 

the radiation is regarded as a field the probabilistic nature of the effect seems 
more fundamental. 

3. Electron diffraction 
Probabilistic ideas can resolve the clash between the concepts of a particle and 
a field , or wave. When a beam of electrons is passed through a crystal and 
observed on a photographic plate, the diffraction pattern that it creates is not 
tru ly continuous but is made up of a number of dots, just like a newspaper 
picture, each dot being caused by a single electron striking the plate. The 
pattern is a statistical effect of the large number of electrons; each individual 
electron moves like a particle, but its motion can only be predicted to the 

extent of a statement that it has a high probability of moving to the bright part 
of the diffraction pattern and a low probability of moving to the dark part. 
This means that the motion of the electron must be described by a probability 
distribution in space, i.e. there exists a probability density function p(r) such 
that the probability that the electron will be found in a small volumed Vat the 

point r is p(r) d V. 
Let us examine the phenomenon of interference to see what it suggests about 

the funct io n p(r) . Consider any wave which has a definite frequency v. A wave 
does not necessarily involve the motion of a material medium (we speak of 

'crime waves' and 'heat waves'); in general, any quantity that varies in space 

and time can constitute a wave. We will usually call it a 'disturbance'. To say 
that it has frequency vis to say that it oscillates in time with frequency v and 
with an amplitude A and phase 4> which may vary from point to point. Thus at 
the point r the disturbance is given by 

f(r, t) = A(r) cos (wt + ¢(r)) (2.1) 



38 2 Quamum statics 

where w = 2n:v. It is convenient to express this by means of complex numbers: 

/(r, t)= Re [t/l(r)e - lwr] (2.2) 
where 

t/J(r) = A(r)e- ·~•J (2.3) 

(the choice of e- '"" rather than£!"' in (2.2) is purely a matter of convention). In 

many types of wave phenomena the intensity of the wave at the point r , i.e. the 
density of energy in the disturbance, is proportional to the square of the 
am plitude: 

J(r) = kA(r) 2 = klt/J(r)jl. (2.4) 

Now suppose two waves with the same frequency, but with different 
amplitudes A 1 (r) and A 2(r) and phases ¢ 1(r) and ¢ 2(r), are superimposed in the 
same region of ,space. Then the total disturbance is 

f(r , c)= A 1 (r) cos (we + </> 1 (r)) +A 2{r) cos (wt + </> 2(r)) 

= Re [{ t/1 1 (r) + t/1 2(r)}e- •wr ] (2.5) 

where t/1 1 and t/1 2 are defined as in (2.3); and the total intensity is 

J(r) =klt/l.(r)+t/1 2(r)j2. (2.6) 

T his is not equal to the sum of the intensities of the individual waves: it is larger 

than that when t/1 1 and t/1 2 have the same direction in the complex plane, so 
that the two oscillations are in phase, and smaller than either when they have 
opposite directions, so that the two oscillations are out of phase. Thus (2.6) is a 
mathematical description of interference. 

The fact that electrons show interference patterns suggests that underlying 
the probability density p(r) (which, like J(r), is a positive function describing 
how much effect the wave has at r) are amplitude and phase functions which 
can be put together into a complex function t/J(r). Then the probability is given 
by 

p{r)=klt/J(r)j2. (2.7) 

t/1 is called the wave function of the electron. 
From (2.7) we see that the probability that an electron will be found 

somewhere in a region V is k J v lt/l(r)il d V. If we take the region V to be the 
whole of space then, since the electron must be somewhere, the probability 
must be 1: this determines the constant k. Thus (2.7) can be replaced by 

p{r)= lt/J(r)il 

f it/lildV 
where the integral is taken over all space. 

(2.8) 

For (2.8) to make sense, the integral in the denominator must be finite, i.e. t/1 
must be square-integrable. In the mathematical development of quantum 
mechanics we will want to repeatedly differentiate t/1 and multiply it by the 
coordinates of r, and assume that the result bas the same properties as t/J. We 
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therefore impose the following conditions on tf;: 

WI if; is squa re-integrable, i.e. J Jtf;J 2 d V < <XJ . 

W2 if; has uniformly continuous partial derivatives of all orders, 
which are also square-integrable. 

W3 If f( r) is a ny polynomial in the coordinates of r, then the 
product ftf; is square-integra ble. 

By a wave function we will a lways mean a function if; satisfying Wl- W3. These 
conditions are not strictly necessary, but they make it possible to simplify the 
general discussion. In particular problems it is often convenient to relax these 
conditions; the justification for this will be discussed in §2.5. 

Note that the probability density (2.8) is unchanged if the function tf;(r) is 
multiplied by any complex constant c. Thus, as far as its position is concerned, 

the description of the particle given by the wave function ctf;(r) is the same as 
that given by tf;(r). This makes it permissible to assume tha t J Jtj; J2 d V = 1, which 
is convenient because it simplifies (2.8). A wave function satisfying this 
condition is said to be normalised. 

4. Polarisation of photons 
As another example of probabilistic behaviour for which we can give a 
mathematical description, consider the photons in a beam of polarised light. 
The classical description of a light ray as an electromagnetic wave is that it 
consists of oscillating electric and magnetic fields at right angles to each other 
and to the direction of the ray. We can concentrate on the electric field vector; 
at every point on the ray, this lies in the plane perpendicular to the direction of 
the ray. If at each point the electric vector oscillates along a fixed line in this 
plane, the light is said to be plane polarised (because the lines along which the 

electric vector oscillates at different points on the ray are all parallel to each 
other and together make up a plane); the direction of the electric vector is 
called the direction of polarisation. 

A polaroid ftlter is a sheet of material consisting of crystals aligned along a 
certain direction called thea xis of the filter. The material allows polli.rised light 
to pass through if its direction of polarisation is parallel to the axis of the filter, 
but not if it is perpendicular to it. If the light is polarised along a direction 

which makes an angle () with the axis of the polaroid, it destroys the 
component of the electric vector perpendicular to its axis. Thus if the electric 
vector of the light just in front of the polaroid oscillates as 

E(t) = E0 cos wt, (2.9) 

and if E0 = E1 + E 2 where E 1 and E 2 are parallel and perpendicular to the axis 
of the polaroid, then just behind the polaroid the light will have electric vector 

E(t) = E 1 cos wt. (2. 10) 

Thus the light emerging from the polaroid is polarised parallel to its axis. Its 
intensity, which is proportional to the square of the amplitude of the 
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Fig. 2.1 
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"~...: illations of the electric vector, is determined by JE 1J2; hence (see Fig. 2.1) 

intensity of transmitted light JEtl2 
=cos2 O. (

2
.
11

) 
intensity of incident light JE0 J

2 

What of the photons in such a beam of light? Each individual photon is 
~.: it her a bsorbed by the polaroid or passes through it, a nd since all the photons 
a re identical we cannot predict what will happen to a particular photon; we 
can only give the probability that it will pass through the polaroid. Since the 

intensity of the light is proportional to the number of photons in it, the 
proportion of the photons that pass through is cos2 0; this is therefo ret the 
probability that an individual photon will pass through. 

The photons which do pass through the polaroid make up a beam with a 

different direction of polarisation from the original beam. Thus passing 
through the polaroid changes the state of polarisation of the photons. 

The most general state of polarisation of a coherent beam of 
monochromatic light is not plane polarisation but elliptical polarisation. If we 
choose x- and y-axes in the plane perpendicular to the direction of mo tion of 
the light, the x- and y-components of the electric vector at any point oscillate 
independently, and in general have different phases: 

Ex(t) = Exo COS (w t + cPx), Ey(t) = Eyo cos (wt + ¢) (2.12) 

(the light is plane polarised when c/Jx= c/Jy). This means that the tip of the vector 
E(t) moves round an ellipse in the xy-plane. As in our previous discussion of 
waves, we can combine the amplitudes and phases to form complex numbers 

(2.13) 

t See the note on probability on p.41. 

ax is of polaroid 

E, 
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Then the electric vector is given by 

E(t)= Re [1/te- iw'] 
where 

l{t=c 1 i+c~, 

and its intensity is proportional to 

1/t · f = lctl2 + lc2l2 

41 

o·, 

(2.14) 

(2.15) 

(2.16) 

(the bar denotes complex conjugation). The condition of an individual photon 
in such a beam can be described only to the extent that the whole beam can be 
described; it is not possible to distinguish different photons. Thus the 
polarisation of a photon is described by the vector E(t), or equivalently (the 
frequency w being given) by the constant vector l{t. But if 1/t is multiplied by a 
real number r the only effect on the beam is to change its intensity, i.e. the 
number of photons in the beam; thus a photon in the beam described by rl{t is 
in the same state of polarisation as one described by l{t. Also , if 1/t is multiplied 
by a complex number of the form e;o the only effect is to change the phase of the 
oscillation (i.e. the time at which E passes through a particular point of its 
ellipse) but not the shape of the ellipse. It is found that it is impossible to 
determine the phase of the oscillation for a single photon (there is an 
uncertainty relation between the phase and the number of photons in the 
beam): the polarisation of a photon is defined purely by the shape traced out by 
the electric vector. Thus e;01/t describes the same state of polarisation as 1/t. 

We can summarise this mathematical description of the polari~ ltion of a 
photon travelling in the z-direction as follows: 

1. every state of polarisation corresponds to a vector 1/t of the type (2.15) 
(we will call such a vector a polarisation vector); 

2. if 1/t is such a vector and cis any complex number, cl{t represents the 

same state of polarisation as 1/t. 

A note on probability Since probability is so fundamental in quantum mechanics, it may seem 
surprising that we have assumed that the reader already knows what it means, 
and have not explicitly defined it. It is not in fact possible to give a full 
definition of probability in elementary physical terms. As with other primitive 
terms in physics and mathematics, the most one can do is to give a partial , 
implicit definition by stating the properties that probability has, in axiomatic 

fashion. 
We are concerned with the probability of a physical occurrence a, which we 

will describe as the result of an experiment E. The probability will depend on 
the conditions at the beginning of the experiment, i.e. on the state 1/t of the 

system being investigated; it is denoted by pr(a I 1/1). Its properties are as 
follows: 

Pl Suppose E is an experiment with possible results a 1 , ... , an 
which are exhaustive and exclusive, i.e. one and only one of them must 
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happen. The pro bability of the result a; given the initial state t/J is a real 

number pda; I t/J) sat isfying 

(i) O~pdadt/J)~ I ; 
II 

(i i) L pe(ad t/J) = I. 
i : l 

P2 If a;, ai, ... , a, are different possible results of the experiment E, 
the probability that one of them will happen given the initial state t/J is 

pdct; or ai or··· or a, I t/J) = PE(ad t/t) + · · · + pe(a,l t/J). (2.17) 

P3 Suppose E and F are independent experiments, i.e. there is no 
causal influence of one of them on the other a nd no common causal 
influence on both of them. If a 1 , ..• , am a re the possible resu lts of E 
and /31 , ..• , f3i are the possible results ofF, the probability that the 
result of E (with initial state t/J) will be o:; and the result ofF (with initial 
state ¢) will be f3i is 

PE&F(ct; and f3ilt/J and ¢)=p£(a;lt/J)pF(f3i!¢). (2.18) 

P4 Suppose the experiments E and Fare linked in such a way that 
the initial state ofF is determined by the result of E. Let ¢, be the 
initial state ofF which follows from the result a of E. Then the initial 
states forE are initial states for the combined experiment E & F , and 
the probability that E will have the result o: and F will have the result 
{3, given initial state t/J, is 

PE&F(a and f3lt/J)=pE(alt/J)PF(f31¢.). (2.19) 

If the set of possible results is infinite, then the probability must be regarded 
as a measure on this set, i.e. a function of its subsets, in the way that is described 

in probability textbooks (e.g. Gnedenko 1968). Thus, for example, if E is the 
experiment of measuring the position of a particle and the initial state of the 
particle is specified by a normalised wave function t/J(r), the basic probability 
statement is 

P£(particle will be found in region VI t/J) = fv jt/J(r)j2 d V (2.20) 

It follows from Pl-P3 that if the experiment E is repeated independently a 
large number of times with initial state t/J, the probability is close to I that the 
proportion of experiments which have the result a is close to PE(a I t/J). In order 
to explain the quantitative notion of probability we need only add the 
qualitative statement that if the probability of an event is close to I then the 
event is very likely to happen. This also shows how the probability of a result is 
to be measured: the experiment is repeated a large number of times, and the 
probability of the result a is taken to be the proportion of times that this resul t 
occurred. The number so obtained is not certain to be exactly the probability 
being measured, but it is very likely to be close to it (which is as much as can be 
said of any experimental measurement). 
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It is often said that the notion of probability is only applicable to repeatable 
experiments (or that there are two kinds of probability, of which the kind that 
refers to single events is not relevant to physics). The motivation behind this 
distinction is the desire to accept only testable statements as meaningful, and 

as we have seen the only way to test a probability statement about the outcome 
of an experiment is to repeat the experiment a large number of times and 
observe the proportions of the various outcomes. But one can only repeat an 
experiment a finite number of times, and any finite collection of repetitions of 
the experiment can be regarded as a single experiment to which one must 
assign probabilities, in defiance of the above injunction. Thus the distinction 
between the two kinds of probability is logically shaky. 

An alternative view of probability (not usually adopted in physics books) is 
that all probability is of the kind which is appropriate for single events: a 
statement about the probability of an event is a statement of the speaker's 
degree of belief that the event will occu r, as shown by the odds one will accept 
in gambling on the event. This is logically unassailable, but is clearly not a 

suitable concept to use in framing objective laws of nature. 
Our attitude in this book will be that a statement about the probability of an 

outcome of an experiment has consequences both for the degree of belief with 
which a rational being should believe in this outcome, and for the likely result 

of a series of repetitions of the experiment, but it cannot be reduced to either of 
these. It implies them but is not implied by them; they explain the probability 
statement but do not define it. 

Attempts to define probability more explicitly than this are usually either 
circular (involving an appeal to 'likeliness') or mysterious (involving concepts 
like 'propensity' which are no more transparent than that of probability). This 
is not to say that the question of what probability means, or ought to mean, is 
not interesting and important; but the answer to that question, if there is one, 
will not affect the properties of probability that are set out here, and we can 
proceed without examining the concept any further. 

2.2. State space We now have two examples of properties of a quantum-mechanical system, for 
each of which we have given a mathematical description. In each case there is a 
mathematical object which describes the state of the properties we are 
interested in: the state of an electron as far as its position is concerned (igno ring 
any other properties it may have) is described by the wave function 1/J(r), while 
the state of polarisation of a photon (ignoring its position, and assuming it has 
a particular direction of motion) is described by the polarisation vector 1/J. (The 
word 'state' , which has already appeared several times in this book, is to be 
understood for the time being in its ordinary-language sense, as when a mother 
complains to her teenage daughter 'Look at the state of your room.' It will 
eventually be given a precise technical meaning, but we are not yet in a 

position to define this.) The objects 1/f(r) and t/1 are very different 
mathematically (as one might expect, position and polarisation being very 
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different physical properties), but they share certain features which must be 
present in the description of any quantum system. We will now embark on a 

general description of these fea tures, using the electron and the photon as 
examples. (Although we are ignoring some properties of each of these, we will 
regard them as complete physical systems. Thus for the purposes of this section 
an 'electron' is a particle with position but no internal properties - we will also 
call such a particle a simple particle - and a 'photon' is a particle with 
polarisation but no position and a fixed direction of motion. In §2.6 we will 

discuss how to put different properties together.) 
Because we want to cover a number of different kinds of quantum system , 

the discussion will be mathematically abstract: we will not specify exactly what 

mathematical objects we are talking about, but will be content to say what 
properties they must have in order to be capable of describing a quantum 
system. These unspecified mathema tical objects will be denoted by symbols 
like II/I ); the marks I) round the symbol indicate that it describes the state of a 
quantum system, ra ther as in mathematical handwriting a wavy line under a 
symbol indicates that it denotes a vector. Even when we are considering a 
definite system, so that we know exactly what the mathematical objects are, we 
will continue to use this general notation. This has the same sort of advantage 
as vector notation fo r three-dimensional vectors, in which one is not 

committed to using any particular set of coordinate axes. 
The mathematical objects II/I ) are called state vectors. The mathematical 

properties that they are required to have can be summarised by saying that 
they form a complex vector space with an inner product. The statement that 
they form a complex vector space means that the following operations are 
possible: 

Sl Scalar multiplication. If II/I ) is a state vector and c is a complex 
number, there is a state vector ell/! ) . 

S2 Addition. If II/I 1) and II/I 2 ) are any two state vectors, there is a 
state vector 11/1 1) +11/1 2). 

These operations obey the rules 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

ll/!1 ) + ll/lz) = ll/lz ) +II/I 1) ; 

ll/!1 ) +(11/!z) + ll/!3) ) =(II/I 1) + ll/lz ) ) + ll/!3); 

c(l!/1 1) + ll/lz))=cJI/!1) + cJ I/Jz); 

(c1 +c2)JI/I)=cdi/J)+czll/l) ; 

c 1 {czJ!/1) ) = (c 1 Cz)II/J ) ; 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(vi) If c =O, ell/!> is always the same object, which is called the zero vector 
and denoted by 0. 

The set Y of all state vectors, together with the zero vector, is called state 

space. (Note that the zero vector is not written with the marks I) and is not 
regarded as a state vector; we will see the reason for this shortly.) The state 



2.2 Swre space 45 

space for the position sta tes of an electron is the set of all wave functions 1/J(r) 

satisfying Wl- W3 (p. 39); the state space for the polarisation states of a photon 
is the set of all polarisation vectors of the ~orm (2.15). It is left to the reader to 
verify that these satisfy Sl and S2 with the usual meanings for addition and 
scala r multiplication. 

The property Sl essentially says that state vectors involve complex 
numbers: we have seen in our two examples that the use of complex numbers 
reflects the fact that we are concerned with oscillatory phenomena. It is a lso 
true in both of these examples that if II/I) is any state vecto r. then a scalar 

multiple ell/f) describes the same physical state of the system as II/I) . We will 
assume that this is true for any system. (This may seem to make scalar 

multiplication unnecessary, but its significance becomes apparent when we 

consider addition: II/I 1 ) +ell/! 2 ) does not describe the same state as II/I 1 ) +II/I 2 ) 

if c =F 1.) It now follows that the zero vector docs not describe any physical state 

(for. if it did, it would describe et·ery state. being a multiple of every state 
vector). Again, this is a feature of our examples: if the polarisation vector is zero 
there is no electric field and therefore no photon. and if the wave function is 
zero there is no probability of finding an electron anywhere, and therefore no 
electron. 

Property S2, the possibility of addition, is at the heart of much specificall y 
quantum-mechanical behaviour. It is the possibility of adding, o r 
superimposing, two waves that gives rise to interference phenomena, for 
example. The statement that this addition is always possible is called the 
principle of superposition. It is closely connected with the probabilistic nature 
of quantum mechanics; for example, in the case of an electron, if 1/1 1 (r) is a wave 
function which is localised in a region V1 and I/J 2(r) is localised in a separate 
region V2 , then 1/1 1 + 1/12 is a wave function describing a state of the electron in 
which it might be found in V1 and might be found in V2. 

In general, ll/1 1) +11/12) describes a state of the system in which it might 
behave as if it was in the state described by the state vecto r ll/1 1 ) , and it might 
behave as if it was in the state described by ll/1 2 ) . By using complex coefficients 

we can form a state vector c1ll/l 1 ) +c 2ll/! 2) which describes a state in which the 
relative probability of these two forms of behaviour depends on the relative 
size of the coefficients c 1 and c2 . A precise statement ofthjs will be given in the 
next section; it will require one further mathematical property of the state 
space, namely 

(i) 

(ii) 

S3 Inner product. For any two state vectors 1¢> and II/I) there is a 

complex number (c/J I 1/1) called their inner product which has the 
properties 

if ll/l)=c1ll/! 1) +c2ll/!2 ), then 

<¢I 1/!>=c~<¢ I 1/1> +c2<c/J I 1/1>; 

<1/11¢>=<¢11/1> 

(2.26) 

(2.27) 
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(iii) 

so that if l4>>=c1 l4> 1) +c2l¢2), then 

<<P II/I>=c1 14> dl/l>+c2<4>2II/J>; 
for any II/I) , ( 1/1 1 1/1 ) ~0; if ( 1/1 I I/I> =0, then 11/1) =0. 

(2.28) 

(2.29) 

For the two systems we have been considering the inner product is defined 
as fo llows: 

For the states of motion of an electron, for which the state vectors a re wave 
functions, the inner product is 

<<P I I/!) = I <fJ( r)ljl(r)dV, (2.30) 

the integral being taken over all space. It can be shown (problem 2.1) that this 

integral is finite if ¢ a nd 1/1 are squa re-integrable. 
For the polarisation sta tes of a pho ton moving in the :-direction, for which 

the state vectors are polarisation vectors 1/J = c 1 i +eli, the inner product is 

(2.31) 

From now on we wi ll stick to the ket notation for polarisation states, and we 
will wri te the general polarisa tion state vector as 

(2.32) 

where I<Px> a nd 1¢>,) describe the states with polarisation vectors i and j . Eq. 
(2.32) has the direct physical meaning that the most general oscillat ion possible 
for the electric vector in light which is travelling in the :-direction is a 
superposition of oscillations along the x- and y-axes with different amplitudes 
and phases. 

The statements in this section about state vecto rs constitute the first set of 
postulates of quantum mechanics. We collect them together as 

Postulate I (the principle of superposition). The state vecto rs of a 

quantum system belong to a complex vector space with an inner 
product, i.e. they satisfy Sl--83. Every non-zero state vector II/I> 
describes a physical state of the system, and every non-zero scalar 
multiple of II/I) describes the same state. Every state of the system is 
described by a non-zero state vector and its multiples, but by no other 
state vecto r. 

It is often convenient to restrict the choice of a state vecto r to describe a 
particular state by requiring that it should satisfy ( 1/1 II/I>= I. Such a state 
vector is said to be normalised. This requirement does no t determine the state 
vector uniquely, since it can still be multiplied by a complex number of the 
form d~ (which is known as a phase factor). 

Two state vectors 14>) and II/I) are said to be orthogonal if ( 4> II/I)= 0. A set of 
state vectors II/I 1 ) , II/I 2 ), • •. is orthonormal if 

{
1 if i=j, 

( 1/Jd 1/!) =bij= 0 if i#j. (2.33) 
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A set of state vectors II/I;) is complete if any state vector II/I) can be expressed in 
the form 

II/I> = c ~ II/II) +c2ll/!2) + · · ·. (2.34) 

If the 11/!i) are orthononnal, the coefficients ci in (2.34) are given by 

Ci=(I/Ji i i/J). (2.35) 

We will assume that an orthonormal complete set of state vectors exists for any 
state space. The number of elements in an orthonormal complete set of state 
vectors is called the dimension of the state space. If the dimension is infinite, so 
that the right-hand side of (2.34) is an infinite sum, questions of convergence 

will arise. We will not explore these questions in this book (see the note on 
Hilbert space a t the end of §2.5). Our procedure in the rest of this chapter will 
be to give proofs which are valid if the state space is finite-dimensional , and 
then (in §2.5) state without proof what results are true for an infinite­
dimensional state space. 

2.3. The results of The second general principle of quantum mechanics gives a statement of the 
experiments physical interpretation of the state vector by relating it to the properties of the 

system in the corresponding state. As we have seen, these properties cannot in 
general be known with certainty; we can only state the probability that an 
experiment to determine them will have a particular result . 

Suppose a photon whose state of polarisation is described by the state 
vector II/I) encounters a pola roid filter with its axis in the x-direction, and we 
ask whether it will pass through. It the photon is polarised parallel to the axis 
of the filter, so that II/I>= I<Px>• then the answer will certainly be yes; if it is 
polarised perpendicular to the axis, so tha t II/I)= l</>y), the answer will certainly 

be no. In general, however, when II/I> =c 1ll/l x> +c2 ll/ly), light passing through 
the polaroid will have its intensity reduced by a factor 

lc1l2 

(2.36) 

(cf. (2. 11)), and so for an individual photon there is a probability p that it will 
pass through. If it does pass through, it will emerge polarised in the x­

direction; this state is particularly associated with this experiment, and is 
called the 'eigenstate' corresponding to the result of passing through the 
polaroid . The eigenstate is related to the probability p of this result when the 
system is in its original state, described by the state vector II/I); for the 
eigenstate is described by the state vector l<l>x), and p is given by 

l<<t>,ll/!>12 

p <1/111/1> 
(2.37) 

The eigenstate corresponding to the result of not passing through the 
polaroid is the state of being polarised parallel to the y-axis, described by the 

state vector 1</>y), and the probability of this result is determined by the inner 
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Fig. 2.2. 
Double refraction. 
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product ( c/Jy I 1/J) . This result , however, differs from the result in which the 

photon does pass through the polaroid , for if it happens the photon does no t 
emerge in the associated eigenstate; instead it is destroyed by the experiment. 

This is a complication which we can do without at this stage; we wish to 
consider systems which can be observed in an experiment, and which, 
a lthough they may be affected by the o bservation, remain intact after it. For 
this reason we will now switch our attention from a pola ro id filter to a doubly 
refracting (or birefringent) crystal. This is a crystal lik e Iceland spar which has 
different indices of refraction for light polarised in the x- andy-directions (the 
x- and y-axes being inherent in the crystal as the axis of a polaroid is inherent 
in the polaroid). A narrow beam of light entering the crystal at an angle will 

therefore emerge split into two beams as in Fig. 2.2, one beam Bx pola rised in 

the x-direction and the o ther BY polarised in the y-direction. An individual 
pho ton travelling in the direction of the original beam will emerge along the 
path of Bx if its state vector is lc/Jx) and along the path of By if its state vector is 
lc/Jy); if its state vector is jl/l), there is a probability p (given by (2.37)) that it will 
emerge in the direction Bx, when its state vector wi ll have become lc/Jx), and a 
probability I-p that it will emerge in the direction By, when its state vector 

will have become lc/Jy)· 
The polaroid filter and the doubly refracting crystal illustrate a distinctio n 

between two types of experiment which can be observed in classical physics as 
well as in quantum physics. In an experiment of the first kind the experiment 
determines some property of the system and leaves the system with the 
property which has been determined; thus if the experiment is repeated 
immediately afterwards it will give the same result. For example, a 
determination of the momentum of a particle by measuring its time of flight 
thro ugh a known distance is an experiment of the first kind; so is an 
experiment to determine whether a photon is polarised along the x-axis o r the 
y-axis by passing it through a doubly refracting crystal. In an experiment of the 
second kind the property being determined is changed by the experiment; it 
may be possible to calculate the amount of this change, but the significant 
point is that if the experiment is immediately repeated on the same system, it 
will give a different result from when it was first performed. For example, a 

Crystal 

B 
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measurement of the momentum of a particle by observing its collision with a 
known mass is an experiment of the second kind; so is an experiment to 

determine the direction of polarisation of a photon by seeing if it passes 
through a polaroid filter. For simplicity, we will only consider experiments of 

the first kind . 
In general, an eigenstate of an experiment on a quantum system is a state of 

the system in which the result of the experiment can be predicted with 
certainty. The eigenstate is non-degenerate if it is the only state in which this 

particular result will occur; in this case the result is also said to be non­

degenerate. 
We can now give a general statement of what predictions can be made about 

the result of an experiment. 

Postulate H. Let o: be a non-degenerate result of an experiment Eon a 
quantum system, and let II/I,) be a no rmalised state vector describing 
the eigenstate associated with a. Then when the system is in a state 
II/I), the proba bility that the experiment will have the result o: is 

( 1.1,) 1<1/1. 11/1>1
2 

(2.38) 
P EO: 'I' <1/111/1> 

The following statement is a consequence of the definitions of 'eigenstate' 

and 'experiment of the first kind', but we state it as a postulate in anticipat ion 
of the general case: 

Postulate III. Suppose E is an experiment of the first kind. If the result 
of E is o:, then immediately after the experiment the system will be in 
the eigenstate associated with o:. 

For a general statement, we must take account of degenerate results, i.e. 
results which are associated with more than one eigenstate. Let the state 

vectors II/I 1 ) and II/I 2 ) describe two eigenstates of an experiment E, in both of 
which the experiment would give the result o:. According to the general 
considerations of the previous section, a superposition c 1 11/11 ) + c2ll/l 2 ) should 
describe a state which will have the characteristics of one of the two 
eigenstates, with probabilities determined by the coefficients c 1 and c2 • But as 
fa r as E is concerned, the characteristics of the eigenstates are the same, so the 
superposition state should also have them: it should also be an eigenstate of E 
with the result o:. Thus the set 9". of all state vectors which describe eigenstates 

of E with the result o: has the property that if II/I 1 ) and II/I 2 ) are state vectors in 
Sf. so is cdl/!1 ) +c2ll/!2 ): 9". is a vector subspace of the state spaceY:' It is called 
the eigenspace of E associated with the result o: . 

If II/I) is any state vector, not contained in 9"., it can be written as a sum of a 
state vector in 9". and one which is orthogonal to every vector in 9" •. To prove 
this, let 11/1 1 ) , 11/1 2 ) , .•. be an orthonormal complete set of states for 9"., and 
write 

II/I>= L: cd i/Ji> + W> (2.39) 
i 
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Fig. 2.3. 
The projection operator. 
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where c; = ( t/Ji I t/1). Then It/!'> is orthogonal to each lt/J i) and therefore to every 
vector in .51',. The other term , which belongs to .51',, is called the orthogonal 
projection of lt/1> onto .51'. and denoted by P, lt/1 >: 

P.lt/1>= L lt/J) ( t/JM>· (2.40) 

The situation is pictured in Fig. 2.3 by taking .51', to be a plane in the space of 
real three-dimensional vectors. 

P., which is called the (orthogonal) projection operator onto .9"., is an 
example of a very important type of mathematical object. A linear operator A 

on state space is a rule which associates to each state vector lt/1> another state 
vector Alt/1> in such a way that 

A(alt/J> +blt/l))=aAit/1> +bAit/!> (2.41) 

for any two state vectors lt/1), 1¢ >and any two complex numbers a, b. It is easy 
to see that P, is a linear operator. 

In this situation where there is not a unique eigenstate associated with the 
result ex of the experiment E, we must expand on Postulate II by specifying just 
which element of the eigenspace is to be used for lt/1.> in (2.38). The state vecto r 
P,lt/1 > is the nearest element of .51'. to lt/1 >(in a certain precise sense: see problem 
2.3), and it seems a reasonable choice. However, P,lt/1> is not normalised: its 

inner product with itself is L lcil 2
, which is equal to <tfJIP,I t/1>. Taking account 

of this, we arrive at the following general form of the postulate concerning the 
results of experiments: 

Postulate II (continued). In general, if the result a is degenerate, then 
the state vectors describing the associated eigenstates of E form a 
vector subspace .51'. of state space. The probability of the result ex when 
the system is in the state described by the state vector lt/1> is 

<tfJIP.It/1> 
PE(exlt/J) ( t/Jit/J ) (2.42) 

where P. is the orthogonal projection operator onto .51' •. 

Note that in terms of the orthonormal complete set of states lt/1 1 ), lt/1 2 ), .•. for 
.51'., (2.42) can be written 

(2.43) 
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This makes it clear that (2.42) is a generalisation of (2.38) to the case where 
there a re several eigenstates to be considered. 

It is also necessary to postulate which of the possible eigenstates the system 
is in after the experiment, and again P«lt/1> is the obvious choice: 

Postulate III (continued). If the result of the experiment is a, then 
immediately after the experiment the system will be in the state 
described by the state vector P,lt/1) . 

This is called the projection postulatet . 
From P ostula tes II and III we can deduce some properties of the state 

vectors which describe eigenstates of an experiment E (eigenstate vectors of £ ). 

e2.1 If the experiment E always gives an unambiguous result, then 

(i) eigenstate vectors associated with different results are orthogonal; 
(ii) the eigenstate vectors of E form a complete set. 

Proof (i) Let II/I.) and 11/Jp) be eigenstate vectors associated with different 
results a and {3. First suppose that a and f3 are non-degenerate; then when the 
system is in the eigenstate described by 11/111 ) the experiment will certainly give 
the result f3 and so the probability of the result a is zero; hence, by (2.38), 

<1/1. 11/J,J) =0. 
Ifthe result a is degenerate, then the conclusion of the first paragraph would, 

by (2.42), be ( 1/111IP.II/Ip) =0. But, as we saw in the lines preceding (2.42), 

( 1/JfJ IP.I I/Ip) = (</> 14>> where I<P> =P. It/111 ). (2.44) 

Hence, by the positivity of the inner product, (2.29), < 1/JfJIP.I t/1 p) = 0 implies that 
P.l t/1/i) = 0; in other words, 11/1/i) is orthogonal to every state vector II/I.) in Y •. 

(ii) Now let a , , a 2 , ..• be all the possible results of E. If they are all non­
degenerate, let II/I 1 ) , II/I 2), ... be normalised state vectors describing their 
eigenstates. Let II/I) be any state vector, and write 

W>= II/J) - (c,ll/l, ) +c211/12)+ ·· ·) (2.45) 

where c;= ( I/Jd 1/J) . Then if 11/J') were non-zero it would describe a possible 
state of the system. But because the II/I;) are normalised and mutual,ly 
orthogonal, ( 1/1; II/I') =0 for each i, and so the probability of any result a; 
would be zero when the system is in the state described by 11/J') . Since the 
experiment must give some result, it follows that II/I') does not describe a state 
of the system, and so 11/J'> = 0 by Postulate I. Hence II/I> can be expanded in 
terms of the eigenstate vectors II/I;). 

In the general case we can use the projection operators P 1, P 2, ..• associated 
with the results a 1, a 2 , . .. and write 

(2.46) 

By part (i), the P;ji/J) are all orthogonal to each other; it follows that 

P;Pilt/1) =0 ifi#j, (2.47) 

t Probably first formulated by Dirac, though it is often erroneously attributed to 
von Neumann. 
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while 
(2.48) 

Using these in (2.46) gives P;jl/t) = 0 for each i. Hence, by (2.43), the probability 

of any result a ; is zero and so, as before, 11/t'> = 0. Thus II/I ) can be written as a 
sum of eigenstate vectors, which therefore constitute a complete set. • 

From now on we will follow common usage, which is careless of the 
distinction between states and state vectors. Thus we will talk of 'orthogonal 
states', 'a complete set of states', and say that a system is 'in the state 11/t ) '. In 
circumstances where this is likely to lead to confusion we will revert to the 
more pedantic style of the last two sections. 

2.4. Observables An observable is a physical quantity which can be measured by an experiment, 
of the type considered in §2.3, whose result is a real number (the measured 

value of the observable). The possible results are called eigenvalues; each is 
associated with an eigenstate (or possibly a set of eigenstates). From these 
eigenvalues and eigenstates we can construct for any observable A a 
corresponding linear operator A; this will then describe the observable 
mathematically just as the state vectors describe the states of the system. 

Let II/I 1 ), II/I 2 ), ..• be a complete set of eigenstates of the observable A, and 

let a 1 , a 2, .•. be the corresponding eigenvalues. We define the operator A as 
follows: 

If ll/t) =c 1 ll/t 1)+c 2ll/t 2)+ .. ·, } 
(2.49) 

then All/t)=c,adl/t,) +czrl.zll/tz) + · · ·. 
Then 11/t;) and tx; are eigenvectors and eigenvalues of A in the mathematical 
sense, i.e. 

AII/I;) =a;ll/t;). (2.50) 

A linear operator is called hermitian if 

(2.51) 

for all states 1¢) and 11/t) . We now prove that this is a property of the operator 
we have constructed. 

e2.2 If A is any observable, the corresponding operator A, defined 
by (2.49), is hermitian. 

Proof We can assume that the eigenstates 11/t;) in (2.49) are all orthogonal to 

each other, by e2.1. Take any two states 1¢) and 11/t), and write 

1¢> = L b;jl/t;), 11/t> = L C;ll/t;). (2.52) 

Using the properties of the inner product, (2.26) and (2.28), we have 

<¢1AII/t> = L tx;5;C; 
and 

<1/tiAI¢>= L:aJ:;b;. 

Since the eigenvalues tx; are real, (2.51) follows. • 

(2.53) 
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In a finite-dimensional vector space there is a converse to e2.2: it is a 
theorem of linear algebra that in such a space every hermitian operator has 
real eigenvalues and a complete set of eigenstates, and therefore is qualified to 
describe an observable. (A similar theorem is valid if the vector space is 
infinite-dimensional, but it must be stated more carefully; see §2.5.) 

As an example of an observable, suppose we define Px for a beam of light to 
be the proportion of the light that will pass through a polaroid with its axis in 
the x-direction. Classically, P x can take any value between 0 and 1; for plane 
polarised light whose direction of polarisation makes an angle e with the x­

axis, p X has the value cos2 e. For a photon, however, which passes through the 
polaroid either entirely or not at all, the proportion can only be I orO. Thus the 
eigenvalues of P x are 1 and 0. The operator Pis given, according to (2.49), by 

P x(cll<f>x) + c2j</>y)) = C 1!</>x)· (2.54) 

Together with an observable A, we can also consider f(A), where .f is any 
function of a real variable; f(A) is measured by measuring A and applying the 
function f to the result. Thus .f(A) has the same eigenstates as A, and 
eigenvalues .f(r:t.) where r:t. is an eigenvalue of A. If f(A) =A", then the 
corresponding operator has the same effect on an eigenstate as applying A n 
times: 

{2.55) 

Since the eigenstates are a complete set, it follows that A"= A". More generally, 

iff is a polynomial function we have 

J{lf)ji/J;) = f(a;)ii/J;) = f(A)ji/J;) (2.56) 

and therefore 

J{,4)=.f(A). (2.57) 

If f is not a polynomial, (2.57) serves to define f(A) for any hermitian 
operator A. 

Observables and their corresponding operators are often called q-numbers 
to emphasise the fact that their algebra is different from that of ordinary 
complex numbers, which by contrast are called c-numbers. In particular, the 
product of two q-numbers may depend on the order in which they are 
multiplied. Two operators A and Bare said to commute if this is not so, i.e. if 

(2.58) 
A c-number c can be regarded as a particular kind of operator, whose effect is 
to multiply every state vector by c. This operator is a multiple of the identity 
operator; it commutes with all other operators. 

Operators and matrices It is often convenient to represent an operator on the state space of a photon by 
a 2 x 2 matrix. A state jt/1) = c1 i<l>x> + c2 j</>y) corresponds to a two-component 
column vector 
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then if Alt/t) = c'1 l¢x) + c'21¢).) corresponds to a column vector c', the operator 
A corresponds to a matrix A such that 

c'=Ac. (2.59) 

For example, the observable P x corresponds to the matrix 

P.=G ~). (2.60) 

In general, for any system with a finite-dimensional state space a choice of 

complete set lt/t 1 ), •.• , lt/t,) sets up a correspondence between states and 
column vectors: if lt/t) = c1 lt/t 1 ) + · · · +c,lt/t,) , the corresponding column 
vector has the coefficients c; as its entries. Then any operator A corresponds to 
a matrix A which relates the column vectors corresponding to lt/t) and Alt/t) as 
in (2.59). Alternatively, A= (aii) can be defined by the equation 

" Alt/tj) = L aiilt/t;) U = 1, ... , n). (2.61) 
j;:;l 

If the complete set lt/t 1 ), . . . , lt/t,) is orthonormal, the matrix elements aii are 
given by 

aij= ( t/t;IAit/tj>· (2.62) 

Eqs. (2.6 1) and (2.62) are valid even when the state space is not finite­

dimensional. They show that the operator A is determined by the numbers 

(t/tdAit/tj) where lt/t 1 ), lt/t2), ... is any orthonormal complete set. These 
numbers are called matrix elements of A. More generally, in quantum 
mechanics the phrase matrix element of A is used to denote any expression 

<4>1Ait/t> where 14>> and lt/t> are any two states. 

Hermitian conjugation Given any linear operator X on state space, we define an operator xt called the 
hermitian conjugate of X by 

(2.63) 

An operator is determined by its matrix elements, so this is sufficient to define 
xt. Then 

X is called hermitian if X = xt; 

X is called unitary if xt X= 1. 

(2.64) 

(2.65) 

Hermitian and unitary operators are analogous to real numbers and complex 
numbers of modulus 1, respectively; in particular their eigenvalues are such 
numbers. This is shown in an appendix to this chapter, where some other 
properties of these operators are collected. 

We can also define a hermitian conjugate of a state vector lt/t); it is the 

mapping which takes any state vector 14>> to the complex number (t/tl¢). This 
mapping is denoted by (t/tl and called a bra vector, because it is the left-hand 
part of a bracket; the ordinary state vector lt/t), on the other hand, is called a 
ket vector. 
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Any linear operator X on state space can be applied to a bra vector ( 1/tl to 
produce another bra vector ( 1/tiX which, like (1/t l, is defined by completing the 
bracket: ( 1/tiX is the mapping which takes any state vector 1¢) to the c-number 

<1/tiXI¢>. 
If we define the hermitian conjugate of a c-number to be its complex 

conjugate, we can give a general rule for the hermitian conjugate of any 
product of a number of objects, which may be c-numbers, ket vectors, bra 
vectors or operators. The rule is: 

The hermitian conjugate of the product of any number of objects is 
the product of their hermitian conjugates in the reverse order. 

This rule incorporates (2.63) and all the foll owing, in which c is any c­
number, 11/t) is any state vector and X is any operator. 

(a) (cX)t = eX\ {2.66a) 

(b) (XY)t=ytx t; (2.66b) 

(c) 

(d) 

The hermitian conjugate of cll/t> is c( l/tl; 

The hermitian conjugate of XII/I) is ( 1/tiXt. 

(2.66c) 

(2.66d) 

Proof (a) follows directly from (2.63) and (c) from (2.28). To prove (d), let lx> = 
XII/I ); then 

<xl 4>>= <4>l x> = <ct>IXII/t>= <l/tiXtl¢>. 
Since this is true for all 14> ), 

<xl= <l/tiXt; 
and <xl is the hermitian conjugate oflx> =XII/I) . Finally, to prove (b), let lw> = 
Yl¢); then 

<¢1(XY)tll/t) = ( 1/tiXYI¢> = ( 1/tiXIw> = ( wiXtl l/t> = <¢1Ytxtll/t), 

(d) having been used in the last step. Since this is true for alii¢) and 11/t) , (b) 
follows. • 

This can all be understood in terms of matrices. As we have seen, state 
vecto rs can be thought of as column vectors and operators as square matrices: 
then the product XII/I) is given by matrix multiplication. Now think of a bra 
vector as a row vector, with the products <¢1XII/t) and <4>11/t) again given by 
matrix multiplication. Then hermitian conjugation is given by the combined 
operation of transposing the matrix and taking the complex conjugate of every 
entry. Thus we have the following list of correspondences between matrix 
notation and the notation of quantum mechanics: 

Quantum mechanics 

State vector II/I) 
Bra vector ( 1/11 
Inner product (¢ I if/) 
Operator X 
Hennitian conjugate xt 

Matrices 

Column vector a 
Row vector iT 
i)Ta 
Square matrix X 
XT 
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Statistical properties of 

observables 

2 Quantum statics 

The rule for the hermitian conjugate of a product in quantum mechanics now 

follows from the rule fo r the transpose of a product in matrix algebra. 
Using bra vectors, we can write down a useful formula which describes the 

expansion of a state vector in terms of a complete set. Given a bra vecto r <<PI 
and a ket vector Jl/t), we can form an operator Jl/t><<PJ which is defined by 

(Jl/t ><<P J)Jx> =<<PI x>Jl/t). (2.67) 

Now let Jl/t) be a complete o rthonormal set of states. Then the fact that any 
state Jl/t) can be expanded in terms of the Jl/t;), and the formula for the 

coefficients in this expansion (see (2.34) and (2.35)), can be expressed as 

(2.68) 

where I denotes the identity operator. 

When the system is in a state Jl/t), the value obtained in a measurement of an 
observable A is a random variable with probability distribution given by 
(2.42), a now being understood as a value of A. The mean of this distribution , 
i.e. the average value obtained in a large number of measurements on identical 
systems in this state, is called the expectation value of A, and denoted by <A). 
The standard deviation, which is a measure of the spread of the results, is called 
the uncertainty In A and denoted by ~A; it is defined to be the square root of the 
expectation value of {A- <A))2

. 

The expectation value and the uncertainty can be expressed in terms of the 
operator A and the state vector Jl/t) as follows: 

e2.3 If Jl/t) is normalised, <A) and ~A are given by 

<A> = <1/tJ AJI/t), (2.69) 
~A2 = <1/tJA2Jl/t)-<l/tJAJI/t) 2. (2.70) 

Proof Let Jl/t) be a complete set of eigenstates of A, with eigenvalues a;, and 
expand Jl/t) as a sum L c;jl/t;). Then c; = <1/t;Jl/t), so the probability that a 
measurement of A will give the value a; is Jed 2 (unless some of the a; are equal, 
in which case the probability is the sum of the corresponding Jed 2). Thus the 
mean value of A is 

Using (2.53) with J<P>=Jl/t), we see that this is <1/tJAJI/t). 
To find ~A, we must apply this result to find the expectation value of 

(A - <A))2
. This is a function of A, and the corresponding operator is 
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(A - (A))2
; hence 

ilA 2 = <1/JI(A- ( A) l2II/J > 

= <I/I IA211/J > -2(A)<I/IIAII/I> + <A>2<"' I 1/1) 
=<I/IIA211/J>-<A>2 

since II/I> is normalised. This proves (2.70). • 
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As an example of an expecta tion value. consider the observable Px fo r a 
photon. When the photon is plane polarised at an angle 0 to thex-axis. its state 
is II/I> = cos Ol¢x) +sin Ol¢>'), a nd then the expectation value o f P x is 

( P x) = ( I/JI Pxl1/l ) =cos2 0, (2.7 1) 

which is the classical value of P .. for light in this state. 

Compatibility of Because of the way that a measurement of an observable affects the system, it 
observables may no t be possible to measure two different observables simultaneously: it 

may be necessa ry to use different experiments for the two observables, a nd 
measurement of o ne may change the value o f the other. For example, consider 
the observable Px of a photon, which has the value 1 if the photon is polarised 

parallel to the x-axis and 0 if it is polarised in the perpendicular direction; and 
let P0 be the similar o bservable defined wi th thex-axis replaced by an axis at an 

angle 0 to it. Then if the photon has the value 1 for P x• a measurement of P0 will 
result in the photon being polarised either parallel to or perpendicular to the 

inclined axis, and then a measurement o f P x will not necessa rily give the value I 
again, for the photo n will not necessarily pass through a polaroid with its axis 
parallel to the x-axis. 

Two observables are said to be compatible if measurement of one does not 
affect the value of the other in this way. Thus the condition for A and B to be 
compatible is that if three measurements are performed , first of A, then of B, 

and then of A again , the second measurement of A will give the same value as 
the first; and vice versa. 

The statement that two observables a re compatible can be expressed very 
simply in terms of the corresponding operators: 

e2.4 A and B are compatible if and o nly if A and B commute. 

Proof We will show that both statements are equivalent to the statement that 
there is a complete set of sta tes which are simultaneously eigenstates o f A and 
eigenstates of B. 

First, suppose that A and Bare compatible and that three measurements are 
performed as above. After the first measurement of A, the system will be in an 
eigenstate II/I a) of A with the measured eigenvalue a.. After the measurement of 
B, the system will have jumped into an eigensta te o f B; but the second 
measurement of A is certain to give the value a. again if A and Bare compatib le, 
so the system is still in an eigenstate of A - not necessarily the same one as 

before, but one with the same eigenvalue a.. Now let l¢ 1 ) , l¢2), •.• be a 
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complete set of eigenstates of B; then we can expand lift.) as 

lift.) = ct !cP t) +c2lc/>2) + · · ·, (2.72) 

and each ci will be non-zero only if there is a chance that the measurement of B 

will leave the system in the corresponding state lcf>i>· In that case, as we have 
just seen, 1¢) must also be an eigenstate of A with eigenvalue IX. Thus the 
subspace Y. of eigenstates of A with eigenvalue IX has a complete set of states 
consisting of states which are simultaneously eigenstates of B. Since any state 
can be written as a sum of states from the various subspaces Y'., it follows that 
the whole state space has a complete set of states consisting of simultaneous 
eigenstates of A and B. 

Conversely, if there is a complete set of such states, then each subspace Y'. 
has a complete. set of eigenstates of B. Hence any state in Y'. remains in 5f'a after 
being projected onto a subspace of eigenstates of B. Thus if the first 
measurement of A gives the result IX, putting the system in the subspace Y'., the 
measurement of B will leave it in the subspace Y'. and so the second 
measu rement of A will also give the result IX. So if such a complete set exists, A 

and B are compatible. 
Now AB and BA have the same effect on any simultaneous eigenstate of A 

and B. Hence if there is a complete set of such states, AB= BA. Conversely, 
suppose AB= BA and let lift.) be an eigenstate of A with eigenvalue IX. Then 

A..Biift.> = .BA.Iift.> = 1XBiift.>; 
so Blift .) is also an eigenstate of A with eigenvalue IX. Thus B acts as a hermitian 
operator inside the subspace Y'., and soY'. has a complete set of eigenstates of 
B (if 5f'a is finite-dimensional; the case of infinite-dimensional state spaces will 
be discussed in the next section).lt follows, as before, that the whole state space 
has a complete set of simultaneous eigenstates of A and B. • 

Note the property of commuting operators which was used in this proof: 

Suppose A and B commute. Then if lift> is an eigenstate of A with 
eigenvalue IX , so is Bjift). Thus B acts as an operator on the 
eigenspace Y'. . (2.73) 

Y'. is said to be invariant under B. 
The proof of e2.4 shows how degenerate eigenstates of an observable, i.e. 

eigenstates with the same eigenvalue, can be distinguished by means of the 
value of a second observable which is compatible with the first. If two 
simultaneous eigenstates of A and B have the same eigenvalues for both of 
them, then there must be a third observable C which is compatible with both of 
them, and which has different eigenvalues in these states or in some linear 
combinations of them (for if no experiment could distinguish between the 
states they would be the same physical state). If two states have the same 
eigenvalues for all three of A, B and C, there must be a fourth observable D 
which has different eigenvalues; and so on. A set of compatible observables is 
said to be complete if no two states have the same eigenvalues for all of them, so 
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that knowledge of the eigenvalues of all the observables specifies a state 
uniquely. This can be used to give a precise definition: a state of a quantum 
system is a set of values for a complete set of compatible observables. 

The commutator of two operators A and B is the operator 

[A, B]= AB-BA. (2.74) 

It follows from e2.3 that if A and B are hermitian, so is i[A, B]. We can 
therefore take this to describe an observable, which we denote by the same 
symbol without the hats, viz. i[A, B]. This observable is a measure of the extent 
to which A and B fail to be compatible, as is shown by the following relation. 

e2.5 The generalised uncertainty relation. In any state of the system, 

llA ·!lB~1I < i[A, BJ>I. (2.75) 

Proof Let lr/1> be the state being considered,let A1 =A- (A) and B1 = B­
(B), and let 1¢> be the state 

I¢>= A1lr/l> +ixB1Ir/l> (2.76) 

where x is an a rbitrary real number. Then 

since A1 and B1 are hermitian. Putting (2.76) and (2.77) together, 

(¢I¢>= ( r/IIA1
2Ir/l> -x( r/lli[A 1, BJir/1> +x2( r/IIB1

2Ir/l>. 

(2.77) 

But [A1 , B1] =[A, B] since ( A) and ( B) arec-numbersand commute with all 
operators. Hence 

(¢I¢>= ( A1
2

) -x(i[A, B]) +x 2(B1
2

) 

=llA2 -x(i[A, BJ> +x2 !lB2
, (2.78) 

using the definition of uncertainty. Now (¢I ¢>~ 0 for all x, so the quadratic 
expression (2.76) has either no zeros or equal zeros; hence 

(i[A, B]) 2 ~ 4 !lA2 !1B 2 

(i.e. 'b2 ~4ac'), which proves (2.75). • 

Knowledge of the commutators of observables is often sufficient to 
determine their properties. The commutator satisfies the following algebraic 
identities: 

[B, A]= -[A, B]; 

[A, BC] =[A, B]C + B[A, C]; 

[A, [B, C]] + [B, [C, A]]+ [C, [A, B]] =0. 

(2.81) is known as the Jacobi identity. 

(2.79) 

(2.80) 

(2.81) 

2.5. Obsenables of a The previous section was expressed in terms appropriate to a finite­
particle moving in space dimensional state space, and must be adapted if it is to apply to an infinite­

dimensional space like the space of wave functions. To introduce the essential 
ideas, it is sufficient to consider functions of one variable, i.e. wave functions for 



60 2 Quantllm statics 

a particle moving in one dimension. Thus we consider the space 11' of 
complex-valued functions t/J of one real va riable x which satisfy one­
dimensional versions ofW1- W3 (p. 39): t/J must be infinitely differentiable and 
square-integrable, i.e. s~ 00 lt/J(x)j2 dx exists, and x"t/J(x) and t/J(")(x) also have 
these properties for all n. The inner product in ir is given by 

( c/> I t/J ) = J:oo cf>(x) t/J(x) dx. 

We define hermitian operators X and K by 

(X t/J)(x) = xt/J(x), 

- dt/1 
Kt/1= -i dx· 

(2.82) 

(2.83) 

(2.84) 

1t is clear that X is hermitian with respect to the inner product (2.82), and K 
can be seen to be hermitian by integrating by parts and using the fact that t/J(x) 
must tend to 0 as x-+ ± oo if Jlt/J(x)l2 dx is to be finite. However, neither of 
these operators has a complete set of eigenvectors; in fact, they do not have so 
much as a single eigenvector. It is, of course, possible to find a function ek(x) 
such that Kek = kek , namely ek(x) = eikx, but this is not relevant in this context 
because it does not belong to the space il'; and there are no continuous 
functions at all which satisfy X t/J = at/J for any number a. 

The way round this difficulty is to regard the function ek(x) not as a state 
vector but as a bra vector, namely as the map ( ekl which takes any wave 
function t/J to the complex number 

(2.85) 

This map exists, i.e. the integral converges, for all real k. Now we have 

( ek!K = k( ekl (2.86) 

in the sense that 

( ek!Kit/1> = k( ek I t/J ) for all lt/J> E11'. 

Because of (2.85), ( ekl can be called an eigenbra of K. We can also find 
eigenbras of X, namely ( 80 1 defined by 

( ba I t/J ) = t/J(a). 

Then ( 8a l is defined for all real a, and 

(80 IX =a( 80 j. 

(2.87) 

(2.88) 

These eigenbras of X form a complete set, in the following sense. Because 
they are labelled by a continuous eigenvalue, the sum over eigenvalues which 
was appropriate in the finite-dimensional case must be replaced by an integraL 
Thus the appropriate expansion is 

(2.89) 
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This means 

(2.90) 

Now if ( 1/tl is the conjugate bra vector of a ket vector 11/t ) e'il', and if the 
coefficients Ca are given by 

Ca = 1/t(a), (2.91) 

then (2.90) follows from the definition (2.82) of the inner product. Thus the 
expansion is possible for all such ( 1/tl, and so the eigenbras (c5al form a complete 
set for them. 

The eigenbras (ekl form a complete set in a similar way. To show this we will 
need the following facts from Fourier analysis: 

Fourier inversion theorem. Let tji(k) be the Fourier transform of 1/t, 
defined by 

1 f co tji(k)= -,;::w 1/t(x)e- ikx dx. 
v (2n) - co 

Then tfr(k) exists if 1/t(x) belongs to 11/, and 

1/t(x) =---iw f co tji(k)eikx dx. 
v' (2n) -co 

For comparison with (2.89), we write 

1/t(x) = ckeikx dk where ck = -,;::w i/l(k). fco 1 

-co v' (2n) 

Then for all I¢> e"/11' we have 

( 1/tlct>>= f~co ck f~co e- ikxcf>(x)dx dk 

= f~co ck( eklct>> dk. 

Hence 

(2.92) 

(2.93) 

(2.94) 

(2.95) 

(2.96) 

Note that not every bra vector (i.e. linear map from "ffl' to C) is of the form 
( 1/tl where II/I ) is an element of 11', and not every bra vector can be expanded in 
terms of the sets { < c5ai} or { ( ekl }. These are complete sets only for the expansion 
of bra vectors ( 1/tl which are the conjugates of ket vectors. 

In general, a hermitian operator may have both ordinary eigenvalues 
associated with eigenvalues as in the previous section, and eigenvalues of the 
generalised sort, associated with eigenbras, that we have just been considering. 
These are called discrete and continuous eigenvalues respectively; for provided 
the state space satisfies certain technical conditionst it can be shown that there 

t It must be a dense subset of a separable Hilbert space. 
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is a countable number of the first sort of eigenvalue, and the second sort make 
up a continuous set of real numbers, i.e. a collection of (possibly infinite) 
intervals. The set of all eigenvalues, of both sorts, is called the spectrum of the 
operator. Suppose for the moment that all the eigenvalues are non-degenerate. 
Let Jt/1;) (i= 1, 2, ... ) be eigenvectors associated with the discrete eigenvalues 
rx., and let ( 1/J.J be an eigenbra associa ted with the continuo us eigenvalue rx; 

then , suitably normalised, these form a complete set in the sense that if Jt/1) is 
any vector in 5I: the correspond ing bra can be written as 

(1/J J =~ C;( I/Id+ f c.<I/I.J drx 

with the coefficients c; and c. given by 

c;~ ( I/I; J t/1 ), c, = ( I/I. Jl/1) . 

(2.97) 

(2.98) 

If the eigenvalues are not all non-degenerate, we must consider a complete set 
of commuting operators, all of which may have both discrete and continuous 
eigenvalues. 

Eqs. (2.97) and (2.98) define the normalisation of the eigenbras ( 1/J.J . This 
normalisation is not an intrinsic property of the ( 1/J.J as bra vectors, but relates 
to the operator A of which they are eigenbras: for if B = f(A) is any function of 

A, < 1/J.J is also an eigenbra of B with eigenvalue {3 = f(rx). If this relation can be 
inverted to write rx as a function of {3 , (2.97) can be written 

(2.99) 

where p({J) = drx /d{J. This can be restored to the form of (2.97) with respect to {3, 
i.e. 

(1/JJ=~ c;( I/I; J+ Jc{i(t/l{ij d{J, 

with c/1= ( 1/1/J JI/I), if we define 

< 1/1/JI = g(fJ)< 1/J.(P>I 
where 

Jg({J)j2 = p({J). 

(2.100) 

(2.10 I) 

We will say that the eigenbras ( 1/J.J are normalised relative to A (the ( 1/!{!J, 
correspondingly, being normalised relative to B). The function p({J) is called 
the density of states (in full , the density of eigenstates of A relative to eigenstates 
of B). 

Now suppose the operator we are considering represents an observable A. 

Then the continuous eigenvalues, like the discrete ones, have the physical 

meaning that they are possible values of A; but the probability statement (2.42) 
must be adapted to cater for the continuous variable. Thus Postulate II must 
be supplemented by 

Postulate II (continued). Let rx be a non-degenerate continuous 
eigenvalue of an observable A, and let ( 1/!.J be the corresponding 
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eigenbra , no rmalised relative to A. Then when the system is in the 

state Jt/1 ) , the probability that a measurement of A will give a result 
bet ween rx and rx + drx is PA(rx J t/1) drx, where 

( l·'·)j<t/l.lt/l>l2 

PACX'I' ( t/Jjt/J ) (2.102) 

Note that if we apply Postulate II to an operator B = f(A) and express the 
probabil ity in terms o f eigenbras ( t/I~.~J no rmalised relative to A, the result is 

(2.103) 

where p is the density o f states. 

Because of (2.97) and (2.98), it is still true that the expectation value of A in 
the state Jt/1 ) is <tfJJAJt/1) , and therefore that the uncertainty is given by (2.70). 

The postulate about the state of the system immediately after the 
measurement becomes a little more complicated if precisely stated: 

Postula te III (continued). If the measurement gives a result lying 
between rx 1 and rx2 , then immediately after the measurement the 
system is in the state which is obtained from Jt/1 ) by o rthogonal 
projection onto the subspace of states which are orthogonal to all 

sta tes Jt/1'> which satisfy 

I"' (t/I.Jt/1' ) drx=O, J., 
but we will see shortly that there is a non-rigorous version which is essentially 

the same as our o riginal statement. 
Now le t us return to the operators X and K defined in (2.83) and (2.84), 

which act on the space of functions of o ne real variable. Suppose these 
correspond to observables X and K relating to a particle movi_ng along a line. 
As we have seen, each of them has a continuous spectrum consisting of all real 
numbers, with eigenbras ( c50 J and ( ekJ respectively. Acco rding to (2.102), when 
the system is in the normalised state Jt/1> the probability density of the value of 
X is 

(2.104) 

Thus by comparison with (2.7), X can be identified as the position of the 
particle. 

To identify K , no te that its eigenbras (ek J do correspond to functions, 
namely ek(x) = e1kX, even though these functions do not belong to our state 

space. The reason for excluding them is that it is impossible to multiply ek(x) by 
a constant to o btain a function t/1 for which J Jt/IJ 2 dx = 1, and so for any such 
function Jt/J(x)jl cannot be a probability density. However, as long as it is 
possible to integrate lt/11 2 over any finite interval, it can be interpreted as a 
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relative probability density in the sense that 

Probability that a1 <X <a2 

Probability that a 3 <X< a 4 

f 2

1iftl2 
dx 

r ·liftl2dx 
(2.105) 

Thus ift(x) = e1
kx can be taken as the wave function of a particle for which a ll 

positions are equally likely. This function actually describes a periodic wave 
with the wavelength ;, = 2n/k; hence according to de Broglie's relation ( 1.24) 
the particle associated with this wave has momentum 

h h 
p= - = - k=hk 

}. 2n · 
(2.106) 

But k is the eigenvalue of K; so the observable K is proportional to the 
momenttlm of the particle. 

Thus by extending our notion of state, we have found an eigenstate of K. It is 
not described by a state vector according to our original conception, but by a 
bra vector; nevertheless, this bra vector is associated with a function which can 
be interpreted in a similar way to the wave functions which constitute true 
state vectors. 

By making a further extension of the notion of a state, we can do a similar 

thing for X. The 'wave function' ek(x) for the eigenstate of K was suggested by 
the representation of ( ek I if/) as an integral in (2.85); to find a similar function 
for X we would need to represent (<50 I if/) also in an integral form , with a 
function b0 (x) such that 

ift(a) = (ba I if/) = f~«> ba(x)ift(x) dx. (2.107) 

This is not possible; there is no such function. But it is convenient to pretend 
that it is possible by taking 

b0 (X) = b(x - a) 

where {J is the Dirac c5-function, which is supposed to have the properties 

b(x)=O if x;i:O; 

fa b(x) dx= I if -a < O<b; 

f~«> f(x) b(x) dx = f(O) for any function f 

(2.108) 

(2.109) 

(2.110) 

Clearly these are impossible properties for a true function; nevertheless, the <5-
function can be useful as a shorthand device for writing equations involving 

integrals. Any equation in which it occurs must be integrated in order to make 
sense. As an example of the use of the <5-function , the Fourier inversion 
theorem (2.93) can be written as 

f~"' e1
k<x- Y) dk = 2n b(x- y). (2.111) 
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In physical terms. b(x) can be thought of as the line density of a distribution 
of matter consisting of a point particle with unit mass, situated at the origin. In 
quantum mechanics, D(x-a) can be regarded as a wave function describing a 
particle which will certainly be found at x =-a. 

On physical grounds as well as mathematical ones, neither ek(x) = eikx nor 
Du(x) = D(x- a) should be taken too literally as wave functions. The first would 
describe a particle which was equally likely to be found anywhere in the 
universe; the second. one whose position is known with infinite accuracy. But 
they are convenient idealisations, corresponding to the fiction of infinitely 
precise measurement. Such an ideal measurement can be regarded as the limit 
of a sequence of increasingly accurate actual measurements; in the same way, 
the states described by the 'wave functions' ek or Da can be regarded as limits of 
sequences of genuine states. The c5-function can also be understood as a limit of 
a sequence of genuine functions; for an explanation of it in these terms, see 
Lighthill 1958. 

In terms of the ideal states described by such generalised wave functions, the 
postulate concerning the results of measurements of a continuous quantity can 
be phrased in the same way as for a discrete quantity: for momentum, for 
example, we postulate that if the result of the measurement is p then after the 
measurement the particle is in the state with wave function eikx where p= lik. 

For a particle moving in three dimensions, the basic observables are its 
Cartesian coordinates (x, y, z), which we will also denote by xi (i = 1, 2, 3), and 
the components of momentum (px, Py• pJ or Pi (i = 1, 2, 3). By extension from 
the one-dimensional case, the corresponding operators, which act on wave 
functions t/t(r), are given by 

These are components of the vector operators r and p = - if1V. 

(2.1 12) 

(2.113) 

As a complete set of compatible observables we can take (x 1, x 2 , x 3). The 
corresponding operators xi clearly commute with each other; their possible 
simultaneous eigenvalues are any three real numbers (a 1, a 2, a 3), i.e. the 
components of any vector a. The simultaneous eigenbra with these eigenvalues 
is ( c5.l, defined by 

(b.lt/t)=t/t(a)= f t/t(r)b(r-a)dV (2.114) 

where the second equality defines the three-dimensional <5-function. 
An alternative complete set of compatible observables is provided by (p 1, p2, 

p3). The possible simultaneous eigenvalues are the components of any vector 
lik; the corresponding simultaneous eigenbra is (ekl where 

(ek I t/t) = f t/t(r)e-ik-r dV (2.115) 
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The probability distribution of p is then given by the density function f(p) = 
l<ek I 1/1 )12 where p= Ilk. Thus the state can be described by the function of 
momentum cf>(p) = (ek I 1/1) just as well as by the wave function 1/J(r); these are 
said to be alternative representations of the same state vector II/I). Their 
relation to each other is similar to the relation of different sets of coordinates 
(with respect to different bases) of a vector in a finite-dimensional space. The 
function cf>(p) (essentially the Fourier transform of 1/J(r)) is often called the wave 
function in momentum space. We see here an indication of a fundamental 
equality of status between position and momentum in quantum mechanics. 

In order to recognise this equal status, we take as the basis of the theory of a 
single particle not the specification of the operators X; and P; in (2.112) and 
(2.113), but the commutation relations which follow from them: 

Postulate IV. The components of the position and momentum vectors 
of a particle in space are described by operators X; and P; which satisfy 

[.X;, ij] =0= [pi, pj], 

[x;, pJ = ih8;1. 

(2.116) 

(2. J J 7) 

A particle with no internal properties has no observables which are 
compatible with all the X; and p1. 

Eqs. (2.116H2. J 17) are called the canonical commutation relations. We 
define a simple particle as one which has observables X; and p1 satisfying these 
commutation relations, and no observables which are compatible with all the 

X; and p1. 

Postulate IV is actually equivalent to (2.1 J2H2.113), for it has been shown 
that Postulate III implies that the state space is (essentially) isomorphic to the 
space of wave functions and that the operators X; and p1 are given by 
(2.112H2.113). This is the Stone/von Neumann theorem (see Jauch 1968, 
p. 20 1). Most of the arguments in this book will be based directly on the 
commutation relations (2.1 J6H2.117) and do not use the specific forms 
(2.1 J2H2.113), but of course the latter are indispensable in most of the 
applications of quantum mechanics. 

From the commutator (2.117) we have 

( i[x, pxJ ) = ( -h) = -h. (2.118) 

Thus the uncertainty relation (2.75) becomes 

ax·apx ~~h. (2.119) 

which is the original Heisenberg uncertainty relation (1.25). 
Eq. (2.119) can be understood as describing the relationship between the 

wave function 1/!(r) and the wave function in momentum space, cf>(p). An 
example is shown in Fig. 2.4. This shows the x-dependence of 1/J, so it is 
concerned with a one-dimensional function which can be written as in (2.94): 

(2.120) 
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Thus 1/J(x) is a superposition of the oscillatory functions eikx. In the example the 

coefficients are taken to be real and to be concentrated in a range of k of length 
t':!.k. Then the different oscillations eikx in 1/J(x) cancel each other outside a range 

of x of length t':ix, where t':!.x · t':!.k~-t, but reinforce each other inside this region 

to produce a localised wave function. A wave function like this is called a wave 
packet. 

From now on we will not need to be pedantic about the distinction between 
observables and operators. We will apply the same terms to both (referring to 
observables as 'commuting', for example) and we will use the same symbol for 
an observable and its operator (i.e. we will drop the circumflex on operators). 

A note on Hilbert space As we noted on p. 39, the demand that a wave function should satisfy Wl- W3 
is unnecessarily restrictive. The reason for imposing these conditions is that 
they provide us with a state space on which X; and P;. and all products of them, 
are well-defined operators. However, if we continued to work with this space 
we would soon find that it had disadvantages: in particular, there are Cauchy 

sequences of functions in the space that do not converge to a limit in the space. 
It is usual to work with a space which is complete, i.e. which does include all 
limits of Cauchy sequences. Such a space is called a Hilbert space. The smallest 
Hilbert space containing our space of wave functions is L2(~3) , the space of all 

square-integrable functions: this is often taken to be the true state space of a 

Fig. 2.4. 
A wave packet. 

If Re ifr(x) 
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single particle. It has the disadvantage that many interesting operators are not 
now defined on the whole space; it is necessary to take into account the domain 
of definition of every operator considered. This puts quite a lot of grit in the 
way of the smooth running of the machinery. An account of the relevant parts 
of Hilbert space theory can be found in Jauch 1968. 

Our approach can be fo rmalised as the theory of a rigged Hilbert space, 
which consists of a chain of spaces 5I' c Jt' c 51'*, where ;)"(' is a Hilbert space, 5I' 
is a dense subspace of Jff, and 51'* is the space of continuous linear functionals 
on 5I' (51' is our space of wave functions and 51'* is our space of bras). This 
theory then accounts for generalised states like eigenstates of position and 
momentum in the way we have described. An account of rigged Hilbert spaces 
and their use in quantum mechanics can be found in Bogolubov, Loguno v and 
Todorov 1975 or Bohm 1978. 

2.6. Combined systems Suppose a system is made up of two or more parts, each of which can be 
considered as a system on its own; for example, the system of several particles 
moving in space, or a beam of light consisting of many photons moving in the 
z-direction, or both of these put together. We want to describe the states of the 
whole system in terms of the states of its component parts. 

We will start by considering a system with two parts Sand T; we will call the 
combined system ST. The two parts can be put together with Sin any state 1¢ ) 
and Tin any state lt/J); we will denote this state of the whole system by lct> >l t/J) . 
Then if we consider a fix ed state 1¢ ), the states 1¢ >l tfJ > will correspond to all the 
possible states of subsystem T. We will assume that the relations between these 
states of ST are the same as those between the corresponding states ofT; ifjt/J) 
is a combination of lt/1 1) and lt/1 2 ), then lcf>>l t/J ) is the same combination of 
lct>>l t/1 1) and lct>>lt/1 2 ), and (if let>> is normalised) the inner product between 
lct>>lt/1 1 ) and lct>> lt/1 2) is the same as that between lt/11) and lt/1 2) . Similar 
considerations apply to the states of S combined with a fixed state ofT. Thus 

lcf>)(cl lt/J 1) +c2lt/J2)) = cticf>)lt/J 1) +c2icf> >l t/1 2), (2.121) 

(el l¢, )+ c2lcf> 2))l t/J ) = cdcf>1 >lt/J) +c21¢2)l t/J), (2.122) 
and 

(2.123) 

where the left-hand side of(2.123) denotes the inner product between lct>>lt/1 1) 

and lct>>lt/12) . From this it can be deduced (problem 2. 17) that 

(( ¢, l< t/J t!Hict> 2>lt/J2>)= <¢, I ct>2><t/J, I t/12 >· (2.124) 

Eqs. (2.121H 2.122) show that lcf> >l tfJ> can be regarded as a kind of product of 
1¢ > and lt/J ). In physical terms, they mean that any experiment which can be 
performed on one subsystem can be performed in the presence of the other 
without affecting or being affected by the state of the second subsystem. 

Not every state of the combined system can be expressed as a product 
lct>>l t/J), for by the principle of superposition there must be states of the form 
lc!>>lt/J ) + lcf>' >l t/J'), and these cannot be written as a single product. We will 
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assume that there are no states of ST other than those demanded by the 
principle of superposition; then every state of ST is of the form 

I'~'>= 1¢ >II/I> + W>W> + · · · · (2. 125) 

Let l¢1 ) , l¢2), . .. be a complete set of states for Sand ll/1 1 ) , ll/1 2), .•. a complete 
set of states for T, and write 

(2.1 26) 

Then 

I'~' > = L: (a;bj+ a; bj+ · · ·)1¢;)11/1) . (2.127) 
ij 

Thus the states 1¢;)11/Jj) constitute a complete set of states for ST 

Let!/ denote the state space of Sand :!1 tha t ofT The state space of ST is 
denoted by !/® :!1 and called the tensor product of!/ and :!1. If !/ and :!/ are 
finite-dimensional , the dimension of !/®:!/ is the product of the dimensions 
of !/ and :!/. 

Operators on the individual state spaces!/ and :!1 can act on!/®:!/ in the 
obvious way: if A is an operator on !/and B is an operator on :!1, we definet 

A(i¢ >II/I>)= (AI¢ >)II/I>} 
B(I¢)11/I)) =Jc/J) (Bil/1)) . 

(2.128) 

Then all the operators on !/commute with all operators on :!1. In the case of 
operators representing observables, this reflects the fact that experiments on S 
are not affected by the state ofT A complete set of compatible observables for 
the combined system ST consists of the union of a complete set for S and a 
complete set for T 

Let us see how this applies to a system of two particles moving in space. 
Since a complete set of compatible observables for one particle consists of the 
components of its position vector r, a complete set for two particles will be 
given by their two position vectors r 1 , r 2 . Hence a state of two particles is 
completely specified by its values for all eigenbras ( c:5.,J, ( c:5.2J; in other (plainer) 
words, it is given by a function of two position variables, 1/J(r 1 , r 2). This has the 
interpretation that one would expect by analogy with the case of one particle: 
ll/l(r 1, r2)!2 dV1 d V2 is the probability that particle 1 will be found in the volume 
d V1 at r 1 , and at the same time particle 2 will be found in the volume d V2 at r 2 . 

Thus in this case !/ ® :!1 consists of functions 1/J(r 1 , r 2) satisfying similar 
conditions to those specified in §2 for the wave functions of one particle. Let 1/1 1, 

1/1 2, ... be a complete set of one-particle wave functions. By expanding l/J(r1, r2 ) 

in a series of l/l;(r1) with coefficients which depend on r2 , and then expanding 
these coefficients in a series of 1/1 ir 2), we find that 1/J(r 1 , r 2) can be expanded as 

t Strictly speaking, we should use different symbols for the operators on the two sides of 
(2.128), since they act on different spaces; the operators on the left-hand sides should be 
called A ® I and I ®B. However, the notation used here is convenient and will not cause 
confusion. 
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lj;(r 1, r2) = L cijlj;i(r 1)1j;j(rz). 
i j 

(2.129) 

Thus the functions lj;i(r1)1/fir2) constitute a complete set for Y ® fY, 

co rresponding to the complete set 14>;)11/Jj) in the general case: for wave 
functions the tensor product is fo rmed by ordinary multiplication. 

The extension to a system consisting of several subsystems is 
straightforward: one can define a tensor product of n sta te spaces, 5I;_ @ · · ·@ 

51,', whose elements are linear combinations of products It/! 1 >II/I 2 ) · · · II/I, ) with 
II/I;) taken from!!;. For a system of n particles moving in space, the state space 
consists of wave functions lj;(r 1, .•. , r"). 

This formalism applies not only to a system consist ing of separate objects, 
but also to a system consisting of one object which has a number of separate 
aspects. For example, to give a full description of a photon we should consider 
no t only· its state of polarisation but also its state of motion in space; thus its 
full state space is Y ® :T where !/ is the two-dimensional space of 
polarisation states and :T is the space of wave functions for a particle moving 
in space. Since!/ has a complete set consisting of two states l4>x> and lc/>y), the 
general state in Y@ :T is 

(2.130) 

where II/I;) represents a complete set of wave functions. This can be written as a 
two-component wave function 

(2.131) 

Identical particles If the two subsystems are the same, as in the case of a system of two particles of 
the same type, then the state space of the combined system, viz. Y ® Y where 
Y is the state space of one particle, has an exchange operator X which 
exchanges the states of the two particles: 

X(l¢ >II/I>)= 11/1>14> ). (2.132) 

Not every state of the two-particle system is of the form 14> >11/1 ), but (2.132) is 
sufficient to define X since every state is a sum of states of this form. Now if the 
two systems are really of the same type, then it will be impossible to distinguish 

the state 14> >II/I) from 11/1>14> ) ; for in order to tell whether it is the first particle or 
the second that is in the state 14>) one would need some way of distinguishing 
the two particles, and such a distinguishing mark would mean that they were 
not after all of exactly the same type. Hence if I'~' > is any state vector in !/® Y, 
X l'l' ) describes an indistinguishable physical state, and therefore the same 
one. It follows, by Postulate I, that Xl'l') is a multiple of 1'1') : 

XI 'I'>= el'l'). (2.133) 

But X 2 = 1, so e2 = 1; hence the only possibilities fore are ± 1. 
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A state for which e = I is called symmetric; it must be a sum of states of the 
form 

1<1>>11/1> + 11/1>1<1>>- (2.134) 

A state for which e=- I is called antisymmetric; it must be a sum of states of 
the form 

1<1> >1 1/1> - 11/!> l<t> >. (2. 135) 

The state vectors (2.134H2.135) describe states in which the two particles are 

in the states I <I>> and jl{!), but it is no t possible to ask which particle is in which 
state. This is the right sort of description for two truly identical particles. 

We ha ve argued that any physical state must be either symmetric o r 
antisymmetric; it cannot be a superposi tion of a symmetric state and an 

antisymmetric state. But if both symmetric and antisymmetric states were 
possible this would contradict the principle of superposition. It follows that , 
for a particular type of particle, either all states are symmetric or all states are 
antisymmetric; in other words, the state space for the two-particle system is 
not Y ® Y but either the subspace of symmetric states or the subspace of 
antisymmetric states. Which of these two possibilities occurs depends on the 
type of pa rticle: the 'particles of matter' described in Chapter I(A) (leptons, 
baryons and quarks), which are called fermions, always have an tisymmet ric 
two-particle states; the 'particles of force' described in Chapter I(B) (photons, 

W and Z particles, and gluons), which are called bosons, always have 
symmetric two-particle states. 

This extends naturally to a system of n particles. Then-fold tensor product 
®"Y = Y ® · · · ® Y has, for each pair (i ,j), an exchange operator X ii which 
exchanges the states o f the particles numbered i and j: 

xij(ll/11 > .. ·11/Ji) .. ·11/Jj) .. · 11/Jn)) =II/II) .. ·11/Jj) . . · jl/1) . . ·11/Jn>· 

Then if I'~~> E ®"Y is a state of n bosons, 

xij l '~~> = j'P) for all pairs (i ,j). 

(2.136) 

(2.137) 

Such a state vector is called totally symmetric. If j'P) is a state of n fermions, 

Xiij'P) = -j'P) for all pairs (i,j). (2.138) 

Such a state vector is called totally antisymmetric. 
By performing a number of exchanges in succession, we can put the states 

ll/11), ... , ll/12 ) into any order II/IP< 1l), ... , 11/!P<nl) where pis a permutation of 
( l, ... , n). Thus we have an operator X P for the permutation p: 

Xp(jl{!l) · · ·11/Jn) )= 11/Jpll)) · · ·11/Jp(n)). (2.139) 

The permutation pis called even or odd according as the number of exchanges 
it requires is even or odd. The signature of the permutation, denoted by e(p), is 
+ 1 if p is even and - 1 if it is odd. Now (2.137H2.138) give: 

if j'P) is totally symmetric, X Pj'JI) = j'P) , (2.140) 

if I'~~> is totally antisymmetric, XPj'P)=e(p)j'P), (2.141) 
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for all permutations p. Any totally symmetric state must be a sum of states of 
the form 

(2.142) 
p 

any totally antisymmetric state must be a sum of states of the form 

A(lt/t 1)· ··lt/t11 ) ) where A=.[t:(p)XP. (2. 143) 
p 

If the state vectors lt/ti) are wave functions, then (2. 143) gives ann-particle wave 

function 

~(r 1, ... , r11 ) = L t:(p)tjt p(ll( r 1) · · · t/t p(nl( r,) 
p 

(2.144) 

This is known as a Slater determinant. 
The principles introduced in this section can be summarised as follows: 

Postulate V. If two systems Sand Tare combined to form a system ST, 
the slate space of ST is the tensor product of the state spaces of S 

and T. 
Every elementary particle is either a fermion or a boson. A state of 

many identical particles is totally antisymmetric if they are fermions, 

totally symmetric if they are bosons. 

Fermions and bosons obey different probability laws from each other and 
from classical particles. Consider the elementary probability problem of two 
particles which are placed in two differently coloured boxes at random. What 

a re the probabilities that (a) both particles are in the yellow box, (b) both are in 
the blue box, (c) there is one particle in each box? In the quantum version of 
this problem there are two particles which can occupy two orthogonal states 
14>) or lt/t) (i.e. each particle has a two-dimensional state space [/' in which 14>) 
and lt/t) form a complete set of states), and it is assumed that all two-particle 
states are equally likely. With 14>> as the yellow box and ltJt> as the blue box, we 
ask the same question. It can be shown (see problem 5.1) that the probabilities 
are proportional to the dimensions of the corresponding subspaces- in other 
words, despite the possibility of superposition one simply counts the numbers 

of independent states in the same way as one counts the number of ways of 
putting two beads into two boxes. 

The state space we first thought of, namely [/'®Sf, which would be 
appropriate if the particles were distinguishable, has four mutually orthogonal 
two-particle states: 

l<t>>l<t>>. ltf!>ltJt>. l<t>>ltJt>. ltJt>l<t>>. (2.145) 
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If the particles are bosons, there are three orthogonal states: 

l<t>>l<t>>. lt/1 >1 1/1>. 14>>11/1> +11/!>l<t>>. (2.146) 

And if the particles are fermions. there is only state: 

l<t>>l t/1> -11/!>I<J>>. (2.147) 

Hence the probabilities we are looking for, with (2.145) corresponding to the 
classical answer, are: 

1"1 I I 1"1 I ·I· I 
Classical l 1 l 

4 4 2 

Bosons 1 ! ! 
Fermions 0 0 

Thus bosons are more likely than classical particles to occupy the same state; 
they appear to attract each other. Fermions, on the other hand, force each 
other into different states. This property of fermions is 

e2.6 Pauli's exclusion principle. Two identical fermions cannot 

occupy the same state. • 

This plays a crucial role in the explanation of the structure of atoms which 
gives rise to their different chemical properties. 

Fermions are said to obey Fermi- Dirac statistics; bosons obey Bose­
Einstein statistics. 

If a particle is composite, like an atom or a nucleus, then its statistics (i.e. 
whether it is a fermion or a boson) are determined by those of its constituents. 

Consider first a particle P with two constituents A and B. A state of two Psis a 
state of two As combined with two Bs. and the operation X P of interchanging 

the P s is the product of the (commuting) operations X A and X 8 of 
interchanging the As and interchanging the Bs. Now X A multiplies the state by 
eA , where 

I:A= { 
+ I if A is a boson 

-I if A is a fermion , 
(2.148) 

and similarly X 8 multiplies the state by e8 . Hence 

(2.149) 

i.e. Pis a boson if A and Bare both bosons or both fermions, a fermion if one is 
a boson and the other a fermion. The general statement is 

e2.7 A composite system of m bosons and n fermions is a boson if 11 

is even, a fermion if n is odd. • 

Thus, since quarks and antiquarks are fermions, mesons (made of a quark and 
an antiquark, i.e. two fermions) are bosons: baryons (made of three quarks) are 

fermions. The ex-particle (made of two protons and two neutrons, i.e. four 
fermions) is a boson. 
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Appendix: properties of I. The eigenvalues of a hermitian operator are real. 
hermitian and unitary 2. The eigenvalues of a unitary operato r have modulus I. 

operators 3. Let 1<1>> and II/I) be eigenvectors of an operator A corresponding to 
different eigenvalues. If A is either hermitian or unita ry, 1<1>> and II/I ) 
are o rthogonal. 

4. If H is hermitian, e;H is unitary. 

Proofs: I. Let ), be an eigenvalue of the hermitian operator H, and let II/I) be a 
(non-zero) eigenvector. Then 

HII/I) =Ait/J) . (2.Al) 

Taking the hermitian conjugate of this equation, 

<tfJIH= I.< I/!1. (2.A2) 

Multiplyi·ng (2.Al) on the left by ( 1/11 and (2.A2) on the right by lt/1 ) , 

<1/!IHitfJ>=J.(I/IIt/J>= I.<I/IIt/J>. (2.A3) 

Since lt/1) is non-zero, it follows that A= 1., i.e. A is real. • 

2. Let A be an eigenvalue and II/I> an eigenvector of the unitary operator U. 
Then 

VII/I) = AII/1>} 
<1/JIV=I.<tfJI . 

Multiplying these equations together, 

<1/11 utvltfJ> = Al.<t/11 t/1) . 

Since ut U = 1 and lt/1) is non-zero, it follows that IAI = 1. • 

3. First suppose A = H where H is hermitian. Then 

(2.A4) 

(2.A5) 

Hl</>) = ),1</>) , H lt/J)= p lt/1) (2.A6) 

where A and pare real. Multiplying by ( </>I and ( t/11 respectively, 

<tfJIHI<I>>=A(I/I I<t>>; (2.A7) 

<<I>I Hit/J)= p( </> l t/1>; (2.A8) 

<tfJIHI<t>>=p( t/1 I</>). (2.A9) 

Since l=Fp, it follows from (2.A7) and (2.A 9) that ( t/JI</>) =0. 
Now suppose A= U where U is unitary. Then 

Vl</>) =e'•l¢), 

Vlt/J ) = e'11ll/l) 

where ex and {J are real. Taking the hermitian conjugate of (2A.II), 

<1/JIVt=e- ifl<tfJI . 

Multiplying (2.A ll) and (2.A 13) together and using utv= 1, 

<tfJ I <t>> = £1'«-fl)<t/1 I <t>>. 
Since t!' =F f!P, it follows that ( 1/1 I</>) = 0. • 

(2.A 10) 

(2.A 11) 

(2.A12) 
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4. Let 11/1 1 ), 11/1 2 ), •.. be a complete set of eigenstates of H with eigenvalues 
21, 22 , • . • , and let U = e;H. Then 

< 1/Jml VII/I,) = e;;··[Jmll> 

< 1/1,1 utll/lm) = e- iim[J"'" = < 1/!,le- ;;mii/Jm> · 
Hence 

and so 

utUII/Im> = ll/lm>· 
Since the ll/lm) form a complete set, it follows that utu =I. • 

Bones of Chapter 2 Postulate I. Principle of superposition 46 
Postulate II. Results of experiments 49, 50, 62 
Postulate III. Projection postulate 49, 51, 63 
Postulate IV. Position and momentum of a particle 66 
Postulate V. Combined systems 72 

e2.1 Eigenstates are orthogonal and complete 51 
e2.2 The operator of an observable is hermitian 52 
e2.3 Expectation value and uncertainty 56 
e2.4 Compatible observables <=>commuting operators 57 
e2.5 Generalised uncertainty relation 59 
e2.6 Exclusion principle 73 
e2.7 Statistics of a composite particle 73 

Further reading The classic exposition of quantum mechanics, which remains unrivalled for 
the elegance of its presentation of the general structure of the theory (despite­
or perhaps because of - its cavalier attitude to mathematical niceties) is Dirac 
1930. Other excellent textbooks which are recommended for their careful 
treatment of conceptual matters are Pauli 1933, Bohm 1951 and Gottfried 
1966. Feynman et al. 1965 (Vol. III) is also highly recommended. 

Problems on Chapter 2 

Mathematically rigorous accounts of quantum mechanics .can be found in 
von Neumann 1932 and Jauch 1968. These follow a different line from the 
approach via rigged Hilbert spaces which has been sketched in this chapter; for 
this see Bohm 1978 or Bogolubov et al. 1975. 

1. Prove that the set of all wave functions satisfying WI-W3 (p. 39) forms a 
complex vector space and that (2.30) defines an inner product. 

2. Let P. be the projection operator associated with the result IX of an experiment 
E. Show that 

(i) P/=P.; 

(ii) if IX and fJ are different results of E, P.Pp = O; 

(iii) if IX is non-degenerate, with eigenstate ll/1.), 

P.i.P> = <.P.I .P>I .P.>; 
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(iv) .L P. = I where the sum is over all resul ts of E. 

3. Let lt/1 > be any state vector, let 1¢ > be any element of the eigenspace 9"~ , and let 

IBo> =lt/1>- P.It/1), IB>=It/1 > - 1¢ > 

where P. is the projection operator onto 9" • . Show tha t 

( 0 I 0);;?: ( 00 I 00 ) . 

[This shows that P,lt/1> is the nearest element of 9", to lt/I >.J 

4. A q uantu m system can exist in two states la 0 ) and Ia 1 ) , which are normalised 
eigenstates of the observable A with eigenvalues 0 and I. A second observable 

B corresponds to the operator 8 defined by 

Bla0) =7la 0 ) - 24ija 1 ) , Bla1)=24i la 0) - 7la1 ) . 

Find the eigenvalues and eigenstates of B. 
The system is in the state la0 ) when B is measured, and immediately 

afterwards A is measured. Find the probability that the measurement of A 
gives the result 0. 

5. Let A and B be two observables on a system with a two-dimensional state 

space, and suppose measurements are made of A, B and A again in quick 

succession. Show that the probability tha t the second measurement of A gives 

the same result as the first is independent of the initial state of the system. 

6. If A is any operator, show that At A has non-negative eigenvalues. 

7. If His a hermitian operator and lt/1 > is a n eigenvector of H with eigenvalue E, 
show that ( t/lle;H =ei£< 1/tl. 

8. Show that the normalised state lt/1> is an eigenstate of an observable A if and 

only if <t/II ... F it/1 > = <t/IIAit/1 >2
. 

9. Find the uncertainty in the polarisation observable P x when the photon is 

polarised a t an angle 8 to the x-axis. 

10. Let P0 be the photon polarisation observable for an axis at an angle e to the x­
axis(so that P0 = P, if8=0). Show that P0 and P q, are compatible if and only if 

8-¢=!mr for some integer n. 

II. Prove that 

L\A 2 L\B2 
)' H:i [A, BJ >I2 +(<1{ A, B} ) 2

- ( A)(B) )2 

where A and B are any two observables and {A, B} = AB + BA. 

12. Check that the formulae (2.69H2.70) for expectation value and uncertainty 
remain val id if A has continuous eigenvalues. 

13. Use formal manipulations with the c5-function to obtain Plancherel's formula 

Jl.f(k)j2 dk = Jlt/l(xJ!l dx 

where i]i(k) is the Fourier transform of t/l(x). 
14. Show that 

c5(x - x;) 
c5(f(x))= ~ lf'(x;)l 

where the sum is over all zeros X; of f(x) . 
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15. For a particle moving in one dimension , find the uncertainty ~x when the 

wave function is the Gaussian 1/J(x) = (2/na2)1 exp ( - x 2j a2). Show that the 

Fourier t ransfo rm of this functio n has the same fo rm, and deduce that ~X. ~p 

has its minimum value in this state. 

16. From the commutation relations between x and p, show that 

(ifl) - I [ p, X"] = nX" - 1_ 

H ence show tha t if f is a polynomial in x 1, x 2, x 3, the commutation relations 

(2. 116H2.117) imply [p; ,f]= - ifl of/ox;. 

17. Let D = r · p. If f is a product of m position operators and n momentum 

operato rs, show that 

[D, f]= - ifl(m-n)f 

18. Deduce (2. 124) from (2.1 2 1H2. 123). 

19. Let X be a fermion with an n-dimensional state space. What is the dimension 

of the state space of a system of r X pa rticles? What if X is a boson? 



3 
Quantum dynamics 

The p revious chapter was concerned with describing the state o f a system a t 
one instant of time, and with the results and effects of an instantaneous 
experiment. In this chapter we discuss how the system changes between 
experiments, in response to forces which operate over an extended period. The 
discussion is quite general, and applies to systems described by any kind of state 
vector (e.g. polarisation vectors. wave functions, etc.). 

3.1. The equations of The time development of a quantum system is specified by saying how the state 
motion vector changes from one time to another; this is the quantum counterpart of 

the classical equations of motion. (We will use 'equation of motion ' to denote 
any equation describing a change of state; the term does not imply the 
existence of motion in the classical sense of 'change of position'.) An ind ication 
of what the quantum equation of motion should be is provided by Planck's 

fundamental equation E = hi', which can be applied to any system as a relation 
between its energy E and the frequency v of an oscillation associated with the 
system. We saw in Chapter 2, when we were describing how the amplitude and 
phase of an oscillat io n could be represented by a complex number, that the 
oscilla to ry time dependence is given by a factor e - 2

ni•·•. Thus Planck's equation 
implies that if a system has energy £, its state vector ll/l(t)) at time c should 
contain a factor e- 2niw = e- •E•/11, i.e. 

(3.1) 

Now energy is an observable, so for a system to have a definite energy E it must 
be in an eigenstate of this observable. Eq. (3. 1) says that if this is so, the state 
vector at time c differs from that at t = 0 only by a c-number factor, and 
therefore describes the same physical state. For this reason an eigenstate of 
energy is called a stationary state. 

In order to say how a general state evolves in time we make the further 
assumption that as long as the system is undisturbed by an experiment the 

evolution of states is linear, i.e. if 11/1(0)) = c111/1 1 ) +c2 ll/!2 ) and if in time t the 
states ll/11 ) and ll/1 2 ) would evolve to ll/! 1(t)) and ll/! 2(t)), then 11/1(0)) evolves to 
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ji/J(t)) =cdi/Jdt))+ c2 jl/!2(t)). In other words, 

jl/!(1)) = U(l)jl/!(0)) 
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(3.2) 

where U(r) is a linear operator. Since (3.1) holds whenever 11/1(0)) is an 
eigenstate of energy, we can identify U(t) as a function of the operato r H 

representing energy: 

U(t)= e-'11'f11. (3.3) 

It is usual to sta te this law of evolution in the fo rm of a differential equation : 

Postulate VI. Let jl/!(1)) be the state of the system at time 1. Then as 
long as the system is no t d isturbed by any experiments,j ljl(l)) satisfies 

d 
ilr -jl/!(1)) = Hjl/!(1)) (3.4) 

dl 

where H is the operator describing the total energy of the system. 

This is a general statement prescribing the form that the equation of motion 
must have in quant um mechanics, as Newton's second law of motion does in 
classical mechanics. The equation of motion (3.4) is called the (time­
dependent) Schrodinger equation. The operato r His called the Hamiltonian of 
the system; it corresponds to the force in Newtonian mechanics - in fact, since 
the to tal energy includes the potent ial energy, knowledge of the total energy is 
equivalent to knowledge of the fo rce. 

The Hamiltonian takes its name from Hamilton's fo rmulation of 
Newtonian mechanics, which is suitable fora direct comparison with quantum 
mechanics. In Hamiltonian mechanics the configuration and velocity of a 
mechanical system are described by a number of coordinates (q 1 , • • • , q,) and 
co rresponding momenta (p 1, • • • , p, ); the motion of the system is determined 
by a function called the Hamiltonian function H(q 1, • •• , q, , p1, • • • , p,), whose 
value is the to tal energy of the system, by means of Hamilton's equations 

dq; cH 

dc= cp;' 

dp;= _ aH 
de cq; · 

(3.5) 

Thus the state of the classical mechanical system is specified by the values of 
(q 1, ••• , q,, p1, • • • , p, ), just as the state of a quantum system is specified by the 
state vector jl/l ) ; an observable property of the classical system is a function 
f(q1, • • • , q, , p1, ••• , p11) , while an observable of a quantum system is an 
operator on state space; and in both cases the behaviour of the system is 
governed by a first-order differential equation giving the rate of change of the 
state in terms of the particular observable H. 

For a single particle moving in space, the classical state is given by the 
position and momentum vectors (r, p); if the particle is acted on by a force F(r) 
which is derived from a po tential V(r), so that F = - VV, the Hamiltonian 
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function is 

pl 
H(r, p)=-

2 
+ V(r). 

Ill 
(3.6) 

The operator co rresponding to this observable in quantum mechanics is 
obtained by substituting the operators rand p (see after (2.112)-(2.113)) for r 
and p. The state vector 11/J(t)) , being a wave function which varies with time, is a 
function 1/J(r, r); thus in this context eq. (3.6) becomes the partial differential 
equation 

C!/1 ,,2 
ill --::;-- = - - "i1 21/J + V(r)I/J. 

ct 2m 
(3.7) 

If n particles are moving under the action of forces which are derived from a 
potential V(r I ' . . . ' r.). so that the force on the kth particle is Fk = - vk v (where 
Vk = Cfcrk), then the equation satisfied by the wave function 1/J(r 1 , • .. , rk) is 

iN ,,z "z 
i/1 - = - - "i1 1

2 1/J - · · · - - "i1, 21/1+ VI/J. (3.8) or 2ml 2m. 

Now suppose the Hamiltonian H has a purely discrete spectrum, so that it 

has a complete set of eigenstates II/I 1 ), II/I 2 ) , .•• with corresponding eigenvalues 
E1 , E2 , •••• Then 11/J(r)) can be expanded in terms of this complete set with 
coefficients which wlll depend on t: 

m 

and eq. (3.4) gives 

ih L ddcm II/Jm) = L Emcm(c)II/Jm) . 
m ( m 

Hence, equating coefficients of 11/Jm), 

. dcm 
1h dt= Emcm(c); 

. . . cm(t) = e- l£~•1hcm(O). 

Thus 

(3.9) 

(3.10) 

(3.11) 

This is the same as (3.2) and (3.3), and shows that they follow from Postulate 
VI. 

As an example of the effect of time development on observables, suppose a 
system is initially in an eigenstate ll/! 0 ) of an observable A, where ll/!0 ) is not a 
stationary state but a superposition of two different stationary states: 

ll/lo) =clll/ll ) +czll/!2) . (3.12) 

Assume that 11/10 ), 11/1 1) and 11/12) are all normalised, so that 

icdz+lczlz= 1. (3. 13) 

Then the probability that a measurement of A at timet will show A to have the 



3. 1 Th e equations of motion 81 

same value as it had init ia lly is 

l<l/lo ii/J(t)) l2 = l<l/loiCct e- IE,t/ll ll/!1 ) + C2e - IE,tl''l l/l z) )il 
= licdze - IE,,;,, + lczize - iE,,;,'jl (3 .14) 

since ( 1/10 jl/! 1) = c1 and ( 1/10 ll/!2) = c2. Using (3. 13), this can be written as 

j( 1/10 jl/l(t)) l2 = l - 4jc d 2 jc212 sin 2 [~{£ 1 - E2)tj f1]. (3. 15) 

Thus the value of A oscilla tes with frequency 

El -£2 
\1= - - -

h 
(3. 16) 

Note that if the energy of the system had been measured at t =0, when the 
state was given by (3.12), then the measurement would have changed the state 
of the system in one of two different ways, and there would have been two 
alternative courses of development. With probability lc1 j2 , the measurement 
would have given the value £ 1, the state of the system would have become 
jl/!1 ) , a nd at time r this would have evolved to e-;E,, ''1 1/11 ) . With probabili ty 
jc2 j2 , the measurement would have given the value £ 2 , the state would have 

become ll/! 2 ) , a nd at time 1 it would be e- 1£''11111/1 2 ) . Thu s the state at time t 

wou ld be 

e-1£•''''1 1/1 1 ) with proba bility lc d2, 

e- 1E1'
11'j i/J2) with probability jc2 j2 

instead of 

(3.1 7) 

C I e- IE,t/1111/JI ) + C2e- IE,t/I•II/J 2) . (3.18) 

If A is measured at time t, the probabili ty tha t it has the same value as it had 

ini tially is 1< 1/!oll/! 1 >12 = lc 11
2 in the fi rst case of (3. 17), I< 1/Jol l/! 2 ) 12 in the second 

case. Hence the to ta l probability is 

lcd 2 · lc1i
2 

+ hl
2

· hl
2

= h l
4
+hl

4
· (3.19) 

This should be compa red with (3.14) and (3.15). We see that the osci llation in 
(3. 15) has enti rely disappea red. This oscilla tion is the result of interference 
between the two states e- IE,•I''II/! 1) and e-;E,•II•jl/! 2); it occurs when the states are 

added coherently, as in (3. 18). In (3. 17), on the other hand, the sta tes are added 
incoherently. The mat hema tical difference between coherent and incoherent 
addition is shown in the cont rast between (3.14) and (3. 19). 

In the case of a system of particles governed by the time-dependent 
Schr6d inger equation (3.8), the solut ion (3.11) can be written 

(3.20) 
m 

where 1/Jm satisfies the equation 

h2 h2 
- - ¥' 1

21/!m- · · · -- Vn 21/!m + V(r 1 , •• • , rnll/lm = Eml/lm, (3.21) 
2m 1 2mn 

which is known as the time-independent Schrodinger equation. This is the 
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solution that would be obtained by the method of separation of variables (see 
problem 3.4). If the Hamiltonian has a continuous spectrum, the sum in (3.20) 

must be replaced by an integral to give 

I/J(r1 , ... , r, , t)= Je- i£tlhljJ£(r 1 , ••• ,r,)dE. (3.22) 

Write E=wh, ¢(r1, . . . , r, , w)=fii/J£(r1, • • • , r,); then 

I/J(r1 , . . . , r, , t)= Je-;w'¢(r1, •• . , r,,w)dw (3.23) 

so in this case (3.11) corresponds to solving the differential equation by taking 

the Fourier transform with respect to t. 
The sim.plest system of this type is that of a single particle moving in space 

under no forces, so that the Hamiltonian isH= p2/2m. Since this is a function 
of momentum, any eigenstate of momentum will also-be an eigenstate of H. As 
we saw in the previous chapter, there are no true eigenstates of momentum, but 
there is an expression for the wave function correspondi.ng to an expansion in 
momentum eigenstates, namely the Fourier transform with respect to r: 

(3.24) 

(we use p' for the variable of integration to avoid confusion with the 

momentum operator). The solution of the Schrodinger equation that 
corresponds to this as (3.11) corresponds to (3.9) is 

(3.25) 

e3.t Let A be any observable. As the state 11/J(t)) changes according 
to Postulate VI, the expectation value of A in this state changes 
according to 

Proof The expectation value at time t is 

<A>=< 1/!(t)IAII/I<t)) . 

We have 

d 
ih dt 11/J(t)) =Hii/J(t)). 

Taking the hermitian conjugate of this equation, 

d 
- ih dt ( 1/J(t)j = ( 1/J(t)jH 

(3.26) 

(3.27) 
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since H is hermitian. Now (3.27) gives 

;'t (A) =[;', < t/l(t)l] Alt/l(r)) + < t/l(t)IA C~c l1/t(c) ) J 
=[~(t/l(t)IH ]Ait/J(c)) + ( t/l(t)IA[ -~Hit/l(t)) J 
= ( t/l(t)l ~ [H, AJit/l(t)) 

= (~[H, A] ). • 
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Let us apply this to the case of a simple particle moving in space in a 
potential V(r). For this system 

H =Pi Pi+ V(r) 
2m 

(3.28) 

(here, and everywhere else, summation over repeated indices is understood; see 
Appendix A). Using the commutator rule (2.80) and the form of the momentum 
operators, (2.113), we have 

Also, 

so 

1 
[H , x;] =

2
m (PlPi• x;] +[pi, x;]pi) + [ V, x ;] 

ih 
=-- Pi· 

m 

[ a"'] a [V,pJt/J =V -if1- +ih - (Vt/1) 
axi axj 

av 
[H,pJ=[V,pJ=ih-a . 

xi 

Putting (3.29) and (3.30) in tum into (3.26), we find 

~ ( r ) = ( p)' 
de m 

d 
- ( p) = - ( VV)=(F) 
de 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

where F is the classical force on the particle. Thus the equations for the motion 
of the expectation values are obtained by taking expectation values of all terms 
in the classical equations of motion. 

From eqs. (3.31) and (3.32) the classical equations of motion can be deduced 
as approximations which hold if the particle can be described approximately 
as a point particle, i.e. when its wave function is a localised wave packet. The 
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precise sta tement is 

e3.2 Ehrenfest's theorem. If the wave function of a particle vanishes 

outside a convex region V in which the force F is approximately 
constant, then the particle behaves like a classical particle with 
position ( r) obeying the classical equation of motion 

d2 
m dt 2 ( r) = F(( r)). 

Proof F rom (3.3 1) and (3.32) we have 
{f2 

m dt2 ( r) = ( F(r)). 

(3.33) 

(3.34) 

If the nonnalised wave function of the pa rticle is 1/J, the formula (2.69) for the 
expectation value gives 

( F(r)) = f, ji/J(r)j2F(r) d3r. (3.35) 

Now F can be regarded as constant in the region V, which conta ins ( r) since V 
is convex, so we can write 

( F(r)) ~F((r)) L ji/J(r)jl d3r= F(( r)) 

since 1/J is normalised. • 

(3.36) 

The conditions of Ehrenfest's theorem will not in general remain satisfied at 
all times, as we can see by studying the change of the uncertainty in position. 
As an example let us take the case of a free particle ( V = 0), so that by (3.32) ( p) 
is constant. We will look at the !-components x 1, p1 of rand p. From the 
formu la (2.70) for the uncertainty, together with (3.26), we obtain 

{~It (llx/)= (~[H,x 1 2] ) -2(x 1) : /x 1) , (3.37) 

d 2 / i 1\ d 
dt (llpl ) = \ h[H ,p! 2]/ - 2( pl ) dt ( p! ) . (3.38) 

Since H commutes with p1 , (3.38) shows that llp/ is constant. Now a 
calculation similar to that leading to (3.29) gives 

2 if! 
[H, X 1 ] = - - (x1p 1 + p1x 1), 

m 

d 2 I 2 
-d (llx 1 )=- (x 1p1 +p 1x 1)--(x 1)(p1) (3.39) 

l 1n m 

2 
=-(tlpy. 

m 
(3.40) 
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Thus the expectation values and uncertainties in the components o f 

momentum are constant, but the uncertainties in the coo rdinates wi ll 111 

general increase with time and the wave packet will spread out. 

The probability current The time-dependent Schrodinger equation for a sing le part icle moving in a 
potential V(r) is 

al/1 "2 ih - = - - \121/J+ V(r)I/J. (3.7) ot 2m 

Multiplying this by If and taking the imaginary part gives 

1 [·r.al/1 alf] 11
2 

.r. 2 2 -2.11 'I' ac +1/Jat = - 4mi ['I' \1 1/1-1/1\1 1/J] , (3.41 ) 

which can be written as 

(3.42) 

where 

and 
11 .r. _ 11 _ 

j=-.['1'\11/J-1/JVI/J] =- Im [1/JVI/J]. 
2ml m 

(3.43) 

Now p is the pro bability density: if a large number o f particles were moving 

in the potential V simultaneo usly but independently, forming a cloud of dust. p 
would (almost certainly) be the density of the dust (taking the total mass of the 
cloud to be 1). Eq. (3.42), which is known in fluid mechanics as the equation of 

continuity, suggests that the vector j should be in terpreted as the current 
density describing the flow of the quantity whose density is p. The reason for 
this can be seen by integrat ing (3.4 1) over a regio n V and using the divergence 

theo rem; this gives 

!!.._ I p dV= -f j·dS (3.44) 
dt Jv av 

where i1 Vis the boundary of the region V. Thus the to tal probability that the 

particle is in V decreases a t a ra te given by the flux o f the vector j across the 
boundary of V; we can imagine the probability being carried by the vecto r j. 
(For a classical cloud of dust we would have j = pv where vis the velocity o f the 
dust a t the point in question.) For this reason j is known as the probability 
current. 

Boundary conditions for We have seen (in eqs. (3.20H3.2 1) that the time develo pment of the wave 
the SchrOdinger equation function of a set of particles is obtained by first solving the time-independent 

Schrodinger equation (3.2 1), i.e. by finding the eigenfunctions and eigenvalues 
of the Hamiltonian. In the next chapter we will tackle this eigenvalue problem 
for the most interesting physical systems by algebraic methods; in general. 
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however, the problem must be treated as a differential equation. Since this 

book is concerned with principles rather than techniques, we refer to other 

books (e.g. SchilT 1968, Bohm 1951) for details of methods of solving the 

Schrodinger equation. Here we will simply complete the specification of the 

problem by finding the boundary conditions that the wave function must 

satisfy. 

The simplest case to consider is that of a single particle moving in one 

dimension, for which the time-independent Schrodinger equation becomes 

!Jl dli/J 
HI/I=-

2
m dx 2 + V(x)I/J = EI/J. (3.45) 

As an element of the state space 1ft" defined by Wl-W3 (p. 39), 1/J is square­

integrable and uniformly continuous, and therefore satisfies 

1/J(x) -> 0 as x-> ± oo. (3.46) 

This is sufficient to act as a boundary condition for the differential equation 

(3.45). It is sometimes too restrictive: as we saw in §2.5, a hermitian operator 

may have no eigenfunctions in the space defined by Wl-W3, so that it becomes 

necessary to look for eigenbras. These will also be given by functions 1/J 
satisfying (3.45), but with the conditions 

f~oo 1/J(x)</J(x) dx< oo for all cjJE"/1'. (3.47) 

In particular, 

as x--+ ± oo. (3.48) 

If the Hamiltonian H is to be an operator on the state space "'f/, taking 
smooth functions to smooth function s, then the potential V(x) must also be a 

smooth function of x. Physically, this is a reasonable condition. However, it is 

often convenient to consider a discontinuous potential function; such a 

potential can be a good idealisation of a physical situation, and it can give a 
Schrodinger equation which is easy to solve. In order to admit discontinuous 

functions as operators we must use a different space of wave functions; the 
conditions to be imposed on the wave functions will depend on the nature of 

the discontinuities in the potential. (This does not involve any departures from 

the basic physical principles: remember that we are dealing with a 

simplification of an actual physical situation in which the potential function is 

smooth and the wave function belongs to our standard state space "'I'.) 
We consider only potentials which have simple jump discontinuities at a 

finite number of points x 1 , . . . , xn and are smooth everywhere else. We want to 

extend the space "'I' to a space [/ on which the operator 

h2 d2 
H = -2m dx2 + V(x) (3.49) 

acts and is hermitian. Clearly the only modifications necessary refer to the 
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points of d iscontinuity of V(x); thus we assume that the functions in //' are 

smooth everywhere except a t x 1, •.. , x ,.. Then if ¢(x) a nd 1/J(x) are any two 

functions in ~ regarded as sta te vectors j¢), jl/1) , we have 

"fx,., { f12d21/J } 
( ¢jH ji/J) = 1~0 ·' • ¢(x) - 2111 dx2 + V(x)I/J(x) dx (3.50) 

(with x 0 = - cc. ,xn+t = oo ). Integrating the firs t term by pa rts and comparing 

with ( 1/JjH j¢), we find 

lt
2 

" [ di/J d($ ] 
<<PIH II/J>-<I/IIHI<P>=2m ~~o 6 j ¢ dx -1/1 dx (3.5 1) 

where 6J deno tes the discontinuity in the function f at x1: 

6J = f (xi+ )-f(x~- ). (3.52) 

If His to be hermitian, the right-hand side of (3.5 1) must vanish for all ¢, 1/J in .C/. 
The most natural way to ensure this is to demand that a ll funct ions in !/ a re 
continuous and have continuous derivatives. Then to ensure that functions in 
!f stay in !f after H has operated, we need to impose a condition on the second 
derivat ive: it must have a d iscont inuity to bala nce the d iscont inuity in V. T hus 
the space !f consists o f all functions 1/J satisfying 

I. 1/J and 1/J' a re continuous at x1, 

f1 2 
2. - 6 11/J" = (61 V)I/J, 

2m 

(3.53) 

(3.54) 

where the dashes deno te differentia tion with respect to x . (3.54) is only the fi rst 
in a chain of conditions giving the discontinuities in the higher derivatives of 1/J; 
these conditions a re all automatically satisfied if 1/J is a superposition of 
solu tions of the Schrodinger equa tion (3.45) satisfying the basic continuity 
conditions (3.53). 

If it is necessary to look fo r eigenbras the problem becomes tha t o f fi nd ing a 

function 1/J which satisfies 

f oe _ [ f1 2 d2</J J Joe 
1/J(x) --

2 
-d 2 + V¢ dx=E lf<Pdx fo r a ll ¢ ef/. 

-oo m X -oo 

(3.55) 

In this case the same boundary conditions (3.53) a rise as the condition fo r 
(3.55) to be equivalent to the Schrodinger equat ion (3.45) (see problem 3. 12). 

For example, let us take V(x) to be a simple step function with a 
discontinuity a t x=O: 

V(x)= . {
0 if x< O, 

V0 tf x~ O. 

Then if E> V0 the general solut ion of the Schrodinger equation (3.45) is 

For x<O, I/J(x) =Ae1kx +Be- ik" 

fo r x > 0, 1/J(x) = Cf!Kx + De- iKx 

where k2 = 2mEjh2
; 

where K 2 = 2m(£ - V0)/lt 2 

and the continuity conditions impose the following relations on the constants 
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A, B, C, D: 

rjJcontinuousatx=O => A+B=C+D; 

t/J' continuous at x=O => ikA-ikB=iKC-iKD. 

A further idealisation which it is sometimes convenient to make is to 
suppose that the particle can only be found in a certain region R, so that tjJ = 0 
outsideR (thjs is often expressed by saying that 'V= oo outsideR'). Let us take 
R to be an interval [a , b]. Then the state space is a space of smooth functions 
on [a , b], with inner product 

< ¢ 1 t/1 > = f ¢(x) t/J(x) dx. (3.56) 

Boundary conditions at a and b are needed to make the Hamiltonian (3.49) 
hermitian, even when V(x) is a smooth function on [a, b]. The condition for H 
to be hermitian is 

[
¢dt/J- d¢ t/J]b =0. 

dx dx a 
(3.57) 

This can be satisfied by imposing on all functions tjJ in 5I' the condition 

tjJ(a)=t/J(b) =O; (3.58) 

there is no need to impose a condition on the derivative of t/J. ((3.56) could be 
satisfied by imposing the condition t/J'(a) = t/J'(b) = 0 instead of (3.58); the latter 
is chosen because it makes the momentum operator p = - ih d/dx hermitian.) 

For a particle which is confined to the interval [a , b] but is otherwise free, 
the Hamiltonian is H= p 2/2m and the Schrodinger equation (3.45) becomes 

f72 d2t/J 
- 2m dxl = EtjJ (3 .59) 

with boundary conditions (3.58). The solutions of this differential equation are 

tjJ =A sin k(x- a)+ B cos k(x -a) (3.60) 
where 

k 2 = 2mE/h2
; 

the boundary conditions then require 

B=O, k(b - a)=nn 

where n is an integer. Thus E can only take the values 

n2n2fi2 

E 2m(b - a)2' nEZ, 

(3.61) 

(3.62) 

which form a discrete set. This discreteness is the basic quantum effect; it is 
characteristic of a particle which is confined to a bounded region. 

3.2. lnvariances and Suppose the physical system we are considering can exist anywhere in space. 
constants of the motion Then we can consider the effect of moving every part of the system through the 

same displacement a; such an operation is called a translation. To every state 
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II/I> of the system there will correspond another state W> in the new position; 

W> is obtained by doing whatever was done to obtain II/I> but with the 
apparatus all displaced through the vector a. Now if the basic laws of physics 
are the same in all places, it seems reasonable to suppose that relations of 
superposition between states will not be affected by the translation - that is, 

ll/l) =c111/11) +c211/1 2 ) = II/J') =c1 ll/l 1') +c211/1 2 ' ) (3.63) 

- because whatever modification to the apparatus in one place is needed to 

produce c111/1 1 ) + c2ll/l 2 ) rather than II/I 1 ) or 11/1 2 ) , the same modification in the 
new place wiJI produce c1II/J 1') +c 2ll/l 2' ) . (A more general possibi lity will be 
considered later; seep. 96.) Thus the correspondence between II/I) and 11/J' ) is 
linear: 

W> = U(T.ll!/1 > (3.64) 

where U(T.) is a linear operator on state space. Similarly, the relations between 
states expressed by their inner products will be the same after the translation, 

so 
<4>' I 1/1'> = <4> I 1/1>. 

Taking the hermitian conjugate of (3.64), 

( 1/1'1 = ( !/II U(T.)t. 
Hence (3.65) gives 

<4>IV(T.)tU(T.lll/l> = <4> I 1/J ). 
Since this holds for any states 14>> and II/I), we must have 

U(T.)tU(T.)= I. 

Thus U(T.) is a unitary operator. 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

The linearity and unitarily of U(T.) are consequences of the assumption that 
the relations between states at one time are not affected by the translation, or 

in other words that the general formalism for describing the system is invariant 
under translations. We will say that translations are unitaristic operations. 

In general, we will distinguish between an operation. which is performed on 
the physical system itself, and an operator, which acts mathematically on state 
vectors. (The distinction runs parallel to that between states and state vectors.) 
An operation is unitaristic if it does not affect the static laws of quantum 
mechanics for the system, and is represented by a unitary operator on the state 
space of the system. Our notation incorporates the distinction between 

operations and operators: T. denotes the operation of translating the system 
through the vector a, while U(T.) denotes the corresponding operator. 

Now suppose that the evolution in time of the system is also in variant under 
translations, so that the relations between states at different times remain the 
same after translation. Then if 11/J(t)) is the sequence of states to which 11/1(0)) 
evolves, the translated state U(T.lll/!(0)) will evolve to the sequence U(T.lll/l(t)). 
Thus if ll/l(t)) satisfies the Schrodinger equation, so does U(T.lll/l(t)): 

d 
if1 de [ U(T.)II/I(t))] = H U(T.)II/I(t)). (3.69) 
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But 
d d 

ih dt [ U(T.) jl/l(t) ) ] = U(T.) · ih dt jl/l(t)) = U(T.)H jl/l(t) ) (3.70) 

if jl/l(t)) satisfies the Schrodinger equation. In particular this applies when t = 0; 
and since Ji/1(0)) could be any state, we can conclude that 

H U(T.) = U(T.)H. (3.71) 

Thus the condition for the behaviour of a system to be invariant under 
translations is that the translation operators should commute with the 
Hamiltonian. 

Whether this invariance is true for a particu lar system depends on how 
widely the system is defined. In classical mechanics, for example, the system of 
a partic.Je moving in the earth's gravitational field is not invariant under 
translations; the particle will behave differently if it is moved away from the 
earth, because the field there is weaker. However, if the system is widened to 
include the earth, then this wider system is invariant under translations: if the 
particle and the earth are translated together to any position in the universe, 
the forces between them remain the same because the distance between them 
does. It is generally, and strongly, believed that if one includes all relevant 
matter in the system, this in variance will always apply: the laws of physics do 
not vary from place to place. This is the lasting legacy of the Copernican 
revolution: the firm belief that there is no centre of the universe, or any other 
special point in space. 

When a= 0 the translation has no effect on the system, so T(O) is the identity 
operator. Now assume that U(T.) is a differentiable function of a , and put 

(3.72) 

Di is called an infinitesimal translation operator. Differentiating (3.68) and 
putting a = 0, we find 

(3.73) 

Thus Di is anti hermitian. Let Pi = it1Di; then Pi is hermitian, and therefore is 
qualified to describe an observable. 

We will identify the observable Pi for the case of a single particle in space by 
determining the operators U(T.) and Di. The effect of U(T.) on a wave function 
1/1 is to produce a wave function 1/1' whose value at r +a is the same as the value 
of 1/1 at r (this is illustrated in Fig. 3.1, in which the value of 1/1 at a point is given 
by the density of ink at that point). Thus we have 

1/J'(r +a)= 1/J(r) 

or, writing 1/J' = U(T.)i/1, 

[U(T.)Ijl](r) = 1/J(r -a). 

(3.74) 

(3.75) 



Fig. 3.1. 
The effect of translation on a 

wave packet. 

3.2 In variances and constants of the motion 

Hence, from (3.72), 

a a 
D;l/l(r)= -;- [U(T.)I/I](r)l. -o=-~ [l{l(r-a)].~o 

ua; oa; 

ol{l 
= --(r); 

OX; 

a 
P·=if1D.= -it1 -

, I OX; . 

Thus the observables P; are the components of momentum. 
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(3.76) 

(3.77) 

Now suppose the behaviour of the system is invariant under translations, so 
that (3.71) holds. Differentiating, we find 

HP;=P;H, (3.78) 

i.e. P; commutes with the Hamiltonian. 
An observable which commutes with the Hamiltonian is called a conserved 

quantity or a constant of the motion. It can be seen from e3.1 that such an 
observable has a constant expectation value; in fact it has the following 
stronger property: 

e3.3 If the observable A commutes with the Hamiltonian, the 
probability that A takes a particular value a is constant. 

Proof Let !f. be the subspace of eigenstates of A with the given eigenvalue a, 
and let P. be the orthogonal projection onto Y" •. We will show that H 
commutes with P •. First note that if II/I.) belongs to .9"., so that AII/I.) =cxll/l.), 
then 

AHII/I.) = H AII/I.) = cxHII/I.), (3 . 79) 

i.e. Hll/l.) also belongs to .9" •. Now any state II/I> can be written as 

II/I>= II/I.>+ II/I .l> (3.80) 

where II/I.)= P.ll/l> belongs to .9". and II/I .L) is orthogonal to !f. . Then Hll/l.) 
belongs to .9".; a lso Hll/l .L) is orthogonal to !f., for ifl¢) is any vector in Y". then 
HI¢) is also in !f. and so 

(3.81) 
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Thus Hjt/1,) is the orthogonal projection of Hjt/1) onto 9'., i.e. 

H P.jt/1 ) = P. Hit/1 ) . (3.82) 

Since lt/1) is any state vector, it follows that HP. =P. H. 
Now using the form (2.42) for the probability that A has the value ex, and 

e3.1 for the rate of change of an expectation value, we find 

d d i 
dr PA(cx I t/1)= dt <1/JIP.It/1> =,; <1/JI[H , P Jlt/1> =0. • 

We have now seen the property of commuting with the Hamiltonian being 
significant for two different types of operator: unitary operators, like those 

which describe the effect of tran slations; and hermitian operators, which 

represent observables. The significance is different in the two cases; the general 
situation can be summarised as 

e3.4 If a unitary operator commutes with the Hamiltonian, it 
describes a physical operation on the system which leaves its 
behaviour invariant. 

If a hermitian operator commutes with the Hamiltonian, it 
describes an observable which is a conserved quantity. • 

And we can easily generalise the reasoning which, in the case of translations 
and momentum , yielded a connection between unitary operators and 
hermitian ones, to prove 

e3.5 If U(},) is a family of unitary operators depending 
differentiably on a real parameter J.., with U(O) = I, then 

X = ihdU I (3.83) 
dA. i.-o 

is a hermitian operator. If the U(},) describe invariances Q;. of the 

system , then X describes a conserved observable. • 

In many examples of physical interest, the operations Q, form a group in which 
the composition of operations is given by adding the parameters, i.e. 

Q;. 0 Ql' = Q i.+ p (3.84) 

where Q;. o Q" is the combined operation of Q
1
, followed by Q;.· In this case the 

unitary operators U(QJ can be expressed in terms of the hermitian operator X, 
as follows : 

e3.6 Let Q;. be a family of operations on a physical system which 
are labelled by a real parameter and satisfy (3.84), and whose effect on 

the states of the system is described by unitary operators. Then these 
operators can be chosen to be of the form 

U(Q;.) = e - ii.X/h (3.85) 

where X is a hermitian operator. 
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Proof To simplify the no tation we will write U(Q ;.) = U(}.). Suppose that we sta rt o ff by 

associating the o peration Q, with the unita ry operator U 1().). Then the state vecto r 
U 1 (J.)U 1{)1llr/l> describes the sta te of the system obta ined by a pplying firs t QP and then 

Q;. to the system when it is in the sta te lr/1) . This state results from applying Q;.+w so it is 
a lso described by U 1 (i. + Jlllr/1 ). Hence 

U 1 (i. + Jl)lr/J) = CO(i .. Jl)U 1 {J.)U t (Jl)ir/J) (3.86) 

where w(/,, Jl) is a complex number with unit modulus; it is independent o f lr/1 ) since 

U dJ. + Jl) has to be linea r. This holds fo r a ll lr/1) , so 

U I(},+ Jl) = W(A, Jl) U I (}.)U I (Jl). (3.87) 

We can assume that U1(0) = I; this gives 

w(J., 0) = w(O, Jl) = I. (3.88) 
Now 

-= LJm = Lim 
dU 1 • [U 1().+ bi.)- U 1(J.)] . . [w()., bJ.)U 1(bi.)U 1(i.)- U 1( ). )] 

di. b; -o fJ i. .;, __ o bi • 

. [w(J .• bJ.)U 1(bi.)-U1(0)] . o . . 
= ~1m b). U1(1.)= ;;- [co(I., Jl)U 1()1)]P_0 U1(1.). 

bt. - 0 • VJl 

Let (aw;aJl)(}.,O)=ex(J.) and ih(dU 1/dJl)=X; then 

dU 1 [ X] di. = ex(J.) +ill U I (J.) 

since U 1 (0) = 1 and w(J., 0) = I. Let 

then 

U(i.) = ex p [ - J: ex().') d).' J U 1 (i.); 

dU X 
df=jh U(J.). 

The solution of this d ifferentia l equation with U(O) = I is 

U(J.)= e-U.X/h 

as can be seen by wri ting lr/J(J.)) = U(J.)Ir/10 ) , so tha t 

d 
ill --: lr/J{J.)) = X !r/J().)); 

dl. 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

this is the same as the Schrodinger equa tion (3.4) with X instead of H and ). instead o fr , 
so its solution is the same as (3.3) with these changes. 

Since w(J., Jl) has modulus 1 for a ll }. and Jl, ex().) is purely imagina ry and so the 
exponential in (3.90) has modulus I. Thus U(J.) differs fro m U 1 (J.) only by a phase facto r 

and so it describes the same physical o pera tion Q;.· • 

As an example of (3.85), take Q;. = T;J to be a translation in the x-direction, so 
that U(Q;.) acts on wave functions by (3. 74). Take X = - if1 a;ax; then by 
expanding the expo nential as a power series, (3.8 5) can be recognised as 
Taylor's theorem . 

The hermitian operato r X is called the hermitian generator of the unita ry 
family U(Q;.). Note that in general X is no t uniquely determined by the 
unita ristic operations Q~ . because of the freedom to multiply the unitary 
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opera to rs U(Q;,) by a phase factor w(i.). This could have the effect of adding a 

multiple o f the identity to X. However, this possibility is o ften eliminated if 

there a re several families of Q;. which combine to form a larger group {see §3.3). 

As we no ted in the course of proving e 3.6, the hermitian generato r X is 

related to the unitary operators U(Q,.) in the same way as the Hamilto nian H is 

related to the time development operators U(t) of§3. 1. Now U(t) represents the 
o peration of taking the state at time t 0 to the state at t ime t0 + t , which 

operation is to time as translations are to space. Thus the H amilto n ian can be 

seen as the hermitian genera tor o f time translations. 

In cl assical mechanics as well as in quantum mechanics a continuous family 

of invariances is associated with a conserved quantity (see Goldstein 1980, 

p. 411). There, too, invariance under transla tions is associated with 

conservatio n of momentum. Another important example is in va riance under 

ro tat io ns (about a given po int, say the origin); the associated conserved 

quant ity is angula r momentum (about that point). These two examples are of 

fundamenta l importance, and need to be formulated as one of the basic 

postulates: 

Postulate VII. Translatio ns and rotations are unitaris tic operations: 

i.e. on the state space of a ny physical system in space there are unitary 

operators U(T.) and U(R(n. 0)) representing the effects of a translation 

thro ugh the vector a and a rotation about the axis n through the angle 

e. For fixed n, the observable associa ted with the famil y U(),) = U(1i.a) 
is P · n, where P is the to tal mo mentum of the system, and the 

observable associated with the family U(J.) = U(R(n, ),))is J · n, where J 
is the total angular momentum of the system. 

From this postu late we can deduce the form o f the operators representing the 

compo nents of angular mo mentum of a sing le particle described by a wave 

function, using an argument similar to that which gave the components of 

linear momentum in (3.77). A rotation R is an operatio n upo n three­
dimensional vectors; if we regard these as three-co mponent column vectors, R 

can be identified with a 3 x 3 matrix. If R is a rotation about the z-axis through 
an angle e, for example, 

R~ R(k, OJ~ [ ~i: -sin 0 OJ 
cos e o . 

0 J 
(3.94) 

The unitary operator U(R) acts on wave functio ns in a similar way to the 

translation operator U(T. ), as shown in Fig. 3. 1; U(R) acts on a wave function 

t/1 to produce a new functio n t/1' whose value at Rr is the same as the value of t/1 
a t r. Hence 

[ U(R)t/J](r) = t/I(R _, r) (3.95) 

(cf. {3. 7 5)). In pa rticular, 

[ U(R(k, O))t/1 ](x, y, z) = t/l(x cos e + y sin e, -X sin 0 + y cos 8, z). 
(3.96) 
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By e 3.5 and Postulate VII, the z-component of angular momentum is 
represented by the operator 

d 
J==ih d(} U(R(k, G))io~o · (3.97) 

Hence, by differentiat ing (3.96) and putting 8=0, we find 

1 ol/f oi/J 
-:-;- [J =1/1 ] (x, y, z) = y -;- (x, y, z)- x-;- (x, y, z), 
Ill uX uy 

t.e. 

Jz=ih(y a: -x :J 
= XPy- YPx (3.98) 

using the usual operators (2. 112)-(2. 11 3) for the components of momentum. 
(3.98) is the z-component of the vecto r equation 

J = r x p, (3.99) 

which is the classical definition of the angular momentum of the particle. 
Similar arguments show that the x - andy-components of(3.99) are also true in 
the quantum case. 

Postulate VII also enables us to determine the angular momentum operator 
for a photon. Consider a photon travelling in the z-direction, with its 
polarisation states i<l>x> and j¢y)· The effect of a rotation about the z-axis 
through angle 8 is to take the state i¢x) to a state with polarisation vector at an 
angle e to the x-axis: 

U(R(k, 8))j¢x) =cos Gj¢,) +sin 8j¢y) ) 

Similarly . 

U(R(k, 8)) j¢y) = - sin 8j¢x) +cos 8j¢y) 

(3.100) 

Thus the z-component of angular momentum is given (as an operator) by 

J=i<l>x) =ih :e [cos 8j¢x)+sin 8j¢y)Jo~o =ihj ¢y) l 
J zl</>y) = - ih j¢x) I . (3.101) 

The other components of angular momentum will involve states with different 
directions of motion for the photon, since other rotations will take a photon 
moving in the z-direction to one moving in some other direction. 

Parity A third kind of geometrical operation which assumes dynamical significance 
in quantum mechanics is space inversion. Like the operations of rotation, it is 
defined with respect to a particular point, which we take to be the origin; it 
consists of taking the point r to the point -r. An operation which is somewhat 
easier to visualise can be obtained by combining this with a rotation through n 
about an axis n; the result is mirror reflection in the plane perpendicular to n. 
Neither of these operations can be performed on a physical object; 
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nevertheless they constitute physical operations in the sense that for any 

physical system one can construct another system which is related to the first 
by space inversion (if the first system had a particle at the point r, the second 
has one at - r). 

This operation changes a left hand into a right hand; thus to say that it is 
unitaristic is to say that there is no particular handedness built into the laws of 
physics. This seems a reasonable supposition. (The laws of economics may 
discriminate aga inst left-handed people who want to buy an appropriate pair 

of scissors, but the laws of physics do no t make the use of their scissors, once 
they have found some, any more difficult than for right-handed people.) If it is 

true, there is a unitary operator P which represents the effect of space inversion 
on state vectors: on wave functions, for example, it acts by 

[Pift](r)= ift( - r). (3. 102) 

If space inversion is applied to a system twice, it brings it back to its original 
state; thus P 2Jift) must be a multiple of Jift ) . By redefin ing P with a phase factor 

if necessary, we can a rrange tha t 

p 2= l. (3.103) 

Since there is no continuous family of operators in this case, there is no 

hermitian operator associated with inversion as in e3.5, and so we would not 
expect there to be a conserved quantity associated with invariance under 

inversion. In classical mechanics indeed there is no such conserved quantity. In 
quantum mechanics, however, (3.103) and the fact that P is unitary give 

P=P- 1 =Pt, (3.104) 

i.e. P is hermitian as well. Thus P itself represents an observable. This 

observable is called parity; because of (3. 103) its eigenvalues can only be ± 1 
(these eigenvalues are also called even and odd respectively). If the operation of 
space inversion is an in variance of the system, then P (as a unitary operator) 

commutes with the Hamiltonian and therefo re (as an observable) is a 
conserved quantity. 

Time reversal So far we have assumed that a physical operat ion must be represented on state 

space by a linear operator. The grounds for this assumption were that an 
equation of the form 

lift ) =c1Jift 1) +c2Jift2) (3.105) 

expresses a relation between the states Jift ) , Jift 1 ) and Jift 2) which must be 
preserved by the operation. However, this argument is careless of the 

distinction between states and state vectors. The coefficients c 1 , c2 describe a 

relation between state vectors, but it is only their squared moduli Jc 1J2, lc21
2 

that are significant in the relations between physical states. Their phases a re 
significant, but only to the extent that they enter into probabilities, which are 
given by expressions like J<¢ lift>l2

. Thus the only property which is needed to 
describe the effect of an operation which does not affect the static laws of 
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quantum mechanics is that the state vectors IT¢), ITt/! ) which describe the 

sta tes 1¢ ), It/! ) after the operation should satisfy 

I< T ¢ I Tt/1 )1 = I<¢ I t/1 )1 for a li i¢ ), lt/1 ). (3.106) 

Wigner's theorem (w hose proof is sketched in problem 3.23) states that if Ti s 
a mapping of state vectors which satisfies (3.106), then for each It/!> we can find 
a complex number w, with lw l = I, so tha t the map U defined by 

Ult/l)=wiTt/1) (3.!07) 

either is linear and unitary or satisfies 

(3.108) 

In the la tter case U is said to be antilinear. As a consequence o f (3. 106), if U is 
antili near it must also sa tisfy 

( ¢ ' I t/1') = ( ¢I t/1 ) where 1¢'> =VI¢) , It/!') = Ult/1) : (3. 109) 

U is said to be antiunitary. 
An example of an antilinear operato r is the operator K of complex 

conjugation wi th respect to a complete set It/! 1 ), lt/1 2), . .. , which is defined as 
follows: 

(3.110) 

(No te that the notion of complex conjugation has no absolute meaning in a 
vector space, but depends on a choice of complete set.) More generally, the 
operator o f complex conjugation with respect to a complete set of bras is 
defined by 

(3. 111) 

Given such a complex conjugation operato r K, any a ntiunitary operator U 
can be written as U = K V where V is linear a nd unitary. 

The only physically significant operation which is represented by an 
antilinear opera tor is that of time reversal. This is the operation of leaving a ll 
the parts of a system in the same positions but reversing a ll their momenta and 

angular momen ta. For a system of a single simple particle time reversal is 
represented by the operator T of complex conjugation with respect to the 
eigenbras o f position, which simpl y has the effect of complex-conjugating the 
wave fu nction: 

Tt/J(r) = t/J(r). (3.112) 

This leaves the particle in the same position, in the sense that it does not 
change the probability that the particle wi ll be found in a given positio n; it 

reverses the momentum of the particle, for if t/1 = eik-r is an eigenfunctio n of 
momentum with eigenvalue hk then Tt/1 = e-ik ·r is an eigenfunction of 

momentum with e igenvalue -hk (more correctly: the probability that the 

particle will be found to have momentum p when it is in state It/!> equals the 
probability that it will be found to have momentum - p when it is in the state 

T lt/1 ) ). 
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A system is invariant under time reversal if T lt/t(- t)) is a possible sequence of 
states (i.e. a solution of the Schrodinger equation) whenever lt/t(t)) is a possible 
sequence of states. The condition for this invariance is the same as the 
condition for invariance under other operations: 

e3.7 A system is in variant under time reversal if the Hamiltonian 
commutes with the antilinear operator T 

In particular, a system of several simple particles moving in a real 
potential V(r 1, •.. , r,) is invariant under time reversal. 

Proof If lt/t(t)) is a possible sequence of states, 

d 
ih dt lt/t(t)) = H it/t(t)) . 

Let lt/>(t)) = Tlt/t(- t)); then 

d d 
it! dt 1</>(t)) = dlT dt lt/t( - t)) 

=T[ -ih!!_ lt/t( -t)) J since Tis antilinear 
de 

=THit/t(-t) ) 

= HTit/t(- t)) if T commutes with H 

= H I¢Ct)) . 

(3. 113) 

Thus l¢(t)) is also a possible sequence of sta tes and so the system is invariant 
under time reversal. 

For a system of several simple particles moving in a real potential the 
Hamiltonian is 

This is a real operator and clea rly commutes with complex conjugation of the 
wave function: 

Hl[i=Ht/t. 

i.e. H commutes with THence the system is invariant under time reversal. • 

Combined systems If two systems sl and s2 are put together to form a combined system SIS2, as 
in §2.6, then the effect of a physical operation on the combined system can be 

obtained by petforming the operation on both S 1 and S 2. Let ~ and 92 be the 
state spaces of S 1 and S 2, and suppose the operation Q is represented by a 

unitary operator U 1 (Q) on ~ and by a unitary operator U z(Q) on 9'2. Then if 
the combined systems ls2 is in the state l4>> lt/t), i.e. sl is in state 1¢ > and s2 is in 
state lt/t ) , the result of the operation will be to put S 1 S 2 in the state in which S 1 

is in state U 1(Q)I¢> and S2 is in state U 2(Q)It/t ) . Denoting the corresponding 
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unitary operator on ~ ® .9'2 by U(Q), we have 

U(Q)[I¢>11/t> J = [ U 1 (Q)I¢ > ][U 2(Qlll/t>]. (3. 114) 

U(Q) is called the tensor product of the operators U dQ) and U 2(Q); we write 

U(Q)= U I(Q) ® U 2(Q). (3.115) 

lfwe identify U 1 (Q) with U 1(Q) ® 1, as was discu ssed in §2.6 (in the footnote to 
(2. 128)), we can write 

(3. 116) 

Now suppose we have a sequence of operations Q; .. with Q0 being the 

identity as usual. Then according to e3.5 there are observables K 1 and K 2 of 
the systems S 1 and S 2 whose operators are the hermitian generators of the 
families U 1 (Q;.) and U 2(QJ; these operators act on the combined state space 
~ ® .9'2 as in (2.1 28). The hermitian generator K of the famil y U(Q) is given by 

d 
Kl¢>1 1/t> = dJc [ U(QJI¢>11/t>l =o 

d 
=dJc [UdQJI¢>U2(QJII/t>l =o 

= [K11¢>JII/t> + I¢) [K211/t)] , (3.117) 

using the product rule for differentiation and the fact that U 1 (Q0) = U 2(Q0) = I. 
Hence 

(3. 118) 

the observable K for the combined system is the sum of the co rresponding 
observables for the constituent systems. An observable with this property is 
called an additive quantum number. We have just proved 

e3.8 If an observable is the hermitian generator of a family of 
operations, it is an additive quantum number. • 

Thus momentum and angular momentum, as we would expect from 

classical mechanics, are additive (vector) quantities. Parity, on the other hand, 
is not. Since the parity operator is itself the unitary operator representing an 

operation, (3.116) gives for a combined system 

P=P 1P 2 • (3.119) 

This means that the eigenvalues of parity in the combined system are the 
products of its eigenvalues in the constituent systems. Such an observable is 
called a multiplicative quantum number. 

Transformation of A physical operation like a translation or a rotation has an effect on the 
observables observables of a system as well as its states. If A is any observable, we can 

define an observable A' which is measured by the same experiment as A but 
with the apparatus all translated through a vector a. The operator 
representing A can then be expressed in terms of A and the unitary operator 
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U(T.). The general statement is 

e3.9 Let Q be a unitaristic operation on a quantum system, 
represented by the unitary operator U(Q). Let A be an observable of 
the system, measured by an experiment£, and let A' be the observable 
which is measured by the same experiment after the operation Q has 
been applied to the apparatus. Then A' is described by the operator 

A' = U(Q) ·A- U(Q) - 1
• 

If Q;. is a continuous family of operations associated 
hermitian operator X by (3.83), then 

ih - =[X , A]. dA'I 
d), ; .• o 

(3.120) 

wi th the 

(3.121) 

Proof Let lift a) be an eigenstate of A with eigenvalue IX, so that the experiment 
E certainly gives the result IX. If the experiment is performed after applying the 
operation Q then, since Q does not affect the static laws of physics, the result 
will again certainly be IX. This second experiment measures A'; the state of the 
system is U(Q)jl/ta); so U(Q)jl/ta ) is an eigenstate of A' with eigenvalue a. Hence 

A' U(Q)jl/ta) =aU(Q)jl/ta) = U(Q)Ajifta>· (3.122) 

Since the eigenstates lift a> form a complete set of states, we can deduce that 

A' U(Q)= U(Q)A , (3.123) 

which is the same as (3. 120). 
In the case of a continuous family of operations we must replace Q in (3.123) 

by Q; .. Differentiating with respect to A. gives 

dA' d d 
dJ: U(QJ+A' dA. U(Q;.)= dA. U(QJA. 

When ), =0, U(Q;.)= 1 and A'= A; hence, using (3.83), 

ih - =XA-AX .• dA'I 
dA. .1.-0 

This has important applications when the operations are translations and 
rotations. First Jet us take Q to be a translation through a, and Jet A= f(r) be 
any function of the position vector r. If the position-measuring apparatus is 
translated through a vecto r a, it will give the result r' when the particle is at r= 

r' + a. Hence 

A' =f(r -a). (3.124) 

Now put a = A.n; then we have the family of unitary operators U(T-.). 

According to Postulate VII, the associated hermitian operator is X= P · n. 
Taking n to be a unit vector along the ith coordinate axis gives 

dA' af 
ih ---,- = - ih -a = [P;, f(r)] 

dA X; 
(3.125) 



Fig. 3.2. 
Explanation of (3.129). 

3.2 Invariances and constants of the motion !OJ 

by (3.1 2 1). Taking f (r) =xi shows that the canonical commutation relation 
(2.117) is a special case of (3.125). 

Secondly, take Q to be a rotation R, and let A = m · V be the compo nent in 
the direction m o f the vector observable V. Then when the apparatus is til ted 
by the rotation R, it will measure the component of V in the rotated direction 

Rm; thus 

A' =(Rm ) · V =m ·(R- 1V). 

If U(R) is the unitary operator representing R, (3. 120) gives 

U(R)VU(R) - 1 = R - 1V, 

i.e. 

(3.126) 

(3. 127) 

(3.128) 

where Rii are the matrix elements of the orthogonal 3 x 3 matrix R. Now 
consider the family of rotations R(n, J.). According to Postulate VII , the 
associated hermitian operator is X= J · n. In (3.1 2 1) dA'/d}, is a component of 

the vector 

d - 1 d -11 (R V)= -
1
, [R(n, -.J.)V];_=o= -n x V, 

c /, C.A 
(3. 129) 

which is the velocity of the tip of the vector V when it rotates about the vector n 

with unit angular velocity (see Fig. 3.2). Thus (3.121) gives the vector equation 

-ihn x V= [J·n, V]. (3. 130) 

Since n is any vector, this can also be written 

[Ji, lj] = iheiik V, (3.131) 

(see Appendix A for the eiik no tation). 
F inally, JetS be a scalar observable. Then Sis not related to any particular 

direction in space, and so it is unaffected by a rotation of the apparatus; thus 
S' =S. H ence 

U(R)S U(R)- 1 = S 
and (3.132) 

[Ji , S] =0. 

In particular, this applies whenever S is a scalar product of two vector 

observables or the magni tude o f a vector observable (e.g. the distance r = lrl). 
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Active and passi1•e 
transformations 

Fig. 3.3. 
Active and passive trans­

formations. 

3 Quantum dynamics 

To summa rise, we have shown that Postulate VII implies the following: 

e3.10 The basic commutation relations 

[P;, fJ = - ih ~~, 
UX; 

[1;, It}]= ihe;1k llic. 
[1;, S] =0, 

(3.133) 

(3.134) 

(3.13 5) 

where P is the total momentum of the system, J is its total angular 

momentum, f(r) is any observable function o f the position o f a point 

o f the system, V is a ny vector observable, and S is any scalar 

observable. 

In this section we have considered operations which are actually performed on 
a physical system, so that we have two states of the system to consider; the state 
before and the sta te after the operation. Given a specific way of associating 

states with definite mathematical objects (the state vectors), we then have two 

state vecto rs, and these are related by the unitary operator U(Q). This is called 
the active interpretation of U(Q). A unitary operator can also be given a passive 

interpretatio n when there is one state but two ways of associating states with 

state vectors, and the latte r are related by the unitary operator. 

We can use translations to illustrate the idea. The change 

r~r'=r+a (3.136) 

describes, in the active interpretation, a movement of an object in which every 

point of the object is displaced through the vector a (Fig. 3.3(a)). In the passive 
interpretation it is a change in the way that points of space are associated with 

vectors: the point that was called r is now called r'. This is just what happens if 

the origin is changed by being displaced through -a (Fig. 3.3(b)). The 

distinction extends to wave functions : if the system is actually translated 

through the vecto r a , its wave function changes from t/J to t/J' , where 

t/J'(r) = t/J(r- a). (3.137) 

y 

y' y 

X X 

~ 
0 ' 

x' 
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The same change occu rs in the passive interpretation if the coo rd ina tes a re 
changed by the change of origin shown in Fig. 3.3(b). The state which was 

described in terms of the old coordinates by the wave function 1/J will now be 
described by the wave function 1/J'. Since 1/J' (r ') = 1/J(r), the value of the function 

at any point of space is unchanged, but its va lue at particular numerical 
coordinates will have changed: e.g. 1/J'( I. 0, 0) # 1/J( I , 0, 0). 

If we change the way in which (physical) states are described by 
(mat hematica l) state vectors, we must also change the way in which (physical) 
observables A are described by (mathematical) operators A. Suppose the 
cha nge is g iven by a unitary operator U 0 in its passive interpretation, so that 

the state which was called II/I) is now called U oii/J) . A similar argument to that 
of e3.9 shows that the operator which now describes the observable A is 

A' = U0 AU0 -
1

. (3.138) 

The same applies to the operators representing physical operations Q. The 

state which was called U(Q)II/I) is now called U 0 U(Q)II/J) . This must be related 
to U oll/l> by applying the operator U'(Q) which now describes the 
operation Q: 

U 0 U(Q)II/I> = U'(Q)Uo ii/J) , 
so that 

(3.139) 

3.3. Groups of operations Many o f the properties of the operatio ns discussed in the previous section a re 
consequences of the fact that the operations have the mathematical st ructure 
of a group. Other groups o f operations a re important in elementary particle 
theory. The fo llowing is a brief summary of some general results from group 
theory. 

A set G of operations forms a group if (i) the composit ion of any two 
operations in G a lso belongs toG, (ii) the identity operation (the operation of 
leaving the system as it is) belongs to G, and (iii) every operation in G has an 
in verse in G. The composition of operations is usually written as 
multiplication and called thei r product. (The fourth axiom for a group, that this 
multiplication should be associative, is automatically satisfied for operat io ns.) 

A (unitary) representation o f a group on a vector space ..Y is a rule which 
assigns to each group element Q a (unitary) operator U(Q) on "/1", in such a way 
that 

U(QR) = U(Q)U(R) for a ll Q, REG. (3.140) 
A projective representation is an assignment of operators U(Q) satisfying 

U(QR) =w(Q, R)U(Q)U(R) (3.14 1) 

wherew(Q, R) is a numerical factor (which has modulus 1 if the o perators U(Q) 

are unitary). We say that the space ..Y carries the representa tion U. The 
representation is irreducible if it has no non-tri vial invariant subspaces, i.e. if 
there is no subspace of..Y (apart from 0 and "'Y) which is taken to itself by every 
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U(Q). Such a subspace would carry another (smaller) representation of the 
g roup, so the original representation could be regarded as being made up of 

smaller representations: the irreducible representations are the basic building 
blocks fo r representations. Two representations U 1 and U 2 , carried by vector 
spaces ~ and "f/2 , are equivalent if there is an isomorphism 0: ~ --+ "f/ 2 such 
that OU1(Q)= U 2(Q)O. 

It can be seen from (3.75) that the operators U(T.), defined on the space of 
wave functions, satisfy 

(3.142) 

Thus the operators U(T.) form a representation of the group of translations. 
However, in the proof of e3.6 we saw that in general the operators 
corresponding to a group of unitaristic operations form only a projecti ve 
representation of the group (see (3.87)). 

A Lie group (of dimension n) is a group whose elements can be specified by n 

real parameters, in such a way that if Q(( 1, . . . , ( 11 ) denotes the group element 
with parameters ( 1, ... , ( ,, and 

Q((l, · · · '(,)Q('11 > · · · , 17,) =Q((I' · · · '(n), (3. 143) 

then the (i are smooth functions of the (i and the '1i· (More generally, a group is 
a Lie group if it can be divided into subsets which can be parametrised in this 
way. For fuller details see Gilmore 1974.) A representation U of a Lie group is 

differentiable if U(Q((1 , ... , ( ,))can be differentiated with respect to each (i; we 
will only consider such representations. We can then take over the notion of 
hermitian generators from the previous section. A generator of a 
representation of a Lie group G is an operator 

d 
X = d), U(Q;)I;.~o (3.144) 

where Q; is a family of elements of G specified by parameters ( 1 (A.), .. . , ( ,(A.) 

which are smooth function s of ),, such that Q0 is the identity. If we assume that 
the identity has all its parameters 0, and take Q; to be the element whose 
parameters are all 0 except for (i=A., we get the generator 

(3. 145) 

If the representation U(Q) is unita ry, then, as in the case of the translation 
group, X is antihermitian (cf. (3.73)). It follows that if1X is hermitian and 

represents an observable. In the physics literature the word 'generator' is often 

used for this observable rather than the antihermitian X ; we will continue to 
dist inguish them by calling ihX a 'hermitian generator'. 

The basic mathematical facts about the generators of a representation of a 

Lie group (see Gilmore 1974 for proofs) are: 

LAI The generators form an n-dimensional real vector space with 

basis X 1, • • • , X". 
LA2 If X and Y are generators, so is [X, Y]. 
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It follows from these that [Xi, X J can be expanded as a linear combination of 

the Xk, i.e. 

[Xi , XiJ=2:CiikXk (3.146) 
k 

where the cijk are real numbers. We have 

LA3 The coefficients ciik in (3.146) are the same for all 

representations of G. 

The ciik are called the structure constants of G. 
An (abstract) Lie algebra is a vector space A with a bilinear map from A x A 

to A, called the Lie bracket and written [X, Y] , which satisfies 

[X , Y] =- [Y, X] , 

[X, [Y, Z]] + [Y, [Z, X]]+ [Z, [X, Y]] =0. 

(3.147) 

(3. 148) 

A representation of a Lie algebra A is a rule which assigns to each X E A an 

operator D(X) in such a way that 

D([X, Y])= [D(X), D(Y)]. (3.149) 

Thus LAI - LA3 say that any Lie group G is associated with a unique Lie 

algebra, and that the generators of any representation of G form a 

representation of its Lie a lgebra. 

An example of a Lie group is the three-dimensional rotation group. Every 

element of this group is a rotation about some axis (a straight line through the 

origin) and through some angle. It is not immediately obvious that these form 

a group; the fact that they do is a consequence of Euler's theorem, which states 

that every possible motion of a rigid body with one point fixed can be achieved 

with a single rotation. In particular the product of two rotations is a rotation. 

Euler's theorem is proved by showing that the rotation group consists of the 

operations on vectors given by r--> Rr where R is a 3 x 3 orthogonal matrix 

with determinant 1. 
Thus the elements of the rotation group can be specified as R(n, 8) where n is 

a unit vector along the axis of the rotation and e is the angle of the rotation, 

with - rc < e ~ n. As parameters for the group we can take the components of 

the vector en=(~ I' e2, e3); using (3. 145) then gives basic generators X I' X 2> X 3• 
where 

XI= a~ I U(R(e l , ~2> e3))j{,=0= :e U(R(i, 8))10=0• etc. (3.150) 

Using the chain rule we find that the generator of the family of rotations R(n, (:1) 
about any axis n is 

a 
X= ae U(R(Gnl, 8n2, 8n3))j0=0= 111 X I+ n2X 2 + n3X 3 = n. X, (3.151) 

which illustrates LAl (see also problem 3.21). 

According to Postulate VII the hermitian generator corresponding to X is 
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Fig. 3.4. 
Explanation of (3.154). 
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the angular momentum operator n · J, i.e. 

n·J =ihX =ifm ·X 
or 

l;=iflX;. 
Now by taking V; = 1; in (3.134) we obtain 

(3.152) 

[X;, Xi] =eukxk> (3.153) 

which illustrates LA2 and LA3, and shows that the structure constants of the 

three-dimensional rotation group are cijk = eiik· 

We ought to prove (3.153) directly, for it is clearly a property of the rotation 
group itself and does not depend on any particular application to physics; in 
other words, we ought to check that Postulate VII is consistent with angular 

momentum being a vector. 

e3.11 In any representation of the rotation group, the generators 
X; satisfy (3.153). 

Proof We start from the equation 

SR(n, 8) = R(Sn, O)S for any rotation S, (3.154) 

a fact about rotations which is depicted in Fig. 3.4. The same equation must 
hold in any representation U: 

U(S)U(R(n , 8))= U(R(Sn, O))U(S). 

Differentiating with respect to e and putting 0=0, 

U(S)n ·X= (Sn) ·X U(S). 

Now put S=R(m, ¢).As in (3.129) and Fig. 3.2, 

d 
d¢ [R(m, ¢)n] q,~o=m x n. 

(3.155) 

(3.156) 

(3.157) 

Hence differentiating (3.155) with respect to ¢ and putting ¢ = 0 gives 

(m · X)(n · X)= (n · X)(m · X) + (m x n) ·X, 
i.e. 

[m ·X, n ·X] =(m x n) ·X, (3.158) 

which is another way of writing (3.153). • 

D 

R(n,8)~ 

R(SD, 8) Sx = SlR(n, 8) xi 
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This can also be expressed by saying that the Lie a lgebra of the ro tatio n 

group is isomorphic to the space of three-vectors, with the Lie bracket of two 

vectors equal to their vecto r product. 

The above proof is not valid if the operators U(R) only form a projective 
representation of the rotation group, for (3. 155) may include a numerical 

factor. However, the result can be restored by redefining the U(R), as we did in 

the proof of e 3.6; that is, 

e3.12 If U(R) is a projective representation of the rotation group, it 

is possible to find a numerical factor w(R) so that the projective 

representa tion U'(R) = w(R) U(R) has generators which satisfy (3. 153). 

Proof We can write 

U(RS) = ry(R , S) U(R)U(S) (3.159) 

where ry(R , S) is a numerical factor; the argument which led from (3.155) to 

(3.158) will now yield 

[m ·X, n · X] = (m x n) ·X +a(m , n)l (3. 160) 

where 
02 

a(m, n)= oe acp ry[R(m, 8), R(n, ¢)Jio=<J>=o· (3 .161) 

(3.160) shows that a(m, n) is pure imaginary if the generators X; are hermitian, 

and it is an antisymmetric bilinear function o fm and n. The only such function s 

for three-vectors are of the form 

a(m, n) = i(m x n) · p 

where p is some fixed vector. Define U'(R) by 

U'(R(n, 0)) = eip·oo U(R(n, 8)); 

(3.162) 

(3.163) 

then the U'(R) form another projective representation of the rotation group, 

with generators X' = X+ ip which satisfy 

[m · X', n · X']=(m x n)· X'. • (3.164) 

Note that the redefinition (3.163) may lead to ambiguities, for the angles 8 
and 8 + 2n define the same rotation R(n, 8) but may give different values of the 
factor eip ·•o. The assertion of e3. 12 is only that the factor exists, not that it is 

unique: it does not imply that any projective representation of the rotation 

group can be redefined to give a true representation. 
The above proof made essential use of some special properties of the 

rotation group; for a general Lie group it is not true that a projective 
representation can be redefined so that its generators form a representation of 

the Lie algebra of the group. An example of physical interest is the Galilean 
group, which is described in problem 3.24. Classes of Lie groups for which a 

result like e3.12 does hold are the semi-simple Lie groups and their 
irreducible inhomogeneous extensions, which are defined as follows. 

A semi-simple Lie group is one which has no abelian normal subgroup (i.e. 



108 3 Quantum dynamics 

no subset H c G which is itself a Lie g roup and which satisfies 

Q,Q2=Q2Q, , all Q, , Q 2 EH; 

QRQ- 1 EH, all Q EG, R EH). 

Let G be any Lie group, U(Q) a representation of G on a vector space V The 

inhomogeneous extension of G by V (also called the semi-direct product of G 
and V) is the group of operations on V given by 

v--+U(Q)v+ u forsomeQEG,uEV (3.165) 

We will denote this group by G x) V If G is semi-simple and the representation 

U is irreducible, then both G and G x) V have the property described in e3.12. 

It is not difficult to see that the rotation group is semi-simple. As an example 

of an inhomogeneous extension, let G be the rotation group and let V be three­
dimensional space, the representation U being given by the usual action of a 

rotation about the origin. Then the inhomogeneous extension G x) V consists 
of the combined o perations of rotations and translations. This is the group of 

all physically possible operations on a rigid body in space (an operation being 

defined solely by the final position of the body, not by the details of how it was 

taken there); these are called rigid motions. The group consisting of all rigid 

motions together with all spatial reflections is called the three-dimensional 

Euclidean group. 

Some important families of semi-simple Lie groups are the following: 

The orthogonal group O(n) is the group of all n x n real orthogonal matrices. 
The unitary group U(n) is the group of a ll n x n complex unitary matrices. The 

special orthogonal group SO(n) and the special unitary group SU(n) are the 

subgroups of these consisting of matrices with determinant 1. 
Let R(.A) be any one-parameter family of orthogonal matrices with R(O) = 1; 

then 
(3. 166) 

Differentiating with respect to ), and putting ), = 0, we see that the generator 

X =dR/dX is antisymmetric. It can be shown that any antisymmetric matrix 

can be obtained in this way, so the Lie algebra of O(n) is the set of all n x n 

antisymmetric matrices. This is also the Lie algebra of SO(n). (The relation 

between these two groups is that O(n) consists of SO(n) together with another 

separated piece; thus any continuous family of elements of O(n) which contains 

the identity must lie in SO(n), and so the generators of the two groups are the 

same.) 

A similar argument shows that the Lie algebra of U(n) consists of alln x n 

antihermitian (complex) matrices. Finally, the formulat 

det [e;x]=eitrX 

(consider the eigenvalues) shows that the Lie algebra of SU(n) consists of all 
n x n antihermitian matrices with trace 0. 

t The trace tr X of a matrix X is the sum of its diagonal entries, which is equal to the sum of 
its eigenvalues. It satisfies tr(XY)=tr(Y X). 
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We will see how some of these groups act as physical o pera tions in la ter 
chapters (in connectio n with elementa ry pa rticles). A group of o pera tio ns is 

part icula rly impo rtant if the o peratio ns leave the behaviour of the system 
invaria nt; in this case the g roup is called an invariance group o r symmetry 
group of the system. The impo rtance o f the g roup structure derives from the 
fo llowing simple fact: 

e3.13 If G is a symmetry g roup of a system, then every energy 

eigenspace o f the system ca rries a p rojective representa tion of G. 

Proof Let U(Q) be the o pera to r o n the sta te space o f the system which 
represents the opera tio n Q E G. By e 3.4, since Q is an in variance oft he system, 
U(Q) commutes with the Hamiltonia n. Let .Cf'r be an energy eigenspace with 

energy E; then fo r each sta te lt/1) in .Cf'r we have Hlt/1) = Elt/1) a nd therefore 

HU(Q)it/1 ) = U(Q)Hit/J>= EU(Q)it/1), (3.167) 

i.e. U(Q)It/1> also belongs to fl'r · Thus U(Q) is an o pera tor o n Y'r. which 
therefore carries a projective representation of G. • 

T he significance of this appa rently tri vial remark is tha t there a re o nly a 
limited number o f projec tive representatio ns o f a gi ven group, and so the 
existence o f a symmetry g roup places rest rictio ns on the energy eigenspaces of 

a system. ln particula r, only certa in dimensio ns will be possible for these 
eigenspaces. Thus the symmetry gro up contro ls the degeneracy o f the energy 
levels of the system. 

3.4. The Heisenberg picture The descriptio n of how things change with time which we have been using up 
to now is known as the Schrodinger picture. The sta te o f a system changes with 

time; o bser vable quantities are represented by operators which are constant in 
time. reflecting ma thema tically the fact that the experimental procedure for 
determining the value of an o bservable is always the same. This seems to be the 

most natu ral po int o f view, but it is possible to look fro m a different angle and 
see the observables as changing - afte r all , the position of a moving bod y does 
change with time - while the system stays the same. This is the Heisenberg 
picture, in which observables are represented by time-dependent operators 
while the sta te is described by a constant state vecto r. In this picture the 's tate' 
of a system is a concept which encompasses its who le history. 

The relationship be tween the two pictures is given by a sequence of unitary 
transfo rma tio ns in the passive interpre tat io n. Let U(t) = e - tHrfh where H is the 
Hamilton ian of the system; U(t) is the operato r which describes how states 

change in time t according to the Schrodinger picture. No w suppose we decide 
to use U(t)- 1 to rename all sta tes at time t , so that the state which was called 
lt/l{t)) will no w be called U(t) - 111/J(c)); in other wo rds, we are specifying each 
sta te at time t by saying what sta te vector it was associated with at timet = 0. 
Then, in this new picture, as the system evolves its state is always represented 
by the same sta te vector. 



110 3 Quantum dynamics 

As was discussed on p. 103, changing the way in which states are associated 
with state vectors entails changing the way in which observables are associated 
with operators. Consider an observable A, and denote by A0 the operato r 
describing A in the Schrodinger picture. According to (3.139), A must be 
described in the Heisenberg picture by the operator 

A(t) = U(t)- 1 A0 U(t), (3.168) 

which changes with time if A0 does not commute with U(t) , i.e. if it does not 
commute with the Hamiltonian. Using the equations 

dU d 
ili -= UH, ih - {U - 1)= - H U, 

dt dt 
(3.169) 

which follow from the exponential form of U, we find that the rate of change of 
A(t) is given by 

dA 
d1 dt= [A, H]. (3.170) 

This is Heisenberg's equation of motion. 
Note that the formula (3.26) for the rate of change of an expectation value is 

an immediate consequence of Heisenberg's equation of motion, since state 
vectors are independent of time in this picture. More generally, the fact that 
operators which commute with the Hamiltonian represent conserved 
quantities is clearly a feature of this equation of motion. 

Heisenberg's equation of motion has a very close relationship to the 
equation of motion of classical mechanics. In classical Hamiltonian mechanics 
any observable is a function A(q 1, . . . , q, , p1 , • •• , p11 ) of the coordinates q; and 
momenta P; of the system. For any two such observables A, B a third one 
called their Poisson bracket {A, B} is defined by 

{A, B} =I ( aA aB _ aA aB)· 
i= 1 aqi a pi a pi aqi 

Hamilton's equations (3.5) then give the general equation of motion 

dA = {A, H} 
dt 

(3.17I) 

(3.172) 

for any classical observable A. The Poisson bracket has all the algebraic 
properties (2.79H2.81) of the commutator in quantum mechanics; its values 
for the basic observables q; and P; are 

{q;,qJ=O= {p;,pi}J· 
{q;, pJ = bij 

(3.173) 

Comparing with the canonical commutation relations (2.116H2. I 17), we see 
that there is a correspondence between {A, B} in classical mechanics and 
(ih) - I [A, B] in quantum mechanics. Heisenberg's equation of motion (3.170) 
then corresponds exactly to the classical equation of motion (3. I 73). 
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3.5 Time-dependent perturbation theory Ill 

In eq s. (3.2) and (3.3) we have in principle a complete description of the time 

evolution of a quantum system in te rms of its Hamiltonian operator H . 
However, in o rder to make this description explicit it is necessary to know the 

eigenvalues and eigenstates of H , so as to expand the solution (3.2) in the form 

(3.1 1). We will see some examples of such calculations in C hapter 4 (which can 
be read before this section if the reader wishes). There are very few 

H amiltonians which permit exact calculations; usually it is necessary to use an 
approximation based o n taking the first few terms of an infinite series which is 

obtained by the methods to be described in this section. 

T his method is not just a practical technique for doing calculations, for the 

general form of the results it gives is of considerable theoretical interest. It 
underlies the descrip tion of elementary processes by means of Feynman 

diagrams, which was sketched in Chapte r I, and it gives rise to an alternative 

formulatio n of quantum mechanics which will be described in §3.6. 
The idea is to calculate the time development caused by the Hamiltonian H 

in terms oft he eigenstates and eigenvalues of a H amiltonian H 0 which is used 

as a standa rd for reference, either because it can be exactly solved or because its 

eigenstates are experimenta lly significant. We write 

(3.174) 

where t: is a parameter (usually assumed to be small), and we expand the 

solution in powers of 1::. 

Write 

/tf(t) ) = eiH0t/h/l/t(t)), 

V(t) = eiHot/h ve-iHotfh. 

(3.175) 

(3.176) 

These equations define a new picture called the interaction picture, which 
would coincide with the Heisenberg picture if the Hamiltonian was H 0 . The 

effect is to remove the part of the time dependence of states which is due to H 0 : 

using the equation 

d 
ih -

1 
/ift(t)) = (H 0 + t: V)/1/t(t)), 

l t 
(3.177) 

we find that the equation of motion for /tf(t))is 

ih !!_ /tf(t) ) =t:V(t)/w(t)). 
cit 

(3.178) 

The solution of this equation clearly depends on e. We assume that it can be 

expanded as a power series in e: 
<Xl 

/w(t)> = L: en/wn(t)> (3.179) 
n=O 

with 

/Wn(O)) =O if n>O 

since at t=O the state /tf> is the initial state /t/t0 ) , independent of e. Substituting 
the expansion (3.179) into the equation of motion (3.178) and equating powers 
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of c; gives a sequence of equations 

d ,-in - 1/10 (t) ) =0, 
dt 

in :t lifi't(t)) = V(t) /ifi0(t) ) . 

etc.; the nth equation in the sequence is 

d ,- - ,-ih dt 1/!,(t)) = V(t) lj;, _ 1(t)) . 

These can be solved successively to give 

lifi'o(t)) = /1/!o) , 

lifi't{t)) = .~ I' dt1 V{t1)/1/10 ), 
/11 J 0 

(3.180) 

(3.181) 

(3.182) 

(3.183) 

First-order theory Suppose /1/10 ) is an eigenstate of H0 , with eigenvalue E0 ; at timet it is no longer 
certain that a measurement of H 0 will give the result E0 . Let E be another 
eigenvalue of H 0, and let II/IE) be the corresponding eigenstate (for simplicity 
we suppose that Eisa non-degenerate eigenvalue). Then the probability that a 
measurement of H 0 at timet will give the value E is /a 1(E, t)i2 where a 1(t) is 
given by 

a 1(E, t)= ( I/JE /1/J(t)) 

= <I/IE/{/ I/Io)+ s/l/f 1{t))} to first order in c; 

=c( I/IE/1/1 1{t)) since /1/10 ) and /1/!E) are orthogonal 

= c( 1/1 E/ eiHor/h If I {t) > 

= i~ eiErfh L ( 1/!E/c;V(td/1/10) dt1 . (3.184) 

(If E lies in a continuous range of eigenvalues the probability that a 
measurement of H 0 will give a result lying between E and E +dE is 
/a 1 (E, t)i1 p(E) dE where p(E) is the density of states.) Now a matrix element of 
V(t) between eigenstates of H 0 is, by (3.176), related to the matrix element of V 
by 

(3. 185) 

If Vis independent of time, we can now do the integration in (3.184) to obtain 
eiE0 r/h _ eiEr/h 

a1(E, t)=c( I/IEIV/1/10 ) E-Eo . (3.186) 

Using the formula 

/e;o -ei<f'/ =2 sin !(8- ¢), (3. 187) 
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which is easily proved by looking at the Argand diagram, the probability can 

be written as 
4 . 2 l t 

p(E,t)=lat(E, t)il= l<f£1t:VIfo>l2 s;~ ;w 
IW 

(3. 188) 

where 
w = (E- £ 0)/ h. 

According to Postulates II and IV, this is the probability that a 

measurement of H 0 at timet will give the value E, provided that the system is 

undisturbed by any measurement between times 0 and t. Since such a result at 

timet would leave the system in the state If£), this is often described as the 
probability that the system 'will be found in the state If£)' a t time t. lt is then 

applied to situations in which there appears to have been a transition, or 

'quantum jump', at some time between 0 and t. 

An example of a system which can be described in this way is the hydrogen 

atom. The full system consists of an electron, a p roton and the electromagnetic 

field (the field has independent degrees of freedom , as is shown by the existence 

of electromagnetic waves). H 0 is the Hamiltonian desc ribing the electron, the 

proton and the field by themselves, and also the electrostatic attraction 
between the electron and the proton (its eigenvalues are determined in Chapter 

4); V is the H amil tonian describing the interactio n between the two charged 

particles and electromagnetic waves. C lassically, H 0 gives equations of motion 

for the electron and the proton whose solutions are orbits like those of the 

earth and the sun, and equations for the electromagnetic field whose solutions 

describe electromagnetic waves; V gives equations which describe the 

radia tion by an accelerating electron. The quantum counterpart of the planet­

like o rbits is a set o f 'allowed o rbits', i.e. eigenstates of H 0 ; that of the 

electromagnetic waves is a set of states of photons; and that of radiation by the 

accelerating electron is a transi tion between eigenstates of H 0 . This occurs 

because the full Hamiltonian H 0 + £ V causes an eigenstate If 0 ) to evolve into 

a state If 0 ) + elf1 (t)); if 11/t 0 ) is an 'excited state', i.e. a state with eigenvalue of 

H 0 which is higher than the minimum, then 11/t £>could be a state consisting of 

an electron- proton state which is an eigenstate of H 0 (with a lower eigenvalue 

than Jl/!0 ) ), together with a state of the electromagnetic field consisting of one 

photon. A transition from Jl/! 0 ) to 11/t£) constitutes a quantum jump from the 
higher elect ro n- proton state to the lower, accompanied by the emission of a 

photon . 

This description can of course be generalised so as to apply to any atom or 

molecule. A similar description can be given of the radioactive decay of a 

nucleus, or the decay of an unstable subatomic particle. It is not always clear 

that the postulates of quantum mechanics, as we have stated them so far, are 
sufficient to justify deductions about the probability of decay; in particular, 

Postulate III refers to measurements taking place at a definite time, while an 

unstable system may be kept under continuous observation to see when it 
d ecays. In order to cover this situation, we extend Postulate III as follows: 
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Postulate Ill (continued). If the observable H 0 is observed 
continuously, the Hamiltonian being H = H 0 + e V, then the system 
will make spontaneous transitions between eigenstates of H 0 . The 
probability that there will be a transition from Jr/1 0 ) to Jr/1 £) in timet is 

p(E, t)= J< r/lde-iHt!hJr/lo )J 2. (3. 189) 

This and the other parts of Postulate II I will be discussed further in Chapter 5. 
The first-order expression (3.188) fo r the transition probability has two 

parts: the squa re of the matrix element ( r/1 EJe VJr/10 ) , which measures the extent 
to which the force described by V links the states Jr/10 ) and Jr/1 £);and a time­
dependent factor which is the same for all processes and depends only on the 
'energy difference' E- E0 . (This is an inaccurate terminology, since E and E0 

are eigenvalues of H 0 which is not the full energy operator, but it is a common 
one.) The second facto r is plotted as a function of w = (E- E0)j f1 in Fig. 3.5. Its 
main features are the central peak, which gets higher and narrower as t 

increases, and the fall-off at large w, which goes like w - 2 for all c. The total area 
under the cu rve is 

I
"" sin

2 
!wt . t I"" sin2 x .nt 

- ---:;2'---- dw=- --
2
- dx= - . 

- oo W 2 _00 X 2 
(3. 190) 

In many circumstances Jr/1 £) is one of a set of states with a continuous range 
of values of E. For example, in the decay of an excited state of the hydrogen 
atom Jr/1 £) consists of a lower-energy state of the a tom together with a photon, 
and the photon can have any energy. (We are again using the term 'energy' 
loosely and identifying it with 'eigenvalue of H 0 '. We will continue to do this 
without further comment.) In this case p(E, t) must be multiplied by the density 
of states p(E), which depends on the reference Hamiltonian H 0 . The physically 
significant quantity is the total probability that a transition has occurred into a 

sin• twt 
-;;;t 

E-E0 w=--
A 

--
1 
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state with energy in some finite range [E1 , E 2] , which is 

P(t) = (£' p(E, t)p(E) dE 
J£, 
4 fw, sin 2 1wt 

= 2 M(w) 
2 

dw 
fl w, w 

where 

M(w)= l<l/l£le VII/Jo)l2p(E). 
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(3.191) 

If E0 lies outside the interval [E1 , E 2] , the range of integration in (3. 19) does 
no t include the central peak of Fig. 3.5, which is where the integrand depends 
significantly on w; as long as r is large compared with 2rcjw, it is a good 

approximation to replace sin 2 1-wt in (3.191) by its average value of 1:, so that 

2 fw, M(w) const 
P(t)::::: {;I ---;;;.- dw <---;;;--. (3.192) 

w 1 I 

Thus the probability of transition to a state with 'energy' different from the 
init ial value E0 soon becomes constant. and is small if the 'energy' difference is 
large. 

On the other hand, if E1 < E0 < £ 2 the range of integration in (3.191) will 
include the central peak of Fig. 3.5, and this will dominate the integral. If M(w) 
varies slowly as a function of w, we can treat it as constant over the region of 

the peak, which is narrow if t is large, so that 

P(t)= 2 M(w) ~ dw~2 M(O) ~ dw 
4lw, sin 2 l.wc 4 fw, sin 2 l.wc 

h w, w 11 w, w 

2rc 
= r(t- K) where r = h2 M(O) (3.193) 

and where 

2 J"'' sin
2 1wt 2 f oo sin

2 1wt I 1 K=- 2 dw+ - 2 dw:::::-- - - - , 
rc -oo w rc w, w rcw 1 rcw 1 

which is small and approximately constant. 
Eq. (3.193) shows that apart from a small term which soon reaches a 

constant value, the probability of transition to a state with energy close to the 
original value E0 increases steadily with time. Thus there is a constant 
transit ion probability per unit time which is equal to r. This, of course, cannot 
continue to be true for all t, or the probability would become greater than 1. 
The reason for this apparent inconsistency is that in calculating the 

probability in (3.188) we failed to normalise the state 11/J(t)), since this would 
have involved terms of higher order in e. Thus (3.193) holds only to lowest 
order in r (which contains e2 as a factor). Note that an exponential decay Jaw 
of the form (1.3) gives the probability of decay in time t as 

(3.194) 

which also gives constant probability per unit time as a first approximation if 
r is small. 
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The phase-space factor in If first-order perturbation theory is used to calculate the rate of a decay process 
decay rates like 

X-+ A+B, 

eq. (3.193) shows that the decay rate is proportional to 

M(O) = I< AB(E0 )Ie V!X)! 2p(E0 ) 

(3.195) 

(3.196) 

where E0 is the energy of the X particle, IAB(E0)) is the state of the A and B 
particles with energy E0 , and p(E0 ) is the density of the AB states relative to 
energy. The appropriate states for decay processes are momentum eigenstates 
of A and B, for in most theories these states give constant matrix elements 
( AB(E0)I VI X) . Thus the decay rate is proportional to the density of 
momentum eigenstates relative to energy, which is called the phase-space 
factor. 

We will calculate the phase-space factor for the case that the unstable X 
particle is at rest (so that, by conservation of momentum, the A and B particles 
have equal and opposite momentum ± p), and that the eigenvalue of H 0 for an 
AB state is given by the relativistic formula 

E = EA + E8 = j (mA 2c4 + p 2c2
) + j (m8 

2c4 + p2c2
) (3.197) 

where p= !PI· The AB states are normalised relative to the components ofp, for 
which the element of integration is 

dp 1 dp 2 dp3 =p2 dpdQ. (3.198) 

where dQ. (= sin 8 d8 d¢ in spherical polar coordinates) is the element of solid 
angle for the direction of p. The density of states p(E) is defined by 

dp 1 dp2 dp 3 =p(E) dE dQ., 
so 

p(E)=p2 dp. 
dE 

From (3.197) we have 

( 2(dEA dE8)-t 2(pc
2 

pc
2)-t pEAEB p E)=p - +- =p -+- =--. 

dp dp EA E8 Ec 2 

(3.199) 

(3.200) 

In the decay (3.195) the initial energy is E0 = mxc2
. Hence in this case p(E0 ) can 

be written in terms of EA+E8 =mxc2 and E/-E8
2 ={m/-m8

2)c2 as 

(3.201) 

The momentum p can be obtained from (3.197) (or using four-vectors) as 
1 

p = -
2 

- [(mx + mA + m8 )(mx + mA- m8 )(mx- mA + m8 )(mx-mA- m 8 )]l. 
mx 

This phase-space factor is larger for smaller masses mA, m8 , since then the 
momentum p is greater; thus we have as a rule of thumb 

The rate of decay is greater for decays which release more kinetic 
energy. 

This also holds for decays into more than two particles. 
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Second-order theory The second-order term obtained from (3.183) is 

ll/t2(t)) = eiHo'r'' itV2(t) ) 

11 7 

(3.202) 

If we include this in the calculation of the probability of transition to a state 

11/t£), we will have 

(3.203) 
where 

a,.(E, t) = e"( 1/t dl/t,.(t)). (3.204) 

Suppose H 0 has a complete set of states 11/tk ) with eigenvalues Ek (we wi ll write 
our equations as if these were discrete, for the sake of simplicity, but they can 
easily be adapted to cover the continuous case). Then we can use the resolution 
of the identity (2.68) to insert the complete set 11/tk ) in (3.202); this gives 

a 2(E,t)= ~Et/: j' dt 2 I'' dt 1 L ( l/t£je V(t2) jl/tk)( l/tk leV{tt)jl/to). 
(d1) Jo Jo k 

(3.205) 

Using (3.185), we can extract the time dependence of the integrand in this 
expression and do the integrations to get 

(3.206) 

The terms in the curly brackets are quotients of the same type as that 
appearing in (3.186), which gave rise to the funct ion shown in Fig. 3.5 when the 
squared modulus was calculated. Such a quotient is only significant when its 
denominator is small. Thus the second term in the cu rly brackets only 

contributes when Ek ::::::,£0 , i.e. only for a few values of k. The first term, 
however, contributes for all k as long as E::::::, E0 . This means that to a good 
approximation we can ignore the second term; a 2(E, t) then has the same time 
dependence as a 1 (£, t), as given by (3. 186), and the factor < 1/t de Vjljt 0 ) in a 1 is 
replaced by 

L <!JtEieVjljtk )(l/tkleVII/to). 
k Ek -Eo 

(3.207) 

Interpretation: transition The full result of the perturbation theory calculation is that the probabi lity of 
amplitudes transition from jl/t0 ) to 11/t£) by timet is 

(3.208) 



118 3 Quanl!lm dynamics 

where 

(3.209) 

(3.210) 

(these formulae differ slightly from (3.184) and (3.198) in that we have removed 
the common phase factor rJE<Ih, which does not affect the probability). If a( c) was 

the total probability, these formulae would have the natural interpretation 

that at time s the probability of transition from It/!> to 1¢) in a time interval dt is 
(if1) - 1 <¢it: V(s) it/1> dt. Then a 1 (c) in (3.209) would represent the total probability 
that there is a transition direct from lt/10 ) to It/! E) at some timet 1 between 0 and 
c; a 2(c) in (3.210) would represent the total probability that there is a transition 
from It/! 0 ) to some other sta te lt/lk) at some time t 1 , followed by a transition 
from lt/lk) to It/! r) at a later timet 2; and so on, a,( c) in (3.2 11) representing the 
total probability of an indirect transition in n stages. 

In fact, of course, each quantity ak mentioned in the last paragraph is not a 
probability but a complex number whose squared modulus is a probability.lt 
is characteristic of quantum mechanics that it deals with such complex 
numbers, which are added and multiplied as if they were probabilities. They 
are called probability amplitudes. The probability amplitude for a process 
consisting of two successive stages is the product of the probability amplitudes 
for the individual stages; the probability amplitude for a process which can 
happen in a number of alternative ways is the sum of the probability 
amplitudes for the individual alternatives. When a probability is calculated by 
taking the squared modulus of such a sum of probability amplitudes, the cross­
terms give rise to the interference effects which typify quantum physics. 

We have seen that in the cases of a1(t) and a2(c) the interference effects 

guarantee that the probability of transition from lt/10 ) to lt/lr) is small unless 
their 'energies' (eigenvalues of H 0) are approximately equal; this continues to 

be true for the higher-order terms an(t). Thus the intermediate states lt/lk) in 
(3.2 10) and (3.211) a re states which are unlikely to be the result of an actual 

transition from lt/10 ) . Nevertheless the probability amplitudes for transitions 
to these states make important contributions to the total probability 
amplitude for the actual transition to It/! r>· These transitions are called virtual 
transitions. 



3.5 Time-dependent perturbation theory 119 

Dyson's form of the Our series solution of the equation 
perturbation series 

is 

dr !!_ jtf(t)) = e V(t) jtf(t) ) 
dt 

(3. 178) 

(3.212) 

Then-fold integral is the integral of the product V(t,) · · · V(t 1) over the region 

of IR" consisting of the points (t 1 , ... , t,) which satisfy 

(3.213) 

There are n! regions like this one, corresponding to then! possible orderings of 
(t 1 , . . . , t,), which together make up the region 0 ~ I;~ L. Geometrically, this is a 
dissection of the n-dimensional cube into n! n-simplices (ann-simplex is then­
dimensional analogue of a tet rahedron). We could obtain the integral by 
integ rating the product oft he V(t;) over any of these simplices, provided we put 
the factors in the right order. To express this in symbols, we define the time­

ordered product of n time-dependent operators X(t;) to be 

T[X(t 1) • • • X(t,)] = X (t;.) · · · X(t;) 
where 

Then the integral in (3.212) can be written as 

L dt 1 • · · dt, T[V(t,)· ·· V(t1)]jl/10 ) 

(3.214) 

(3.215) 

where R is any one of the simplicial regions mentioned above. Since these all fit 
together to make up the cubic region 0 ~ t; ~ t, the sum of all the integrals 

(3.215) is the integral over this cube: 

L I dtl"·dt,T[V(t,)"·V(tl)] 
R JR 

= f~ dtl ... L dt, T[V(t,) . .. V(tl)] 

= T[(£ V(t')dt')'J (3.216) 

which defines an extension of the time-ordered product symbol T. Since the 
integ rals (3.215) are all equal, any one of them is equal to 1/n! of their sum 

(3.216); hence we can put this into (3.212) to obtain 

jtf(t)) = n~o :! c~ )" T[ (J~ V(t') dt')"]il/10 ) 

= T[ exp c~ £ V(t') dt') ]il/10 ). (3.217) 
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As well as being pretty, this formula is useful in quantum field theory. It shows 
the relation between the perturbation solution of (3.162) and the exponential 
solution of the similar equation (3.4) in which the operator on the right-hand 
side is constant. 

Exponential decay We have seen that to first order, perturbation theory gives a probability for 
survival of an unstable state which is of the form 

P*(t)= 1 -P(t) = 1- rt. (3.2 1 8) 

To first order in the decay constant r , this agrees wi th the exponential form 

P*(t) = e-r', (3.219) 

which would be obtained if quantum transitions occurred as a classical 

Poisson process, as in the simple discussion of radioactivity on p. 5. We will 
now derive this exponential Jaw from quantum mechanics by an argument 

which, though not exact, is not restricted to the first order of perturbation 
theory. We will also see that the approximation in this derivation is 
unavoidable, because the decay Jaw in quantum mechanics cannot be exactly 
exponential. 

As before, we assume that the unstable state ll/to) is an eigenstate of a 
reference Hamiltonian H 0 and that the decay is caused by a small term 6 V in 

the full Hamiltonian H = H 0 + 6 V Write 

11/t 1) = Vll/t o); (3.220) 

by redefining 6, if necessary, we can assume that ll/t 1 ) is normalised . We think 
of 11/t 1 ) as the state immediately after the decay. It is not necessari ly an 
eigenstate o f H 0 (for example, if an unstable particle decays to form two 
different particles, we would expect the two final particles to separate after the 

decay); thus we must suppose that 11/t 1 ) belongs to a subspace !/' consisting of 
states of the decay products, and that H 0 acts as an operator inside !/'. The 

states of the decay products must be recognisably different from ll/t0 ), so ll/to) 
must be o rthogonal to the subspace !/'. Thus we can take the full state space to 

be 90 EE> !/' where 90 is the one-dimensional subspace containing ll/t0 ) . 

Since V is hermitian , 

(3.221) 

Thus Vll/t 1 ) necessarily contains a component in 90. We will assume that this 
is the only component of Vll/t 1 ) (we can always arrange this by changing the 
way we split the total Hamiltonian into H 0 and V). Now V is completely 

defined by (3.220) and the equation 

(3.222) 

We can write the state at time t as 

11/t(t)) = f(t)ll/t o) + 11/t'(t)) (3.223) 
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with lt/t'(r)) E f/'; then the equation of motion gives 

df d 
ih - It/to)+ it1 -lt/t'(t)) 

dt dt 

= (H o +e V){!(rllt/to) + lt/t'(t)} 

= Eof(c)lt/to) +ef(tllt/tl) + H olt/t'(t)) +e(t/t l I t/t'(tl)l t/to>· 

Equating components in f/0 and f/', 

df 
ih -

1 
=E0 /(t)+e( t/t 1 l t/t'(c)), 

l l 

d 
ill dt lt/t'(t)) = ef(t)lt/t 1) + H olt/t'(t)). 
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(3.224) 

(3.225) 

(3.226) 

After multiplying by the integrating factor eiHo' \the second equation can be 
integrated to give 

11/t'(t)) =.;._ f' dt'J(t'}e iHol•-l'l l•ltJt 1 ) . (3.227) 
d1 Jo 

This expresses the state of the decay products as a superposition of states, one 
for each timet' in the interval (0, t): the state corresponding to t' describes the 
possibility that lt/t 0 ) decayed to lt/t 1) between times t' and t' + dc', and the decay 

state then evolved for a time r - t' according to the Hamiltonian H 0. The 
coefficient of this state is the product of j(t'), the probability ampli tude that 
It/to) survived undecayed at t', and the decay amplitude (ift) - 1edt'. 

Putting (3.227) into (3.225) gives an integra-differential equation for the 
non-decay amplitude f(c): 

- = -- q(c-r' )F(t')dc' dF e
2 f 

de f1 2 
0 

(3.228) 

where 
F(t) = em•' 1'f(c) (3.229) 

and 
q(r) = ( t/t l le-morlhlt/t I ) . (3.230) 

Now q(t) is the amplitude for finding the decay products in their initial state 
lt/t 1 ) after a time l. If the decay products disperse quickly, q(t) will vanish after 

some short timer. Let us see if (3.228) has a solution F(r) which varies only 
slightly over time intervals of the order of -r. IfF satisfies this condition, the 
integral can be replaced by AF(t) where A= J0 ' q(t') dt', so that the equation 
becomes 

dF e2 A 
Tt= -v F(c). (3.231) 

Thus the condition on F(t) is satisfied if e2 Aj f1 2 is small compared with r- 1 or, 
since A is of order -r, if e/h is small compared with r - •. If this is so there is a 

solution for F(t) of exponential form, and the probability that the unstable 
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Fig. 3.6. 
The Breit- Wigner distribution. 
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state has not decayed in time t is 
jf(t)j2 = IF(t)j2 = e-i.• with A.= 2 Re [s2 Aj f1 2

]. (3.232) 

This result is necessarily approximate. In our model it follows immediately 
from (3.228) that the exponential decay law must break down at small times, 
for this equation shows that the derivative F'(t) must vanish at t = 0. In other 
calculations it has been found that the exponential law also breaks down at 
large times (see Fonda, Ghirardi & Rimini 1978, Peres 1980). 

There is a general argument to show that the time development of a state 
cannot be exactly exponential. Suppose the state ll/!0 ) develops to 11/J(t)) , and 
that 

( 1/10 j l/f(t)) =e-'' (3.233) 

where y =(-~T+i£0)/11 is a complex number. For t<O we have 

< 1/Jo I 1/!(t)) = < 1/Jole- iH•I'•II/I o) = (1/JoleiHt/l•ll/lo) 

= ( 1/!ol 1/1( -t)) =e'l' . 
so 

( 1/10 I 1/!(t)) = exp [ -(iE0 t+1fitl)/h]. (3 .234) 

This holds for all t. Now expand Jl/! 0 ) in eigenstates of the exact Hamiltonian: 

jl/! 0 ) = f p(E)ji/I(E)) dE. (3.235) 

Then 

( 1/Jo I 1/J(t)) = ( 1/Jole- iHt/ltll/lo) = fJp(E)jle - iEtJI• dE. (3.236) 

Hence, by the Fourier inversion formula (2.93), 

lp(E)j2 = - ( 1/!o I 1/!(t)) e;E,/h dt 1 Joo 
2nh _

00 

r;2n 
(3.237) 

But the energy of a system always has some minimum value Emin, so p(E) must 
vanish for E < Emin; whereas (3.237) is strictly positive for all E. 

The function (3.237) is called the Breit- Wigner energy distribution. It is 
shown in Fig. 3.6. Although it must be cut off at some point on the left, an 
approximation to this distribution is found in a wide range of quantum 

-E 
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systems, corresponding to the exponential decay law which is usually found to 
be approximately true for unstable systems. The parameter r is called the 
width of the distribution. The inverse relation between r and the lifetime T = 
hj r is often described as an example of the ' time- energy uncertainty relation', 
but it should be noted that r is not the same as the uncertainty D.E. For the 
distribution (3.237), indeed, D.E is infinite. 

In the previous section we saw that the probability o f an event in quantum 

mechanics has a strange structure. If the event can be achieved by a number of 
alternative processes, each process consisting of a succession of intermedia te 

events, then the total probability of it is calculated, not by the classical fo rmula 
in which the probabilities of alternative processes a re added and the 

probabilities of successive processes are multiplied, but by a similar-look ing 
formula in which probabilities are replaced by probability amplitudes -

complex numbers whose squared moduli give the probabilities. 

In Feynman's formulation of quantum mechanics these probability 
amplitudes are taken to be fundamental: the theory starts from the assignm ent 
of probability amplitudes to basic physical processes. For a single simple 
particle, a 'basic process' is described in the same way as in classical mechanics: 
it is the motion of a particle from a point r 1 at time t 1 to another point r 2 a t 
timet 2 along a definite trajectory r(t). Thus the probability a mplitude is to be a 
function of the whole trajecto ry { r(t): c1 ~ t ~ t 2 }, which we will denote by [r(c)]. 

In classical mechanics an important function of the trajecto ry of a particle is 
the action S. This is an integral of the form 

S([r(t)]) = f2 

L(r(t), r(t)) dt (3.238) 

where L is a function of the position and velocity of the particle called the 
Lagrangian. L depends on the forces acting on the particle; for a particle of 
mass m moving in a potential V(r) it is 

L=1mt2
- V(r). (3.239) 

A Lagrangian L , and consequently an action S, exists for any mechanical 
system; if the configuration of the system is specified by coordinates q 1 , .• • , qn, 
L is a function of q 1, •• . , qn and 41 , •. . , 4n which is normally the difference 
between the kinetic energy and the potential energy of the system, as in (3.239); 
S is the time integral of L, as in (3.238). The significance of S is that the 
trajectory followed by the system when it follows the equations of motion is 
that which makes S minimum (or, more generally, stationary); this is the 
principle of least action. 

Feynman's postulate is that the probability amplitudes for all trajectories 
are equal in modulus, but their phases are given by the action (in units of h, 
which has the same dimensions as action). Thus the probability amplitude for 
a trajectory with action S is proportional to i 51h. The total probability 

amplitude for a particle to move from rA at time tA to r8 at time t8 must be the 
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sum of the probability amplitudes for all the ways this could have happened, 

i.e. all the trajectories r(t) with r(tA)=rA and r(t8)=r8. Since these trajectories 

form a continuously infinite set , the sum must be some sort of integral; the total 

amplitude must be of the form 

I(rA, tA; r8 , t 8 ) =I eiS([rir)J)I'• d[r(t)] (3.240) 

where, in some sense, the integral is over all trajectories with the given end­

points at cA and t 8 • 

The integral (3.240) is called a path integral. It can be defined as a limit of 
integrals over polygonal paths, in the following sense. Divide the interval 

[tA, t8] into N subintervals by means of intermediate times tA = t0, ... , tN = t8. 

Let us call this dissection D. Given D, and given N + 1 points rA = r0 , r 1 , ... , 

rN = r8, we can define a polygonal trajectory r(t) which passes through r, at 
time t, and moves with constant velocity between these points: 

t-t, . 
r(t)=r,+ (r, +1 -r,) If t,~t~t,+ 1 • 

( 11 + I -t, 
(3.241) 

Let S0(r0, ... , rN) be the action of this polygonal trajectory, and let 

(3.242) 

where 

(3.243) 

(m is the mass of the particle). The path integral I(r A, t A; r 8 , t8 ) is defined to be 
the limit of I 0 as the dissection D becomes infinitely fine, i.e. as n -+ oo and 

max (t, + 1 - tn)-+ 0. (The factors Ki, as we will see in the proof of e3.12, are 
necessary if the path integral I is to be a continuous function of r8 .) 

Clearly there are formidable mathematical problems surrounding the 

existence of this limit. We will ignore these and proceed purely formally , 

making no attempt to be rigorous. In this spirit we can state the basic 

assumption, generalised to an arbitrary mechanical system, as 

Feynman's postulate. Consider a mechanical system with coordinates 

denoted collectively by q, and with dynamics determined by an action 

functional S[q(t)]. The probability amplitude for the system to move 

through the sequence of configurations q(t) is 

exp [ ~ S[q(t)] J d[q(t)]. (3.244) 

This refers only to systems with counterparts in classical mechanics, and not to 

the purely quantum mechanical systems which we will encounter in later 

chapters, such as particles with spin or other internal properties. Feynman's 

postulate can be extended to such cases through the medium of quantum field 
theory (see §7.3). 
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Let us now see how the equation of motion of conventional quantum 
mechanics can be derived from Feynman's postulate. 

e3.14 Let S([r(t)]) be the action for a simple pa rt icle moving in a 
potential V(r) (see (3.238)-(3.239)), let J(r A• tA; r 8, 1 8 ) be the probability 
amplitude given by (3.240), and let 

1/!(r , 1)=/(r0 , t0 ; r , 1) (3.245) 

for some lixed r0, 10. If 1/1 fullils the conditions Wl- W3 (p. 39), then it 
satislies the Schrodinger equation (3.7). 

Proof Look at the construction of 1/J(r, t + bt) as a path integral. It is the limit 
of a set of integrals delined with reference to a dissection D of the interval 
[I 0 , c + bt]; if bt is small enough we can consider the last subinterval in the 
dissection to be [t, 1 + bt]. Then the amplitude I 0 (r0 , t 0; r, t + bt) is given by 
(3.242), which is an integral over a set of polygonal trajectories each consisting 
of a polygonal trajectory from (r 0 , t 0) to (r', c) for some r ' = r ,... _ 1, followed by a 
straight line from (r', 1) to (r, 1 + ot). Now if a trajectory is divided into two 
contiguous parts, its action can be written as the sum of the actions for the two 
parts, as can be seen from (3.238); hence (3.242) gives 

with 

10 (r0 , t0 ; r , t +bt) 

=I exp [f S0 (r0 , ... , r,... _2 , r')] 

[
iS ' )] dJ rl dJrN - 2 dJr• x exp - (r , r -- · · ·--- -
fl K I KN - 2 K,... _l 

_ (2irrh bt )1 
KN - 1- --- . 

m 

(3.246) 

(3.247) 

Here S(r', r) is the action of the st ra ight-line trajectory from (r ', 1) to (r, t + bt); 
this can be written as 

U(r', r) . 
S(r', r) =-(j-

1 
-- W(r', r) 6t 

where 

U f '+6r f '+6r (r-r')2 
bt = 

1 

1mr2
dr'= 

1 

~m T dt' 

and 

m(r -r')2 

2 br 

(3.248) 

(3.249) 

Wbt= f +<>
1 

v(r'+ 1 ,~ 1 
(r' -r))dr'=br 11 

V(r' +s(r-r'))ds. (3.250) 

Thus both U and W depend only on r and r ' and not on be. 
In the limit as the dissection of [t0 , t] becomes infinitely fine but the last 

subinterval (c, r + c5t) is kept lixed , (3.246) becomes 

1/!(r, t + c5t) = Cin: c5t )J 1/!(r', c)exp [ 2~~t (r - r')
2

- i :
1 

W(r', r) J dJr'. 

(3.25 1) 
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If If; is continuous, this should give tf;(r, t) as bt-> 0. Now the function e;x' is 
integrable, with integral 

Ico . 2 J 

e'x dx =(in)' 
- oo 

(3.252) 

(see problem 3.35(i)); it follows that 

L . 1 . ' I 2 )J ~ Jm - e'X a =(in ! u(x) 
a-o (/ 

(3.253) 

for iff is any bounded continuous function we have 

Lim~ I"" f(x) eix'ta' dx =Lim I"" f(ay)e;y' dy = (in)1f(O) 
a-0 a - oo a-o -oo 

(3.254) 

(a more careful version of this argument is outlined in problem 3.35(ii)). 
Putting a 2 = 2h bt/m, and considering all three components of the vector r- r', 
we obtain from (3.253) 

m ' 1111 , 

( )
J [' J ;~~ 2hbt exp 2hbt(r-r')2 =(in)' o(r-r'). (3.255) 

Thus the right-hand side of(3.251) does indeed give tf;(r, t) as bt ..... 0. (This is the 
reason for the factors K, in the definition (3.242)-(3.243) of the path integral.) 

Now we expand tf;(r, t + bt) as 

tf;(r, t+bt)=tf;(r,t)+ ~~ bt+O(bt2
) (3.256) 

and find otf;fot by differentiating (3.25 1) with respect toot and letting bt ..... 0. 
The differentiation gives 

(_m_)1 I{ --3--~ (r-r')2 -~ W(r' r)}'f'<Dd3 r' 
2inh bt 2 bt 2h bt2 h ' 

(3.257) 

where 

[ 
. bt J 'f' = tf;(r' , t) exp -7;-- W(r', r) , 

[ 
im , 2 ] <D=exp 

2
h Ot (r-r) . 

Using V' to denote differentiation with respect to r', we have 

(3.258) 

so that (3.257) can be written as 

( _m )
1 I{ -~ 'f'V' 2<D-~ W'f'<D}d3r'. 

2inh bt 2im h 
(3.259) 

Now if If; satisfies the conditions to be a wave function, 'f' decreases fast enough 
at large r' to make it possible to apply Green's theorem and convert the 
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integral to 

( ))f { > } 111 2 11 2 i 3 
-- <1> - - v" '¥ -- W'¥ d r'. 
2nih bt 2im h 

(3.260) 

Taking the limit as bt--> 0 and using (3.255), we get the part of the integrand in 
curly brackets, evaluated at r' = r. Since W(r, r) = V(r), this gives 

atj; h 2 i 
at=- 2im V' t/J -h Vt/J , 

which is the Schrodinger equation. • 
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Further reading The general references on quantum mechanics given in Chapter 2 are equally 
relevant to this chapter. There is a great number of textbooks (e.g. Schiff 1968} 
which can be consulted for details of calculations with specific Hamiltonians. 
The relevance of group theory to quantum mechanics was emphasised in one 
of the first quantum mechanics textbooks, Weyl 1928. Other textbooks on 
group theory and quantum mechanics are Gilmore 1974 and Cornwell 1984. 
For Feynman 's formulation see Feynman & Hibbs 1965. 

Problems on Chapter 3 1. A quantum system can exist in two states la0 ) and la1), which are normalised 
eigenstates of an observable A with eigenvalues 0 and 1 respectively. The 
Hamiltonian operator is defined by 

Hlao) =cr:lao) + Pla1), Hla1) = Plao) +cr:lao) 
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where a and {J are real. If the sys tem is in the state ja0) a t timet =0, show that 
its state a t time t is e -i•'(cos {Jrja0) - i sin {Jtja 1) ). 

The observable A is measured at t = T. but the va lue is lost. It is measured 

again at t = 2T. Find the probability that the second measurement gives the 

result 0. 

2. It is possible that the three neutrinos mentioned in Chapter I are different 

states of a single system, being eigenstates of an experiment whose resul ts are 

called v., v~ and ' '"and that they a re not stationary states. It is a lso possible 

that the masses (energy eigenvalues) of this system are not exactly 0. Let ji/1;) 

(i = I, 2. 3) be the normalised eigenstates of energy, with eigenvalues m1c
2, and 

suppose the eigenstates of the 'neutrino type· experiment are 

jv.>=tli/1, ) + J 3/ 2 ji/12), h.>=~li/1, ) - J 3/4ji/12) -111/13). 
If the system starts at time t =0 in the electron-neutrino state, find the 

probabilities that at timet it will be found to be in (a) the p-neutrino state, (b) 

the r -neu trino state. 

3. A quantum system can exist in two sta tes ji/11 ) and ji/12). which are eigensta tes 

of the Hamiltonian with eigenvalues £ 1 and £ 2. An observable A has 

eigenvalues ± I and eigenstates II/I±)= 2 -1(jl/l 1 ) ±II/I 2) ). This observable is 
measured at the times t =0, r, 2r, .. . . The (normalised) state of the system a t 

t=O,just before the first measurement, is c1 ji/1 1)+c2ji/1 2) . If Pn denotes the 

probability that the measurement at t = m gives the result A= I, show that 

Pn+t =t(l - cos a)+p. cos a. where a=(£1 -£2)/ fl , 

and deduce that 

p, = t(l-cos" a) +tjc 1 + c2j2 cos" a. 

What happens in the limit as n--+ w with nr = t fixed? [See e 5.7.] 

4. Show that if the time-dependent Schrodinger equation (3.8) has a solution of 

the form 't'(r1, •.• , r,)/(t), then 'I' must be an eigenfunction of the 

Hamiltonian and f(t) = e- tE:r/h where E is the eigenvalue associated with 'P. 

5. For any observable A, show that r A t:..H ~ tfl, where His the Hamiltonian and 

r A=jd( A)/dtj - 1 t:..A. 

6. If [H, A]= -WrA , show that t:..A=C/' where Cis constant. 

7. Find the energy levels of a particle moving in space and confined to a cubical 

box of side a, but subject to no o ther forces. 

8. At time t = 0 the wave function of a free part icle of mass m moving in one 

dimension is ljl0(x)= G(x, a0 )=(a0 j n)-1 exp ( -x2/2a0
2). By writing 1/10 as a 

Fourier transform (see problem 2.15), find the wave function at timet and 

show that ji/J(x, t}j = G(x, a) where a2 = a0 
2 + fr 2t 2f m2a0 

2. 

9. Find the probability current density for the wave function 1/J(x) = Ae1
kx + 

Be-tkx and show that it is the same as the current density of two beams of 

classical pa rticles with densities jAj2 and jBj2 moving in opposite directions. Is 

this true if k is replaced by k' in the second te rm? 

10. A particle is moving along the x-axis in a potential which vanishes for x <a 
and x >b. If the wave function in the regions of zero potential is 1/J(x) = 
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Ae-ikx+ Beikx for x<a, rjt(x)=Ce- ikx for x< b, show that IAI 2 =IBI2 +ICI 2• 

What is the physica l significance of this? (See problem 9.) 

II. Let V(x) be a function which is in finitely differentiable everywhere except at a 

finite number of points x 1• Show that if r/t is a superposition of solutions of the 

Schrodingerequation (3.45) and satisfies the continu ity cond itions (3.53) at x 1• 

then r/t is infinitely differentiable a t x1• 

12. Suppose the function r/t(x) is an eigenbra of the Hamil tonian H = p2/2m + 
V(x), so that it satisfies (3.55) fo r a ll c/> satisfying the continuity conditions 

(3.53). Show that r/t satisfies the Schrodinger equation (3.45) if and only if it too 

satisfies (3.53). 

13. A particle of mass m is moving in one dimension in a potential in the form of a 

barrier with value V0 in the region 0 ~ x ~a and 0 everywhere else. Find the 
eigenfunction of the Hamiltonian which has the form e-ikx + Be1kx for x < 0 

and ce- ikx for x >a. [This can be regarded as the wave function of a particle 

which is incident on the barrier from the left; there is probability IBI2 that it 

will be reflected from the barrier and probabil ity ICI 2 that it will pass through 

it. The fact that ICI2 # 0 even if E < V0 , when a classical particle would be 
unable to penet rate the barrier, is the quantum tunnelling effect.] 

In the case £> V0, find the relative probability that the pa rticle will be 

found in the interva l [0, a], compared with the probability that it will be 
found in an interval of the same length in the region x >a. Find the limit as 

f1-+ 0, and compare with the ratio of the times spent in these intervals by a 
classical particle with energy £ . 

14. A particle is moving in space in a potential which vanishes in a certain region 

D. It has a stationary state in which its wave function in D is rjt(r) = f(r)e1
h 

where f is a real function of a scalar variable and k is a real constant. Find the 

function f and the energy of the state. [Use V 2f(r) = f"(r) + Lf'(r)/r.] 

Calculate the probability current in D. Is it possible for D to consist of all 
space except for a neighbourhood of the origin? 

15. Find (x) and t:.x for the nth stationary state of a free particle in o ne 

dimension restricted to the interval [0, a]. Show that as n-+ ex.> these become 

the classical values. 

16. Show that if a system is only invariant under translations in the direction n, 

then the momentum component n · p is conserved. 

17. Show that the system of a free particle moving in space is invariant under 

translations. 

18. If a particle moves in a potential V(r), find U(T.)VU(T.)- 1
• Deduce that the 

system is invariant under t ranslations only if there is no force on the particle. 

Is the same true classically? 

19. Describe the translation operators for a system of two simple particles 

moving in space. If they are subject to forces deriving from a potential 

V(r 1, r 2), find conditions on V for the system to be inva riant under 
translations. 

20. For photons travelling in a certain medium the states lc/>x)±ilc/>1 ) are 

eigenstates of the Hamiltonian with energies E + and E _. Show that this 
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system as mvariant under rotations about the =-axis, and describe the 

propagation in the =-directio n of plane polarised light in this medium. 

2 1. Show that the rotation R(n, 0) is given by 

R(n , O)x = x cos O+(x · n)n(l-cos O) +n x x sin 0 

and verify that the generator of rotations about the ax is n, acting on the space 
of wave functions, is n · J where J = - ihr x V. 

22. An operator V has even parity if PV= VP, odd parity if PV=- VP. Show 

tha t position and momentum both have odd parity. but a ngular mo mentum 

has even parity. Show that the expectation value of V in a state II/I> vanishes if 
V has odd parity and II/I) is an eigenstate of P. 

23. Wigner's theorem. Let II/I) -+ IT!/! ) be a map of state space which satisfies 

I< T¢ I Tifi>l = 1<¢ I 1/1)1 fo r a li i¢ ), II/I ) . Fill in the details of the following proo f 
that phase factors w(l/1) can be found so that the map II/I) -+ VII/I>= w(I/I)ITI/1 ) 
is either linear o r antilinear. 

Choose an orthonormal basis ll/11), and letl¢u) = ll/lr) +II/I 1) . Show that V 
can be defined so that Vi¢ii) = ITI/Ir) + Yiill/11) with iYIJi =I and y11= I. Let 
IO = 2: cdl/lr) be any vector; then Vie> can be defined so tha t VIO = 

L c/ITI/Ir) with c1 = I and icr'i = icJ Show that either c/ = Cr (say that cr is a 

'linear coordinate') or c;=wcr where w=c1/C1 (say that Cr is an 'antilinear 
coordinate'); and that if Cr is a linear coordinate but c1 is an antilinear one, 

then either Cr= hmcr o r c1= Yr1mc1. Deduce that there is a vector whose ith 
a ndjth coordinates are either both linear or both antilinear. By considering 

IO together with c 1 ll/l 1 ) + drll/l c), show that a ll vectors have ith coordinates of 

the same kind (either linear or antilinear), and conclude that Vis either linear 
or antilinear. 

24. Let V(}.) be a set of non-singular opera to rs depending on a real parameter .J.. 
Show that (d/d}.)[ V(},)- 1]= -V - 1(dV/d}.)U - 1• 

25. Let Q;. be a group of operat ions labelled by a real parameter i. and satisfying 

Qi. +p = Q;.QI" Let V be a representation of the group on a vector space V, with 
generato r X; let A0 be any operator on V and let A(}.)= V(Q;,)A 0 V(Q;,) - 1 . 

Show that t/Afdl =[X, A()..)] for all } .. 

26. Let V(O) = V(R{k, 0)) and let A be any opera to r. By setting up a differential 
equation for V(O)A V(O) - a, show tha t (taking tJ = I) 

a) ( -iO)" 
V(8)AV(8)- 1=A+ L -

1
- [J= , [J=, ... , [J=, A}· ·]] 

n = I II. 

where the nth term in the sum conta ins an n-fold commutator. 

27. For a system of n spinless particles an operator V(B.) is defined by V(B.)I/I(r1, 

. .. , r1)=exp {i(m1r 1 + · · · +m.r,)·v}l/l(r1 , . •• , r.) where m1 , •.. , m. are the 

masses of the particles. Show that V(B. ) - 1 Pr V(B.) = p1 + m1v, and deduce that 

V(B.) represents the operation of giving the whole system a velocity v. 

The Galilean group consists of translations T. , rotations R, time 

translations T, and boosts B., which are transformations of space-time ~4 

acting as follo ws: T.: (t, r)-+ (l, r + a), R: (l, r)-+ (t, Rr), T,: (1, r)-+ (l + T, r), B.: 

(l, r) -+ (1, r+vt). Show that T. and B. commute but V(T.)V(B.)= 
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wU(B.)U(T,.) where lwl =I. Find the hermitian generators of the boost 

operators U(B,.). 

28. Show that the factors w(Q, R) in the definition (3.141} of a projective 
representation satisfy w(Q, RS)w(R, S) = w(Q, R)w(Q R, S), and that if 
w(Q, R) = O(Q)e(R)/O(QR) for some function 8 on the group, there is a true 

representation associated with the projective one. 

29. Let U be a representation of a group G on a complex vector space V. For any 
Q E G and v E V define an operator T(Q, v) on V EB C by T(Q, v)(w, c)= 

( U(Q)w + cv, c). Show that T is a representation of the inhomogeneous 
extension G x) V. Deduce that the Lie algebra of G x) V is isomorphic to 
L EB V where L is the Lie algebra of G, and determine the Lie brackets. 

30. Let U be a unitary representation of a group G on a vector space V. Show that 
if W is an invariant subspace of the representation, so is its orthogonal 
complement Wl.. Deduce that if Vis finite-dimensional it can be written as 
V= V1 EB · · · EB V,, where each V, carries an irreducible representation of G. 
[The representation U is said to be completely reducible.] 

By considering the representation T of problem 29, show that a non­
unitary representation need not be completely reducible. 

31. Show that t he space of three-vectors forms a Lie algebra with Lie bracket 
given by the cross product. 

Let il(a) be the 3 x 3 matrix defined by il(a)x =a x x where a and x are 
three-vectors. Show that il(a) is antisymmetric and that [Q(a), il(b)] = 

Q(a x b). Deduce that the Lie algebra ofS0(3) is isomorphic to the Lie algebra 

defined in the first sentence of this problem. 

32. A particle of mass m and electric charge e, moving in one dimension, is 
confined to an interval of length a and is subject to an electric field E. Initially 
it is in the eigenstate of kinetic energy with eigenvalue Ek = k 2n2h2j2ma2 

where k is an integer. Find, to first order in e2
, the probability that after a time 

r its kinetic energy wi ll be found to be E1 where k #I. 

33. A system has Hamiltonian H 0 + e V and makes transitions. between 

eigenstates of H 0 . There are three such eigenstates lt/1 1) , lt/1 2 ) and lt/1 3 ) with 
eigenvalues E; such that £ 3 -£2 =£2 -£1 =£#0. If Vis independent of 
time, with < t/1 2 jvlt/l 1) = 0, and if the system is in state It/! 1 ) at t ime t = 0, find 
the probability of finding it in the state lt/1 2) at time c, to lowest non-vanishing 

order. 

34. A system makes transitions between eigenstates of H 0 under the action of the 

time-dependent Hamiltonian H 0 +eV0 coswr. Find an expression for the 

probability of transition from It/! 1 ) to lt/12 ) in timer, where It/! 1 ) and lt/1 2 ) are 
eigenstates of H 0 with eigenvalues £ 1 and £ 2 . Show that this probability is 

small unless £ 2 -£1 ~wh. 

[This shows that a charged particle in an oscillating electric field with 

frequency v will exchange energy with the field only in multiples of E=hv.] 

35. Fill in the following details in the proof of e3.14. 

(i) By considering an integral over a triangular contour with corners at 0, Rand 
l 

R + iR, show that J0 "" exp (ix2
) dx =!{in)>. 
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(ii) Let ¢ be an integrable function of a real variable with J _ 00 
00 ¢(x) dx = k < w . 

Let f be any continuous funct ion of a real variable, and let l (s; a, b)= 

J/ f(x)s¢(sx) dx . Show that 

(a) IfO <a<b, /(s;a, b)-+Oass-+ cx; ; 

(b) If - a<O<b, l(s;a,b) -+ k[(O)as s -+ oo. 

Deduce that 

Lim [s¢(sx)] = k b(x). 



4 
Some quantum systems 

In this chapter we will investigate mathematically some of the operato rs whose 
physical significance was explained in Chapters 2 and 3. In particular, we will 
find the eigenvalues of the operators and the number of independent 
eigenvectors associated with each, so obtaining a complete description of the 
corresponding physical observable. 

4.1. Angular momentum In §3.3 we saw that the components of angular momentum (J x• J Y' J :), which 
are the hennitian generators of rotations about the origin , satisfy the 

commutation relations 

(4.1 ) 

Since no two of these operators commute, they will not m general have 
simultaneous eigenvalues. However, the operator 

(4.2) 

commutes with all three of J x• JY and J, as can easily be verified by using the 
identity (2.80) for a commutator containing a product. This means that we can 
look for simultaneous eigenvalues of J 2 and any one of the individual 
components, say J=. 

Consider a system for which J 2 and Jz are a complete set of commuting 
observables, so that there is a complete set of states jJ., J1) consisting of 
simultaneous eigenstates with eigenvalues A. for J2 and J1 for J=: 

J2jA., p ) = A.JX, Jl) , 

J =IJ,, 11> = 11IX, J1 >· 
We define the operators 

J±=Jx±iJy. 

Then J + and J _ are hermitian conjugates of each other: 

J+=} _t, 

(4.3) 

(4.4) 

(4.5) 
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and their products can be expressed in terms of J 2 and J =: 

J +J - = J 2 - J/ + IIJ= , (4.6) 

j _} += J 2 - J/ -hJ=. (4.7) 

From (4.1) we obtain the commutators of J + and J _ with J, as 

[J= , J +] =h) +• (4.8) 

[J=, 1 _J = -nJ _. (4.9) 

The crucial properties of J ± are the following : 

1. J ±II,, p ) are also eigenstates of J 2 with eigenvalue },. (4.10) 

For J 2 commutes with J ±• and so 

J2 J ±I}., Jl> = J ±J21),, /1) = v ±I},, Jl). 

2. Either J + 1;,, 11> = 0 or J + 1},, /1 ) is an eigenstate of J = with eigenvalue 
p + h. (4.11) 

For from (4.8) we have 

JJ +IA.,Jl> = (J +J=+hJ +)I}·,Jl> =(J1+h)J +IA., Jl>· 

3. Either J -lA., 11> =0 or J -I},, p) is an eigenstate of 1: with eigenvalue 
jl- h. (4.12) 

This is proved in the same way as (4.11), using (4.9). 
Because of (4.11) and (4.12), J + and J _ are known as raising and lowering 

operators for J =· In symbols, we have 

J ±IA.,p> = c ±IA.,p±h>. (4.13) 

To determine the factors c±, note that since the states lA., 11 > are normalised we 

have, writing I</>±)= J ±lA., J1 ), 

ic + 12 = < <1> + I <1> + > = o, 111J + t1 + 12, 11> 

Similarly, 

= (A., p i(J2 -J, 2 - hJz)IA., p), using (4.5) and (4.7), 

=2 - p 2 -pf1. 

lc -lz = < </> -I </> - > = ). - 112 + pf1. 

(4. 14) 

(4.15) 

(Only the modulus of c± can be determined since any sta te vector can be 
multiplied by an arbitrary phase factor.) 

From (4.14), using the positive-definite property (2.29) of the inner product, 
we have 

2 -p2 -ph~O, 

2- p 2 -ph = 0¢>1<1> +> = 1 +lA., p ) =0. 

Similarly, (4.15) gives 

). - p 2 +ph~ 0, 

A. - p 2 +ph =0¢>1<1>-> = 1 - lA., p) =0. 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

The statements (4.11H4.12) and (4.16H4.19) are sufficient to determine the 
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possible valu es of }, and J.l.. From (4.11) we see that, unl ess J + !i-. Jl ) = 0. an 
eigenvalue J1 of J =is accompanied by a higher eigenvalue J1 + h, which in tu rn is 
accompanied by an eigenvalue J1 + 2h, and so on; the eigenvalues rise in steps of 
f1 , like a ladder, and wi ll only stop if they reach a value J.l.miU for which 

J +!},, J.l.max ) =0. (4.20) 

There must be such a maximum value, fo r if J1 continued indefinitely it would 
reach a value which violated the inequality (4.16). According to (4.17), thi s 
maximum value is given in terms of}, by 

}, = Jlmax(Jlmax + h) (4.2 1) 

(the value of). is the same for every state in the ladder of eigenstates li., J.l ) , 

J +!},, J.l. ) , ... , because of (4. 10)). 
Similarly, the lowering operator produces a sequence of eigenvalues going 

down from Jl in steps ofh, which must reach a minimum value Jim'" or else (4.18) 
would be violated, and for this value we must have 

J _,},, Jlmin) = 0 (4.22) 

and therefore, according to (4. 19), 

}, = J.l.min{Jlmin - fJ). (4.23) 

From (4.2 1) and (4.23) we find 

{Jlmax + J.l.min)VImax- Jlmin +h) =0. (4.24) 

Since Jlmax?:Jlmin• it follows that Jlmin= -Jlmax· Write Jlmax=jt1; then the 
difference between J.l.max and Jlmin is 2jh. But we can get from Jlmin to Jlmax by going 
up in steps of h; hence 2j is an integer. From (4.21) we find the value of A as 
jU + 1)11 2

. The values of J1 that are contained in our ladder of eigenvalues of J= 
are - jh, ( - j + l)h, ... , U - l )f1,jh; no other values are possible for states with 
the same eigenvalue of J 2

, because we started with a general eigenvalue of J= 
and showed that it belonged to this set. 

Finally, let us note that because of(4.6) and (4.7), if we sta rt with a state lA., J.l ) 
and apply first the raising operator J + and then the lowering operator J _,o r 
vice versa, we arrive back at a multiple of the state we started with. Thus the 
ladder of states with a given value of). span a space !/ such that the operators 
Jx, JY. J= act entirely inside !/. 

From now on we will replace the labels A. and J.l. by j and m, where .A.= 
jU + l)f1 2 and J1 = mh: 

we write [i m) instead of liU.+ l)h2
, mh ). 

Then our results can be summarised as 

e4.t The possible eigenvalues of J 2 are jU + l)h2 where 2j is an 
integer. For each of these there a re 2j + 1 states 

[im), m=-j,-j+l, ... ,j-l,j 

on which the components of the angular momentum vector J act 
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Fig. 4.1. 
The Stern- Gerlach 

experiment. 
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according to 

J=l j m ) =mfjjj m) , 

J ±lj m> = Juu + 1) -m(m ± l))hlj m ± 1) 

where 

J ±=Jx±iJy . • 

(4.25) 

(4.26) 

For the remainder of this section we will assume that the units are such that 

h= l. 
Experimental confirmation of these results is provided by the Stern-Gerlach 

experiment, in which a beam of atoms or other particles is directed past a pole 
of a magnet onto a screen where they make a mark (Fig. 4.l).It is found that the 
beam splits into a number of pieces, so that the marks made by the particles on 

the screen form several distinct small patches. These are equally spaced along a 
line parallel to the axis of the magnet, and are placed symmetrically on either 
side of the point where the original line of the beam meets the screen. 

In classical physics, a spinning object made of electrically charged material 
acts like a magnet, with a magnetic moment (=pole st rength x length) 
proportional to its internal angular momentum (i .e. angular momentum about 
its centre of mass). On moving past a pole of a magnet it will be deflected by an 
amount proportional to the component of angular momentum parallel to the 

axis of the magnet, say J =·Thus the Stern- Gerlach experiment, in which the 
beam is split into 2j + 1 parts separated along the z-direction, so that there are 
only 2j + 1 possible values for the deflection of an individual particle, gives 
evidence that there are only 2j +I possible values for Jz for each particle. 

The number j is characteristic of the type of particle in the beam; it is called 
the spin of the particle. 

N 
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Orbital angular For a simple particle, which has no internal properties and in particular no 
momentum spin, the angular momentum about the origin is given by the classical 

expression J = r x p. Such angular momentum is called orbital angular 

momentum, and is often denoted by L. We have seen (p. 95) that for this 
system L coincides with the angular momentum required by Postulate VII. 
The corresponding operator (taking fl = 1) is 

L=-ir x V. (4.27) 

In spherical polar coordinates (r, 0. ¢) the operators L =. L ± and L 2 are 

and 

c 
L==- ; o¢ ' 

L = e±i<P(+ 
0 

+ icote_!_) 
± - ao a¢ 

(4.28) 

(4.29) 

(4.30) 

The eigenfunctions of the operator L= given by (4.28) are of the form 

1/J(r) = f(r, fJ)eim<P. Since (r , e, ¢ + 2n) are the coordinates of the same point of 

space as (r , e, ¢), this functio n must be unchanged if¢ is increased by 2n, which 

means that m must be an integer (not half an odd integer). A sim ilar point 

applies to the operator L 2 given by (4.30). This is the angular part of the 
Laplacian operator V2

, and in the study of that operator it is found that L 2 has 

eigenvalues/(/+ I) where I is an integer (again, not half an odd integer). The 
simultaneous eigenfunctions of L 2 and L= are 

Y1m(fJ,¢)=Pt"'(cosfJ)eim<P, m=-1, -l+I , .. . ,/ (4.31) 

where Pt is an associated Legendre polynomial. The functions Y1'" are called 

spherical harmonics; it is also sometimes useful to consider the solid harmonics 

S,"'(r, 8, ¢) = r1Y1,.(f1, ¢). (4.32) 

The only special property of these functions that we will need is the 
following: 

e4.2 Let I{! be an eigenfunction of U with eigenfunction /(/ + 1). 
Then I{! has parity (- 1)1, i.e. 

Pl{!(r) =I{!( - r) = (- ljll{!(r). (4 .33) 

Proof Consider the function 

<J>(r) = (x + iy)1 = r1 sin' oi<P. 
Using (4.28) and (4.30), you can readily verify that 

L2<1>=1(1 + 1)<1>, L:<l> = /<1>. (4.34) 

It follows that 

<J>(r) = r1Y11(0, ¢) 1 

so that 
(4.35) 
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Since <I> is a homogeneous polynomial of degree /, 

<I>( - r) = ( - I )1<1>(r). 

The parity operator P commutes with rotation operato rs and therefore with the 
angu la r momentum operators, and in particular with the lowering o perato r L _; from 

(4.35) it follows that all the solid harmonics s,m(r) satisfy 

S,m( -r) = ( - 1)1S1m(r). (4.36) 

Now any eigenfunction of L2 with eigenvalue/(/+ I) must have the form 

(4.37) 

for some functions fm(r). Hence (4.39) gives 

1/1( - r)= L (- 1)1r - 'l"m(r)S1m(r)=( -1)11/!(r) . • 

Since the eigenvalues of L2 are of the form /(/ + 1) where I is an integer, 
eigenstates lj m) of J 2 and J= in which j (and therefore m) has an odd half 
cannot be realised as wave functions. Nevertheless, operators satisfying the 
commutation relations for angular momentum and having such half-odd­
integral eigenvalues certainly exist mathematically - they are exhibited in 
(4.25H 4.26) - and physical states with these eigenvalues occur in na ture, since 
there are particles for which the Stem-Gerlach experiment gives a splitting 
into an even number of beams (as in Fig. 4.1, where the number of beams (equal 
to 2j + 1) is six, so that j =1). 

Spin The ' internal' angula r momentum of a particle which is revealed by the Stem­
Gerlach experiment is called the spin of the particle. (The same word is used for 
the number j.) This is angular momentum which the particle has even when it is 
at rest, i.e. when it has zero eigenvalues for p and therefo re for r x p. In 
describing the Stem-Gerlach experiment we implied that this was like the 
internal angular momentum of a classical spinning body, which has angular 
momentum about its centre of mass obtained by adding up terms like r x p for 

all the parts of the body (r being the position vector relative to the centre of 
mass). For a composite particle like an atom, it makes sense in quantum 
mechanics to talk about the angular momentum about the centre of mass, and 
it may be possible to identify this with the spin. However, this cannot be the 
case if the spin j is half an odd integer, for the angular momentum about the 
centre of mass is obtained by adding together orbital angular momenta, with 
integer eigenvalues, a nd, as we will see in the next section, this can only give rise 
to integer eigenvalues. Since particles with half-odd-integer spin do exist, we 
must conclude that it is possible for a particle to have a spin which does not 
arise from the motion of its parts about its centre of mass. In particular, it is 
possible for a truly elementary particle (which has no constituents) to have an 
intrinsic spin. t 
t This should not really be su rprising, in view o f the relation between mechanics and geometry 

expounded in §3.2. Geometrically, rotations cannot be reduced to translations; 
correspondingly, one should not expect angular momentum to be reducible to linear 
momentum. This view can be held in classical mechanics also; it dates back to Euler. 
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There is a general rule relating the spin of a particle to its statistics (i .e. 
whether it is a fermion or a boson). This can be proved as a theorem in 

relativistic quantum field theory, but we will assume it a s a basic law of nature: 

The spin-statistics law. All bosons have integer spin; all fermi ons have 
half-odd-integer spin. 

Of the particles described in Chapter I, all the fermions (the baryons, leptons 
and quarks) have spin 1; the gauge bosons (the photon, w ±, Z 0 and gluons) 
have spin 1; and the mesons (n, K and 17) have spin 0. There are, however, other 
baryons and mesons with different spins. 

Spin-1 particles With j = 1 there are two possible values of m, namely m = ± 1; we will simplify 
our notation still further by denoting the corresponding eigenstates of J = by 
I+) and 1-) (these are often called spin up and spin down states). From (4.25)­
(4.26) we find the action of the components of J on these states as 

Jx!+ )=11+), Jxl-> =11+) ) 

Jyl + > =~il- ), Jy l = >: =~i~+ > , (4.38) 

J= ' + >- 21 + ), Jyl >- 21 ) . 
The matrices representing these (as in §2.4) are the components of 1t1 where 

(
0 1) (0 -i) (I 0) ax= 1 0 ' ay= i 0 ' a== 0 - 1 · (4.39) 

These are known as the Pauli matrices. Their matrix products are given by 

ax2 =a/ =a. 2 = 1, 

axay= -ayax=ia= , 

and cyclic permutations of x, y, z, which can be summarised as 

a;ai = f>ii + ieiikak 
or 

(a·tJ)(b·tJ)=a·b+i(a x b)·tJ. 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

The general state of a spin--! particle (as far as its spin is concerned) is a 

superposition cd + ) +c2! - ) . This state vector is called a spinor. An actual 
particle has not only spin properties but also properties due to its motion in 
space, of the sort which are described by a wave function t/J(r). As in the case of 
a photon (p. 70), these two aspects can be combined by making the 

coefficients c1 and c2 into wave functions: thus the full state space of the 
particle consists of spinor wave functions t/1 1 (r)! + ) + t/J2(r)!- ) , which can also 
be written as 

Rotation operators Ifn is any unit vector, n · J is the hermitian generator of rotations about the axis 
n; hence, according to e3.6, the operator representing the rotation through 
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the angle (}about n is 

U(R(n, {}))= e-tOn ·J. (4.44) 

In the case of a spin-1 particle we can evaluate the exponential by using 

(n·a)2 = 1, (4.45) 

which follows from (4.43); this gives the matrix 

U(R(n, 0)) = e-ltOn ·a =cos to+ in· a sin ·W (4.46) 

Notice that when (}= 2n this is -1. At first sight this looks wrong, since a 
rotation through 2n is the identity operation and one might expect it to be 
represented by the identity operator. However, since a state vector -11/1) 
describes the same physical state as II/I) , the operator - l can validly represent 
the identity operation. The operators (4.46) form a projective representation of 

the rotation group, as discussed in §3.3, which cannot be redefined to give a 
true representation. This happens whenever j is half an odd integer, as can be 
see by considering the effect of a rotation about the z-axis on a state U m) : 

U(R(k , enu m) = e-iOJ,u m ) = e-imOij m) 

= -lj m) when 0=2n (4.47) 

since m is also half an odd integer. 
In the terminology introduced in §3.3, these facts about rotation operators 

can be expressed as follows: 

e4.3 ForeacheigenvaluejU+ l)ofJ2 thereisa(2j+ I)-dimensional 
projective representation of the rotation group, in which J 2 acts as a 
multiple of the identity. This representation is unique (up to 
equivalence). It is a true representation if and only ifj is an integer. • 

We will denote this representation (or the vector space on which it acts) by ~i· 

It defines a set of (2j + 1) x (2j + 1) matrices Di(R) with matrix elements di m,(R) 
(m, n = - j , .. . , j), where R is any rotation and 

j 

U(R)Ij m) = L di,m(R)Ij n) ; (4.48) 
n = - j 

and also a set of three matrices representing the generators, forming a vector of 

matrices ti=(tix• tiY' ti,) with matrix elements tinm• where 
j 

Jjj m) = L tinmU n) (4.49) 
n =- j 

(in the casej=!, ti=ia). From (4.25)- (4.26) we find the explicit formulae 

(ti±)nm=(tix±itiy)nm=J UU+ 1)-m(m± 1)}bn,m±l• (4.50) 

(4.51) 

There is one obvious representation of the rotation group which at first sight 

does not seem to be included in e4.3, namely the vector representation in 
which the vector space consists of three-dimensional geometrical vectors and 
the rotation operator acts by rotating these vectors in the geometrical sense. 
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Thus there is a complete set of three sta tes lx), IY), lz> co rrespo nding to the 
unit vectors i ,j , k, and a rotation abou t the :-axis, fo r example. is represented 
by the unitary operato r U(R(k , 0)) defined by 

U(R(k , O))lx) =cos Blx> + sin OIJ') 

U(R(k , OlliY> = - sin Olx) +cos Oly) (4.52) 

U(R(k . 0))1: ) = lz) . 

Differentiating with respect to 0 and putting 8=0 gives J= as 

J=lx>=ijy), J:IY>= - ijx) , J:i-::) =0. (4.53) 

There are similar expressions for J x and J
1

. 

We can now show that this representation is the same as that given by e4.1 
with }= I. Define the states II m) by 

I 
II± l) =fl<lx> ±ilr) J, II 0) =1=>; (4.54) 

then (4.53) gives 

J= i l ±1) = ±1 1 ± 1), J=IIO) =O (4.55) 

which is the same as (4.25) with}= I. The expressions for J x and J >. similar to 
(4.53) likewise yield (4.26) wi th j =I. Thus the vector represen tat ion is 
isomorphic to the represen ta tion 2iJ1• 

In the case j =! the unitary operator U(R) representing a rotation can be 
identified with a 2 x 2 m atrix, as in (4.46). Na tu rally, this matrix is unitary. 
Furthermore, its determina nt is I, as fo llows from the identity 

(4.56) 

which ho lds for any (complex) scala r a0 and vector a. Conversely, a ny unitary 
2 x 2 matrix wi th determinant I (i.e. any element ofSU(2)) must be of the fo rm 
(4.46) and therefore could represent some rotation. However, if we specify that 
the angle e should satisfy 0 ~ 0 < 2n, we only get half the elements ofSU(2); the 
other ma trices a re given by values of 0 between 2n a nd 4n. Thus fo r every 
rotation there are two possible 2 x 2 matrices: if R(n, 8) can be represented by 
the matrix U(n, 0) it can also be represented by 

U(n, 0 + 2n) = - U(n, 0). (4.57) 

Each matrix in SU(2), however, corresponds to just one rotation. 
This two-to-one correspondence between elements of SU(2) and rotations is 

described mathematically by a map ¢ from SU(2) to the rotation group, 
associating each matrix U in SU(2) with the rotation ¢( U) that it represents; 
then (4. 57) implies that ¢(- U) = ¢( U). The rotation ¢( U) can be simply 

defined in terms of the set V of hermitian 2 x 2 matrices with zero trace; a ny 
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such matrix is of the form 

( 
a 3 a 1 -ia2) 

a 1 + ia 2 -a 3 

=a ·a (4.58) 

where (a 1 , a2 , a 3) are real, so Vis a three-dimensional real vector space which 
can be identified with the space of physical vectors a. From (4.43) we have 

tr(AB) =2a ·b if A=a · a and B=b·a, (4.59) 

so the scalar product between vecto rs is given in V by the inner product 

( A, B) =1 tr (AB). (4.60) 

Now, given any U in SU(2) and any other 2 x 2 matrix X, we define a matrix 

cf>(U)X by 

(4.61) 

Then cf>(U)X is hermitian if X is, because of the identity (XY)t = ytxt, and it 

has the same trace as X, for 

(4.62) 

since U is unitary. Hence¢( U) maps the space Vto itself. Moreover, from (4.60) 
we have 

(cf>(U)A, cf>(U)B) = ( A, B), (4.63) 

so cf>(U) is an orthogonal operator on V It is clearfrom (4.61) that cf>(U 1 U2)= 
cf>( U 1 )¢( U 2), so cf> is a homomorphism of SU(2) into the group of orthogonal 
operators on V. Our previous remarks based on (4.46) can be put in group­
theoretical terms by saying that the image of cf> is the group of all rotations of V, 
and its kernel contains just the two elements ± 1. (See problem 4.5.) 

Intrinsic parity The state space of a particle with spin is !I'® 1fl, where !I' is its 'internal' (spin) 

space and 1/f is the space of wave functions. The rotation operators act in 111, 
taking l{;(r) to I{;(R - 1r), and in !I' as shown by (4.44). Similarly, the parity 

operator P, which acts in 111 by taking l{;(r) to I{;(- r), may also act in 9'. Now P 
commutes with all rotations, and therefore with the angular momentum 
operators; hence, like J 2

, it has just one eigenvalue in 9'. Since P2 = 1, this 
eigenvalue must be ± 1. Like the spin, this is characteristic of the type of 

particle; it is called its intrinsic parity. This applies even if the particle has spin 
0 , when 9' is one-dimensional and so !I'® 111 is isomorphic to 1/f. Thus if we 
regard the state vector of a spin-j particle as a (2j +I)-component wave 
function, like the spinor wave function we introduced for spin-1 particles, the 
effect of the parity operator is given by 

(PI{;)(r) = t:l{;(- r) (4.64) 

where e is the intrinsic parity of the particle. 
Of the particles mentioned in Chapter 1, the massive fermions have positive 

parity, their antiparticles have negative parity, and both the gauge bosons and 
the light mesons have negative parity. The neutrinos are a special case, as will 

be discussed in the next subsection. 
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Massless particles The spin space of a particle can be defined as the space of momentum 
eigenstates with eigenvalue 0. This space is taken into itself by rotations; hence 
rotation operators. and therefore angular momentum operators, are defined 
on it, and so it must be of the form described in e4.1. 

Fig. 4.2. 
The effect of reflection on 

helicity. 

T his argument breaks down in the case of massless particles, which must 
travel at the speed of light and therefore have no zero-momentum eigenstates. 
For such particles it is impossible to isolate a spin space on which rotat ions act 
without affecting the momentum. All one can do is consider the space Y'p of 
eigensta tes of momentum with a particular non-zero momentum p. This space 
is inva riant under rotations about the direction of p, which means that it 
carries an operator p · J where p is a unit vector in the direction of p, but no 
o ther components of angular momentum. (The other components exist as 
operators on the full state space of the particle, but they do not leave the space 
9"P invariant.) The observable p · J is called the helicity of the pa rticle. Since it is 
a component of angula r momentum, its eigenvalues must be integers o r half­
integers, but they need not make up a full range - j, ... , j. A complete 
explanation of the si tua tion requires the theory of relativistic transformations 
(the Poincare group); see Cornwell 1984, Chapter 17. 

Of the massless particles mentioned in Chapter I, the graviton has helicity 
±2, the photon ± I, the neutrinos -1 and the antineutrinos +1. The 
neu trinos spin about their direction of motion like a left-handed screw; they 
are said to be left-handed, and antineutrinos right-handed. 

The operation of reflection in a plane parallel top, applied to a particle with 
momentum p, would leave its momentum as p but would reverse its helicity; it 
would make a left-handed particle right-handed, and vice versa (see Fig. 4.2). 
Thus such an operation cannot be applied to a neutrino, since there are no 
right-handed neutrinos. Now a reflection in a plane can be obtained by 
combining the parity operation wit h a rotation through rr. in the plane. Since 
rotations can be applied to any state, we conclude that there is no parity 

operator on the state space of a neutrino. 

j_, 
I 

j_, 
I 
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The spins and parities of particles are summarised in Table 4.1. Some of 

these parity values a re purely a matter of convention, since the intrinsic parity 

of a particle does not always have an absolute meaning (see Gibson & Pollard 

1976). 

4.2. Addition of angular Consider two systems (which we will think of as 'particles') which have 

momentum individual angular momentum vectors J 1 and J 2• As was explained in §3.2, 
these can be regarded as commuting observables for the combined system, for 

which the angular momentum is J=J 1 +J 2 . The theory of angular 

momentum developed above applies both to the individual a ngular momenta 

J 1 and J 2 , and to the total angular momentum J. We will now look at the 

relationship between these. 

Since we are only concerned with angular momentum, we will continue to 
assume that there a re no o ther observables, i.e. that J 1

2 and 1 1= form a 

complete set of observables for particle 1, and J /and J 2= likewise for particle 

2. Suppose further that J 1
2 takes the single value j 1 U 1 + 1) (i.e. particle I has 

spin j d, so that the sta te space .9'; of particle I is (2j 1 + I)-dimensional, with a 

complete set of states lj1 m1 ) where m1 (taking values -j1 , -j1 + l, .. . ,j1) is 

the eigenvalue of 1 1 •• Similarly, suppose particle 2 has spinh, so that it has a 

(2h +I)-dimensional state space 9"2 with complete set of states lj 2 m2 ) (m 2 = 
-h .... j 2). Then the state space of the two-particle system is .9'; ® 9"2; this 

has dimension (2j1 + l)(2j2 + 1) with a complete set of states lj1 m1)lj 2 m2 ) , 

which we will write as U1m 1 , j 2m2 ) . Sincej1 andj2 are fixed, these states can be 
identified by the eigenvalues m1 and m2 ; thus J 1 =and J 2= form a complete set of 

commuting observables (J/ and J2
2 being multiples of the identity). 

Now consider the total angular momentum operators J 2 and J= acting on 

Table 4.1. Spins and parities 

Spin Helicity Parity 

Quarks u, d , s, c, b, t 1 ±1 + 
Octet baryons n, p, A, .E, =: 1 ±1 + 
Decuplet baryons~ • .E*, ::::*, n- ! ±1-, ±! + 
Charged leptonse - ,J-l -, T- 1 ±1 + 
The antiparticle of a fermion always has the same spin as the fermion and the 

opposite parity. 

Neutrinos vc, vi" v, 

Antineutrinos vc, vP, 1•, 
Graviton 

Photon 
w ±, zo 
Gluons 

Octet mesons n, K, K, '1 

I 
0 

-1 
+t 
±2 
±I 

0, ±I 
±l 

0 

+ 



Fig. 4.3. 
Simultaneous eigenstates of 

J 1:andJ2=-
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the state space .9'; ® .9'2 . Since J==J1:+J2=, each state lj1m1,j2m2 ) is an 
eigenstate of J, with eigenvalue m 1 + m2• For a given eigenvalue M of J =·there 
will be a number of eigenstates, since there are a number of pairs (m 1, m2) with 
m1 + m2 = M; the possibilities are shown in Fig. 4.3. From this diagram it can 
be seen that among the states lj 1 m1,j2m2 ) are one with M = j 1 + h, two with 
M = j 1 + j 2 - 1, three with M = j 1 + j 2 -2,and so on until we reach m = j 1 - j 2 (if 
h < j 1) or M=j2 -j1 (ifj 1 < j 2). If we continue to reduce Min steps of I , the 
number of states for each value of M remains the same until we reach M = 
-lj1 -j2 1; thereafter the number of states decreases as we decrease M , until 
finally there is just one state with M = -U1 + j 2). 

Let !I'M be the subspace of .9'; ® .9'2 spanned by the states lj1m1 ,hm2 ) with 
m1 + m2 =M; then f/',11 contains all the eigenstates of J= with eigenvalue M. 
Thus the raising operator J + maps f/',11 into f/',11 + 1• We have just seen that for 

lj 2 - j 21.:::; M .::=;j1 + h , the dimension of fl' M is greater (by 1) than that of .2'M + 1; 

hence J + must have a null vector in f/',11 , i.e. a state I'~' > such that J + I'~'>= 0. 
Using J _} + = J 2

- J/- J , it follows that this null vector is an eigenstate of 

J2, the eigenvalue being J(J + 1) with J = M . According to e4.1 , this state 
stands at the head of a ladder of simultaneous eigenstates of J 2 and J =• all with 
the same eigenvalue J(J+ 1) for J 2 and with the eigenva lues for J, ranging 
from - J to J. There is one of these ladders for each value of J between lj 1 - j 2 1 

and j 1 + j 2 ; the states in them are shown in Fig. 4.4, in which each blob stands 
for a simultaneous eigenstate of J 2 and J=, the blob with coordinates (J, M) 
having eigenvalues J(J + 1) and M. 

In Fig. 4.4 each horizontal row represents a complete set of states for the 

subspace .2';11 ; each vertical column is one of the ladders of states described in 
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Fig. 4.4. 
Simultaneous eigenstates of J 2 

and J=. 

4 Some quantum systems 

e4.1. We will denote the subspace spanned by this ladder of states by 9 J; as in 
e4.3, the rotation operators act in this subspace according to the (21 + I)­
dimensional representation of the rotation group. 

The results of this discussion ca n be summarised as follows: 

e4.4 Let S 1 and S 2 be two systems for which the z-component of 
angular momentum constitutes a complete set of observables, the 
eigenvalue of J2 beingj 1(j1 + 1) for S1 andj2(j2 + 1) for S 2. Then the 
eigenvalues of J 2 for the combined system S 1S2 are J(J + 1) with 

J = Jj. -hi, ljl - j21 + 1, ... ,j. + j2. 

In terms of representations of the rotation group, this can be 
written as 

E1, ® E1, ~ ~j, -hi EF> ... EF> f!)j, +j,· • (4.65) 

This is easily extended to cover the case where the systems S 1 and S 2 have 

more than one eigenvalue for J 1
2 a nd J /. If, for example, S 1 has eigenvalues 

j 1 (j 1 + 1) and j 1 '(j 1 ' + 1) for J /, then we write its state space as Y. = :!)j, EF> ~,· 
and we have 

.9'; ® .9"2=(9,, EF> ~I ) ® gj, = ~I 0 ~j, EF> gjt' ® qj, 

= ~,-j,J EF> ... EF> ~j, +j, EF> 9u,'-hl EF> ... EF> ~j,'+j, • (4.66) 

This arises in combining three o r more systems with angular momentum: one 
first combines two of the systems, say S 1 and S 2, and then combines each 

fM 

• 
• • 

• • • 
/""'. • • • • 

• • • • • 
• • • • • 
• • • • • J 

li,-J.I ), +J • 
• • • • • 

• • • • -aM 

• • • 
f)J • • 

• 
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component of S 1 S 2 with the third system S3 . For example, ifj 1 = )z = )3 = J this 
procedure gives 

2&1 ® 2&1 ® 2&1 = (E&o EB 2&1 EB 2&2) ® 2&1 

= 2&1 EB (E&o EB 2&1 EB £&2) EB (~~ EB ~2 EB 2&3). (4.67) 

Note that since orbital angular momentum is characterised by integer 
values of j , the combination of any number of systems with orbita l angular 
momentum can only give rise to integer values of). This is the justification for 
the remark on p. 138 that half-odd-integer spin cannot be explained in terms of 
orbital motion. 

Figs. 4.3 and 4.4 show two different complete sets of states fo r the combined 
systemS 1 S 2, corresponding to the two sides of (4.65). The states of Fig. 4.3 are 
the original states IJ1m1 , )zm2 ) ; those of Fig. 4.4 will be written as IJ M). All of 
these state vectors are taken to be normalised. In each of the complete sets the 
states have different eigenvalues for a pair of hermitian operators, and so each 
is an orthonormal set. Now any state can be expanded in terms of either of 
these complete sets; in particular, each state IJ1 m1 ,Jzm2 ) can be written as 

(4.68) 
J.M 

The coefficient cJM can be obtained by taking the inner product with the state 

IJM) : 
(4.69) 

These coefficients are called Clebsch- Gordan coefficients. A way of calculating 
them is outlined in problem 4.6. The calculation invol ves an arbitra ry choice of 
phase at one point; this reflects the fact that the state vectors IJM ) are not 
uniquely defined, but can be multiplied by an arbitrary phase factor. The 
phases can be chosen so that the coefficients are all real. There is a table of 
Clebsch- Gordan coefficients at the back of this book. 

Since the Clebsch-Gordan coefficients relate two orthonorma.l complete 
sets of states, they form the elements of a unitary matrix (the rows being 
labelled by J and M , the columns by m1 and m2) - in fact , since the coefficients 
are real, the matrix is orthogonal. Thus 

(4.70) 

L ( J MIJ1m1 ,j2m2 )(J MIJtm'l ,)2m]) = (jm
1
m'

1 
(jm

2
m'

2
• (4.71) 

J.M 

The Wigner- Eckart Not only states, but also observables may be subject to transformation by 
theorem rotations. For example, in §3.2 we considered a set of observables v; which 

form the components of a vector. We saw that the appropriate transformation 
for an observable A was A-+ U(R)AU(R) - I with infinitesimal version A-+ 

[Ji, A] (see e3.8); and that if v; are the components of a vector the three­
dimensional space of operators consisting of linear combinations of the v; (i.e. 
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the set of operators a· V) is invariant under these transformations. This can be 
generalised. The components of a vector are equivalent to the basic states of a 
system with angular momentumj= 1. so the space o f operators a· V behaves 
like the space g 1• In the generalisation we consider a space of operators 

corresponding to any gi· 
An irreducible set of operators (under the rotation group) of spin typej is a set 

of 2j+ I operato rs Tim (m= -j, ... ,j) sa tisfying 

[J=. TimJ=mTim· 

[J ±, T im] = UU+ l) -m(m± l))T1m±l 

(4.72) 

where J is the total angu la r momentum of Lhe system. These equations 
generalise (3.131), which can be put in this form by taking T 1 

0 = V,, T 1 ± 1 = 
~±i~. (cf. (4.54)). They can be written as 

[J, Tim]= L tinnr y in (4.73) 

and are equivalent to the statement that 

(4.74) 

where di""'(R) is the matrix representing R in the representation Pl'i, given by 
(4.48), and ti"m' g iven by (4.49), is the vector of matrices corresponding to the 
angular momentum operators in this representa tion. 

The following theorem says that applying such an irreducible set of 
operators to a system with angular momentum j' is similar to combining it 
with another system with angu lar momentum j. 

e4.5 The Wigner- Eckart theorem. Let Tl m be an irreducib le set of 
operators of spin type j , and let jjmcx) be eigenstates of a set of 
commuting operators which include J 2 and J =· where j(j + 1) is the 

eigenvalu e o f J 2
, m is that of 1:, and ex stands for the eigenvalues of the 

other operators. Then the matrix elements of Tim are proportional to 
Clebsch- Gordan coefficients: 

(j"m"cx"J Ti mlfm'cx') = (j"m"Jjm, j'm')(j"cx" II Ti ll /ex') (4.75) 

where ( j"cx' II Tl ll fcx' ) is independent of m, m', m". 

Proof Consider the (2j+ 1)(2j' +I) states TimJ/m'cx') . On the space spanned by 

these states we can define operators J 1 which act like angular momentum 

operators on the index m, and similar operators J 2 to act on the index m'. The 
action of the actual angular momentum operators is 

JTi ml/m'cx') = [J, Ti mJJj'm'cx' ) + Ti mJ Jj'm'cx' ) 

=(J 1 +J 2 )T1mJi'm'cx'), (4.76) 

i.e. the states y i ml/m'cx') behave like product states describing particles with 
spins j and j'. Hence, in analogy with (4.68)- (4.69), they can be written as 

TimJ/m'cx')= L (JMjjm,j'm')J1Mcx') 1 (4.77) 
J .M 
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where the states IJ J\/!X') 1 behave like the two-particle states with definite total 

angular momentum, i.e. they are eigenstates of J 2 and J=. Since J 2 and J= are 
hermitian, we have 

(j"m"o:"IJMo:') 1 =0 unless J =j" and M =m". (4.78) 

Moreover 

< ., m" "IJ t J I ., , '> 
< ., , + 1 ,

1
., , + 1 ') 1 o: .,. + 1 m o: 1 

1 111 0:1/n 0: = 1 f'U" + 1) -m"(m" + I) 

(j"m"o:"I(J2-J = 2- J:)lf"m"o:') 1 

f'U" + 1)-m"(m" + 1) 

= (j"m"o:"lf"m"o:') 1 . 

Thus this quantity is independent ofm". Calling it (j"!X"II Till/o:'), we find tha t 
(4.75) follows from (4.77) and (4.78). • 

(j"o:"ll Ti li fo:' ) is called a reduced matrix element. 

4.3. Two-particle systems The full state space of a system of two particles is 

(51; ® 111;) ® (.S'-'2 ® ir2) ~(51; ® .9"2) ® (111; ® 1fl'2 ) (4.79) 

where .~ and .9"2 are the spin spaces of the two particles and if~ and il ~ (both 
isomorphic to ir) are the spaces of wave functions. We will call a state in 

.~ ® 9'2 a spin state and a state in il ~ ® il ~ an orbital state; thus the basic 
state of the two-particle system is a product of a spin state and an orbital state 
(the general state being a superposition of such product states). 

Consider the orbital states first. ill; ® 11' 2 is the space of wave functions 
1/J(r 1, r 2), where r 1 and r 2 are the positions of the two particles. In the classical 
mechanics of two particles it is a good idea to change variables from r 1 and r 2 
to the centre-of-mass position R and the relative position r, which are defined by 

(4.80) 

(4.81) 

where m1 and m2 are the masses of t he particles and M = m1 + m2 • In quantum 
mechanics this change of position variables goes with a change of the 
momentum variables associated with the partial derivatives; using the chain 
rule for partial differentiation, we find that the momenta associated with R and 
r are 

(4.82) 

(4.83) 

If the forces on the particles are derived from a potential function V(r 1, r 2), 

i.e. if they are 
av av 

F --- and F 2 = - -
1- arl ar2 ' (4.84) 
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then the Ha milto nia n is 

Pt
2 

P/ H = -
2 

- + -
2 

- + V(r 1 , r 2), (4.85) 
ml tnz 

which can be expressed in the new variables, using (4.82)-{4.83), as 

pz pz 
H = - + - +V(R, r) (4.86) 

2M 211 
where 

I l I 
- = - + - . (4.87) 
/1 ml mz 

11 is ca lled the reduced mass o f the system. 
Now suppose t~e two particles fo rm an isolated system, i.e. each particle is 

subject only to forces exerted by the o ther. Then by Newton's third law o f 
motion the forces on the two particles are equal and opposite and so (4.83) 
gives 

(4.88) 

According to (4.8 1), this means that aV /oR =0, i.e. V is a functio n of r only. 
Thus the Hamiltonian (4.85) looks like the Hamiltonian of two (fictitio us) 

particles, one of mass M situated a t the centre o f mass R and moving as a free 
particle, and one o f mass 11 which moves in a field o f fo rce derived from the 
potential V(r). 

The total orbital a ngular momentum of the two-particle system is 

L=rl x Pl + rz x Pz 

=Rxp+r x p (4.89) 

from (4.80)-{4.83). T his is the sum of the orbital a ngular momentum associa ted 
with R, i.e. with the motion of the centre of mass, and that associa ted with r, 

which is an internal quantity of the two-particle system. The latter term, r x p, 
is ca lled the internal angular momentum. 

This change of variables shows that the space 'if~; ® 1/1"2 can also be written 
as i f/";0 , ® 1/l"c.m.• where i f!";., a nd i~.m. are the spaces of wave functio ns wi th 
a rguments r and R respectively. The full state space of the two-particle system 
can now be put in a form ana logous to that o f a single particle; it is 

!/' ® i fl"c.m. where!/'= Y; ® !/'2 ®'if!";.,. (4.90) 

We will focus attentio n on the internal space !/' by assuming a fixed wave 
function 1/10 (R) in 1/l"c.m. (usually we take 1/10 to be an eigenfunctio n of the to tal 
momentum wi th eigenvalue 0). 

T he total internal angular momentum of the two-particle system is thus 
obtained by adding three angular momenta, namely the two spins and the 
relative orbital angular m omentum r x p. Since the last-named has eigenvalues 

jU + 1) with jan integer, a composite particle with two constituents will have 
integer spin if its constituents both have integer spin or both have half-odd-
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integer spin, and it will have half-odd-integer spin if o ne of its constituents has 

integer spin and the o ther has half-odd-integer spin. This is similar to the rule 
for combining fermio ns and bosons (e2.7), and shows the consistency of the 
spin-statistics law with this rule. Generalised in the obvio us way to a system of 

n particles, it also provides the justification for the assertion o n p. 6 that the 
spin of nuclei is not consistent with the assertion that they are composed of 
p ro to ns and electrons; for example, if the nucleus o f 3 He consisted of three 
protons and an electron its spin would be an integer whereas in fact it has 

spin 1. 
If the two particles in o ur system a re identical , the possible states are 

restricted by the requirements of statistics (i.e. tha t the sta te should be 

symmetric or antisymmetric). If r 1 and r 2 a re interchanged , the centre-of-mass 
position R is unchanged (since m1 = m2 for identical particles) and so the state 

space "/1/'c.m. is unaffected; thus we can continue to restrict attention to . .9'; ® 
.9"2 ®'if.!';"" i.e. to products of spin sta tes and relative o rb ital sta tes. If the 
particles are fermions, so that the product state is antisymmetric, then either 
the spin state is symmetric and the orbital state is anti symmetric. o r vice versa; 
if the particles are bosons, the spin state and the orbital state are either both 
symmetric o r both antisymmetric. We will now look sepa rately at spin states 

and o rbita l states to determine the consequences of symmetry and 
antisymmetry. 

For the spin state, suppose the particles have spin j, so that .9'; ~ .9"2 ~ 0Ji. 
Then we want to know which are the symmetric a nd antisymmetric sta tes in 

0Ji @ 0Ji. The answer is 

e4.6 In 0Ji@ 0Ji the symmetric sta tes a re those with J = 2j , 2j- 2, 
... , the antisymmetric ones those with J = 2j- l, 2j - 3, .. . . 

Proof Since J 1 and J 2 act identically on the individual spin spaces, the 
exchange operator X satisfies 

(4.91) 

Hence XJ =JX; in particular X commutes with the raising and lowering 
operators J ±. It follo ws that if, in the ladder of sta tes wi th a given value of J, 
there is a symmetric state, then all the states in that ladder are symmetric; and 
likewise for antisymmetric states. 

As in Fig. 4.4, let fZM be the subspace spanned by the states lj 1m1,hm2 ) with 
a given value o f M = m 1 + m2• Then X takes fZM into itself. Since X commutes 

with J +, the unique state II/I M) in fz,11 which satisfies J +II/I AI) = 0 is an eigenstate 
of X, i.e. either symmetric or antisymmetric. Since this state stands a t the head 
of the ladder ~1 with J = M , all the states in the ladder are either symmetric o r 

antisymmetric. 
Now if M = 2j-2k + 1 > 0, the subspace fZM has k symmetric states 

Jjm1 , jm2 ) + Jjm2 ,jm1 ) and k antisymmetric states ljm1 ,jm2)-ljm2 ,jm1), all 
linearly independent; if M = 2j- 2k, ~M again has k symmetric and k 
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antisymmetric states, together with an addi tional symmetric state IJm,jm) 
where m =) - k. In o rder to make up these numbers of symmetric and 
antisymmetric sta tes, the ladders ~1 must consist of alternately symmetric and 
antisymmetric sta tes, starting with q 2i which is symmetric since its top sta te 

IJJ,jj) is symmetric. This gives the pattern stated. • 

In particular, for j =~the state with J = 0 (in which the spins are said to be 
'antiparallel') is a ntisymmetric; the sta tes with J = I ('parallel spins') are 

symmetric. For j = J the states with J = 0 a nd J = 2 are symmetric and those 
with J = I are antisymmetric. This last fact is rela ted, via the isomorphism 
between !01 and the vecto r representation, to the properties of the products of 
two vectors: the scala r product (corresponding to ~0) is symmetric (i.e. 
commutative). while the vector product (co rresponding to f~\ ) is 
antisymmetric (anticommutative). 

For the orbiwl state we have 

e4.7 Jn a sta te with relative o rbita l angular momentum I, the 
o rbital state is symmetric if I is even, a ntisymmetric if I is odd. 

Proof Ifr 1 and r 2 are interchanged , r becomes - r. Hence on 11';."' the exchange 
operator X is the same as the parity operator P: 

X r/t(r) = Pr/t(r) = r/t(- r). (4.92) 

The result now follows from e4.2. • 

Example If a particle decays into two n° mesons, its spin must be an even 
integer. F o r by conservation of angular momentum, the spin of the decaying 
pa rticle must be the same as that of the internal angular momentum of the 2n° 
state. Since pions have spin 0, there is only an orbital state to consider; since 
they are bosons, this must be symmetric; so by e4.7 the internal angular 

momentum I must be even. 
For example, there is a spin-1 meson p0 which decays into 1t + + n - but not 

into 2n°. 
e4.7 makes it possible to determine the intrinsic parity of a two-particle 

system. We have seen that for a single particle, with state spaceY ® -Iff', the 
parity operator P acts on the spin space Y as well as on the wave function 
space 1(/, A two-pa rticle system can be trea ted in a similar way, with!/=~ ® 
51'2 ® ifl';nt· In this space P no longer acts as a multiple of the identity, fo r in the 
internal wave-function space ifl';nt it takes 1/t(r) to 1/t(- r). Now e4.2 shows that 
the eigenstates o f pa rity are the eigenstates of relative orbital angular 

momentum I. These are usually the sta tes of interest, since there may be only 
one value of I for which the particles bind together to form a composite 
particle; more generally, the energy (and therefore, in a relativistic context, the 
mass) of the composite particle may depend on I. For these eigenstates, since 
pa rity is a multiplicative quantum number, e4.2 gives the rule 

e4.8 The intrinsic parity of a two-particle state is e1 e2( -1)1, where 
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e1 and e2 are the intrinsic parities of the two particles and I is their 

relative orbita l angular momentum. • 

Examples 
1. The relative o rbita l angular momentum of the q ua rk and ant iq uark in an­

meson must be even. Fo r the quark and the antiqua rk have opposite intrinsic 
pari ties, so the intrinsic parity of the p io n is -( - 1)1

• But pions have nega tive 

intrinsic parity, so I must be even. 

As we will see in the next two sectio ns, the lowest energy in a two-pa rticle 

system usually occurs for 1= 0, so it is assumed that this is the case for the 

mesons n, K and 17 , which a re the lightest quark-antiquark composites. 

2. The deuteron d , the nucleus of deuterium (heavy hydrogen) , has spin 1. It 
fonns an 'atom' with a n - meson in which the relati ve orbital angular 

momentum is 0. T his decays into two neutrons: 

(4.93) 

If the Hamilto nian governing this process is in va riant under reflections, the 

deuteron must have intrinsic parity +. 
For if the Hamiltonian is invariant under reflections, parity is conserved. By 

e4.8, the intrinsic parity of the 2n state is ( -1)' where I is the relative orbi tal 

angular mo mer.tum; and the intrinsic parity of the initial sta te is ened(- 1)0 = 
-sd. H ence ed = ( -1)1 + 1. Now we use conservation o f angular mo mentum. 

Since the spin of the pion and the relat ive orbital angular momentum in the 
initial state a re both 0, the tota l angular mo mentum initially is the spin of the 

deuteron, which is I. The final total angular momentum is the sum of the total 

spin, which can be 0 or 1, and the relative orbital angular momentum I. Since 

neutrons are fermions, the final sta te must be a ntisymmetric. If the total spin 
was 0, the spin state would be antisymmetric (by e4.6), so the orbital state 

would have to be symmetric and by e4.7 I would be even; then the total 

angular mo mentum would not be I. Hence the tota l spin must be I , the spin 

state is symmetric, so the o rbital state is ant isymmetric, I is odd and therefore 
the intrinsic parity of the deuteron is ( -1)1+ 1 =+ I. 

4.4. The hydrogen atom In this sec tion we will determine the energy levels (i.e. the eigenvalues of the 

Hamiltonian) for a system of two particles attracted to each other by a force 

which is inversely proportional to the square of the distance between them. 

This is a simplified model of the hydrogen a tom, the inverse-square force being 

the electrostatic attract ion between the electron and the p ro ton (it omits the 

magnetic fo rce between the particles and the emission of radiation by them). 
Since the fo rce is a function only o f the relative position r = r 1 - r 2 , the two­

body p roblem can be reduced to a o ne-body problem. We look fo r eigenstates 
in 11/jn, (i.e. eigenfunctions t/t(r)) of the Hamiltonian 

pl ')' 
H=--- (4.94) 

2p r 
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since V(r) = - y/r is a potentia l fu nction fo r the fo rce 

" r F = _ .l.._ _ = -VV ,.z ,. (4.95) 

Here }' is the constant in the inverse-square law (for the hydrogen a tom, y= 
e2/4ne0 where e is the magnitude of the charge on the electron), J1 is the reduced 
mass given by (4.87) and p is the relative momentum (4.83). The variables r and 
p can be treated just like the position and momentum vectors of a single 
pa rticle; in particula r, they sa tisfy the basic commutatio n relations (2.1 16}­
(2. 117). 

In this one-pa rticle system the pa rticle is attracted to a fix ed point, the 
o rigin, by the fo rce (4.95). Classically, it can move in a closed o rbi t consisting of 
a plane ellipse with one focus a t the o rigin. The other possible motions a re 
unbounded o rbits in which the pa rticle gets indefi nitely far from the o rigin. 
T hese two types of o rbit a re distinguished by the sign of the energy E = H(p, r), 
which is a constant of the motion; if E < 0, (4.94) shows that r cannot become 
indefinitely la rge and so the particle moves in a closed orbit. The shape and 
o rientation of the orbi t a re described by two vector constants of the motion, 
the angular momentum L = r x p, which is perpendicular to the plane of the 
orbi t, and the Laplace-Runge-Lenz vector (or 'Lenz vecto r' fo r short) 

JJ.Y M = p x L - - r , ,. (4.96) 

which points a long the major ax is of the ellipse. The size and shape of the 
ellipse are determined by the energy E and the magnitude of M ; the major axis 

has length y/l£1 and the eccentricity is IMI/YJJ.· 
The vecto r M can be used to study this system in quantum mechanics also, 

bu t because p and L do not commute the product in (4.96) must be defined 
carefully. In order to obtain a hermitian resul t we take each product AB in the 
classical expression to be the symmecrised product 1{AB + BA), for which it is 
convenient to use the notation 

{A, B} = AB + BA (4.97) 

(this is called the anticommuta tor of A and B). Thus for the quantum Lenz 
vecto r we take 

(4.98) 

Then we have 

e4.9 T he Hamiltonian H of(4.94), the orbital angular momentum 
L , and the Lenz vector M of (4.98) satisfy the following equations: 

[H , LJ = [H , M J = 0; (4.99) 

[L ;, LJ = ihe11kLk; 

[L;, MJ = ihet1kMk; 

(4.100) 

(4.101 ) 
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[M;, Mi] = -2tJ.ihe;ikLkH ; 

L·M=M·L=O; 

M2- 2tJ.H(U + h2) =Yzf.l.z. 
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(4.102) 

(4.103) 

(4. 104) 

Proof Since H is a scalar observable, it commutes with the total angular 
momentum by e3.9. It clearly commutes with the spin and the centre-of-mass 
angular momentum, so this means that it commutes with the three 
components of L. Hence, using the rule (2.80) for the commutator wi th a 
product, 

I {X· } 1 { (j.. X·X·} =2. ihyeiik ,.; , Lk +2. if1y pi, ,:
1

- ,: / , (4. 105) 

using (3.133) for the commutators with Pi· Now write 

Lk = eklmX!Pm = eklmPmXI: (4.106) 

the first term in (4.105) becomes 

which cancels the second term. 
This proves (4.99). The next two equations are examples of the basic 

commutation relation (3.134), since Lis the only relevant part of the angular 
momentum. (4. 102) is an exercise in commutator and tensor algebra, fo r which 
we will trace a path through the manipulations. First calculate the 
commutators 

(4.107) 

(4.108) 

The latter yields (remembering that r · L = p · L = 0) 

e;1·k[X; , Mi]= -2ih Lk. (4.109) 
r r 

Substituting from (4.98) forM;, and using (4.107) and (4.109), we find 

e;ik[M;, Mi] =ih( -p2 + 3tJ.y/r)Lk +W1eudP;, MX (4.110) 

Now substituting for Mi gives 

e;ik{P;, Mi}=( -2p2 +2tJ.yfr)Lk, (4.111) 

so that 
eiik[M;, Mi] = 2ih(- p2 + 2tJ.y/r)Lk = 2ih(- 2tJ.H)Lk . (4.112) 

Eq. (4. 102) follows by multiplying by eijk· 
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To prove (4.103) and (4.104), write M1 in the form 

(4.1 13) 

Since p ·L= r ·L=O, this gives 

M · L = e1ikPiLkL1 =!e;ikPi[Lk> L1] =!ihp · L = 0. 

Finally, calculating M1M1 from (4. 113) and using the basic commutation 
relations gives (4. 104). • 

A bound state is a stationary state with a negative eigenvalue for H ; the 
bound states are the quantum states corresponding to the closed orbits of the 
classical theory. We will now use e4.9 to find the bound states. 

Let ::BE be the space of eigenstates of H with eigenvalue £.If these are bound 
sta tes we can write - 2pE = 1\.

2 where'' is real. Since Land M commute with H, 
they leave !JE invariant; as operators on :$E their commutation relations are 
(4.100)--(4. 101) and 

Let 
P=!(L+I\ - 1M), Q =!(L-I\ - 1M); 

then (4.100)-(4.10 I) and (4.114) give 

[P1, Pi]= ihe1ikpk> 

[Q1, Qi] = ihe;ikQk , 

[P;, Qi] =0, 

while (4.103)-(4.104) become 

p2_Q2=0, 

Y2,2 J 
p2+Q2=_r _ _ _ IJ2. 

21\ 2 2 

(4.114) 

(4.1 J 5) 

(4.116) 

(4.1 J 7) 

(4.118) 

(4.119) 

Eqs. (4.116)-(4.1 J 7) show that P a nd Q both satisfy the commutation 
relations of angula r momentum. The a rguments of e4.1 therefore show that 
P 2 and Q 2 haveeigenvaluesofthe formjU + 1)fl2 where 2j is an integer. (4.118)­
(4.119) show that these eigenvalues are equal and are given by 

Hence 

. . Y2J12 J 
JU + I)= 4"2"2 -4. (4.120) 

1\2 
E=--= 

2p 
(4.121) 

Since each component of P commutes with each component of Q , every 
eigenspace of P 3 is invariant under Q and therefo re contains the full ladder of 
2j + J eigenstates of Q3 . Thus the space !BE is of the form ~i ® ~i• i.e. it is like 
the spin space of two pa rticles of spin j, their individual angular momenta 
being P and Q. The total spin would then be P + Q = L; according to e4.4, this 
has eigenvalues/(/+ I) with 1=0, I, ... , 2j. 
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Writing 2j= tl, and using the value y=e2/4ne0 • we can summarise these 
results as follows. 

e4.10 The energy eigenvalues of the bound states of the hydrogen 

atom are 

l Jle4 

E =-----
" (4m>o}2 2n2f12 

(4.122} 

where n is a positive integer. With this energy there are states with 

relative orbital angula r momentum I= 0, 1, ... , 11 -I. • 

We now see how quantum mechanics explains the spectrum of hydrogen, 
which was mentioned in Chapter I. The frequencies vm, of (I. I} are related to 

the d ifferences between the energ ies £" o f (4. 122} by Planck's relation: 

. Jte4 

If R=-8 2fJ" 

f.o '' 

(4.123} 

This is indeed the measured value o f the constan t R. Thus the energy of each 
photon in the radiation with frequency vm, is the energy lost by an a tom of 
hydrogen in changing from one bound state to another. (As explained in §3.5. 
the bound states we have determined are not exactly stationary sta tes, since we 

have omitted the part of the Hamiltonian describing the coupling to the 
electromagnetic field, which causes transitions between bound states.) The 
state of lowest energy is called the ground state; it is a truly stationary state. 

The periodic table There is a close rela tion between the set o f bound states o f the hydrogen atom, 
as described in e4. 10, and the set o f chemical elements, wi th the structure of 
the periodic table. It is as if the Z electrons in the gro und state of an atom wit h 
atomic number Z were a ll in sta tes In I m)ls> where In I m) is one of the bound 
sta tes of the hydrogen a to m (m = -I, ... , I is the eigenval ue of L:} and Is> is a 
spin state. Because of the Pauli exclusion p rinciple, the electrons must all be in 
different states; since there are two spin states, there can be at most two 
electrons in any orbital state In lm ) . As Z increases, the states are filled in the 

order shown in Fig. 4.5, which a lso shows the resulting elements and should 
be compared with the periodic table (Fig. l.l}. 

This description of the states of atoms is called the autbau ('building-up'} 
principle. I t would be justified if a ll the electrons independently were moving in 

the fixed field of the nucleus, so that the Hamiltonian would be a sum of terms 
like (4.94}, one for each electro n; then the statio na ry states would be products 
of one-electron states which would be independent of the number o f electrons 
in the a tom. But in fact the elect rons a ll repel each o ther, so that each electron 

moves in a changing field due to the other electrons: quantum-mechanically, 
the Hamiltonian is not just a sum of o ne-electron terms. The success of the 
aufbau principle can be explained by assuming that the effect of the electronic 
repulsion is the same as that of a constant average field, so that the electrons 
can be treated as a cloud of negative charge which shields (or 'screens'} the field 
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of the nucleus. This produces an effective spherically symmetric potential 
which, although no t the same as the inverse-square po tential of (4.94), will 
have similar eigenvalues. Thus the states available to the electrons can be 
labelled as In I m) like those of the hydrogen atom, but their energy 
eigenvalues will be changed; in particular, sta tes with the same value of n will 

no longer have the same energy. The tendency is for the energy to increase with 
I, so that the order of the energy eigenvalues becomes as shown in Fig. 4.5. 

4.5. The harmonic oscillator A harmonic oscillator is a pa rticle which is a ttracted to a fixed point 0 by a 
force which is proportional to its distance from 0. We will first consider the 
one-dimensional problem, so that classica lly the particle is described by a 

Fig. 4.5. 
The Aufbau principle: for each 
I there are 2(2/ + I) states to be 

filled. 
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single coordinate x w hich satisfies an equatio n of motion of the form 

(4. 124) 

in which w is the angular frequency of the oscillato r. The Hamiltonian for this 

system is 

(4.125) 

The q uantum-mechanical eigenvalues of this Hamiltonian can be found by 

a similar technique to that which was used for angular momentum in §4. 1. Let 

1 1 
a J (p- imwx) , at = (p + imwx)· 

(2hmw) j (2hmw) ' 

then the standard commutator [x , p] =iii gives 

[a , at]= 1, 

and H can be written in terms of a and a t as 

H = hw(ata +~). 

From (4. 127)-(4.128) we obtain 

[H, a]= hw[a \ a]a = - hwa 

and similarly 

[H, at]= hwat. 

(4.126) 

(4. 127) 

(4.128) 

(4.129) 

(4.130) 

Now let lift> be an eigenstate of H with eigenvalue E. Then (4.130) implies 
that a tlift> is an eigenstate of H with eigenvalue E + hw (provided a tlift> # 0); for 

H a tlift> =(a tH + hwa tlll/t) = (E + f1w)a tlift). (4.131) 

Similarly, (4.129) implies that alift> is an eigenstate of H with eigenvalue 

E-hw, unless alift) =O. Let I<P> =alift); then 

<ct>lct>> = <iftlatalift> = <iftl - - - lift>=---( 
H 1) E 1 
hw2 f1w2 

(4.132) 

if lift > is normalised. Hence, by the positive-definiteness of the i·nner product, 

E?: 1nw (4.133) 
and 

(4.134) 

We can write H = flw(aat - 1) and apply the same argument to atlift); this yields 

E?: -!hw and E= -!hw¢;>atlift>=O. (4.135) 

Thus starting with an eigenvalue E, we can find a descending chain of 
eigenvalues E- hw, E- 2hw, . . . by repeatedly applying the lowering operator 

a, and an ascending chain E + flw , E + 2hw, . .. by applying at. The descending 

chain must terminate, otherwise (4.133) would be violated; it can only do so by 

reaching an eigenstate lift> for which alift> =0, and then (4.134) shows that the 
corresponding eigenvalue is ~hw. On the other hand, the ascending chain can 
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never terminate, for if it did there would be an eigenstate satisfying atll/t) = 0, 
and (4.135) shows that this would have an eigenvalue which violates (4. 133). 

Thus the eigenvalues of H are tflw, 1hw, ... , (n +1)flw, ... . 
Because of (4.128), applying the lowering operator a and then the raising 

operator a' to an eigenstate of H brings you back to (a multiple of) the state 
you started with. Thus for a single spinless particle, for which x (or p, or a~ 
constitutes a complete set of commuting observables, there is just one state for 
each eigenvalue of H. We denote the normalised eigensta te with eigenvalue 
(n +1)hw by In): then the operators a and at act by 

aln) =c.ln- 1), atln) =d.ln+ J) (4.136) 

for some coefficients c, and d,. To find these. note that 

jc,.l2 = <nlataln> = ( nl(!!_ -~)In) = n 
hw 2 

=d, _ 1c,.( n ln)=d, _ 1c,.. (4.137) 

We can choose the phases of the states so that c. is real and positive; then c.= 
n and d, = (n + 1). 
To summarise, 

e4.tl The harmonic-oscillato r Hamiltoni an has eigenvalues 
(n +t)t1w where n can be any non-negative integer. It can be written as 

H=(ata+t)hw 

where the operators a, at satisfy 

[a, at]= I 

and act on the eigenstates In) of H by 

aln> = J nln - 1) } 
atjn)= (n+I)jn + l) · • 

(4. 138) 

The three-dimensional The classical equation of motion for a harmonic osci llator in three dimensions 
harmonic oscillator is 

(4.139) 

The ith component of this equation involves the ith coordinate X; only; thus 
each coordinate separately satisfies the simple harmonic equation (4.124). The 
Hamiltonian is 

p2 J 
H =-+- mw2 r2 

2m 2 ' 
(4. 140) 

which is the sum of three terms, each having the form of the one-dimensional 
Hamiltonian (4. 125). There are three raising and lowering operators 

(4. 141) 
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whose commutation relations are 

(ai,a/J =bij } 

[ai,a1] =0= [a/, a/] ' 

and in terms of which the Hamiltonian is 

H = (a/ai +~)hw. 

161 

(4. 142) 

(4.143) 

Each of the raising opera tors then creates a series of energy eigenstates 

ln>i =F,(a/)"10) (4. 144) 

where IO) is the unique ground state, which satisfies 

adO) =a 2 IO> =a 3 IO) =0. (4. 145) 

The general eigensta te of H is 

I 
1 • 

lmn )= (a ' jl(a ' t(a 1)"10) j (l! m! l1!) 1 2 3 • (4.146) 

which has energy E =(I+ m + 11 + ~)llw. Thus the energy eigenvalues of the 
three-dimensional harmonic oscillator are (N + 1JI!w, where N can be any non­
negative integer, and the number of independent eigenstates for a given N is 

the number of ways N can be written as N = I+ m + 11 , which is 1{N + 1)(N + 2). 
But this can be made clearer by looking at the angular momentum of the 

states. 
The components of (orbital) angula r momentum are 

Li = eiJkXJPk = iheiJka/ak, 

using (4. 141) and (4.142). This gives 

L 2 h2( t t t t ) =- a1 akaJ ak -a1 akak a1 , 

which can be put in the form 

U = - h2 [AtA - N(N + 1)] 
where 

(4.14 7) 

(4.148) 

(4. 149) 

(4. 150) 

Now since His a scala r observable, it commutes with the angular momentum 
operato rs and so each eigenspace of H can be split into spaces ~ which are 

eigenspaces of U with eigenvalue 1(1 + 1). Being a scalar product, A is also 

a scalar operator (though not an observable, since it is not hermitian) and 
commutes with L 2

, so it preserves the eigenvalue of L 2
; also, since A contains 

two lowering operators, it reduces the value of N by 2. Thus if there is a state 
in I) with eigenvalues nand 1(1 + I) for Nand U , there is also a state A in I) with 
eigenvalues n-2 and 1(1 + 1), unless Ain 1)= 0. From (4.148), 

( n liAtAin l) =n(n + 1) - 1(1 + 1), (4.151) 

so, as in (4. 133}-(4.134), 

n ~ l and n = I-=Ain 1)= 0. (4.152) 
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Since the number of states with eigenvalue n for N increases with n, the 
operator A (mapping a larger space into a smaller one) must have a null vector 
In/) among the eigenvectors of N; (4.152) then shows that this has l=n. 
Applying At repeatedly to this state gives states In /) with 11 =/,I+ 2, I+ 4, .... 

Thus for each n there are states In/) with I= n, n- 2, .... But there is no state 
with I= n -1. for then A In/) would be non-zero (by the second part of(4.152)) 

but it would have N = n-2 = 1- I, violating the first part of (4.152). 
The structure of the set of sta tionary states of the three-dimensional 

harmonic oscillator is shown in Fig. 4.6(b). The states of the hydrogen atom 
are shown for comparison in Fig. 4.6(a). 

4.6. Annihilation and All the quantum systems considered so far have consisted of a fixed number of 
creation operators particles with given forces between them (i.e. a given Hamiltonian). In classical 

mechanics this is practically the definition of a physical system. But if we are to 
describe processes like those mentioned in Chapter I, e.g. the decay of a 
neutron into a proton, an electron and an antineutrino, we will have to 
consider systems in which the number of particles may change. In this section 
we will develop a formalism to do this, which is mathematically very similar to 
the formalism developed in the previous section to describe the harmonic 
oscillator. 

Bosonic systems Consider a system conststmg of a variable number of indistinguishable 
particles, and suppose these particles are bosons. Let [/ be the state space for 
one particle. Then the space of states in which two particles are present is the 
symmetric subspace of Y ® Y, which we will denote by [/ v [/or v 2 [fl; in 
general, the space of r-particle states is v r Y,the subspace of ®r Y consisting of 
symmetric states. The full state space for our system of a variable number of 
particles is 

Cilt=i'Ef)[/Ef> v 2YEB v 3[/Ef>··· (4.153) 

Fig. 4.6. 
(a) The hydrogen atom; (b) the 

harmonic oscillator. 
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where -y/· is a one-dimensional subspace containing a si ngle state IO> in which 
no particles a re present (the vacuum state). Note that IO) is a non-zero state 
vector and should not be confused with the zero vector 0. 

Let It/!> E.SI' be any one-particle state, and let Jll"' be the subspace of J/1 

consisting of many-particle states in which every particle is in the state lt/1). 
Then 0//"' has a basis IO) , lt/1), l2t/l), . .. where 

lnt/l) =lt/l >l t/l>· ··lt/I )E v",SI' 

is the state contain ing 11 particles. Thus (j7Ly, has the same structure as the state 
space of the harmonic osci lla tor, and we can introduce operato rs ay,, a/ to 
co rrespond to the raising and lowering operators of the harmonic osci llato r: 

a\illnt/1) = J nl(n- l)t/1 ), a/lnt/1) = j (n + l)l(n + l )t/1). (4.154) 

Then, as for the harmonic oscilla tor, 

[a y,,a/] = l. (4.155) 

ay, is called an annihilation operator; a/ is called a creation operator. 
These operators can be extended so as to act on the whole of 41 as follows. 

There is a complete set of states li ke lnt/1, t/1 1 ', ... , t/lm'), which contains 11 

particles in the state It/!> and m particles in states lt/1/ ) orthogonal to lt/1). The 
annihila tion and creation operators ay, and a/ act on such a state by ignoring 
the particles in states o ther than jt/1 ) : 

ay,jnt/1, t/1 1 ', ... , t/1 11,' ) = J nj(n- l)t/1, t/1 1 ', .... t/lm'); 

a/lnt/1, t/1 1 ', ... , t/lm') = j (n + l)j(n + l )t/1, t/1 1 ', ... , tPm') . (4.156) 

There is a more general definition of the annihilation operato r ay, as an 
operator on the product space ®"51': 

I 
a"'i<t>1 > · · · l<t>"> =-y,; { <t/1 I </>1 >l<t>2> · · ·l<t>~~ > + < t/ll<t>2> l <t> ~ >l<t> J> ··· l<t>"> 

+ ... +<t/114>11>14>1>· . ·14>11 - 1)}. 

(4.157) 

The operator ay, of (4. 156) is obtained by rest ricting this to the symmetric 
subspace of ®"51' (for a proof see problem 4.28). 

Now let It/! 1 ), It/! 2), . .. be a complete set of states for Y:' For each lt/li) there is 
a harmonic-oscillator space 0//i and annihilation and creation operators ai , a/. 
Let jn 1 n2 · · -) be the state containing ni particles in state jt/1); these form a 
complete set of states for 0//, and we have 

aJ · ·ni· · ->=JnJ · ·ni- l· ·-) } 
a/1 · · · ni · · -) = j (ni + 1)1· · · ni + I ··-) · 

It follows from this that 

[ai,a/ J =c5ii } 

[ai,ai] =0= [a/,a/J · 

(4. 158) 

(4. 159) 

By identifying the state In 1 n 2 · · -) with the product state in 1) ln 2 ) · • ·, where 
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In;) E Jlf; , we have an isomorphism 

.J//~ "//1 ® "112 ®·. ·. 

In other words 

(4.160) 

e4.J2 The state space of a variable number of bosons of a given 
type can be identified with the sta te space of a fixed number of 
distinguishable harmonic oscillators, one for each independent state 
of the boso ns. • 

If the particles do not interact with each other, the energy of a state of n 
particles is the sum of the energies of the individual particles. Thus if lt/t> is an 
eigenstate of the single-particle Hamiltonian, with energy£, the state lnt/t ) is 
an eigenstate of the total Hamiltonian with eigenvalu e n£. Comparing this 
with the harmonic oscillator. which has eigenvalues (n +1)hw and a 
Hamiltonian (ata +1)hw, we see that the Hamiltonian in the subspace U/1"' can 
be written 

H =Ea./a"' . (4. 161) 

If the one-pa rticle states lt/t;) are a ll eigenstates of the one-pa rticl e 
Hamiltonian, with energies E;, then the many-particle state ln1 11 2 · · -) has 
energy 11 1 E 1 + 11 2£ 2 + · · ·; it follows that the full Hamiltonian is 

(4.162) 

Fermionic systems If the particles are fermions, the space of r-particle states is the antisymmetric 
subspace of ®' 5': denoted by 1\ r 5': and the full sta te space is 

/lt = i 'Q EE> 5I' EE> 1\ 
2 5I' EE> . . . . (4.163) 

In this case the subspace 111 "' ' consisting of sta tes in which all the particles are in 
the state lt/t), is onl y two-dimensional: since at most one particle can be in the 
state lt/t), the only possible states are the vacuum IO> and the one-particle state 
lt/t ). We can still defin e annihila tion and creation operato rs a"' and a/, 
avoiding the danger of creating two particles in the same state by making a"' t 
annihilate lt/t ) . Thus fo r the general state, if lt/t 1 '), lt/t 2') , ... are all orthogonal 
to lt/t), 

a"'lt/t t/t1 ' t/t2'· · -> =lt/t1 ' t/t/· · -) , a"'lt/t1't/t2' · · -) = 0, 

a/lt/t t/t1 ' t/t2' · · -)= 0, a/lt/t1 ' t/t2' · · ·>=lt/t t/t1 't/t2' · · -) . (4. 164) 

These annihilation and creation operators do not satisfy the harmonic­
oscillator commutation relation (4.127), but they do satisfy a similar 
anticommutation relation 

{a"', a/}= I. 

They also satisfy 

a/ = (a"'t) 2= 0. 

(4.165) 

(4.166) 
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The fermion annihilation operator a., can be defined as an operator on the 
product space ®"//' by a formula similar to (4.157): 

{/ \1-14> I >14>2>, . ·I¢,>=< 1/Jic/>1 >14> 2>, , ·I¢,>-< 1/JI¢2>1¢1 >1¢3)"·1¢,> 
+ ' . ' + (- 1)" • I ( 1/JI¢,.>14>1>' ' ·I¢,. - I ) . (4.167) 

ow let 11/1 1), 11/1 2) , ••. be an orthonormal complete set of one-particle 
states. There are corresponding pairs of annihilation and creation operators 
a;. a/. each of which satisfies (4.165)- (4, 166). We will now show that the a; a ll 
anticommute with each other. Let 

so that 
1 1 

aq, = 72 (a; + a1), a11 = 72 (a;- ia1) 

(the minus sign occurs in a11 because a0t involves a / + ia1 ~.Then a,p and a 11 also 
satisfy (4.165)- (4.166). These four sets of equations (for a;. a1. aq, and an) yield 

(4. 168) 

(4.169) 

The fact that a/ and a/ anticommute is to be expected for fermions: a/a/l\1'> 
and a1 ta/l\1'> should differ by the interchange of two particles, and therefore by 
a factor of - I. 

The formula (4. 162) for the Hamiltonian o f a system of non-interacting 
particles holds for fermions as well as for bosons. The isomorphism (4. 160) also 

holds. except that each space Olt; is not a harmonic-oscillator space but a two­
dimensional space spanned by IO> and II/I;). 

The anticommutation relations (4.168H4.169) mean that there is a 
complete symmetry between the creation operators and the annihilatio n 

operators for a fermion (at least if the state space is finite-dimensional), which 
is not true of the boson operators. For a boson the annihilation operators have 
a simultaneous null vector, namely the vacuum state; the creation operators 
do not. For a fermion , on the other hand, the creation operators also have a 

simultaneous null vector IO> =a 1 t. · · a/IO), where N is the dimension of the 
one-particle state space 5/; In> is the unique state in which all single-particle 
states are occupied. This means that any state can be obtained by applying 

annihilation operators to the full state IO> just as well as by applying creation 

operators to the empty state IO>. The annihilation operators can be regarded 
as creating holes in IO>, and in some circumstances (e.g. in semiconductors) 

these holes behave like particles. If the original particles were electrically 
charged (as in the case of electrons in a semiconductor), the holes behave like 
particles with the opposite charge. 
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Several types of particle States containing several different types of particle can be described by putting 

together many-particle states o f the sort we have just been considering. If the 

particles are A, B, . .. , with state spaces Y'A, f/'8, . .. , this gives a total state 
space 

(4.170) 
where 

00 

tlJLx = L v ' Y'x if X is a boson , (4.171) 

00 

(/ltx = L t\ r Yx if X is a fermion (4.172) 

(the summation sign denotes a direct sum of vector spaces). 

For each particle X and each state II/I> E Y x there are a nnihilation and 
creation operators ax"' ' ax/ which act on 15/i by acting on 15/ix. Then 15/i has a 
complete set of states of the form 

aAltCIAzt . .. aaitas/- . ·IO> (4.173) 

where ax 1t , ax2\ ••• create different states of particle X and the vacuum state IO> 
in 15/i is the product of the individual states in (/?LA , 15l/8 , .... In this construction 
creation operators referring to different particles commute with each other. 

There is an alternative description which can be used when the particles a re 

all fermions or all bosons: the space OJL of (4. 170) can be replaced by 
00 

15/i' = L v '(Y A EB Y'8 EB · · ·) for bosons (4.174) 
r= O 

(replace v by A if the particles are fermions). In other words, the one-particle 
state spaces are put together to form a big one-particle space, so that the 
different particles A, B, ... appear as different states of a single underlying 
particle, which is then treated as a boson (or a fermion) in fo rming many­
particle states. There is a natural correspondence between states in 15/i and 
states in 15/i' : the basic state (4.173) in 15/i, which can be written as 

S(IAI ) IA2) · · ·)S(iBl ) IB2) · · ·) (4.175) 

where S is the symmetrisation operato r (2.142), corresponds to the state 

S(IA I >IA2) . . ·IB I >IB2) ... ) (4.176) 

in OJL' (replaceS by the antisymmetrisation operator (2.143) for fermions). Thus 
15/i and 15/i' are equivalent descriptions of the same physical system. However, in 
the case of fermions the two descriptions lead to different creation operators, 

fo r 15/i' has a structure like (4.172) which suggests that all creation operators 
should anticommute (even when they refer to different particles). The choice of 
description (15/i or 15/i') will therefore affect the physical content of a statement 
involving annihilation and creation operators. 

T he 15/i' description (leading to anticommuting creation operators) is always 
used for the states of a fermion and its antiparticle. Thus if the fermion A has 
state space Y'A and its antiparticle A has state space f?A, the state space of 
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variable numbers o f A and A is 
co 

·rA = I 1\ '(SI'A EB gAl· (4.177) 
r = O 

The two types of description can be mixed: for example, in describing several 
particle- antiparticle pairs the creation operators fo r different pairs can 
commute, the total state space being i-' A ® "'8 ® · · · with each ·rx given by 
(4.177). 

Charge conjugation Since a particle and its antiparticle have the same mass and spin , their state 
spaces are isomorphic: if lXI/I) is a state of the particle X, there is a 

corresponding state lXI/I) of its antiparticle X. Charge conjugation C is an 
operator which interchanges these two states, i.e. it changes every particle into 
its antiparticle without changing its spin state or wave function: 

(4.178) 

This defines C as an operator on SI'A EB !/A. The definition can be extended to 
the many-particle sta te space "f/'A in the obvious way, by making C act 
simultaneously on all the one-particle states in a product state, so that it 
changes a ll particles in a state into their antiparticles. 

Like the parity operator, the charge conjugation operator satisfies C 2 = 1 

and is both unitary and hermitian. For a particle X which is distinct from its 
antiparticle, (4. 178) is the most general form of a charge conjugation operator 

with these properties, for the phase of the X state can be adjusted so as to make 
(4.178) true. If X is its own antiparticle, however, this no longer applies: the 

effect of charge conjugation on a state lXI/I) of X must be to give the same 
physical state, but this only means that the state vecto r CIXI/J) must be a 
multiple of lXI/I): thus lXI/I) is an eigenvector of C. Since C 2 = I, the possible 
eigenvalues are ± I. This eigenvalue is a property of X like its intrinsic parity; it 
is called the charge conjugation parity and denoted by YJc· It is only defined if X 
is totally neutral, i.e. if it has the value 0 for a ll additive quantum numbers like 
electric charge and baryon number, since otherwise it would have a distinct 
antiparticle. The values of YJc for some totally neutral particles ar~ given in 
Table 4.2. 

If there is symmet ry between matter and antimatter (as we might expect 
from classical electrodynamics, in which positive and negative charge are both 
on the same footing), then charge conjugation wi ll be an invariance: the 
operator C will commute with the Hamiltonian and YJc will be a conserved 

Table 4.2. Charge conjugation parity 

Particle Photon zo 'I 

IJc -I -I +I + I 
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quantity. This is true of strong, electromagnetic and gravitational interactions; 
it leads to restrictions on possible processes like those which can be deduced 

from parity conservation. 

Example: positronium annihilation 
Positronium is a bound state of an electron and a positron - a hydrogen atom 
with the proton replaced by a positron. Unlike the hydrogen atom, though, it 
has no stable ground state, as the electron and the posit ron can annih ilate each 

other to form photons. This is an electromagnetic process, and is invariant 
under charge conjugation; hence 1'/c is conserved. 

The state space of positronium is part of the two-particle space built from 
the one-particle space 5f1 EB .9 where 5f1 is the state space of an electron and .9' 
that of a positron; this contains states le - tjt) and le +tjt) . Since 5f1 and .9' are 
isomorphic, Y EB .9' can be identified with CC ® Y where CC is a two­
dimensional space (the 'charge space') with basic states le -) and le + ) . Then 
charge conjugation acts on CO by interchanging le-) and le + ) . Thus two­
particle states which are symmetric or antisymmetric in charge space are 
eigenstates of C with eigenvalue I'Jc = + I (for symmetric states) or - l (for 
antisymmetric ones). The two-particle state must be antisymmetric overall; 

hence if the spin/orbital state is symmetric (I even and s = I, or I odd and s = 0, 

where I is the relative orbital angular momentum and s is the total spin) then '7c 
must be - 1, and if the spin/ orbital state is antisymmetric (I odd and s = I, or 

I even and s = 0) 1'/c must be + 1. If the positronium is in its ground state we 
have I= 0 from the theory of the hydrogen atom; hence 1'/c = - 1 if the spins are 
parallel (s = 1) and 1'/c = + 1 if they are antiparallel (s = 0). 

If the electron and positron annihilate each other to form n photons, the 
charge conjugation parity afterwards will be ( -1)", since the photon has '1c= 

- l. Energy- momentum conservation makes n = 1 impossible (in the rest 

frame of the positronium the photon would have zero momentum), so the two 
smallest possibi lities are 11 = 2 or 3. Charge conjugation in variance then shows 
that the positronium will decay in to two photons when the spins are 
antiparallel but into three photons when the spins are parallel. Since the phase 
space factor is greater for the two-photon decay, this decay is faster and so the 
ground state of positronium with parallel spins is longer-lived than the state 
with antiparallel spins. 

Parity is also conserved in positronium annihilation; this can be applied to 
the two-photon process to obtain information about the polarisation of the 

photons. The parity of the ground state (l = 0 , s = 0) of positronium is 
- ( - 1)1 = -I, since the electron and positron, being ferrnionic antiparticles, 
have opposite int rinsic parities. Thus the two-photon state must have parity 
- 1 and angular momentum 0. Suppose one of the photons is in an eigenstate 
of momentum with eigenvalue k; then, taking the positronium to be at rest, the 
other photon must have momentum - k. The two photons must have opposite 
values for the component of angular momentum in the direction ofk, since the 
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total angula r momentum is 0; this means that their helicities must be equal. 
Hence, labelling the photon states as IP ± ) where pis the momentum and ± is 
the helic ity of the photo n, and taking into account the fact that pho tons a re 
bosons, we have a two-photon state o f the fo rm 

o:(ik + >1-k+ > + 1-k + >lk + ) )+/3(ik- >1-k - > +1-k - >lk- ) ) 
(4.179) 

The effect of the parity operator on a one-pho ton state is to reverse its 
momentum and to leave the components of angular momentum unchanged 
(since P commutes with J). which is to reverse the helicity: 

Pjp± ) = -j-p+ ) (4. 180) 

(the minus sign is the intrinsic pa rity of the photon). Hence if the two-photon 
state (4.179) is to have negative- parity we must have o: = - {3. 

The helicity of a pho ton is related to its polarisation. Eq. (3.10 1) defin es the 
operator J= for a photon moving in the z-directio n, i.e. its helicity, in terms of 
pola risation states j¢ .. ) and 1¢>') . From this the eigenstates of helicity can be 
calculated as 

I 1 
jk±) = fl(ik x) ±ilk y) ), 1-k±) =fl (j - kx) + i j-ky)). 

In terms of these the two-photon state (4.179), with o: = - {3 , is 

lkx) i -ky) - jky) j -kx) +j- ky) ikx) -1-kx) jky) . 

Thu s the two photons a re pola rised in perpendicular directions. 

(4. 18 I) 

Particle-changing Creation and annihilation operators a re used to construct Hamiltonians 

interactions which change the number o f particles present. To illustrate th is, we wi ll 
suppose that each particle has a one-dimensional state space (i.e. we ignore the 
spin sta te and wave function of each particle. W e will refer to these suppressed 
degrees of freedom as kinematical). Then for particles A, B, ... there are 
creation operators a 8 t, a 8 t , . .. , and there is a complete set of sta tes like 

(4.182) 

Now suppose that the single state of particle X has energy Ex. Then if the 
particles do not interact, the Hamilto nian is 

(4. 183) 

(cf. (4.162)). We will describe interactions between the particles by adding an 

extra term e V to this Hamiltonian and using time-dependent perturbation 
theory. 

Suppose there are five particles A, B, C, 0 , o:, and let 

V= aAacta,t +a8 a0 ta. +a A taca. + a8 ta 0a/ (4.184) 

(this is dimensionless, so the expansion parameter e, which in this context is 
called a coupling constant, has the dimensions of energy). Then Vis hermitian, 
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since it is o f the form W + wt. Suppose the initial state is l!/1 0 ) = lA); then fro m 
(3.182) and {3.176) the firs t-order term in the perturbation expansion is 

t I' irP(t)) = ih J/f I ,jHorr h ve- •Hor, ''II/Jo) 

=~ I' dt, eilEc+E, - E;~Ir, /h iCa) . 
til ) 0 

Thus the effect of the interact ion {4. 184) is to induce the decay 

A -. C+a. 

(4.185) 

(4.186) 

It is clea r that the pa rt of (4. 184) responsible fo r this is the fi rst term, des troying 

A and creating C and a.. F rom the theo ry of §3.5 we know tha t if £A# Ec + £. 
the integral in (4. 185) is very small and so the decay is highly unlikely to occur. 
Suppose the particle A is a t rest, so that EA = mAc2; then, since the energy of a 
moving particle is a t least mc2, the condi tion fo r this decay to be possible is 

mA~mc+ m • . (4. 187) 

If this condition is no t satisfied , the term in V describing the process {4.186) is 
still significant because of its contribution to higher-order processes. Suppose 
the ini tial sta te is jAB) and consider the second-o rder term in the perturbation 

expa nsion, namely 

1 I' r· irP it))= (ih)2 Jo dt 1 )o dt2e;H.r, Ve-;H.tr , - r,l Ve-•H•'' iAB) (4.188) 

(see (3.183)). From (4.184) we have 

VI AB) = IBCet. ) (4.189) 
and 

VI BCet. ) =lAB) + lCD ) : (4.190) 

thus the second-o rder term (4. 188) conta ins a mul tiple of lCD), and so the 
interaction ind uces the process 

A + B -. C + D . (4.1 9 1) 

These calculations can be represented by d iagrams as follows. T he terms in V 

can be drawn as in Fig. 4.7, which shows the annihilations and creations 
performed by the operators in each term (the d iagrams are to be read fro m left 
to right). These provide four types of vertex which can be put together to fo rm 
composite diagrams like F ig. 4.8, which represents the process (4.19 1). T he two 
vertices of this diagram show tha t the process it represents takes place in 
second o rder of perturbation theory; the two halves of the diagram, on either 
side of the dotted line, illustrate the two equa tions (4.189)- (4. 190) which 
contribute to the perturbation theory calculation. The do tted line itself 
inte rsects the virtual intermediate sta te IBCa.) which occurs in (4.189H4.190). 

This procedure can be continued to dra w diag ram s which illustrate 
processes occurring in any o rder of pertu rbation theory. T hese are the 
F eynman d iagrams introduced in C hapter 1. 



Fig. 4.7. 
The terms of V in (4.184). 

Fig. 4.8. 
A + B-+ C+D. 
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Calculating the integral (4.188), we find that the amplitude for the process 
A+ B ~ C + D, to second order in e, is 

( CDje-iHo'jf2(t)) 

e - i<Es+E, +EcJr -e-i<£c+£oJr ]· 

(EA - Ec- E,)(E8- Eo+ E,) 

(4.192) 

If E, is large compared with both e and the energies of A, B, C and D, so that 
EA/ E, is a small quantity of the order of ej EA, then the second term in (4. 1 92) is 
of third order and the first term is approximately 

_ e2 [ e- i<EA +£8 ,, _ e-i<£c+ £oJ']. 

E. EA + E8 - Ec-Eo 
(4. 193) 

This is the same (apart from sign) as the first -order amplitude that would be 
obtained from the Hamiltonian H = H 0 + e' V', where 

e2 
e' = E' V' = aAasactao t +a A tl/ 8 tacao. 

2 

(4.194) 

V' is called an effective Hamiltonian, and e' is called an effective coupling 
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Fig. 4.9. 
The terms of V' in (4.194). 
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constant. The terms in V' are depicted by the vertices shown in Fig. 4.9. They 
appear to describe processes occurring by direct contact between the four 
particles. 

The equivalence between the Hamiltonian (4.184) and the effective 
Hamiltonian (4.194) when the energies of the particles are small compared 
withE, is an aspect of the inverse relation between the range of a force and the 
mass of its associated particle a, which was mentioned in Chapter 1. The 
energy E, is of the order of m.c2

. An energy E which is much Jess than this is 
associated with momentum of the order of E/c, and therefore with lengths of 
the order of hc/ E, which are much greater than the length h/m,c which was 
given in ( 1.29) as the range of the force. On this length scale, therefore, the force 
appears to operate only when the particles are in contact, which is the picture 
given by Fig. 4.9. 

When the kinematical states of the particles are taken into account, it 
becomes of interest to consider Hamiltonians like (4. 184) in which A= C and 
B = D; for now we have an annihilation operator a A; for each state lt/1;) of 
particle A, and V can include terms 

(4.195) 

describing the emission of a field quantum a by particle A, which is left in a 
different state. The diagram corresponding to Fig. 4.8 then depicts a process in 
which A and B both change state, i.e. the operation of a force between them. If 
A and Bare both electrons and a is a photon, the force is the electromagnetic 
force between the electrons. 

This method of describing interactions between particles constitutes 
quantum field theory, which will be introduced a little more fully in Chapter 7, 
though a proper development is beyond the scope of this book. This theory 
requires that annihilation and creation operators must always occur in the 
form of a quantum field, which is a combination 

(4.196) 

referring to a state lt/1;) of particle X and a state lt/1/) of its antiparticle X. The 
states lt/1;) and I t/1 / ) are the same for bosons, but for fermions they differ in their 
spin parts; lt/1/) is obtained from lt/1;) by replacing each eigenstate ofhelicity by 
the eigenstate with opposite eigenvalue. 

A c c A 

B D D B 
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In Chapter 6 we wi ll g ive a description of the funda mental interactions 
between particles ignoring kinematical states. for which the appropriate model 

will be that introduced on p. 169, each particle having just one state. The 
quantum field for particle X will then be 

<Px =ax+ a 51 t, (4.197) 

which we will call a reduced quantum field. All interaction Hamiltonians are to 

be constructed from such operators. t The effect of this is that if an interaction 
admits a Feynman-diagram vertex involving the emission of a certain particle, 
it also admits a vertex in which this is replaced by absorption of the 
antiparticle, and vice versa. 

The interaction Hamiltonian (4.184). which we have used for ill ustrative 

purposes, does not fu lfil the requirement that it should be constructed out of 
quantum fields. To be physically acceptable, it would have to be replaced by 

V=J¢~ +Jt¢.t (4.198) 
where 

(4.199) 

The operator J is called the current associa ted with the force carried by the 
particle rx. The low-energy effective Hamiltonian derived from (4.198) 
(corresponding to (4.194)) can be expressed entirely in terms of J: 

V'= JJt. (4.200) 

The last th ree chapters o f this book a re largely independent of each o ther. The 
reader who is irritated by the loose ends in the last section (§4.6), and is 
interested in the further formal development of quantum mechanics, can 
proceed straight to the account of quantum field theo ry in Chapter 7. A reader 

who wants to know about elementary particles should turn to C hapter 6, 
which contains applications of the theory of the last three chapters. However, 
this theory has a number of puzzling features, and so Chapter 5 is devoted to a 
deeper look at the concepts of quantum mechanics. 

Bones of Chapter 4 The spin-statistics law 139 

e4. 1 Eigenvalues of angular momentum 135 
e 4.2 Parity of orbital states 137 
e4.3 Representations of the rotation group 140 
e4.4 Addition of angular momentum 146 

e4.5 The Wigner-Eckart theorem 148 
e4.6 Symmetry properties of spin states 151 
e4.7 Symmetry properties of orbital states 152 

t The free-particle Hamiltonian (4.183) cannot be constructed in this way. but this difference 
between H 0 and Vis an artificial featu re of our simplified formalism: it can be removed if the 
particles a re allowed more than one state. See problem 4.31. 
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.4.8 

.4.9 

.4.10 

.4.11 

.4.12 

Intrinsic parity of a two-particle state 152 
Commutation relations of hydrogen-atom operators 154 
Energy levels of the hydrogen atom 157 
Energy levels of the harmonic oscillator 160 

Bosons and harmonic oscillators 164 

Further reading The topics in this chapter are covered in most textbooks on quantum 

mechanics. See the 'Further reading' for Chapters 2 and 3. 

Problems on Chapter 4 I. For a simple particle moving in space, s how that the wave function 1/11m(r)= 
x 2 + y 2 - 2:2 represents a simultaneous eigenstate of J 2 and J= , with 

eigenvalues /(/ + J)h2 and mh where I and m are to be determined. Find a 
func tion with the same eigenvalue for J 2 and the maximum possible 

eigenvalue for J =· 

2. Show tha t there a re 2/ + 1 independent totally symmetric tensors t1, ••• 1, (i,= 
1, 2, 3) satisfying :L t»1, . . . ,, =0, and that the functions f(r) = t1, .. • 1,x1, • • • x1, are 
ei¥enfunctions of J 2 with eigenvalue /(/ + 1)/12

. [Consider V~(J 

3. Show that for a system with angu lar momentumj the eigenstates of n · J are 

U(R)V m) where R is a rotation which takes the z-axis to the axis n. Deduce 
tha t ldj '""(RJil is the probability that a measurement ofn · J will give the value 
n/1 after a measurement of J= has given the value mh. 

How are these results compatible with the fact that R is not uniquely 
defined? 

4. A beam of elect rons in an eigenstate of J= with eigenvalue 111 is fed into a 
Stern- Gerlach apparatus, which measures the component of spin a long an 
axis at an angle() to the z-axis and separates the particles into distinct beams 
according to the value of this component. Find the ratio of the intensities of 

the emerging beams. 

5. Let U and A be the 2 x 2 matrices U =cos ·W + in · a sin i:{}, A= a ·a where n is 
a unit vector. Show that U Aut= a ' ·a where a ' is obta ined by rotating a about 
n through the angle 0. Deduce that the homomorphism¢ of(4.61) maps SU(2) 
onto a group isomorphic to S0(3). Show that¢ has kernel { ± 1}. 

6. In the spin state space f?)j , ® f?)h of two particles with spinsj 1 andj2 , show that 
jj1 j 1 ) Jhh) is an eigenstate iJ M ) of the total angular momentum operators 
J 2 and J,. By applying the lowering operator } _ =} 1 _ + 1 2 _ , find the 

Clebsch- Gordan coefficients ( J J -1IJ1m1 ,jzm2) for all relevant values of m1 

and m2. Find the state IJ- I J -1) (which must be orthogonal to 11 J - I)), 
and hence find the Clebsch--Gordan coefficients ( J -1 J -1Jj1m1,j2m2 ) . 

Consider how this process can be continued, and show that 

r(J ,M)(J M -1Jj1 m 1,j2m2) 

=r(j1 ,m1 + l)<JMU1 m1 + 1 ,j2 m 2) +r(j2 ,m2 + l)<JMU1 m1 ,j2 m2 + 1) 

where rU,m)= J UU+ 1)-m(m-1)]. 
Calculate the Clebsch-Gordan coefficients <1 mtl1 m2, 1m3 ) for all 

relevant values of m1 , m2 and m3• 
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7. In a system of three particles, each with a ngula r momentum j and no other 

properties, how many independent states are there with total angular 

momentum I, where 0~ 1~ 3), and a given va lue of J=? 

8. Show that the five operato rs 

a2 a2 a2 02 ;::2 
To=2 -

0 2 - -a .2 - -
0 2 , T±1= +-/6 -::;---;;- - ) 6i --;;--

0 
, 

Z X Z OX u :; OJ' :; 

J3 ( c o2 c2
) 7

±2=72 ox ±2
i ex ay + oy2 

fo rm a n irreducible set of operators of spin type 2. Find the ra tio of the 

expectation values of T0 in the five eigenstates of J =of a particle with orbital 
angula r momentum 2. 

9. An electron in a state of a hydrogen atom with 11 = 3, I= 2 has total angular 

momentum l Calculating any Clebsch- Gordan coefficients yo u need , find 

the ra tio of the expecta tion va lues of :: in the eigenstates of J =with eigenvalues 
1 and 1. What are the expectation values of x and y in these states? 

10. Show that in a state with angular momentum 0, the expectation value of any 
vector operator is 0. Deduce that a spin-0 pa rt icle has no magnetic moment or 

electric dipole moment. 

II. Show that in any irreducible representation of the rota tion group, every 
vector operator is a multiple of J. 

12. Let I± 1), IO> be the three eigenstates of J= of a particle with orbital angular 
momentum I. Show that the expectation values of ::2 and r 2 are related by 

( - Ilr21- I) = ( Oir 2IO) = ( l jr2 IJ) = ( Oiz 2 IO) + 2( - Jlz21- 1) . 

13. A hyd rogen atom is placed in a uniform electric field with magnitude E in the 

z-di rection. Labelling the sta tes by the usual quantum numbers n, I, m, find 

the ratios of the fi rst-order transi tion probabilities P" from In 1=2,m) to 

In, I= l,m) fo r m=O, ± 1. 

14. If Sm, ( - ) 1 ~m 1 ~) 1 ) and Tm,( - ) 2 ~ m2 ~)2) a re irreducible sets of operators of 
spin typesj 1 and j 2, show that 

is an irreducible set of operators of spin type j. 

15. A particle A with spin 1 decays into two particles B and C, where B has spin 1 
and C has spin I. What are the possible va lues of the relative orbital angular 

momentum of B and C? If this relative orbital angular momentum is 0, and if 

A is in an eigenstate of the z-component of spin with eigenva lue + 1:, find the 

probability that the z-component of the spin of B will a lso have the value +1. 
16. The 17-meson is a neutra l particle with negative parity. Show tha t it cannot 

decay into two n° mesons if pa rity is conserved. 

17. If two neutrons could form a bound state with total angular momentum I, 
show tha t it would have negative parity. 

18. Show that a particle which decays into two n° mesons has even integer spin. 

19. The decay n° __. 2y takes place by the (parity-conserving) electromagnetic 
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interaction. Treating the photons as ord inary (massive) spin- I particles. show 

that their relative orbital angular momentum is I. 

20. Show that in the p-meson (J P = 1- ) the quark and ant iquark have parallel 

spins. 

2 I. Prove (4. 107), (4. 108) and (4. 104). 

22. The Zeeman effect. The Hamiltonian fo r an a tom in a magnetic field o f 
strengt h 8 a long the :-axis isH 0 + JiBL, where H 0 is the Hami ltonian of §4.4, 
Lis the relative orbital angular momentum and Jl is a constant. What are the 

stationary sta tes and energy levels of this Hamiltonian? 

23. Show tha t when a hydrogen atom decays from an excited state by emitt ing a 

single pho ton, the value of I changes by ± I. 
24. An experimenter has carefully prepared a particle of mass min the first excited 

state (energy ~!Jw) of a one-dimensional harmonic potential V(x)=1mw 2x 2
, 

when he sneezes and knocks the centre of the potential a small distance a to 

one side. It takes him a time-r to blow his nose, and when he has done so he 

immediately puts the centre back where it was. Find. to lowest order in a, the 

probabilities P 0 and P 2 that the oscilla to r will now be in its ground state and 

its second excited sta te. Show that the probability that it will be in its nth 
excited state is of o rder a 2!n - ll_ 

25. For any complex number:, a state 1.:) of a ha rmon ic oscillator is defined by 

l::) =exp(:at)IO) . Show that (z1 l=z)=exp(.:1z2) and tha t the expectation 

value oft he energy in the state 1.:) is (1.:12 +1)flw where w is the frequency of the 

oscillator. If the oscillator is in the state 1:0 ) at time 1 = 0, find the probability 
that it will again be found in the state 1:0 ) a t time 1. 

26. Show that the nine operato rs a/a1+a/a;, i(a/a1 -a/a;) represent conserved 
observables of the three-dimensional harmonic oscil lator, and that when 

multiplied by i they fo rm a Lie algeb ra isomorphic to that of U(3). 

27. Let [I' be a single-particle state space, with complete set of states 11/f;), and let 

a; be the co rresponding annihila tion operators on the space tilL of an indefinite 

number of particles. If H is the single-particle Hami ltonian, show that the 
Hamiltonian on vll fo r a system of no n-interacting particles is 

Lii (1/!;IHII/!J>a/aj. 

28. Let Itt') be an 11-pa rt icle sta te II/I;,) ·· ·II/!;) where the II/I;) make up an 
orthono rmal set and {i1 • ••• , i"} contains r different indices in groups of k 1, 

... , k,. Let S =LX P be the symmetrisation operato r. Show that 

( tt'IStSI\1') = n! k 1 ! ... k,!. Hence show that the annih ilation operator a.p of 

(4. 156) is the restriction of (4.157) to the symmetric subspace of ®"!/. 

29. Prove (4.192). 

30. If the Hamiltonian isH 0 + e V where H 0 is given by (4. 183) and V= wt + W 
where W = aAacta<>t +a8a 0 ta.+a0 aEtaFt, show that the probability of the 

process A+ B -+C+E+ F is of order e6 , and draw the corresponding 

Feynman diagram. 

31. Let ax; be the annihilation operator for particle X in sta te i, and suppose the 
definition o f quantum fields is extended to include operators like ¢x; = 



Problems 177 

Li (cx;/lxj + {J;pJt/). Show that it is possible to find matrices cxii and {JiJ so that 

the free-particle Hamiltonian H 0 of (4. 183) can be written as l:d¢x/¢x;). 

32. Consider a model of a charged particle X, with antiparticle X, interacting with 
a photon y. in which each particle is assumed to have just one state and the 
Hamiltonian is H0 +cV with 

H0 =Ex(a/ax+a'fl. ta'fi.) + E;.a ta7, V=¢/¢x¢, 

where a a nd at deno te ann ihilation and creation operators and ¢x and ¢ 7 are 

the field operators <l>x=ax +a'fl.t• ¢. =a;. + a./. Draw the lowest-order 
Feynman diagram for the process X- X-+2;-, and write down the amplitude 
for this process to occur in time 1. 



5.1. Statistical formulations 
of classical and quantum 

mechanics 
(a) Classical mechanics 

5 
Quantum metaphysics 

The co/lcepwal structure of qua11111111 mecha11ics coday is as u11healthy as the COitceptual 

stntc fllre of che calc1ilus II'(IS at the time Berkeley's famous criticism was issued. Hilary 
Putnam ( 1965) 

The fac t that lllllldequate philosophical presentlllion [of qumtlltmmechanics] has been 

so long delayed is no doubt caused by the facr char Niels Bohr brainwashed a whole 

generation of theorists ill to thinkin{J thlll the job ll'as done fifcy years a{Jo. Murray Gell­
:vt ann ( 1979) 

As these quotat ions show, the reader who finds quantum mechanics hard to 
understand is in good company. In this chapter we will examine some of the 
main difficu lt ies and describe some proposals for how they should be 
understood. The chapter also contains some alternative fo rmulations of 
quantum mechanics which are equivalent (a t least mathematically) to the 
formulation of Chapters 2 and 3. 

In classical mechanics the state of a system is completely specified by the values 
of the coordinates and momenta (q 1 , •.. , q,, p 1 , .• . , p,), which we will denote 
collectively by (q, p). The set of all possible values of these is called the phase 
space of the system; this is the classical counterpart of the sta te space in 
quantum mechanics. We wi ll denote it by&. 

In o rder to compare the statements of classical mechanics with the 
essentially probabilistic statements of quantum mechanics we will consider a 

more general specificatio n of the system in which the informa tion one has is 

not so precise as to determ ine the state with certainty, but only gives a 
probability distribution of the values of (q, p). This is a more rea listic 
description of the knowledge avai lable in practice about the state of the 
system, for any actual method of preparing the system will not lead to infinitely 
accurate values of q and p. Thus we define an experimental status (or simply 
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status)t to be a probability measure on phase space; by definition this is a non­

nega tive real-valued function defined o n appropriate subsets of il, but it will be 
precise enough to think of it as a no n-negative real-valued function p on IJ> 
satisfying 

L p(q, p) dq dp = I (5. 1) 

if we a llow p to be concentra ted on a single point , i.e. to be a c5-fun ction. Then 
the measure o f a subset Er;;;. !?J> is 

p(£)= L p dq dp. (5.2) 

The observables in classical mechanics are rea l-valued function s o f q and p. 

The status p determines the probabilities o f the values of an observable A(q, p): 

the probability that the value of A lies in an interval tl of the real line is 

P(AEM= J p(q,p)dqdp. (5.3) 
A - 11AI 

It fo llows that the expecta tion value of A is 

( A)p = L A(q, p)p(q, p) dq dp. (5.4) 

This formula for the expectation value of any observable can be taken as the 
fundamental statement, fo r the probability statement (5.3) follows from it by 
replacing A by Xo.(A), where Xo. is the characteristic function of tl: 

{
l if AE!l 

Xo.(A)= 0 ifA ~tl. (5.5) 

For future reference, we note that the probability d istribution p is uniquely 
determined by the expectation values (A)p fo r a ll observables, for by taking A 

to be the characteristic function Xc of a subset E r;;;_ :?J one obtains from (5.4) the 
probability that (q, p) E £. Thus an experimental status could be defined as a 
function which assigns to each observable A its expectation value (A)P. 

If p 1 and p 2 are two sta tuses and w 1 and w 2 a re two real numbers sa tisfying 

(5.6) 
then 

(5.7) 

is another status. If £ 1 and £ 2 a re the experimental procedures which produce 
the statuses p 1 and p 2 , the status w 1p 1 + w 1p 2 can be p roduced by tossing a 
biased coin which has probability w 1 of coming down heads, and following the 
procedure £ 1 if the coin shows heads, £ 2 if it shows tails. Such a status is called 
a mixed state. A pure state is o ne which cannot be written in the fo rm (5.7). It is 
not ha rd to see that a pure state must be concentrated on a sing le point of 

t In mathematical discussions of the foundations of mechanics this is often called a 'state', but 
this assumes particular answers to some questions which we want to leave open. 
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phase space, i.e. it must be a a-func tio n; thus a pure state. corresponding to a 

point of phase space, is what we previously called simply a 'state'. 

A set of elements of a vector space which contains a ll linear combina tions of 
its members like (5.7). with coefficients satisfying (5.6), is called a convex set. An 

element which cannot be written as such a linear combination is called an 
extreme point o f the set. Thus pure states are ext reme points of the convex set 

of experimental sta tuses. 

The time development of a classical system is governed by the motion of the 

po int (q, p) in phase space acco rding to Hamilton's equations (3.5). This causes 

the probability distribution p to change according to the equation 

~ 

:~ ={H, p} (5.8) 

where H (q, p) is the Hamiltonian of the system and the curly brackets denote 

the Poisson bracket (3.17 1). 

(b) Quantum mechanics: the The maximum available information about a system. according to quantum 

statistical operator mechanics, is contained in the state vector lr/1) . To parallel the statistical 

discussion of classical mechanics, we now consider how to describe less than 

maximum information in quantum mechanics. Suppose the normalised state 

vector of a system is one of a number of states II/I 1 ), .•• -lr/1,.), the probability 

tha t it is lr/li) being Pi· The statistical operator of the system (also known as its 
density matrix) is 

II 

p= L: p;jr/1;)<1/Jd- (5.9) 
i = I 

Since the Pi are rea l, p is a hermitian operator. [t yields the probabilities of the 

values of o bservables as follows: 

es.J If the stat istical operator of a system is p, the probability that 
a measurement of an observable A gives the value IX is 

P..t(IX I p) = tr (pP,) (5. 10) 

where P, is the projection o nto the eigenspace of A with eigenvalue IX. 

The expectation value of A is 

( A)p= tr (Ap). (5.11) 

Proof Let II/I> be any normalised state vector, le t X= lr/l)(r/11, and let Y be any 
other operator. Then if{!¢;)} is a complete orthonormal set of states we have 

using (2.68). Now the probability that a measurement of A will g ive the result IX 

when the statistical operator is p is given in terms of the probabilities when the 
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state vector is II/I;) by 

p)a. l p)= I (probability that the state is 11/J;))pA(a.II/Ji) 
i 

=I Pi( l/liiP. Ii/1;) 
i 

= tr (pP,). 

Similarly, the expectation value of A is 

( A )P = I Pi(l/ldAII/Ii) =tr (pA). • 
i 

By putting A= I in (5.11) and P. =II/I)( 1/11 in (5.10) we obtain 

tr p= I 
and 

< 1/JIPII/I>~o forallll/1 >. 
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(5.13) 

(5.14) 

An operator p satisfying (5.14) is said to be positive. The set of all positive 
hermitian operato rs with trace l forms a convex set. A system is said to be in a 
pure state if its statistical operator is an extreme point of this convex set; 
otherwise it is in a mixed state. The meaning of convex linear combinations of 
statistical operators, and the significance of pure states, is the same as in 
classical mechanics: 

es.2 (i) A situation in which there is probability w 1 that the statistical 
operator is p 1, and probability w 2 that it is p 2, is described by the 
statistical operator w1p 1 +w2p 2. 

(ii) A system is in a pure state if and only if its statistical operator is of 
the form 11/1)(1/11. 

Proof (i) Suppose 

Pt = L PN)(I/Iil, Pz = L qMJi)(cf>J 
i j 

In the situation considered, the probability oft he state of the system being 11/!i) 
is w1pi and the probability of it being !4>) is w2qi. Hence the statistical 
operator is 

p= L ~~'tPtll/li)( l/lil + L wzqjlcf>i)( cf>il 
i j 

=W 1P1 +wzpz . • 

(ii) Since pis hermitian, it has a complete set of eigenvectors 1¢;) and so can 
be written as 

p = L Pd¢i><¢il (5. 15) 
i 
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with I Pi= 1 since tr p = 1. If the state is pure, only one of the Pi can be non­
zero, so p is of the fo rm II/1)(1/JI. Conversely, suppose 

p= II/1><1/JI=wlpl +w2P2· (5. 16) 

Wri ting p 1 as in (5. 15), we have 

<1/JIPdl/1 ) = ~ Pi l< cf>i 11/1 >1
2 ~ [~ Pi][~ l<cf>i ll/1 ) 1

2 
] = I (5. 17) 

with equality a t the second step only if 

Pi=l<cf>d l/1 ) 12= 1 fo r some i (5. 18) 

since otherwise there will be positive cross-terms in the product. lf(5.1 8) is true, 
1¢;) =II/I) and so p 1 = p . Thus 

Either (1/JIPdl/1 > < I o r p 1 = p . (5. 19) 

Simila rly, ei ther ( I/J jp 2 jt/l) < 1 o r p2 =p. But 

I = <tJ!IPII/1> = wl <1/JIPtll/1> + w2<1/JIP2It/l>. (5.20) 

Since 1r 1 + w 2 = 1, we must have ( 1/JIPdl/1 ) = (I/JIP 2II/I ) = 1 and therefore p 1 = 
p 2 =p. Thus p=ll/1)(1/11 describes a pu re state. • 

From the Schrodinger equation and its hermitian conjugate, we obtain the 
equation of motion of the statistical operato r as 

ih: =~ Pi{ (ih : 1 11/Ji) )<1/Jij + 11/Ji) (ih :t (1/J;j)} 

= I Pi{H jt/1;)(1/J;j + II/I;) ( -<1/JiiH)} 

=[H,p]. 

The solution (3.2)- (3.3) of the Schrodinger equation gives 

p(t) = e - iHt/h p(Q)eiHt/h. 

(5.2 1) 

(5.22) 

The comparison between classical and quantum mechanics, in this 
statistical form, is summarised in Table 5.1. 

One feature of quantum mechanics which has no counterpart in classical 
mechanics is the effect of a measurement on the state of the system. In both 
theories it is permissible to take account of the result of a measurement by 
changing the status p, fo r the probabilities contained in p reflect inadequate 
knowledge of the system, and by its nature a measurement improves this 
knowledge. Thus in classical mechanics an exact measurement of q and p 

increases one's knowledge of the system to the point where it can be described 
by a c5-function rather than the broader density p which was appropriate 
before the measurement. We suppose, however, that it is not the state of the 
system that has changed, but only the state of our knowledge: the experimental 
status of the system has changed because the result of the measurement is an 
extra element in the experimental preparation of the system. It is possible to 
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perform the measurement but not take its result into account: this does not 
affect any probabilities and the status p is unaffected by the measurement. 

In quantum mechanics, on the other hand, the measu rement has a physical 
effect on the state of the system. and the status will change even if the result of 
the measurement is not taken into account. The change in the sta tistical 
operator is given by 

es.3 If the statistical operator of a system is p just before a 
measurement of an observable A, then immediately after the 
measurement its statistical operator is 

p'= I P, pP, (5.23) 

where P, is the projection operator onto the eigenspace of A with 
eigenvalue ex, and the sum is over all eigenvalues of A. 

Proof Suppose first of a ll that the system is in a pure state Jt/1) before the 
measurement , so that p = Jt/1 )( 1/JJ. After the measurement, according to 
Postulates II and III (p. 50- 51). it will be in the eigenstate P.Jt/1) with 
probability (1/tJP,JI/t). The state vector obtained by normalising P,Jt/1) is 

P,Jt/1) . 
Jl/t,) = ( 1/tjP,jl/t) . (5.24) 

hence the statistical operator after the measurement is 

(5.25) 

since P. is hermitian. 
Now consider the general case p= I p, JI/t;)( t/JJ With probability P; the 

Table 5.1. Classical and qtwnrum mechanics 

Classical Quantum 

Pure state Phase space point (q. p) State vector lt/1> 
General status Probability density p(q, p) Positive hermitian operator p 

J pdqdp= I tr p= I 

Condition for pure p = c5-function p=lt/l>< t/11 
sta te (p has rank I) 

Equation of motion ~={H. p} 
cp 

iii ~= [H.p] 

Observable Function A(q. p) Hermitian operator A 

Expectation value J Ap dq dp tr(Ap) 
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sta tistical operato r after the measurement will be 

(5.26) 

and so the full sta tistical opera to r is 

p' = L P;P/ = L P, p P , . • 

e 5. 1 and e5.3 show that a ll experimental p robabilities are determined by 
p. The probability tha t the system is in a g iven state, however, is not 
determined by p. fo r different probability distributio ns over states may give the 

same sta tistical opera to r. F o r example. suppose the sta te space is n­

dimensional, a nd let II/I 1 ) , ••• -II/I,.) be a complete o rthonormal set of states. 
Suppose the system is known to be in one of these sta tes, but they are a ll 
equa lly probable; then the statistical operator is 

I 1 
p = - L: lt/1;><1/!d =- t. 

n n 
(5.27) 

by (2.68). Thus this same sta tistical operato r could be obtained from any 
o rthono rmal complete set. It can also be taken to describe complete ignorance 
of what state the system is in. 

The sta tistica l operato r can be used to prove 

es.4 Let A and B be two observables such that A commutes with 
e1Hrfh B e- iHrfh_ Suppose A is measured at timet =0 and B is measured at 

timet. Then the probabilities of the various results of measurement of 
B a re the same as if the measurement of A did no t occur. 

Proof Let p be the initial sta t istical opera tor. If there is no measurement of A 
the sta tistical o perato r a t time t is e-utrfhp e111'' h and the proba bility tha t the 

measurement of B gives the result (J is 

PI ((J, t ) = tr [ e- •Hr/l•peiHr!h p p] 

where P p is the projection opera tor associated with {3. On the other hand, if 

there is a measurement of A at t=O the statist ical operator becomes L P,pP, 

immediately after the measurement (where the sum is over the eigenvalues a of 
A), and this evo lves to e- Wrfh L P,p P ,e111'1h so that the probability oft he result f3 
at timet is 

p2({3, l) = tr [ ~ p pe-iHr/ltp , p P ,eiHr/h]= tr [ ~ P,eiHrfhp pe- IHrfhp . p J 
Now euuthp pe-iflr!h is a projection operato r onto an eigenspace of e1Hrfh B e- iN rfh 

and therefo re commutes with A, since the eigenspaces of e111'1hB e-111'1h are 
invariant under the commuting opera to r A. Hence 

p2({3 , l) = tr [ ~ P. 2eiHrfhp pe- illrfhp J 
= tr [P pe-iHrfhpeiHrfh] 
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(since L P/= L P,= 1), which IS the same as if there had been no 

measurement of A at t=O. • 

Combined systems Consider a system composed of two subsystems S and T, with state space 
.'/ ® ?/. The statistical operator p for the combined system will then be a 
positive hermitian operator on .C/' ® Y. If{!</>;)} is a complete orthonormal set 
of sta tes for Y' and {It/!;)} is a similar set for .r. the trace of a ny operator non 
.'/@.~ is 

(5.28) 
i. j 

Let A be an o bservable of system T. Regarded as an observable of the 

combined system, it is represented by an operator I ® A o n .'/® ff; hence its 
expectat ion value is 

( A) = tr (p( 1 ®A)]= L ( t/lil<4>;iP( I ® A)l</>;)11/!i) 
i,j 

j 

= tr T [trs(p) · A] (5.29) 

where tr5 (p) is the operator on ff defined by 

(5.30) 

a bra vector of .'/ being regarded as a map <<Pi: .C/' ® Y-+ Y in the obvious 

way (i.e. taking lz>l t/1 > to <<I> I x>lt/1 ) ). This can be written as 

(5.3 1) 

The operator tr5 (p) is called the partial trace o f p. Eq. (5.29) shows that it acts 
as a statistical operator for system T considered on its own. 

5.2. Quantum theory of The most radical difference between quantum and classical mecha nics is the 
measurement special role played by the process of measurement in quant um mecha nics. It is 

not just tha t the process o f observing a physical system unavoidably changes 
the properties of the system - that is true in classica l physics also, since any 
observa tion entails a n interaction between the observing appa ratus and the 

o bserved system - but that the change in question is specially described in the 
fundamental postulates of the theory. The result is tha t there are two distinct 
laws governing the change of state of a system. The first is the Schr6dinger 
equatio n (Postulate VI), whose writ runs as lo ng as the system is not disturbed 
by an experiment; this is completely deterministic, giving a unique prediction 

for the future sta te of the system if its present sta te is known. The second is the 
projection postulate, which operates whenever the system is subjected to an 
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ex periment; this is a probabilistic statement, and d escribes an u npredictable 

change in the sys tem brought about by the experiment. 

This seems very unsatisfactory for a fu ndamental physical theory: it is at 

best ill-defined, at worst inconsistent. An apparatus is a physical system , and 

an experiment is a physical process; it ought therefo re to be subject to the 

Schrodinger equa tion like any other physical process. How is this to be 

reconciled with the projection postulate? Alternatively, what d efines a physical 

p rocess as an expe riment which obeys the projection postulate rather than the 

Schrodinger equatio n? 

Bohr's answer to t his difficulty was that quantum mechanics o nly a pplies to 

microscopic systems, on a much smaller scale than the apparatu s which is used 

to perform experiments upon them. The apparatus must be macroscopic, large 

enough for i~s pro perties to be directly apprehended by hu man observers, in 

the way that is assumed by classical physics. Thus the appa ra tus is a lways 

d escribed by classical concepts. Both the Schrodinger equa t ion and the 

projection postulate a pply only to q uantum systems. a nd the la tter co mes into 

play when the quantum system interacts wi th a classical appa ratus. 

This view divides the physical world in to two sorts of object, quantum and 

classical, each obeying its own characteristic laws. It is s till open to objec tions 

like those raised above. How are we to decide whether a particula r object is of 

the classical type o r t he quantum type? A classical apparatus can be described 

as a collect ion of quantum objects; why should quantum mechan ics no t apply 

to it? 

Let us pursu e the idea tha t as a fundamenta l theo ry quantum mechanics 

should apply to a ll physical systems, and investiga te the q uantum mechanics 

of the measurement process so as to clarify the relatio n between the 

Schrodinger equation and the projection postula te. Let Y be the sta te space of 

the quantum object o n which an expe riment is being performed, and let .s# be 

the sta te space of the experimental a pparatus (a lso regarded as a quantum 

system). We wi ll consider the developm ent of the combined state of the object 

and apparatus in the state space Y ® .9/. Let II/I 1 ) , 11/1 2 ) E Y be two eigenstates 

of the object corresponding to two different results o f the experiment; t hese 

results must leave the appara tus in different states io: 1 ) and io:2) (describing, 

say. different positio ns of a po inter). Suppose the apparatus is in itia lly in a 

sta te io:0 ) . The experiment consists of allowing the obj ect and the apparatus to 

interact in such a way that if t he object state is 11/1 1 ), then after the experiment 

the object state will sti ll be 11/1 1 ) and the apparatus will record the appropriate 

result , i.e. will be in the state io: 1 ); and similarly if the state is initially 11/12) then 

the apparatus state changes to io:2). Thus during the experiment the 
Hamiltonian must be such that 

e-•Hrfh(i!/11 >lo:o) ) = f!O•II/J 1 ) jo: 1 ) } 

e- iHrfh(jl/l2 ) lo:o)) = e;o, II/I 2)11X2) ' 
(5.32) 

wh ere r is the time taken by the experiment, and el and e2 are phases that may 
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be introduced by the experiment. Now suppose that before the experiment the 
object is in a state 

ll/lo) = c1ll/l 1) +c2ll/l 2); 
then after it the object and apparatus together will be in the state 

e-iH<th(li/1 0) la0 ) ) = e- iH'11'(c 1ll/l 1 >lao) + c2ll/l 2) lao)) 
= ew, c 1ll/l 1 >Ia I ) + ew'c2ll/l 2>la2). 

(5.33) 

(5.34) 

P ostula te II a pplied to this state yields the statement tha t if a n experiment is 
done on the a ppa ratus to determine the position of the pointer - fo r example, 
by photographing it - the resu lt will be a 1 with probability lc 11

2 and a2 with 

probability lc 2 1
2

. If the result is a 1 then, acco rding to the projection postulate, 
the state of the object and the appara tus after the apparatus has been examined 

is II/I 1 >Ia 1) and so the state of the object is II/I 1 ). 
Thus applying the Schrodinger equation to the combined system of the 

object and a pparatus is equivalen t to applying the projection postulate to the 
object alone. This does not, however, resolve the difficulty attached to the 
projection postulate, because in o rder to interpret the result o f applying the 
Schrodinger equation, namely the sta te (5.34), we had to apply the projection 
postulate a t the level o f the apparatus. This could in turn be replaced by a 
Schrodinger evolut ion applied to whatever observes the apparatus - the 
camera, if it is photographed - but again the projection postulate would have 
to be applied to the sta te of the camera, the apparatus and the object. This can 

be continued indefinitely - we can include the developing equipment, and then 
the eye and then the brain of the experimenter who looks at the film - but 
clearly we wi ll never get away from the necessity of invoking the projection 
postulate at some stage, the Schrod inger equation having been applied a t a ll 
p revio us stages. We still have to divide the world into a quantum realm and a 
classical realm, with different laws applying in the two realms. Part of the 
objection to this division has been removed by this analysis. for it shows that 
there is no need to give a precise definition of the boundary between quantum 
and classical- wherever one places the bounda ry, the results wi ll be the same. 

Schrodinger's cat paradox One proposal is that the boundary between the two realms should be placed at 
the boundary of human consciousness, so that the division between quantum 
and classical is identified with the division between body and mind. On this 
view, the full quantum-mechanical sta te vector should include the states of the 
quantum object, the experimental appa ra tus and the bra in of the 

experimenter. The projection postulate is applied when the experimenter 
becomes aware of a pa rticular brain sta te. This view assigns a special status to 
human brains, and is attuned to the philosophical opinion called Cartesian 
dualism, according to which mind and matter are two separate substances, 
mind having a particular relationship to human brains. 

Schrodinger's cat paradox is designed to illustrate the strangeness of this 
view. Suppose a cat is shut up in a box containing the following 'diabolical 
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device': a single atom of a radioactive substance, wi th a half-life o f o ne hour, is 
placed next to a Geiger counter which is wired up so that if it discha rges a 

sealed glass tube is smashed, releasing poison gas which kills the cat. Let 11/t) be 
the state of the a to m before it decays and 11/t') its state after decay, so tha t in 
isola t ion the state lt/1 ) would develop in time t to 

e-Y'It/J ) + j ( l -e- 2Y')It/J' ) ()'=11og2 hr - 1
). (5.35) 

T he d iabolical Hamiltonian is such that in time t the state of the who le system 

develops from lt/J >Icat a li ve) to 

e- ' 'jt/J)Ica t a live) + j(l-e- 2' ')11/J') Icat dead ) (5.36) 

(the sta te jcat dead) includes a d ischarged Geiger counter. some broken glass 
and a smell of burnt almonds). Unless we appl y the projection postulate. we 
cannot say that the cat is either alive or dead a t any pa rticu lar t ime. According 
to the view described in the p revio us pa ragraph, the projection postula te is no t 
to be applied un til a human o bserver interacts wit h the system; thus it is o nly 

when a wou ld-be rescuer o pens the box that the cat has a definite state. Even if 
rigor mortis has set in and the ca t-lover deduces tha t the atom decayed a t the 
beginning of the ho ur, this versio n of q uantum mechanics insists tha t the cat 
o nly entered the sta te of death when the box was o pened. 

The paradox is compounded in a n elabora tion due to Wigner. Suppose that 
when another hour has passed after the box was o pened , you go into the room 

to find ou t the fa te of the cat. If you fi nd o ut by looking for yourself, then you 
would seem to be in the same posi t ion as the other invest igato r: you will rega rd 
the cat as being in a superpositio n state like (5.36), which is o nly projected to a 
sta te o f life or dea th when the information reaches your conscio usness. 
However, if you find ou t by asking the other person what they fo und when they 

opened the box, you may rega rd the p roject ion as having occu rred a t tha t 
ea rl ier time: the cat is a lready either a live o r dead , and you a re simply finding 
o ut which. But you may alte rnatively regard the o ther person as pa rt of the 
physical uni verse, to be described by a sta te vector like anything else; in that 
case they, and the cat, and the atom a re a ll in a superpositio n sta te 

I 
fl lt/J)jcat a live) lobserve r ha ppy) 

I 
+ -y2 11/J'>Icat dead ) lobserver sad ) . (5.37) 

T he actua l state o f the cat then depends on whether the projection postula te 
sho uld be a pplied to sta tes o f your conscio usness o r to sta tes of any human 

conscio usness. Bu t then why no t feline consciousness? 
Clearly this discussion is q uite unreal. It is tempting to conclude tha t a 

superposi tion sta te I<D> +I 'I' ) means simply that the sta te is ei ther j<D) o r j'P), 
and that an experimen t just consis ts o f finding out which o f these is true. 

However, this would no t a llow the interference effec ts which a re typical of 
quantum mechanics; in the two-slit experiment, fo r example, where the states 
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I <I>> and I'¥) could be the wave functions describing the passage of the electron 
through the two slits, the assumption that the state is either I<I> > or 11.£1 ) ('the 
electron went through either hole A or hole B') would not give the interference 
pattern which results from the superposi tion I<I>> + 1'¥) . In general, 
interpreting the state I <I>> + I'~' > as 'either I <I>> or I'¥) ' would lose the distinction 
bet ween I <I>>+ e;ol'¥> for different phases 0. The difference shows clearly in the 
statistical operators for the two situations: if the state is 2 -l(i<J>) + e'"l'¥ ) ) the 
statistical operator is 

P =1CI<I>> + eiol'~' > )(< <~>I + e-io< '~' ll 

=11<~>><<~>1 +11'~'><'~'1 +~cewl'~'>< <~>l + e-illl <~>>< '~'ll (5.38) 

whereas if the state is either I <I>> or I'¥) (with equal probabilities) the statistical 
operator is 

(5.39) 

The interference effects lie in the extra terms in (5.38). This represents a 
coherent superposition of the two states, (5.39) an incoherent one, in the same 
sense as on p. 81. 

Nevertheless, it is clearly true tha t the difference between I <I>>+ I '~' > and 'I <I>> 
or I'¥ )' is not manifested by macroscopic systems of the kind we have just been 
considering; interference phenomena are not observed in cats, and if the state 
of the world is ll/l>lcat alive) + W >lcat dead) then, at least for all practical 
purposes, we can take this as meaning that either the cat is alive o r the cat is 
dead. We wi ll now see how this can be justified by arguments within quantum 
mechanics. 

Properties of macroscopic Consider the experiment described on p. 186, in which the apparatus is 
apparatus initially in the state lcx0 ) and the object is in a superposition state II/I>= L c;j!/1;) 

where II/I;) are eigenstates of the experiment. The statistical operator is initially 

Po= ll/l>lcxo)(cxol<!/11 =II/I)( !/II ® lcxo)(cxol· (5.40) 

The partial trace of this , representing the statistical operator of the object 
alone, is 

(where let>,.) is a complete set of apparatus states) 

= Ill/l )(c/.>,lcxo)(cxolc/.>, )(1/11 

=11/1><1/JI, (5.41) 

using Ilc/.>,)( c/.>,1 = I and the fact that lcx0 ) is normalised. This is just the 
statistical operator we expect for the object when it is in the state II/I). After the 
experiment, when the apparatus state has become correlated to the object state 
so that the combined state is 

(5.42) 
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the stat istical operator is 

P = j'P)(IJ'j = l:c;Eie'w,- O,lJt/l;) ja)(aiJ< t/lil 
whose partial trace is 

tr A (p) = L ( ¢,Jpj¢,) = l:c;Eie•(U,-u,Jjt/11)( ¢,ja)(aiJ¢,) ( t/lil 
II ij 

= l:clAAt/J )<t/ljl 
(since the diiTerent apparatus states jrx) must be orthogonal) 

(5.43) 

(5.44) 

=I Jc1l2 lt/l)< t/I;J. (5.45) 

This is the appropriate statistical operator for the object when it has 

probability lc11
2 of being in the state jt/1;). Thus we have 

e?.S If two systems sand A interact so that states It/!) of s become 
associated with sta tes ja) of A, the statistical operator trA (p) of S 

reproduces the effect of the projection postulate after an experiment 

on S with eigenstates It/!;)· • 

Note that the statistical operator (5.43) does not give licence to conclude 
that the state of Sis one of the jt/1) , the probabilities being Jc;j2. This can only 
be done if the projection postulate is applied to the state of the appa ratus. (In 
this connection, it is salutary to recall the comments abou t the ambiguity of 

the statistical operator on p. 184.) This status of S, in which it does not have a 
definite state but is part of a larger system which is in a pure state, is called an 
improper mixture. 

Now let us take account of the fact that the apparatus is a macroscopic 
system. This means that each distinguishable configuration of the appa ratus 
(for example, each position of the pointer) is not a single quantum state but 
corresponds to a vast number of diiTerent quantum states (to say that the 
pointer is against a certain mark on the scale does not by any means determine 
the state of motion of each molecule in the pointer). Thus in the above analysis 
the single apparatus state la0 ) should be replaced by a statistical distribut ion 
over microscopic quantum states Joc0 . , ) ; the initial statistical operator should 
be not (5.40) but 

(5.46) 

Each apparatus state Ja 0 .• ) will respond to an eigenstate Jt/11) of the object by 
changing to a state Joc1 • • > which is one of the quantum states whose 
macroscopic description is that the pointer is in position i; to be precise, 

(5.47) 

The important feature here is the phase factor, which depends on the index s. 
The diiTerences between the energies of the quantum states Joc0• , ) , in relation to 
the time r, are likely to be such that the phases 81., (mod 2n) are randomly 
dist ributed between 0 and 2n. 
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It follows from (5.46) and (5.47), with II/I) = L c;!l/1;). that the statistical 
operator after the experiment is 

(5.48) 
s. i, j 

As well as satisfy ing (5.45), so that it reproduces the projection postulate for the 
object, this also shows that the projection postulate is effectively satisfied for 
the apparatus. 'Effecti vely' here means 'i n its consequences for macroscopic 
observables'. Such an observable will be unable to distinguish between 
different quantum states wi th the same macroscopic description. so its matrix 
elements between 11/1;)1(1(;. ,) and 11/l)I!Xj. ,) will be independent of rands. If this 
is true of an observable A, its expectation value will be 

tr(pA)= L p,c;cie•W, .• - o; .• l<(l(d<I/JiiAII/J;)I(i(;,,) 
s. L j 

= '\' c ·C ,a . '\'p f~W •. ,- u,. ,! L. I ) 1jL., 5 ' (5.49) 
i, j 

Because of the random distribution of the phases 0;. ,, the sum over s will 
vanish if i # j ; hence 

(5.50) 

where 

(5.51) 
i. s 

This is the statistical operator which is appropriate if the projection postulate 
is applied to the apparatus in the sense that if the pointer is observed to be in 

position i, its state will be lex;. ,) for some s, and the probability that it is lex;., ) is 
the same as the probability that its original state was lexo. , ) . Thus we have 

es.6 Suppose a quantum system interacts with a macroscopic 
apparatus so as to introduce random phases in the apparatus states. 
Let p be the statistical operator of the apparatus after the experiment. 
calculated acco rding to the Schrodinger equation, and let p' be the 
result of applying the projection postulate top. Then it is not possible 
to perform an experiment with macroscopic apparatus which will 

detect the difference between p and p'. • 

For a wide class of possible apparatus, the randomness of the phases 

required in e5.6 has been shown to apply if the apparatus evolves irreversibly 
so as to form a permanent record of the experiment. This is the Daneri­
Loinger- Prosperi theorem (Daneri er a/. 1962). 

Continuous observation So far in this section we have concentrated on a single experiment or 
measurement, which takes place in a short time compared with the natural 
time development of the quantum system. If this time development is studied 
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by means of an experiment which covers a period du ting which the state of the 
system changes appreciably, as in determining the rate of decay of an unstable 
particle or system, the last part of Postulate III (p. 114) applies. This raises new 
questions concerning compatibility with the Schrodinger equation. 

A period of continuous observation cannot be reduced to a succession of 
short measurements, as is shown by the following: 

es.7 A watched pot never boils. Let A be an observable of a 
quantum system with eigenvalues 0 and I. Suppose that 
measurements of A are made at times 0 = t 0 , t 1, • • • , t N = T in the 
interval [0, T], and that the projection postulate is applied after each 
measurement. Let p,. be the probability that the measurement at time 
c, gives the result 0. Then if N -+ oo in such a way that 
max (p, +1 -p,.)--> 0, 

PN- Po -+ 0 (5.52) 

(so that if the system is in an eigenstate of A at 1 = 0, it will still have the 
same value of A at time T). 

Proof Let P 0 be the projection operator onto the eigenspace of A with 
eigenvalue 0, and let P 1 = 1-P 0 be the projection onto the subspace with 
eigenvalue I. Let p, be the statistical operator just before the measurement at 
time c,; then by e 5.3 the statistical operator after this measurement is 

p,.' =P0 p,.P0 + P1p,.P 1, (5.53) 

so the statistical operator just before the measurement at time c,. + 1 is 

(5.54) 

where His the Hamiltonian of the system and r, = t,. + 1 - c,.. Note that if p, is a 
sum ofk terms of the form li/1)(1/!l,p, + 1 is a sum of at most 2ksuch terms; since 
Po= li/10 )( 1/10 1, it follows that p,. contains a finite number of such terms. From 
(5.54) we have 

Pn + I= p,.'- ir,[H, p,.'] + 0(!,2). (5.55) 

Since P0
2 =P0 and P0 P1 =0, this gives 

PoPn+ 1 Po= P0 p,.P0 - i-r,JP0H P0 , P0 p,.P0 ] + 0(-r/). (5.56) 

Hence the probability that the measurement at time t, gives the result 0 is 

p, +1 = tr(p, +1 P0)=tr(P0 p, +1 P0) (because P0
2 =P0 ) 

= tr (P 0 p, P 0)- ir, tr [P 0 H P 0 , P 0 p,.P 0 ] + 0(-r, 2). (5.57) 

But P0p,.P0 is the sum of a finite number of terms 11/!)(l/tl , and for any 
operator X 

tr (X ii/1><1/!ll = <1/!IXII/I> = tr (11/1>< 1/!IXJ. (5.58) 

Hence the trace of the commutator in (5.57) vanishes, and 

Pn + I= Pn + 0(-r,. 2)· (5.59) 
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Let r = max (-r,); then there is a constant k such that 

p,_ 1 -p, ~kr,2 ~ kn:, (5.60) 
and therefore 

V I \ I 

PN- Po = I (p,. . 1 -p,.) ~ kr I r,.=krT-+0 asr-+0. • 
u = O II 0 

In some situations a system is subjected to genuine repeated interactions 
which determ ine whether it has changed or not: for example, an unstable 
particle in a bubble chamber undergoes such an interaction on each encounter 
with a molecule of the liquid in the bubble cha mber. In these circumstances 
e 5.6 indicates that the decay of the unstable particle will be slowed down by 

the continual projection of its state vector. The effect is too small to be 
experimentally detectable. 

Aharonov & Vardi ( 1980) have shown tha t given any sequence of states 
there is a continuous sequence of measurements which will fo rce the system to 
follow the given sequence of states. An interesting feature of this process is that 

if the sequence of states is a sequence of eigenstates of posi tion. so tha t it 
corresponds to a trajectory in space, then the final state acquires the phase e'5 

of Feynman's postulate, where S is the action of the trajectory. 
In situations where the system is continuously coupled to an appara tus 

which will respond to its decay the second form of Postulate III (p. 114) is used . 
ln te rms oft he sta tistica l operato r, this can be expressed by saying that if Pi are 
the projection operators onto the eigenspaces of the experiment. the statistical 
operator at time 1 is 

(5.6 1) 

If this is applied to the apparatus and object together. rather than to the object 
a lo ne. the effect is approximately the same (i.e. an approximate version of the 

measurement theorem e 5.5 can be proved; see Sudbery 1984). 

The force of e 5.7 is to show that the continuous part of Postulate Ill 
(namely (5.6 1)) cannot be deduced from the firs t part (the project ion postulate. 

p. 5 1). It can be argued that e 5.5 shows that (5.61) should be taken as 
fundamenta l and the projection postulate deduced from it. since an apparatus 
can be regarded as continuously observed. However, (5.61) has some 
unsatisfactory features: it cannot be expressed as a differential equation and (as 
a result o f this) if p(s) is substituted for p(O) in (5.6 1), the resul t is not the same as 
p(s + t). Thus the development o f the stat istical o perato r for a times followed 

by development for a time t is not the same as development for a times + t. 
Another aspect of this is tha t the development of the system from t imet is not 
determined purely by the state at timet, but is a lso affected by what the sta te 
was before time t. 

C learly Postulate Ill is in a mess. In §5.5 we will discuss proposals that it 
shou ld be el iminated entirely. 
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5.3. Hidden variables and The perplexities d iscussed in the previous section could be taken as a n 
locality indication that the quantum-mechanical state vector does not tell us 

everything there is to know about the state of a system: that there are some 
further variables, at present hidden fro m us, whose values wi ll completely 

specify the state of the system and determine its futu re behaviou r more 
defin itely than quantum mechanics a llows. Another a rgument that such 
further variables must exist was put forward by Einstein. Podo lsky and Rosen 
in 1935. 

The Einstein-Podolsky- Consider a n electron a nd a posi tron which are created together (as in Fig. 1.3) 
Rosen paradox in a sta te with total spin 0. Accord ing to e4.6 th is is the antisymmet ric 

combination of two spin-1 particles, so the spin sta te is 

I'¥> =~ (li>ll> -ll>li>> (5.62) 

where IT> and 11> denote the o ne-pa rticle eigenstates of the spin component s: 
with eigenvalues +-~ and -1 respectively, and in the two-particle spin sta te the 
state o f the electron is written as the first factor. 

Since a state with zero angular momentum is invariant under rotations, it 
must retain the form (5.62) whatever axis is used to define the basis of one­

particle spin sta tes. Thus we can also write 

J 
I'¥> =72 (1-+ >I +-> - I+->I -+ >l (5.63) 

where 1-+) and I+- ) a re one-particle eigenstates of s ... 
Now suppose the electron and the positron move in opposi te directions 

until they are separated fro m each o ther by a la rge d istance, and then the:­
component o f the spin of the electron is measured. This is an o bservable s=(e -) 
of the who le system, and after the measurement the sta te of the system will be 
projected onto a n eigensta te of this o bservable: if the measurement gave the 
value +1, then the result of the projection will be that the system is in the state 
IT> I D. This means that the positron is in the state JD, a nd a measurement of 
the z-component of its spin, s=(e +), wi ll certainly g ive the value -!.Now this 
information about the positron has been obtained by means of an experiment 
conducted a long way away from the positron, without any possibility o f 
affecting it. Einstein, Podolsky and Rosen argued that this implied that the fact 

about the posit ron discovered by the experiment, namely s=(e +)= -1, must 
have been a real objective fact which was alread y true before the experiment o n 

the electron. 
But now suppose the experiment o n the electron measures no t the :­

compo nent but the x-component of its spin. Then from (5.63) it fo llows that the 
state of the system is projected to either 1-+ >I - ) or I+- )j -+ ), so that the 
positron now has a definite value for the x-component sx{e +).Again, this must 

have been true before the experiment. Hence before the experiment the 
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positron had definite values for both s:(e +) and sx(e ... ). But these are 
incompatible observables, and have no simultaneous eigenstates: so no 

quantum-mechanical state can assign definite values to both of them. The 
conclusion drawn by Einstein, Podolsky and Rosen was that the quantum­
mechanical description is incomplete, and that there are 'elements of reality' 
which it does not include. 

Before going on to consider the possibility of making quantum mechanics 
into a more complete theory as this argument requires, let us look more closely 
at the orthodox quantum-mechanical description of the EPR (Einstein­
Podolsky- Rosen) situation. The experiment on the electron leaves the whole 

system in an eigenstate: li>ll> if s=(e - ) is measured and the answer is +t 
1--> >I<---) if sAe - ) is measured and the value is +1. This means that the 

positron is now in a definite state, ll> o r I.--- ) in these cases. which it was not in 
before the experiment. It does not mean, however, that the state of the positron 
has been changed by the experiment on the electron, because the positron did 
not have a definite state before the experiment. If we insist on describing the 
positron separa tely, we can only do so by means of its statistical operator: from 
(5.62) or (5.63) this (before the experiment) is 

Pc · = tre- l'l')('PI = -!(l i><TI + ll><!l) 
=1(1--> >< __. I+ I.--- >< .-I), 

(5.64) 

(5.65) 

which is 1 x the identity operator on the two-dimensional spin space. Now 
consider the statistical operator of the positron immediately afte r the 
experiment, before information about its result has had time to reach the 

vicinity of the positron. If the experiment measured s= , the state of the positron 
is either IT> or I!>. with equal probability, and the statistical operator is (5.64); 
if the experiment measured sx, the state of the positron is either 1--> ) or I<--- ), 
with equal probability, and the statistical operator is (5.65) - which is the same 
as in the other case, and the same as before the experiment. Altho ugh the three 
situations - before the experiment , after the s= experiment, and after the sx 
experiment- have different descriptions in terms of states of the positron, they 
all have the same statistical operator, and there is no observable difference 
between them. Thus there is no observable action at a distance between the 
experiment o n the elect ron and the distant positron; in particu lar, it is not 
possible to use the EPR experiment to send information faster than light. 

The EPR paradox was originally form ula ted not in terms of spin states but in terms of 
wave functions. Suppose two simple particles have a wave function 

(5.66) 

where 1/> 1 and 1/>2 are well separated wave packets. The x 1-dependence can be written as 
a superposition of the eigenfunctions b(x 1 -a) of x1 : 

b(x 1 -x2)= J~oo b(x1 -a)b(x2 -a) da. (5.67) 

Then if x 1 is measured and found to have the value a, the projection postulate implies 
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tha t the wave function of the two-particle system becomes b(x 1 - a)b(x 2 - a)cf> 1 c/>2, so 

that x 2 certainly has the value a. On the other hand, we can also write c5(x 1 - x 2) as a 
superposition of the eigenfunctions e ipx, /l• of p1: 

c5(x
1 
-x

2
)=- eikl<, - <,ldk. 1 Joo 

2n _
00 

(5.68) 

This implies tha t if p1 is measured and found to have the value ilk. the wave function 1/1 

becomes eih ,e- •kx,cf> 1cf>2, and so p2 certainly has the value - Ilk. The same argument as 
befo re then leads to the conclusion that particle 2 has definite position and momentum, 

in contradiction to the uncertainty principle. 

Now let us consider in what ways quantum mechanics could be 
supplemented so as to make it a mo re complete theory in the sense of Einstein, 

Podolsky and Rosen: wha t hidden variables could there be? The most obvious 
form for such a complete theory, perhaps, would be to describe quantum 
particles as made up of smaller constituents, whose positions and velocities 

might constitute the hidden variables. The behaviour of the quantum particle 
might be rigidly determined by the precise configuration of these constituents; 
the reason for the probabilistic na ture of our present laws would then be our 
Jack of knowledge of this configurat ion. However, although constituents of 
quantum particles have indeed been di scovered (namely quarks), there is no 

experimental indication that they behave in any way differently from quantum 
particles themselves. 

The characteristic featu res o f quantum mechanics (particularly the 
interference effects between probabilities) make it difficult to construct hidden­
variable theories along the lines just suggested . Indeed , for some time it was 
widely thought to have been proved (by von Neumann) that no such theory 
could reproduce all the consequences of quantum mechanics. This proof, 
however, was mistaken , as the following counter-example shows. 

The de Broglie/ Bohm pilot Consider a single simple particle moving in space in a potential V(r). Suppose 

wave theory that the particle is described a t time t not only by a wave function t/J(r, t) but 
also by a vector q(t), and tha t the wave function satisfies the usual Schrodinger 
equation 

81/J f12 
ih - = - - V 2t/J+ Vt/J , at 2m 

(5.69) 

while the vector q satisfies 

dq j(q, t) ---
dt p(q, t) 

(5.70) 

where j and p are the probability current and density int roduced in §3.1: 

(5.7 1) 

Now suppose that a t time t = 0 we have a large number of such particles all 
with the same wave function t/J(r, 0) but with varying values of q , the 
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proportio n o f the particles for which this value lies in a region d V containing q 

being p(q, 0) d V. Let this proportion at time 1 be a(q, t}; then if we think of q as 

the position of a particle we can rega rd the whole collection of pa rticles as a 

fluid with d ensity a and velocity distribution u = j/p , according to (5.70). These 
must sa tisfy the equat ion o f continuity 

OCT 
-;;-+ V· (au)=O, 
ot 

(5.72) 

i.e. 

~; = -v·(;} (5.73) 

This has a un ique solution a(r . t) if a(r. O), j(r , t) and p{r, t) are g iven. But a= p 
satisfies the equatio n. since then it becomes the continuity equation (3.42) 

which was shown to be a consequence of the Schrodinger equation (5.69). 

Hence if the dis tribu tion o f the values of q among the particles is given by pat 
time t=O, it is given by pat a ll la ter times. 

T hus we can suppose tha t every particle whose wave function satisfies the 
Schrodinger equation (5.69) has a definite position vector q, and that all o ur 

expe rimental a rrangements happen to produce particles with a particular 

dis tribution of positions: of those pa rticles whose wave function is 1/J, a 

proportion II/J(q)l 2 dV lie in the volumed Vat the point q. This will be true if the 

experimental arrangement that produces particles with wave function 1/1 has 
p robabilityt 11/112 dV o f producing a particle in the volume dV. If 1/1 and q 

develop according to the dete rministic equations (5.69)-(5.70), this statement 
of distribut ion will remain true at all times if it is true a t any one time. 

If this is to be taken seriously as a theory o f quantum particles, it must show 

how to realise the possibili ty that it admits of having a collection o f particles 

with the same wave function 1/1 but wi th a different distri bution in space from 

the usua l li/11 2
. There are no experimental indications whatsoever that this can 

be done. H o wever, the significa nce of this idea is no t so much that it is a serious 
d etermin istic theory as that it shows that such a theory can be compatible with 
quantum mechanics. 

The theo ry can be extended to discrete quantum numbers like spin , 

essentially by linking these to posit io n variables in the a pparatus by which 

they are measured (Bell 1982). It can a lso be extended to deal with several 

particles. When this is done a strange feature becomes apparent. Consider the 
case of two particles: the va riables are q 1, q 2 and a two-pa rticle wave functio n 

I/J{r 1, r 2), and the equations o f motion are the Schrodinger equation together 
with 

(5.74) 

t The argument can be framed entirely in terms of probability rather than proportions of a 
large nu mber of particles. but the Iauer idea is very useful as an a id to thought in dealing 
with probability. 



198 5 Quantum metaphysics 

where 

Here j 1, and therefore clq 1/dt, can be a function of q 2: the motion of the first 
particle depends on the position of the second particle. Thus there is an action 
at a distance between the two particles, and this is true even if the potential 
V(r 1 ,r 2) contains no forces between the particles. It is a reflection of a 
correlation between the particles produced purely by the formalism of 
quantum mechanics, if the wave function is suitably chosen. In particular, the 
EPR wave function (5.66) will produce such a correlation between separated 
particles. 

We will now see that this action at a distance is an inescapable feature of 
hidden-variable theories which reproduce the predictions of quantum 
mechanics. 

Bell's inequalities We will consider a situation in which experiments are performed on two 
separated particles, and draw consequences from the assumption that the 
result of an experiment on one of the particles is determined by the nature of 
that experiment alone, and is not affected by any experiment that may be 

performed on the other particle. This is the assumption of locality. We will find 
that it leads to restrictions on the possible correlations between experiments 
on the two particles which are not satisfied by some of the predictions of 
quantum mechanics. 

In principle there is no connection between locality and determinism. 
Locality could be a property of a theory which only gave probabili ties for the 
results of experiments, in the following way. Suppose that all probabilities are 
determined by a number of variables which we will denote collectively by 2 (in 
the case of two separated pa rticles, these could include variables describing the 
particles individually and also variables describing general conditions 
affecting them both). Then for any experiment E there will be a probability 
PE(a.l 2) of getting the result a. when the variables have the values A. The theory 
is local if experiments E and F which are separated in space are 

probabilistically independent; according to P3 (p. 42), this implies that 

PE&F(a. & {J I 2) = Pt:(a. I l)pF(.B I 2). (5.7 5) 

However, any local theory which reproduces the predictions of quantum 
mechanics for the separated spin-! particles in the EPR experiment is 

equivalent to a deterministic theory for this situation. Let E be the 

measurement of the spin component of the electron in a certain direction, and 
let F be the measurement of the spin component of the distant posit ron in the 
same direction. Let j and l denote the two possible results. Then, since the 
total spin is zero, we know that E and F always have different results; in 
probabilistic terms, 

(5.76) 
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Let p(),) be a probability density giving the probability that the variables have 

the value },; then the total probability of (5.76) is given by 

PE&~T & n =I PE&Fn & Tl..tJp(),J d), 

=I PEn I ),)pAT I ..t)p(Jc) dA. (5.77) 

If this is 0, the integrand, being positive, must vanish everywhere: 

either p(/, )= 0 or PdT I ..t)=O or pF(T I Jc)=O. 

Similarly, 

either p(Jc) = O or PeU I A) = O or PFU I Jc)=O. 

Since E has only the two possible results T and L 
pt;(T II,)=O ~ PeUI..t)= 1. 

(5.78) 

(5.79) 

(5.80) 

It follows from (5.78}-(5.80) that if p(},) #- 0, all four probabilities must be 0 or I. 
So for all values of ..t which are actually possible, the results of the experiments 
are completely determined by X 

Thus, if we assume that the probability distribution of the hidden variables is 

not affected by what experiments are to be performed on the particles, we need 
only consider deterministic theories. Suppose that the two separated particles 
can each be subjected to one of three experiments A, B, C, each of which has 
two possible results (say, 'positive' and 'negative'). Then in a deterministic local 

theory the outcome of experiment A on particle I is determined by a property 
of the system which we will denote by a 1; this is a variable which can take 
values +and -.Similarly we have variables b1, c 1, a 2, b2 , c2 . Suppose now 
that experiment A always gives opposite values for the two particles; then a 1 = 
-a2• Similarly, if Band C always give opposite results for the two particles we 
have b1 = - b2 and c 1 = -c2. 

Now consider particles which are produced with a fixed probability that 
they will have a particular set of values of a, band c. Let P(a = "1, b = I) denote 
the probability that a particle has the specified values of a and b. Then 

P(b = 1, c = - I)= P(a = I, b = 1, c = - I) + P(a = - 1, b = 1, c = - I) 

~ P(a = I , b = 1) + P(a= -l, c = -1). (5.81) 

Hence when pairs of particles are produced with opposite values of a, band c, 

Each of the terms in this inequality is a probability fo r the outcomes of 
experiments on different particles, and so the inequality can be tested even if 
the experiments A, B , C cannot be performed simultaneously on a single 
particle. 

The inequality (5.82) is violated by the probabilities calculated from 
quantum mechanics in the following case. Suppose the two particles are spin-1-

particles produced in a state of total spin 0, like the electron and positron 
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considered at the beginning of this section; then we know that a measurement 
of the component of spi n in any given direction will give opposite results for 
the two particles. Let A, B, C be measurements of the components of spin 
along three coplanar axes, with an angle () between the axes of A and Band an 
angle¢ between those of Band C. Let us calculate the term P(b 1 = 1, c2 = I) on 
the left-hand side of (5.82): this is to be interpreted as the probability that 
measu rements of spin components of particles I and 2, along axes at an angle¢ 
to each other, both give the result +1. Take the axis for particle I to be the::­
axis; then if the measurement of its spin component gives the result +t, 

particle 1 is left in the eigenstate li> and particle 2 in the eigenstate I!>- The 
eigenstates of the measurement on particle 2 are obtained by rotating li> and 
I!> through the angle ¢ (about the x-axis, say); thus the eigenstate with 
eigenvalue +~ is 

I+(¢))= e- 1~1'li> =(cos 1¢ + 2iJ x sin t¢lli> 

=cos !¢li> + i sin 1¢1!> (5.83) 

using (4.46) and (4.38). Hence the probability we are looking for is 

P(b1 = 1,c2 = 1)=tl< +(¢)1!>1 2 = tsin2 t¢ (5.84) 

(since the probability of the result +1 for particle 1 is t). Similarly, 

P(a 1 = l ,b2 = - l)= tcos 210 
and 

P(a1 = l ,c2 = l)=tcos2 t((J+¢). 

Thus (5.82) becomes 

sin 2 1¢ ~cos2 10 +cos2 1(0+ ¢) 
or 

cos() +cos¢ +cos({}+¢)~ - 1. (5.85) 

This is violated if 0 = ¢ = 3rr./4. 
To summarise, 

es.S Bell's theorem. Suppose two separated particles can each be 
subjected to one of three two-valued experiments, and that when the 
same experiment is performed on both particles it always gives 
opposite results. If the particles are described by a local theory, and if 
the probabilities of their properties are not affected by what 
experiments are going to be performed on them, the probabilities of 
the results of the experiment satisfy the inequality (5.82). 

This ineq uality is violated in quantum mechanics by the system of 
two spin-t particles having total spin 0. • 

Bell's inequality (5.82) has been tested by a number of experiments, all but 
one of which have shown (with one mild extra assumption) that it is violated 
(see Clauser and Shimony 1978). Note that quantum mechanics predicts 
greater correlation between the particles than local theories; the effect of any 
experimental inefficiency would be to destroy the correlation, so the 
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observation of a violation of (5.82) is more significant than a failure to observe 
it. 

The experiments have been performed with electron-posit ron pairs (as 
described in this section) , with protons, and with polarised photons (see 
problem 5.9). The condition tha t the state of the pa rticles should not be 
affected by the measurements to be made on them has been guaranteed by an 
experiment on pairs of photons by Aspect, Dalibard & Roger ( 1982) in which 
one photon may encounter either apparatus A or apparatus B; the change 
from one to the other occurs while the photons are in flight. This is shown in 
Fig. 5.1. 

5.4. Alternative The mathematical apparatus of quantum mechanics contains an assortment 
formulations of quantum of objects - state vectors, inner products, hermitian operators, uni tary 

mechanics operators, groups of inva riances, .... All this ironmongery is co nnected 
together in various ways. F rom the usual point of view, which is the one 
adopted in this book , these connections are seen as definiti ons of all the other 
objects in terms of state vectors, which a re regarded as basic. It is possible, 
however, to move around the apparatus and look at it from a different 
direction; then one of the other objects might appear as basic. Any of the 
objects in the above list ca n in fact be taken as fundamental and the others 
defined in terms of it. The problems of interpretation posed by quantum 
mechanics can take on a slightly different complexion if the mathematical 
formalism is swung round, so we will briefly describe some of these other 
formulations before discussing possible interpretations. 

Algebraic formulations 

F ig. 5.1. 
The Aspect experiment. 

Instead of starting with state vecto rs as the basic concept , it is possible to start 
with operators. There are already elements of this in the approach to 
particular quantum systems in this book. In Postulate IV , for example, 
describing the system of a single simple particle, we did not describe the state 
space of the system and specify how the operators X; and P; act on this space; 

instead we postulated some equations satisfi ed by the operators (namely the 

~ )j 
., }--~-~~ or 

nB / ~ Sou= ~,~~C l_j'" ,.;w. ,w;"' 1.j 

Polarisation 
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canonical commutation relations) and deduced the properties of the state 

vectors from these. In this case, because of the Stone/ von Neumann theorem, 
the state space is essentially uniquely determined by the commutation 
relations of the operators; in other cases (such as angular momentum 
operators) this is not so, but it is still true that the fundamental statements take 
the form of relations between operato rs which do not refer to the space they act 
on. They may say that the operato rs form a certain group like the rotation 
group, or that they form a certain Lie algebra like the canonical commutatio n 
relations or the angular momentum commutation relations (as we have seen, 
these are closely related). In either case the algeb raic relations between the 
operators pose a problem which is so lved by finding a linear representation of 
the algebraic system. 

An approach due to Jo rdan takes the basic objects to be hermitian 
operators in their capacity of observables. The basic algebraic operations 
between them are modelled o n the operations of addition and multiplication 
which are defined also for classical observables; this makes it possible to 

formulate a common theory of mechanics which includes both classical and 
quantum mechanics, the difference between them appearing as that between 

different structures in the same a lgebraic theory. In terms of o rthodox 
quantum mechanics the product of two observables A and B cannot be 
described by the opera tor product AB, since this is not hermitian if A and B do 
not commu te. Because of this Jordan took the product of two observables A 

and B to be the observable whose corresponding operator is 

A.B =1(A B + BA). (5.86) 

This product is commutative and satisfies 

A *(A 2 * B) =A2 *(A* B) (5.87) 

where A 2 =A* A. A Jordan algebra is a vector space on which is defined a 
commutative (but not necessarily associative) bilinear multiplication A* B 
satisfying (5.87); thus it is an algebra whose product is modelled on the 

anticommutator of operators in the same way as the product in a Lie algebra is 
modelled o n the commutatort. 

In a Jordan algebra of hermitian operators it is also true that 

A 2 +B2 = 0 => A=B=O. (5.88) 

A Jordan algebra satisfying this condition is called formally real. In a formally 
real Jordan algebra the powers of a single element obey the associative law; 
this means that it is possible to define functions of an observable to correspond 
to functions of a real variable. 

A theory of mechanics can now be characterised in terms of a set of 
observables Q which form a Jordan algebra with an identity element l. The 

t Not all Jordan algebras can be represented by linear operators with the Jordan product 
being given by the anticommutator. But those that cannot are exceptional: there is only one 
such algebra among the finite-dimensional formally real Jordan algebras which are 
algebraically simple (have no non-trivial ideals). 
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values of the observables are introduced through the notion of a status (usually 
called a 'state', but this can be confusing). A status is defined to be linear map CJ: 
Q -> 1R satisfying 

CI(A 2);::0, CJ(!) = 1; (5.89) 

CI(A) is to be interpreted as the expectation value of A in the status CJ. Then the 
statuses form a convex set. A pure state is defined to be an extreme point o f this 

set, as in §5.1. 
Suppose for the moment that the Jordan algebra Q is finite-dimensional. 

Then if it is isomo rphic to an algebra of hermitian operators on some vector 
space, a status CJ is necessarily of the form 

CI(A)= tr (Ap) (5.90) 

where p is a hermitian operator satisfying tr p = 1, and CJ is a pure state if and 
only if p = ll/1)(1/11 for some vector II/I) . Thus the state vectors can be recovered 
from the structure of the algebra of observables. On the other hand, if the 
Jordan algebra Q is associative it must be isomorphic to an algebra of 
functions on some finite set X, and a status must be of the form 

CI(A)= L A(x)p(x) (5.91) 
xeX 

fo r some function p on X; CJ is a pure state if and only if p(x) is non-zero for just 
one element xEX. 

In the infinite-dimensional case topological conditions must be imposed on 
the Jorda n algebra. Then (5.91) can be replaced by 

CI(A) = L A(x)p(x) dx (5.92) 

where p(x) dx is a probability measure on the set X; thus the phase space of 
classical mechanics can be recovered from an associative algebra of 
observables. If the Jordan algebra n is isomorphic to an algebra of operators 
on a state space, the pure states on Q a re not in one-to-one correspondence 
with state vectors but can include extra elements corresponding to.eigenbras 
of an operator with a continuous spectrum. 

Modem work along these lines tends to concentrate on C*-algebras, in 
which the product is modelled on the simple operator product. These are 
pa rticularly useful in dealing with systems with infinitely many degrees of 
freedom, i.e. field theories. 

Quantum logic An awkward feature of the use of state vectors to describe physical states is that 
the correspondence between them is not one-to-one. If we want a single 

mathematical object to describe a physical state we must declare all multiples 
of a particular state vector to be equivalent to each other, and work with the 
equivalence classes so formed. These are the one-dimensional subspaces, or 
rays, of state space, and they form the objects of a well-established 
mathematical theory, namely projective geometry. 
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A projective space can be defined to be the set of one-dimensional subs paces 
of a vector space, which in this context are called points. A line in the projective 

space is the set of rays contained in a two-dimensional subspace of the vecto r 
space, a plane is the set of rays contained in a three-dimensiona l vecto r 
subspace, and so on. This can be visualised by taking the vector space to be IR 3 

and identifying each ray wi th the point in which it intersects a fixed plane in IR3 

which does not contain the o rigin (this omits some rays, namely those which lie 
in the two-dimensional vector subspace parallel to the fixed plane; these make 
up the 'line at infinity'). 

Alternatively, a projective space can be characterised intrinsically, without 

starting from a vector space, by means of the axioms of projective geometry. 

For a projective plane, these are: 

nt Any two points lie on a unique line. 
n2 Any two lines meet in a unique point. 
n3 There is a line a nd a point not on it. 

n4 Every line contains a t least three points. 

These axioms contain only the undefined terms 'line', 'point' and 'l ie on' ('meet' 
and 'contains' are to be regarded as defined in terms of 'lie on'). Thus the 

essential structure of a projective plane can be given by listing all the points 
and a ll the lines and saying which points lie on which lines. Let us write P < I if 
Pis a point and I is a line, and Plies on I; then a projective plane consists of a set 
!f'' (points and lines) together with a relation < which holds between some 
pairs of elements of the set. We can use ~ to mean ' < o r =',as usual. Let us 
add two more elements 0 and D to !f'' to get a set .!.f, and specify 0 ~ x and x ~ IT 

for every element x of !f'; then the relation ~ satisfies 

Ll x ~x for all x E !f'; 
L2 x~y & y~z = x~z; 
L3 X~ y & y ~X = X= y; 
L4 G iven x, y E !f' there is an element x v y such that 

X ~ X V .)', .)' ~ X V .)' 

and 

X~ Z & y ~ Z = X V y ~ z; 

LS Given x,y E !f' there is an element x 1\ y such that 

X 1\ y ~ X, X 1\ y ~ y 

and 

z~x&z~y = z~xl\y. 
A set !f' with a relation ~ satisfying Ll- LS is called a lattice. The elements 

x v y and x 1\ yare called respectively the join (or least upper bound or l.u.b.) 
and the meet (or greatest lower bound or g.l.b.) of x andy. In a projective plane 
x 1\ y is the line containing x and y if they are distinct points; if x is a point and 
y is a line, x v y is y if x lies on y, otherwise it is fl; and if x and yare distinct 
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lines, X v y is n. Similarly' X 1\ y is the point of intersection of X and y if they 
are distinct lines; if xis a point andy is a line, x 1\ y is x if x lies on y, otherwise it 
is 0; and if x and y are distinct points, x 1\ y is 0. 

A possible set of axioms for a projective space (of any dimension) can be 
obtained by replacing ll2 by 

ll2' A line and a point not on it lie in a unique plane. 

If the projective spaceS is isomorphic to the space of rays in a vector space over 
a field (o r other algebraic structure) F, then both F and the dimension of the 
vector space can be recovered from the geometric structure of S. (The algebraic 
nature ofF is determined by the geometric properties of S: for example, if 
Desargues's theorem is true inS then F is associative, and if Pappus's theorem 
is true in S then F is a field.) 

The lattice description of a projective plane can be extended to a projective 
spaceS of any dimension by adding the planes, 3-spaces, ... of S as elements of 
the lattice. If S is the set of rays in a vector space V, the lattice can then be 
described as the lattice of subs paces of V, ordered by inclusion, the meet of two 
subspaces being their intersection and the join being their linear sum: 

M~N~Mr;;N, MAN=MnN, MvN=M+N (5.93) 

where M +N={u+v: uEM, vEN}, and M and N are subspaces of V. 
Lattices also occur in the contexts of set theory and logic, which are closely 

related to each other. The set of all subsets of a set forms a lattice if it is ordered 
by inclusion, the meet and join being the intersection and union of subsets: 

S~T~Sr;;T, SAT=SnT, S v T=SuT (5.94) 

A set of propositions, ordered by implication, forms a lattice if it is closed 
under conjunction ('and') and disjunction ('or'), which give the meet and join: 

P~Q¢>P implies Q, P 1\ Q=P & Q, P v Q=P or Q. (5.95) 

(In order to satisfy L3, the elements of the lattice must be taken to be 
equivalence classes of propositions, with P equivalent to Q if P ~ Q.) 

The lattices (5.94) and (5.95) differ from the subspace lattice (5.93) in that 
they satisfy the distributive law 

x 1\ (y v z)=(x 1\ y) v (x 1\ z). (5.96) 

This fails for subspaces of a vector space, as can be seen by taking M, N, P to be 
three one-dimensional subspaces of a two-dimensional space, as in Fig. 5.2. In 
this situation we have M 1\ N = M 1\ P= 0, so the right-hand side of(5.96) is 0; 
but N + P is the whole space, so the left-hand side is M. 

The lattices of subsets and propositions both have elements 0 and 1 
satisfying 0 ~ x and x ~ 1 for all x; for subsets of X the empty set is 0 and the 
whole set X is I, while for propositions the class of contradictions is 0 and the 
class of tautologies is I. It is also true in these lattices that every element x is 
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Fig. 5.2. 
Failure of the distributive law. 
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associated with an element x' such that 

OLI (x')' = x; 
OL2 x v x'= 1; 
OL3 x ::;;y <=> y' ::;; x' 

(for subsets of X, S' is the complement X- S; for propositions P' is the negation 
'not P'). Such a lattice is said to be orthocomplemented. The lattice of su bspaces 
of a vector space Vis orthocomplemented if V has an inner product: M' is the 
orthogonal complement M .l = {u: ( u, v) =0, Vv EM }. 

Now propositions can be associated with subspaces of the state space of a 
quantum system by considering, for any subspace M, the orthogonal 
projection onto M. This is a hermitian operator P.,.,1 with eigenvalues 0 and I, 
and therefore represents an observable which can take these values; we 
associate M with the proposition 'PM takes the value 1, ('PM= I' for short). This 
proposition is true when the system is in a state belonging to the subspace M. If 
N is another subspace, the intersection M n N contains simultaneous 
eigenstates of PM and P N> for which the propositions 'PM= 1' and 'P N = 1' are 
both true. These similarities between the lattice of subspaces and a lattice of 
propositions led Birkhoff and von Neumann to suggest that the two lattices 
should have the same interpretation in all respects, so that the join of two 
subspaces should correspond to the disjunction of the corresponding 
propositions: the subspace M + N corresponds to the proposition 'PM= 1 or 
P N = 1'. The failure of the distributive law then shows that propositions in 
quantum mechanics do not obey classical logic, and this is held to account for 
our difficulties in understanding quantum mechanics. 

To see· the relevance of this approach to some of the problems we have been 
discussing in this chapter, consider two state vectors I<P> and lt/t) . The one­
dimensional subspaces P and Q containing these are identified with 
propositions which we can state as 'The system is in the state 1¢) ' or ' ... lt/t ) '. 
The two-dimensional subspace N spanned by 1¢) and lt/t> is the lattice join 
P v Q, which is to be identified with the disjunction of the corresponding 
propositions: 'The system is in the state 1¢) or it is in the state lt/t)'. This is to be 
regarded as true whenever the state of the system belongs toN, i.e. whenever it 

M N 
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is a superposition of 1¢) and lt/1 ) . In §5. 1 we rejected this interpretation of 
superposition on the g rounds that it would lead to the disappearance of the 
interference effects of quantum mechanics, but this argument fails if the 
distributive law is not used . Let us examine the argument concerning the two­
slit experiment. Here 1¢ ) and It/!> are the wave functions ¢(r) and t/J(r) 
describing waves radiating from the slits A and B respectively. When both slits 
are open, and the electron is intercepted on a fluorescent screen, an 
interference pattern is observed on the screen. In this si tuation the wave 
function is ¢ + t/J; the interpretation being questioned is that the electron is 
either in the state 1¢) or in the state lt/1) , i.e. it passes through either slit A or slit 
B. The ensuing argument can be phrased as fo llows: 

T he wave function is ¢ + t/J and there is interference. ( 1) 

By assumption, the electron passes through slit A or slit B and 
there is interference; (2) 

Either the electron passes through slit A and there is 
interference 

or it passes through slit B and there is interference. 

But both alternatives of (3) are false; 

The assumption in (2) must be false. 

The step from (2) to (3) clearly uses the distributive law 

(P or Q) and R - (P and R) or (Q and R). 

(3) 

(5 .97) 

The quantum-mechanical lattice of subspaces of state space has, instead of 
the distributive law, the weaker law 

X ~ y = (x V y') 1\ y = X. (5.98) 

A lattice in which this holds is called orthomodular. Two elements of an 

orthomodular lattice are compatible if 

(x 1\ y) v (x 1\ y') = x. (5.99) 

If this holds the sublattice generated by x andy is distributive. A similar result 
is true fo r the sublattice generated by any number of compatible elements. The 
significance of this in quantum mechanics is that if a number of propositions 
can have their truth o r falsity decided by the same experimental arrangement, 

then they obey classical logic. The centre of a lattice is the set of elements which 
are compatible with all elements of the lattice. A lattice is irreducible if its centre 

is {0, 1}. 
An atom in a la ttice is an element a such that 

x~a = x =O or x=a. (5.100) 

A lattice is atomic iff or every element x there is an atom a with a ~ x. Thus the 
lattice of a projective geometry is atomic, the atoms being points; so is the 
lattice of subspaces of a vector space; so is the lattice of subsets of a set. If the 
elements of a lattice are regarded as propositions, the atoms are the mutually 
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exclusive propositions which constitute complete statements about the 
system. 

The theo ry of orthomodular orthocomplemented lattices provides a general 
framework for the discussion of physical theories, including both classical and 
quantum mechanics. A status can be defined as a function 0' from the lattice to 
the unit interval [0, 1] satisfying 

(i) 

(ii) 

(iii) 

0'(0)=0, 0'(1)= 1; 

X~ y' = O'(X V y) = O'(X) + CT(y); 

O'(X) = CT(y) = 1 = O'(X 1\ y) = 1. 

(5.10 1) 

(5.102) 

(5.103) 

These requirements (and their extensions to countable infinite subsets) imply 
that 0' is a status of the kind we have al ready met. If the lattice is distributive, 
with the completeness property that every countable subset has a least upper 
bound, then it is a lattice of subsets of some space and 0' is a probability 
measure on that space. Thus a distributive lattice corresponds to classical 
mechanics. There is no simple logical (i.e. lattice- theoretic) characterisation of 
the lattice of subspaces of state space, but Gleason's theorem states that a 
status CJ on such a latticet must be of the form 

CJ(M) = tr (PM p) (5.104) 

where p is a hermitian operator satisfying tr p = 1. 

Superselection rules The lattice-theoretic approach leads to a generalisation of quantum 
mechanics which is physically significant. The lattice of subspaces of state 
space is irreducible; considered as a logic, it is as non-classical as possible ­
every proposition is incompatible with some other proposition. It is a simple 
matter to construct a reducible lattice, which contains propositions obeying 
classical logic as well as a non-classical part. Given two lattices ~ and 2 2, we 
define their direct sum to be the Cartesian produce~ x 2 2 with the ordering 

(5.105) 

This di rect sum has a non-trivial centre consisting of the four elements (0, 0), 
{0, 1), (1 , 0) and (1, 1). The two non-trivial propositions (0, 1) and (1 , 0) obey a 
classical logic in relation to all other propositions. 

If 2 1 and 2"2 are the lattices of subspaces of two vector spaces .9';_ and .9'2 , so 
that their atoms are all the one-dimensional subspaces of .9';_ and .9'2 , then the 
direct sum has these atoms but no others: in particular, it does not have 
elements corresponding to superpositions of a vector in .9';_ and one in .9'2• Thus 
the direct sum describes a system in which the superposition principle does not 
hold: the state vecto rs of the system belong to the space .9';_ EB 9'2, but they are 
restricted to the sub spaces .9';_ and .9'2• Superpositions of vectors from different 
subspaces do not describe possible physical states. 

A rule restricting possible states in this way is called a superselection rule. 

t More precisely, a lattice of closed subspaces of a Hilbert space. 
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There is a superselection rule for each of the absolutely conserved discrete 
quantum numbers, namely electric charge, baryon number and the three kinds 
of lepton number: for example. no superpositio n of sta tes wi th different electric 
charges has ever been observed. 

Three-t,alued logic A lattice whose elements are regarded as propositio ns is sometimes called a 
logic; an orthomodu lar orthocomplemented la ttice is a quantum logic, a 
distributive orthocomplemented la ttice is a classical logic. This should not be 
confused with o ther systems of logic, in particula r the propositional calculus. 
ln a latticeofpro posi tions, ifxand ya re pro positions then x v yand x "yare 
also propositions ('x andy' and 'x o r y') but x ~y ('x implies y') is a statement 
abou t propositio ns. In the proposi tional calculus, if x andy a re propositions 
then so are x v y, x A y and x => y ('x materially implies)"). In th is system the 
notion of truth value plays a central role; this is an assignment to every 
proposition of a value ' true' or 'false', with rules giving the truth val ues of 

x v y, x " y, and x =>y in te rms of those of x andy. The relat ionship between 
the two systems can be seen by writing I for ' true' and 0 fo r 'false'; then an 
assignment of truth values to a set of propositions can be regarded as a status 
which only takes the values 0 a nd I. It can be shown (problem 5.13) that 
(5.10 IH5.103) then imply the usual rules for the truth values of x v y a nd 
X 1\ y. 

However, it is easy to see that it is impossible to assign truth values to the 
lattice of subspaces of a sta te space. (Proof Let x be a o ne-dimensio nal 
subspace with truth value a(x) = I, X a two-dimensio nal subspace containing 
x. Then a(X)= 1. Any other one-dimensional subspace y~X must have 
a(y)=O, for a(y)= I wo uld imply a(O)=a(x A y)= I. But we can find 
o rthogonal y and :, different from x, such that y v :=X; hence a( X )= 

a(y v z) = 0, which is a cont radiction.) In other words, if a system is in a state 
which is not an eigenstate of an observable A, a sta tement ' A has the value a.' is 
neither true nor false. To cater for this it has been suggested that the classical 
propositio nal calculus shou ld be extended to admit a third truth value 
'undecided'. The rules giving the truth values of x v y a nd x " yare extended 
as follows: 

Table 5.2. Truth table fo r three-valued logic 

X u u u 

y u u u 

XAY u f u u 

xvy f u u u 

For further details see W allace Garden 1984 or Reichenbach 1944. 
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5.5. Interpretations of This section consists of a summary of the main answers that have been 
quantum mechanics proposed to the questions of what quantum mechanics means and what it can 

tell us about the physical world. First we will look cursorily at some general 
views on what any scient ific theory can mean: this is just a list of isms. Then, 
afte r reminding ourselves why quantum mechanics calls for interpretation so 
much more than classical mechanics, we will examine the various applications 
of these isms to quantum mechanics. paying particular attention to the 
question of whether they can be reconciled wi th each other. 

Some meta-scientific 
vocabulal"y 

(vocabulary for use in statements a/Jour scientific sta tements). 
Empiricism is the doctrine that the justification for any belief can only, 

ultimately, come from sense experience. There is room for a considerable range 
o f views about what beliefs are justified, and to what extent, by what 

experiences; an extreme position is solipsism. which is the belief that nothing 
exists outside oneself. 

Positivism is the view that the meaning of any statement resides in the way it 
is to be verified (which must be by consulting sense experience - in the scientific 
context, this means doing an experiment). If a statement is not verifiable, it is 
meaningless. (This is the verification principle.) However, most scientific laws 
are not verifiable, since they a re general statements and cover an infinite 

number of cases; according to the verification principle, this book is entirely 
meaningless. A more realistic account of the relation between meaningfulness 
and experiment is Popper's falsification principle, according to which a 

statement is meaningful if it can be falsified by experiment; that is to say, if the 
statement has logical consequences which can be found empirically to be false. 
(Popper actually proposed this not as a condition for meaningfulness, but as a 
criterion for a sta tement to be scientific.) 

Operationalism is the view that individual terms in a scientific theory should 
be defined by reference to experimental procedures. The model theory for this 
view is the special theory of relativity, with its operational definitions of 
distance and time. A more permissive account is tha t a scientific theory is a 
hypothetico-deductive system. which may refer to unobservable quantities in 
its basic postulates, and need o nly give empirical meaning to quantit ies 
derived from the basic ones. Quantum mechanics provides a good example of 
this procedure: the state vector II/I) is not defined in operational terms, and it is 

only the derived quantities 1<4> I 1/1)1 2 that relate to experiment. 
Pragmatism is the general philosophical view that the meaning of a 

statement resides in the way in which it governs our actions: it is true if it is 
useful. Instrumentalism is the related view concerning scientific theories, that 
they are to be regarded as instruments fo r making predictions about the results 
of experiments. 

The peculiarities of 1. Indeterminism. Quantum mechanics differs radically from previous 
quantum mechanics physical theories, not just because its assertions are probabilistic, but because 
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of the fundamental status that is claimed for these assertions. Other uses of 
probability in physics arise in statements of partial knowledge a bout a 
situation; it is assumed that it would be possible to obtain furthe r knowledge 
which would resolve a probability into certainties. If quantum mechanics is 
taken as a final theory, however, it must be accepted that there is no possibility 
of such further knowledge. 

This feature of quantum mechanics is not hard to understand, but it is hard 
to accept. Until the advent of quantum mechanics it had been a basic 
assumption of physical science that every event had a cause; if the fundamental 
laws are probabilistic then some aspects of some events a re uncaused. The 
feeling that to accept this is to do violence to the scientific spirit was expressed 
by Einstein in his famous saying 'I cannot believe that the good Lord plays 
dice'. To put this in a slightly different light, a general statement like 'every 
event has a cause' can be regarded not a statement of fact (it can never be 
falsified), but as a statement of intention: we are going to look for a cause for 
every event. Then quantum mechanics constitutes a n admission of failure. 

It is sometimes argued that the indeterminism of quantum mechanics is to 
be welcomed as allowing free will. Readers wishing to pursue this line of 
thought should be aware of the argument that 'free will' neither means nor 
implies the existence of uncaused events. Many thinkers believe that free will is 
compatible with (indeed, requires) determinism; see Berofsky 1966. 

However palatable or unpalatable it may be, indeterminism raises no 
conceptual problems which a re peculiar to quantum mechanics. In examining 
any proposed interpretation of quantum mechanics, it is important to 
consider to what extent it serves to elucidate probability statements in general 
and to what extent it specifically attends to quantum mechanics. 

2. Indeterminacy. The way in which properties are ascribed to particles and 
systems in quantum mechanics is a more puzzling departure from the 
procedures of classical mechanics. This has two aspects. First, there is the 
denial of definite values for properties which every particle .must have in 
classical mechanics - the fact that a particle need not have definite position or 
momentum (and cannot have both simultaneously). It is particularly puzzling 
that although a particle can have a definite position a t one time, it cannot have 
definite positions at all times in an interval (i.e. a definite t rajectory), since that 
would give it also a definite momentum. One might argue that there is nothing 
special a bout the properties of position and momentum, and we should not 
necessarily expect a pa rticle to have them any more than we expect it to have a 
definite shape, smell o r sense of humour, but there is a deep-seated feeling that 
position and momentum are 'essential' properties (as opposed to 'accidental' 
ones) and that a pa rticle is inconceivable without them. 

Secondly , and more seriously, there is the indeterminate status of a 
property of a system (i.e. an observable) when the system is not in an eigenstate 
of it. Does the system have this property or not? Since the observable can be 
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measured and will be found to have a definite value, we cannot say that 
statements about it are meaningless; on the other hand , any statement that the 
observable has a particular value will be falsified by some experiment on the 
system when it is in this state. 

Indeterminacy is related to indeterminism, since it is the fact that the results 
of measurements are not rigidly determined by the state vector which makes it 
impossible to ascribe definite values of an observable to a system; but they 
shou ld be distinguished, since there are conceivable theories in which all 
observables have definite values but the development of the system is not 
uniquely determined by those values. 

3. Inseparability. The peculiarities of state vectors of the form lc/> 1 >I t/! 1) + 
lc/> 2)11/1 2 ), for a system composed of two subsystems, have been discussed in 
§5.2 in connection with the Einstein- Podolsky- Rosen paradox. When the 
whole system is in a state of this form, it is not possible to say that ei ther 
subsystem is in a definite state. but it is possible to gain information about one 
subsystem from an experiment performed on the other. 

In principle, therefore, quantum mechanics denies the possibility of 
describing the wo rld by dividing it into small parts and completely describing 
each part - a procedure which is often regarded as essential for the progress of 
science. Because of this feature. quantum mechanics is sometimes called a 
holistic theo ry. 

4. The projection postulate. The difficulties associated with the projection 
postulate were discussed in detail in §5.2. To summarise, they are: 

I. The projection postulate is ill-defined: there is no precise definition of 
what constitutes a measu rement. and no specification of the time at which 
projection is supposed to occur. 

2. It is dualistic, requiring a division of the world into (microscopic) object 
and (macroscopic) apparatus. It also splits the law of time development into 
the deterministic Schrodinger equation and the probabilistic projection 
postulate. 

3. It is anticausal: as Schrodinger's cat pa radox illustrates, it makes physical 
events consequences of their observation, instead of saying that events are 
observed because they happen. 

4. It gives no account of continuous observation. 
In discussing the various interpretations of quantum mechanics we wi ll pay 

particular attention to the way they explain the projection postulate. 

Nine interpretations An interpretation of quantum mechanics is essentially an answer to the 
question 'What is the state vector?' Different interpretations cannot be 
distinguished on scientific grounds - they do not have different experimental 
consequences; if they did they would constitute different theories. They can, 
however, be rationally compared with regard to their intelligibility and 
satisfactoriness as explanations. No one interpretation is generally accepted 



5.5 In cerprera r ions 213 

(although the phrase 'the Copenhagen interpretation' is often used as a 
synonym for 'orthodoxy', whatever the user thinks that is; it has been applied 
to at least four different interpretations). After each interpretation we will give 
the main objections to it. These are not meant to be definitive, or even 
necessarily meaningful; you may well decide that some of them are wrong or 
do not make sense. On the basis of these objections, however, it will be argued 
that many of the differences between interpretations are more apparent than 
real , and that on analysis a number of the interpretations turn out to be saying 
the same thing in different ways. 

1. The minimal interpretation 
On this view, which was strongly expressed by Bohr, one should not attempt to 
interpret the state vector in order to extract information about quantum 
objects; one should not even speak of quantum objects. The state vector is just 
a mathematical device used in calculating the results of experiments; to 
perform such calculations successfully is the sole purpose of any scientific 
theory. The experiments must (logically must) be described in the terms of 
classical physics, since the apparatus consists of macroscopic objects; we do 
not know how to describe our experiences with such objects to each other 
except in the terms of classical physics. If we mention microscopic objects it is 
only as a shorthand device to refer to some features of a calculation which 
relates different classically described states. 

In following this interpretation it is important to distinguish between 
preparation and measurement of a system. A preparation occurs at the 
beginning of an experiment and is associated with a state vector lt/10 ); a 
measurement occurs at the end of an experiment and its various possible 
outcomes are associated with bra vectors (¢1 1, ( ¢ 21, .... The experimental 
arrangement is associated with a Hamiltonian H and a time t; then the 
probability that the measurement has the ith outcome is 

Pi= I< <Piie- iHrfhlt/lo>l2· (5.106) 

Note that lt/10 ), H and <<Pil a re all defined in terms of macroscopic 
experimental arrangements. 

This view dissolves all the puzzles concerning quantum objects, since there 
are no objects to be puzzled a bout. There is no projection postulate, for any 
calculation concerns only a preparation and a measurement, and cannot be 
extended to describe anything that happens after the measurement. If an 
experiment carries on after a measurement M which gave the result o:, then one 
is embarking on a new experiment whose preparation procedure consists of 
performing the measurement M and selecting the cases in which the result was 
o:. There is nothing surprising in the fact that this preparation has associated 
with it a state vector I<Pi> which is different from e-iHrthlt/10 ) . 

Some preparation procedures will be associated not with a state vector ll/10 ) 

but with a statistical operator p0 (for example, one might prepare a beam of 



214 5 Quantum meraphysics 

elect rons without fi xing their spins). I n such a case the probability (5. 106) must 

be replaced by 

(5.107) 

where P; is an appropria te projection operato r, which reduces to (5. 106) fo r a 
pure sta te (p0 =II/I 0)< 1/1 0 1). Thus in this interpretation there is no logical 
d istinction between a pure state a nd a general sta tistical opera to r; both 
descri be prepa ration procedures. Hence our term '(experimental) status'; 
hence also the usage of 'sta te' to refer to sta tistical operators. 

Objections. This in terpreta tion has been called 'extended solipsism'. A 
so li psist refuses to accept tha t the experience of seeing a t ree is evidence tha t 
the tree ex ists; there a re only sense experiences. Likewise, a follower of the 
minima l interpretation refuses to accept that the formation of a charged 

pa rt icle t rack in a bubble chamber is evidence fo r the existence of the charged 
pa rt icle; there a re only macroscopic events. This is a sol ipsism on behalf of 
macroscopic a ppa ra tus towards the microscopic objects they perceive, and is 
as implausible as the human version of solipsism. 

Moreover, it canno t be true that the so le purpose of a scientific theory is to 
predict the resu lts of experiments. Why on earth would a nyone want to p redict 

the results o f experiments? M ost o f them have no practical use; and, even if 
they had. practical usefulness has nothing to do wi th scientific inqui ry. 

Predicting the results of experiments is not the purpose of a theo ry, it is a test to 
see if the theory is true. T he pu rpose of a theory is to understand the physical 
world . 

Although the instrumenta list philosophy which underlies the minimal interpreta tion 
is often expressed in the fo rm given here. and is o pen to the above objection, Bo hr's 

fo rmula tion was less crude: 'The task o f science is both to extend the range of our 
experience and red uce it to order'. Heisenberg combined this with an opera tiona list 

view which derived from his own d iscovery of mat rix mechanics, which he developed by 

considering matrices of frequencies of spect ra l li nes. He taught tha t a t heo ry should 
only conta in experimenta lly o bservable quantities, and proposed that this principle 

should be applied to elementa ry pa rticle physics by renouncing all mention of the time 

evolution of t he sta te vecto r between preparation and measurement. This more rad ical 

fo rm of quantum mechanics is called S-matrix theory, and stands in opposition to 

quantum field theo ry. As will be seen in C hapter 7, it has not been successful as a theory 

of elementa ry pa rticles; in this area quantum field theory has been triumphant. 

It is no t necessa ry to be so austere as to renounce all belief in quantum 
objects to embrace the a bove solution of the problem of measurement, namely 
that being careful to distinguish between preparation and measurement makes 
the projection postulate unnecessary. In answer to the question 'What is the 
state of a system after a measurement?' it has been argued (particula rly by 
Margenau) that true measurements on a quantum system a lways destroy the 
system. F o r example, to measure a component of pola risa tion of a pho ton one 
must not only pass the photon through a doubly refracting crystal (Fig. 2.2) 
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but also detect it when it emerges from the crystal; and the act of detection (say, 
by making it impinge on a photographic plate) destroys the photon. This 

argument denies that there a re any measurements of the first kind (p. 48). 
However, such measurements must exist for macroscopic apparatus, which 
must retain a permanent reco rd of the results of experiment: thus this solution 
of the problem of measurement depends on refusing to extend quantum 
descriptions to macrosco pic objects. 

References: Bohr 1958. Stapp 1972, Peres 1984. 

2. The literal interpretation 
This is the in terpretation which is implicit in most modern textbooks 
(including this one, so far). They speak as if the sta te vector (more precisely, the 
corresponding point of projective space) is an objective property of a system in 
the same sense as the values of coordinates and momentum are objective 
properties of a system in classical mecha nics. The projection postulate is then a 
sta tement about an actual change in the state vector fo llowing a measurement. 

In this interpretation indetem1inism and indeterminacy are simply accepted 
as facts about the world. Insepa rability means tha t it is not possible to apply 
this interpretation to subsystems; one cannot say tha t individual objects have 

state vectors. but is fo rced to consider the state vector of the universe. 

Objections. The sta te vector cannot be an objective property of an individual 
system, for in general it is no t possible to establish by experiment that the sta te 
vecto r is one vector rather than another. For example, if II/I) is an eigenstate of 
an observable A with eigenvalu e a, and if 14>> is not orthogonal to II/I) , then a 

measurement of A which gives the value a does not prove that the state vector 
is II/I> rather than 1¢), because the measurement might give this result when 
the sta te is 1¢) . (This argument is valid if it is assumed that an objective 
statement must be capable of being proved true by experiment, but not if it is 
only assumed that there must be a possibility that it could be proved false. As 
Popper pointed out, the latter is the normal si tuation in science.) 

All the unsatisfactory features of the projection postulate, as listed above, 
stand as objections to the literal interpretation of quantum mechanics. 

3. The objective interpretation 
The literal interpretation can be modified by supposing that the state vecto r is 
restricted to lie in certain subspaces of state space, and that it makes 
spontaneous and instantaneous transitions from one of these subspaces to 
another with probabilities determined by the solution of the Schrodinger 

equation. If the state space is 

(5. 108) 

where ff'; are the allowed subspaces, and if the solution of the Schrodinger 
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equation is 

11/t(t) ) = 11/t I (t}) + 11/t it))+. . . With ll/t1(t)) E 51, (5.109) 

then the state of the system at time t is assumed to be one of these ll/t1(t)), the 
probability that it is ll/tlt)) being 

(5.110) 

This statement is the same as the continuous part of the projection postulate 
(p. 114; see also (5.61)). It can be derived from the following assignment of 
probabilities for the transition from one subspace to another: 

Bell's postulate. The probability that the state of the system is in the 
subspace 51 at timet and makes a transition to S'j between times t and 
t + bt is w 11 bt, where 

_ {2 Re [(if1) - 1 < l/t1(t)IHII/t1(t))] if this is ~ 0, 
wii- 0 if it is negative. (5.111) 

Then we can prove 

es.9 The probabilities (5.110) follow from Bell's postulate. 

Proof First we cast the statement of probabilities (5.110) in the form of a 
differential equation. Let P1 be the projection operator onto 51, so that 

d 
ll/t1(t)) = P1ll/t(t)) and in dt ll/t1(t)) = P1H II/t(t)). 

Then 

(5.112) 

Now Bell's postulate gives the probability that the state of the system is in 
the subspace 51 at timet + bt as the probability that it was in 51 at time t, minus 
the total probability that there was a transition out of 51 between t and t + bt, 
plus the probability that there was a transition into 51 in this time: 

p1(t + bt) = p1(t)- L wii bt + L w11 bt, (5.113) 
i"i }"i 

so that 

(5.114) 

For a given i , let P be the set ofj for which the first condition in (5.111) holds, so 
that the imaginary part of (l/t1(t)IHII/t1(t)) is positive or zero,and let N be the set 
ofj for which it is negative. Since His hermitian, (l/t1IHII/t) and (l/t1IHII/t1) are 
complex conjugates and so their imaginary parts have opposite signs. Hence 

j E P = w11 ~0 and w11 =0, 

j EN = wii=O and w11 ~0. 
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which gives 

dpj 
- ,, =L:(Irji-11';)= -I ll'ij+ L: 11'ji 
( j JE P JE \ 

JE I' 

= L 2 lm [h - 1( 1/J;jHII/Ii)] 
j 

jf N 
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{5.1 15) 

which is the same as {5.112) since 11/1(1)) = Li 11/Jil)) . For a given probability at 
1=0. therefore, the solution P;(t) is the same as that of {5.1 12}. namely 

<1/J;(r) 1 1/J;(rJ>. • 

There are a number of possibilities for the subspaces .5/f. They can be taken 
as the eigenspaces of macroscopic observables. or they can be defined in 
microscopic tenns, for example as the spaces with definite numbers of particles 
of some specified kind (e.g. photons. or fenn ions). 

This interpretation eliminates all mention of measurement and projection, 
and thus avoids all the problems associated with the projection postulate. 

Objections. Since the equation (5.110) for the probabilities involves all the 
states 11/1;(1)) , the development of the system is not solely detennined by the 
state that it happens to be in. The whole state 11/J(t)) must be regarded as a 
property of the system as well as one of the jl/l;{r)) . Thus the interpretation 
involves a proliferation of properties of the system. Moreover, some of these 

properties cannot be detennined by experiment. In an experiment, accord ing 
to this interpretation, one detennines the state 11/J;(l}) in one of the subspaces 
.5/f; yet its future evolution is detennined by the accompanying states 11/Jit}) , 
which the experimenter cannot know about. (The proliferation of properties 
can be a voided by abandoning the use of a differential equation to describe the 
development of the system. In this case the experimenter's failure to detennine 
future probabilities stems from their lack of knowledge of the past history of 
the system.) 

It is not clear to what extent this interpretation is compatible with special 
relat ivity. Because of EPR effects, the state vector must be taken as describing 

the entire universe, and instantaneous transitions in this state vector seem to 
conflict with the fact that simultaneity is relative. 

Finally, the freedom in the choice of the subspaces 51 casts some doubt on 
the objectivi ty claimed for the state vector which lies in one of these subspaces. 

Reference: Bell 1984. 
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4. The epistemic ('subjective') interpretation 
Instead of being taken as an intrinsic property of the system, the state vector 
can be regarded as a representation of the observer's knowledge of the system. 
Then indeterminacy in the values of observables becomes simply lack of 
knowledge of these values; and both inseparability and the projection 
postulate lose their mystery. There is nothing mysterious in the fact that the 
state vector of a system changes after a measurement ifthatjust means that the 
observer's knowledge changes; the very purpose of a measurement is to 
increase one's knowledge. Similarly, in the EPR situation there is nothing 
mysterious in the fact of an experiment on one object changing the state (i.e. 
one's knowledge) of a distant object; I change my knowledge of distant objects 
every morning "Yhen I pick up the newspaper. 

Objections. Because it refers to a particular observer, this interpretation is 
sometimes criticised for being subjective. However, the concept of knowledge 
contains both subjective and objective elements: a statement that a person N 
knows a proposition Pis a statement both about the person (that they believe 
P) and about the proposition (that it is true). The subjective element can be 
removed from the epistemic interpretation by considering all possible 
observers and defining a unique state vector for the system as that which 
represents the maximum possible knowledge which any observer can have. 
This is then an intrinsic property of the system, so that we are back to the literal 
interpretation. 

The attempt to explain a way the projection of the state vector as simply an 
increase in knowledge is shown to be unsuccessful by considering the 
maximum obtainable knowledge. If this changes, it must be because of a 
change in the system itself; and the problems of when this happens, and why it 
should happen when it cannot be derived from the Schrodinger equation, 
remain unresolved. This can be clearly seen by considering the case of a 
decaying unstable particle; when the observer acquires knowledge that the 
particle has decayed, this is clearly because it has decayed. The idea is more 
plausible when applied to an instantaneous measurement, but it is hard to 
distinguish it from the classical idea that the function of a measurement is to 
find out something which is already true. This is to make the mistake of 
confusing a superposition ja)+jb) with a mixture 'ja) or jb)'. 

On the other hand, if one is prepared to accept the charge of subjectivity and 
insists that the state vector refers to the knowledge of a particular observer, 
then one faces the question 'What is it that that observer knows?' If it is 
something about the system, we are back to the literal or objective 
interpretation; if it is something about the results to be expected from future 
experiments, we are back to the minimal interpretation. 

Reference: Heisenberg 1959. 
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5. The ensemble interpretation 
Some authors (including Einstein) deny that the state vector describes the state 
of an individual system: it can be properly applied only to a large number of 
systems, all prepared in the same way. This collection of systems is called an 
ensemble. Then the probabilities I< l{t I t/t ;)12 in Postulate II refer to the fraction 
of the ensemble in which an experiment has a particular result. Those systems 
for which a result ex; was obtained in the experiment constitute a subset of the 
original collection , and therefore form a different ensemble; naturally, this is 
described by a different state vector. Thus the process of projection is not an 
interruption to the Schrodinger evolution of the ensemble, but a shift of 
attention to a different ensemble. 

If an ensemble E 1 containing N 1 systems is combined with a different 
ensemble £ 2 containing N 2 systems, the resulting ensemble is called a mixture 
of £ 1 and E 2. If £ 1 and £ 2 are described by state vectors lt/t 1 ) and lt/t2 ), the 
mixture is described by the statistical operator 

(5.116) 

Thus in this interpretation, as in the minimal interpretation (and also in the 
epistemic interpretation), there is no conceptual distinction between a status 
and a pure state (i.e. a description by a statistical operator and a description by 
a state vector). 

Objections. This interpretation is not add ressed to the specific problems of 
quantum mechanics, but is a way of understanding any probabilistic theory. 
As an account of probability its defects have been discussed in Chapter 2 
(p. 43). The concept of an ensemble is vague, because it is not clear what is 
meant by 'a large number' of systems. If the statements about fractions of an 
ensemble are to be experimentally meaningful, the ensemble must consist of a 
finite number of systems. But then there is the possibility (remote but 
undeniable) that an experiment on the ensemble will yield results in 
proportions different from those given by the theory, and one cannot claim 
that these proportions are definite predictions of the theory. 

On the other hand, if the ensemble is infinite and any finite collection of 
systems is just a sample from it, then the ensemble has no empirical reality: it is 
a theoretical entity associated with a particular system in exactly the same way 
as the state vector is associated with the system in the literal interpretation. 
The ensemble has an advantage over the state vector in that it exists (in this 
theoretical sense) when the state vector does not; for example, in an EPR 
experiment with two separated electrons in a state of total spin 0, neither 
electron has a definite state vector but each can be associated with an ensemble 

described by the statistical operator 1<li>ID + IDii> ). The fullest possible 
description, however, must encompass the complete system of two electrons 
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and assign it a definite state vector; this has the same conceptual sta tus as an 
infinite ensemble oft wo-electron systems. 

As with the epistemic interpretation. the account of the projection postulate 
offered by the ensemble interpretation does not resolve any problems. If an 
ensemble can be d ivided into experimentally distinguishable subensembles, it 
is a mixture; an ensemble described by a single state vector is homogeneous, in 
the sense that there is no detectable distinction between its members. ln the 
cou rse of an experiment an initially homogeneous ensemble becomes a 
mixture. This is an objective change in the ensemble which cannot be 
explained away in te rms of a shift of a ttention o n the pa rt of the observer. 

Reference: Ballentine 1970. 

6. The relative-state and many-worlds interpretations 
Everett's relative-state interpretation is a versio n o f the literal interpretation 
which makes it possible to speak of the state of a subsystem. It insists, however, 
that the state of any system has no absolute meaning but is only defined 
relative to a given state of the rest of the universe. The only state which has an 
absolute meaning is that of the whole universe, including all observers and 
their consciousness. The idea can be demonstrated by considering a system S 
with two states II/I 1) and j¢2 ) ; then the state of the universe can be written as 

j\fl) =II/I 1 ) ja 1) +II/I 2) jo: 2 ) (5. 117) 

where jo: 1) and jo: 2 ) are states o f the rest o f the universe which could include 
states o f an apparatus showing different results of an experiment whose 
eigenstates are II/I 1 ) and II/I 2 ). Then the sta te of the system, relative to the state 
ja1) of the rest of the universe, is II/I 1 ) . This incorporates the projection 
postulate by emphasising tha t it is a conditional statement - if the result of the 
experiment was a 1 , then the state o f the system is j¢ 1)- and includ ing this 

conditionality in the forma lism. (The conventional formu lation, as in 
Postulate III. has an antecedent which refers to experience and puts o nly the 
consequent in the formalism.) By developing von Neumann's theory of the 
measurement process (see §5.2), Everett ( 1957) proved the consistency of th is 
procedure of retaining the full state vector (5. 117) and showed that it could 
account for the agreement between different observers about what they 
thought had happened in a particular experiment (even though another part o f 
the universal state vector described a different result). He also showed that 
Postulate II , giving the probabili ties of the different results of an experiment, 
could be reduced to a natural probability distribution o n state vectors. {This 

result is claimed to mean that 'the fo rmalism yields its own interpretation'.) 
The many-worlds interpretation is a picturesque account of the relative­

state interpretation which describes the state of the universe given by (5. 117) as 
a universe which has split into two branches, in o ne o f which the sta te of the 

system is II/I 1 ), the experiment has given the corresponding result o: 1, and a ll 
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observers are aware of that result; while in the other branch the course of 

events has gone according to the state lt/t 2 ) . In general , wherever the 
conventional theory requires an application of the projection postulate the 

many-worlds interpretation says that the universe splits into parallel worlds of 
the kind familiar from science fiction stories such as Philip K. Dick's The M an 
in the High Castle (Dick 1962). It can accommodate possible interference 
between different terms in the universal state vector by assuming that the 
different strands of the universe can recombine. 

Objections. The relative-state interpretation differs very litt le from the 
objective interpretation. By making the universal state vector develop purely 
according to the Schrodinger equation, it does not formally include the 

indeterminism which is nevertheless present in the reality experienced by any 
of the observers it describes. It might seem more honest to make the formalism 
describe that reality and no other, i.e. to drop the parts of the universal state 
vector which describe a situation which we actual observers know to be false. 
However, by not doing this the relative-state interpretation avoids the 
ambiguities of the projection postulate. 

The many-worlds interpretation sells the pass. To say that an experiment 

had a result Pin some parallel universe (when we observed it to have the result 

ex) is surely just another form of words for saying that it might have had the 
result p, but didn't. We are perfectly entitled to define the ' real world' to be the 
one in which what we observed to happen did happen; then the splitting of the 
universe into several branches, only one of which is real, is exactly the same 
process as that described by the projection postulate, and is beset by exactly 
the same problems of defining when and under what circumstances it sho uld 
happen. 

In defence of the many-worlds interpretation, it can be claimed that it is 
justifiable to cal l an event 'real' if it can have an observable effect, and that this 
is true of the experimental results which we did not observe, because of 
possible interference between different parts of the universal state vector. 
These effects are present in the objective interpretation, in which the situation 

is described by saying that the future development of the system is affected by 
the unrealised possibilities for the results of past experiments. The difference 
between this and the statement that these possibilities have been working 
themselves out in an alternative universe is purely verbal. 

Both the relative-state and the many-worlds interpretation are open to the 
objection that they do not make it possible to represent the knowledge 
obtained from experiment. If an experiment on a system has the result cx 1 , 

corresponding to the eigenstate lt/t 1 ) , and if lcx 1 ) is the appropriate state of the 
apparatus and the experimenter and the rest of the universe, o ne cannot 

deduce that the state of the universe is lt/t 1 >lcx 1 ); it might be lt/t 1 >lcx 1 ) + lt/t 2 ) lcx 2) 

or lt/1 1 >lcx 1 ) +!lt/t 2) icx2 ) . One can, however, deduce that the relative state of the 
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system is II/I 1 ) ; and it can be argued that there a re logical reasons why one 
should not be able to represent oneself in a theory. 

References: DeWitt & Graham 1973, Borges 1941. 

7. The quantum-logical interpretation 
Quantum logic (described in §5.4) was developed to support the contention 
that difficulties in the interpretation of quantum mechanics all stem from the 
use of classical logic in discussing physical systems. An analogy is drawn 
between logic and geometry in their relations to physics: just as Euclidean 
geometry is only one among several possible forms of geometry, and the 
question of which geometry applies to the physical world is to be decided 
empirically, so. it is argued, classical logic is only one among several possible 
forms of logic, and the laws of physics may show that it is not valid in the real 
world. This is what happens if we interpret subspaces of state space as 
propositions, with the lattice symbols .:;;; , v and " interpreted as 'implies'. 
·and' and 'or' as described in §5.4. 

This interpretation is directed mainly against the problem of indeterminacy. 
The idea is that it makes it possible to assert that a system has definite values 
for all observables, even though some of them are incompatible. For example, 
let X denote the position of a particle moving in one dimension, and let P 
denote its momentum. Let p1 , p2 , •.. denote the possible values of P (written as 
if they were cou ntable for convenience). Then a proposition X =x is 
incompatible with each of the propositions P = p1• Nevertheless, X= x is 
compatible with the proposition 'P= p1 or P= p2 or .. .' (i.e. 'P has some value') 
because, according to non-distributive quantum logic, 

(X=x) and (P = p1 or P = p2 or ... ) 

is not eq uivalent to 

(X=xandP=p.J or (X=xandP=p2) or ... . 

This solution of the problem of indeterminacy brings with it a solution of the 
problem of measurement. If every observable has a definite value, then the 
process of measurement simply reveals what that value is, and the projection of 
the state vector is a matter of refining the propositions that are true of the 
system (moving from 'P =p1 or P=p2 or .. .' to 'P=p 1', say). The problems of 
inseparability can be resolved in a similar way; EPR correlations between two 
subsystems are explained as correlations between their separate properties 
dating from the time of their joint production. Bell's theorem, which normally 
shows that this explanation is incompatible with locality, can be discounted 
since it uses classical (distributive) logic. 

Objections. This interpretation is based on nothing but a mathematical pun. 
To interpret v (the linear sum of subspaces of state space) as the logical 
connective or is to change the meaning of'o r' too drastically to be acceptable: 
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amo ng o.ther things. in quantum logic the statement ·p v Q is true' does not 

imply ·either P is true or Q is true'. This means that it is only in a very weak 

sen se that quantum logic makes it possible for every observable to have a 

value. We saw on p. 209 that it is not possible to suppose that every quantum 
proposition is either true o r false. 

The a nalogy between logic and geometry is superfic ia l. It is possible to 
fo rmulate no n-Euclidean geometry without using or mentioning Euclidean 
geo metry, but it is not possible to formulate quantum logic wi tho ut using 

classical logic (in the meta-theory). Thus the solu tio ns to the problems of 
measurement a nd inseparabili ty a re cheap; they depend on a selective ban on 
the distributive law. If quantum logic we re consistently adopted as a logic in 
the true sense o f the word (i.e. a method of reasoning), it would involve 
reco nstruct ing the who le of mathematics - a herculean and probably 
impossible task. 

If it is admitted that a rguments about quantum propositions must be 
conducted according to classical logic - this is the normal situation in 
ma thematical logic - then the a pparatus of quantum logic becomes simply a 
reformulatio n of the mathematical machinery of q uantum mechanics. It is 
then no lo nger an interpretation o f the theory, but itself stands in need of an 

interpretation. 

References: BirkhofT & von Neumann 1936, Putnam 1968. 

8. Hidden-variable interpretations 
The hypothesis that the behaviour of quantum systems is governed by hidden 
variables normally constitutes a new theory, whose purpose is to explain 
quantum mechanics and which can, in principle. be distinguished from it by 
differences in its empirical predictions. It becomes an incerpreration if 
assumptions are added to make the differences unobservable even in principle. 
For example. the de Broglie/Bohm theory of §5.3 beco mes such an 
interpretation if it is assumed that for any particle, whatever its source and past 
histo ry, the pro bability of its position being r is 11/J(r)Jl. (Remember that both 
the position vector and the wave functio n a re intrinsic properties of the 

particle in this theory.) 
The de Broglie/Bohm interpretatio n is designed to remove the element of 

indeterminism from quantum mechanics. This o bjective is shared by many, 
but not all , hidden-variable interpretations; the hidden variables may be 
supposed to change unpredictably. The defining property of a hidden-variable 
interpretation is that a ll observables have precise values which are expressed in 
terms of the hidden variables; like the quantum-logical interpretation, their 
main target is indeterminacy. 

Objections. If the hidden variables are so carefully hidden as to make them 

undetectable apart from the state vector, one has very little reason to believe in 
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them. Io the de Broglie/ Bohm example, the assumption about the distribution 
of particle positions is highly implausible if these positions really do have a 

separate existence. 
There is a continuum between hidden-va riable interpretations and 

objective interpreta tions; if the special subspaces in the objective 
interpretation are taken to be eigenspaces of particle position, that 

interpretation becomes the same as a hidden-variable interpretation (see 
problem 5.14). 

Bell's theorem shows that these interpretations, whether deterministic or 
not, must postulate instantaneous action at a distance and therefore conflict 

with special relativity. 

Reference: Belinfante 1973. 

9. The stochastic interpretation 

There is a formal similarity between the Schrodinger equation and stochastic 
differential equations, which describe the unpredictable motion of a particle 
subject to random impulses, like a fl oating pollen particle undergoing 
Brownian motion. This leads to an interpreta tion of quantum mechanics in 

which a particle is supposed to have a defini te position rat each time, and in 
each time interval be there is a definite transition probability for this position 
to change by a given amount br. 

Objections. Like the hidden-va riables interpretations, this runs foul of Bell's 
theorem: if one thinks of the transition probabilities as being caused by 
impulses from a medium (as suggested by Brownian motion, or by a model of 
randomly fluctuating electromagnetic field s), then the properties of this 
medium depend on the instantaneous position of distant particles. The 

properties of the medium as it affects a particular particle also depend, at all 

times t, on the form of the wave function of that particle at t=O. This is a 
strange and implausible feature of the interpretation. 

Reference: Ghirardi, Omero, Rimini & Weber 1978, Nelson 1985. 

Conclusion In the absence of empirical indications, the interpretat ion of quantum 
mechanics is a ma tter of individual choice. The arguments sketched in this 
section suggest that the choice is between the tough-minded (but boring) 

minimal interpretation; the satisfying (but puzzling) objective interpretation; 
and the comprehensible (but implausible) hidden-variables interpretation. 
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Problems on Chapter 5 I. Consider a system with a state space of finite dimension n. The statement that 

a ll states of the system are equally likely could be taken to mean tha t its 

statistica l operator is p = f ll/1><1/11 dl/1 where the integral is taken over the set 

of unit vectors (which form a sphere S 2
" -

1
) and dl/1 is the usual measu re on 

S 2
" - I ' which is invariant under unita ry transformations ofll/1). Show that 

p =n - 11. 

2. Prove tha t for a system with a finite-dimensiona l sta te space, if a ll states are 

equa lly likely then the probability that an experiment wi ll have a given result 

is proportional to the dimensio n of the eigenspace of that result . 

3. A system is subjected to random repetitions of an experiment £, the 

probability that an experiment happens in a small time interval bt being w bt. 

If E has just two possible results, show that the statistical operator p satisfies 

dp/dt=(ih)- 1 [H , p] +w(2flpfl- flp -pfl) 

where n is the projection operator onto one of the eigenspaces of£. 

4. Let {I I/I,.)} be an orthonormal complete set of states for a systemS, and let T 
be another system. Show that any state II/I> of the combined system STcan be 

written as I'P) = I II/I, )IO,) for some states IO.) of T, and that when the 

combined system is in the state I'P> the statistical operator of S is 

Irs (I'P><'Pil = L <O .. I o.>II/1 .. ><1/!,J 

5. A system has two o rthogonal states I<I>> and I'P) .and an operator A is defined 

by AI<I>> = I'P), AI'P ) = I<I>) . Calculate the expectation values of A in the 
situations described by the statistical operators p and p' of (5.38) and (5.39). 

6. Let & be the phase space of a classical particle moving in one dimension, and 

let 1V be the space of wave functions for a quantum particle in one dimension. 
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For any function g(x, p) on d' an operator A9 on ;r can be defined by 

(A91/J)(x)=(2n)-t f g(x+Vrt, p)e-i'PifJ(x+lrt) dt dp. 

Given a wave function 1/J, define a function g on !J' by 

g(x, p)= f 1/J(x-tlrs)e - ipst/J(x+tfrs)ds. 

Show that 

(i) Ay= lt/1 ><1/JI; 

(ii) ig(x, p) dp= 2njt/l(xJI2; 

(iii) J g(x, p) dx = 27rjrji(p)j 2 

where rji is the Fourier transform of 1/J. 

7. Let ST be a combined system with a Hamiltonian of the form Hs ® I+ 
I ® HT, where Hs and HT are o perators on t he state spaces of SandT. Show 
tha t the result of an experiment on systemS cannot be affected by performing 

an experiment on system T. Hence show that no EPR experiment can be used 

for faster-than-light signalling. 

8. Describe the evolu tion of the full state vecto r, including the state of the 

apparatus, in the EPR experiment. 

9. Let 11/Jx) and 11/Jy) be the pola risation states o f a photon moving in the z­
direction, as in Chapte r 2. Show that the state of two such photons with total 

angular mo mentum 0 is 2 -i(JI/Jx)II/Jx) + II/Jr)II/Jy)). If two photons are in this 
state, find the probability that one of them will pass through a polaroid at an 

angle 0 to the x-axis if the o ther passes a polaroid a ligned with the x-ax is. 
Let A, 8 and C be the experiments of seeing whether a photon will pass 

through three polaroids, with an a ngle() between the axes of A and 8 and an 

angle 1/J between those of 8 and C, and suppose these can be applied to either 

of two photons whose total a ngular momentum is 0. Find a version of Bell's 

inequality appropria te to this situation, and find values of() a nd 1/J for which it 
is violated by the predict ions of q uantum mechanics. 

10. Given a lattice of subsets of a set, construct a corresponding lattice of 
propositions. 

II. Find the meet a nd join of two elements of the direct sum of two lattices. 

12. Show that an orthomodular lattice is irreducible if and o nly if it is not a direct 

sum. 

13. Show that if a la ttice has a sta tus a taking only the values 0 and 1, it is 

distributive. Determine a(x " y) and a(x v y) in terms of a(x) and a(y). 

14. Consider a particle moving in one dimension in a potential V(x), with wave 

function 1/J(x). Let x. be a sequence of points on the line, labelled (in order) by 

an integer n, and let 1/!,(x, t ) be a wave function which coincides with 1/J(x, t) for 

x. ~x ~x.+ 1 , and which vanishes for x<x. -e and x> x.+ 1 +e. Show that if 

Bell's postulate is used to find transition probabilities between the states jt/1.), 

then in the limit as e -+ 0 the probability of tra nsition from lt/1.- 1 ) to II/I.) in 

time bt isj(x.) bt if this is positive, wherej is the probability current associated 

with 1/J. Relate this to the de Broglie/ Bohm pilo t wave model. 



6 
Quantu1n numbers 
TilE PROPERTIES OF PARTICLES 

In this chapter we return to the topic of elementary particles and apply the 

theory of Chapters 2, 3 and 4 to make the qualitative description of Chapter I 
into a quantitative one. at least as far as the intrinsic properties, or quantum 
numbers. are concerned. The description of the interactions between the 
particles given here is not fully quantitative, but is a simplified account of the 

type outlined in § 4.6. 

Throughout this chapter we take h = I. 

6.1. lsospin The proton and the neutron are distinguished by their electric charge, so that 
their responses to electromagnetic forces differ; but in their behaviour under 
strong forces they appear to be very similar, as is shown by the following pieces 
of evidence. 

First, mirror nuclei. There are many pairs of nuclei in which the number of 

protons in one is equal to the number of neutrons in the other and vice versa, 
for example 3H (tritium), which contains one proton and two neutrons, and 

the helium isotope 3 He, which contains two protons and one neutron. Other . 
examples are e9

9 F 10, 
19

10Ne9 ) and e4
6 C 8, 

14
8 0 6 ). It is found that in such 

pairs the structures o f the set of energy levels of the two nuclei are yery similar, 
and the resemblance is enhanced if allowance is made for the extra electrostatic 
potential energy of the nucleus wi th more protons. If we assume that the 
Hamiltonian is the sum of several terms, one for each pair of particles in the 

nucleus, this suggests that the potential for two protons is the same as that for 
two neutrons. No conclusions can be drawn concerning the potential for a 
proton and a neutron, since the number of such pairs is the same in each o f the 
two nuclei. 

Scattering data, however, suggest that the n-p potential is the same as the 
n- n and p-p potentials. Scattering experiments determine the distribution of 
particles emerging from a collision, and are thus concerned with unbound 
states (whereas the states of a nucleus are bound states). It is found that the 
wave functions of these states for two protons, after allowing for the 
electrostatic repulsion, are similar to those for a neutron and a proton, 
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provided one compa res states with the same spin and orbital angular 
momentum. The point of this proviso is that, since protons are fermions, there 
are restrictions on the spin/orbital state of two protons that do not apply to a 
proton and a neutron: if the spin state is symmetric (total spins= 1), the orbital 
state must be antisymmetric (relative o rbital angular momentum I odd), and if 
the spin state is antisymmetric (s =O). the o rbital state must be symmetric (I 

even). In these states the n- p scattering is the same as the p- p scattering. 
These facts can be accounted for by regarding the proton a nd neutron as 

two states of a single particle, the nucleon, and supposing that the Hamil tonian 
of the strong interact ion does not discriminate between these sta tes. Then the 
nucl eon's state space is (if ' @ .51')@§ where if/@ Y is the familiar 
spin/o rbital state space and .f is a two-dimensional state space with a 
complete set of states {lp) , In>}; the strong Hamiltonian is of the form 
H" = H ' @ 1 where H ' acts on if . @ Y, so that H" commutes wi th all operators 
on f In particular it commutes with the unitary operato rs U defined byt 

VIP> =alp>+ /3ln>} 
Uln)=}'IP) +bln> ' (6.1) 

where the matrix 

belongs to SU(2) (any uni tary operator on § is a multiple of such a U). Thus 
the identical behaviour of the proton and the neutron under the strong fo rce 
can be regarded as the result of in variance of the strong force under the group 
of operations represented by (6. 1); this group is isomorphic to SU(2), and it acts 
on the state space ..f in the same way as rotation operators act on the spin 
space Y. 

Since this is a continuous group of in va riances, it has hermitian generato rs 
which, according to e 3.5, represent conserved observables. These operato rs 
act on the state space ..f in the same way as the generato rs of rotations - the 
angular momentum operators - act on the spin space Y. Thus ..f has three 
operators I 1 , I 2 , I 3 defined by the 2 x 2 matrices ~(j 1, ~(} 2, ~(} 3 where (j; a re the 
three Pauli matrices (4.39) (but usually denoted by<; in this context). These 
represent conserved observables; they are called the components of isospin. 
The proton and neutron are in eigenstates of the third component of isospin 

t T his d efinition contains superposit ions of states with d iffe rent electric charge, whose ex istence 
is fo rbidden by a superselection rule. It might seem, therefo re, tha t the operato r U has no 
physical significance. However, we can consider a fict itious world in which the 
electromagnetic force does not operate; in such a world there would be no electric cha rge 
a nd therefore no superselection rule. Since the strong fo rce is so much stronger than the 
electromagnet ic force, it is reasonable to expect this fictit ious world to be a good 
approximation to the rea l world. In pa rticular. if we can use the transformations (6. 1) to 
derive consequences which do not refer to the fo rbidden superpositions, we can expect these 
consequences to be (approximately) true in the real world. 
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Isospin multiplets in nuclear 

physics. 
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with eigenvalues +1 and - 1 respectively. The symmetry operations of(6.1) 
are called isospin transformations. 

The components of isospin have the same commutation relations as the 
components of angular mo mentum. Hence the theory of§4.1 , which was based 
solely on these commutation relations, can be applied to isospin. Thus the 
quantity 12 = 11

2 + 12
2 + 1/ has eigenvalues 1(1 + l ) where 1 is an integer or 

half-integer; the proto n and the neutron, whose isospin was constructed on the 

model of a spin-1 particle. have 1 = 1. 
T here are many conseq uences o f isospin conservation in nuclear physics. 

The isospin of many-nucleon states is obtained by adding that of the 
individual nucleons, in the same way as angular momentum is added. T he 
invariance of the Hamiltonian under isospin transformations then implies that 
the 2I + I sta tes with a given value o f 1 should all have the same energy. Thus in 
the mirror nuclei e H. 3He) each pair of corresponding energy levels 
constitutes a doublet wi th I =1, the 3H state having 13 = -1 and the 3 He sta te 
having I 3 =1. These sta tes can be regarded as being formed by adding one 
nucleon (with I =1) to a two-nucleon state which has I =0 (i.e. a state 
containing a proton and a neutron). Similarly, the pair e 3C, 13N) have I = 1 
and are fo tmed by adding one nucleon to a 12-nucleon core in which the 

isospins of the individual particles have combined to give I= 0. 
The pair e ~c. 140) are formed from the 12-nucleon core by adding two 

nucleons (two neut rons in the case of 14C, two protons for 14 0 ). These two 
nuclei have 13 = ± 1 and must belong to the triplet of sta tes with I = l which 
can be fo rmed by adding the isospin s of the two nucleo ns o utside the core. The 

third member o f this triple t. with / 3 = 0, must be a sta te of 14N. Ano ther state of 
14N will be formed by addi ng the two nucleons in the sta te I = 0. These two 
states of 1 ~N must satisfy 

(6.2) 

since they have different values ofl 2 and H" commutes with I; thus there will be 
no transitions between these sta tes on the time scale of the strong interaction. 

The actual situation is shown in Fig. 6. 1. The ground sta te of 14N, which is 
stable, has much lower energy than the ground states o f 1 ~c and 140; these are 

unstable and decay to the ground state of 14N. but by the weak interaction (i.e. 

Energy 

(eigenvalue of H. ,) 

l = I 

1= 0 



130 6 Quantum numbers 

by {J-decay), not the st rong. There is also a long-lived excited state of 14N , 
which decays to the ground state by the electromagnetic interaction (y-decay), 
no t the strong. Thi s exci ted state is close in energy to the ground states of 14C 

and 140 , and the differences between the three can be accounted for by the 
differences in their electrostatic energies. Thus the four states of Fig. 6.1 clearly 
show how the energy levels of the stro ng Hamiltonian carry representations of 
the invariance g roup SU(2), in acco rdance with e3.13. 

So fa r isospin transformations have only been defined on states containing 

nucleons. By analogy with rotations, they should be defined on all states in the 
fictitious world in which only the strong force operates, i.e. on all states of 
hadro ns. Then, as with nuclei, the energy levels of hadro ns will carry 
representation.s o f SU(2) labelled by the to tal isospin /. Since each single­
pa rticle state is an eigenstate of the strong Hamiltonian, this means that the 
had ro ns a re classified into isospin multiplets: a multiplet with isospin I contains 
21 + I particles which all have the same mass (because of the relativistic 
equivalence between mass and energy). The particles are not necessa rily 
eigensta tes of the weak and electromagnetic Hamiltonians, so this equality of 
mass in a multiplet is o nly approximate. Some of these multiple ts a re listed in 
Table 6.1. In each multiplet the value of I 3 is related to the electric cha rge Q by 

a formula o f the fo rm 

(6.3) 

where Y is an integer which is characteristic of the multiplet. It is called the 
hypercharge of the multiplet. 

The isospin of hadrons can be understood in terms of the quarks which 

Table 6.1. I sospin multiplets 

/ 3 I y J p 

Baryons (8=0) 
Nucleons (n, p) (-i,-i) .l. I .l. + 

2 2 
(:E-, :Eo, :E +) ( - 1, 0, I) I 0 .l. + 

2 
/\0 0 0 0 .l. + 

2 

(:=: -' :=:o) (-1.1) 1 - 1 .l. + 
2 

(Ll -, Ll0 , Ll +, Ll ++) ( - 1, -1.1, il 1 .J. + 
2 

Mesons (8 = 0) 
Pions (rc -, rc0 , rc +) (-I, 0, 1) 0 o-

r Ko. K +) ( - t. 1> .l. o-
Kaons _ 2 

(K -, K 0 ) ( -1. 1) .l. - 1 o-2 

'1 0 0 0 o-
(p - , po,p+) (-1,0, I) I 0 1-

w 0 0 0 1-

(J =spin, P =parity) 
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ma ke them up, in the same way as the isospin o f nuclei is understood in terms 

of nucleons. The u and d quarks form an isospin doublet, with d having / 3 = 
- 1 (isospin doll'n), u having I 3 = 1 (isospin up); all other quarks have I= 0. 
Then all isospin transformations follow from the following basic 
transformation o n u and d sta tes: 

UJu ) = exlu > + PJd) 

Vld> = ylu> +bid ) 
(6.4) 

Each o f the multiplets in Table 6.1 is to be regarded as a set of states of a 
single particle, like the nucleon; this particle then has a complete state space of 

the form ir ® Y ® .f. The discussion of many-particle states in § 4.6 shows 
tha t the multiplet particle can be treated as a fermion if the individual members 
of the multiplet are fermions, and as a boso n if they are bosons: the 

requirement of symmetry or antisymmetry shou ld be applied to the total state, 
including the isospin state. The baryons are fermio ns, and the state of two 
baryons from the same multiplet must be antisymmetric overall (e.g. 
symmetric in the orbital state, an tisymmetric in spin, symmetric in isospin); the 
mesons are bosons, and the two-particle states must be symmetric overall. 

Example 1. The deuteron. The deuteron (the nucleus of deuterium, 2 H) is a 
bound state of a neutron and a proton. Since it is formed from two isospin-1 

particles, its isospin I is either 0 or 1. If it had I= I. it would be a member of a 
triplet; the other members would be proton- proton and neutron-neutron 
bound states. Such states do not exist, so the deuteron must have I = 0. This is 
the antisymmetric combination of the two I= 1 states. From our experience 
with the hydrogen atom and the harmonic oscillator (Fig. 4.5) it seems likely 
that the lowest-energy bound state will have relative orbital angular 
momentum 1=0 (intuitively, if I is non-zero the particles experience a 

centrifugal force tending to break up the bound state); then the o rbital state 
will be symmetric. Since nucleons are fermions, the overall state must be 
antisymmetric, so the spin state must be symmetric; therefore the total spin is 
s= I. Thus the total intrinsic angular momentum of the deuteron; the sum of 
1=0 and s = 1, is I; and its parity is ( -1)1 = + I. 

A number of consequences of isospin conservation follow from the fact that 
the time evolution operator e- •H• commutes with isospin transformations and 
is therefore an isoscalar operator, the isospin analogue of a scalar operato r in 

the theory of angular momentum. We can apply the Wigner-Eckart theorem 
(4.75) to deduce that if JI I 3 ex) is a set of states labelled by isospin and some 
other quantity ex, then 

(I I 3 exle-m'I I' /'3ex') = D1rf>1 , 1, (ex II U1(l) !lex') . (6.5) 

The significance of this equation is twofold: since isospin is conserved, the 
values of I and I 3 are the same at time c as at c = 0; and since the process is 
invariant under isospin transformations, the probability amplitude is 
independent of I 3. 

Example 2. Nucleon-nucleon scattering. Take lex> to be the spin/orbital 
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state of the two nucleons. If this state is symmetric. the isospin state must be 
antisymmetric and so the total isospin is I = 0; by conservation of isospin, the 
value of I remains 0 and therefore the spin/orbital state remains symmetric. 
The reduced matrix element ( a ll U 0{tl ll a') in (6.5) then describes the neutron­
proton scattering in the symmetric spin/orbital states. If the spin/orbital state 
is antisymmetric, the isospin state must be symmetric, so I= 1; th(;jre are then 
three possible states, corresponding to p- p, n- p and n- n scattering, and (6.5) 
says that all three scattering processes are governed by the same amplitude 
( a !l U dtl ct'). This shows how the charge independence of nuclear forces is 
incorporated in isospin invariance. 

Example 3. Decay rates. Each ~-particle decays into a neutron and a pion. 
We write 

~--+N + rr (6.6) 

which covers the six decays 

~ + - --+ p + 1[ - . 1::!. - --+ p + 1[0' 
(6.7) 

!l0 -+n+n°, 1::!. 0 --+p+n- , 1::!.---+n+n - . 

Consider the two decays of the 1::!. +. This has I =1, I 3 =!;by conservation of 
isospin it evolves into the nucleon- pion state with the same values of I and I 3 . 

Adding the isospin of the nucleon and the pion is done by means of Clebsch-
Gordan coefTicients, which give 

IH>= i iH , 10)+ ·m--i, tt ) 

1lpno) + 11n n ... ) . (6.8) 

The probabili ty that this state wi ll be observed asp+ n° is ~; the probability of 
n + n - is~- Hence the decay 1::!. ... --+ p + n° occurs twice as often as 1::!. + --+ n + n +: 

r(ll .,. --+ p + n°) = 2f(ll +--+ n + n +) (6.9) 

where r denotes the rate (probability per unit time) of the decay. 
Using (6.5). we can relate the rates of decays of difTerent ~::!.-particles. Taking 

the labels a, rl to refer to 1::!. states and Nn states, and writing Ill m) for the 1::!. 
state with I 3 = m. we have 

( Nn; !mje- '11'lllm) = ( NnjjUi(t) jjll ) }· (
6

.
10

) 
( Nn; !mje- '11'11::!. m) =0 

Thus all six decays (6.7) are governed by a single function oft, which, according 
to §3.5, is approximately exponential: 

(6. I I ) 

Here r is the total decay rate of any one state lllm) ; thus, for example, 

r(ll + ... --+ p+n ... )= r(ll ... --+ p+n°)+ r(ll + --+ n+n +). (6.12) 

lsospin and charxe The statement that the charge conjugation operator C acts on a state so as to 
conjugation change every particle in the state into its antiparticle does not completely 

specify it as an operator, since there is an ambiguity of a possible phase factor. 
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Some of this ambiguity can be removed by reference to isospin 
t ransformations. 

Let X"' (m= -1, .. . . I) be particles forming a multiplet with isospin /,and 
denote their states (fo r a given spin/ o rbital sta te) by IX m) . Then 

(6.13) 

where t1 is the set o fth ree (2/ + 1) x (21 + 1) matrices representing the hermitian 
generators of isospin transformations (given by (4.50}-(4.51) with j=l). Si nce 

all quantum numbers are reversed on going from a particle to its antipart icle, 
qx m) is a n eigenstate of I 3 with eigenvalue - m. Suppose the phases are such 
that the sta tes 

IX -m) = (- l)"'CjX m) (6.14) 

behave like IX - m) with respect to isospin: 

IIX -m) =I t1 
- 11• -miX - 11) . (6.15) 

II 

From the formulae (4.50}-(4.5 I) it can be seen that 

t1 =( - l)"' +ll +l t/ =( - 1)m+II + IT 
- u . - m m11 um (6. 16) 

(the second equality because the matrices t1 are hermitian), so that (6.15) gives 

lejX 111) =-I t1rn11CIX n) =- I t1,mCIX n) . (6. 17) 
II 

Hence the effect of an isospin transformation R (the isospin version of a 
ro ta tion through angle 0 about axis n) is 

U(R)CjX m) = exp (iOn· I)CjX m) 

= I [exp ( -i8n·fl)]11mCIX 11) 
II 

(6. 18) 

where d(R)=exp(-iOn ·t) is the (2/ + l) x(21 + 1) matrix representing the 
isospin transformation R. Thus the cha rge conjugate states C!X m) transform 
by the complex conjt~gate representation of isospin transformations. We wi ll 

take it to be part of the definition of the charge conjugation operator C that it 
has this rela tion to isospin. 

The requirement (6.18) does not completely fix the operator C, since it is st ill 

possible to multiply all the states qx m) by the same phase factor. If the 
m ultiplet contains a particle X0 which is its own antiparticle, this one 
remaining phase is determined by the charge conjugation parity 1'/c ofX0. Since 
X0 must be totally neutral , it must have I 3 = 0 and electric charge Q =0; hence 
the mult iplet has hypercharge Y = 0. The antiparticle of each multiplet particle 

Xm will be another member of the multiplet, X -m (the multiplet as a whole is 
self-conjugate). From (6. 14) we know that qx m) must be a multiple of 
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( -tr!X - m) , and by taking m=O we see that 

CjX m) =(- 1)'"11,IX -m) . (6. 19) 

Thus l'fc is a property of the multiplet as a whole. It is often discussed in terms 
of G-parity, which is the eigenva lue of the operator 

(6.20) 

It can be shown (by the reader: problem 6.8) that (6.19) makes Can isospin 
analogue of refl ection in the ( 13)-plane; the isospin transfo rmatio n in (6.20) is 
the analogue of rotation through rr about the _r-axis. so that G is an isospin 
analogue of space inversion. It commutes with isospin transformations, so that 
every member of a self-conjugate multiplet is an eigenstate of G with 
eigenvalue a.t7c• where ~ depends only on the isospin I of the multiplet (see 
problem 6.9). The internal properties of isospin and G-pa rity are collected 
together in a single symbol JG like the symbol J P for the space- time properties 
of spin and parity. Some values of / G are given in Table 6.2. 

Irreducible isospin The behaviour of operators under isospin transformations can be discussed in 
operators the same way as their behaviour under rotations. An irreducible operator of 

isospin type I is a set of 2/ + 1 operators O.'m (m= - / , . . . ,I) sat isfying 

[I f>.' ] - " I f>.l ' m. - .L. t nm n (6.21) 

(cf. (4.73)). An example of such a set of operators is provided by the creat ion 
operators Clxm t for a multiplet xm with isospin / ;fo r if I'¥> is any state, Clx.,t l'¥> is 
a state with an added X-particle. and the isospin operators I act on this as a 
sum of an operator which acts on the state 1'¥ ) and an operator which acts on 
the state of the X-particle: 

laxmtl'¥) = Uxmti i'¥ ) + [ ~ t',.m Uxn/ ]!'¥) . (6.22) 

Hence 

(6.23) 

The annihilation operators Uxm ha ve different isospin properties, which can 
be found by taking the hermitian conjugate of (6.23): 

(6.24) 

Table 6.2. Self-conjugate multiplets 

Mult iplet J p IG l]c 

:n: o- 1- + 
II o- 0 .,. + 
p 1- I + 
(J) I - o-
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(since the matrices t' are hermitian). Comparing with (6.17). we see that the 
anni hilation operato rs ax., have the same properties as the creation operators 
Cax..tC which create the antiparticle states CjX m) . Conversely, the 
antiparticle annihilation operators Cax.,C obey the same equation as the 
creation operators ax.,t· 

These commutation relations can be conveniently expressed by collecting 
the creation operators ax./ into a row vector a/=(a, _,t ... .. a,/) and the 
annihilation operators into a column vector ax, and the antiparticle operators 
Cax.,tC and Cax.,C into a column vector a-. t and a row vector ax. Then we have 

[l,a/ ] =axtt', [I, ax]= - t'ax 

[I,aR] =axrl. [ I, a/]= - t'a/ 

The quantum fields of the particles Xm are 

cPx..=axm + CaxmtC. 

(6.25) 

(6.26) 

We can collect these into a column vector ¢x =ax+ axt and their hermitian 
conjugates into a row vector ¢/; these satisfy 

[J, cf>xJ= - t'¢x· [l.cf>/)=¢,tt'. 

If X is a self-conjugate multiplet the fields are 

by (6.19); thus they satisfy the hermiticity condition 

cPxmt=(- l)mllccPx m · 

(6.27) 

(6.28) 

Part icularly important types of irreducible operator are the isospin 
analogues of scalar and vector operators. An isoscalar operator is one which 
commutes with all isospin operators; this is another name for an irreducible 
operator with I = 0. An isovector operator is a set of three operators ( V1, V2 , V3) 

which satisfy 

[/i, ~] = ieijk II,.. (6.29) 

This is another name (and a different choice of basis) for an irreducible 
operator of isospin type I = I, for from such an operator T 1 

m (m =0, ±I) we 
can form an isovector operator V; by defining 

V1 =(1/ j2)(T 1
_ 1 -T 1 + 1) , V2 =(i/j2)(T 1 TI+T1

_ .), V3 =T 1
0 • 

(6.30) 

As wi th ordinary (rotation group) vector operators, from two isovector 
operators V and W we can form an isoscalar operator V ·Wand an isovector 
operator V x W. 

Let ¢x be the column vector of quantum fields of a multiplet X with isospin 
I , and let 

(6.31) 
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This is an isovector operator, fo r 

[/;, VxiJ = [/;, <1>/Jt'A>x + <J>/t1i [V; , <J>xJ 

= <f>x(cl/i - rl/;)</>x 

= <l>x t(ieiikt 1 k)<J>x = ieiik Vxk (6.32) 

since the generators r1
; satisfy the SU(2) commutatio n relations. Note that as a 

consequence of the components of r being hermitian matrices, the 
components of Vx are herm itian operators. 

Let (o: - ,o:0
, o: +)be a self-conjugate isospin triplet with "'c = + 1. According to 

(6.30), the fields <J>.m t yield an isovector operator A. Since the multiplet is self­
conjugate the fields satisfy (6.28), fro m which it follows that the components of 
A are hermitia n. Hence if the field s <f>x and ¢, commute, the operator 

H' = <l>x tr <l>x ·A (6.33) 

is a hermitian isoscalar, which is therefore qualified to be a part of a 
Hamilto nian describing an isospin- invariant interaction. 

Let us take Xm (m = ±t) to be the nucleons and o:m (m=O, ± 1) to be the 
pions. Then . adopting the common practice of denoting the quantum field of a 
particle by the same symbol as the particle itself, the Hamiltonian (6.33) 
becomes 

=f/pn°-j2ptnn+ + J 2ntp7t - -ntnn°. (6.34) 

This is the Yukawa-Kemmer interaction. It represents a theory o f the st rong 
fo rce between two nucleons in which the field quanta are pions, a nd which has 
the feature of isospin invariance. 

lsospin in electromagnetic Since isospin invariance proclaims the equivalence o f states with d ifferent 
and weak interactions electric charge, it is flagrantly viol a ted by electromagnetic interactio ns. 

Likewise, the decay of the neutro n involves a change in the value o f I 3 (the 
leptons having no isospin), so the weak interactions also do not conserve 
isospin. However, this only means that the electromagnetic and weak 
Hamiltonians have non-zero commutato rs with the isospin operato rs; it is 
possible to apply isospin to these interactio ns by determining the exact form of 
the commutato rs. 

The formul a (6.3) shows that electric charge is the sum of I 3, which is a 

component of the isovector I , and a quantity --!Y which has the same value 
for a ll members of an isospin multiplet and therefore commutes with all 
isospin transformations, i.e. it is an isoscalar. The electromagnetic 
Hamiltonian Hem has a similar structure: 

H .m = el.m<J>~ = e(J0 + 1 1 o)<J>~ (6.35) 
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where¢;, is the photon field and the electromagnetic current J.m is the sum of an 
isoscalar 1° and the 13 = 0 member of an isospin triplet { J 1m: m = 0 , ± I}. 

Example 4. Radiative decay. The p-mesons (p-, p 0
, p +) are an isospin 

triplet. One of their rarer decay modes is to emit a photon and become a pion. 
Since the electromagnetic Hamiltonian contains the small parameter e, the 
decays can be treated by first-o rder perturbation theory; this gives the 
amplitude for p +---> n + +y (ignoring kinematical factors) as 

M + = (n+yiHemiP+) = e(n + ll cmiP +) . (6.36) 

Labelling the particle states as IP /1 3) = IP 1m) and In I m), we have from the 
Wigner- Eckart theorem (p. 148) 

( n 1 ml1°lp I m) =(l miOO, 1 m)(niiJ 0 II P>=<nii1 ° II P) 
and 

(n 1 miPoiP 1 m) =(l mil 0, 1 m) ( n iiJ' li P>· 

Hence, using the Clebsch- Gordan coefficients in Appendix III , 

M +=(n+ IJcmiP "') =(n 11i{J0 +1 1
0)In 11 ) 

= ( n iiJ0 liP) + J~<nll P IIP), 

M o = ( n°llemiP0
) = (nil Jo liP) 

and 

M 1 = ( n - IJemiP - ) = <nil 1° liP> - J~<n ll P II P ) . 

Thus the three amplitudes are related by 

M++M _ =2M0 . (6.37) 

The weak interaction, at the level of hadrons and leptons. can be described 
by an effective Hamiltonian 

(6.38) 

where the charged weak current J ch is the sum of a number of terms which 
include the leptonic current 

(6.39) 

and also a term Jl _ which belongs to the same isospin triplet as the 
electromagnetic operator 1 1

0 . The third member of this triplet , 1 1 +.occurs in 
J cht· The terms J 1.Pt;t _and Jl +J iep in the weak Hamiltonian are responsible 

for nuclear /3-decay processes like those on the left and right of Fig. 6.1; the 
electromagnetic Hamiltonian Jl 0 ¢ Y is responsible for the y-decay in the centre 
of that figure. Thus the three processes shown there are related to the three 
components of a single isovector, and are governed by a single reduced matrix 
element (see problem 6.11). This is a pointer towards the unified electroweak 
theory, which will be described in §6.7. 

It is remarkable that all weak processes, whatever particles they involve 
(whether hadrons, leptons or both), can be described in terms of the single 
coupling constant gw'· This fact is called the universality of the weak 
interactions. 
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6.2. Strangeness The property of strangeness was discovered m the new particles that are 
created in the collisions between cosmic rays and terrestrial matter. Cosmic 
rays themselves are mainly ordinary nuclei which o riginate outside the solar 
system and arrive here with enormous energies; when they collide with other 
nuclei this energy makes it possible to produce a numerous burst of particles. A 
number of the particles listed in Table 6.1 were first observed in these cosmic 
ray bursts, in particular the A 0 , the r ± and the :=: doublet among the baryons, 

and the two K doublets among the mesons. They are unstable, decaying as 
follows: 

(6.40) 

K-+2n. K-+ 3n, K->n+l +v~> (6.41) 

where N denotes a .nucleon and La lepton (e± o r p±). Their lifetimes a re of the 
order of 10- 10 to w- 8 s, which is time enough for them to leave a visible track 
(centimetres long) in a photographic emulsion o r, if neutral , a visible gap 

between the point of production and the point of decay. This time scale is. 
characteristic of the weak interactions. 

On the other hand , large numbers of these particles appear in cosmic ray 
collisions: there is a high probability that they will be produced. This means 
that the Hamiltonian governing the process has large matrix elements; in fact 
the rate of production is consistent wit h its being governed by the strong 

Hamiltonian. This seems to conflict with the fact that their decays are 
governed by the weak interactions. Most of the decays involve strongly 
interacting particles; one would therefore expect them to be governed by the 
strong interaction (the particles involved in the o riginal production being 
available as a virtual intermediate state), and to exhibit the typical strong­
interaction time scale of 10 - 23 s. There is something strange about these 
particles. 

The resolution of this puzzle was proposed by Pais, Geli-Mann and 
Nishijima in 1952. They suggested that the reason that the decays did not take 
place by the strong interaction was that they involved a change in a quantity 
which was conserved by the strong force. This quantity belongs to the strange 
new particles but not to the other particles (nucleons, pions and leptons); the 
decay of a strange particle can therefore only take place by the weak force, 
which does not conserve strangeness. The production of st range particles can 
take place by the strong force if st rangeness can take positive and negative 
values, like electric cha rge and the o ther quantum numbers, and if particles are 
produced in pairs with total strangeness 0. Observation confirmed that 
strange particles are produced in pairs and confirmed the idea of strangeness. 

The assignment of strangeness to particles is shown in Table 6.3. The 
ba ryons all have strangeness of the same sign (conventionally chosen as 
negative; their antiparticles have positive strangeness), while one of the K­
meson doublets has strangeness + 1 and the other has strangeness -I. At 

moderate energies the production process will yield a strange baryon together 
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with a positively strange K-meson, e.g. 

p+p-+n+I: + +K +. 

239 

(6.42) 

To produce a negatively strange K-meson requires more energy, since it must 
be accompanied by a particle (either another K-meson, or an antibaryon) 
which cannot be obtained by converting a nucleon. Thus the K - is rarer than 
the K +;in this sense K + and K 0 go together with nucleons and other baryons 
to count as 'matter', while K- and K0 are antimatter. 

In the decays (6.40)-(6.41), in which the particles lose their strangeness, the 
total strangeness changes by just one unit at a time. Thus the =:-particles, with 

strangeness S = -2, must decay twice before becoming a non-strange particle. 
For this reason :=:is sometimes pronounced 'cascade'. An example of such a 
two-stage decay is shown for the antiparticle of the :=: - in Fig. 6.2. 

Strangeness is a property of an isospin multiplet as a whole: all members of 

the multiplet have the same strangeness. In this respect it is like baryon 

Table 6.3. Strangeness 

Particle 

Strangeness 

I: 

- 1 
!\ 

-1 -2 
K 0, K + K0 ,K - N 

+I -1 0 
n: 

0 
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number. There is a relation between these two properties and the multiplet 
property of hypercharge: a comparison of Tables 6. 1 and 6.3 shows that 

Y=B+S. ~.4~ 

As was described in C hapter 1, strangeness is now understood as the 
characteristic property of a th ird quark s which is heavier than the u and d 

quarks. The l: a nd A particles each contain one s quark, as do K - and K0 ; the 
:=: particles contain two s quarks, while K 0 and K + contain the antiquark s. 

T he decays of strange particles can all be understood in terms of the decay of 
the strange quark: 

(6.44) 

followed by the crea tion of a pair of particles from the W. If the particles 
created are a quark and an antiqua rk, the result IS a set of quarks and 
antiquarks which then rea rrange themselves into the final particles. It is found 
that, to a good degree of accu racy, the effect of this whole process is to change 
the total isospin by 1: the process is described by an effective Hamiltonian 
which transfo rms as one member of an isospin doublet. Thus in the decays 
A-t N + n the final state is the combination of Jnn°) ·and Jpn -) with to tal 

isospin 1, which is J~Jnn°) + JjJpn -) (Clebsch- Gordan coefficients); 
hence 

r(A 0 -t p+n - ):f(A 0 -t n +n°)= 2: I. (6.45) 

The actual ratio is 64:36. 
This .M =1- rule appea rs to be hopelessly wrong in the decay K + -t n + + n°, 

for since all the particles are spinless the two-pion state, with zero relative 

orbital angular momentum, is symmetric in its spin/ orbital state and therefore 
must be symmetric in its isospin state. This means that its to ta l isospin is 0 o r 2; 

but I 3 =I , so I =2. Since the K-meson has I = 1, the isospin carried by the 
Hamiltonian must be M =~or i, and the amount of M =~ i s strictly zero. 
However, the rule successfully passes the test of this exception, for this decay is 
considerably slower than the decay K 0 -t 2n which does obey the ~I =1 rule, 
the ratio of the rates being 1:138. This indicates that the part of the 
Hamiltonian which has isospin 1 is very much la rger than the other parts, 
which is the sense in which theM =1 rule is to be understood. 

The semileptonic decays of strange particles, i.e. the last decay of (6.41) and 
rare decays like 

A0 -tp+e- +'iie, (6.46) 

can be understood in the same way as (J-decay, in terms of the current-current 
Hamiltonian (6.38) (the purely hadronic decays do not fit simply into this 
scheme). They can be incorporated by adding a strangeness-changing term 

J i_ =Atp+(n°)tK ++ .. . (6.47) 

to the weak current. As the notation indicates, J i _ transforms as a member of 

a doublet under isospin transformations. Like the leptonic term (6.39), this 
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current involves a change in electric cha rge; it also involves a change in 
strangeness of the same amount. Thus in all decays like (6.46), the change in 
charge and strangeness of the had rons a re equal: 

ilS =ilQ. (6.48) 

One further modification must be made to this current-<:urren t 
Hamiltonian. T he fo rce responsible fo r (6.46) and simila r stra ngeness­
changing decays is weaker than that of {3-decay by a facto r of about 20; thus the 
Hamiltonians governing these decays must be of the fo rm gw' jl _}1cp and 
gw" J i _J ,ep with gw' ¥- gw"· This spo ils the universality of the weak interactions. 
An insight in to this can be obtained by writing 

g"'' = g"' cos Be , gw" = g"' sin 8c 

and taking the full current to be 

(6.49) 

1w=1 1 _ cos 8c+ f_ sin 8c+ 11cp · (6.50) 

The hadronic current is then a superposition of two parts J' _ and .fl _ which 

are regarded as orthogona l. The angle Be is called the Cabibbo angle; its value is 
about sin _, (0.23). The Hamiltonian l wl ,} constructed from this current 
differs from (6.38) in its action on non-strange pa rticles: the various parts of 
this new Hamiltonian have co upling constants 9w cos2 8c, 9w cos 8c a nd 9w 

instead of having a single universal coupling constant. Since cos Be -::::: I, the 

differences are small; experiments confirm that (6.50) is the true weak current. 

Neutral K-mesons Strangeness is not the only quantity tha t is conserved in the production of 
strange particles but not in their decay; the same applies to parity. This is 
illust rated by K-mesons. The production ofkaons, and all scattering processes 

involving kaons and other hadrons, a re consistent with parity conservation if 
the intrinsic parity of the kaon is taken to be negative; this is also what would 

be expected from its quark composition, by the same argument as for pions 

(seep. 153). But in the decay K -+ 2n the final state has parity ( -1)1
, where I is 

the relative o rbital angula r momentum, since all pions have the same intrinsic 

pa rity; and since pions and kaons are all spinless, I= 0 and so the parity is + l. 
Thus the weak interactions do no t conserve pa rity and therefore are not 
invariant under mirro r reflections. 

Let us consider the possibility that the weak interactions are invariant under 
the combined operation CP, so that there is symmetry between particles and 
thei r mirro r-image antiparticles. This has particular consequences for the 
neutral kaons K 0 and K0

, which we will denote collectively by (K)0 . 

The only difference between K 0 a nd its antiparticle K 0 is the value of 
strangeness. Since this is not conserved , it does not commute with the total 
Hamiltonian and it is not necessa ry fo r the eigenstates of Sin the (K) 0 system 
to be eigenstates of the Hamiltonian; K 0 and K 0 need not be stationary states. 

If the system is invariant under CP, the stationary states must be eigenstates of 
CP (more precisely, there must be a complete set of simultaneous eigenstates of 
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H and C P). If we consider the states of a (K)0 at rest, the effect of C P on the K 0 

state is to take it to a K 0 state, and we can define the states so that there is no 
phase factor: 

CPJK0 ) = JK 0
), CPJK0 ) =JK0

) . (6.51) 

Then the eigenstates of CP are 

jK5°) = J 1(jK0 ) + jK0
)) and jKL0 ) = J 1(jK 0 )-jK 0

) ) (6.52) 

with eigenvalues + 1 and - l respectively. 
Now consid er the decays (K)0 --+ 2rr. Any state of two pions with zero total 

charge must be an eigenstate of CP with eigenvalue + 1, for the effect of C Pis 
to interchange the particles (P doing the job in the orbital state and C in the 
charge sta te), and pions are bosons. Hence if CP is conserved, only the + 
eigenstate K5 ° is free to decay into two pions; the other eigenstate must decay 
into three pions o r a pion and two leptons. The phase space factor is much 
larger fo r the 2rr decay than for the 3rr decay, so the 2rr decay has a faster rate. 

This rate is also faster than that of the other three-body decay K --+ rr + I+ \>1• Tt 
follows that the + eigenstate K 5° has a shorter lifetime than the -
eigenstate K L 0 . 

These conclusions are confirmed experimentally. There are two observed 

neutral kaons, the short-lived K5 ° which decays into two pions with a lifetime 
oh s = rs - 1 = 9 X 10- 11 s, and the long-lived KL 0 whose lifetime is rL = r L - 1 = 

5 x w- s s. 
The existence of the superpositions (6.52) offers a clear demonstration of the 

basic principles of quantum mechanics. When the particles are first produced 
(by a strangeness-conserving strong interaction), they are in an eigenstate of 

strangeness; as explained above, a collision process at moderate energy wi ll 
produce the positively strange K 0 . This can be distinguished from K 0 by its 
interactions with ordinary matter; the K 0 undergoes only elastic or charge­
exchange scattering 

K 0 +n--+K0 +n , K 0 +p--+K + +n, 

while the K 0 can be absorbed: 

(6.53) 

K 0 +p--+A 0 +rr + (6.54) 

(it behaves like antimatter). Roughly speaking, matter is transparent to K 0 but 
opaque to K 0

. 

The K 0 is a superposition of K5 ° and KL 0 with equal coefficients, so it has 

equal probabilities of decaying quickly into 2rr or slowly into 3rr. Thus if a 
beam of K 0 particles is prepared and left fo r several short lifetimes, about halft 
of the particles will remain and they will all be KL 0 , decaying only into 3rr. This 

is a superposition of K 0 and K 0 with equal coefficients, so if the beam is passed 
through a slab of matter half of the particles will behave like K 0 and be 
absorbed (whereas none of them would have done immediately after 

t To be precise, 1(exp (- r Lt) + exp (- r sl)); r Ll is small and r sl is large. 



Fig. 6.3. 
Polarised light a nd neutral K­

mesons: (a) polarised light; 
(b) neutral K-mesons. 
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production). The particles that emerge from the slab will be K 0 , and again half 
of them will decay into 2n. The Ks0 particles have been regenerated from the 
KL0 beam. 

This behaviour is strikingly analogous to the behaviour of polarised light 
passing through crossed polaroids (see Fig. 6.3). K 0 and K 0 are analogous to 
light polarised in the north-south and east-west directions, while K L 0 and K5° 
are analogous to light polarised N E- SW and NW- SE. A slab of matter acts 
like a polaroid with its axis pointing north, while the analogue of passing light 
through a polaroid oriented NE is the operation of waiting several short 
lifetimes. A (K)0 exhibiting 2n-decay is like light passing through a polaroid 
oriented NW. Now the fact that a slab of matter will regenera te Ks 0 particles, 
causing a resurgence of 2n decays, corresponds to the fact that no light can 
pass NE-oriented and NW-oriented polaroid s placed together, but some light 
can pass if a N-oriented polaroid is placed between them. Leaving the (K)0 

system to evolve acts like a measurement of CP, forcing it into an eigenstate 
IK L 0 ) or IKs 0 ); scattering it off nuclei acts like a measurement of st rangeness, 
forcing it into an eigenstate IK 0

) or IK 0
) . 

Let us look more closely at the time development of the K 0 after its 
production. If the particle is at rest the eigenvalues of the Hamiltonian are mLc2 

and m5c2 where mL and m5 are the masses of the K L 0 and K 5 ° particles; hence, 
taking into account the decays of the particles (and taking h = c = 1), the time 

IIIII 
(a) 

0-B-0y~ 
(b) 
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development of K0 can be represented as 

IKo) = ~IK Lo> +IKso)) 

-+ IK(t) ) = 1-[exp ( -trLt - imLt)J iKL 0 ) 

+ exp ( -tr st - im5 t)IKs 0 ) . (6.55) 

The probability that the pa rt icle wil l behave as K0 after a timet is therefore 

I< K 0 IK(t) ) i2 =-k[e- rL' + e- rsr + 2e-!trL + rslr cos (.1mt)] (6.56) 

where .1m= mL - m5 . Thus the system oscillates with frequency .1m. The period 
of these oscillations is of the order of the short lifetime r5 , and is easily 
measurable; it yields a mass difference .1m wi th the astonishingly small value of 
10 - II MeV. This makes the (K) 0 system a sensitive detector for delicate effects, 
including even gravitational effects. 

CP non-conservation It is ironic that the KL0 particle, whose existence was deduced from CP 

in variance, was the agent of the discovery that C P is not conserved. In 1964 it 
was found that the KL 0 does decay into 2n. Thus either KL 0 is not an eigenstate 
of CP, in which case C P does not commute with the Hamiltonian in the (K)0 

system, or it is, in which case C P is not conserved in the decay KL 0 -+ 2n. In 
either case C P in variance breaks down. The ef(ect is small , and is not 
understood. 

6.3. The eightfold way Isospin transformations can all be built up from the fundamental 
transformations (6.4), which change the u and d quarks into combinations of 
each other. The transformations act on any hadro n by acting on all the quarks 
in the hadron; quarks o ther than u and d are left unchanged. Clea rly this can be 
extended so as to include the other quarks. To start with, we will just include 
the strange quark s; this requires transformations li ke 

iu) -+ cxiu> + Pld) + }'Is> } 
id) -+ c5l u) + eid ) + (is> , 

is) -+ r1iu> + Old) + Kis> 
(6.57) 

where the matrix of coefficients belongs to SU(3). These give rise to a group of 
transformations of hadron states which are called simply SU(3) 
transformations. 

If the strong force had the same effect on all three quarks, u, d and s, these 
SU(3) transformations would commute wi th the Hamiltonian and particles 
would form equal-mass multiplets carrying representations of the group SU(3). 
This cannot be quite true, since the s qua rk is significantly more massive than 
the u and d quarks, and at least the free-particle part of the Hamiltonian will 
not be invariant under SU(3) transformations. But this does not affect the 
existence of the multiplets, it only introduces differences in mass between 
members of a multiplet. 

In o rder to find the form of these multiplets we will examine the structure 
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and representations of the group SU(3). As in the case of the rotation group, 
this is best do ne by examining the Lie algebra of the group. The Lie algebra of 
SU(3) consists of all antihermitian 3 x 3 matrices with zero trace (seep. 108). 
We multiply these by ito obtai n hermitian generators. The set of all hermitian 
3 x 3 matrices is a nine-dimensional real (not complex) vector space (three real 
numbers are needed to specify the diagonal entries. six to specify the three 
independent complex entries off the diagonal). The condition of tracelessness 
removes one d imension, so SU(3) has eight independent hermi tian generato rs. 
A standard set of generators is the following: 

A, ~[l 
I 

~ J' A,~ [l -;QJ 
!, ~ [~ 0 OJ 0 0 0 . - 1 0 • 

0 0 0 0 0 

2,~ [~ 
0 H [0 0 -;J r 0 n 0 }. 5 = 0 0 ~ ' }.6 = ~ 0 
0 i 0 

A,~ [~ 
0 OJ I [I 0 ~l 0 -~ , i.8 =J3 ~ ~ (6.58) 

- 2 

These are called Geli-Mann's A.-matrices. They have the property 

tr (}.)) = 2c5ii. (6.59) 

Their commutation relations are written 

(6.60) 

(here, as in a ll equa tions in this section, suffices i ,j, k take values from I to 8 and 
the summation convention is used for repeated indices). The constants are the 

structu re constants of SU(3) (in this basis); clearly fiik= -Jjik• and as a 
consequence of (6.59) we have 

hik = -*i tr ().)./k- 2).)-k) = -ii tr (}.k}.).i - ).;2k}) = ki· (6.6 1) 

T hus the array hik is totally ant isymmetric. It does the same job for SU(3) as 
e;ik does for SU(2). 

The generators (6.58) are chosen so as to bring out the structure of the group 
SU(3). T he matrices }.1 , A.2 and ). 3, consisting of the Pauli a-matrices bordered 
by Os, are the generators of a subgroup which is isomorphic to SU(2); referring 
to (6.57) we see that these generators act in the subspace spanned by ju) and 
!d), so this is the isospin (o r 1-spin) subgroup. The matrices },6 and /. 7 , together 
with 

(6.62) 

generate another SU(2) subgroup which acts in the (d , s) subspace; this is called 
the U-spin subgroup. A third SU(2) subgroup, acting in the (u, s) subspace, is 
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generated by A.4 , A.s and 

(6.63) 

this is called the V-spin subgroup. 
The physical SU(3) operations are represented by a group of unita ry 

operators on the state space of all hadronic states. Their hermitian generators 
are a set of eight hermitian operators F 1, ... , F 8 which bear the same relation 
to the Gell-Mann matrices as the isospin operato rs I 1 , I 2 , I 3 do to the Pauli 
matrices; they have the commutation relations 

(6.64) 

For a = 1, 2, 3 we have F" = I"; the o ther two SU(2) subgroups have generators 
( U 1, U 2 , U 3 ) corresponding to (A.s, A.6 , ,u 3) , and (V1, V2, V3) corresponding to (A.4 , 

-As, - v3). Thus we have 

I 3 = F 3• U 3 = -~F 3 +~J3F 8 , V3 = -~F 3 -~j3F 8 . (6.65) 

The raising and lowering opera to rs in these subgroups are 

(6.66) 

We will now see how their roles of raising and lowering operator fit together in 
the wider context of SU(3), and at the same time obtain a more meaningful 
form of the commutation relations (6.64). 

Among the matrices (6.58) two which commute are the diagonal matrices A. 3 

and A. 8; none of the others commute with both of them. Hence F 3 and F 8 form a 
complete set of commuting operators in any representation of SU(3), and we 
can label states by their simultaneous eigenvalues for these operators. Now I ± 
act as raising and lowering operators for F 3 , and commute with F 8 ; hence their 
effect on a simultaneous eigenstate jr, s) is 

I ±lr, s ) =lr±l , s) . (6.67) 

Let us regard (r, s) as the components of a two-dimensional vector I and write 
the simultaneous eigenstate lr, s) as II); then 

(6.68) 

where i = ( 1, 0). The effects of U + are similar. They act as raising and lowering 
operators for U 3 = -~F 3 +~)3F 8 and commute with the orthogonal 
combination ~j3F 3 +~F 8 ; II> is an eigenstate of U 3 with eigenvalue u ·I where 
u = ( -1, 1J 3), so the effect of U ± is 

U ±ll>=ll±u) . 

Similarly, 

V±ll> =ll ±v) 

(6.69) 

(6.70) 

where v = ( - 1, -~j3). The vector I of simultaneous eigenvalues ofF 3 and F 8 

is called a weight, and the simultaneous eigenvector II> is called a weight vector. 



Fig. 6.4. 
The roots of SU(3). 
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Beca use I ±, U ±, V± shift the weights around in a plane, we will call them shift 
operators. 

The Lie a lgebra of SU(3) (i.e. the commutators ofF 1 , . .. , Fa) can now be 

described as fo llows. It is characterised by the six special vectors ± i, ± u, ± v in 
the plane IR 2 (see Fig. 6.4), which a re called the roots of SU(3). For each root a 
the re is a shift operator E(a) (e.g. E( - u) = U _); we define £(a) =0 if a is not o ne 

o f the six roots. Let H = (F 3 , Fa) and let a and b be any two-component vecto rs; 

then the commutators are 

[a· H , b· H] =0, 

[H, E(a)] = aE(a), 

[E(a), £(-a)] =2a · H, 

[E(a), E(b)] = E(a + b). 

(6.7Ja) 

(6.7 1b) 

(6.71c) 

(6.7 1d) 

(a) is the statement that F 3 and Fa commute; (b) shows the E(a) as shift 

operators; (c) shows the SU(2) a lgebra in which E( ±a) play the role of J ±.The 

fo rm o f {d) is a consequence o f the Jacobi identity: 

[H, [E(a), E(b)]] = [[H, E(a)], E(b)] + [£(a), [H, E(b)]] 

= (a+ b)[E(a), E(b)] (6.72} 

which, by comparison with (b), shows that [£(a), E(b}] must be a multiple of 

E(a + b). Note that 

13 =i · H , U 3 =u·H, V3 =v·H. (6.73) 

A representation of SU(3} can be described by g1vmg the pairs of 

simultaneous eigenvalues of F 3 and F 8 in the representation; thus it 
correspo nds to a diagram consisting of a number of points in a plane with 

Cartesian axes labelled F 3 and F 8 , each point representing a simultaneo us 

eigenvector. This is called the weight diagram of the representation. It must have 
the property that neighbouring points are connected by one of the root vectors 
of Fig. 6.4; also , because of the symmetry between i , u and v in the structure of 

the Lie a lgebra (which comes from the symmetry between the three SU(2) 

subgroups in the group) the weight diagram must be symmetrica l under 

rotations through 120° about the origin . We will not undertake a general 

u 

v 
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Fig. 6.5. 
Weight diagrams for SU(3): 

(a) fundamental; (b) conjugate; 
(c) adjoint. 
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description of a ll possible representa tions of SU(3), but will just describe a few 
which a re pa rt icularly important for pa rticle physics. 

The fundamental representation is the three-dimensional representation in 
which each element of SU(3) is represented by itself as a matrix; the 
representa tion space consists of complex 3 x I column vecto rs. F 3 and F 8 are 
represented by the d iagonal matrices ).3 and ).8 , so their eigenvalues are given 
by the diago nal entries. This gives the weight diagram of Fig. 6.5(a). The points 
of the diagram are labelled by the qua rks which fo rm the co rresponding 
eigenstates in the representation (6.57). 

The conjugate representa tion is the th ree-dimensional representation in 
which each element U ofSU(3) is represented by the complex conjugate matrix 
G. The hermitian generato rs of this representation are of the form 

X ' =i l~~ U(slls=o= -[i :s U(s)] = -X (6.74) 

where X is the herm itian genera tor of the fundamental representation 
corresponding to the sequence U(s) of group elements. Thus the eigenvalues 
are the negatives of those in the fundamental representation, and the weight 
diagram is obtained by inverti ng that of the fundamental representation 
through the o rigin (Fig. 6.5(h)). The eigenvalues thus obtained are the quantum 
numbers of the antiparticles of the qua rks of F ig. 6.5(a). 

If the fundamental representation p is regarded as acting on a three­
dimensional state space, like the quark space with basis lu), ld), Is> with which 
we opened this section, then the conjugate representation pacts on the space of 
bras as follows (see problem 6. 19): 

p(U)( l/11=<1/JIVt. (6.75) 

The adjoint representation acts on the sp&ce of all traceless 3 x 3 matrices A 

according to 

A -+ UA U- 1 = p(U)A. (6.76) 

The hermitian generato rs of this representation are given by 

d 
A -+ ids [U(s)A U(s)- 1]s=o= [X , A] (6.77) 

where X is as in (6.74). This opera tion, of taking the commutator with X , is 

d • 

(a) 

u • 

(b) 

-\ , + i-\1 -\4 + i,\6 • • 
A1 - i-\1 ,\

3 
A1 +i-\1 

As 

(c) 



Fig. 6.6. 
The sextet and decuplet 

representations. 
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denoted by ad X. Thus the generato rs F 3 and F 8 fo r the adjoint representation 
a re 

(6.78) 

The weights of the representation a re the pairs of eigenval ues of these. Now the 
commutator (6.7 ld) shows that in any representation the effect of adH on the 
shift operator E(a) is to multipl y it by the root vector a. Taking H = (},3, ), 8) , th is 
shows that each root vector is a pair of eigenvalues for (ad),3 , ad),8). Also (0, 0) 
occurs twice as a pair of eigenvalues, the eigenvectors being ),3 and i.8 

themselves. Thus the weights of the adjoint representation are the eight points 
shown in Fig. 6.5(c). 

The adjoint representation can also be described using the fo rm (6.64) of the 
Lie algeb ra, by saying that the representation space is eight-dimensional with 
a basis jv;) (i = I, ... , 8) and the hermitian generators X; act according to 

X;jvi ) = (f;iklvk>· (6.79) 

These three representations are also called the triplet , antitriplet and octet 
representations and denoted by 3, 3 and 8. The singlet representation l is the 
tri vial one-dimensional representation in which all elements of SU(3) a re 
represented by the identity opera to r, and all hermitian generators a re zero. 

The triplet represen tation is the first of a series of representations with 
triangular weight diagrams; the next two representa tions. the sex tet and the 
decuplet, are shown in Fig. 6.6. These representations can be defined as 
follows. The representation .1, whose weight diagram is a triangle with sides 11 

times as long as the triangle of the fundamental representation, Fig. 6.5(a). acts 
on symmetrised products of 11 vecto rs taken from the fundamental 
representation space 'f/'; i.e. the representat ion space of .1, is 
"fr v "f/' v · · · v 'f/' (11 times). The weight vectors of .1, are of the form S(jl1 ) • · • 

jl, )) where 11, . • • , 1, a re weights of the fundamental representation; there is one 
such weight vector for every unordered choice of 11 weights 1;, and its weight is 
11 + · · · + 1 •. They can all be obtained by starting with jl 0 ) jl0 ) · · ·jl0 ), where 10 

is the top right-hand weight of Fig. 6.5(a),and changing upto n of the weights 10 

into one of the other two; the total weight is obtained co rrespondingly by 

• • • • 
• • 

• • 
• • 

(a) (b) 
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starting with nl 0 a nd moving upto n times alo ng one of the arrows -i or v. 
This g ives the triangular weight diagram. 

By starting with the conjugate representation we can obtain a similar series 
of triangular representations, the triangles now, like that of Fig. 6.5(b), being 
the right way up. 

We have already seen the patterns of Figs. 6.5(c) and 6.6(b) in Figs. 1.4 and 
1.5, which show how hadronic particles do indeed fall into multiplets carrying 
representations ofSU(3). The lightest baryons (which have zero charm, beauty 
o r truth and decay o nly by the weak force) form a n octet like Fig. 6.5(c), while 
the next lig htest baryons, which (with o ne exception, to which we will return) 
a re unstable to decay by the st rong force, form a decuplet like Fig. 6.6(b). The 
mesons also fa ll into SU(3) multiplets, all octets and singlets. These multiplets 
are collected together in Fig. 6.7; their decays are summarised iiJ Table 6.4. 

Quark structure Let us see how the SU(3) multiplets of mesons and baryons can be described in 
terms of quarks. The quarks u. d and s form an SU(3) triplet, as in Fig. 6.5(a). 
Let ~ be the three-dimensional sta le space of these quarks, and let .El be the 
sta te space of their ant iparticles, so that 22 and .1 are the representation spaces 
for 3 and 3. The states of a quark and an antiquark form the two-particle state 
space 22 ®fl. In this space the eigenvalues ofF 3 and F 8 are obtained by adding 

the eigenvalues for the individual particles; so each weight of f2 ® !1 is the 
vector sum of a weight of .?2 and a weight of }1. Hence the weight diagram of 
f2 ® J1 is the union o f three copies of the weight diagram of ll, each centred on 
one of the points in the weight diagram of 22. This yields the octet diagram with 
one extra point (Fig. 6.8), which suggests that li ® li splits into an octet and a 

Fig. 6.7. 
SU(3) multiplets : (a) baryons n p 6,- 6.0 6,+ 6, ++ 

(940) • • • (1232) JP = 1 +, lifetimes - 10- 10 sec; • • • 
(b) baryons JP =1 +, lifetimes A• (1115) 

(1190) (1385) 
-10- 23 sec; r - r• :I; + r - r• :I;+ 

(c) mesons f = 0 - , lifetimes • • (1320) • • (1530) 
w-& tO lQ- IOsec; :;o :::• - :;:•o 

(d) mesons JP = I -, lifetimes {a) (b) 
n- (1672) 

- w-22 sec; 
(e) meson Jp = o- , lifetime 

w-20 sec; K• K+ K•• K•+ 

(f) meson JP = I -, lifetime • • (495) • • (892) 

w-22 sec. 1J (550) rP (1020) 

71 n• n+ (140) 
p p• p + (170) 

• • (495) • ~ 
K - K• K•- K•• (892) 

(c) (d) 

(e) t7J' (f) 
tw 
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singlet: 

(6.80) 

Algebraically, this decomposit ion can be understood as follows. If }1 is a 
space of kets, JI can be rega rded as the space of bras. Then }1 ® 1 (which is 

isomorphic to ff. ® .2) is spanned by products J¢ >< 1/JJ, i.e. operators on d. They 
transform under SU(3) t ransformations, acco rding to (6.75), by 

j¢)(1/!j -+ Vj¢)(1/!jUt = Vj¢)(1/JJU- 1 (6.8 1) 

(since U is unitary), i.e. in accordance wi th (6.78). The octet representation 
space, consisting of traceless operato rs, is a subspace of this ,l ® d; the 
orthogonal one-dimensional subspace is the space of multiples of the identity 
operator, which is invariant under the transformations (6.78) and so 

constitutes the singlet representation. 
SU{3) in variance now fixes the qua rk composition of the th ree neutral , non­

strange mesons n°, 17 a nd r( If the r( is an SU(3) singlet , it co rresponds to the 

Table 6.4. Principal decays of the particles in Fig. 6 .7 

Weak decays (lifetimes 10 - 10 to 10 - 8 s)" 

~S = ±1 

Baryon octet 

t\0 ~ N +n 
1: ± ~ N +n 
3 -+t\ + n 

0- meson octet 

K --+.u - +v;, K+-+~l + +v~ 
K ± -+ 2n, 3n 
Ks 0 -+ 2n. KL 0 -+ 3n 

Baryon decuplet: n - -+ :::: + n, n--+ t\ 0 + K -

Electromagnetic decays (l ifetimes - 10 - 20 s)b 

Baryon octet o- meson octet 

n°-+ 2y 
Y/-+ 2y 
'7-+ 3n 

Strong decays (lifetimes - w-23 s)b 

Baryon decuplet 

tJ. ~N+n 

1:* ~ L + n, t\ + n 
::::•-+ !:: +n: 

I - meson octet 

p ~ 2n 
rJ>~ K +'K, 3n 

K*-+K +n 

o- meson singlet 

1 - meson singlet 

w ~ 3n 

" The neutron lifetime is exceptionally long because of a very small phase space factor. 
b The question of how particles with such short lifetimes are observed will be taken up 
in §6.4. 
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identity operator 

I = lu><ul + ld )(dl + ls><sl (6.82) 

on fl.. Since each bra vector transforms like the corresponding antiquark state, 
this gives 

l11'> = (1/)3)(1uu> + ldct ) +Iss) ) (6.83) 

as the norma lised qua rk- antiquark singlet state. The octet particles n° and 11 
must correspond to traceless operators on .!1 and therefore to quark- antiquark 
states of the form 

3 

I c,plq,) lqp) with I c,. = 1, (6.84) 
• ./i= I 

writing (u, d , s) = (q 1 , q 2 , q 3) . The n° has isospin 1, so it must be composed of the 
isospin-1 pa rticles (u , u, d, d); the neutral I= 1 combination of these is 

ln°) = J 1(1uu) -ldd) ) (6 .85) 

since from (6.14) the antiquark isospin doublet is (ilu >, -ild>) and we can 
ignore the phase factor i. Now the 11 must be orthogonal to both (6.83) and 
(6.85): 

l11> = J i(Juu> + ldd) - 2lss> ). (6.86) 

The full set of nine quark- antiquark combinations is called a nonet. Fig. 6.7 
shows two such nonets, one with JP =0- (which can be identified as the set of 
quark-antiquark states with 1=0 and s =O, since the quark and antiquark 
have opposite intrinsic parities), and one with JP = 1- (I= 0, s = 1). In each 
nonet there a re two isospin singlet states, the SU(3) singlet like (6.83) and the 
SU(3) octet state like (6.86); the states observed as particles can be 
combinations of these ifSU(3) invariance is not respected. It appears [Perkins 
1982, §5.4] that in the 0- no net the observed pa rticles 11 and 11' are close to the 
SU(3) octet and singlet states, but in the I - nonet this is not true and the 
particles are better represented as 

I<P >= Iss) , lw > = J 1(Ju>lu> + ld>ld > ). (6.87) 

The baryons a re three-quark states. To understand these, first consider the 
two-quark state space f2 ®fl.. The procedure of Fig. 6.8 leads to the weight 
diagram of Fig. 6.9(a). We know that this must contain the sextet 
representation, since this acts on the symmetric subspace f2 v f2 of f2 ®fl.; if 
this is separated out, as in Fig. 6.9(b) , what is left is the antitriplet 
representation: 

(6.88) 

To obtain the weight diagram for three-quark states, we must superimpose 
the quark weight diagram on both diagrams for 6 and 3, in the manner of Figs. 
6.8 and 6.9. We know that this must contain the decuplet, which was defined to 

be the symmetric three-particle state space f2 v fl. v fl.; this occurs in 6 ® 3, 



Fig. 6.8. 
3 ® .3=8 (£J l. 

Fig. 6.9. 
3®3=6(£Jl 
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which also contains an octet. Thus we have 

3 ® 3 ® 3= (6 EB 3) ® ~= (6 ® 3) EB (3 ® 3)= 10 EB 8 EB 8 EB 1. (6.89) 

So the three-quark states include a decuplet and an octet, which occu r as 
multiplets of ba ryons. 

As expected, these SU(3) multiplets do not contain particles with equal 
mass. In the baryon decuplet, fo r exampl e, the mass of each isospin multiplet is 
greater than the one above by about 145 MeV. Since the pa rticles in each 
isospin multiplet contain one mores quark tha n those in the one above, this 
can be simply understood as being due to the s quark's having a greater mass 

than the u and d quarks. This also gives a qualitative understanding of the 
mass differences in the ba ryon and meson octets. A more quantitative 
understanding can be obtained by assuming definite SU (3) transformation 
properties fo r the Hamiltonian (see problem 6.22). 

The part icle at the bottom of the baryon decuplet , then -, is composed of 

three s quarks and has strangeness S = -3. A state with this strangeness 
cannot be made up from any set of particles with total mass less than that of the 
n - : hence the decay of th is particle must involve a change of strangeness and 

"' "' 

(a) (b) 
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Fig. 6.10. 
Production and decay of an 

n - (photo: CERN). 
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so it must be a weak process. Thus the lifetime of then- is of the order of the 
weak interaction times, about 10- 8 s. At the time when the theory of SU(3) 

symmetry was developed then- was not known but the other particles in the 
decuplet were. The discovery in 1964 of this long-lived particle with such a 
relatively high mass confirmed the ideas of SU(3) symmetry, in a striking 
parallel to the confirmation of Mendeleev's periodic table by the discovery of 
missing elements. Fig. 6.10 is a bubble-chamber photograph of the production 
and decay of an n-. 

Operators with definite SU(3) transformation properties can be formed 
from the fields of particle multiplets in the same way as for isospin. Let the 3 x 3 
matrix Y be an element of SU(3), and let U(Y) be the corresponding unitary 
opera tor on the full state space; then if ¢. is the set of fields of the quark triplet, 
regarded as a column vector <1>, 

and 
U(Y)<I>U(Y) - 1 = Y <I> l 

U(Y)<I>t U(Y)-1 =<l>ty t , 
(6.90) 

of which the infinitestimal form is 

[Fi, <I>]= A/D and [Fi, <l>t] = - <l>tA.i. (6.91) 
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The combinations 

~~ = <D t ;,,<D (6.92) 

form an octet operator, i.e. 

[F;, 1-j] = i/;jk V,.. (6.93) 

More generally, if ¢ 1, ••• , ¢N are the field s of any SU(3) multiplet of particles 
rega rded as a column vector <D, and t; a re the N x N matrices which are the 

hermitian generators of SU(3) in this representation, then <D\<D is a n octet 
operator. This is the SU(3) counterpart of the SU(2) vector opera tor (6.3 1). 

If v; and W; are both octet operato rs in the sense of (6.93), then v;W; is an 
SU(3) scalar and /;jk I') H{, is another octet opera tor. These correspond to the 
scala r product and vector product of two SU(2) vector operators. 

An SU(3) version of the Yukawa- Kemmer Hamiltonian (6.34) can be 
constructed with a self-conjugate octet of particles, i.e. a n octet in which the 
particles at diametrically opposite points of the weight diagram are 
antiparticles of each o ther. An example of a self-conjugate octet is the meson 
octet of F ig. 6.7(c). Such an octet yields a set of hermitian fields a.; which form 
an octet operator, defined by comparing the weight diagram wi th Fig. 6.5(c) 

(for example, from Fig. 6.7(c) we have ¢K . = a.4 + ia.5 ). The particles of a self­
conjugate octet can be taken as field quanta for an SU(3)-symmetric fo rce 

acting on any SU(3) multiplet; the corresponding Yukawa-Kemmer 
Hamiltonian is 

H' = <D\<D . a.; (6.94) 

where <D is the colum n vector of fields for the multiplet. 

SU(4, 5 and 6) The notion of symmetry between quarks can of course be extended 
successively to the quarks c, band t. This leads in turn to the symmetry groups 
SU(4), SU(5) and SU(6), which, in the same way as SU(2) and SU(3), can be 
used to classify particles in multiplets and to obtain relations betwe~n decay 
rates. The representat ions ofSU(n) are described by (n -I)-dimensional weight 
diagrams; as an example, Fig. 6.11 shows the weight diagram for the adjoint 
representation of SU(4). This has 15 points in a three-dimensional figure (a 
cuboctahedron). There should be a multiplet of o- mesons corresponding to 
this figure, comprising an SU(3) octet, a singlet, a triplet and an antitriplet. 
These all contain a quark and an antiquark, as shown in Fig. 6.11. The axes in 
this figure label I 3, strangeness and charm. The relation between I 3 and electric 
charge is modified in the presence of charm, and modified again by further 
flavours; the general relation can be expressed by the formula (6.3) where the 
hypercharge is 

Y=B+S+C-B'+ T (6.95) 

(B=baryon number, S =strangeness, C=charm, B' =beauty, T = truth). 
As the mass differences between successive quarks get steadily larger, the 

symmetry between them becomes Jess and less real, and it becomes more 
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meaningful to classify particles in simple terms of quark content rather than by 
SU(n) multiplets. The difference is a matter o f the degree of superposition of 
different quark structures, and can be illustra ted by referring to the totally 
neutral mesons n°, 11 and 1( From the three quarks u, d , sand their antiquarks 
one might naively expect to form three totally neutral mesons uu, dd, ss. In 

fact, becau se of the very good symmetry between u and d , the observed particle 
n° is an equal superposition of uu and dd, and as shown in (6.83) and (6.86) the 
other two particles are also superpositions. However, because SU(3) is not an 
exact symmetry the observed particles are not actually given by these 
expressions but by combinations of them, so that 11 is closer to ss and 11' to uii + 
dd. In the l- octet this is even more true, and the observed ¢ -meson is almost 

exactly ss. With the heavier quarks this trend continues, so that the totally 

neutral mesons formed from them can be considered as cc, bb and it. 

6.4. Hadron spectroscopy Once it is known that had rons (ba ryons and mesons) are composed of quarks, 
the object of the study of hadrons becomes to understand the forces between 
quarks. There are precedents for this in the study of the higher-level composite 
systems, molecules, atoms and nuclei, which we will now briefly review. 

Fig. 6.11 
The adjoint representation of 

SU(4): thick lines outline 
SU(3) multiplets. 

In quantum mechanics forces are described by a Hamiltonian, whose most 
characteristic feature is its spectrum, the set of energy levels of the system. In an 

atom or molecule these energy levels are directly accessible to experiment, 

since the differences between them give the frequencies of the radiation emitted 
by the atom. Thus in atomic and molecular spectroscopy the basic 
information-gi ving event is the decay of an excited state with the emission of a 
photon. 

c 

I
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do uo 
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Another piece of informa tion that is given by this event (o r ra ther, by a large 
number of similar events) is the lifetime of the excited state. This is no t 
measured directly (it is typically of the order of 10 - J ~ s) , but deduced from a 

second property of the emi tted radiation, the width of the spectral line. The 
radiatio n in a given line of the spectrum of a substance (i.e. tha t associated with 
a given pair o f energy levels) is not a ll emitted a t precisely the same frequency, 
but is distributed over a na rrow range of frequencies, so tha t the line observed 

in a spectrometer is not infinitely thin but has a finite width. This is to be 
expected from the general discussion of decay in §3.5; the unstable exci ted 
state. not being a sta tionary state. is a superposition of energy eigenstates with 

coefficients p(E) which. for the case of exponent ial decay, satisfy the Breit­
Wigner formula 

(6.96) 

After the photon has been emitted , the decay in teraction can be neglected and 
the energy can be taken to be the sum of the energies of the atom and the 

photon. Since the energy of the atom is fi xed , the total energy is measured by 
measuring the frequency of the pho ton, wh ich will show a distribution like 
(6.96). 

Fo r an a tom to emit a photon from an excited state it must have been excited 
in the first place. One way in particular in which this can ha ppen is fort he atom 
to absorb a photon. In this case the whole process can be regarded as a 
coll ision in which the photon is scattered by the atom , since it will not in 
general be emitted in the same direction as it was absorbed from. If the atom 
returns to the state it was in befo re the coll ision, the emergent photon will have 
the same energy as the incident one; this is called elastic scattering. Time­
dependent perturbation theory shows that the scattering will only take place if 

the eigenvalues of H 0 are nearly the same befo re and after, so that conservation 
of energy can be applied by simply adding the energies of the atom and the 
photon (as one would expect: when they a re far apart, the potential energy of 
interaction is negligible). Thus the absorbed pho ton has the same energy as the 
emitted one, and it is distribu ted as in (6.96). More generally, the atom will 

decay to another exci ted state and the overall process will be inelastic 
scattering: 

X+y--+X'+ y. (6.97) 

It is sti ll true that the energies of both absorbed and emitted photons a re 

distributed in the Breit- Wigner fonn (6.96). 
The upshot is that if the amount of scattering is plotted against the energy of 

the incident photons, the g ra ph shows a number of peaks at the energies of the 
excited states of the atom, as in Fig. 6.12. In the case of atoms and molecules, 
the scattering of pho tons when a beam of light is passed through a material 
causes a depletion of the beam in the incident direction; peaks like those of Fig. 
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Fig. 6.12. 
Resonances. 
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6.12 show up as dark lines when the diiTerent frequencies of light are spread out 
in a spectrometer. This is called an absorption spectrum. 

In general, for any scattering process in which a beam of one type of particle 
is scattered ofT a target of another type of particle, we can plot the amount of 
scattering against the total energy of one beam particle plus one target particle. 
The 'amount of scattering' is defined as 

number of particles scattered per unit time 
(J= 

number of target particles x flux of beam 
(6.98) 

where the flux of the beam is the number of particles crossing unit area in unit 
time. This (J has the dimensions of area, and is called the scattering cross­
section, because if each target pa rticle presented a cross-sectional a rea which a 
beam particle must hit if it is to be scattered, (6.98) would give that a rea. (If the 
direction of scattering is specified, and (6.98) is taken to mean the number of 
particles scattered per unit solid angle at that direction, the result is the 
differential cross-section dajdO; the total cross-section a is the integral of this 
over all directions.) 

Eq. (6.98) is also used to define the cross-section for a process in which the 
particles may change their identity, i.e. 

A+B--+C+D+E+···. (6.99) 

The top line of (6.98) must then be understood to mean the number of beam 
particles which initiate the particular process being considered. 

A peak in the graph of scattering cross-section against energy is called a 
resonance; if it can be approximated by (6.96) near some energy E0 , r is called 
the width of the resonance. We can now generalise from our discussion of 
atomic and molecular spectra to draw the following moral: 

A resonance in a scattering cross-section, at energy E0 and with width 
r , is an indication of an excited state of the target with energy E0 and 
lifetime r - 1. 

In the inelast ic process (6.97) there are two excited states involved: a first one 
which is produced by the absorption of the incident photon, and a second one 

Energy 
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fonned by the decay of the first. This second state will also decay, so that the 
end result is 

X+ y-+X+ 2y, 

the full description of the intennediate processes being 

X+ y -+ X"-+ X' +y 

I 
-+X + y. 

(6.100) 

(6.10 I) 

If both decays occur so quickly tha t only (6.100) is observed, then both excited 
states must be treated as resonances. The first is a resonance in the total cross­
section, as has already been described (in this context it might be more 
appropria te to replace the word 'scattered ' by 'absorbed' in the definition 

(6.98) of the cross-section); thi s is called formation of the resonance. The second 
excited state X', however, can only be detected by looking at the emitted 
photons: if the energy of each photon is added to that of the final ground-state 
atom, it will be found that there are a large number of such Xy pairs with 
energy close to that o f the excited sta te X', and their energy is distributed about 
the X' energy according to the resonance formula (6.96). This is called 
production of the X' resonance. 

These considerations are relevant not only to emission and absorption 

spectroscopy, which we have been describing as the study of photon- atom 
scattering, but also to other fonns of atomic scattering. An atom can be put 
into an excited state by a collision with another atom or ion or an electron, so 
the scattering of beams of ions o r elect rons off atoms can give infonnation 
about excited sta tes. Also, an excited state can sometimes decay by the 
emission of an electron; such a state is called an autoionising state. An 
autoionising state of an atom X, which decays into the ion X + plus an electron, 
will show up as a resonance in the scattering of electrons from the ion X +; this 

resonance represents not an excited state of the target but a bound sta te of the 
target and the beam particle combined together. 

Thus there a re many scattering processes of the fonn (6.99) which can give 
infonnation about the excited states of atoms a nd molecules. The same is true 
in nuclear physics: the excited states of a nucleus are detennined by means of 
scattering experiments in which the nucleus is bombarded with ex-pa rticles, 
protons or neutrons. 

To apply these ideas to particle physics we will have to take account of the 
fact that particle collisions occur at high energy; the recoil of the target will be 
significant , and relativistic mechanics must be used. In a process like (6.99), if 

the two initial particles fonn a state X it will be characterised not by its energy 
(which depends on its velocity, i.e. the centre-of-mass velocity of A and B), but 
by its rest-mass mx given by 

m/c4 = E/ -p/c2 

=mAo2C4 =(EA + Ea)2 -(pA +Ps)2c2, (6.102) 
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Fig. 6.13. 
Baryon resonances. 
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by conservation of energy and momentum. It is this quantity m AB• the centre­
of-mass energy o r invariant mass of A and B, which is significant in scattering 
ex periments: resonance formation is shown by a peak in the scattering cross­
section as a fun ction of m AB · Similarly, production of a resonance which then 
decays into C + D is indicated by a peak in the number of CD pairs as a 
functi on of mco. 

All the ·particles' mentioned in this chapter which were ascribed lifetimes of 
the o rder of 10 - 2 3 s, characteristic of the strong interactions, are observed 

only as resonances. Thus the isospin-i ~multiplet is a set of resonances formed 
in pion-nucleon scattering; the other unstable pa rticles in the baryon decuplet, 
the L* triplet and the ::::* doublet, are produced as Ln and =:n resonances and 
seen in the final states of antikaon- nucleon scattering: 

R +N-. I *+n 

-+ L +n, 

K + N-.::::*+K+n 

-.=:+n. 

(6.103) 

(6.104) 

These particles can only be seen as production resonances and not in 

fo rmation experiments, because their masses are too low for them to be formed 
in R- N scattering. 

There are many ba ryon resonances with masses in the region from I GeV to 
3 GeV, with spins up to lf and possibly g reater. They all have isospin and 
strangeness the same as one of the particles we have already met, N, L , A,:::: o r 
~- These symbols, together with the mass, a re used as names for the 
resonances: for example, L(l670) denotes a triplet of resonances with isospin 1, 
strangeness -1 and mass 1670 MeV. The most prominent baryon resonances 
are shown on a plot of spin against mass in F ig. 6. 13. 
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There is a similar profusion o f meson resonances. including the nonet with 
JP = 1- which we encountered in §6.3. Their isospin and stra ngeness are 

restricted to the values exhibited by n, K, K and 17- They are mainly observed in 

production processes such as 

rr+N-+N+p 

I 
-+ 2n. (6.105) 

This applies also to the IJ, the 1=0 member of the o- octet whose other 
members live long enough to form visible bubble-chamber tracks. However, 

there is a class of meson resona nces. namely totally neutral resonances with 
JP = I - , which are also observed in formation processes in electron- positron 

scattering. Thus the p0 , (JJ and </> mesons appear a s resonances in the cross­
sections for 

(6.106) 

These facts about resonances all go to confirm that hadrons are composed 
of quarks, each baryon being a bound state of three quarks a nd each meson a 
bound state o f a quark and an antiquark. The isospin and strangeness values 
o f N , LA, :=:. !land n a re just those that can be o btained by putting together 
three quarks chosen from u, d and s. while the isospin and st rangeness of rr, K , 

K and 17 are just those o f the quark- ant iquark combina tions of these three. 
Thus the original particles wi th these names seem to be g ro und states of the 3q 
or qq systems, and the resonances are excited sta tes which decay to the ground 
sta te. The set of masses o f the resona nces with given cha rge and strangeness 
form a spectrum, like the set o f energies of the excited states of an a tom, which 
should g ive info rmation abo ut the forces between the relevant quarks; thus 

Fig. 6.13 should be regarded as being the same sort of diagram as Fig. 4.6. 
These excited states usually decay by emitting a pion or kaon; this is not 

analogous to the decay of an exci ted state of an atom, with the emission of a 
photon , but involves the creation o f a quark and its antiquark. This is 
illustrated in Fig. 6.14 fo r the decays of the !l + + and the ¢. The 
quark-antiquark pairs in these processes are created by virtual gluons, the 

quanta o f the interquark force, which play the same role inside hadrons as 
photons do inside atoms. 

Fig. 6.14(c) shows a method of decay for a meson resonance which is much 
rarer than the type of decay shown in Fig. 6.14(b). The Zweig rule states that 
any process invol ving an intermediate state containing only gluons is 
suppressed, i.e. has a very low rate compared with processes like Figs. 6.14(a) 
and (b), in which there a re quark lines which join the initial state to the final 
state. 

Charm, beauty and truth The formatio n of neutral meson resonances in electro n- posi tron annihilation 

can be understood by means of the Feynman diagram Fig. 6.15. The quark 
and the antiquark in a totally neutral meson are antiparticles of each other, 
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Fig. 6.14. 
Quark diagrams for resonance 
decays: (c) is suppressed by the 

Zweig rule. 

Fig. 6.15. 
Formation of a neutral ! ­

meson resonance. 
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and so they can annihilate to give a (virtual) photon, or be created from a 
photon, in one of the basic events of the electromagnetic force. The probability 

of this pair creation will be enhanced in a resonance-like way at energies at 
which the quark and antiquark form a bound state. Such a bound state must 
have the same angular momentum and parity as the photon, namely JP = 1- . 
It can decay to produce hadrons (with the aid of further quark-antiquark pair 
creation, as in Fig. 6.14), or it can annihilate to give another virtual photon, 
which then creates ei ther an electron- positron pair or a Jl - J1 + pair. Thus the 
formation ofneutral1 - meson resonances shows up as a simultaneous peak in 
the cross-sections fore - +e+ -+ hadrons (like (6.106)), e - +e+-+ Jl - +Jl +, 

and the elastic scattering e- + e + -+ e - + e +. 

Q? I; _____ -...! 



Fig. 6.16. 
1/111 decay: in accordance with 
standard practice, gluon lines 

are not shown. 
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This process provided one of the first pieces of evidence for the existence of 

the charmed quark. In 1974 an extremely sharp resonance in e -e+ scattering, 

with a mass of 3 !00 MeV, was observed at SLAC (Stanford, California). It was 
observed simultaneously in a production experiment at Brookhaven, New 
York, where collisions of high-energy protons with beryllium nuclei produced 
e - e+ pairs whose invariant mass showed a sharp peak at 3100 MeV. This 
double discovery led to a double christening for the resonance, which is still 
known as the J/lf;. 

The width of the J/lf; is 0.06 MeV, which is very much smaller than the 
widths of the other resonances and corresponds to a lifetime of about w- 20 s, 

characteristic of electromagnetic rather than strong interactions. If it was 
composed of u, d and s quarks it would decay into pions and kaons and its 
width would be of the order of 10 to 100 MeV like those of the other 
resonances. This is reminiscent of the strangely long lifetimes of particles 
containing the s quark, and can be explained in a somewhat similar way by 
supposing that the J/lf; is a bound state of the fourth quark c and its antiquark 
c, which carry the new quantum number of charm. In the case of st range 
particles an s quark and an s antiquark are created by strong interactions and 

are prevented from being destroyed by them because they move apart in two 
hadrons. In the case of the Jjlj; the annihilation of the c and the cis prevented 
not by physical separation but by the Zweig rule, which would allow the JN to 
decay only as in Fig. 6.16(a), for example. This will be impossible if all mesons 

c 

JNI~ c: 
(a) c 

q 

(b) q 

q 

c·· c 
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q' 
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Fig. 6.17. 
(a) The 1/J famil y; 
(b) positronium. 
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with non-zero charm (like cd a nd cd) have masses g reater than half the J/tf; 
mass. This was subsequently found to be the case. Thus the J/tf; can only decay 

as in Fig. 6.16(h), which is an electromagnetic process, and Fig. 6.16(c), which 

vio la tes t he Zweig rule a nd so has rate simila r to tha t of the electromagnetic 

process. 
The existence of c harmed q u a rks was confirmed by the discovery of the 0-

mesons. These comprise two isospin doublets (0 °, 0 +)and (0 - , 0 °) and are 

the charmed a nalogues of the K-mesons; their quark composition is (eli , cd) 

and (de, uc). They have lifetimes of the o rd er of 10 - 12 s (like kaons, t hey can 

only decay weakly). T here are a lso cha rmed baryons /\c + (an isospin s inglet 

containing c, u and d quarks) and Lc (an isospin triplet), and a s trange charmed 

meson F + =cs. 

The compositio n of the J/tf; as a particle- antiparticle bound state is 

confim1ed by some furt her spectroscopy. There are several resonances in the 

neighbourhood of the J/tf; (some formed as resonances in e-e + scattering, 

some produced in the decay of the first type) which can be unde rstood as states 

o f the cc system . In stead of classi fying these by their spin and parity (JP) it is 

more ins tructive to try to deduce the rela tive orbital angular mo mentum Land 

total spin S of the quark a nd a nt iquark; va lues of these which are co nsistent 

wi th the JP values of the resonances are presented in Fig. 6.17(a) on a plot of L 
agains t the mass of the resona nce. For comparison , Fig. 6.17(b) shows the 

s tationary s ta tes of positronium (this is a refined version o f Fig. 4 .5(a), the 

diagram o f stationary states of the hydrogen a tom, in which the effects of 

special rela tivity and the magnetic properties of the electron and positron have 

been taken into account; these cause a separation between the degenerate 

eigenvalues of the non relativist ic, spin-independent Hamiltonian of ~.4). The 

resemblance between the two is so close t hat the re can be little doubt that the 

resonances are sta tes of a particle- a ntiparticle system like positronium. 

Becau se of t his resemblance, the cc system is called charmonium. The spacings 

between the energy levels of charmonium are g reater (by factors of 107
) than 

those in positronium, showing tha t the force responsible for binding the c a nd c 

Mass) •if/ • • • • 1}~ • 1= 2} 
• •1= I X • 

•1=0 

•1N • 
1Jc 

L =O 0 0 0 
S= 0 I 0 0 I 0 

(a) (b) 



6.5 The colour force 265 

together is not the electromagnetic force but a very much stronger force of 
similar fonn. 

The discovery of the b quark fo llowed a similar course to that of the c quark. 
A narrow resonance was observed in the invariant mass of e-e + pairs 
produced in collisions between protons and uranium nuclei; it has a mass of 
9460 MeV and a width of 0.04 MeV. This particle, called the Y (capital 
upsilon) is interpreted as a bound state of the fifth quark band its antiparticle 
5. It has been investigated by means of electron- positron cattering. which 
again shows a spectrum of resonances very like the spectrum of positronium. 
The b5 system is called beautonium or (more commonly) bottomonium. A pair 
of particles with non-zero value of the associated quantum number B' (beauty) 
has been observed; these are (B0 .B +)=(db, ub) and (B - .B0 )=(bu.bd). 

The sequence of I resonances p 0
, w (which are linear combinations of uu 

and dd states), ¢ ( = ss), JN and Y gives a consistent method for estimating 
quark masses. Assuming that these states are close to the limit of zero binding 
energy. we have 

lllu~111d~~lll1,,,,, ~ 390 MeV 

m, ~im41~ 500 MeV 

lllc ~ !mJ "' ::::: 1600 MeV 

mb ::::: !mr::::: 5000 MeV 

(6.107) 

The sixth quark t was observed in a different way from the others; it was 
produced not by st rong but by weak interactions. in the decay of theW boson: 

w-+ t+5. (6.108) 

This will be discussed in *6.6. The mass of the t quark is not known with 
certainty. but it seems likely that 

m,:::::40GeV. (6.109) 

6.5. The colour force There are a number of empirical reasons for believing that each quark has an 
Colour additional property beyond those we have already considered. which has three 

possible values, so that the state space for quarks of a given fla vou r (u, d, s, c, b 
or t) is not the usual spin/orbital state space if.® Y' but 'If ·® .V' ® '6 where (6 
is three-dimensional. We will describe two pieces of evidence for this further 
degree of freedom, which is called colour. 

The first comes from baryon spectroscopy. The spins. parities and isospins 
(and SU(3) multiplets) of baryon resonances formed from u, d and s quarks 
correspond very well to the totally symmetric states of three particles, each 
having spin 1 and belonging to an SU(3) triplet, occupying the states of a 
central potential like the harmonic oscillator or the hydrogen atom (the 
relevant feature of which is that the sta tes fall into orbital angular momentum 
multiplets). For example. the !J. multiplet, with spin ! and isospin !. is the 
symmetric combination of three spin-1 isospin-1 particles all having orbital 
angular momentum I =0 (this extends to the 1"'· decuplet, which is the 
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symmetric combination of three SU(3) triplets); the ~ multiplets with spins t, 1, 
-!. -i with masses around 1900 MeV (see Fig. 6.13) can be obtained as symmetric 
combinations in which two particles have I= 1 a nd one has 1=0. But since 

quarks have spin t they should be fermions and should only exist in 
antisymmetric combinations. Thus there must be another degree of freedom to 
provide the antisymmetry; if quark states have a factor in the colour space ((;, 
many-quark states can be symmetric in space, spin and isospin and 
antisymmetric in colour. 

The second piece of evidence comes from the production of hadrons in 
electron-positron annihilation. We have seen how resonances occur in this 
process through the formation of quark- antiquark bound states as in Fig. 
6.15. If the energy is not equal to that of a bound state the photon in this 
diagram can still produce a quark-antiquark pair, which will then separate 

and combine with other quarks and antiquarks formed from the vacuum as in 
Fig. 6.14, to produce a final state of many hadrons. Away from resonances the 
vi rtual pho ton is equally likely to produce any particle-antiparticle pair of a 
given charge, provided it has sufficient energy. In general, the probability that 
it will create a particular particle-antiparticle pair is proportional to the 
square of the charge on the particle (the charge occurs as a factor in the term of 
the Hamiltonian describing the photon-particle-antiparticle vertex, and 
therefore in the amplitude for the process; this must be squared to give the 
probability). Thus at a given energy Ewe can compare the total probability of 
qua rk- antiquark creation, leading to a final state of hadrons, with the 
probability of 11- J1 + creation, which does not lead to hadrons: 

R(E) r(e - e + ___. hadrons) = L q2 (6.110) 
f'(e e + ___. J1 Jl +) ; ' 

where q; is the charge of quark number i and the sum is over all quarks with 
mass below 1-E. 

The experimentally determined form of the function R(E) is shown in Fig. 
6.18. It shows a steplike rise each time the energy reaches a value at which 
another quark- antiquark pair can be produced; these thresholds are marked 
by resonances showing the formation of a bound state at energies slightly 
lower (because of binding energy) than that at which the quark and antiquark 
can separate. This qualitatively confirms the picture that the elementary 

constituents of hadrons, in increasing order of mass, are u, d, s, c and b (the t 
th reshold has not yet been reached). But the value of R is not what this picture 
would give; instead of being (~) 2 + ( -~) 2 = ~ in the low-energy region where 
only u and d quarks are involved, it is more like 1, and it continues to be too 

large by a factor of about 3. This suggests that every q2 in the sum (6.110) 
occurs three times, i.e. that there are three different quarks for each ofu, d, .... 

Although we have evidence that the three different colour states of quarks 
exist, we have no idea what the difference between them is; it does not 

correspond to any detectable difference between the particles we observe. This 
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has two very important conseq uences. First, it means that the laws of physics 
are unchanged if the differen t colours are changed round: thus it implies the 
existence of another symmetry group in nature. Unlike the isospin and SU(3) 
symmetries (flavour symmetries) which declared the approximate eq uivalence 
of particles which were in fact delectably different, this colour symmetry is 
exact. All the states in the three-dimensional colour space a re equivalent to 
each other under this symmetry, so the symmetry operations consist of all 
transformations of these sta tes which preserve the basic quantum-mechanical 
relations of linear dependence and inner product; as with the flavour 
symmetries, this leads us to the group of all unitary transformat ions of the 
colour space. Separating off the multiples of the iden tity (which refer to the 
symmetry of all states under multiplication by phase factors, and are not 
specific to colour symmetry), we find another symmetry group with the 
mathematical structure of the group SU(3). 

Since colour differences between states are not observable, all physical states 
mu st be unaffected by colour transformations. This does not mean that the 
transformations are meaningless, fo r they act on single-quark states and 
isolated quark s are never found in nature; all physical states are combinations 
of several quarks. The effect of colour transfom1ations on such combinations is 
obtained by combining the representations of the colour SU(3) group, in the 
same way as was discussed fo r the flavour SU(3) group in *6.3. This must resu lt 
in the representation in which all colour transfom1ations act as the id entity 
operator. Thus the second consequence of the unobservability of colour is that 
all physical states belong to sing let representations o.f the colour SU(3) group. 

This rule explains why there can be quark-ant iquark combi nat ions 
(mesons) and three-quark combinations (baryons) but no two-quark 
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combinat io ns. Each qua rk belo ngs to the triplet representation o f colo ur 
SU(3), each antiq ua rk to the a nt it riplet; the combination of these two conta ins 

a singlet (see (6.80)). T he combinatio n o f two triplets does no t co ntain a singlet 
(eq. (6.88)). but the comb ination of th ree t riplets does (eq. (6.89)). Moreover, 
this singlet is theant isymmetriccombination of the th ree triplets, as it m ust be 
if colou r is to do the job of resto ri ng antisymmetry to the q ua rks in a baryon. 

Gluons The eig ht hermi tian genera tors o f the colour SU(3) g ro up represent the 
observables which a re conserved as a result o f the symmetry. They are call ed 
colour charges. In this case 'observable' is a misno mer, since different values of 
these quant it ies distinguish di fferent colour states, and this difference is not 
observable. Nevert heless, the colour charges a re o f great physical sign ificance, 
for they act as the source of the strong force between quarks in the same way as 
the electric charge is the source of the elect ric field. 

Each of the eight colou r charges is associated with a boson, the quantum of 
the field generated by the charge, in the same way as electric charge is 
associa ted wit h the photon (this is explained mo re ful ly in §7.4). These bosons 
a re called gluons; they fo rm an octet rep resen tat ion o f the colour SU(3) g ro up, 
which is self-conjugate (the an tipart icle o f a gluon is a no ther gluon in the 

octet). As d iscussed on p. 255, such an octet is described by a set of hermitian 
fields ;-;. and a Hamiltonian describing the colo ur-symmetric in te raction 
between g luons and q ua rks is 

H'=a ,<DtJ.;<I>· y; (6. 111) 

where a, is a coupling constant giving the st rength o f the in teraction and <Dt = 
(¢Rt• ¢ 8t, ¢/) is the set of fields fo r a colo ur triplet of qua rks (say red , blue and 
yellow). This refers to a given navou r of q ua rk (e.g. u quarks o nly); the 

Hamiltonian for the strong interactions o f a ll q ua rks is 

H ' =a,C;qY; where C;q= L <D/i.;<D1 , 
J 

(6. 112) 

the sum in C;q being over al l navours f = u, d, s, c, b, t. This interactio n 
Hamilto nian has an exact SU(6) sym metry under na vour transfo rmatio ns (the 
coupling constant a, being the same fo r each fl avour); unlike the colour 

symmetry, this is no t an exact symmetry of the full Hamiltonian since it is 
b roken by the different masses in the quark free-pa rticle terms. 

The operators C;q of (6. 11 2) a re the componen ts o f the quark colour current; 

each of them can be written as 

(6. 113) 

where a; and a/ are the annihilation and creatio n o pera tors fo r the colour sta te 
of a quark which is an eigensta te of the ith colo ur cha rge, ii; and a/ refer to the 
ant iquark, and the sum is over all fl avours. Thus C;q gives rise to lines in a 

Feynman diagram alo ng which the ith colo u r cha rge flows in the same way as 
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electric charge nows along the electron- positron lines of electromagnetic 
Feynman diagram s; the ith gluon is attached to these lines in the same way as 
the photon is attached to electron- positron lines. 

Since the gluons also ca rry colour charge, they must themselves experience 
the colour force and therefore must contribute to the total colour current. 
Their contribut ion will be 

(6.114) 

where r is the eight-component column vector containing the gluon fields /',. 
and t; is the8 x 8 mat rix representing the ith hermitian generatorofSU(3). This 
is given by (6.93), which, together wi th the fact that the gluon field s /'; are 
hermitian, gives 

C/= i/;jk )'/lk · (6. 11 5) 

If each gluon had only one state the gluon colou r current C;~ would vanish, 
since hik is antisymmet ric. But in fact gluons a re spin-! particles, and the 
different spin states give a non-zero contribution to (6.115). This then gi, es an 
extra interaction term which can be written as 

H g' = rx.,Ct;·; =a.,J;jkYi. (yj X Yk) (6.116) 

where the spin-1 gluon field s are regarded as vecto r operators under the 
ro tation group. This vecto r character of the gluon fields plays a crucial role in 
making the field theory of the colour force a gauge theory; this is explained in 
Chapter 7. 

The term (6. 1 16) gives rise to three-gluon vertices in Feynman diagrams: 
gluons, having colou r charge. can themselves emit and abso rb glu ons. It can be 
seen that this term depends on the structure constants /;jk bei ng non-zero, 
which is equivalent to the group SU(J) being non-abelian. The gauge theory 
also requires a four-gluon term 

(6. 117) 

If gluons are attracted to each other by a strong force. as the three-gluon and 
four-glu on vertices suggest, then it seems possible that they might form bound 
states. Since the product of two SU(3) octets contains a singlet, a bound state of 
two gluons could exist as an observable physical particle. Such a hypothetical 
particle is called a glueball. There are one or two meson resonances which 
might be candidates for identification as a glueball, but there is no 
incontrovertible evidence that glueballs exist. 

Asymptotic freedom and The dynamical consequences of a gauge field theory cannot be treated 
confinement properly in this book; we will simply summarise the main conclusions. The 

effect of complicated Feynman diagrams on the rate of a particular process is 
to reproduce simple, low-order diagrams but with a changed coupling 
constant a. , which depends on the momenta of the pa rticles involved; in 
particular, for two-body scattering A+ B--> C + D, a, depends on the 
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Fig. 6.19. 
(a) Confinement of colour 

lines of force; (b) jet formation . 
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momentum t ransfer 

q2=(pA -p/)2 (6.118) 

where PA are the energy-momentum 4-vectors o f A before and after the 
collision, and the square denotes the Lorentz-in variant square of a 4-vector 
(see Appendix I). This can also be regarded as a dependence on the distance 
between the pa rticles, wi th high values of q 2 corresponding to small distances 
and vice versa. The fact that quantum chromodynamics is a gauge field theory 

has significant consequences for this variation of a,. 
It has been proved that a, becomes small at la rge values of q 2

, so that quarks 
behave like free particl es. This fact , called asymptotic freedom, explains the 
results of high-energy electron~proton scattering experiments (the hadronic 

analogue of Rutherford scattering off nuclei) , in which electrons which are 
deflected throug h large angles and therefore transfer high momenta to the 
quarks (so that q 2 is large) scatter elasticallyt off the quarks as if they were free 
point particles. More precisely, the quarks behave like particles bound in a 
weak potential (with small coupling constant) like the elect rons in an atom. 

It is coJ~jectured that a, is large at small values of q 2
, corresponding to large 

distances. This feature, called confinement, would explain why isolated quarks 
have never been observed and why all physical sta tes are colour singlets. 
Together with confinem ent o f quarks goes confinement o f gluons; gluons, 
being coloured objects, cannot escape indefinitely far from their quark sources 
(even though they are massless and, like photons, are associated with an 
apparently infinite-range fo rce). Thus the lines o f force of the gluon field must 
all begin and end on quarks, forming a tube of force as in Fig. 6.19(a). This gives 
rise to a constant force between quarks, so that the amount of energy required 
to separate them is proportional to the separation, and beyond a certain 

t But note that this occurs in 'deep inelastic scattering'. This is because the energy which is 
transferred to the quark is then used to disrupt the hadron it belongs to a nd to create more 
hadrons. as explained below. 
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separation is sufficient to create a quark- antiquark pair from the vacuum. 

Tf a quark and an antiquark are in a state with high energy, as for example 
when they are created from a photon in electron- positron collision 
experiments, then in thei r centre-of-mass frame of reference they will be 
moving away from each other with high momentum. This stretches the tube of 

force between them unti l another quark- antiquark pair is created, as in Fig. 
6.19(b); this is repeated until eventually a crowd of had rons has been produced. 
If each quark- antiquark pair is created as soon as there is sufficient energy in 
the tube of force, they will have small relative velocity; in particular, the new 
quark and antiquark in Fig. 6.19(b) have low transverse velocity relative to the 

original tube of force, and so the two new tubes have momenta in the same 
directions as the original two particles. As these in turn get stretched and 
produce new particles, the momenta will continue to be in the two original 
directions. On the basis of this intuitive classical reasoning, it is conjectured 
that the hadrons produced by this process will appear in two jets of particles: in 

each jet the momenta of the particles are all in approximately the same 
direction, which is the direction of motion of the original quark o r antiquark. 
A jet of hadrons can also be expected to form if a high-energy gluon is radiated 
by a quark. 

The hadrons produced in electron- positron collisions do indeed appear in 
the forn1 of jets (see Fig. 6.20). Events with both two and three jets have been 
observed. 

The ideas of asymptotic freedom and confinement are confirmed by the 
spectroscopy of the heavy quark systems of charmonium and beautonium. 
The excited states of these systems are consistent with a potential of the form 

ct. 
V(r) = - + {Jr 

I' 
(6.119) 

with ex :::::1. The smallness of the coupling constant on the Coulomb-like term 
cx jr shows the effect of asymptotic freedom; the linear term will give rise to 
confinement. 

The Zweig rule The I - mesons ¢, 1/t/1 and Y are each a bound state of a quark and its 
antiquark. They could decay by the mutual annihilation of this pair, but this 
decay has a very slow rate. The structure of quantum chromodynamics, in 
conjunction with the rule that all physical states are colour singlets, provides 
an explanation for this. 

Colour conservation prevents the quark and antiquark annihilating to form 
a single gluon, since they are in a colour singlet state and the gluon is an octet 
state. If they annihilate to form two gluons, these must be in the SU(3) singlet 
state formed from the product of two octets, which is a symmetric combination 
(as an SU(3) scalar, it is given by the scalar product V;WJ Hence the two-gluon 
state has charge conjugation parity +,for the effect of charge conjugation in 
this totally neutral state is to interchange the two gluons. But the mesons in 
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Fig. 6.20. 
Jets produced in a proton­
antiproton collision (photo: 

CERN). 
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question a re produced from photons and therefore have odd charge 
conjugation parity. Thus they cannot form two glu ons, but must form at least 
three. There are therefo re at least three qqg vertices in the Feynman diagram 
for the process, and the ampli tude has a factor of ex/ Since ex, is small at the 
distance involved. the probability for the process is considerably reduced. 

6.6. The electroweak force Before discussing the unified theory of the weak and elect romagnetic forces we 
Non-conservation of parity need to review some characteristic properties of the weak force. The first of 

these, which we noted in discussing neutral K-mesons, is that the weak force 
does not conserve parity. The clea rest manifestation of this is that neutrinos, 
which engage in no other interactions except gra vity, are always left-handed 
(have helicity -1); thus the parity operato r P, which would change a left­
handed neutrino into a right-handed one travelling in the opposite direction, is 
not defined on the state space of a neutrino. (An tineutrinos are always right­
handed, so the combined operation C P is defined.) 

The failure of reflection symmetry in weak in teractions was shown 
ex perimentally by C. S. Wu in 1957, by observing the electrons emitted in the 
{J-decay 

6 °Co-+ 60Ni + e- + vc. (6.120) 

The 6 °Co nuclei, which have spin 5, were placed in a strong magnetic field B. 
The effect of this is to add a tem1 - 1-1J · B to the Hamiltonian of the nucleus 
(t he spin J giving the nucleus a magnetic moment pJ); thus if the magnetic field 
is along the :-axis the ground state of the nucleus is the eigenstate of J =with 
eigenvalue 5. (Like a compass needle, the spin of the nucleus points along the 
magnetic field.) It was found that the electrons in the decay (6. 120) had an 
angular distribution 

v 
N((J) = I - - cos 0 

c 
(6.121) 

where N(O) dO is the number of electrons with velocity r emitted between 
angles 0 and O+dO to the magnetic field. Thus more electrons are emitted in 
the opposite direction to the nuclear spin than in the same direction. Fig. 6.21 
shows that this situation is not symmet ric under reflection in a mirror placed 
parallel to the nuclear spin. 

The asymmetry shown in this experiment can be explained qualitatively by 
the hypothesis that the electrons all ha ve negative helicity. The 6 0 Ni nucleus 
has spin 4, so the 6 °Co nucleus has lost angular momentum ~J with 
magnitude at least l (i.e. ~J 2 = j(j + 1) withj~ 1) and z-component bl=~ I; this 
must be made up from the spins of the electron and the antineutrino, thei r 
o rbital angular momentum and that of the 60Ni nucleus. Let us ignore orbital 
angular momentum fo r the moment, and consider electrons emitted in the:­
direction (0=0 or n). Electrons emitted upwards (0=0) have spin component 
s, = -1(by hypothesis), so they cannot make up the required ~J =;this can only 
be done by a downward electron (s:=!) accompanied by an upward 
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Fig. 6.21. 
Parity violation. 

Fig. 6.22. 
Helicity of an electron: the 

electron is left-handed in the 
frame of reference in which A 
is at rest, but right-handed in 

the frame in which B is at 
rest. 
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antineutrino (s==1 since antineutrinos are righthanded). Thus if only spin is 
taken into account, electrons can be emitted in the direction 0= n but not in 

the direction 0= 0. The effects of o rbital angular momentum will not 

distinguish between the two directions, so there will be a net surplus of 

electrons in the directio n 0= n, as is shown by (6. 121). 

It is not consistent with special relativity to postulate that all electrons 

produced in /3-decay a re left-handed, for if an electron is left-handed in one 

frame of reference it is right-handed in a frame of reference moving faster than 

the electron in the same direction (see Fig. 6.22). Instead , o ne must postulate 

that an electron produced in /3-decay will be in a spin state 

IL>= j {!(I-v/c))l +) + J H(I +v/c))l- ) (6.122) 

where I± ) are ·states with helicity ±1, and v is the velocity of the electron. It is 

shown in §7.2 that this is a relativistically invariant statement. An electron in 

the state IL> is more likely to be left-handed than right-handed, and this 
likelin ess becomes certainty (as for a neutrino) as v--+ c. 

The orthogonal state to IL> is 

IR> = j (1{ I+ v/c))i + ) - (1{/ - vfc))i - ) . (6. 123) 

This is the appropriate state for the antiparticle of a particle in the state IL). All 

positrons produced by weak interactions are in the state IR). 
Since the state IL> becomes the negative-helicity state 1- ) when v = c, we see 

tha t both electrons and neutrinos are in the state IL> when produced by weak 
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interactions, while their antiparticles are in the state jR) . This statement is true 
of all the basic fermions (leptons and quarks), and shows a general left­
handedness of the weak force. However, it must be modified to take account of 
angular momentum conservation: the final state of fermions in jL) and jR) 
states must be projected onto the subspace with the same angular momentum 
as the initial state. 

Example: pion decay 

C ha rged pions decay predominantly into a muon and the appropriate 
neutrino. By the universality of the weak interactions, there should be an equal 

amplitude for the decay of the pion into an electron or a muon. Assuming that 
this is so, we will calculate the ratio of the rates of the decays 

n- -> ,u - + ii,, and 7t - ->e-+\'e · (6.124) 

T he decay Hamiltonian W acts on the initial rr to produce an equal 
superposition of electron and muon states: 

Wjrr- ) = gilj,u- , L)jii~, R) + gilje-, L)jii., R) (6.125) 

where g is a coupling constant and I1 is the projection onto the initial angular 
momentum state: in this case, since the pion is spinless, and taking it to be at 

rest , I1 is the projection onto the state with zero angular momentum. By 
conservation of momentum the lepton and the antineutrino have opposite 
momentum; since the an tineutrino has helicity +1. the lepton must have 
helicity - 1 to give zero component of the total angula r momentum in the 
direction of motion. Thus I1 projects the lepton state jL) onto the positive­
helicity state I+ ); from (6.122), this gives 

( 1- iid Wjrr-) =g j (!( 1- v,jc) (6.126) 

where I= e or ,u, and v1 is the velocity of the lepton /. As in §3.5, the relativistic 
kinematics of the decay give the lepton's energy and momentum as 

m.2 + m/ 2 m. 2 - m/ 
E1 c , p = 

2 
c, 

2m. m. 
(6.127) 

so that 

(6.128) 

From (3.200) (taking A to be the lepton and B the antineutrino, so that EA = £ 1 

and £ 8 = pc), the phase-space factor is 

p2E1 (m/-m/)2(m.2 +m/)c 
p, = --=-----::--,....----

m.c3 8m.4 

Hence the ratio of the rates of the decays is 

r(rr - -> e - ii. ) p.j(e - ii. jWjrr -) j2 

r(n -> ,u v~)- P~l<.u v~jWjn )j 2 

(6.129) 

To summarise: the electronic decay is suppressed because it can only take 

place with a right-handed electron and the weak force prefers to produce a left-
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handed electron; this preference is stronger for the lighter electron than for the 
heavier muon. This consideration outweighs the fact that the electronic decay 
is more favourable energetically than the muonic. 

The Sa/am- Weinberg The examples just discussed show that an electron in the state IL) and an 
Hamiltonian electron neutrino (in its sole helicity state) form a pair under the weak force; 

they are produced in the form of a particle-antiparticle pair in /3-decay and 
pion decay. The third helicity state of the electron-type leptons, namely theIR) 
state of an electron, stands alone, unaffected by the weak force. The Salam­
Weinberg theory of weak interactions introduces an SU(2) group of 
transformations called weak isospin transformations which mix the first two 
states and leave the third as it is. Thus we have a weak isospin doublet (eL, v. ) 

and a singlet eR. The other leptons are classified similarly. forming doublets 

(PL• v1,) and (rL, v, ) and singlets PR and rR. 

The quarks also form left-handed doublets and right-handed singlets under 
weak isospin transformations. The situation here is a little more complicated, 
since the u quark is coupled both to the d quark (as in {J-decay, where one of the 
d quarks in the neutron becomes a u quark) and to the s quark (as in the 
semileptonic A 0 decay (6.46), where the s quark in the A 0 becomes a u). Since 
the coefficients of the strangeness-conserving and strangeness-changing parts 
of the hadronic weak current are given by the Cabibbo angle Be, the weak 
isospin doublet containing lu, L) is taken to include the superposition 

ld', L) = ld, L) cos Be+ Is, L) sin Be. (6.131) 

The orthogonal combination 

Is', L) =Is, L) cos Be - ld, L) sin Be (6.132) 

is taken to form a doublet together with the charmed qua rk state lc, L) . The 

third quark doublet contains the left-handed states of the t and b quarks. The b 
component is in fact a superposition and contains an admixture of d and s, and 
correspondingly thed' and s' states should contain some b. These terms appear 
to be small and for simplicity we will ignore them, but they must be present 
since otherwise the b quark would be stable. 

For each of these particles except the neutrinos we have two possible states 
and therefore there will be two annihilation and creation operators; from these 
we can form two field operators which we will denote by the name of the 
particle with the suffix L or R. Thus for the electron we have the fields 

eL = Qe-.L +(ae•.R)t} 
eR = Qc-.R +(ac· .d t . 

(6.133) 

Now we arrange these fields in column vectors according to their weak isospin 
properties, as in Table 6.5. In each multiplet the electric charge is given by 

Q = i3+1Y (6.134) 

where i3 is a generator of the weak isospin group and y is a property of the 
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multiplet called the weak hypercharge. The values of y are also shown in Table 
6.5. 

Let qJ be one of these two-component column vectors of fields. Then we can 
fom1 a weak isovector qJ t't'qJ where 't' denotes the vector of Pauli matrices. The 
tota l weak current is the sum of all these operators: 

3 

Jw= L qJ/tqJr+ L L '~'q/'t''Pq i (6.135) 
f= e.Jl.r q=u.c, t i= 1 

(the second tenn includes a sum over quark colours i). The Salam- Weinberg 
theo ry postulates a set ofbosons w=, W 0 which fonn a weak isospin triplet , so 
that their fields can be considered as a weak isovector operator W (cf. 6.30)), 
and which go together with the current Jw in an interaction Hamiltonian of 
Yukawa- Kemmer type. The theory also includes a single boson B0 which 
forms a weak isospin singlet, and which couples with the weak isoscalar 
operator 

lo= L yqJ / qJ 1 + L Y<l>rt<l>r (6.136) 
f f' 

where the first sum extends over all the doublet (left-handed) fields qJ, the 
second over all the singlet (right-handed) fields </>, and y is the weak 
hypercharge. Thus the full electroweak interaction Hamiltonian is 

Hew =gJw · W +g'J 0 B (6.137) 

where g and g' are independent coupling constants. 
The four bosons in this theory correspond to the four generators of a group 

Gew = SU(2)w x U( l)y (6.138) 

in which SU(2)w is the group of weak isospin transformations and U( 1)y is a 
one-parameter group whose single generator is the weak hypercharge 
operator. As a group, U( 1)>. is isomorphic to the group of complex numbers of 
unit modulus; the element ei0 is represented by an operator U(B) which acts on 
a state with weak hypercharge y by multiplying it by e1

"
11 where n = 3y. 

Classifying states by their weak isospin and weak hypercharge is equivalent to 
putting them into representations of G ... . 

Table 6.5. Weak isospin multiplets 

y= - I: ~.= (;~) ~~. =CJ ~,=GJ 
.v= -2: eR ~R TR 

y=t: ~u =(;} ~c=(;)L ~. =G)L 
y=1: UR CR IR 

y= -1: d' R s' R bR 

(d' =d cos Bc+s sin Oc , s' = -d sin Be +s cos Be) 
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Fig. 6.23. 
Weak processes: 

(a) n-+p+e-+ l'c 

(b) 1\.o -+p +e-+i'e 

(c) 1\.o ..... p+n-

(d) K- -+ rr - + rr0 

(e) rr + -+ 11 + +vp 

(f) /I.e + -+ A o + K + +no 

(g) 0°-+K- +n + 

(h) 0 ° -+ K + +rr - . 
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We will now see how the Hamiltonian (6. 1 37) incorporates both weak and 
elect romagnetic effects. Each term involving w± yields a Feynman vertex in 

which one member of a weak isodoublet enters and the o ther one leaves, with 
the emission or absorptio n of a w±. These vertices account for a ll the weak 

processes we have considered so far: some examples are shown in F ig. 6.23. 

Note that the doublets containing d' and s' give rise to processes involving d 

and s in which the amplitude is multiplied by a factor of cos Oc or sin Oc for 
each vertex. Thus, for example, the ratio of the ra tes of the decays of the 

charmed meson 0 ° shown in Figs. 6.23(g) and (h) is 

f(D 0 --+K +n-) lsin 2 11cl 2 
4 _ 3 o _ + I 2 l2 =tan ec~3x 10 . (6.139) 

r(D --+ K n cos Oc 

Note that if the bosons w± a re very massive, then at low energy the pa rt of 

the H amilton ian contai ning them, namely 

H ch = g( Jch W_ + J cht W+) (6. 140) 

(where J ch = Jw+• J cht = l w- ; 'ch' stands fo r 'charged') can , according to (4.194) , 

(a) (b) 

fi- ~ ~ 1T- 'fi- ~ ~ 1T-
sin Be W 

A·!~ ~ ~ p K-~ ~ 
sin Be W 

ul • u 1T 

(c) (d) 

SI K+ 

c=~l u 0 

,~·· 
u 1T 

cos Be 

~ ~ A· " + Ia w+ A+~ ~ c d 
v, 

(e) (f) 

cos Be al"+ 'fi. ~ ~ K+ 
cosBc/w+ 

o·l ~ ~ ~ K- o·j ~ 
smBc W 

dl -ii 1T 

(g) (h) 
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be replaced by the effective Hamiltonian 

g2 t 
H err=- J ch J ch> 

lllw 
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(6.141 ) 

describing second-order processes like those of Fig. 6.23. This is the 
Hamiltonian of (6.38). 

The remaining terms in the electroweak Hamiltonian (6.1 37) are those 
containing the neutral bosons W0 and B0

: 

H neut =gJ 3 W3 +g'JoB. (6.142) 

Now for any isodoublet l.fJ =(¢1, ¢ 2)T we have 

1"Ptr 3"P =1¢1 tc/> 1 -~¢/c/>2= I i3¢/¢k. (6.143) 
k 

Hence 

J 3= I l.fJ /r3"P ~= I 2i3¢/¢k (6.144) 
J k 

where the second sum is taken over all the individual fields in the doublets, and 
might as well include the singlet fields since these have i 3 = 0. From (6. 136) we 
can write J 0 also as a sum over individual fields , so H neut can be written as 

H ncut =I ¢/¢k(2gi3 W0 +g'yB) (6.145) 
k 

(since the third component o f the isovector W is the W 0 field). 
The fields in (6.145) are those of eigenstates of weak isospin, a nd therefore 

create the Cabibbo-rotated states d ', s' rather than the physical pa rt icles d and 
s. However, because these have the same values of i 3 and y, and because they 
are o rthogonal combinations of d and s, the fields occur as 

(6. 146) 

Thus the fields can after a ll be taken as referring to the physical part icles. 
Write 

where 

then 

where 

W 0 =Z cos Bw +A sin Bw, 

B= -Z sin Bw+A cos Ow, 

g' 
tan Bw=-; 

g 

H neut =I e(i3 +1Y)4>k t¢kA +I e{2i3 cot Bw -1y tan Bw)cf>k t¢kZ 
k k 

e= 2g sin Bw. 

(6.147) 

(6. 148) 

(6. 149) 

(6.150) 

Since i 3 +1-Y is the electric charge in units of the charge on the electron, the 
first tenn in (6.149) is the electromagnetic Hamiltonian if e is the charge of the 
electron and A is the photon field. The second tenn describes new interactions, 
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Experimental 
confirmation of the 

Salam- Weinberg theory 

Fig. 6.24 
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mediated by the neutral particle Z, in which the identity of particles does not 
change; for example, this term gives rise to a force on neutrinos which will 
cause elastic scattering of neutrinos ofT nuclei. This is called a weak neutral 
current force, and was thought to be non-existent before the Salam- Weinberg 
theo ry was proposed. 

Jf the d' field was not balanced by the s' field, the Ham iltonian would contain 
a term 

which would cause processes in which quarks did change their identity: an s 
quark could change into ad qua rk and emit a Z. Such a strangeness-changing 
neutral current has long been known to be absent: if it existed, fo r example, 
neutral kaons could decay into J1 + + 11 - by a simila r process to pion decay (see 
Fig. 6.24). It was the need to cancel the dts terms in (6.15 1), by means of an 
equation like (6.146), that led Glashow, Iliopoulos and Maiani to the 
hypothesis that thee quark must exist as a weak isospin partner ofs',some four 
years before it was discovered experimentally. The cancellation of the 
strangeness-changing neutral current so achieved is known as the GIM 
mechanism. 

Like quantum electrodynamics, the Salam- Weinberg theory is a gauge 
theory; the significance of this will be explained in Chapter 7. Unl ike the gluons 
of quantum chromodynamics, the bosons wr.' z and y of quantum 
fla vou rdynamics a re not all massless; it will be shown that this is related to the 
fact that weak isospin is not an exact symmetry lik e colour. 

Events in which a muon neutrino interacted wi th a proton without being 
changed into a muon were observed in 1974. An example of such an event is 

''jJ + p---. n + n + + vw (6. 152) 

This is a neutral-current event, of the sort which is required by the existence of 
the Z boson. 

TheW and Z bosons were discovered in 1983 at CERN, Geneva. They were 
produced in high-energy proton-antiproton collisions, in which a quark and 
an antiquark produce a boson according to the Feynman diagrams of Fig. 
6.25, and were detected by their subsequent decay into leptons: 

(6.153) 
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and similar processes with muons. The characteristic feature which signals the 
presence of the W and Z bosons is the extraordina rily high energy of the 

electrons and positrons. The mass of theW is 8 I GeV ( 162 000 times that of the 
electron), and that of the Z is 93 GeV , and all this mass is converted into energy 
of the lepto ns. The W and the Z also decay into a quark and an antiquark, 
producing two jets of hadrons. 

The angle fJw is called the Weinberg angle. Its value is determined by the 
coupling constant g, which can be obtained from the low-energy effecti ve weak 
coupling co nsta nt once the mass of the W is known. The result is 

sin Ow ::::: 0.48. (6.154) 

6.7. Further speculations The success of the Salam- Weinberg theory in reducing the number of 
Grand unification un related fund amental interactions from three to two encourages attempts to 

continue the process and develop a theory which combines the electroweak 
force with the colour and g ravitational forces. Gravity is a special case, becau se 

of the unique rela tion to the geometry of space-time which it is accorded by 
general relativity; this means that it is still problematic whether it can even be 
combined with quantum mechanics satisfactorily. It seems, therefore, that the 
most promising order of attack is to try to unify the electroweak and colour 
forces first. 

Fig. 6.25 
Production of W and Z 

bosons. 

The bosons of the colour and electroweak forces correspond to the 
generators of the group 

(6.155) 

(colour x weak isospin x weak hypercharge). There are three independent 
coupling consta nts because of the three commuting subgroups in this group. A 
unified theory, with only o ne coupling constant, could be obtained by 

embedding Gcew in an algebraically simple group GuT (one with no factor 
subgroups) whose generators would correspond to the bosons of the unified 

theory and whose representat io ns should classify the known particle states. 
The simplest possibility, which was proposed by Georgi and Glashow, is 

(6. I 56) 

with the subgroups as indicated below, where the S x 5 matrix belonging to 
SU(S) is partitioned as (3 + 2) x (3 + 2): 

[u o] [•3 SU(3). 3 O 
1 2 

, SU(2)w 3 O e-~olJ 
(6. 157) 

In each family there a re 15 pairs of fermion states, each consisting of a left­

handed particle sta te and the right-handed state of its antipart icle; there is a 
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field operator fo r each pai r. In the fi rst family the left-handed sta tes, arranged 

in representations of Gee~, a re as fo llows: 

(u" ul, ub, d" dy, db)L = 3 x 2 (n= I); 
(u" u), ub)L = 3 x 1 (n = - 4); 

(a"a), ab)L= 3 x 1 (n=2); 

(v., e- )L = 1 x 2 (n= - 3); 

(e +)R = 1 x 1 (n = 6) (6.158) 

where the Ro man subscripts la bel the colo ur sta tes of q ua rks (red , yellow and 

blue, say); bold nu merals deno te the representa tions o f SU(3)c x SU(2)w (fo r 

example, the six ~t a tes in the first multiplet each belo ng to a triplet o f SU(3)c 

and a doublet of SU(2)~); and the representa tion o f U( l )>" is d enoted by the 

value of n = 3y. (Compa re T a ble 6.5.) Now SU(5) has a five-dimensio nal 

represen ta tion (consisting of 5-component vecto rs ua) and a tO-dimensio nal 

rep resentation (consisting of a ntisymmetric second-rank tensors tap) which 

break up in to representat io ns o f the SU(3) x SU(2) x U( 1) subg roup as fo llows: 

5 = 3 x 1 (n = 2) EB 1 x 2 (n = - 3), 

10 = 3 x 2 (n = 1) EB 3 x I (n = -4) EB I x 1 (n = 6). 

(6. 159) 

(6.160) 

Thus between them these representatio ns can accommo da te a ll the left­

handed fe rmio n states in a family. 
Because the weak hypercha rge subg roup U( l )y occurs as a subgro up of a 

sim ple gro up, and no t as an abelian subgroup commuting with everything else, 

the g ro up representa tio n theo ry requires its eigenvalues to be quantised (in 
very much the same way as the representa tio n theory of the ro ta tion group, 

ba sed o n the angul a r mo mentum commuta tion relatio ns, fo rces J = to be 
quantised). Thus this theory would expla in the quantisatio n of electric cha rge. 

In fact , (6. 1 57) shows tha t the hypercharge genera to r has the same eigenvalue 

fo r members o f a colo ur mult iplet, and the sum o f its eigenvalues in any SU(5) 

mul tiplet must be no ught; the theo ry the refore expla ins why the electric 

cha rges on colour triplets (quarks) a re multiples o f a th ird o f the cha rges o n 
colo ur singlets (lepto ns). 

SU(5) has 52
- I = 24 genera tors, so a theo ry based on this g ro up will have 

24 bosons carrying the fo rce between the fe rmions. The pho ton, w ±, Z 0 and 

gluo ns a re 12 o f these. The rema ining 12 co rrespo nd to 5 x 5 hermitian 

matrices with entries in the off-diagonal blo cks in the pa rtitio n of (6. 157). 

These bosons X, Y couple quarks to lepto ns, in the same way as the W ± 

boso ns couple the u to the d and s quarks; thus the theo ry contains Feynman 

diagram vertices like those of Fig. 6.26. Just as the W-med iated weak 

inte ractio ns do no t conserve st rangeness, the X-mediated pro cesses will not 
conserve baryo n number. They should lead to the decay of the proto n into 

leptons. The lifetime of the proto n is expected to be abo ut 103 3 yea rs (for 
compa rison, the age of the universe is about 1010 years). Experiments looking 
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for proton decay are under way at present; so far there are no reliable 
indications of it. 

The fact that SU(5) is a simple group means that there can only be one 
coupling constant in a theory based on this group. Thu s the two coupling 
constants g and g' (equi valently, e and Ow) in electroweak theory. and the 
coupling constant IX, of quantum chromodynamics, should be related to each 
other by purely group-theoretical factors. The calcu lation is complicated by 
the fact that in the full theory the coupling constants change with distance, in 

the way that was sketched for the colour fo rce in ~6.5. After allowing for this, it 
is possible to calculate the Weinberg angle Ow from the grand unified SU(5) 

theory. The result agrees reasonably well with the empirical value. 

The masses of the extra bosons X and Y can also be estimated from the 
dependence on distance of the electroweak and colour coupling constan ts. 
Calculations in these theories show that the coupling constants become equal 
at a distance of about 10- 30 m. This corresponds to the enormous mass of 
1015 GeY. It is unlikely that this will ever be accessible to experiment; so if the 
grand unified theo ry is correct, there will be no very interesting experiments to 
be done between the present energies of a few hundred GeY, the scale of the 
electroweak force, and this grand-unification energy of 10 15 GeV. 

Supersymmetry In the search for a unified description of particles the importance of internal 
symmetry groups, from the SU(2) of isospin to the SU(5) of grand unificat ion. 
is obvious. However, there are fundamental limitations on the extent to which 
particles can be unified by being grouped together according to 
representations of a symmetry group. All the particle multiplets we have seen 
contain particles with the same spin. Now the spin states of a particle form a 

representation of the rotation group R, so if we have a multiplet of particles 
forming a representation 11!1 of an internal symmetry group G, and if they a ll 
have the same spins, then their spin states form a space :171 ® 9 s which ~arries a 
representation of the product group G x R. To get multiplets which contain 
particles with different spin it would be necessary to consider representation s 
o f a group which contained the rotation group as a subgroup in a less trivial 
way than this (see problem 6.31). 

Fig. 6.26. 
Feynman diagram vertices in 

grand unified theories. 

More generally, the spin/orbital states of a particle in a theory which 
incorporates special relativity must carry a representation of a group which 
includes rotations, translations and Lorentz transformations. This group is 
called the Poincare group P. An irreducible representation of P is determined 

X y 

q q 

e v 
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by two parameters m and s acts on the state space of a particle with mass 
m and spin s. The Coleman- Mandula theorem states that, gi ven certain 
physically reasonable assumptions, any symmetry group which contains the 
Poincare group as a subgroup must be of the form G x P. This means that it is 
impossible to have symmetries which relate particles with different spins. 

The idea of supersymmetry is to circumvent this result by extending the 
concept of symmetry. We find the representations of a symmetry group by 
finding the representations of its Lie algebra, which is a mathematical 
structure defined by commutators. In a supersymmetry this is replaced by a 
Lie superalgebra, which is a mathematical structure defined by commutators 
and anticommu tato rs. The precise defini tion is that a Lie superalgebra Lis a 
direct sum of two vector spaces, L = L 0 EB L 1, with an antisymmetric bi linear 
map [X, Y] from L0 x L0 to L0 which makes L0 a Lie algebra, a bilinear map 
[X. Y] from L0 x L 1 to L1 , and a symmetric bilinea r map {X, Y] from L 1 x L1 

to L 0 , which satisfy 

[[X, Y], Z] = [X, [Y, Z]]- [Y, [X, Z]] (X, Y e L0 ; Z E L 1) } 

[X, [Y,ZJJ=( [X, Y] , Z}+{ Y, [X,Z] } (XE L0; Y,ZEL 1) • 

[ (X, Yj.Z]+[[Y,Z},X] +[fZ,X}, Y]=O (X, Y,ZE L1) 

(6.161) 

L0 is called the even part of the superalgebra, L 1 the odd part. 
A representation of a Lie superalgebra Lis an assignment of operators p(X) 

to the elements X of the superalgebra in such a way that 

p([X, Y] )= [p(X),p(Y)] (XeL0 ; YEL0 or L1) } 

p((X, Y })=(p(X) ,p(Y)} (X , YEL 1) ' 
(6.162) 

where the square brackets and curly brackets on the right-hand sides denote 
the usual commutator and anticommutator of operators. 

With Lie superalgebras it is possible to find examples which contain the Lie 
algebra of the Po incare group in a non-tri vial way, and which have irreducible 
representations containing particles with different spins. Here we will give only 
a non-relativistic version to show how the idea works; for the relativistic 
version see problem 7.4. 

Let L0 be the Lie algebra spanned by the angular momentum 1;, position x;, 
momentum P; and energy H of a single free particle, together with the identity 
operator. The Lie brackets in L 0 are given by the basic commutation rela tions 
of e 3. 10 together with 

[H ,1;]=[H,p;] = 0, [H,x;] =pJm (6.163) 

where m is the mass of the particle. Let L 1 be a four-dimensional space wi th 
basis elements Q., Q/ (oc = 1, 2), and define the brackets 

[1;, Q.J = -!(a;).pQp, [:;·:·t] = !(a)p.Q/ } 

[H or P; or X;, Q, or Q, ] - 0 , 

{Q, Qfi} = {Q. t, Q/} = 0, { Q., Q/} = mc5,11 

(6.1 64) 
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where ui are the Pauli matrices and the summa tion convention applies to 
Greek (spinor) indices. 

The Lie algebra L 0 has irreducible representations corresponding to single 
particles, with representation spaces of the form if · ® fl. where 'If · is a space of 
wave functions and 9. is a (2s + I)-dimensional spin space. The odd part of the 
su peralgeb ra obeys a nt icommutation relations like those of the annihilation 
and creation operato rs o f a two-state fermion. For a given eigenvalue of H 
these have a representa tion containing four sta tes: a vacuum , two one-part icle 
states, and an antisymmetric two-particle sta te. A representat ion p of the full 
superalgebra, obeying the 'unitarity' condition p(Q, t) = p(Q, )t, can be obtained 
by taking a representation of L 0 and replacing every eigenstate of H by these 
four states. If the representation of L 0 described a particle with spin s, the 
representation of the superalgebra describes four particles with spin s s, s, s - -! 
and s+t (when s=O it describes three particles with spins 0, 0 and -!). 

O ther superalgebras can be constructed to include internal symmetries. It is 
characteristic that their representations include particles with spins differing 
by~. Thus the idea ofsupersymmet ry offers the hope of a unified description of 
fermions and bosons. It also, because of its relation to space-time 
t ransformations, offers the hope of a quantum theory of general relativity and 
therefore of unifying g ravity with the other forces. However, the expe;imental 

prognostications are not good. Supersymmetry requires that the spin-2 
graviton should belong to a multiplet which also contains a massless spin-~ 
fennion called the gravitino, and tha t the gluons and the W and Z bosons 
should have spin-~ partners called gluinos, Wino and Zino. Also, the qu a rks 
and leptons should be accompanied by spin-0 particles called squarks and 
sleptons. None of these supersymmetric partners can be identified with any 
particles yet observed. 

Substructure The pattern of families of quarks and leptons naturally prompts 
speculation that they themselves are composite objects. However, there are no 

dynamical indica tions of any internal structure to these particles. The 
compositeness of a particle like the proton means that its electric charge is 
distributed over an extended region, so that its electrodynamical behaviour 
differs fro m that of a point charge: it is not described by the form of qua ntum 
elect rodynamics appropriate to po int particl es (see §7.3). The leptons, 
however, behave electrodynamically like point particles to a very high degree 

of accuracy. The experimental limits on their deviations from pointlike 
behaviour imply that their spatial extension is Jess than 10 - 22 m, o r 

alternatively that the energy needed to liberate their constituents is greater 
than 106 GeV. 

For a review of composite models and experimental limits on them see 
Lyons 1983. 
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Further reading For fuller accounts of the material in th is chapter the textbooks by Perkins 
(1982) and Halzen & Martin (1984) a re recommended. A less systematic 
account, intended to communicate the 'o ral trad ition' of particle physics, is 
G o ttfried & Weisskopf 1984. 

Problems on Chapter 6 

A fuller treatment o fisospin and other symmetries can be found in Gibson & 
Pollard 1976. For hadron spectroscopy see Leader & Predazzi 1982, chapters 
8- 12. The reader who would like to understand the deta ils of electroweak 
theo ry without fi rst learning quantum field theory is referred to Aitchison & 
Hey 1982. For supersymmetry see Wess & Bagger 1983. 

Non-technical accounts of the physics which here has been treated sketchily, 
or omitted, can be found in the following Scient(fic American articles: Bloom & 
Feldman 1982 (on hadron spectroscopy), Glashow 1975, Schwit ters 1977, 
Lederman 1978 and Mistry, Poling & T horndike 1983 (on charm and bea uty), 
Ishikawa 1982 and Quigg 1985 (on the colour force), Nambu 1976 and Rebbi 
1983 (on quark confinement), Jacob & Landshoff 1980 (on proton- proton 
scattering and jets), Weinberg 1974 (on the electroweak force), Perl & Kirk 
1978 (on heavy leptons), Cline, Rubbia & van der Meer 1982 (on the 
experiments on Wand Z pa rticles), Georgi 198 1 and Weinberg 198 1 (on g rand 
unification), F reedman & van N ieuwenhui zen 1978 (on supergravity), and 

Harari 1983 (on substructure). Some of these are collected in Kaufmann 1980. 
See also the Nobel addresses by Weinberg, Salam and Glashow (all 1980) and 
the New Scientist a rticles collected in Sutton 1985. 

I. The p0 , which belongs to the isospin triplet (p -, p0 , p +),decays into two pions 

by a st rong interaction. What a re the charges on the pions? Show that the spin 
of the p0 is an odd integer and its parity is negat ive. 

2. A neutra l particle X0 is a member of an isospin triplet and decays into two p­

mesons. If isospin is conserved in the decay, show that the spin of the X0 is at 

least I. 

3. The w-meson is an isospin si nglet with spin I. Explain why it decays 
predominantly into three (ra the r than two) pions. 

4. Show that in the isospin-conserving, parity-conservi ng process n + p-+ n- + 
n° the relative angu lar momentum of the two pions is odd, while tha t of the 

neutron a nd the antiproton is even. Deduce that the neutron and the 

antiproton have parallel spins. 

Discuss the processes p + p -+ n + + n - and p + p -+ n° + n°. 

5. TheN( 1470) is a pair of particles (n*, p*) with the same quantum numbers as 

the neutron and the proton; they decay into ~-baryons and n-mesons by an 

interaction which conserves isospin. Find the ratio of the rates of the decays 
p*-+ ~ ++ +n-, p*-+ ~ + +n° and p*-+ ~0 +n+ 

6. (~ 1 -, ~ 1 °, ~ 1 +, ~ 1 ++) and (~ 2 - , ~ 2 °, ~2 +, ~2 ++)are two isospin multiplets 

of baryons; the latter decays into the former by an isospin-conserving process 
~2 -+ ~ 1 + n. Find the ratio of the rates of the decays ~2 + + -+ ~ 1 + + n +, 
~2 +-+ ~ 1 + +n° and ~2 + -+ ~ 1 °+n+. 
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7. Express the amplitudes for the isospin-conserving processes rr + + n-+ rr0 + p, 

rr + + n -+ rr + + nand rr ~ + p-+ rr + +pin terms of an I =1 amplitude and an 

I =1 amplitude, and hence find a relation between them. 

8. Find C I ;C where Cis the charge conjugation operator, and deduce that in a 

self-conjugate isospin mul t iplet C acts as reflection in the ( 13)-plane. 

9. Show that the eigen value of G-parity for a self-conjugate multiplet is (- 1/ IJc 
where I is the isospin of the multiplet and 'lc is the charge conjugation 

eigenvalue of its neutral member. 

10. The magnetic moment of an elementary particle is the expectation value of an 

opera tor which has the same isospin properties as the electromagnetic 

Hamiltonian. Show that the magnetic moments Jl(~) of the ~ multiplet a re 

related by 

Jl(~0)=2Jl(~ + )-p(~ + + )=1.u(~ -l+1Jl(~ +). 

II. Find the ra tios of the lifetimes of 1-lC, 1-!N* and 14 0 , decaying as in Fig. 6.1. 

(Use first-order perturbation theory.) 

12. Suppose there was a neutral particle X0 with spin I, which decayed into two 
neut rons by a strong interaction. Show that it would have negati ve parity and 

that there would be two other particles with the same properties as X0 except 

for electric charge. How would these particles decay? 

13. There are particles with spins as high as lf. Why are there no particles with 

isospin greater than 1? ('Particle' here means something with baryon number 

0 or± 1.) 

14. Assuming tha t theM =1 rule applies in the decays :E ~ -+ p + rr0
, L +-+ n + rr + 

and :E - -+ n + rr -, find a linear relation between the first-order decay 

amplitudes. 

15. Use the M = 1 rule to calculate the ratio of the lifetimes of:=: - and :=:0 . 

16. Use theM =1 rule to explain the following decay rates: 

r(K + -+ rr0 rr+)= 1.711 x 107 s - 1 , 

r(K,0 -+ 7[ + 7[ -) = 7.689 X 109 s - I' 

r(K,0 -+ rr0 rr0 ) = 3.942 x 109 s - 1
. 

17. Give an example of a process which you would expect to produce a K ­

meson. 

18. Show that pa rity is conserved in K-+ 3rr decays. 

19. Show that the conjuga te representation p of SU(3), defined by (6.75), has a 

matrix which is the complex conjugate of that of the fundamental 

representation p. 

20. Write down the action of the generators on the weight vectors in a triangular 

representation of SU(3) and its conjugate representation. 

2 1. Express electric charge and hypercharge in terms of the SU(3) operators i · H, 

u · H and v ·H. Deduce that electric charge is constant in U-spin multiplets. 

22. Suppose the strong Hamiltonian has the fo rm H 51 = H 0 + H 8 where H 0 

commutes with SU(3) transformatio ns and H 8 is the eighth component of an 

octet operator. Show that H., is the sum of a U-spin scalar and the third 
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component of a U-spin vector. Deduce that masses (identified as expectation 

values of H ,1) are equally spaced in a U-spin multiplet. Hence (i) reproduce 

Gel!-Mann's prediction of the mass of then - , given the masses of the other 

particles in the decuplet: (ii) prove the Geii-Mann/Okubo formula 

1-{mN+ m::;:) = t(mr+ 3m,., ) 

for the masses of the octet baryons. (You will need to identify the combination 

IL 0 v> of IL0 ) and II\ 0 ) which is the U 3 = 0 component of a U-spin triplet.) 

Compare with the data (Appendix II). How well does the Geii-Mann/ 
Okubo formula work for the meson octet? Try it with m2 instead of m. 

23. Write out the SU{3) Yukawa- Kemmer Hamiltonian {6.94) in terms ofisospin 

multiplets. 

24. Suggest a way of measuring the L0 lifetime. 

25. The quantum numbers of strangeness, charm, beauty and truth can be 

understood as 's quark number'. 'c quark number'. etc. What a re u quark 

number and d quark number? 

26. Consider the model of particle interactions in which each particle has just one 

state, with interaction Hamiltonian V= W+ wt where W=(l/>/r/>8 + 
4>ctrf>0 )rj>,. Show that in second-order perturbation theory the ampl itude for 

A+ B-. C + D becomes infinite if £ A+ £ 8 = £,. Show also that if £, is 

replaced by £ ,+if the transition probability has the Breit- Wigner form as a 

function of E = EA + £ 8. [This indicates how resonance behaviour is 

associated with a certain sort of Feynman diagram.] 

27 . .Define 'left-handed'. 

28. Prove (6.129). 

29. For each of the following sets of decays, state the quark composition of the 

particles involved and draw a diagram to sh0w the events underlying the 

decays in terms of quarks and leptons. Ignoring kinematical factors, find the 

ratio of the rates of the decays in each set in terms of the Cabibbo angle. 

(i) n->p +e-+v. (ii) L - ->/\0 +e - +ii. 

(viii) 0 ° -. K - + n° + n + (ix) F +-. 11°+n + 

0 ° -. K - + K 0 + n + F +-> 1J 0 + K + 

o o -. n - +no + n + F +-+ K 0 + n + 

D 0 -+n-+ K 0 +n+ F + -+K 0 +K+. 

30. Find the rat io of the rates of the decays in each of the following sets of decays. 

(Each ratio is the product of a Cabibbo factor and a phase-space factor. Use 

sin Oc = 0.23 and the particle masses given in Appendix II.) 

(i) n - .... 11 - + v
1
, (ii) 0° .... K- +n+ 

K - -.f.l -+ \i~ 0 °-+K-+K + 

0°-.n-+n+ 

no ~ .,-_,_J( + 
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3 1. P rove (6.159H6.160). 

32. Let G x R denote the direct product of a group G and the rotation group R. 

Show that every irreducible representation of G x R is of the form 9 G ® 9" R 

where Yc is an irred ucible representation of G and 9 R is an irreducible 

representation of R. 



7 
Quantum fields 

The theoretical framework needed for the full development of the ideas of 
Chapter 6 is that of quantum field theory. This chapter is intended to take the 
reader onto the threshold of that theory. It follows directly on from Chapter 4, 
being concerned with the general theoretical structure, and is independent of 
Chapters 5 and 6 until §7.4, when the concept of isospin (§6. 1) will be needed. In 
~7.5 and §7.6 the quantum field theory aspects of the colour force and the 
electroweak force(quantum chromodynamics and quantu m flavourdynamics) 
are described in outline. 

This chapter requires a fuller knowledge of special relativity than the other 
chapters of the book. In particular, it will be assumed that the reader is 
acquainted with the 4-vector formalism (see Appendix I for a summary). 
Knowledge of the electromagnetic field will also be assumed. 

7. 1. Field operators In §4.6 the notion of a reduced quantum field was introduced. We will now see 
the full concept from which this reduced notion was derived. We will arrive at 
this concept from two different directions: first, as the quantum counterpart of 
the classical concept of a field , and secondly by developing the ideas of§4.6 on a 
system of an indefinite number of particles. 

(a) The electromagnetic The classical theory of the electromagnetic field concerns two vector fields, the 
field electric field E(r, t) and the magnetic field B(r, r), which (in the absence of 

dielectric or magnetic material} satisfy Maxwell's equations: 

p 
V·E=-

eo' 

V·B=O, 

1 as 
VxE=---, 

c ar 
I . I aE 

VxB=-J+--, 
l~o c at 

(7.1) 

(7.2) 

(7.3) 

(7.4) 
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where p and j are the charge densi ty and current density of the electrically 
charged matter which generates the fields, e0 and Jlo are dimensional constants. 
and c=(BoJlo) -! is the speed of light. We will suppose that units o f electric 

charge, length and time have been chosen so that e0 =Jto= I (and therefore 
c = I); we also continue to take II= I. 

Maxwell's equations imply the existence of a scalar field ¢(r, c) and a vector 
field A(r, r) which determine E and B according to 

8A 
E= -V¢-a;-, 

B =Vx A, 

and which satisfy 

~ 8¢ +V·A=O 
c ac ' 
82¢ 
- -V2¢=p 
8t 2 ' 

82A -V2A= ' 
~ 2 J. 
0 ( 

The fields ¢ and A are called the electromagnetic potentials. 

(7.5) 

(7 .6) 

(7.7) 

(7.8) 

(7.9) 

We will now consider the electromagnetic field as a dynamical system. Since 
the fields E and Bare determined by the potentials ¢ and A, we can fix our 
attention on the latter. The value of¢ at some given point r is a varying 
quantity whose variation in time is given by the second-order differential 
equation (7.8); in this respect it resembles a single coordinate q; of a classical 
mechanical system. The same goes for each component of A(r). Thus the set of 
all values { ¢(r), A(r): r E IR 3} at an instant t can be regarded in the same light as 
the set of coordinates (q 1, ••• , q,) which define the configuration of a 

mechanical system; the point of spacer plays the role of a Iabell ike the index i 
on the coordinate q;. When we pass to the corresponding q_uantum­
mechanical system q, becomes an operator t/; labelled by the index i; thus the 
quantum mechanics of the electromagnetic field will involve operators ¢(r), 

A(r) labelled by r. These operator-valued functions of position are quantum 
fields. 

Now let us suppose that p=O and j = O, so that we are considering the 
electromagnetic field by itself. The 'equation of motion' (7.8) for ¢(r) involves 
the values of¢ at nearby points to r, since these are involved in V2¢ . We can 
obtain decoupled equations, each referring to just one varying quantity, by 
taking the Fourier transform of¢: 

¢(r, l) = (2~)l f {J(k, l)eik·rd3k. (7.10) 

At each time the quantities {J(k, c) completely specify the field values ¢{r, c): 
considering {J{k) instead of ¢{r) is like changing coordinates in the mechanical 
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system. However, the different /3(k) are not independent, for the fact that ¢ is 
real (¢=(b) gives the relation 

/3(k) = /3( - k). (7 .11) 

Applying (7.8), with p=O, and taking the inverse Fourier transform gives 

02
/3 +k 2f3(k)=0. (7. 12) ot2 

This shows that /3(k) obeys the same equation of motion as a simple harmonic 
oscillator with angular frequency JkJ. 

In the same way we can perfo rm a Fourier transform of the vecto r potential 
A: 

A(r t) = I JIX(k t)eik.' d3k 
' (2rr)1 ' 

(7 .13) 

with 

1X(k, c) =IX(- k, t); (7 .14) 

the equation of motion (7.9) then shows that each component of 1X(k) oscillates 

with angular frequency JkJ. 
Thus as a dynamical system the electromagnetic field behaves like a set of 

independent oscillators. The corresponding quantum-mechanical state space 

will be the tensor product of a set of harmonic-oscillator state spaces, one for 
each of the independent oscillators among o:,-(k) and f3(k). We know from 

e4.12 that this state space is isomorphic to that of a variable number of 
bosons; these bosons can be identified as photons. Thus the existence of 
photons (and the fact that they are bosons) is a consequence of the quantum 
mechanics of the electromagnetic field. 

The po tent ials ¢ and A are not uniquely determined by the physically 
significant quantities E and B. In the case of a radiation field (no charge or 
cu rrent density) they can be chosen so that 

I.e. 

¢= V· A=O, 

f3(k) = k 0 1X(k) = 0. 

(7.15) 

(7.16) 

This choice of potentials gives a simple expression for the total energy in the 
field , which electromagnetic theory shows to be 

H=~ rE2 +B2)dV (7.17) 

From (7.5)-(7.6) we find that the Fourier analyses of E and B are 

E= -
1 J~(k t)eik'd3k B=~Jkx!X(k t)e,-""d3 k 

(2rr)t ' ' (2rr)i ' · (7. 18) 

where the dot denotes differentiation with respect to t. Hence, using 
Plancherel's theorem (see problem 2.13), 

H =~ f(J~W+ Jk X 1XJ 2)d3k (7. 19) 
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(writing [v[2 = v·v if vis a vector with complex components). Let a 1 and a 2 be 
two components of a(k) along two directions perpendicular to k; then. in view 
of(7. 15), (7.18) becomes 

H =~ J (Ja, [2+ k2ja,[2+ ja2[2+k2ja2[2)d3k. (7.20) 

Comparing this with the energy of a harmonic oscillator, 

(7.21) 

and bearing in mind (7. 14), we see that the total energy of the electromagnetic 
field is the sum of four harmonic-oscillator terms (one each for the real and 
imaginary parts of a 1 and a 2) , with mass m = I and angular frequency w = [k[, 
fo r each pair of vectors (k, - k). Each oscilla tor corresponds to a photon state, 
with two polarisation states for each direction of propagation. The energy of 
each photon state is the quantum of the corresponding osci lla to r, namely 
(reinstating h,e 1 for the moment) hw = hv where v= 2nw is the frequency. Thus 
Planck's equation E = hv a lso emerges from the quantum mechanics of the 
electromagnetic field. 

The above argument refers only to energy differences; the increase in energy 
due to adding one photon is equal to the quantum of the co rresponding 
oscillator, but the total energy of the collection of oscillators is not the same as 
that of the collection of photons because of the zero-point energy of the 
oscillators (the odd half in the formula (n +1-)hw for the oscillator energy 
eigenvalues). With an infinite number of oscillators, this gives rise to an infinite 
zero-point energy, which, however, is constant and has no physical 
significance. It can be eliminated by taking the Hamiltonian for each oscillator 
to be not 1(ata+aat )w bu t ataw. This is just another way of resolving the 
ambiguity which attends any attempt to find a quantum-mechanical version of 
a classical expression, because of the necessity to specify the order of the factors 
in quantum mechanics. This choice of o rder is called normal ordering: all 
creation operators are put to the left of annihilation operators. 

In order to disentangle the two direction s of propagation k and - k it is 
more convenient to work in the Heisenberg picture rather than the 
Schrodinger picture. In the Heisenberg picture the operator A representing a 
given dynamical quantity is time-dependent, satisfying the differential 

equation 

idA/dt=[A , H] (7.22) 

(see (3.170)). T hus for the lowering operator a of a hannonic oscillator, fo r 
which 

[H,a]= - wa 

where w is the frequency of the oscillator (see (4.129)), we have 

dafdt= - iwa 

and so 
a(t) = e- iw'a(O). 

(7.23) 

(7.24) 

(7.25) 
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For the raising operator at we have 

at(t}= e'""at(O). (7.26) 

The real and imaginary parts of the Fourier components a 1 (k) and a 2(k) are 

dynamical va riables analogous to the position variable x of the harmonic 
oscillator. In the quantum theory they can therefore be expressed in terms of 
raising and lowering operators. Let a Rt and a 1t be the raising operators at t=O 
corresponding to the real and imaginary parts of oc(k); then from (4.126) we 
have 

Write 

then 
a t(k)+ a( - k) 

cx(k, 0) = j (2lkl) 

so that (7.25)-{7.26) give (in the Heisenberg picture) 

cx(k, t) 
1 

1eilklrat(k)+e-'lklra( - k) }. 
j(2lki} l 

Note that 

oc(k, r)t = oc(- k, r), 

which is the quantum version of (7.14). 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

(7 .31) 

The Fourier analysis of the vector potential A can now be wri tten as 

A(r l)= {a t(k)ei£r-ik·r + a( - k)e-i£1-1k·r} (7.32) 1 I d
3
k 

' (2n)i j(2lkl) 

where E = lk l is the energy of a photon with momentum k. This expression for a 
field in terms of creation and annihilation operators for pa rticles is 
characteristic of quantum field theory. 

Relativistic formulation We will now express the decomposition (7.32) in a form which is manifestly 
invariant under Lorentz transformations, using 4-vectors. Let x (with 
components xP) denote the space-time position 4-vector x = (c , r); then the 
exponentials in (7.32) can be written as e-ik-x where k = (k0 , k) is a 4-vector with 

k0 = ± lkol. and k · x denotes the Lorentz-invariant inner product of 4-vectors. 
Then k satisfies 

(7.33) 

if k0 > 0 then k can be regarded as the 4-momentum of a massless particle (the 
photon). 



7.1 Field operators 295 

From (7.33) and the property of the b-function (see problem 2.14) we have 

b(k2
) = (2lk l)- 1 

{ b(k0 -lki) + b(ko + lk l) }; 

hence (7.32) can be written 

where 

Thus 

A(x)=~1~ fb(k)b(k2)eik ·xd4k 
(2n)f 

{ 

(2lkl)ta t(k) if k0 = lkl 

b(k) = (2lkl)ta(- k) if k0 = -lkl 

0 if k 2 o;60. 

is the fou r-dimensional Fourier transform of A(x). 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

The commutation relations of the components of a(k) and a t(k) are those of 
annihilation and creation operators: 

(7.38) 

In terms of the operators c(k), depending on the 4-vector k, these can be 
written as 

(7.39) 

where ~:(k 0) =±I is the sign of k0 , which is invariant under Lorentz 
transformations. 

Eqs. (7.35) and (7.39) show that the division of the 4-vectors x and k into 
space and time components which is apparent in (7.32) is not essential. There 
remains the fact that A(x) (and therefore a(k) and b(k)) is a 3-vector, not a 4-
vector; this appears to make the theory non-relativistic. The reason for this is 
the special choice (7.15) of potentials, which can only be valid in one frame of 
reference. In a general frame both 4> and A will be non-zero; they make up a 4-
vecto r AP = (4>, A). The condition (7.7) is invariant, as can be seen by writing it 
as 

a
11
A1'=0 (7.40) 

where aJI = a;ax11 =(a; at, V). This means that for the theory to be valid in a 

general frame of reference the 3-vector c{k), satisfying k ·c = 0, must be replaced 
by a 4-vector c11 (k) satisfying k1'c11 = 0. Then c1, has three independent 
components, even though it only describes two independent physical states 
(the polarisation states of the photon). The redundant component can be 

eliminated by imposing an extra requirement like c0 = 0, corresponding to 
(7.15), but there is no canonical way of doing this; in particular it cannot be 

done without mentioning a frame of reference. Imposing such an extra 
requirement is called making a choice of gauge. The freedom to make this 
choice is a highly significant feature of electromagnetic theory, and we will 
return to it in §7.3. 
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The condition k1'c
1
, =0, although Lorentz-inva riant , is of the same kind as 

the cond ition c0 = 0 and can also be relaxed; this must be done if the 
commuta tion relations (7.39) are to be put in covariant form, namely 

[c1,(k), c,.(k')] = -gw6(k 2 )c5(k + k')t:(k0 ). (7.41) 

For each k c
1
,(k) now has four independent components, but only two o f these 

describe physically independen t states. 
To summarise: 

e7.t The electromagnetic lield is described in the Heisenberg 
picture by a 4-vector quantum field A

11
(x) (an operator-valued 

function of space-time), whose Fourier components c
11
(k), deli ned by 

AP(x) = f c
1
,(k)e;k ' d4x , (7.42) 

consist of creation and annihilation operato rs for photo ns. If k0 > 0, 
c1,(k) is a creation operator fo r a photon wi th 4-momentum k; if k0 <0, 
c

1
,(k) is a n annihilation operator for a photon with 4-momentum 

-k . • 

From (7.41) we can obtain commutation relations for the lields A
11
(x), 

namely 

[ Ap(x), A,.(x')] = gwl1(x- x') 
where 

11(x)= -
1
- f e'h c5(k 2)t:(k) d4 k. 

(2n)J o 

It follows that the field s have the following property: 

e7.2 Locality of the electromagnetic field 

[A
1
,(x), A,.(x')]=O if (x -x')2 <0. 

Proof From (7.43) we have 

11(x)= -11( -x), 

while the covariant form of the integral (7.44) shows that 

11(1\x) = 11(x) 

(7.43) 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

where t\ is any Lorentz transfo rmation. Now if x 2 < 0 there is a Lorentz 

transfo rmation t\ taking x to - x; hence /1(x) = 0 if x 2 < 0. • 

According to es.4, this means that a measurement of Ap at an event X 

cannot affect the result of a measurement of A
11 

at x' if(x - x')2 < 0, i.e. if a signal 
would have to travel faster than light to get from x to x'. Thus the theory obeys 
the requirements of causality as imposed by special relativity. 

This theory has been developed in the Heisenberg picture. The Schrodinger 
picture is not so well adapted to relativistic description, since its time­
dependent states require a separation between space and time and therefore a 

particular frame of reference. The fact that the Heisenberg picture, applied to 
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the quantum mechanics of fields, gives a satisfactory relati vistic theory 
suggests that field theory is the natural framework for a relativistic quantum 
theo ry. We wi ll now see how field theory emerges even if one starts with the 
quantum mechanics of particles. 

(b) Second quantisation Consider the system of an indefinite number of particles, each of which is a 
simple particle moving in space. If the particles are bosons, the state space is 

011 = ·rEf> 1r EB v 2 tr Ef> · · · (7.48) 

where "f/ ' is the one-dimensional vacuum space and "'f ' is the space of wave 
functions (see (4.153)). This space has annihilation and creation operators a"' 
and a/ for each wave function 1/;Eil: Let 

(7 .49) 

be a typical n-particle state, S being the symmetrisation operator of (2 .142); 
then the action of the annihilation operator a"' is given by 

a"'JI/1 , · · · 1/J,) = n-1{ ( I/; II/I 1 >JI/12 · · ·1/J,) + (1/1 JI/;2) JI/Jtl/!3 · · ·1/J,) + · · ·} 
(7 .50) 

by (4.157). This makes sense not only for wave functions 1/J E "//~ but for any bra 
<1/JJ; in particular we could take (1/JJ = (b, J. This gi ves an annihilation operator 
which we will denote by ¢(r), for each point of space: 

¢(r)jl/;1 · · ·1/J,) =n -1{1/!J(r) JI/;2 · · ·1/;,) + 1/12(r)jl/;11/;3 · · ·1/J,) + · · '}. 
(7.51) 

Then ¢ is an operator-valued function of position, i.e. a quantum field. 
In quantum mechanics the numbers of classical mechanics, like the 

coordinates of a particle, become operators. Now we are seeing the numbers of 
one-particle quantum mechanics, namely the values of the wave function , 
themselves become operators ¢(r). For this reason the construction of the 
many-particle theory is called second quantisation. 

rn §2.5 we found that one consequence of a state space being infinite­
dimensional was that not every bra corresponded to a state vector: the 
b-function bra (b,J was the first example. A similar phenomenon is that not 
every operator on an infinite-dimensional space has a hermitian conjugate. 
The operator ¢(r) is an example of this, for if ¢(r)t existed its action on the 
vacuum state JO ) would be defined by 

<'~'J¢(r)tj0) = ( Oj¢(r)j'l') for every state j'l' ) . (7.52) 

This requires ¢(r)tj0) to be a single-particle state whose inner product with any 
other single-particle state is given by 

(7.53) 

in other words, ¢(rfJO) is the non-existent ket corresponding to (b,J. As 
explained in §2.5, it is convenient to pretend that this ket exists and to write 
equations involving the b-'function' b,(r') = b(r'- r) as shorthand for equations 
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involving integrals. In the same way, it is convenient to pretend that the 
operator ¢(r)t exists, though equations involving it only really make sense 
when multiplied by a smooth function and integrated. The operator 

¢l!J =I f (r)¢(r)t d3 r (7.54) 

is a genuine creation operator for the state described by the wave function f; 
the quantum field ¢(r)t can be thought of as the creation operator fo r the 
ideali sed state of a particle precisely localised at r. 

A similar construction can be performed with the eigenbras of momentum 
(ed replacing ( c5,j. We define an annihilation operator a(k) by 

a(k)jl/1 1 ··· 1/1,) = n -! L ( e k ll/!,) !1/1 1 · · · 1/1; - 1 1/Jr + 1 · · · 1/Jn) , (7.55) 

and regard its fictitious hermitian conjugate at(k) as a creation operator for a 
particle in the fictitious momentum eigenstate with wave function (2n:) -i~k · •. 
The operators a(k) and ¢(r) are related as follows. From (7.55) we have 

a(k)!l/1 I . . ·1/J,) = (2~)l I dJr e- rk-r ~ 1/J;(r)!l/l I .. . 1/1; - I 1/1, +I ... 1/1,) 

= (2 ~)l I d 3r e- ik-r¢(r)jl/l 1 · • • 1/1, ) . (7.56) 

Hence 

(7.57) 

a(k) is the Fourier transform of ¢(r). By the Fourier inversion theorem we can 
write 

¢(r) = ~ Ia(k)dk 'd3k 
(2n:P 

(see also problem 7.2). 

(7.58) 

Now let us consider these operators in the Heisenberg picture. The 
opera tors ¢(r) must be replaced by time-dependent operators ¢(r, 1) satisfying 
the differential equation 

a¢ 
i ac= [¢, H]. (7.59) 

Suppose the Hamiltonian is that of a non-relativistic theory describing 
particles moving in a potential V, so that its restriction to the n-particle 
subspace is 

p 2 p 2 

H = -
1 +···+-" + V(r )+·· ·+ V(r.). (7.60) 

" 2m 2m 1 

For a one-particle wave function we write 

(7.61) 
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Then 

[¢(r),HJI1/1 1 "'1/I,) =L¢(r)l1/1 1 "'iP1 ... 1/I,) 
i 

- l:HI/J,(r}il/1,· .. 1/J, _ ,l/J, ~ , · .. 1/1,) 
i 

= L i[J,(r)ll/1, · · ·1/J, _,l/J, .,. 1 · • ·1/1, ) 
i 

Thus 

. a¢ J 2 
1- = - - V c/>+ V¢; at 2m 

(7.63) 

10 the second-quantised theory the field operators c/>(r. t) satisfy the 

Schrodinger equation, just like the wave function in the single-panicle theory. 

In the case of free particles (V=O) we can explicitly determine the time­

dependence of the operators a(k) in the Heisenberg picture. Applying the wave 
equation (7.63) to the Fourier integral (7.58) gives 

so that 

where 

Ii ~ a(k, t)e'k 'd3k =I~ a(k, t)e'k 'd3k, (7.64) 
ot 2m 

a(k, t) = a(k)e-•E• 

kl 
E= - . 

2m 

(7.65) 

(7.66) 

Thus for free non-relativistic particles 

c/>(r t)=-
1
- Ia(k)e-ifl+ik-rd 3k 

' (2n)l 
(7.67) 

where E = E(k) is the kinetic energy of a particle with momentum k. ln.general. 

an expression like this for c/>(r, t) in terms of time-independent annihilation 
operators requires knowledge of the solutions of the Schrodinger equation 
(7.63). 

Let us consider how problems in quantum dynamics can be formulated in 

terms of the field¢. In the Schrodinger picture these problems are of the form 

'At t = 0 a single particle has wave function 1/1 0; what is its wave function at time 

tT The answer can be expressed as a matrix element: 

(7.68) 

This can be written in terms of the Schrodinger field operators ¢ 5 (r) = cj>(r, 0): 

1/l(r, t) = <OI¢5(r)e- 'H• I 1/1 0 (r')t d3 r'IO> (7.69) 

where IO> is the vacuum state. This has zero energy and is therefore the same in 
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both Schrodinger and Heisenberg pictures: 

e-iNIIO> = IO) . 

Hence in terms of the Heisenberg operators 

cjJ(r, t) = e-ifllcjJs(r)e;Hl, 

the wave function at time t is 

(7 .70) 

(7.7 1) 

(7.72) 

This shows that the vacuum expectation value ( Oi¢(r, t)¢tcr', O)IO> is the 

Green's function for the Schrodinger equation (7.61): it is the kernel of the 

integral operator which converts the initial conditions I/J 0(r) into the solution 

of the differential equation at time t. 

The Klein-Gordon The non-relati vis tic Schrodinger equation for a free particle is formed from the 

equation non-relativistic relation between energy and momentum, eq. (7.66), by making 

the substitutions 

E-+i ofcr, k-+ -iV. (7.73) 

These can be written as 

(7.74) 

where kP =(E,k) is the (contravariant) energy-momentum 4-vector and op= 
Cjcx1

' is the (covariant) space-ti me derivative. Thus the obvious way to make 

the theo ry relativistic is to keep these substitutions but to replace (7.66) by the 

relativistic relation 

(7.7 5) 

where m is the rest-mass of the particle. Because of the square root , however, 

this does not lead to a differential equation; it is therefore necessary to square 

the relation. The substitutions (7.73) then give the differential equation 

J2¢ 
- -"i12¢= - m2¢ (7.76) Jt2 , 

which is called the Klein- Gordon equation. The differential operator on the 

left-hand side is invariant under Lorentz transformations and is usually 

denoted by 0 2
: 

J2 
D2= - -"i12=JI' a 

0 (2 II" 
(7.77) 

The Klein- Gordon equation is not considered suitable to be a wave 

equation for a one-particle theory, as the Schrodinger equation is, because it 

has negative-energy solutions (a result of the squaring of (7.75)). The general 

solution of the Klein- Gordon equation is 

¢(r t) = -
1
- f {a(k)e-iEr +a'(k)e;E'}e;k-rd3k 

' (2n)1 (7.78) 
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where a(k) and a'(k) a re arbitrary and E is given by (7.75). Rega rded as wave 
functions in the Sch rodi nger picture, the terms a'(k)e'k-re•E• have negat ive 
energy. But if¢ is not a wave function but a quantum field, the form (7.78) can 

be acceptable. It differs from the form (7.67) of a non-relativistic quantum field, 
but the possibility of a reasonable physical interpretation for the extra 
('negative energy') terms can be seen by comparing with the expression (7.32) 
for the electromagnetic field, in which such terms appear associated with the 
photon creation operator a t(- k). 

Thus in (7.78) a'(k) should be in terpreted as a creation operator for a sta te 
with momentum -k: 

(7.79) 

In the case of the electromagneticfield this is actually equal to at(-k), but that 
is because the field A is hermitian (being related to the observables E and B). In 
general there is no reason why a quantum field should be hermitian; th is means 
that the particle created by bt may not be the same as the particle destroyed by 

a. These two particles are antiparticles of each o ther. 
By changing variables from k to -kin the second term, we can write (7.78) 

as 

¢(r t) =-
1
- Ja(k)e-i(£•-k-rl d 3k +-1- Jbt(k)eitEr-k·r) d 3k 

' (2n)i (2n)i 

=¢+(r, t)+¢ _(r, t)t (7.80) 

where¢+ is an annihi lation operato r fo r the particle associated with the field 

(cf. (7.67)), and cp_ t is a creation operator for its antipa rt icle. This is the 
justification for the introduction of 'reduced quantum fields' in §4.6. 

7.2. The Dirac equation The Dirac equation is a partial differential equation which is relativistic in the 
sense that it incorporates the relation (7.75) between energy and momentum, 
yet it is first-order in the time derivative. The equation is 

iyl'a1,1/!=mi/J (7.81) 

in which the meaning of the symbols is as follows: 

(i) a1, = a;axll Where X11 = (f, r) iS the SpaCe-time pOSitiOn 4-VeCtOr. 
(ii) y11 is a set of four 4 x 4 matrices which satisfy 

(7.82) 

where g~''"= diag (1 , - 1, - I, - 1) is the metric tensor of special 
relativity, and the 4 x 4 unit matrix is understood on the righ t-hand 
side. We will always take these matrices to be 

OJ ;=[ 0 a;] 
-1 ' y - (]. 0 ' 

I 

(7.83) 
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in which the entries denote 2 x 2 blocks and ai are the 2 x 2 Pauli 
matrices. Note that the ;·11 are fixed matrices. and do not change with 

the frame of reference. 

(iii) 1/J(x) is a four-component wave function. It is no t a 4-vcctor; it is to be 

regarded as a 4 x I column vector suitable for multiplication by a}'· 

matrix, and the number of its components is a different four from the 

dimension of space-timet. It is called a Dirac spinor. The symbol 1/J is 
usual for Dirac spinors, although they are a different sort of object 

from the one-component wave function appearing in the Schrodinger 

equation. Fo r the rest of this book 1/J will always denote a Dirac 

spino r. 

(iv) m is the rest-mass of the particle whose state is described by 1/J. 
Now we will derive some of the properties of the Dirac equation and the 

matrices ·/. 

e7.3 The Dirac equation implies the Klein- Gordon equation: 

iy~'o111/J=mi/J = 0 21/1= - m21/J. (7.84) 

Proof If 1/J satisfies the Dirac equation then 

(i' £\)(/" c..)ljf = - im(y" cp)l/l = -m 21jf. (7.85) 

But (7.82) gives 

V' £\Hi o,l=!<Y11i+f".,·~')c,, c,=g~'' ap a,=0 2
. 

Hence (7.85) shows that every component of 1/J satisfies the Klein-Gordon 

equation. • 

The components of the Dirac spinor 1/J must depend on the frame of 

reference, for otherwise the Dirac equation would not hold in all frames of 

reference. If the frame of reference is changed by means of a Lorentz 

transformation A, so that the space-time coordinates change by 

(7.86) 

(see Appendix 1), then the corresponding change in 1/J is given by 

e7.4 For each Lorentz transformation A there is a 4 x 4 matrix 
S{A) sat isfying 

S(A)- 1 }•~'S(A)=N,.y' . (7.87) 

Let 1/J' be the spinor wave function defined by 

1/J'(x') = S(A)Ijl(x) 

where x' is given by (7.86); then 

iyP ap'I/J'= ml/l' 
Where ap• = o/ax'P. 

t If space-time had dimension 2n. 1/1 would have 2" components. 

(7.88) 

(7.89) 
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Proof The condi tion on A to be a Lorentz transfo rmation is 

(7.90) 

If A(i.) is a sequence of Lorentz transformations labelled by a rea l parameter i., 
with N ', (0) = b!',. and with generator 

dN'.J 1'---' w ,. - .. ' 
d!. ,.=0 

(7.91 ) 

then (7.90) gives 

(7.92) 

Conversely. if w~, satisfies th is condition and n is the 4 x 4 (vector) matrix with 
entries w1',. , then 

N ,.(}.) = (e;n)~ ,. 

is a sequence of Lorentz transformations. for 

d 
---;- (A1',A~p ) =of. A",.A

1
,P +A1',.w1,0 A "I' = (W

1
,0 +w.~ )A ", A~P = 0. 

dJ. 

Then the solution of the d ifferentia l equation 

dx11 

- =w"x'· d). ,. 

IS 

x"().) = N ,.(i.)x' (O). 

(7.93) 

(7.94) 

(7.95) 

In particular, if w0 i=0 and wij=eijknk for some 3-vecto r n, (7.94) becomes 

dt dr 
- = 0, -=n x r. (7.96) 
d). (/), 

Comparing with (3. 129) shows that in this case e;n is a rotation about the axis n 
through angle ) .. On the other hand, if wij=O and w 0i=ni, (7.94) becomes 

dt d d . 
- = n · r, - (n · r)= r; - (m · r)=O 1f m·n=O. (7.97) 
d). d). d). 

The solutio n of thi s is 

t=t0 cosh ).+n · r0 sinh). , 

n · r = t 0 sinh ). + n · r 0 cosh )., 

m · r = m · r 0 if m · n = 0, (7.98) 

which is a boost in the direction n with velocity tanh 2. Thus bo th rotations 

and boosts are Lorentz transformations of the fonn em. 
Now define the spin or matrix corresponding to A= em to be 

(7.99) 
where 

Then 

(7 .1 00) 
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Now 
[CJ''" , y''] = i([y", y''] , i'J 

=~(,•· (" p )'1'}1 _ _ U'\JP fy•· "I'}} 
4ll ' lT ' J 4 lr • l • r 

= gl'l'y' _ g'"yP 

by (7.82). Hence (7.100) becomes 

dfdJ. [S(A) - I y''S(A)] = w1',.S(A) - 1 y''S(A). 

Comparing with (7.93)-(7.94), we see that 

S(A) - 1y''S(A) = N' ,.y", 

as stated. 
If x'~' = A~',x'' then a~'·= A/iJ,. and so 

y'' o1,'tj/ = '/'A / o,.[S(A)t/1]. 

But 
A~'"')'PS(A) = A1,'N PS(A)y" = S(A)y" 

by (7.90); hence 

iy1
' o,,' t/1' = iS(A)y" a,. if; = S(A)mt/1 = mt/1' . • 

(7.102) 

We can now use Postulate VII to determine the angular momentum of the 
system whose state vectors are the spinor wave functions t/J(x). In a single­
particle theory the state space will consist of all suitably well-behaved spinor 
functions of spatial position r (as with the Schrodinger equation , the fourth 
space-time coo rdinate t describes the change of the state vector in this state 
space). On this state space the unitary operator representing a rotation R is 
given by 

[ U(R)t/l](r) =S(R)t/I(R - 1r) (7.103) 

where S(R) is the 4 x 4 (spinor) matrix assigned to R as a Lorentz 
transformation by e 7.4. Suppose R is a rotation about an axis n through angle 
).; then the angular momentum component n · J is given by 

[n · J t/1 ](r) = [(i dfd i.)S(R)t/1 ](r) + (i dfdl )t/I(R- 1 r). (7. 104) 

The second term is calculated as in §3.3, and gives the usual orbital angular 
momentum term - in ·(r x Vt/J). For the first term we use (7.99) with Wo;=O, 

W;i = eiiknk to obtain iw;jCJijt/J(r). Hence 

J=s + r x p r. to~ 

where 

sk =1ie;jkCJiJ= tie;ik [/' ;, YiJ. (7.106) 

From the form (7.83) of the y-matrices and the multiplication rules (4.39) for 
the Pauli CJ-matrices we obtain 

(7.107) 

This shows that the state space is of the form ~ EB .9"2 where both ~ and .9"2 

are isomorphic to the state space of a single spin-1 particle: ~ consists of 
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spinors in which the bottom two components vanish, while .~ consists of 
spinors whose top two components vanish. 

In order to see the significance of these two subspaces, consider the 

eigenstates of momentum with eigenvalue 0. These consist of spinor wave 
function s 1/J(x) satisfying VI/I= 0. so 1/1 is a function oft only; the Dirac equation 
becomes 

i·/ dt/1 /dt = mt/1. (7. 108) 

With y0 given by (7.83), -~ is an eigenspace of l with eigenvalue I; a spin or 1/J 

belonging to -~ and satisfying (7. 108) therefore has energy 111 (as is to be 
expected for a particle of rest-mass m when it is at rest). If 1/J belongs to .9"2 , 

however, it is an eigenvector of y0 with eigenvalue -I, and so (7. 108) implies 
that it has energy -111. Thus the Dirac equation, like the Klei n- Go rdon 
equation. has negative-energy solutions. 

Parity From the spin or matrices S(A) of e 7.4 we can construct such a matrix for any 
Lorentz transformation which can be written as a product of rotations and 

boosts. These matrices constitute a projective representation of a subgroup of 
the Lorentz group, whose elements are known as proper Lorentz 

tra nsformation s. Space inversion P, which takes (c, r) to (t, - r), is also a 
Lo rentz tran sfom1ation according to (7.90), but it does not belong to this 
subgroup. It can be represented by a spinor matrix by taking S(P) = i'0 , for then 
the basic relation (7.82) gives 

S(P)y0 S(P) - 1 = y0
, S(P)/S(P) - 1 =-yi, (7.109) 

in analogy with (7.87). 

Spinor bilinears A wave function satisfying the non-relativist ic Schrodinger equa tion gi ves rise 
to a probability density and a probability current (see (3.43)). Similar 
quantities can be constructed from Dirac spinors as follows: 

e7.5 There is a hermitian spinor matrix ( which satisfies ( 2 = 1 and 

(y''(= (y~t (7.110) 

Let ~ = 1/Jt(; then 

~1/1 is a Lo rentz scalar; 

~y~'t/J and ~ a~t/1 are 4-vectors. 

If 1/J satisfies the Dirac equation, then 

a~(~y~'t/J) = O. (7.111) 

[The meaning of these statements is as follows: Let 1/J' be the spinor obtained 
from 1/1 by a Lorentz transformation A according to (7.88). The statements that 

~1/1 is a scalar and ~y~'t/J is a 4-vector mean that 

~' 1/1'=~1/1 and i[/y~'t/J' = N.~y"t/1 (7.112) 

for all Lorentz transformations A.] 
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Proof Although the existence of ~ can be shown to follow from the y-matrix 
relations (7.82), we will be content to exhibit ~ for our particular choice (7.83). 
Since in this choice y0 is hermitian and the yi are antihermitian, (7.110) is 
satisfied by taking ( = y0

. 

Now we have (using ( 1 = I) 

(a~' ''( =t([y~', y']( =t[(yl'(, (y''G =t[y~' t, y''t:] (7.113) 

= - -i-[i ' 'Y ''] t = - a""t 

so that if 1\. = f~.!l is a boost or a rotation, 

(S(/\.K = ~ exp (wwai''X = exp (wl',.(a1'''~) 

=exp [ -(w1,..a
1"Yl = [S(/\.)-'r. (7.114) 

If 1\. is space inversion, both sides of (7.114) are equal to y0 . The equation can 
now be extended to any product of boosts, rotations, and space inversions. 
Thus if 1\. is any such product we have 

1/l = S(/\.)t/1 (7.11 5) 
and 

~· = t//S(/\.)t( = t/lt(S(/\.) -1 = ~S(/\.) - t. (7. J 16) 

Hence 

~' t/l =~t/1 (7.117) 
and 

~'y~' t/J' = ~S(/\.) - L y~'S(/\.)t/1 = 1\. ~'.~y"t/1 (7. 118) 

by (7.87). Also, since o~'' = 1\./o., 

~· al'·~· = ~S(A) -'A/o.S(A)t/1 = A/o.t/1. (7.119) 

(7.117)-{7.119) show that ~t/1, ~y~'t/1 and ~ o~'t/1 are respectively a scalar, a 
contravariant 4-vector and a covariant 4-vector. 

Now suppose that t/1 satisfies the Dirac equation: 

iy~'ol't/l=mt/1. (7.120) 
Then 

-i ol't/Jty ~'t(=m~. (7.121) 

Multiplying (7.120) on the left by ~ and (7.121) on the right by t/1 and 
subtracting gives 

al'(~y~'t/1)=0. • 

Let j~' = ~y~'t/1 and write/= p; then (7.121) becomes 

opfor + v-j =0, (7.122) 

which is the same as the continuity equation (3.42). Because of this equation/ 
is calledt a conserved current; its time component p can be interpreted as the 
density of some substance whose rate of flow is described by the current 3-
vector j. In fact 

p=~yot/l=t/lt(yo)2t/l=t/ltt/l (7.123) 

t Illogically; it should be called a conserving current. 
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(since ~ = y0), so p is positive definite. Originally p was interpreted as a 

probability density; but in the second-quantised theo ry which is made 

necessary by the negative-energy solutions of the Dirac equatio n, p has a 

different interpretation (see p. 311). 
Another significant set of bilinear quantities can be co nstructed by means o f 

the matrix 

(7. 124) 

Since the y1' all anticommute, this can al so be writ ten a s 

y 5 = (4!) - 1 ie111•1,"y''y''y"y" (7 .125) 

where ewP• is the totally antisymmet ric tensor with ~:012 3 = I. From this the 
Lorentz transformation properties of y5 follow: 

S(A )y 5S(A)- 1 = (4!) - 1 e111paN , A'pN . N ;.Y"Y11')'"i= (det A)/• 5 . (7. 126) 

Thus y5 is invariant under proper Lorentz transformations, but changes sign 

under reflections. Such an object is called a pseudoscalar. Similarly, }"'y5 is a 
pseudo vector: 

S(A)y''y 5S(A) - 1 =(det A)yPy5 . 

The important properties of y5 are the following: 

e7.6 (i) y 5
2 = I; 

(ii) Y5i' = -yPys; 

(iii) )'~y''y 5 = g~''y S - !ieP''K).')'K)''\ 

(iv) ( y5( = - y/; 

(v) i{Jy 51/1 is a pseudoscalar, 

i/Jy 5y~I/J and i{Jy 5 api/J are pseudo vectors; 

(7. 127) 

(7.128) 

(7.129) 

(7.130) 

(7.131) 

(vi) if 1/J(x) = u(p)e- ip·x is a p lane-wave solution of the Dirac equation, 

its helicity is given by 

(7.132) 

Proof (i) and (ii) are easily calculated fro m (7. 124), using the fact that the y'' 

an ticommute. On the other hand, using the form (7.125) for y5 and repeatedly 
applying the anticommutation relation (7.82), we find 

(7.133) 
so that 

V l_ • V {J K ). 

Y Y5=61e {JK;.Y Y Y · (7. 134) 

Th us y"y 5 is a product of the three matrices yP with 11 =1 v. Hence )"' commutes 

with y"y 5 if 11 =I v. But a calculation like the above, starting from (7.134) and 
using (7.82), gives 

(7.135) 
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so tha t 
(7 . .1 36) 

Also 
y''y'"y 5 = g1"'y 5 if )1 = v. (7.137) 

(7 .1 36) and (7. 137) can be put together as (7.13 1). 

(iv) follows fro m (7. 110), which g ives 

~Is(= ;1o t}, l \, 2ty3t =( -iy3y2yiyoV = -y 5t 

since the }"' anticom mute and reversal o f o rder is an even permutation o f four 

objects. 
(v) is established in the same way as e 7.5; because of(7. 126). we find that if 

tf/ = S(t\)1/J, then 

i[/y51/J' =(det t\)~y 5 1/J , (7.1 38) 

(7. 139) 

and 
(7.140) 

Finally, if 1/J(x)=u(p)e- •r-< is a solut ion of the Dirac equa tio n, so that 

i opi/J =p1,1/J and pPyPI/J=mi/J, (7. 141) 
then 

p · JI/J= p ·(s+ r x p)I/J=~ip;c;ikYil!/1 by (7.106) . 

But (ii) gives 

icijkyi/ = -iso;jkyiyk = 2yoyi)l s = 2YsYO)Ii, 

so 

No te that if m =0 and 1/J is a positi ve-energy solut ion of the Dirac equatio n, 

so that p0 =I PI, the helici ty o pera tor is just -1Ys- Now the p roperty of being an 
eigenspinor o f y 5 is invariant under p roper Lo rentz transformations, fo r from 
(7. 127) we have 

y5 1/J=sl/l => y5S(t\)I/J =S(t\)y 5 1/J = sS(t\)I/J. (7. 142) 

T hus fo r a massless particle it is a Lo rentz- in variant (bu t no t pa rity-in va riant) 
statement to say that it has negative helicity (in o rder to cha nge to a fra me of 

reference in which a pa rticle has opposite helici ty, it would be necessary to 
o vertake the particle and look at it fro m the o ther side, as in Fig. 6.22, and this 
is not possible if the pa rticle is t ravell ing a t the speed of light). This explains 
how it is possib le fo r a ll neutrinos to be left-handed : a neut rino is described by 

a Dirac spino r sa tisfying the pair of equatio ns 

yPoPI/J=O, y5 1/J=I/J. (7 .143) 

F o r a massive part icle the Dirac eq uation is no t compatible with the 

equation y 51/J = 1/1. This can be seen by writing 

1/J=I/JL +1/JR 
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where 

t/JL = 1( 1 +Ys)t/J, t/JR = 1( 1 - ys)t/J; 

then the Dirac equation becomes 

309 

(7.144) 

iyi'01,t/JL = III t/JR · i}"'01,t/JR = mt/JL· (7.145) 

The spinors t/1~_ and t/JR are the left-handed and right-handed state vectors 
introduced in *6.6. They a re not eigenstates of helicity, but they are eigenstates 
of an operator -1"1 5 which tends to the helicity as the velocity of the particle 
tends to c (see e 7.6(vi); as v--+ c, Pol lPI-+ 1 and m/IPI -+ 0). 

Note that from e7.6(iv) we have 

~L = t/l~.t( =-tt/Jt(l + ys)t( = i~(l -y s), 

and similarly 

Since y 5
2 = 1, it follows that 

tfrLt/JL = tfrRt/JR=0. 

(7.146) 

(7.147) 

Secom/ quantisation As with the Klein-Gordon equation, the existence of negative-energy 
solutions of the Dirac equation raises a problem which can be resolved if the 
field is an operator in the Heisenberg picture. Following the lead gi ven by 
(7.32) and (7.80), we write 

(7.148) 

where p0 = + j (p2 + m2
) , and a(p) and {Jf(p) are Dirac spinors whose 

components a re annihilation operators and creation operators respectively. 
To specify IX and rr more fu lly, for each 3-momentum p we define a basis 

{u±(p), v±{p)} for the space of Dirac spinors as follows: 

s'3u±(p) = ±u=(p), pJly~' u ± (p) = mu ± (P) 

s'3 ~: ± (p) = ±v± (p), - p
1
,yi'v±(p) = nw±(P) ' 

(7. 149) 

where pi'= (p0 , p) and s' 3 is the third component of spin in the rest frame of pi'; 
we choose a Lorentz transformation A such that N ,.p'' = (m , 0), and define s'3 = 
S(A - 1 )s3S(A) where s3 is the spin matrix of (7 .107). In other words, u ± (p) are 
positive-energy spinors and v±(p) are negative-energy spinors (for explicit 
formulae, see problem 7.7). Then we can write 

a(p) = a _(p)u + (p) +a +(p)u _(p) 
(7.150) 

tr(p) = b+ t(p)v +(p)+b _ t(p)v_(p) 

If t/1 is the electron field , a ±(P) are annihilation operators for electrons and 
b± t(p) are creation operators for positrons. The labelling correctly indicates 
the spin properties of the states that these operators create and annihilate. This 
can be seen by starting with the transformation of the field tjl(x) under 
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rotations, namely 

U(R)I/J(x)U(R) - ' =S(R- ')1/J(Rx) (7.1 51 ) 

where U(R) is the unitary operator on state space representing the rotation R, 
and S(R) is the spinor matrix of e 7.3 (with A = R). This leads to a spin 
observable r. which satisfies 

[:E, 1/J(x)] = sl/l(x) (7.152) 

where sis the spinor matrix o f (7.106). Th is must a lso ho ld with cx(p) and {Jt(p) in 

place of 1/J(x). Since 11 ± and v± are eigenspinors of s 3, this leads to 

[:E 3,a+(p)]= ±a+(p), (7. 153) 

(7.154) 

The seco nd of these equations shows that b:r t crea te sta tes wi th spin up and 
down (s== ±1) respectively. The hermitian conjugate of the fi rst equat io n, 

[:E3, a +t(p)] =+a+ t(p), 

shows that a ± a re a lso correct ly labelled. 
This means that in the left-handed and right-handed fields 1/JL and 1/JR defined 

by (7. 144), particles a nd antiparticles have opposi te helici ty; 1/JL is the sum of an 
annihila tion opera tor for a left-handed electron and a creation o pera tor for a 

right-handed positron. 
Since the Dirac equation describes particles with spin 1. they are always 

fermions and so thei r creation and annihilatio n operato rs obey 
ant icommuta tion relations. As described in §4.6, this can be extended to 
antiparticles. The result can be summarised , in a similar fash ion to (7.39), as 
follows: Let 

{ 
2p0cx(p) if p0 > 0 , 

'1(P) = - 2po {Jt( - p) if Po< 0; (7. 155) 

and let x(p) = 17(p) t5(p2- m2
). Then x(p) is the four-dimensional Fourier 

transform of 1/J(x), and satisfies the anticommutation rela tions 

{x,(p),x.(p')} =0= {x,(p)\x.(p')t}, } 

{x,(p), x.(p')t} = b,, t5(p2- m2) b(p-p'). 

These have the consequence that 

{1/J(x), I/J(x')}=O fo r all x,x'; } 

{ 1/J(x), ~(x')} = 0 if (x - x')2 < 0. 

(7. 156) 

(7. 157) 

Like the co rresponding relations for the electromagnetic field , these 
anticommutation relations define the property of locality for a fermion field. 

Finally, let us consider the conserved current i[J'/1/J. The quantity which is 
conserved by this current is the space integral of its Oth component; at t = 0 this 
is, by (7.148) and Plancherel's theo rem (problem 2. 13}, 

(7.158) 
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Now t'±( -p) satisfy 

pP'yl'c= -mt' where p'1'= (p0, -p). 

From the properties o f )' 0 we have 

(p~ yl' ) t = p;,·lyP·l = PJI yP 
so that 

vtpPyl'= -mvt. 

But u±(P) satisfy 

p1,yl'u=mu, 

from which it fo llows that 

v±( -p)tu±(p)=O. 

Hence (7.154) becomes 

f 1/J(r)ti/J(r) d3 r = r~± {a,(p)ta,(p) + b,(p)b,(p)t} d 3p. 

Since the anticommutator of b, and b/ is a c-number, this is 

f ~ { a,(p)ta,(p)- b,(p)tb,(p)} d3 p, 

3 11 

(7.159) 

apart from an (infinite!) c-number term which is similar to the infinite zero­
point energy of the electromagnetic field, and is ignored with a similar 
justification. If a ± t create electrons and be: t create positrons, this in tegral is the 
total number of electrons minus the total number of positrons. Thus i{iy0 1/J is 
the densi ty of a quantity which has opposite values fo r electrons and positrons. 
Multiplying by the electric charge e of an electron, we a re led to the 

identification of ei{iy~' I/J as the electric current density 4-vector. 

7.3. Field dynamics We have now constructed three types of quantum field : the scalar </>(x), the 
spinor 1/J(x), and the 4-vector AP(x). Each of these is an operator function of 
posi tion which, being in the Heisenberg picture, depend s on time as well as 
space. We know how they are made of certain time-independent creation and 
annihilation operators: each component 8 of any of these fields is of the form 

8(x) = f { a(p)e- •p ·x + b(pJf e'P'" } d 3p (7.160) 

where a(p) is an annihilation operator for a particle with 4-momentum p~' 
(p0 being given as a function of p), and b(p)t is the creation operator for its 
antiparticle. We can (although we have not done so) work out the 
commutation relations between field operators from the known commutation 

relat ions of the creation operators a, a t, b and bt, and, knowing that the 
Hamiltonian is of harmonic-oscillator type in terms of the creation and 
annihilation operators, we can express it as an integral of products of fields (see 
(7.17) and problem 7.8). Being Heisenberg operators, the fields satisfy 

8(r, t) = e-iH'8(r, O)eiH<. (7.161) 
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Using (7. 160), any state of a number of particl es can be expressed in terms of 
products of field operators act ing on the vacuum. As in (7.72), the amplitude 
for one such state at time t to become (in the Schrodinger picture) a different 
state at time t can be expressed in terms of vacuum expectation values of 
products of (Heisenberg-picture) operators. Thus to answer dynamical 
questions about the system it is not necessary to know the Hamiltonian 
explicitly; it is sufficient to know the time dependence of the field operato rs. 
This time dependence is implied by the differential equations satisfied by the 
fields, which are the same as the equations satisfied by the c-number fields of 

the classical or first-quantised theory (e.g. Maxwell 's equations or the 
Schrodinger equation). Thus the quantum dynamics of a system described by 

quantum field s is determined by the field equations. 
In classical field theory, as in classical mechanics, the field equations can 

usual ly be obtained from a principle of least action. T he action for a system 
with a finite number of degrees of freedom is an integral J L dt, where the 
Lagrangian Lis a fu nction of the coordinates q; and their rates of change cj;. In 
a field theory the 'coo rdinates' are the values of the field at each point of space, 
say B(r); the Lagrangian, which is to be a function of these infinitely many 
variables, can be taken to be an integral 

L =I ..2'[8(r), VB(r), ll(r)] d3r (7. 162) 

where .sf: the Lagrangian density, is a function of the values of the field and its 
derivatives a t one point of space; and then the action is 

s =I L dt =I !f(B, 8p0) d4
x. (7.163) 

In this equation x, as usual , stands for the space-time position (1, r). The 
principle of least action is the requirement that th is fou rfo ld integral should be 

stationary under arbitrary variations of the field which vanish at the boundary 
of the region of integration; this leads to the Euler-Lagrange equations 

8!1' ( ay ) 
---ao - 8p 8(8/.J) =O (7.1 64) 

(see Goldstein 1980 or problem 7.9). This is sometimes written as 

bS 
be(x) =O; (7.165) 

the expression on the left is called the functional derivative of S with respect to 
8(x). Its value at x, roughly speaking, gives the change in the integral S if the 
val ue of() is changed at the one point x (by means of a b-function). 

If there are several fields in the theory !t' will be a function of all of them and 
there will be an equation like (7.164) for each field. 

Eqs. (7.163H7.164) show that the Lagrangian formalism fits in wi th special 
relativity much better than the Hamiltonian formalism. The fundamental 

quantity S is an integral over space and time and does not require any 
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separation between them; it is the same in all frames of reference, and the 

integrand Y is a relativistic scalar. The equation of motion likewise puts space 

and time on an equal footing and is manifestly invariant under Lorentz 

transformations. On the other hand, Hamilton's equations in classical 
mechanics and field theo ry, and Schrodinger's equation in quantum 

mechanics, all specify time derivatives and assign a special role to the time 
coordinate. The Hamiltonian itself, being the 'total energy, is not a scalar but 

the time component of a 4-vector, and its form depends on the frame of 

reference. (In field theory it is the space integral of a Hamiltonian density 

which is even furt her from being a scalar, being the (0, 0) component of a 

tensor 7;,. .. ) 
In the context of field theory Feynman's formulation of quantum mechanics 

beco mes particularly natural. This formu lation is most appropriate for 

quantum systems which have a classical counterpart; it assigns amplitudes to 

paths which are defined in tem1s of classical coordinates. It is difficult to apply 

it to quantum observables like spin and isospin. But Feynman's formulation 

can be used in field theory by taking the first-quantised theory as the classical 

counterpart. For example, the spin of electrons and positrons is described by 

means of a Dirac spinor t/1. In quantum field theory t/J(x) is an operator. 

Nevertheless, we can develop a theory of the Dirac equation as an equation for 

a c-number field t/J, construct an associated action S, and then apply 

Feynman's postulate to obtain an amplitude for a field configuration at one 

time to evolve to another configuration at a later time. e3.14 can be 

generalised to show tha t this is equivalent to the development based on 
Postulate VI, in which the Hamiltonian is fundamental. 

For all of these reasons the Lagrangian density Y is regarded as the 
quantity of fundamental significance in quantum field theory. It is commonly 

referred to simply as the ' Lagrangian'. 

The field equations we have considered so far can be obtained from 

Lagrangians as follows: 
For the Klein- Gordon eq11ation. take 

y =J.(a/pt. a~'¢ -mz¢t¢). (7.166) 
Then 

j}.!fl ( j}.!fl ) 2 
iJ¢ -a,, o(iJ,,¢) = - m ¢- a,,(iJP¢), 

so the Euler- Lagrange equation is the same as the Klein- Gordon equation. 

For the Dirac equation, take 

.P=1i(~y~' apt/! -ap~ · y~'t/1) -m~I/J, (7.167) 

which is often written as 
~ 

.fe=i~yP j}pi/J-m!fljl. 

The components of 1/J are complex quantities whose real and imaginary parts 

can vary independently, so for each component there are two Euler- Lagrange 
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equations which a re the real and imaginary parts of a single complex equation. 

Now any functio n f(x, y) o f two real variables can be written in terms of the 

complex variable z = x + iy as a function g(z, z), and the real partial derivatives 
off can be combined to form the complex derivative 

cg of . of 
- = - + 1-a: ax 0)' 

(7.168) 

which is calculated by treating z and z formally as independent quantities and 
differentiating partially with respect to z. (The other partial derivative ogjo:: is 
just the complex conjugate of ogjoz, iff is real.) Thus the Euler- Lagrange 

equatio ns for the Lagrangian (7.167) can be written as 

O= a!f -a
11

( aL )=1-i[Cl o
11
1/JJ-m[CI/Il+1i ap [(ll/l], 

ol/l, o(o111/J,) 
= [Wi' a1,1/1 -mi/J)],, 

which is the same as the Dirac equation. 

For M axwell's equations, take 

Then 

!!' = -,t(o
1
, A,,- O,.A

11
)(8P A,.- o'A1' ). 

a!f - a (_}__!!____)-a (811 A'' - a'AP) 
ilA,. p a(o

11 
A,.) - 1

' • 

(7.169) 

(7.170) 

so the Euler- Lagrange equations reproduce Maxwell's equations in empty 

space, 

o
1
,P ''= O, (7.171) 

where FP" = ap A,- a,.Ap is the electromagnetic field tensor (F Oi = E; and F;j = 
eijk B k where E and 8 a re the elect ric and magnetic fields). This is not the same 

as the equation o n which we based our discussion of the electromagnetic field , 
namely 0 2 A

11 
= 0, unless one adds the condition o

11 
A1' = 0. It is permissible to 

add this condition, because of the arbitrariness of the potentials A
11

, but it is not 

essential; for the purposes of developing the theory it is more convenient to 

leave A 11 unrestricted but to bear in mind that it is the field tensor F
11

,. that is 

physically meaningful and not the potentials Aw As we shall see in the next 

section, the fact that the theory can be cast in this form has great physical 
significance. 

Note that the masslessness of the photon is expressed by the Lagrangian 's 
being constructed entirely out of derivatives of the fields; there is no term like 

the ¢ 2 in (7.166) which gives the mass in the Klein- Gordon equation. 

lnvariances and conserved The discussion of in variances and conserved quantities in §3.2 was based on 

quantities the Hamiltonian as the fundamental dynamical quantity. In order to apply 

these ideas to quantum field theory we will need to return to their source in 
Lagrangian classical mechanics. 

In the classical mechanics of a system with a finite number of degrees of 
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freedom , with coordinates q1 , ... , q11 and a Lagrangian L(q1 , ... , q11 , q1 , ... , 

{j
11

) , Noether's theorem states that if q; ~ q;'(q 1 , ... , q11 , ex) (with q;' = q; if ex= 0) 

is a set of transformations which leave the Lagrangian invariant, so that 
L(q', q')=L(q,q) for all ex, then 

I --· II oL aq.'l 
i = l Oq; oex a=O 

(7.172) 

is a constant of the motion. We will now prove two extensions of this theorem 
to Lagrangian field theory. 

e7.7a Noether's theorem I. Let 2'(8, , .. . ,811, ape! , .. . , 8A,) be a 
Lagrangian density which is invariant under the transformations 

8;(x) ~ 8;'(8 1 (x), . .. , 811 (x), ex) (7.173) 

where ex is a real parameter and 8;' = 8; when ex= 0. Then the field 
equations (7. 164) obtained from ff imply that 8J 1'=0 where 

II off a8.'1 
/(x)= L - -7 · 

i = l 0(01,8;) Oex a= O 

Proof Writing 8=(81 , ••• , 811 ) , we have 

ff (O'(O, ex), 8
1
,8'((), ex))= ff(O, o

1
,0) 

for all ex. Differentiating with respect to ex, 

I off o8;' +~ o(oA') = o. 
i ae;' aex o( BA') aex 

When ex = 0 the field equations give 

Also 

off_ off_ a ( off ) 
ae;'- aej - '' o(a,, e;) · 

!_(a e')=!_(o8;' a e.)= 
028

/ a e =o ( ae;') 
aex '' · aex aej p J aex aej p J p aex · 

Hence when ex =O (7.176) becomes 

( 
o.:t' ae;') 

ap o(oA) a; =O, 

i.e. o,JI' = 0. • 

(7.174) 

(7.175) 

(7.176) 

The equation oJP= O is a continuity equation (see (7.122) and the sentence 

after it); if l vanishes at spatial infinity, it implies that 

Q = J/(r, t) d3 r (7.177) 

is constant in time. This conserved quantity is called the charge associated with 
the in variance 8; --+ 8;' and the 'conserved' current j". 

As an example of Noether's theorem, consider the transformation of the 
Dirac field consisting of multiplication by a phase factor: 

(7.178) 
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where the e in the exponent is the charge on the electron. Clearly the 
Lagrangian (7.167) is invariant under these transformations. As explained 
after (7. 167), we can take t/t, and its complex conjugate rf/, as independent 
variables; to simplify the algebra still further. we can change variables from rf/, 
(the components of t/t t) to rf!s(rs (the components of If). Then 

-~- = - 1et/t, -~- = 1etp 81// I . 8tp I . 
Oa a = O Oa a=O 

so that (7.174), with !!' taken from (7.167), gives 

·~- 8!1' . . .1. 8!1' 
J - 8(8~1/t,) ( -Let/t,)+le'l', 8(8~tp,) 

=1ilP'/(- iet/t) + itp( -1ie'/t/t) 
=etpy~t/t, 

(7 . I 79) 

which is the electric current 4-vector. Thus the conserved quantity associa ted 
with in variance under the phase transformations (7. I 78) is the total electric 
charge. 

A phase transformation like (7. I 78) can be defined for any additive quantum 
number A; the field of a particle for which A= a (with an antiparticle for which 

A= - a) transforms by 

t/t' -+ t/t'(a)=e-;""t/t. (7.180) 

We will call this an A phase transformation; thus we have baryon number 
phase transformations, lepton number phase transformations, hypercharge 
phase transformations, and so on. 

This derivation of the existence of a conserved quantity associated with an 
invariance appea rs quite different from what was proved for non-relativistic 

quantum mechanics, based on a Hamiltonian, in §3.2. However, it can be 
shown that in fact there is the same relation between the invariance and the 
conserved quantity: one can construct a unitary operator U(a) such that 

U(a)8; U(a) - 1 = 8;'( 8(x), a) 

and then 

(7.181) 

(7.182) 

i.e. Q is the hermitian generator of the transformations 8-+ 8'. It follows that if 
we consider transformations depending on several parameters and forming a 
Lie group G, the various charges associated with them satisfy the 
commutation relations of the Lie algebra of G. 

The transformations (7.173) involve no change of space-time points and 
therefore cannot describe 'external' symmetries like invariance under 

rotations or translations. Indeed the Lagrangian density !1'(8, 81' 8) is not 
invariant under translations 8(x)-+ 8(x +a). By analogy with systems with a 
finite number of degrees of freedom, however, we would expect a form of 
Noether's theorem to hold for such transformations, since the total 
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Lagrangian L = J !fl d3x is invariant if !fl does not depend explicitly on x. We 
will prove the theorem for translations; for ro tations and Lorentz 
transformations see problem 7. 11. 

e7.7b Noether's theorem for translations. Let Y (01 •• .•• 0,, c
1
,01 , 

... , a,O,) be a Lagrangian density which does not depend explici tly 
on x. Then the field equations (7. 164) imply that 

" ay 
p ·· = I -- ~·o;-Yg'"". 

i= • o(aA) 
Proof If Y does not depend explicitly on x, 

(7. 183) 

(7. 184) 

ay ay ay ( ay ) cY 
ax··= aoj ~. 0j + c(aA) a, a,.ej =a, o(o,{);) 8• 0j + c(c,();) ~,. c,o, 

by the field eq uations 

=a,, (a(~~;) a.o} 
It fo llows that c,, T"'"= O . • 

For a fixed ,. we can regard the four quantities T"' (p = 0, 1, 2, 3) as the 
components of a conserved current 4-vector. The associated cha rge 

P' = f yo• d3r (7.185) 

is then a conserved quantity. Since it is associated wit h inva riance under 
translations in space and time, we can identify it as a component of the total 
energy-momentum 4-vector. In particular, (7.184)- (7. 185) enable us to 
const ruct the Hamiltonian H = P0 from the Lagrangian. 

The discrete operations of space reflection, time reversal and charge 
conjugation are related in quantum field theory by the CPT theorem, which 
states that any Lorentz-invariant Lagrangian field theory with field s which 
satisfy local commutation or anticommutation relations must be invariant 
under the combined operation CPT (for a proof see Itzykson & Zuber 1980). 

Quantum electrodynamics Each of the three Lagrangians described on p. 313- 14 involves a single kind of 
field, and yields a field equation appropriate to free particles. We will now see 
how these Lagrangians can be modified to yield field eq uations describing 
particles which exert forces on each other; that is to say, we will introduce 
interactions between the fields. 

The paradigm theory of interacting fields is the theory of electrons and 
positrons together with the electromagnetic field. The electrons and positrons 
provide a charge and current densi ty j" which must be included in Maxwell's 
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equations, whose fu ll form is 

(7 .186) 

In §7.2 we found that the current density 4-vector for electrons and positrons is 
l = ei{ry~ljJ; thus the field equation for the electromagnetic field becomes 

a~P' =ei{ry~I/J. (7 .187) 

The right-hand side can be regarded as a force term in the equation of motion 
of the photons. 

On the other hand, of course, the electrons and positrons experience a force 
exerted by the electromagnetic field. In order to see how this can be 
incorporated in the field equation fo r the Dirac field 1/J, let us first go back to 
the classical equation of motion of a charged particle in an electric field E and a 
magnetic field B, which is 

d2r dr 
m - = eE+e-x B. (7.188) 

dt2 dt 

If E and Bare given in terms of potentials(¢, A) by (7.5)-(7.6), this equation of 
motion is equivalent to Hamilton's equations (3.5) with the Hamiltonian 

H(r, p)=(2m) - 1[p-eA(r, t)] 2 +e¢(r, t) (7.189) 

(see problem 7.12). With the usual substitutions H--> iojot and p--> - iV, this 
gives a non-relativistic Schrodinger equation 

oi/J l 
i - .., = - ( -iV - eA) 21/J+e¢1jJ 

ot 2m 
(7.190) 

which is obtained from the free-particle Schrodinger equation by making the 
substitutions 

io/ot--> io/Ot - e¢, - iV--> - iV- eA. (7.191) 

This suggests that the corresponding relativistic equation for a simple particle 
in an electromagnetic field should be obtained from the Klein- Gordon 
equation by making the same substitutions, which can be written in 4-vector 

form as 

io~ ___, i0~-eA~. (7. 192) 

(Note that A~ =(¢, A), so A~ =(¢, -A).) Finally, we obtain the relativistic wave 
equation for a spin-1 particle in an electromagnetic field by making these 
substitutions in the Dirac equation: 

y~(i 0
1
, - eA

1
,)1/J = mi/J. (7.193) 

In the first-quantised theory of a single electron, this equation is to be solved 
for 1/J(x) to find the wave function of an electron in a specified field A~(x). On 
applying second quantisation, as we saw in connection with the Schrodinger 
equation (7.63), 1/J(x) becomes an operator but continues to satisfy the same 
equation. If we want a completely quantum-mechanical description, the 
electromagnetic field A~(x) must also become an operator. 

Thus (7.187) and (7.193) are coupled equations for the quantum fields A~(x) 
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and tj;(x). They can be obtained as Euler- Lagrange equations from the 
Lagrangian 

-
!l' = -iF P,P ' + i~ys· C1,t/J + m~t/J + e~yP Apt/J , (7.194) 

which is the sum of the Lagrangians (7.167) and (7.169) for free photons and 
free electrons, with i8

1
, in the electron Lagrangian replaced by ;aP- eAP, as in 

the Dirac equa tion . 

The Lagrangian (7.194) gives rise, according to Noether's theorem e7.7b, to 
an energy- momentum density 

·-
= -lz_FJ'PF'p + i~yP c'"t/J -fL'gP'", (7.195) 

which yields the Hamiltonian 

H = f y oo d3r= J a (E2 + 82)+ i~(yo ao +y. V)tj; -m~tj;} 

-ef ~yPtjJAP d 3r. (7.196) 

The first integral is the sum of the Hamiltonians given by the Lagrangians 
(7. 167) and (7.169) which describe the free motion of electrons and photons 
respectively; the second integral contains the interaction between them. When 
the fields are expressed in terms of annihilation and creation operators by 
means of their Fourier transforms, the first integral corresponds to the free 
Hamiltonian (4.1 83) in the simplified theory of ~.6; the second integral 
contains annihilation and creation operators for electrons, positrons and 
photons in combinations like aea/ a). as in (4.184), which cause processes 
described by the Feynman diagrams of §4.6. 

Renormalisation It is beyond the scope of this book to begin to describe the calcul~tions based 
on the Hamiltonian (7. 196) (or equivalently the Lagrangian (7.194)). We will , 
ho wever, give a brief qualitative mention to one of the most striking and 
notorious features of these calculations. 

Fig. 7.1. 
The self-energy diagram. 

One of the Feynman diagrams required by the Hamil tonian (7.196) is shown 
in Fig. 7 .1. This shows a process whose initial and final states both consist of a 
single electron and which, therefore, we might expect to be adequately 
described by the theory of an electron on its own (i.e. the Dirac equation). 
However, the transition amplitudes given by the perturbation theory 
calculation associated with this diagram do not agree with those given by the 
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Dirac equation derived from the free-electron part of the Lagrangian (7.194); 
instead, they relate to the Dirac equation with a different mass m + bm. It is 
this. not the parameter min the Lagrangian , that is measured as the mass of the 
electron. 

In the perturbation theo ry calculation based on the Lagrangian (7. 194) bm is 
given by an integral which diverges. Nevertheless, it is possible to carry out 
consistent calculations concerning interacting electrons and photons by 
supposing that the original mass m is infinite in such a way that the observed 
mass m0 = m + bm is finite, for it is only m0 that appears in the final results. 

There are other divergent integrals occurring in calculations of 
electromagnetic processes, but these can be removed by redefining the chargee 
to e0 = K e. The constant K is infinite, so that the original parameter e must be 
regarded as infinitesimal , but as with the mass it is only the fini Le quantity e0 

that appears in the final answers. This procedure is called renormalisation. A 
similar procedure must also be applied to the normalisation constant in the 
wave functions of the particles involved; when this has been done the results of 
all calculations are finite, and agree with experiment so well (to one part in 
101 1

} as to make this one of the most accurate of all physical theories. 
The fact that the infinities in the perturbation theory solution can be 

removed by means of a finite number of renormalisation constants is a special 
feature of quantum electrodynamics; it is said to be a renormalisable theory. 
Most Lagrangians lead to theories which do not have this property, and have 
an infinite number of essentially different divergent integral s in their solutions. 

7.4. Gauge theories The Lagrangian (7.194) of quantum electrodynamics is, like the free-electron 
Lagrangian, invariant under the phase transformations t/J ..... e-i""t/1. The 
conserving current given by Noether's theorem is the same as for the free case, 
namely the electric current 4-vector l = fi't/1 . 

The Lagrangian is also invariant under the wider class of local phase 
transformations 

t/J(x)--> t/J'(x) = e- iea(x)t/J(x), (7.197) 

in which the phase rx varies from point to point of space-time, provided they are 
accompanied by a transformation of the electromagnetic potentials: 

A11(x)--> A
11
'(x) = A

1
,(x)-a11rx(x). (7.198) 

This transfo rmation is known in classical electromagnetic theory as merely an 
alternative permissible choice of potentials, for both A1, and A

1
,' give the same 

electric and magnetic fields: 

F
11

,. = a
11
A,.-a,.A

11
= a

11
A,.' - a,.A

11
' . (7.199) 

The choice of potential is called a gauge, and (7.198) is called a gauge 
transformation. 

The free-electron Lagrangian (7.167) is not invariant under local phase 
transformations, but only under global phase transformations in which the 
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phase rx. is constant. The passage from global to local 
accomplished by replacing all by 

D1, = c1, + ieA1,; 

the electromagnetic Lagrangian is 

(LJ- FWF ·,j; 1'D ·1• .;z;- , ... + r'l'y 1, '1' 
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invariance is 

(7.200) 

(7.201 ) 

and D
11

1/J. unlike 8
1
,1/J , transforms under the local phase transformations 

(7.197)- (7. 198) in the same way as 1/J: 
D ·1• (D ·1·)' ::~ •1•' +. A '·"' - ""1

·'
1D ·1• ,, '1'-+ ,,'1' = up'!' re '''I' = e ,,'1' · (7.202) 

D,,t/1 is called the covariant derivative of t/1. 
Thus the existence of the photon field A

1
, with its transformation law (7.198), 

can be regarded as a consequence of in variance under local phase 
transformations for charged particles. It is called the gauge field of these 
transformatio ns. 

A Yang- Mills theory results from applying similar considerations to a 
theory of free particles with some other symmetry replacing phase 
transformations. Let us consider. as Yang and Mills originally did, a theory 
with isospin symmetry. A pair of spin-~ particles forming a doublet with 
isospin ~.like the proton and the neutron, can be described by a pair of Dirac 
spinor fields 1/Jp, 1/J. which can be put together to form an isospinor field \fl: 

(
1/Jp) - - -'f'= ~~n ' 'fl = {t/Jp, 1/Jn). (7.203) 

The free-part icle Lagrangian is 

(7.204) 

which is nothing but the sum of two free-pa rticle Lagrangians with the same 
mass. It is in va riant under SU(2) (isospin) transformations 

(7.205) 

where g is a coupling constant (like the electric charge e in (7.197)), and the 
2 x 2 matrix U = eiga ·y is an element of SU(2) which can be written in terms of 

the Pauli matrices (r 1, r 2, r 3) by means of three real parameters (a 1,a 2, a 3)=a. 
Each of these parameters can play the role of rx. in Noether's theorem; putting 
a = (rx., 0, 0) and applying Noether's theorem we obtain a conserving current 
j 1

1'. Similarly there are conserving currentsj/ and jJ". These three currents 
form an isovector 

(7.206) 

We can form local SU(2) transformations by letting the parameters a;, and 
therefore the SU(2) element U, depend on the space-time point x: 

'¥-+ 'f' ' = U(x)\f' = e igo(x) · T'f'. (7.207) 

The Lagrangian (7.204) is not invariant under such local transformations; it 
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will become so if the derivative ap (acting on the isospinor 'f') is replaced by the 
covariant deri vative 

D~' = o~' + igA1, • -r = o~' + igA1, (7.208) 

where A~' is a set of th ree 4-vector fields (like the pho ton field) which form an 
isospin triplet and whose transformation under the local SU(2) 
transformations (7.207) is best expressed in terms of the matrix A1, = A1,· t as 

A
1
, -4 A

1
,' = U(x)Ap U(x) - 1 + ig - 1 (c

1
, U)U - 1

• (7 .209) 

Then the cova riant derivative tra nsforms by 

DP 'f' -4 (D
1
,'f'}' = U(x)D jl 'f', (7 .2 10) 

which guarantees the invariance of the Lagrangian term 

(7.2 11) 

The transformations (7.207) and (7.209) are called SU(2) gauge 
transformations. A

1
, is the SU(2) gauge field; the particles created by it are the 

SU(2) gauge bosons. 

The Lagrangian must also contain a term describing the free motion of the 
A~' field, corresponding to the term -*P''F~',. in the electrodynamic 
Lagrangian. In the electrodynamic case this term is gauge-invariant because 

the field tensor F
1
,.. is itself invariant under gauge transfo rmations, as is shown 

by (7. 199). In the case of SU(2) gauge theory the same definition of F1,.. would 
not give a gauge-invariant result, because of the homogeneous part of the 

transformation of A~' (the first term in (7.209)), which rotates the isovector 
A~' in isospin space. An appropriate SU(2) version of F

1
,.. can be obtained by 

noting that in electromagnetic theory F~' ,. is the commuta tor of covariant 
derivatives: 

[Djl, D ,.]i/1 = ieF1,..1/1. 

Applying this to SU(2) Yang- Mills theory gives 

[D~', D..]'f' = igFjl,.'f' 

where F~',. is the 2 x 2 hermitian matrix 

F~',. = oP A,,- o,.A~' + ig[Ap, A,.]. 

(7 .2 12) 

(7.213) 

(7.21 4) 

To see how this behaves under SU(2) transformations, note tha t if <I> is any 
isospinor which transforms like 'f' (i.e. according to (7.207}), then DP<I> 

transforms in the same way (see (7.2 10)). In particular, we could take <I> to be 
D,.'f' to show that D

1
,D,.'f' transforms in this way. The same applies to D,.DP 'f'; 

hence 

([D~', D,]'f')' = U(x)[D1., D ,.]'f', 

I.e. 

F~',,' 'f''= U(x)F~'.'f' , 

from which we get 

F~' .' = U(x)F~',. U(x) - 1 • (7.215) 



Fig. 7.2. 
Feynman vertices in a gauge 

theory. 
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It fo llows that the Lagrangian term 

-1 tr (Pli'F1ll.)=~~ (7.2 16) 

is invariant under SU(2) gauge transforma tions. T he full gauge-invariant 
Lagrangian is the sum of (7.211 ) and (7.2 16). 

Since F~,. is a hermitian 2 x 2 matrix, it can be written as F~,. = F
1
ll · t where 

the isovecto r F
1
ll. is rota ted in isospace by the transformation (7.2 15). The 

Lagrangian term (7.216) is then equa l to -1F~,. · P ", i.e. it is the sum of three 
tenns like the free electromagnetic Lagrangian, one for each component of the 
SU (2) ga uge field Aw Ho wever. because of the extra commutator te rm in the 
field tensor F

11
,. , the Lagrangian te rm .P4 a lso contains products o f three and 

four A-field s or their derivati ves. These give rise to interactions be tween the 

particles which are described by the Feynman diagrams of Fig. 7.2. 
ln compa rison with electromagnetic theo ry, we can say that the SU(2) gauge 

bosons are the quanta of a force which they also experience themselves since 
they have non-zero values of the charge (namely isospin) to which this force is 
coupled. This arises because of the no n-zero commutator in the definition of 
Fw, i.e. because the gauge group SU(2) is non-abelian. 

Like the photo n, the gauge boso ns governed by the SU(2) gauge field A
11

, 

with the Lag rangian (7.2 16), are massless. A non-zero mass would require a 
term m2 A

1
,A1' in the Lagrangian (like the term m2¢ 2 in the Klein- Go rdon 

Lagrangian (7.166)); but because of the inhomogeneity of the gauge 
transfo rma tion (7.209), such a term would not be invariant under gauge 
transformations. Gauge inva riance requires massless gauge bosons. 

A gauge theory can be constructed for any Lie group. The genera l 
construction is as follows. Let G be a Lie g roup of m x m matrices, and let the 
m x m matrices T1, • • • , 7; be a basis for the Lie algebra of G. lf G is compact, 
these can be chosen so that 

tr (7;7}) = )J>ii (7.2 17) 

for some constant J.. Let p be ann-dimensio nal representa tion of G (so that for 
each Q E G, p(Q) is ann x n matrix) with generators X;= p(T;)(i = 1, .... , /).The 
gauge field is a set o f 4-vecto r fields A;

11
(x) (i = I , ... , I) from which we can form 

matrices whose entries are fields: 

A,(x)~ ~ A,,(x)T;} 

p(A)ix)= L A;1,(x)X; 

(7.21 8) 
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The field strength tensor is the matrix fieid 

F1,.(x)=o1,A,.-o,A1,+ig[A1, , A,.]. (7.2 19) 

The other fields in the theory may be either Dirac fields o r Klein- Gordon 
fields. Let \fi(x) denote an n-compo nent column vector whose ent ries are Dirac 
fields, <I>(x) one whose entries are Kl ein- Gordon fields. For both of these the 
covariant derivative is 

(7.220) 

A gauge transformation is defined in te rms o f a function Q(x) fro m space-t im e 

to the group G: 

\f' -+ \f'' = p(Q(x))\f', <I>-+ <I>'= p(Q(x))<f>, 

AI,-+ AI,' = Q(x)A''Q(x) - I + ig - I cai,Q)Q - I . 

(7 .22 1) 

(7.222) 

The right-hand side o f (7.222) belongs to the Lie algebra of G, so this defines a 
transforma tion of the fields A;

1
,. Its effect o n the n x n matrix p(A)

1
, is 

p(A)p -+ p(Q(x))p(A)pp(Q(x)) - I + ig - 1 [8
1
,p(Q(x))]p{Q(x)) - I . (7.223) 

Now we have 

e7.8 The gauge transformations (7.22 1H7.222) make the field 

strength Fw and the covariant deri vat ives D,,<I>, D,, 'f' transform by 

FP,. -+ Q(x)FP,.Q(x)- 1
, (7.224) 

D1,'¥-+ p(Q(x))D1,\f' (7.225) 

(and simila rly for D,. <I>). Any fu nction of Fw, <I>, 'f' , D
1
, <I> a nd D~<'f' which 

is inva riant under constant transformations by elements o f G is a lso 
invariant under gauge transformatio ns; in pa rticular, 

.P = - ·.V. - 1 tr (FP.,F1"' ) + i'Py"D,. '¥ + m'P'¥ +1<D,.<I>tDP<J> - m2 <I>t<I>) 
(7.226) 

is a gauge-invariant Lagrangian. If the Lagrangian is gauge-in variant , 
the gauge bosons a re massless. 

T he proof is implicit in the preceding discussion, and follows the same lines as 
the special case of G = SU(2). • 

The only known massless boson is the photon (though presumably the 
g raviton also exists). Nevertheless, both the st rong and the electroweak 
interactions are thought to be governed by gauge theories. The main reason 

for this is that gauge theo ries have been proved to be renormalisable (they are 
the only forms o f quantum field theory which are known to have this property, 
and therefo re to be consistent). The manner in which the lack of o bserved 
massless bosons is reco nciled wi th the theory is different for the two 
interactions. 

Quantum chromodynamics, the field theory of the strong force, is obtained 
by taking G = SU(3) (the colour group). There are then eight gauge bosons, 
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corresponding to the eight generators of SU(3); these are the gluons of §6.6. 
The basis T; can be taken to be the Gell-Mann matrices i.; , which satisfy (7.217) 
with i, = 3; the gauge field A1, then consists of 3 x 3 hermitian matrices. The 

other fields are the colour triplets'¥ 1 of quark fields, one for each flavo ur f = u, 

d , s. c, b, t. The Lagra ngia n is then 

!!! = - 1
1
2 tr(P''F~J + L (i'¥ /Y~ D~ '¥)/ + m/1' 1'¥ f)· 

J 

(7.227) 

This Lagrangian has the peculiar feature that all the particles in it, both 

qua rks and gluons, have failed to manifest themselves as free particles. (As 

discussed in §6.5, quarks have been observed just as well as a tomic nuclei have 

been o bserved , as bo und particles.) This is thought to be a consequence of 

SU(3) gauge theory; the forces it represents increase with distance so as to 

prevent quarks and gluons escaping from combination with other quarks and 

gluons. Confirma tio n of this idea has been obtained from numerical 

calculations in which the space-time continuum is replaced by a discrete lattice 

of po ints. 
The application of gauge theo ry to the electroweak force, with no 

corresponding massless boson , requires a further theoretical developmen t 

which is described in the next section. 

7.5. Hidden symmetry In the previous section we encountered Feynman diagrams in which three o r 

Se/f-illteracting fields mo re lines representing the same type of field meet at a single vertex. These 
arise from terms in the Lag rangian which a re cubic or of higher order iri the 
field and its derivatives. We will now examine this phenomenon more 

ca refully, in the simple case of a single scalar fi eld ¢ which , if free, would satisfy 

the Kl ein- Gordon equation. Suppose the self-interact ion arises from terms in 

the Lagrangian containing only the field¢ and not its derivatives; adding these 

to the Klein- Gordon Lagrangian (7. 166) gives a full Lagrangian of the form 

Y=1(o~¢)(Qi'¢)- V(¢) (7.228) 

where Vis a scalar functio n of a scalar variable. We will examine the quantum 
field theory arising from a Lagrangian o f this type for a general function V; the 

only assumption we wi ll make is that Vis a twice differentiable function of¢. 

The field equation (7.164) obtained from this Lagrangian is 

0 2¢=- V'(¢). (7.229) 

If V is twice differentiable, we can expand the right-hand side to get 

0 2¢=a+b¢+R(¢) (7.230) 

where a and b are constants (a= V'(O), b = V"(O)), and R is a function of ¢ 

satisfying R(O)= R'(O)=O. On taking the Fourier transform of¢ we expect to 

get an equation of motion for the Fourier components cP(k, c) of the form 

d2 
dc2 cP(k, t) = - (k 2 + m2)cP(k, c)+ R(cP) (7.231) 
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where R is of higher order than the linear term. This represents a harmonic 
oscillator (leading to the particle interpretation of the field) with an extra 
interaction described by R(<$). However. this does not happen unless the 
constants a and b in (7.230) satisfy 

a=O, b::;;O, (7.232) 

so that V(</>) has a minimum at 4> = 0. 
In general, the appropriate variable is not 4> but 4>- 4>0 where ¢ 0 is a value of 

4> which makes V a minimum. This can also be understood by looking at the 
Hamiltonian which, according to (7.184)- (7.185), is 

H= f{</> 2 + (V</>) 2 + V(</>)} d3r. (7.233) 

In the classical theory of a c-number field </>(x) satisfying the field equation 
(7.229) this is the total energy in the field; it is a minimum if </>(x) has the 
constant value ¢ 0 . Now the state of minimum energy is the vacuum; thus the 
field describing departures from the vacuum is </>(x)- </> 0 . This is the field 
wh ich, in the quantum theo ry, is an integral of annihilation and creation 
operators as in (7.80). lt follows that [ </>(x) - </>oJ IO) is orthogonal to IO) and so 

( Oi</>(x)iO) = </> 0 . (7.234) 

This is the quantum counterpart of the classical statement that </>(x ) takes the 
value </>0 in the vacuum. 

If the minimum value of V(</>) occurs for two different values of</>, say </> 1 and 
¢ 2 , then the vacuum state is no longer uniquely defined. In the classical theory 
the field configurations </>(x)= </> 1 and </>(x) = </>2 are both possibili ties for the 
vacuum, since they both have less energy than any other state of affairs. In the 
quantum theory </>(x)- </> 1 and </>(x)- </> 2 can both be written as integrals of 
annihilation and creation operators. The two sets of annihilation operators, 
say a 1 (k) and a 2(k), annihilate different vacuum states 10 1) and 102 ) . These can 
be shown to be orthogonal to each other, as are the finitely many-particle 
states (a 1 t)"IO 1) and (a 2 t)''I02 ) constructed on them. Thus the two minima of 
the potential V(</>) give rise to two orthogonal worlds which are unrelated to 
each other as far as perturbation theory goes. 

Global symmetry: The situation considered in the last paragraph arises when there is a symmetry 
Goldstone bosons operation which preserves the potential V(</>) but not the position </>0 of its 

minimum. In this case the symmetry operation must take </>0 to another value 
of¢ which minimises V For example, consider 

V(</>)= 2(¢ 1 -a 2
)

2 (7.235) 

(Fig. 7.3(a)). This is invariant under the reflection </>-... - </> , but its minima 
occur at the two values</>= ±a which are not invariant but are taken to each 
other by this operation. To construct a quantum field theory we must work 
with one of the fields 4> ±a, say {}(x) = ¢(x) -a. The relevant state space is the 
space [/+ of many-particle states constructed on the appropriate vacuum 



Fig. 7.3. 
(a) One field; (b) two fields. 
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state JO+), viz. that for which 

( O+J¢(x)JO +>= a, i.e. ( O+J O(x)JO +) =0. (7.236) 

The Lagrangian becomes 

!f1 =~op 8)(C"O)- 2(02 + 2aW, (7.237) 

which is sti ll invariant under the symmetry operation, now appearing as 0-+ 
-0-2a. However, the corresponding operation on states would take the 
vacuum state JO+> to the other vacuum state JO _), which satisfies 

( O_J¢(x)JO _) =-a, i.e. ( O_J O(x)JO_) = -2a. (7.238) 

For the state space -~+ with vacuum state JO +> there is no unitary operator 
representing the symmetry operation. Such an operation, which leaves the 
Lagrangian invariant but not the vacuum state, is called a hidden symmetry o r 
a spontaneously broken symmetry. An operation which preserves both the 
Lagrangian and the vacuum state we will call an overt (or unbroken) symmetry. 

If there is more than one field¢ there may be a continuous set of minima of 
the potential V(¢), and correspondingly a continuous set of vacuum states (all 
orthogonal to each other). For example, suppose there are two fields forming a 
two-dimensional (column) vector Cl> = (¢1 , ¢ 2f, and the potential is 

V(<D) = ),(Cl>Tc:I> -a2
)

2 = ),(¢ 1 
2 + ¢/ -a2?. (7 .239) 

This potential is shown in Fig. 7.3(b); its minima form the ci rcle ¢ 1
2 + ¢ 2 

2 =a 2 

in the c:I> plane. The potential is in variant under the rotations 

(¢ 1 , ¢ 2)-+ (¢ 1 cos (X+ ¢ 2 sin (X, -¢1 sin (X+ ¢ 2 cos (X), (7.240) 

but no individual minimum point c:I>0 is invariant. The particle interpretation 
of the quantum field theory must be based on a particular point c:I>0 on the 
ci rcle by means of the fi eld 

0(x) = c:I>(x)- c:I>o , (7.241) 

in terms of which the Lagrangian becomes 

!f1 =~o1, 0)T((I'0)- i,(eT e + 2eT c:I>0) 2 . (7.242) 

Let 01 and 02 be the componen ts of8 in the direction ofc:I>0 and perpendicular 

cp 

(a) (b) 
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to it, i.e. 01 = uT0 and 02 = vT0 where u and v are vectors satisfying 

1?u= vTv= J, t?~' =O, u=¢0/a. 

Then the Lagrangian can be written in terms of 01 and 02 as 

Sf' =-i(a1,01 )(<3J'e1) -4),a2e1 
2 +W)1,02)(a!'Oz) + /(01 , ez) 

(7.243) 

(7.244) 

where /(0 1, e2) contains third-order and fourth-order terms and describes an 
interaction between the particles created by the fields 01 and 02. The other 
tem1s show that 01 creates a particle with mass 2a j ),, while the particle 
created by 02 is massless. 

Note that 02 is the component of0 tangential to the circle of minima of V, i.e. 
in the direction in which the symmetry operation of rotation moves the point 
$. This appearance of a massless particle in connection with a continuous 
hidden symmetry is a general phenomenon, as is shown by 

e7.9 Goldstone's theorem. Consider the Lagrangian 

£P= -i(a
1
,fl>?W <D) - V(<D) (7.245) 

where <D is an n-component column vector of real field s subject to 
transformations $-+ p(Q)$ by an o rthogonal representation p of a 
Lie group G, and V: IR"-+ IR is a function which is invariant under 
these transformations. Suppose V takes its minimum value on a k­
dimensional manifold M c IR", any two points of which are connected 
by a transfom1ation in G, and let $ 0 EM. Then the field 0(x) = $(x)­

$ 0 creates n interacting particles of which k are massless. 
The resulting theory has an overt symmetry group H which is a 

subgroup of G with dimension dim G- m. 

Proof Since V has a minimum at $ 0 , all its partial derivatives vanish there. 
Hence Taylor's theorem gives the expansion of V about $ 0 as 

(7.246) 

where V"(<D0) is the matrix of second derivatives of Vat $ 0 , and W(0) contains 
terms of third and higher orders. Since V"(<D0 ) is symmetric, it has n orthogonal 
eigenvectors u;; hence 

(7.247) 

where 0;= 0Tu; and m/ are the eigenvalues of V"(<D0), which are non-negative 
since V has a minimum at <D0 . 

Since the minimum set M has dimension k, there are k curves $(s) through 
¢ 0 , with independent tangent vectors at <D0 , on which V(<D(s)) is constant. We 
can choose the parameter s so that $ "(s) =0 at $ 0 . Then differentiating V($(s)) 
twice with respect to s gives 

$'(s)T V"($0)$'(s) = 0. (7.248) 

Since V"(<D0 ) is positive semi-definite, each $'(s) must be an eigenvector of 
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V"(<l>0 ) with eigenvalue 0. Thus k of the eigenvalues m/ a re 0, and so k of the 
pa rticles created by the fields 0; a re massless. 

Let H be the subgroup of G which keeps <1>0 fixed: 

H = {QeG: p(Q)<l>0 =<1>0 } . (7.249) 

Then for each Q E H we can define a unitary operator U(Q) to act on the many­
particle space constructed on the vacuum JO) fo r which ( OJ<l>(x)JO) = <1>0 and to 
satisfy 

U(Q)JO>=JO), a ll Qe H , 

U(Q)8(x) U(Q) - 1 = p(Q)8(x). 

(7.250) 

(7.251) 

Since these operators leave the vacuum invariant , His an overt symmetry of 
the theory. 

To see that dim H = dim G-dim M , take a neighbourhood N of <1>0 in M 
and for each <1> EN choose an element Q<J> E G such that p(Q<J>)<1>0 = <1>. Then if 
Q E G is close enough to the identity it can be written as Q = Qq,R wi th <1> EN, 
R EH. Thus locally G is like M x H, so dim G=dim M + dim H . • 

e7.9 refers only to real fields. but complex fields a re included by treating the 
real and imaginary parts separately. 

The k massless particles are called Goldstone bosons. 

In the last two sections we have seen two attractive theo retical ideas which a re 
promising as formats for a theory of fundamental forces: gauge theories, which 
give a renonnalisable quantum field theory, and hidden symmetry, which 
offers a way of having a symmetry in a theory while being realistic by not 
having exact symmetry in its observable consequences. Both ideas. however. 
suffer from the same drawback in comparison to reality: they both require the 
existence of massless bosons which have not been found. We shall now see that 
when these two ideas a re put together the two kinds of massless boson 
magicall y disappear. 

e7.10 The Higgs mechanism. If the theory of e 7.9 is made 
invariant under local transformations <l>(x)-. p(Q(x))<l>(x), then there 
is a gauge in which the fi elds of the Goldstone bosons vanish and an 
equal number of the gauge fields create massive particles. 

Proof We make the Lagrangian (7.245) gauge-invariant by introducing I 
gauge fields A;~' (i = 1, ... , f) , where I= dim G, and the corresponding n x n field 
matrix p(A)

1
, (see (7.2 18)), and by replacing the deri va ti ve o

1
,<1> by the covariant 

derivative (7.220). This gives 

ff'= -(4A)- 1 tr(F111P''')+1(D~' <l>)T(D~'<l>)- V(<l>). (7.252) 

As in e 7.9, let <1>0 be a point at which V has a minimum, and let 8 = <1>- <1>0 ; 

then 

(7 .253) 
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so that in terms of 0 the Lagrangian becomes 

!fJ= -(4}.) - 1 tr (f111P ")+ -!-(D
1
,0)T(D1'0)- V{<D0 +0) 

+ ig(D~0)T{p(A)~<D0) - g2(p(A)~<l>0)T(p(A)~<D0), (7.254) 

using the fact that the generators X i> and therefore the field matrix p(A)
1
, are 

antisymmetric since the representation p is orthogonal. 
In a gauge theory we can always adjust the valu es of the field <D(x) by means 

of a gauge transformation which takes it to p(Q(x))<D(x). If the group G is 
compact , we can choose Q(x) - t to be the maximum of the function fx: G-+ IR 
where 

f.( Q) = 0(x)T p(Q)<D0 . (7.255) 

Let R(s) be a set of elements of G depending on a real pa rameter s, wi th R(O) 
being the identity of G; then Q(s) = Q(x) - I R(s) passes through the maximum of 
f, when s=O. so that 

!!_ .f~(Q(s)) = !!_ [0(x)T p(Q(x) - t R(s))]<D0 = 0. 
ds ds 

But since p is an orthogonal representa tion, this is 

d 
(p(Q(x))0(xW- [p(R(s))<DoJs= o = 0. 

ds 

(7.256) 

(7.257) 

Now in the conditions of e7.9, <l>(s)=p(R(s))<D0 is a curve of points on the 
minimum set M of V(<D), and any such curve can be obtained in this way; hence 
<1>'(0) is a null vector of V"(<D0), and the gauge-transformed field 0*(x) = 
p(Q(x))0(x) satisfies 

(7.258) 

where 11i a re the k eigenvectors of V"(¢0 ) with zero eigenvalue whose existence 
was demonstrated in e7.9. But the combinations (Ji=0Tui were the fields of 
the Goldstone bosons; thus there is a gauge in which these fields vanish. 

If0*(x) satisfies (7.258) for all x, it is normal to the manifold Mat the point 
<1>0 . Since M is invariant under the transformations p(Q) and these are 
orthogonal, p(Q)0* is also normal toM and therefore so is Xi0* where Xi is a 
generator of the representation p, since a generator is obtained by 
differentiating p(Q(s)) for a set of group elements Q(s). Also Xi<l>o is a tangent 
vector to M , since p(Q(s))<D0 is a curve in M. It follows that in the gauge in 
which the Goldstone field s vanish, 

(D~0*)T p(A)P <1>0 = 0. (7.259) 

Now let us examine the last term of the Lagrangian (7.254). We can find a 
basis X 1 , ••• , X 1 such that the last 1- k elements form a basis for the Lie 
algebra of the subgroup H ; these satisfy Xi<Do = 0 since p(Q)<D0 = <1>0 if Q E H . 
But Xi<l>o is non-zero fori = I, ... , k; hence this term becomes 

k 

- L m/ A,PA/' where m/ =g 2(Xi<D0)T(Xi<D0), (7.260) 
i = I 
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assuming that the X; have been chosen so that <l>0TX;TXj<D0 =0 fo r i#j. This 
gives non-zero masses to the k gauge field s corresponding to the k Goldstone 

bosons. • 

In a fu ll treatment of gauge field theory it is shown that the time components 
of the 4-vecto r field s A,, can be eliminated by the remaining freedom to make 
gauge transformation s. This leaves each field wi th three components, which is 
the right number for a massive spin-! particle. The fu ll freedom of gauge 
transformation would make it possible to elim inate another component, 
leaving two components, the right number (helicity =± I) for a massless 
particle. By insisting on a gauge which satisfies (7.258) we have renounced this 
possibili ty, and the field s retain three components. In the course of the gauge 
transformation which works the Higgs mechanism, as Coleman has put it, 
the gauge bosons eat the Goldstone bosons and become heavy. 

7.6. Quantum We a re now in a posit ion to describe the basic structure of the Salam­
tlavourdynamics Weinberg theo ry of the electroweak force. It is a gauge theory, with 

spontaneous symmetry breaking, based on the group 

Gc .... = SU(2) x U(l) (7.26 1) 

in which the subgroup SU(2) is the group of weak isospin transformations, and 
U( 1) (the multiplicative group of complex numbers with unit modulus) is the 
group of weak hypercharge transfo rmations. The field s on which the gauge 
transfo rmations act are the fermion fields of the leptons and quarks, as well as 
the Higgs field which must be described sepa rately. 

The classification of quark and lepton states by weak isospin was given in 
Table 6.5. The left-handed helicity states form a number of doublets, the right­
handed states are singlets. Now if 1/1 is any Dirac field, the fields which destroy 
left-handed and right-handed states are, according to (7. 144), 

I/IL = 1{l+ ys)l/l and I/IR=1(1- ys)I/J. 

For a weak isospin do ublet like the quarks (u, d), therefore, we can form the 
fields 

'I' L = [~ 1 + Y s)I/Ju] , 1/JuR =1(1-y sli/Ju, 
1{1 +Ys)l/ld 1/!dR =1{1-ys)I/Jd, 

(7.262) 

which a re subject to the local weak isospin transformations 
\IJ - 1iga(.<) T\IJ , / , ,{ , , {, , {, TL-+e Tu 'l'uR-+'I'uR > 'l'dR-+'I'dR (7.263) 

where g is a coupling constant. 
The direct product structure of the group Gcw makes it possible for the two 

subgroups to have different coupling constants; thus weak hypercharge phase 
transformations can be defined as 

,/, -+ e-l iY'.I'a(.<), /, (7.264) 'I' L/R 'I' L/R 
for a left-handed or right-handed field 1/JL/R with weak hypercharge y (which 
will have different values for 1/JL and 1/JR : see Table 6.5). Note that the product 
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g'y (coupling constant x multiple of tl plays the same role as the electric charge 
in the electromagnetic phase transformation (7.197), the elect ric charge of a 
quark or lepton being the product of a coupling constant e a nd a multiple of 1-. 

The g roup Gcw has four generators, so to fo rm a gauge theory we need four 
gauge fields: the components of a weak isovector W

1
., corresponding to the 

generato rs of SU(2), and a weak isoscalar 8
1
, for the generator of U( 1). The 

covariant derivative is then 

D1,1/!L = U\, +1ig-r · W1, +1ig'yB1,)lJ'L for a doublet lJ'L , 

D111/! R=(811 +1ig'yB1,)1/!R for a singlet 1/JR. 

The field s W
1
, and B

1
, can be put together in a 2 x 2 matrix 

~,= W1,· t+B1, 1 , 

from which we can form the field matrix 

Fw=a1, W,. -i\~,+ig[~., W,.J. 

(7.265) 

(7.266) 

(7.267) 

A gauge-in variant Lagrangian for the gauge fields and fermions alone is 

- -
2'0 = -~ tr (F1,.P ".) +I ilJld'D11 lJ'L +I ii{JRy11D111/JR (7.268) 

where the sums extend over all left-handed doublets lJ'L and all right-handed 

singlets 1/JR. Since the symmetry is unbroken, the gauge fields a re a ll massless. 
Moreover, invariance under transformations which act in different ways on 
the left-handed and right-handed components of a fermion field requires that 
the ferm ions should also be massless; for the Lagrangian term describing the 
mass of a fermion is 

(7.269) 

using (7.147), and since 1/JR is a scalar under weak isospin t ransformations while 
1/JL is a member of a doublet, this is not invariant unless m = 0. 

The Higgs mechanism produces masses for the fermions as well as the gauge 
field s. There are four Higgs fields ¢ 1 , ... , ¢ 4 forming the real and imaginary 
parts of a two-component complex vector 

(7.270) 

which responds to the SU(2) x U( I) transformations (7.263)- (7.264) by 

<I>--+ e - 1iya(x) <<t>, <I>--+ e - ig'>lx)<D. (7.271) 

These are orthogonal transformations of the real vecto r (¢1 , ¢ 2 , ¢ 3 , ¢ 4 ) with 
the usual inner product, which can be written in terms of <I> as 

( <I> I> <l>z) = Re (<DI t<D2). (7 .272) 

The covariant derivative of <I> is 

Dl, <l>= (81, + igWI, ... + ig' BI,)<D. (7.273) 

The Higgs potential V(<D) can only have quadratic and quartic terms in a 
renormalisable theory. It is taken to be a function of <Dt<D= I ¢? which has a 
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minimum a t a no n-zero value v2 o f its a rgument, so that the mm1mum 

manifold in <I>-space is the sphere <l>t<l> = c2
. We can choose the reference point 

<1>0 o n this manifold to be (0, v)T and expand the fields as 

[ 
(}I +i(}2 J 

<l>=<l>o+8= . 
v +x + r04 

(7.274) 

- we use x instead of 8 3 because this is the component which cannot be 
generated by the action o f the g roup SU(2) xU( I), and which wi ll remain in the 
theo ry as the field o f a particle. The Higgs mechanism e 7. 10 makes the other 

co mponents d isappear and g ives masses to the co rresponding components o f 
the gauge field s; the mass term (the last term of (7.254)) is 

- Re [<1>0/ <1>0''] where <l>01' =D, <l>0 =(igW
11 

·-r+ig'B,, )<l>0 

=v2 g2 (H-';1,H-';1'+ Wz
1
,Wz1' )+v2y2Z1,Z

1' (7.275) 

where y2 = g2 +g'2
, Z~' = J,t)~' cos 8w-B~' sin 8w, and tan Bw = g'/g as in (6.1 47)­

(6.!48). Thus the Higgs mechanism produces the massive bosons W ± and Z 0 

with masses in the rat io 

mw g 
- = - =cos Bw. 
mz }' 

(7.276) 

The last Goldstone boson, which remains massless, is given by the gauge 

field A
1
, = J,t),, sin Bw + B,, cos Bw. It is associated with the subgroup ofSU(2) x 

U( l) keeping <1>0 fixed, which consists o f the transfo rmations 

[
ew OJ <I> -+ 0 1 <I>= exp [ti8(1 + r 3)]<1> (7 .277) 

and is therefore a one-dimensional subgroup wi th generator t (l + r 3). 

The covariant derivatives of the fermion fields are 

D,,"'\ = {8,, +ig(W1r 1 + W2r 2)+tieZ,,(cot 8wr3 - y tan Bw) 

+-!ieA,,(y+,3)}"'\ (7.278) 

DAtR = {a,, -tiye tan Bw z,, +tiyeA,,}l/tR 

where e =g sinew. The formula for the doublet "''L applies a lso to the Higgs 
fields <I> with y = 1; this shows the association of the massless gauge field A, 

with the generator tO +!3) of(7.277). Since the electric charge in units o f e is 

tY + i3, where i3 is the eigenvalue of 1' 3 for a member of a doublet and 0 for a 
singlet, (7 .278) shows that the massless gauge field A

1
, is the electromagnetic 

field. 

Finally, the fermion masses arise from an interaction between the fermion 

fields and the Higgs field. Consider the leptons first. In each family there is a 

massive lepton I and a massless left-handed neutrino v, giving three field s l/t1L, 
ljt1 R• 1/t\ which are classified by weak isospin into a doublet "''L withy= -1 and 

a singlet with y = -2 (see Table 6.5). From these, together with the Higgs 

doublet <I> with y = 1, we can form a Lagrangian term 

~=cx1 (.]iR<J>tqtL +'f\<J>ljtR) (7.279) 
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which is invariant under SU(2)w x U(l)y t ransformations. Expanding <D about 
the minimum point <Do as in (7.274) and choosing the gauge in which el = e2 = 
04 = 0, we obtain (using (7.269)) 

(7.280) 
where 

Thus !f' gives a mass to the charged lepton while keeping the neutrino 

massless, and also describes an interaction between the charged lepton and the 
Higgs particle whose field is X· 

The quarks in each generation form a left-handed doublet 'I'L with y =! and 

two singlets t/J + R• t/1- R wi th y = 1 and y = - i respectively. The difference 
between the weak hypercharges of'PL and t/JR is the same as in the case of the 
leptons, and the same method can be used to obtain mass terms. This gives 
masses to the u, c and t quarks. A mass term for the d, sand b quarks can be 
constructed as 

(7.281) 

where det (<D, 'f\) is the determinant of the 2 x 2 matrix whose columns are <D 
and 'I'L , and det (<Dt, tl\ ) similarly has rows <Dt and tJiL. 

Thus the full electroweak Lagrangian is 

!f'cw= !f'o +1(DI'<Dt)(D~'<D) + V(<D) + L 2f + I !f'q- + I !f'q + (7.282) 

where the sums extend over all families. !f' 0 is the gauge-invariant 
Lagrangian (7 .268), containing the kinetic terms for the gauge bosons and the 
fermions and the gauge interactions between them. The second term contains 
the kinetic term for the H iggs field, the mass terms for the gauge fields, and the 
interaction between them. The third term V(<D) contains the mass of the Higgs 
boson and its self-interaction. The last three terms contain the masses of the 
quarks and leptons and their interactions wi th the Higgs boson (!f'q - having 
the same structure as 2;). 

The undetermined parameters in the theory are the electromagnetic 
coupling constant e, the Weinberg angle Bw , the Higgs vacuum expectation 
value v, and the masses of the Higgs boson and the fermions. All other 
parameters can be expressed in terms of these as follows: 

Bones of Chapter 7 e 7.1 

.7.2 
e7J 

W-fermion coupling constant: g=ecosecOw 

Z-fermion coupling constant: g' sin 8w = e tan Ow 

W mass: mw = ev cosec 8w 

Z mass: mz = 2ev cosec 20w 

Higgs-fermion coupling constant: = v - J x mass of fermion. 

Quantisation of the electromagnetic field 296 
Locality of the electromagnetic field 296 
Dirac equation= Klein-Gordon equation 302 
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e7.4 
.7.5 

.7.6 

.7.7 

.7.8 

.7.9 

.7.10 

Lorentz transformation of Dirac spinors 302 
Spinor bilinears 305 

Properties of y 5 307 
Noether's theorem 315, 317 
Transformation of covariant derivatives and field strengths 324 
Goldstone's theo rem 328 

The Higgs mechanism 329 

Further reading The reader who wants to study quantum field theory seriously will find an 
introduction in Mandl & Shaw 1984 o r Ryder 1985. A different approach, 
based on Feynman's formu lation, is adopted in Ramond 1981. Itzykson & 
Zuber 1980 is a comprehensive treatise. For gauge theories see Aitchison 1982, 
and for the applications to quantum chromo- and flavourdynamics Leader & 
Predazzi 1982. A complementary account, not using the full apparatus of 

quantum field theory, is given by Aitchison & Hey 1982. The la ttice approach 
to calculations in quantum chromodynamics is treated in Creutz 1983; there 
are elementary accounts by Rebbi (1983) and Wallace (1983). Gauge theories 
have interes ting mathematical aspects (the theory of fibre bundles) which have 
been described by Atiyah (1978); see also Bernstein & Phillips 1981. On the 
cosmological relevance of the Higgs field see Guth & Steinhardt 1984. 

Problems on Chapter 7 I. Prove (7.19). 

2. P rove (7.58) by starting with (7.51) and writing each t/J; as a Fourier transform. 

3. Show that the Lorentz group has generators M !I"= - M,.1, satisfying 

[MI"'' M,"'J=gi'I'M ,.u-gvi'MI<U-g)IU Mvp +g,.UMI'P 

and tha t these commutation relations a re sat isfied by aw ={[y1, y,.]. 

4. Show tha t the Poincare group (consist ing of the Lorentz group together with 

translations in space and time) has generato rs M !I"' P1, where M 1,.. are as in q.3 

and [M1,., P, ] =g1,, P,. -g,PP1, [P1, P,.]=O. 
The Poincare superalgebra consists o f the Lie a lgebra L0 of the Poincare 

group, as above, together with an eight-dimensional s pace L1 with basis t/Ja, 
i[Ja (a= I, .... 4). Brackets a re defined as follows: 

[Mp..,t/JJ =(apv)/t/Jp, [M!I''' i{J1 = - i[JP(a~',)/, [PI', t/JJ =0= [P~', i{!a] , 
{ t/Ja, t/Jp} =0 = { i{Ja, i[JP}, { t/Ja, i[JP} = (y~')/PI" 

Show that these satisfy the conditions (6. 161) to be a Lie superalgebra. 

5. Show that if t/J(x) is a Dirac spinor, i{Jyl' opt/J is a Lorentz scalar. 

6. For any 4-vector {!', let fl(p) be the 4 x 4 (spinor) matrix fl(p)= 

!{1 - m- 1/'pp). Show that f1(p)2 =(p2 - m2)/(4m 2 )+f1(p), fl(p)fl(-p)= 

(p 2 - m2 )/m2
, and fl(p) + fl( - p) =I. 

Deduce that any spinor can be written as u(p)+ v(p) where u(p)e - ip-x and 
v(p)eip·x are solutions of the Dirac equation. 

Show that fl(p) commutes with S(A - 1 )s;S(A) where s; are the spin matrices 
of(7.107) and A is a Lorentz transformation such that AP, p" =(m, 0). Deduce 

the existence of the basis u ± (p), v ± (p) of (7 .149). 
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7. Find the spinor matrix S(t\) representing the Lorentz transformation t\ 
consisting of a boost in the direction n with velocity tanh ) •. By a pplying such 

a transformation to the eigenspinors o f s3 , lind expl ici t formu lae for the basic 

spinors u±(p), v±(p}. 

8. Show that ifthecreation operators fo r the Klein- Gordon field are taken to be 

£ lat(k) and £!bt(k), the harmonic oscillator H amiltonian (after normal 

ordering) is 

H =~ f (m2cfltrf> + q/rf> + Vrf>t ·Vrf>) tJ3r, 

and show tha t this is the same as the Hamiltonian given by applying 

Noether's theorem to the Lagrangian (7 .166). 

9. Let S[O] deno te the integral (7. 162), calculated with a function O(r,l). and 

suppose that to first order in e, S[O + Clf] = S[O] for ... 11 continuous functions 

17(r, 1). Show that() satisfies the Euler- Lagrange equations (7. 164). 

10. Prove Noether's theorem for a Lagrangian system with a fin ite number of 

degrees of freedom (see p. 315). 

II. Let !i'(rf>, AI" al,c/l, ai,A,.) be a Lagrangian density which depends on a scalar 

field rf>, a 4-vector field AP, and their derivatives, but not on x explicitly, and 
which is Lorentz-invariant in the sense that !i'(rf>, AP' , c11 'r/>, c11' A,')= !i'(c/l,A 11, 

a1,r/>, a1,A,) where A/= A/A,., a1,'r/>= A/ a,.rf>, a1,'A,.'= t\/ t\,.a i11,Aa, for any 

Lorentz transformation t\. By putting t\ =em and differentiating with respect 

to }., show that the field equations imply that 8
1
,S1

"'" = 0 where 

S1" 'P = AP __!!!_____ A'' __!!!__+x''TI'1' -xP T"'. 
a(ap A.) a(a11Ap) 

12. Show that the equation of motion (7.1 88) for a charged particle in an 
electromagnetic field deri ving from given potential functions cfl(r, 1), A(r, 1) 

can be obtained as Hamilton 's equatio ns from the Hamiltonian (7. 189). 

13. Show that the effect of translation operators on a quantum field 1/J(x) is given 

by 

U(T.)I/J(r, I)U(T.)- 1 =1/J(r+a, r) 

and explain the difference between this and the action (3.75) on a wave 

funct ion. 

14. Write down the equation which replaces the Klein- Gordon equation for a 

charged relativistic particle in an electromagnetic field, and show how the 

Klein- Gordon Lagrangian (7.166) can be adapted to this situation. Show 

tha t this adapted Lagrangian is invariant under local electromagnetic phase 

transformations. Find the electric current 4-vector. 
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3-vector and 4-vector algebra 

3-vectors T he components of a vecto r u, with respect to a particular set of axes. a re denoted by 11r; 

the indefinite index i stands for I, 2 or 3 (ifthecomponents o fu are written as (11 1, 112, 11 3)) 

or for x, y or : (if the component of u are written as ( 11x, 11>", 11:)). The summation 

convention is that if a term is written as a product of such components in which the same 

indefinite index occurs twice, it is to be understood as a sum over a ll values of the 

repeated index. Thus the sca lar product between two vectors is 

3 

u · v =llrl'r whic h means L llrrr. (1.1) 
; = 1 

If two (or more) indices are repeated in a term. it is to be unders tood as a double {or 

multiple) sum. 

Symbols wi th two or m o re indices denote the components of tensors. Normally these. 

like vectors, have different components with respect to different coordinate systems. 

Two special tensors whose compo nents are the same fo r a ll coordinate systems are 

and 

0··={1 IJ 0 
if i =j, 

if i#j . 

tr111 = 

1
r ~ 
-I 

if any two of i,j. k are equal. 

if (i.j. k)=(l. 2. 3). (2. 3. I) or (3. I. 2). 

if (i,j, k)=(2. I. 3). ( I. 3, 2) or (3. 2. I) 

(1.2) 

(1.3) 

i.e. c;111 is the signa ture of the permutation that takes ( I, 2. 3) to (i.j, k). It is completely 

specified by the sta tements that it is totally antisymmetric in i,j, k, and that c123 = I. 

The summation convention applies to terms containing tensors; thus the equation 

I ii= t r1,11, 

stands for the set of six equa tio ns 

112=113, 123= 111 , 13r = tlz } 

lz1 =- 113. 132= - 11 1• l13=-u2 

The tensors bii and e1fl, a re related by the identity 

eijkcklm = 0 uO jm - 0 imb jl• 

which is equivalent to the vector identity 

a x (b x c) =(a · c)b -(a · b)c. 

(1.4) 

(1 .5) 

(1 .6) 

(1.7) 
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4-vectors (only required in Chapter 7) 

A contravariant 4-vector x consists o f a pair of physical quantities, a scalar s and a 3-
vecto r u which can be assigned definite values relative to a frame of reference, in such a 
way that the values assigned in different frames o f reference are related by the Lorentz 

transformation: ifF and F' are two frames of reference with a common space-time 
origin, F' moving relat ive to F with velocity v in the directio n of the unit vector n, and if 

x has values (s, u) relative to F and (s', u') relative to F', then (taking c= I) 

s' = y(s-vu · n), u' · n = y(u · n -vs), u.L ' = u.L (I.8) 

where y=( l -v2)- t and u1 and u.L ' are the components ofu and u' perpend icular ton. 

For example, the coordinates (c, r) of an event constitute a contravariant 4-vector. 
The four compo nents o f a contra variant 4-vector x are denoted by ~xi' (,u = 0, I, 2, 3): 

x0 =s, .>/ = tl; . Ir y is another contravariant 4-vector, consisting of a scalar c and a 3-
vector v, then the inner product 

x· y=sL - u · v (1.9) 

is a Lorentz scalar, i.e. it has the same value in every frame of reference. This can be 
written as 

(1.1 0) 

(using the summation convention}, where g
11
,.=0 if p=P v, g00 =I and g 11 =g22 =g33 = 

- I. 

A covariant 4-vector consists of a scalar s and a 3-vector w such tha t (s, - w) 

constitute a contravariant 4-vector. The four components of a covariant 4-vector are 

denoted by a subscript index, as x
11

• If x11 are the components of a contravariant 
4-vector, the components of the corresponding covariant 4-vector are 

(1. 11) 

For brevity, we say 'x' is a contravariant 4-vector' and 'x
11 

is a covariant 4-vector'. 
If xP is a contravariant 4-vector and y11 is a covariant o ne, x11y

11 
is a Lorentz scalar. In 

general, to ensure tha t equations a re valid in all inertial frames of reference, the 
summation convention should only be applied to pairs of indices in which one index is 
in the upper position and the other is in the lower position. 

The inverse of (1.11 ) is 

xP = rl''x. (1.12) 

where rltv has the same numerical values as g
11 

• • (l.I IHI.l 2) exemplify the process of 
raising and lowering indices which can be applied to a quantity with any number o f 
indices, some in the upper position and some in the lower. The eiTect is that raising or 
lowering the index 0 leaves the component unchanged, while raising or lowering an 
index i ( = I, 2 or 3) changes the sign of the component. In particular, raising an index of 
g11• gives gil v = b11• (the usual Kronecker b, defined as in (I .2)). 

The general Lorentz transformation is a linear transformation of 4-vectors specified 
by a 4 x 4 matrix 1\11., 

such that 

x'· y' = x · y for all contravariant 4-vectors x, y. 

From (1.10) it follows that the condition on N . is 

9pvl\11pl\vq =gprs, 

(1.13) 

(1.14) 

(I.IS) 
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I.e. 

(1.16) 

The symbol e1,..1"' is totally antisymmetric with e0123 = + I; hence it vanishes if any 

two of fl. v, p, u a re equal, and for i,j, k= l, 2 or 3 we have 

(1.17) 
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Particle properties 

Elec-
Mass Lifetime tric I so-

Name (MeV) (s) Spin Parity charge spin Other flavours Main decays 

Gauge bosons 

Photon y 0 (1.) 0 
w + 

81000 > 0.6 x w- 24 +I e +v. , J.l +V
1
, 

w - - I e-v-., J.l -vp 
z o 93000 >0.5 x w-24 0 e +e- , 11 + J.l-

Leptons 

Electron e - 0.511 oc, .1. + - 1 2 
Muon J.l - 106 2 x w-6 .1. + - I e -v.vP 2 
r 1784 3 x 10 - 13 .1. + -1 e - \'cVt, J1 - ii P v, had rons 2 

Neutrinos v. 

vP 0 (1.) .1. 
2 

v, 
+antiparticles 

Mesons 

no 135 8.3x 10- 17 0 0 2y 
Jt± 2.6 x w-s ±!-) 

140 0 ±1 J.l v~ 
K± 494 1.2 X JO - B 0 ±1 .1. Strangeness ± I J.l±!ii n±no 

2 p;_ - c > +! > K o 498 5.2 X 10-S 0 0 .1. 3n n-J.l+ \i n ±e \i L 2 , I~' 

Kso 498 8.9x w- 11 0 0 .1. 7t + Jt- , no no 2 

'1 549 4.7 x l0- 18 0 0 0 2y, 3n 
o ± 1869 9.2 x w- 13 0 ±1 .1. Charm± 1 e ±<ii~ +hadrons 2 
oo 

1865 4.4 x w- 13 0 0 .1. Charm ± 1 K ±+ pions i)O 2 
K°K 0 + pions 

F± 1971 1.9 x w- 13 0 ±1 0 
Strangeness ± I 

Pions 
Charm± 1 

s ± 5271 1.4 x w- 12 0 ±1 .1. Beauty ± 1 D 0 + pions 2 
so 

5274 1.4 x w- 12 0 0 .1. Beauty± 1 e±< \i~ + hadrons ao 2 
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Baryons 

Proton p 938.3 > 1032 yr .l + +I .l 
2 2 

Neutron n 939.6 898 _)_ + 0 .l pe - Ve 
2 2 

11.0 11 16 2.6 x 10 - 10 .l + 0 0 Strangeness - I pn -, nn° 2 
~ + 11 89 8.0x10 - 11 .l + + I Strangeness - I pn°, nn+ 2 
~0 1192 5.8 x w-20 l + 0 Strangeness - I II. oy 

2 
~ - 1197 1.5x 10- 10 l + -I Strangeness - I nn 2 
:::o 1315 2.9 x w - lo _)_ + 0 .l Strangeness -2 II. ono 

2 2 

132 1 1.6x 10- 10 _)_ + -I l Strangeness -2 /\on-- 2 2 

n- 1672 8.2 X 10 - ll .J. + -I 0 Strangeness - 3 1\.oK - , =.on- , =. - no 
2 

~~.e + 2282 2.3 x 10 - 13 l + +I 0 Charm + I t\ + pions, pKn 2 
+antiparticles 

Adapted from the Review of Particle Properties (Particle Data Group 1984) 



Appendix III 

Clebsch-Gordan coefficients 

Each table displays the coefficients ( J MU 1 m 1,j2 m2 ) for particular values of 
j 1,j2 and M. 

M=l M=O M =O 

~ I 0 
mt .\ -I m , 

+t -t Jt Jt 
-t +t Jt - Jt 

+t +f I -t I I - 2 

M =i M=t M=-t 

m,~ .l l. 
2 2 m\ .l l. 

2 2 

m, 

I -t J-t Jt 
0 +t J1 -J-t 

I f I 0 -t Jt _Jj, 
-I +t J-t 

M =-! 

~ .l 2 

m, 

- I - t I 



Clebsch-Gordan coefficients 

M =2 

m, ~ 2 

l_ _!_ I 2 2 

M= - 1 

~ 2 
m t 

- ~ - ~ ~ 
2 2 2 

- .l .l ~ 
2 2 2 

jl=2, j2=t 

M = i 

m, \ l 
2 ~ I 2 

M=-! 

~ .i 
l 

m, 

0 - ! Ji 
-I ~ Ji l 

I 

~ 
2 

-¥ 

l 
2 

Ji 
-Ji 

M =l 

.\ 2 I 
m, 

l -! ~ ~ 
2 2 2 

.l .l ¥-1 2 2 

M =-2 

-! -! I 

M=f 

.,\ .i .l 
2 2 

m, 

2 - t J! J~ 
I ! J~ -J! 

M =-f 

~ .i 
2 

m, 

-I - ! J! 
-2 ~ J! l 
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M=O 

.\ 2 I 
m, 

~ - ~ J! Jt 2 2 

-t ~ Jt -J! 2 

M=t 

.\ .i l 
2 2 

m, 

I -t Ji Ji 
0 ~ Ji -Ji l 

M =-i 

l 
2 

J! 
-J~ -2 -! I 
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M =2 M = l M=O 

m,\ 2 I m\ 2 I 0 
m, 

I I I I 0 Ji Ji 
0 I Ji - Ji 

I - I Ji Jt J1 
0 0 Ji 0 -Jt 

- I I Ji -Jt Jt 

M=- 1 M = - 2 

m\ 2 1 
m, 

0 - I Ji Ji 
- I 0 Ji - Ji 

- 1 - 1 I 

M=1 M=1 M=t 

m, ~ l 2 ~ .i .l 
2 2 

m, .\ .l ~ 1 2 2 2 
m, 

.l I I 2 
.l 0 J! J~ 2 
~ I J~ - Ji 2 

.l -I Jto Ji Jt 2 

.l 0 J~ J-ts -Jt 2 

-t I Jfo -Jfs Ji 

M =-i M=-1 M= - 1 

X .i .l .l 
2 2 2 

m, .\ .i .l 
2 2 

m, \ 1 
m, 

.l - I Jfo Jfs Ji 2 

-t 0 Ji -J-ts - J1 
-1 1 Jto -J! Jt 

-t -I J~ Ji 
-! 0 Ji -J~ 

-1 -t I 



Clebsch-Gordan coefficients 

j l = 2, j2 = 1 

M =3 

~ 3 
m, 

2 I I 

M=O 

m• m\ 
I - I 
0 0 

- I I 

M =-2 

m. ~ 

3 

J1 
J1 
J! 

3 

- I -I Ji 
Jl--2 0 

M =2 M= l 

m, ~ 3 2 m,m,\ 
2 0 J! Ji 
I I Ji - ~ 

3 

2 - I 
I 0 
0 I 

M= - 1 

2 I m\ 3 
m , 

Jt Jio 
0 -J~ 

-Jt Jio 
0 -I J! 

- I 0 J!s 
-2 I J-n 

M =-3 

2 

Jl-
-Ji 

-2 - 1 I 

3 2 

jfs ~1 
5 6 

J1 - Jt 

2 I 

Jt J-to 
- Ji - Jio 
- Jl- J! 

Taken from the Review of Parricle Properries (Particle Data Group 1984) 
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Answers to and help with problems 

Chapter I 
I. 6.03 kg- 1 . 

2. 9 X 10- 31 kg. 
3. 5.68 x 10- 15 volts. 
4. The total energy E and momentum p cannot satisfy E = jpjc. 

Chapter 2 
I. Show that \J rPt/1 d V\ 2 ~ <J \<!Jil d V)(J \t/1\2 d V). 
2. Use e 2. 1. Eigensta tes of E with result ex correspond to eigenvectors of P, with 

eigenvalue I. 

4. Eigenvalues ± 25, eigenstates i\a0 )+ !i\a1), !\a0)-ii\a1 ) . Probability 337/625. 
5. Let ja0 ), \a 1) be the eigenstates of A. If cxja0 ) + P\a 1) is one eigenstate of B, the other 

must be P\a0 ) - cxja 1 ) , and the probability is always \cx\4 + \P\4 • 

6. Let \<I>>=A\t/1> and use ( </>\</>)~ 0. 
8. Probabilistic argument: 6.A = 0 =A certainly has value ( A) . Algebraic argument: 

consider\<!>)= A\t/1 )- ( a )\t/1 ) . 
9. cos2 e sin 2 0. 

II. Let \<I>) = A 1\t/1 > + =81 \t/1> where A 1 and 8 1 are as in e2.5 and= is arbitrary (or apply 
Cauchy- Schwarz to Adt/1> and Bdt/J) ). 

13. Use(2.111). 
15. t:.x = afJ2. 
16. Use (2.80). 
17. Show that [D, xJ = - ihx1 and [D, p1] = ihp;; then use (2.80). 
18. Put \<1>>=\</> 1 )+\</>2 ) and \<l>>=\</> 1 )+i\</>2 ) in (2.123). 
19. Fermion: 

(the number of choices of r objects from n, with repetitions). 
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Chapter 3 
I. cos-> PT + sin4 PT. 
2. (a) -ft;sin 2 1wt. (b) 1

3
6 sin 2 j-wr. where w=(m 1 - m2)c2j ll. 

3. For any x, cos" (xfn) __, I as n __, Ct~ , so p, _, p0 . 

5. Use e2.5 and 3. 1. 

6. Use e 3.1 to find dfdt(M). 

7. (nll 2 / 2ma2)W + m2 + n2
). I. m, n integers> 0. 

~ ~ 

8. 1/J(x. r) = n - •(a0 + i11l/ma0 )- ' exp { - x 2(a 0
2 + 2illt /m)- 1 

) . 

9. No; if k to k' there is a non-classical interference term. 

10. jAj2 = IBI2 + ICI 2 shows conservation of probability. 
13. Relative probability=-}(1 + P /K2 )+(4Ka) - 1

( I -k2/ K2
) sin 2Ka where k2 = 2mE/f12. 

K 2 =2m(£ - V0 )/ll . Limit as fr _, 0 is t< I +}. 2 ) where ;, is the classical ratio. 

14. f(r)= Cfr (C constant), E= lr 2k2/2m [use \12f=.f"+2f' /r]. 
j =(C21rk/mr3)r. This is impossible in a stationary state for a region enclosing the origin. 

as the probability of finding the particle near the origin wo uld be steadily decreasing. 

15. (.\' ) =!a. A.-:2 =(a2f l2)( 1-6/ n2n2
). For a classical pa rticle, equally likely to be 

anywhere. 11x 2 =u2f l 2. 

16. Use (d jdJ. )f(). n)= n · Vf with .f(a)= U('f.). 

18. U('f.)VU(T.) - 1 = V' where V'(r) = V(r - a). 

No; in classical mechanics the motio n o f a particle in a constant force is invariant under 

translations. 

20. The plane of polarisation rotates with angular veloci ty(£ + - E_)/211. 
24. Different iate U().)U().)- 1 = 1. 

25. See the proof of e 3.6. 
27. w=e- •M•·•; hermitian generators -MR (M=total mass, R=centre o f mass). 

28. Use the associative law. 

29. For X,YEL(generators of representation U)and u. vE V. [X, Y] is as in L. [X,L']=Xr 
and [u, v] =0. 

32. I/Jk=(2/a)t sin (knx /a); V= - eEx; 
probability = (2 10e2 E2m 2u4 /n 2h4u6

) sin 2 (un 2h2 f4ma2
) where u = k2 - 12 

33. P(r)= 4(e/ £)4 1(1/1 2l Vlt/13)( 1/1 31 Vlt/1 1 >12 sin4 (1- Et/ lr). 

zl ,1, I 
1
•1, l2{(sin"ia ... t)

2 
(sin 1ex _t)

2 

2(sin1ex _r)(s in1ex _r) } 34. e ( '1' 2 V0 '1' 1) --- + - -- + - -- --- COSW/ 
ex + ex _ cx ~ ex _ 

where IX± =(E2 - Etl/ h ±w. 

Chapter 4 
I. 1=2, m = O. 1/1 22 = (J +)21/1 20 = -(x+iy)2

. 

3. R can be replaced by RS where S is a rotation about the :-axis; but U(R)Ij m) and 

dimn(R) would only be multiplied by a phase factor. 

4. cos2 !9:sin2 !9. 
7. 21 + I ifO,;;; / ,;;; j; 3j -l+ I ifj ,;;; / ,;;;3j . 

8. <To>- 2:( T0 )_,: ( "fo ) 0 :(T0 ) 1:( "fo ) 2 =2: -1: -2:- 1:2 

(("fo)m=<miJOim) oc ( 2 ml2 0, 2m) ). 

9. <~lzl~>:<!lzl!> = -5:7. (x) = ( y) =O. 
12. Use q. l to write z2 in terms of r2 and an operator of spin type 2. 

13. P _ ,:P0 :P1 =3:4:3. 
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15. 1=0, I or 2; probability= !. 
22. Stationary states Jnl m) (simultaneous cigenstates of H0 , L2 and L:) with energy£. + 

11mh. 
23 . Ll/=0. ±I by angular momentum conservation; 6/ odd by parity conservation. 
24. Use time-dependent perturbat ion theory with V=umw 2x . 

P;= i.;(mwa2/fl )sin2 twr with i.0 =2, i.2 =4. 
25. exp ( - 4J:0 J2 sin2 twr). 

f' f'' 32 2 2 dt . dt -2iE .. r i(E .. -2EX~z r(E .. -EX~r . - e 2 1e 'e • e · . 
0 0 

Chapter 5 
5. tr(Ap)=cose, tr (Ap')= O. 

7. Use e 5.4. 
9. Probabil ity= cos2 0. Inequality sin2 ¢~ cos2 0+cos2 (0+¢). 

10. Subset X+-+ proposition xe X. 
II. (x 1, x 2 ) v (y 1, y 2)=(x1 v y 1, x 2 v y 2); same for ". 
12. If: belongs to the centre of Sf, !l' is the direct sum of {x: O~x} and {x: x~ :'} . 

Chapter 6 
I. n+n- (the antisymmetric isospin sta te). 
4. Neither of the pp processes can occur if the p and p have anti parallel spins; the 2n° 

process cannot occur if the p and p have even relative orbital angular momentum. 
5. f(p* .... Ll ... + p- ): r(p*-+ 6 + n°): r(p*-+ 6°11: .. ) = 3:2: 1. 
6. r(Ll2 ... + -+Ll1 ... n .. ): r(62 ... -+6 1 ~n°):r(Ll2 ... -+61°n") = 6:1:8. 
7. j 2( n°pJe-'H'Jn + n) + ( 11: + nJe-iH'Jn+ n) = ( 11: • pJe-•H'Jn+ p) . 

8. C/ 1C= - / 1, C/2C=I2 , C/3C= - / 3 • 

II. re 4C):re 4 N*):re 4 0)=e2:g/:e2
. 

12. X ... -+ n + p, X. + -+ p + p. 
13 . There is no isospin ana logue of orbital angular momentum . 
14. j 2( pn°JHJI:" ) + ( nn ... JH JI: ... ) = ( nn -JHJI: - ). 
15. r(=:-):r(2>)= 1:2. 
17. For example, n - + p-+ n+K + +K -. 

20. 13 Jnl0 -ri +sv) =t<n- 2r - s)Jnl0 - ri +sv) . 
l 1 Jnl0 - ri+ sv) = j (r(n-r -s±t))Jnl0 -(r± l)i+sv), 
with similar formulae for u 3• u ±' v3 and v± . 

21. Y= i{u-v) · H, Q=i{i-v)·H. 
22. (ii) JI:u0 )= -tJI:0 )+J!JA0 ). The reason for the better fit of the Geii-Mann/Okubo 

formula to the meson octet with squared masses instead o f masses is not fully 
understood. 

23. u quark number = I3 +~(3B +S-C- B'-T), 
d quark number = -1 3 +-!(3B+S -C- B'-T). 

29. (i), (ii), (iii) and (v): all cot2 Oc. (iv) tan 2 Oc. (vi) and (vii): both cot4 Oc:cot2 Oc: l. 
30. (i) 0.43. (ii) 321 :13.4: 15.6: I. 
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Chapter 7 
6. n ( ± p) are projection operators onto eigenspaces of ri'Yw 

( 

cosh·ti. (sinhtJ.)n .a ) ( tJ<Po+l) (~~pJ I)p.a) 
7. S(A)= (. hl.') h l.' = J sm 21. n. a cos 21. (p0 - I) l. 

2IPr p.a 2 <Po+ I) 

u±(p) and v±(p) are the columns of this matrix. 

13. DPDPrf> = -m2rp; !t' =t(DI'rp)t(D ~'rp) - m2rptrp where Dl' = al' + ieAwJI' = erpt cl'rp. 
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