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Preface

This book is addressed to the reader who wants, as an educated person, to have
an outline of the present state of knowledge of the constituents of the material
world; who has a logical cast of mind and will follow a mathematical
argument; but who may have little knowledge of physics and no intention of
becoming deeply involved in the subject. In practice I have imagined this
reader as a mathematies student taking a third-year undergraduate course in
quantum mechanics such as is commonly offered as a part of the mathematics
degree course in British universities. Only a minority of such students will be
intending to pursue the subject further, and it seems more appropriate to aim
for a wide survey of the interesting bits than to try to provide a sound basis for
a training as a quantum mechanic.

The emphasis in the book, therefore, is on providing a coherent account of
the basic theoretical concepts of quantum mechanics and particle physics.
Experimental detail, mathematical rigour and calculational facility are all
given lower priority than conceptual coherence. However, I hope that [ have
given sufficient experimental reason for every major statement of theory; that
the mathematics is honest, with gaps acknowledged and without the
inconsistencies which can puzzle and dishearten (or arouse the scorn of)
mathematics students; and that there are enough problems at the end of
chapters to enable readers to test their grasp of the concepts.

This approach to the subject has led me to omit several topics which would
normally be included in a quantum mechanics course; for example, there is no
scattering theory and little discussion of the Schrédinger equation as a
differential equation. These topics may be indispensable to anyone who wants
to work in the area, but they are not actually needed in explaining the results of
the research in which they were tools. On the other hand, there are conceptual
problems which can be (and often have been) ignored by the working physicist,
but which seem much more important to the spectator who wants to
understand more of the game. These metaphysical problems often arouse
great interest in students, who find that it is poorly catered for in quantum
mechanics textbooks (perhaps because the discussion is likely to be either
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inconclusive or unconvincing, and quite possibly both). 1 have devoted a
chapter to such problems; it is indeed inconclusive, and may well be
unconvincing.

The reading of mathematics and physics books is hopefully embarked upon
more often than it is successfully completed. This fact of human nature is
allowed for in the structure of this book, which has several points at which a
reader can feel that they have reached the end of a journey. Thereafier the
journey is started again, but in a different craft and at a different level. The first
chapter is a general description of the structure of matter, leading to the
introduction of quarks and leptons, and an account of the first ideas of
quantum mechanics. This material will be familiar to many students, but not
to all; it is included to make the book accessible to mathematics students who
may have studied no physics, or have forgotten what they have studied, and to
meet the complaint that books on particle physics always assume that you
already know about particles. At the end of this chapter the reader will know
what the particles of matter are, and what forces act between them.

The next two chapters contain the theoretical development of quantum
mechanics, in the state-vector formalism with its standard interpretation. At
the end of Chapter 3 the reader will know the basic assumptions and
theoretical apparatus of quantum theory. Chapter 4 continues the study of
quantum mechanics, but should perhaps be regarded as a prelude to the
remaining chapters, being largely concerned with constructing more
apparatus for later use (angular momentum theory, annihilation and creation
operators), though it also contains the theory of the hydrogen atom as being of
intrinsic interest.

The last three chapters provide three independent journeys, which can be
taken in any order. Chapter 5 goes over the ground of Chapters 2 and 3 again,
examining the concepts of quantum mechanics more critically. This journey
ends in a muddy river delta, the mainstream having split into nine mouths.
Chapter 6 goes over the ground of Chapter 1, the language of quantum
mechanics now being available for a more detailed description of particles.
Annihilation and creation operators are used to give a simplified treatment of
the forces between particles — a kind of guantum field theory without space
and time. Finally, the ideas of quantum field theory proper are described in
Chapter 7. The first hall of this chapter is a continuation of the formal
development of quantum mechanics, and carries on directly from Chapter 4,
The second half describes how quantum field theory is applied to particle
physics in quantum chromodynamics and quantum flavourdynamics, and
constitutes a third passage over the ground of particle physics.

Although the development is not formally axiomatic, the book does have a
logical skeleton consisting of postulates (stated as such) and a chain of
propositions (marked by the symbol @) deduced from them. The bones are
listed at the end of each chapter (except Chapters 1 and 6, which are
cartilaginous). The mathematical arguments are not as rigorous as they might
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be, but the physical arguments are slightly more rigorous than they often are.
The mathematical style is mainly algebraic, being based on commutation
relations: the notion of a wave function is not needed in this logical skeleton.
(The spectrum of the hydrogen atom is found by Pauli's original method,
which predates the Schridinger equation.) However, since it would be an
impoverished idea of quantum mechanics that did not include wave functions,
and since students are likely to have met them elsewhere, they are included
from the beginning as an example of a type of state vector, and the usual
assumptions aboul them (eg. boundary conditions for the Schridinger
equation) are justified.

Teachers of quantum mechanics are divided, and no doubt always will be,
about the suitability of the state-vector formalism for a first course in quantum
mechanics. Those who, like myself, first learnt quantum mechanics by reading
Dirac’s immortal Principles have no doubt that the state-vector formalism is
the best introduction to the subject. In deference to the other half of the world [
have to say that this book might be found difficult by students who have not
taken a first course on quantum mechanics based on wave functions.
Formally, however, it requires no knowledge of any physics. Formally, also,
the only mathematics required is vector algebra and vector calculus; but the
reader with no knowledge of linear algebra will probably find it heavy going,
and an acquaintance with the idea of a group and the elements of analytical
mechanics will be helpful in places. Until Chapter 7 the only fact from special
relativity that is used is the energy-momentum relation ( 1.3); for Chapter 7 the
reader will need the 4-vector formalism and a knowledge of Maxwell's
equations.

Bold type is used to indicate that a word or phrase is being defined, and the
reader is not expected to know what it means. The symbol [l denotes the end
of a proof (or a proposition whose prool has already appeared). Complex
conjugation is denoted by an overbar (not by an asterisk).

1 would like to thank Mark Lawson, Chris Clarke, Richard Crossley, Peter
Landshoff, lan Drummond, Jeremy Rogers, Stephen McGahan, Alison
Ramsay, Clifford Bishop, Denis Cronin, Roland Hall, Anne Thompson and
Steve Roberts, all of whom read parts of the manuscript and made useful
suggestions. I am grateful to the Scientific Information Service of CERN,
Geneva, for supplying me with photographs and for their permission to use
them. Finally, I would like to record my appreciation of the sensitive and
patient editorship of Simon Capelin, and the care and forbearance of Sheila
Shepherd and the other stall of Cambridge University Press.

Tony Sudbery
York, July 1985
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1.1. Molecules and atoms

Particles and forces

This book is primanly about the particles that make up the material universe,
and the way that they interact with each other. To describe their behaviour,
and even to name the particles themselves (i.e. to specify the properties which
distinguish them from each other) requires the theoretical framework of
quantum mechanics, which will be the concern of a large part of the book.
Before embarking on the formal theory, however, we will give a general
description of the constitution of matter and, in briefest outline, the reasons for
believing that this description is true. This will introduce the particles which
will be described in more detail in later chapters, and the forces between them;
in the course of discussing the latter we will make a first qualitative encounter
with the concepts of quantum mechanics.

A. THE ANALYSIS OF MATTER

It is an old speculation, traceable in western thought alone to Greek thinkers
who lived some centuries before Plato, that matter is made up of small, simple
particles of which there are only a few distinct types, the variety of everyday
substances being caused by the different ways in which these particles combine
together. This idea remained an isolated speculation until the nineteenth
century, when it became possible to relate it to various laws of physics and
chemistry.

The laws of heat, and particularly the behaviour of gases, can be explained in
terms of the laws of mechanics if it is assumed that any substance consists of a
large number of particles called molecules, which in a gas are moving
randomly. This explanation, which was demonstrated by means of the
techniques of statistical mechanics developed by Maxwell, Boltzmann and
Gibbs, is known as the kinetic theory of heat. It has the feature, usually
regarded as a great advantage in a theory, that it reduces the number of
primitive, unexplained concepts in physics: it enables heat and temperature to
be identified with purely mechanical properties (heat being the total kinetic
energy, and temperature the average kinetic energy, of the particles). However,
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Fig. 1.1.
The periodic table of the
elements.

| Particles and forces

this is a purely theoretical advantage, and was not universally regarded as a
good reason to believe in the reality of the molecules. For this, independent
evidence was required. [t was provided by Brownian motion, in whicha grain of
pollen moving in a liquid 15 observed to make sudden and random changes of
direction, as il it was being jostled by the molecules of the liquid. In 1905
Einstein showed that the observed gquantitative features of this motion could
be deduced from the hypothesis that the liquid consists of particles, using the
same methods and assumptions of statistical mechanics as were used in the
kinetic theory of heat.

From chemistry came the suggestion that molecules were themselves made
up of smaller components. Every substance is a physical mixture of chemically
pure substances, which in turn can be made by the combination of chemical
elements. Dalton's laws of chemical combination { 1903) ean be understood if
the molecules of a chemical compound are all alike, and are made up of smaller
particles (called atoms) which are characteristic of the elements which combine
to make the compound. This is the atomic theory of chemistry. Historically, it
preceded the kinetic theory of heat, but it proceeds to a deeper level of analysis
(atoms as opposed to molecules) and presents a simpler picture in that the
number of different types of fundamental particle, instead of being equal to the
enormous number of different chemical compounds, is replaced by the
comparatively small number of chemical elements (the classical figure is 92,
but this has been increased by the manufacture of artificial elements).

Mevertheless, 92 is rather a large figure for the number of basic constituents
of matter. Moreover, the aloms are not simply featureless lumps of matter;
there must be relations between them, as there are relations between the
chemical behaviour of the elements. These are displayed in Mendeleev's
periodic table (Fig. 1.1),in which the elements are laid out in a number of rows
in order of increasing atomic weight, which is a measure of the mass of a single
atom. In this table the elements in each column show similar chemical
prDPerl:ii:S. with a slight but regular progression as one moves down the
column; in each row there is a definite progression (e.g. a change in valency) as
one moves along the row, and again the progression is regular, This pattern
suggests that the atoms must have some internal structure in terms of which
they can be compared, atoms in the same column having similar structures,
while the structure changes in some regular way as one moves from left to right
across the table.

H He
Li Be B C 0 F He
MNa Mg Al 5§ P 5 4 A
K Ca S Ti ¥ Cr Mn Fe Co Ni Cu ZIn Ga Ge As Se Br Kr
Rt Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In 85» 5b Te 1 Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg T Pb Bi Po A

Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf
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The first subatomic particle to be discovered was the electron (symbol ¢~ ); the
discovery was announced by J. J. Thomson in 1897, Large numbers of this
particle are given ofl by metals when they are heated or given a negative
electric charge, or when light is shone on them. The particles are deflected by
electric and magnetic fields; the direction of this deflection shows that they
have a negative electric charge. By measuring the deflection of the particlesina
magnetic field, their charge-to-mass ratio 4 can be determined. Their charge is
difficult to measure directly, but it is known from other sources (from
Faraday’s laws of electrolysis, and from Wilson's and Millikan's experiments
on charged water and oil droplets suspended in an electric field) that electric
charge always comes in integer multiples of a basic amount ¢, whose value in S1
units is 1.6 % 10~ '® coulomb. Assuming that this is the charge on the electron,
its mass can be calculated as m=e¢/4i=9.1x 10 2® g. This is a tiny fraction
{about 5.5 10™%) of the mass of the lightest atom, the hydrogen atom.

Since electrons can be produced from many dilferent kinds of matter, it must
be assumed that they exist inside the atoms of all elements. But a normal atom
is electrically neutral, so it must contain some positively charged material to
balance the charge on the electrons, and since the electrons are so light this
positive material must account for most of the mass of the atom. J. L
Thomson's ‘plum-pudding” model of the atom pictured it as a cloud of
positively charged material with the electrons orbiting inside it; but this
picture was shown to be false by Rutherford’s experiments on the scattering of
a-particles. These are positively charged particles (with charge 2¢ and mass
about equal to that of the helium atom) which are emitted by radium; Geiger
and Marsden, under the direction of Rutherford, studied their motion when
they were fired at thin sheets of gold foil. Since the electrons in the gold atoms
are so much lighter than the z-particle, collisions with them will have little
effect on the g-particle’s motion; the main effect will be provided by the
electrical repulsion of the massive positively charged material in the atom. If
this is spread out throughout the atom, as in Thomson’s model. most -
particles will encounter some of it and will be deflected by the encounter; but
since the material is so diffuse the force on the a-particles will be small and so
they will be deflected through small angles. The results of Geiger and Marsden
were quite contrary to this: most of the z-particles went straight through the
gold foil without being deflected at all, but of those that were deflected quite a
high proportion turmed through large angles, so that some bounced back in
the direction they had come.

Rutherford’s interpretation of this experiment was that rather than pushing
their way through big, soft atoms, the x-particles were colliding against small,
hard objects inside the atoms, which were otherwise empty. He showed that
the distribution of the x-particles as a function of their angle of deflection (the
scattering angle) agreed very well with the distribution calculated from the
assumption that both the x-particles and the positive parts of the atoms were
point particles. This led him to formulate his ‘solar system’ model of the atom,
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in which the positive charge is concentrated in a small nucleus around which
the electrons circulate as the planets orbit round the sun, the electrostatic
attraction of the nucleus for the negatively charged electrons replacing the
gravitational attraction of the sun for the planets.

There are two difficulties with Rutherford’s model. The first is that electric
attraction is not quite like gravitational attraction, since it is associated with
magnetism in a way which has no counterpart in gravity. According to
Maxwell’s theory of the electromagnetic field, an accelerating charged particle
like the electron in Rutherford's atom has a changing electric field which
causes a changing magnetic field which in turn causes a changing electric field,
and this feedback results in oscillations in the form of electromagnetic
radiation which carries energy away from the accelerating particle. Thus the
electron ought to lose energy and fall into the nucleus.

The second difficulty is the nature of the radiation which is sometimes
emitted by the atom. This happens when the electron, in its mysteriously stable
orbit, receives energy from any source; it will lose it again by emitting
radiation, but only at certain special frequencies which are characteristic of the
atom. This set of frequencies is called the spectrum of the atom; the spectrum of
hydrogen, for example, consists of the frequencies

£
e 1.1
Youn R[mz ",] (L1)

where R is a constant and m and n are integers. There is nothing in
Rutherford’s picture of an orbiting electron, which could have any frequency
in its motion around the nucleus, to associate it with a discrete set of numbers
like (1.1).

These difficulties were resolved by the adjustments to classical ideas of
mechanics which were brought about by quantum mechanics. Then this
structure, atom =nucleus+electrons, turmed out to be sufficient for the
explanation of the chemical relations between different elements, for the
chemical behaviour of the atom could be explained purely in terms of the
arrangement of its electrons (we shall see roughly how the explanation goes in
Chapter 4). The model shows that an important characteristic of an atom will
be the charge on its nucleus (in units of the electron charge ¢), which is equal to
the number of electrons in the atom. This was identified as the number of the
element, counting along the rows of the periodic table; it is called the atomie
number of the element and usually denoted by Z.

But this could not be the end of the story; the nucleus, though small, must
itsell have an internal structure. If it did not, we would simply have exchanged
92 different kinds of atom for 92 different kinds of nucleus. As well as this
theoretical preference, there was the empirical evidence of radioactivity to
indicate that the nucleus was made of smaller parts.

Radioactive substances emit three different kinds of radiation, known as «-,
f-, and y-rays. «-rays consist of positively charged particles with charge 2e,
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which we can now identify as the nuclei of helium atoms. fi-rays consist of
electrons, and y-rays consist of electromagnetic radiation of extremely high
frequency. Substances which emit z-rays or fi-rays change their chemical
identity. Ifan atom of the element with atomic number Z emits an a-particle, it
loses electric charge 2¢ from its nucleus, whose charge becomes (£ —2)e; the
atom then becomes an atom of the element with atomic number Z —2, with
two extra orbiting electrons (which are likely to be removed from the atom
soon after the radioactive emission). Similarly, if an atom emits an electron as
part of f-radiation, its nucleus loses the charge — ¢ and the atom becomes an
atom of the element with atomic number Z + 1, with an overall positive charge
of +e because it has one electron too few. (Electrically charged atoms like
these are called ions.) The source of radioactivity, then. is the atomic nucleus,
which thus appears to contain a-particles and electrons inside it

The process of emitting a particle is called the decay of the nucleus.
Radioactive decay is inherently unpredictable; it is not possible to say when a
particular nucleus will decay. However, it is possible to make a statement
about the probability of a decay: for each type of radioactive nucleus thereisa
constant t such that the probability that a nucleus of that type will decay ina
small time dt is de/x (radiocactive decay is what is known in probability theory
as a Poisson process). It follows that of a large number NV of similar radioactive
nuclei, the number that will decay in time dr is N dr/r, and so the change in the
number of nuclei of the original type is

N di
" 1 A (12)
T
Hence the number of nuclei remaining undecayed at time 1 is
N=Nge ™" (1.3)

where N is the number of nuclei at time r=0. The constant r is called the
lifetime of the nucleus.

The mass of every nucleus is very close to an integer multiple A of the mass of
the hydrogen nucleus, where A is always greater than the atomic number Z.
Thissuggests that the hydrogen nucleus is a fundamental particle - it iscalled a
proton (symbol p) for this reason — and that every nucleus is made up of A
protons together with 4 —Z electrons to bring the total electric charge down
to Ze. The masses do not quite add up as one might expect from this picture -
tha mass of the nucleus is not exactly Am,+(A—Z)m,, where m_,and m_are the
masses of the proton and the electron, but somewhat less - but this can be
explained by special relativity. Relativity theory states that mass is equivalent
to energy according to the famous formula E=me?. Now if the protons and
electrons in the nucleus are stuck together, the nucleus must have less energy
than its constituent parts would have when separated, since in order to
separate them work must be done against the forces that stick them together. It
follows that the mass of the nucleus must be somewhat less than the sum of the
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masses of its constituents. The difference is called the binding energy of the
nucleus,
However, this simple picture cannot be quite right. As we will see in Chapter
4, the angular momentum of the nucleus has the wrong value for it to be made
up of 24 + Z particles; rather it must be taken to be made up of just 4 particles.
Thus we can still regard the electric charge of the nucleus as being contributed
by Z protons, but the extra mass must come from A — Z particles of a new type,
whose mass is close to that of the proton and which has no electric charge.
This new particle is the neutron (symbol n). Its existence was conjectured by
Rutherford in 1920 and experimentally demonstrated by Chadwick in 1932
{though they both thought at first that it was made up of a proton and an
electron, and did not. recognise it as an independent fundamental particle).
Muclei with the same number of protons but different numbers of neutrons
are called isotopes. They constitute different forms of the same chemical
element. The symbol for a nucleus i1s *X, where X is the symbol for the
chemical element and A4 15 the total number of protons and neutrons, as above.
If it is desired to draw attention to the numbers of protons and neutrons
separately, this can be expanded to *,X,_,. Thus */H, is an isotope of
hydrogen which contains one proton and two neutrons (it is called tritium).
At this stage we have a very simple picture of the world in terms of just three
elementary particles. Everything is made of molecules; molecules are made of
atoms; atoms consist of electrons orbiting around a nucleus, which is made of
protons and neutrons.

There remains a problem associated with f-radiation in radioactivity: if the
nucleus does not contain electrons, how can radicactive nuelei emit electrons
as f-rays? Other puzzling questions about such radioactive decays arise from
the following considerations of the velocity of the emitted electron.
Suppose a nucleus A decays into another nucleus B by emitting an electron:

A=B+e". (1.4)

We will apply the principles of conservation of energy and momentum to this
process. The encrgy and momentum of each body involved are given by the
relativistic formulae

E=./(p*+mcY), (1.5)
Ev

=— 1.6

P (1.6)

where E, p and v are respectively the energy, momentum and velocity of the
body, m is the mass (i.e. the rest-mass) of the particle, and ¢ is the speed of light.
If the original nucleus A was at rest, conservation of momentum requires that
the emitted electron and the final nucleus B have equal and opposite
momentum. Let the magnitude of this momentum be p; then the equation of
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The fi-decay spectrum: a(E) JE
15 the proportion of electrons
emitted in the decay of a
nucleus which have energy
between E and E+dE.
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conservation of energy becomes
nw_,.z = mel(.z +"'nzf4l 15 \J,-'{Fz{.z + “‘-‘.:!t" 41 (.7
Thus pis uniquely determined in terms of the masses m,, mg and m, of A, B and

the electron. Hence all electrons emitted by stationary A nuclei should have
the same energy, which is given by

(my* —mg® +m )t

The experimental fact is that the electrons in a particular f-decay have
varying energies, ranging from a minimum of m.¢? to the value which we have
Just calculated as a maximum (see Fig. 1.2). Thus energy appears not 1o be
conserved in the decay. In 1930 Pauli suggested that the missing energy was
carried away by another particle, which had not been observed since it was
electrically neutral and had little interaction with matter. The existence of this
particle would also resolve a discrepancy between the angular momentum of
the original nucleus and that of the final nucleus and the emitted
electron.  Pauli called this particle a neutrino (symbol v}, though today, for
reasons which will emerge in the next section, it is known as an antineutrino
(symbol ¥). Thus the decay (1.4) should be wnitten as

A—=B+e +u (1.9)
The simplest example of such a process is the decay of the neutron, which,

when outside the nucleus, is an unstable particle and decays into a proton with
a lifetime of about 15 minutes:

n=p+e 4w (1.10)

Since the energies of the electrons emitted in the decay (1.9) come arbitrarily

close to the value (1.8) which they would have if no antineutrino was emitted,

the energies of the antineutrinos must come arbitranly close to zero.

According to(1.5), this is only possible if the antineutrino’s rest-mass m is zero.

e |
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i 1.5) and { 1.6) together then give v=c; thus antineutrinos always travel at the
speed of light.

Because the antineutrino has very little interaction with other forms of
matter, its existence was not confirmed by independent evidence until 1956,
when Reines and Cowan observed the rare processes which occur when
antineutrinos collide with nuclei (see (1.15) in the next section).

The motion of the particles we are interested in is to be described using special
relativity, as we have just seen, and quantum mechanics, as we will be seeing at
some length. For most of this book quantum mechanics will be discussed in a
non-relativistic form, but in Chapter 7 we will see (rudimentarily) how it is
combined with special relativity in quantum field theory. We will see thai this
requires that for every type of particle there should exist another type of
particle with the same mechanical properties (viz. mass and spin), but with the
opposite electric charge. This is called the antiparticle of the first particle.

The antiparticle of the clectron is called the positron (symbol e”). The
theoretical necessity for its existence became apparent in the two years after
the relativistic quantum equation describing the eleciron was discovered by
Diract in 1928, and it was observed by Anderson in 1932. When an electron
and a positron meet. they can annihilate each other, their mass being
converted into the energy of electromagnetic radiation; conversely, in suitable
circumstances an electron—positron pair can be created out of radiation, This
pair creation leaves a characteristic signature in bubble chamber photographs;
being oppositely charged, the electron and the positron will move with
opposite curvatures in a magnetic field, thus making the ram’s-hormn shape that
can be seen in Fig. 1.3.

The antiparticle of the proton, the antiproton (symbol (p) could only be
produced in conjunction with a proton in a pair creation of the type just
described (though the energy need not come {rom electromagnetic radiation,
but could be in the form of the kinetic energy of a bombarding particle). Since
the proton is so much more massive than the electron, it takes much more
energy to create a proton—antiproton pair than an electron-positron pair, and
it was not achieved experimentally until 1955,

Although they have zero electric charge, the neutron and the neutrino also
have antiparticles n and v. These are distinguished from the originals not by
electric charge but by other properties which are best understood in terms of
radicactive f-decay and various related processes, as follows,

Like the electron, the positron is emitted by some radioactive nuclei, and is
accompanied by a particle with zero rest-mass; it is this particle which is now
called the neutrino. For example, there is a radioactive isotope of oxygen (with
a nucleus containing eight protons and six neutrons) which decays to nitrogen

t Dirac’s original conception of the positron, which is still often presented as a valid
description, was that it is a "hole in a sea of negative-energy electrons’. There is no warrant
for this in the present theory of antiparticles.



Fig. 1.3.

Electron-positron pair
creation (photo; CERN): the
photons in an intense
radiation field produce a large
number of electron-positron
pairs like the ones indicated.
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(seven protons, seven neutrons):

40 &+ N 4e* +v (1.11)
This can be compared with the f-decay

BC 2 14N e~ +7 (1.12)

{which is used in radiocarbon dating). The decay (1.12) can be regarded as
being caused by the decay of one of the neutrons in the '*C nucleus:

n—p+e +7, (1.13)
which, as we have seen, is the process by which free neutrons decay. Similarly,
the decay (1.11) can be regarded as being caused by the decay of one of the
protons in the 'O nucleus:

p—n+e” 4w (1.14)
Free protons do not decay this way, because the neutron has a greater mass
than the proton and so energy would not be conserved if (1.14) occurred.

However, inside the nucleus the energy of the neutron is reduced by the
potential of the attractive nuclear force, so the process can occur. (This shows
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that the decay of the neutron as in (1.11) should not be taken as a reason for
thinking that the neutron is a composite object containing the proton inside it;
the proton and the neutron must be regarded as being on the same footing.)

Now consider the process by which Reines and Cowan first observed the
antineutring, in which an antineutrino from a decay like (1.12) collides with a
proton, producing a neutron and a positron:

p+iv—=n+e’, {1.15)
A similar process is observed with neutrinos;
n+v—p+e-. (1.16)

However, a process like (1.15) does not occur if the antineutrino is replaced by
a neutrino (i.e. if particles produced by '*O are used instead of ones produced
by '“C).and a process like(1.16) does not occur if the neutrino is replaced by an
antineutrino, This shows that the neutrine and the antineutrino are definitely
different particles, and it also suggests a way to describe the difference,

The processes (1.13}-(1.16} involve two distinct types of particle: the
comparatively heavy particles n and p, and the light particles e . ¢". vand .
These are called baryons and leptons respectively (from the Greek words for
‘heavy' and ‘light"). In each of the processes there is a baryon present both
before and after, so the total number of baryons remains the same. This is not
true of the leptons, but that is because antiparticles are involved; if we count
the positron and the antineutrino as negative leptons, then the total number of
leptons does remain the same in each case.

To put this less mysteriously, define a property called lepton number which
has the value + | for the electron and the neutrino, — | for the positron and
antineutrine, and 0 for all other particles. Calculate the lepton number of a set
of particles by adding the lepton numbers of the individual particles, just as
you calculate the total electric charge. Then there is a fundamental law of
conservation of lepton number just like the law of conservation of electric
charge.

Similar considerations apply to the baryons: if we define the baryon number
to be + 1 for the proton and the neutron, — | for their antiparticles, and 0 for
all other particles, then baryon number is conserved in all processes.

These three conserved quantities, the electric charge, the lepton number and
the baryon number, are known as additive quantum numbers.

The properties of the particles that have been discussed so far are summarised
in Table 1.1.

The unit of mass usually used for elementary particles is the MeV. This is
actually a unit of energy — one electron volt (¢V) being the energy acquired by
an electron in being accelerated by a potential difference of one volt, and
1 MeV=10°¢eV - but it can be used as a unit of mass because of the
equivalence expressed in the relativistic equation E=mc? (Thus the unit of
mass should be written MeV/c?, but the ¢® is often dropped because of
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theoretical physicists’ belief that ¢ = 1 — which after all 1s right; ¢ = 1 light-year
per year.) The relation of the MeV to the standard unit of mass is that | MeV =
1.78 % 10 *? kg. However, the best way to appreciate its significance in this
subject is probably to remember that the electron has a mass of about a half of
an MeV, and the proton and the neutron have masses of about a thousand
MeV.

Larger units of mass (or energy) are the GeV (= 10* MeV) and the TeV
(= 10° MeV).

The four particles listed in Table 1.1 seem to provide the elements of a
description of matter which is both satisfyingly simple and sufficient to
account for all forms of matter known before 1935, However, observations on
cosmic rays and experiments with particle accelerators revealed the existence
of other particles at the same level as these four in the analysis of matier, These
new particles are not apparent in the make-up of ordinary matter, because
they guickly decay (with lifetimes in the range from 10 to 10 ' sec) into
protons, neutrons, electrons and neutrinos; nevertheless, they are just as
fundamental as the first four.

The first of these new particles is the muon (symbol g~ ). This particle
appears to be exactly like the electron in all respects but its mass (106 MeV)
and the fact that it is unstable, decaying as follows:

TR S (L17)
with a lifetime of 2 x 10 ™% sec. This is not a very significant difference between
the electron and the muon; it is simply a consequence of the muon’s greater
mass, which makes it possible for the decay to occur.

Like the electron, the muon has unit negative electric charge and has a
positively charged antiparticle u *. It has lepton number + 1, and it can be seen
that in the decay (1.17) lepton number is conserved. In fact more than this is
true, and (1.17) is an oversimplified representation of muon decay; for not only

Table 1.1, Properties of the first four particles and their antiparticles

Date of discovery

Particle, Mass Lepton  Baryon Theoret- Experi-
antiparticle (MeV) Charge number number ical mental
Electron e~ 0511 -1 +1 0 _

Positron ¢* +1 -1 0 1928 1931
Proton p 938.3 +1 0 +1 — 1911
Antiproton p 1 -1 (] -1 1928 1955
Neutron n 919.6 0 o +1 1920 1932
Antineutron fi i 0 0 =1 1928 1956
Meutrino v 0 1] +1 0 1930 1954
Antineutrino ¥ 1] -1 0 1930 1954
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does the electron have a doppelganger in the muon, but also the neutrino is
copied by another particle. This is called the muon neutrino (symbaol v ), and
the original neutrino of §1.4 15 called the electron neutrino (symbol v} to
distinguish it. The difference between the two lies solely in the processes they
take part in: each of them will only undergo reactions involving its associated
charged lepton, i.e. electron or muon. Thus we have

v.+n—+p+e” |

and ; (1.18)
v, tTn—+p+p I

but
1'¢+n+~p+,u'l

and (1.19)

W, +n+~pte 1

When the neutrino and antineutrino in muon decay (1.17) are identified as
electron-type or muon-type, it is found that the decay is

p- e 4y i, (1.20)
The facts represented by (1.18)-(1.20) can be organised by refining the concept
of lepton number into two distinct quantum numbers, called electron number
and muon number, with ¢~ and v, having electron number + |1 and muon
number 0, ¢~ and v, having electron number 0 and muon number + 1,and the
sign of both properties being reversed for antiparticles, as usual. Then in
(1.18)H41.20) both electron number and muon number are conserved
separately.

In 1975 a third kind of lepton was discovered. It is known as the tau lepton
isymbol 1, antiparticle r * }; there is a third kind of neutrino v, associated with
it, and a new independently conserved quantum number attached to both the
tau and its neutrino.

MNew baryons were also discovered in the first cosmic ray investigations in
the late 1940s. These carry another new guantum number called strangeness
ithe evidence for the existence of this quantum number is more complicated
than for the lepton numbers, and will be discussed in the second part of this
chapter); they also carry baryon number like the proton and neutron (unlike
lepton number, baryon number is not further subdivided). There are many
more of these new baryons than the new leptons, and they are related in more
complicated ways; the relations between them are besi seen by means of
diagrams like Figs. 1.4 and 1.5, in which the particles are located on a plot of
strangeness against electric charge. By using oblique axes we see that the
particles fall into sets which have simple geometrical shapes (these diagrams
havea mathematical significance which will emerge in Chapter 6). Figs. 1.4 and
1.5 show only the lightest of the particles; there are a number of other groups of
particles, all forming similar patterns.

The same arguments that we used earlier to suggest that atoms must have an
internal structure can now be applied again to these baryons. There are too



Fig. 1.4.

The octet of baryons: these
particles have lifetimes of the
order of 107 sec.

Fig. 1.5.
The decuplet of barvons: these
particles have lifetimes of the
order of 10~ 2* sec, except for
the 27 (lifetime 107 "% sec),
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many of them to be regarded as truly elementary, and the patterns of Figs. 1.4
and L3, like the periodic table, suggest that there must be some internal
features which vary systematically from baryon to baryvon. Also the
electromagnetic propertics of the proton and the neutron indicate that they
contain finite distributions of charge and magnetisation extended over a
region whose diameter is of the order of 10~ '* ¢m (unlike the leptons, whose
behaviour is that of point particles — at least on length scales down to
107 '® ¢m). A final analogy with investigations of the structure of the atom is
provided by experiments in which very fast electrons are fired at protons and
neutrons; like the x-particles in Rutherford’s scattering experiment, an
uncxpectedly high proportion of the electrons are deflected through large

Strangeness §
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Fig. 1.6,
Quarks.
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angles. Just as the Geiger-Marsden experiment demonstrated the existence of
a small, hard nucleus inside the atom, these electron-scattering experiments
indicate that there are smaller constituent particles inside baryons,

The positions of the baryons on the charge—strangeness plots of Figs. 1.4
and 1.5 can be understood if each baryon is made of three smaller particles,
and if these smaller particles come in three varieties with values of charge and
strangeness as plotted in Fig. 1.6. These particles are called quarks (the word
was coined by James Joyce in Finnegans Wake, and is indefinite in meaning).
Only two different kinds of quark are needed to make the proton and the
neutron; they are called the up and down quarks (symbols u and d). Barvons
with non-zero values of strangeness contain the third kind of quark, which is
called the strange quark (symbol s). All these quarks have baryon number 4, so
that three of them make up an object with baryon number 1, The possible
combinations of three quarks then give all the values of charge and strangeness
seen in the plots of Fig. 1.5, The extra particles in Fig. 1.4 arise because the
quarks have the further feature of spin: in the baryons of Fig. 1.5 all the quarks
spin the same way, and Fig. 1.4 shows baryons in which two of the quarks spin
in opposite directions.

The baryons at the corners of the triangle of Fig. 1.5 are made of three
identical quarks, which are all spinning in the same direction and, as we will see
in Chapter 6, all move in the same orbit inside the baryon. But there is a
fundamental law, the Pauli exclusion principle (see §2.6) which states that
identical particles cannot be in the same state of motion. It follows that the
quarks in these baryons cannot in fact be identical; there must be some further
feature of the quarks which distinguishes them from each other. This feature is
called colour: each of the quarks u,d and s of Fig. 1.6 exists in three forms, as if
there were a red variety, a blue one and a yellow one.

Itis customary to warn the reader that the idea of the colour of a quark is not
to be taken literally. I doubt if this caution is necessary. It is more interesting to
point out that the colour of quarks shares with visual colour the property that
any colour is a mixture of three primary colours, but the choice of these
primary colours is arbitrary: any colour can be regarded as primary.

As well as combining with two other quarks to form a baryon, a quark can
combine with an antiquark to form a particle with zero baryon number. Such
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particles are called mesons (from the Greek for ‘middle’, their masses being
intermediate between those of leptons and baryons). The mesons formed from
the quarks u, d, s are shown in Fig. 6.7; it will be seen that they form the same
hexagonal pattern as the octet of baryons, with one extra particle. Baryons and
mesons are known collectively as hadrons (from the Greek for *strong”; the
reason for this will be explained in §1.7).

In 1974 the first particles in a new series of hadrons were discovered. These
new particles have a new quantum number which is called charm; it is carried
by a fourth quark, the charmed quark (symbol ¢}, whose other properties are
the same as the up quark. Three quarks of any kind can combine to form a
baryon; thus we obtain new baryons with the property of charm (whose value
for a baryon can be 0, 1, 2 or 3 according to how many charmed quarks it
contains). Again, a quark and an antiquark of any kind can combine to form a
meson.

The quantum numbers which distinguish the types of quark (like
strangeness and charm) are called flavours. The four quarks u,d, ¢, s can be
arranged in two pairs with identical properties except for their flavours: the
pair (¢, s) seems to be a copy of the pair (u, d), just as the pair of leptons (g, v,) is
a heavier copy of the pair (e, v.). These repeated sets of apparently similar
particles, differing only in mass and flavour, are known as generations or
families.

Two further series of particles, discovered in 1979 and 1984, have shown the
existence of fifth and sixth quarks b and t. Their flavours are sometimes called
truth and beauty, but it is commoner, unfortunately, to use the clumsy
nomenclature of top and bottom for these quarks. The full set of quarks and
leptons is displayed in Table 1.2

Mo quarks have ever been observed in isolation in the same way as leptons.
It is thought that the forces which bind quarks in hadrons do not diminish with
distance, so that quarks can never escape to become [ree particles.

Of the three pairs of quarks and leptons, one pair of each — the quarks u and
d and the leptons e ™ and v, — are necessary to make up the everyday world, and

Table 1.2. Quarks and leptons

Families
1 2 i Electric charge
e ' i =1
Leptons v v, i 0
u c t 213
Qua rks d s b = 1;3
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a world which contained only these would seem to be quite possible. The
existence of the other particles, and the relations between them, are mysteries,

The most direct, and most informative, methods of observation of particles are
those which make the particle leave a visible track. These include:

1. The cloud chamber. When an energetic charged particle passes through
matter, it knocks electrons out of the atoms it meets, leaving a trail of positive
ions behind it. In air which is supersaturated with water vapour, the
condensation of the vapour is triggered by the ions, which thus become visible
as a trail of water droplets.

2. The bubble chamber. This uses the same principle as the cloud chamber,
but the supersaturated water vapour on the point of condensing is replaced by
a superheated liquid on the point of boiling. Again, the ions in the track of a
charged particle provide nuclei round which boiling occurs, and the track
becomes visible as a trail of bubbles. The bubble chamber has now superseded
the cloud chamber for most purposes.

3. The spark chamber. This uses the fact that electric discharges pass more
easily through gas containing ions. Thus if a charged particle passes through
the region between two plates and a voltage is applied between the plates, a
spark will pass along the trail of ions left behind the particle. thus making its
track visible. The gap between the plates must be fairly small, so spark
chambers are usually used in large arrays.

4. Photographic emulsion. A charged particle has an effect on silver bromide
similar to that of light, and so it leaves a record of its passage through a
photographic emulsion just like the record of incident light which constitutes a
photographic image. This has been particularly useful in recording cosmic rays
(very high energy particles reaching the upper atmosphere from outer space).

Other kinds of particle detector are the scintillation counter, which uses the
fact that some plastic materials emit a flash of light when a charged particle
passes through them; the Cerenkov counter, which uses the characteristic
electromagnetic radiation which is given off like a bow wave by a charged
particle moving in a transparent medium at a velocity greater than that of light
in the medium; and the Geiger counter, which is similar in principle to the
spark chamber, but uses the current in the discharge rather than the visible
spark. These three pieces of apparatus are called ‘counters’ because they
simply register the passage of a particle through the apparatus and give no
information about its path.

Most of these methods of observation will only give direct information
about charged particles; neutral particles must be observed indirectly, by their
effect on charged particles and nuclei. The properties of charged particles can
be measured from the tracks in the first group of apparatus: the charge can be
deduced from the curvature of the track in a magnetic field, the momentum
from the density of ionisation in the track, and the energy from the distance
travelled by the particle if it stops in the chamber,
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B. THE ANALYSIS OF FORCE

We now turn from the constitution of matter to its behaviour. The process of
analysing matter into smaller components, which was discussed in the first half
ofthis chapter, carries with it a process of explaining the behaviour of matter at
one level of the analysis in terms of the behaviour of its components at the next
level. We have already encountered two examples of this: the kinetic theory of
heat explains the thermodynamic behaviour of large bodies of matter in terms
of the mechanical behaviour of their molecules, and quantum theory explains
the chemical properties of substances in terms of the behaviour of the electrons
inside their molecules. Another example is the explanation of the shining of
stars in terms of reactions in the nuclei of their atoms.

As different forms of matter are studied by different sciences, the effect of this
analysis is apparently to reduce the number of sciences — in the above examples
the study of heat is replaced by mechanics, chemistry by atomic physics and
parts of astronomy by nuclear physics. This replacement is more apparent
than real, because although the concepts of a higher science may be analysed in
terms of a more fundamental science, they cannot be eliminated in favour of the
latter without losing the understanding gained by the higher science.
Nevertheless, in principle one can envisage a chain of analysis in which
sociology is analysed into psychology, psychology into physiology,
physiology into biology, biology into chemistry and chemistry into physics.
{This view of science is called ‘reductionism’ by those who don’t like it and ‘the
unity of science’ by those who do.)

There is another dimension of analysis which applies to the behaviour of
matter at a given level, aiming to represent any behaviour as a combination of
certain basic kinds of behaviour. The aim is always to reduce the number of
independent laws of nature, either by showing that some laws can be explained
in terms of others, or by giving two laws a unified description, i.e. by showing
that they are aspects of the same underlying process. The latter occurred when
Faraday and Maxwell showed that electric and magnetic forces were
intimately related; the former when Maxwell explained light in terms of this
unified electromagnetic force,

At the level of the particles described in §1.4 (protons, neutrons, electrons
and neutrinos), the result of this analysis is that there are the following four
fundamental forces:

1. Gravitation. This acts on all particles, but is so weak compared with the
other forces that it is only important when large numbers ol particles are
considered. Thus it is the dominant force in astronomy, it is significant in the
behaviour of everyday macroscopic objects, and it is utterly negligible in
considering individual elementary particles.

2. Electromagnetism. This acts on all charged particles, and also on the
neutron because it has a magnetic moment. It holds the atom together, and is
responsible for the configuration of the electrons in the atom, and hence for all
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chemical behaviour; it is also responsible for all forces between atoms and
molecules. Thus all macroscopic forces can be reduced to gravitation and
electromagnetism; between them these two account for all the behaviour of
‘shoes and ships and sealing wax, of cabbages and kings”.

3. The weak force. This acts on all particles. and is responsible for the
processes (L.11}-{1.16). Its main macroscopically significant effect is in
radioactivity; it also plays a catalytic role in the chain of nuclear reactions
which take place in stars.

4. The strong force. This does not act on leptons, but only on protons and
neutrons (more generally, on barvons and mesons - this is the reason for the
collective name ‘hadrons’). It holds protons and neutrons together to form
nuclei, and is insignificant at distances greater than 10~ "'* m. Its macroscopic
manifestations are restricted to radioactivity and the release ol nuclear energy.

The three forces which are relevant to elementary particles can be
recognised in the three kinds of radioactivity: x-radiation is caused by the
strong force, f-radiation by the weak force, and y-radiation by the
electromagnetic force.

These forces are summarised in Table 1.3, The figures given for the strength
and range of the forces come from a comparison of the effects they produce on
iwo protons. In some respecis these resemble an ordinary Newtonian force
between the protons, varying with the distance between them as if the force
was derived from a potential function

ke-""
”

for some n. This is an inverse-power force which is diminished by an
exponential factor at distances larger than a certain distance R. the range of the
force. The strength of the force is measured by the constant k. Note that the
weak force does not appear to be particularly weak on this reckoning; the
reason for its apparent weakness is its very short range rather than its intrinsic
strength.

Vir)= (1.21)

Table 1.3. The four fundamental forces

Force Particles affected Range Strengtht
Gravitation All o0 10-*
Electromagnetic Electron
Proton o0 Tx107*
Meutron
Weak All 107" m 4 107
Strong Proton -1s
Meutron et '

+ The unit of strength is he/2x where h is Planck’s constant and ¢ is the speed of light.
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On passing to the level of quarks and leptons a further simplification
becomes apparent: the weak and electromagnetic forces are seen as aspects ofa
single force called the electroweak force, This unified theory is due to Weinberg
and Salam. Before we can see how it works we will need to look more closely at
the description of forces between elementary particles.

Two of the forces listed in the previous section, the forces of gravity and
electromagnetism, are familiar from macroscopic physics. In that context they
are described by fields. A field of force is a vector-valued function of position
Fir) which gives the force that would be experienced by a particle at the pointr,
That definition appears to give the field only a hypothetical existence, but the
development of the theory of fields, and particularly Maxwell’s theory of
glectromagnetism, gave reasons for thinking of fields as having their own
independent reality. For one thing, Maxwell’s theory shows that
electromagnetic effects take a finite time to travel from one material body to
another; as a result of this, the field must be regarded as having energy and
momentum of its own, even at points where there is no matter.

A field is a continuous function of position, and so its energy and
momentum are continuously distributed throughout space; they are like the
energy and momentum of a fluid continuum and quite different from the
energy and momentum of a system of discrete particles. But consideration of
two separate problems, those of black-body radiation and the photo-electric
effect, leads to the surprising and puzzling conclusion that although the energy
in the field cannot be localised, nevertheless it only exists in discrete packets.

The problem of black-body radiation comprises a theoretical contradiction
between electromagnetic theory and the statistical mechanics which is used in
the kinetic theory of heat. Rayleigh and Jeans applied these theories to the
problem of an insulated system of matter and radiation at a given temperature
(for example, the inside of a closed oven which has settled down to a steady
state, so that energy lost from the matter by emission of radiation is balanced
by energy that it gains by absorbing radiation). They calculated the
distribution of energy between the different frequencies of radiation. Their
answer had the absurd feature that the total energy in the radiation is infinite -
in other words, equilibrium between matter and radiation in an insulated
enclosure is not possible at any temperature, and the matter will always cool to
absolute zero by emitting all its energy in the form of radiation.

In 1900 Planck found a formula for the distribution in the radiation which
fitted the experimental data, and showed that this formula would follow from
electromagnetic theory and statistical mechanics if, instead of assuming that
energy was a continuous quantity as Rayleigh and Jeans had, one assumed
that it only took values which were integral multiples of a certain minimum
quantity. called a quantum of energy. The size of this quantum varies with the
frequency of the radiation; if the frequency is v the quantum of energy iz

E=hv, (122)



Fig- 1.7.

The photo-electric effect: the
shaded region shows the
possible values of the velocity
of the emitted electron and the
frequency of the incident
radiation.
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where h 1s a universal constant which is now known as Planck’s constant. This
refers to the energy which is exchanged between radiation and matter. In 1903
Einstein, pursuing the theoretical implications of Planck’s work, showed that
it gave grounds for the stronger assumption that the energy in the radiation
only existed in discrete quanta, and he supported this assumptiont by showing
how it explained the photo-electric effect. In the photo-electric effect
electrons are emitted from the surface of a metal when electromagnetic
radiation is incident on the metal. The effect is only observed if the frequency of
the radiation is greater than a certain threshold value v, (which depends on the
metal). If this condition is satisfied, radiation with a given frequency produces
electrons with a range of velocities which depends only on the frequency (sec
Fig. 1.7). Varying the intensity of the radiation changes the number of
electrons produced, but does not affect their velocities. Einstein explained
these facts as follows: Suppose that to be liberated from a particular metal an
electron needs an amount of energy W; this may be different for different
electrons in the metal, but must be greater than a minimum value W, which is
characteristic of the metal. Suppose also that radiation of frequency v consists
of a collection of objects (called photons) each of which has energy hv. Then if
hv < W, a photon cannot give any electron enough energy to escape from the
metal. Thus the threshold is explained, and identified as vy, = Wy/h. Now il
hv= W, an electron which absorbs a photon acquires enough energy 1o leave
the metal and has some energy left over, which appears in the form of kinetic
energy. Thus its velocity is given by

Ime?=hv— W<hv=Wy=hv—v,), (1.23)

and so the maximum velocity is entirely determined by v. Finally, increasing

t Einstein's explanation of the photo-electric effect does not prove the existence of photons. In
fuct the photo-electric effect can be explained perfectly well on Planck's assumption that
energy is only exchanged in multiples of Av, Einstein’s paper (ter Haar 1967) was mainly
concerned with the preperties of radiation by itsell. For a review of arguments for the
existence of photons see Scully & Sargent 1972
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Fig. 1.8.
A monochromatic wave,
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the intensity of the radiation increases the number of photons in it and
therefore increases the number of electrons that are produced.

This is almost enough to show that the electromagnetic field is made up of
material particles — almost. but not quite, since photons do not have definite
positions like particles but retain the field-like characteristic of being spread
through space. They also retain the property of a field that it can be cancelled
by an opposite field; thus they exhibit the typically wavelike phenomena of
diffraction and interference,

Diffraction is exhibited by waves when they meet an obstacle. Instead of
being cut off sharply by the obstacle, they spread in all directions from every
point on the edge of it. This has the result that the shadow cast by the obstacle
is not clear-cut, but has a blurred border whose width is of the order of the
wavelength of the waves casting the shadow.

Interference occurs in any form of wave motion when waves from a source
can reach some point by two different routes. The phenomenon is clearest
when the waves are monochromatic, i.e. when the waves repeat themselves
regularly with a definite frequency and wavelength. Then at any instant the
disturbance will be a function of distance from the source of the type shown in
Fig. 1.8; the height of the crests may vary with distance from the source. but the
distance between successive cresis will always be the wavelength 4. At a given
place the disturbance varies with time as a simple oscillation. For interference
to occur the wave must be coherent, i.e. the pattern must be maintained over
long distances and times. (An exactly monochromatic wave is automatically
coherent; an incoherent wave is one which is almost monochromatic, but the
regular alternation shown in Fig, 1.8 is occasionally disrupted, as in Fig. 1.9.)

Mow if two waves arrive at the same point by two different routes the
disturbance will be the algebraic sum of the disturbances in the individual
waves. If they emanate from the same source and are part of the same coherent
wave train, the result will depend on the difference between the distances that
the two waves have travelled, If this is a whole number of wavelengths, the
vibrations from the two waves will be in phase, i.e. they reach a crest or trough
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Fig. 1.9.
An incoherent wave:
disruptions like that at X
mean that the distance
between successive crests
sometimes differs from A4

Fig. L.10.

The two-slit experiment: at X
the path difference is AH,+
H,X —(AH,+ H,X) and is
equal to one wavelength; at ¥
iwis AM, +H, ¥ —

(AH,+ H,Y) and is equal to
half a wavelength,
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together and therefore reinforce each other. If, on the other hand, the path
difference between the waves is half an odd number of wavelengths, then the
vibration due to one wave reaches a crest when the other reaches a trough and
therefore one wave reduces the disturbance due to the other, or may cancel it
completely. This is illustrated in Fig. 1.10 for the two-slit experiment, in which
the waves from the source at A can reach the line BC only by travelling
through one of two holes H, or H , in a screen between the source and the line.
At a point X on BC, the path difference is AH, X — AH, X; if this is a whole
number of wavelengths the disturbance at X is large, while if it is half an odd
number of wavelengths the disturbance at X is small. Fig. 1.10 shows the
intensity of the wave at points on BC, which is related to the amplitude of the
vibration at these points, as a function of position on BC.

Mote that the two-slit experiment also involves diffraction, which oceurs at

\/\}A/l\/\/\

ey I

&

Ao /
Intensity on BC

c




L8 Particles of force 23

the holes H, and H, In general, whenever diffraction occurs it will be
accompanied by interference: when a beam of waves spreads into the shadow
of an obstacle. there is interference between waves coming from different parts
of the edge of the obstacle. This causes a bright spot at the centre of the shadow
of a small disc; in general, whatever the shape of the obstacle, there will be a
pattern of alternating bands of high and low intensity at the edge of the
shadow. This pattern can be enhanced if the obstacle has a regular structure,
like the series of parallel scratches that make up a diffraction grating. Such a
dilfraction pattern is observed, for example, when X-rays pass through a
crystal. The regularly spaced atoms in the crystal constitute the obstacle; the
emerging X-rays are concentrated in some directions in which the
electromagnetic waves reinforce each other, while in other directions they
cancel.

These phenomena, which are characteristic of waves, are hard to reconcile
with the idea that electromagnetic radiation consists of particles, but they
ceased to give any reason for distinguishing between photons and the particles
described in the first hall of this chapter when it was discovered that the latter
also displayed wavelike properties. In 1927 Davisson and Germer showed that
a beam of electrons passed through a crystal will emerge in a diffraction
pattemn just as a beam of X-rays does. The electrons behave like a wave whose
wavelength is determined by the momentum of the electrons according to a
relationship previously proposed by de Broglie,

paa=, (1.24)

Diffraction by crystals shows electrons and photons both behaving in the
same wavelike way; another indication that they are very similar in nature is
provided by Compton scattering, which shows them both behaving in the same
particle-like way. Compton investigated the response of free electrons to the
incidence of a plane wave of monochromatic radiation, with frequency v and
direction of propagation k, say. He found that each electron moved as if it had
collided with a particle with energy hv and momentum hvk/c, energy and
momentum being conserved in the collision. The momentum acquired by the
electron may have a component perpendicular to k and is not predictable. [t is
related (via conservation of momentum) to the momentum of a photon which
emerges, travelling in a definite direction, from the collision. (This is in sharp
contrast with the predictions of the classical theory of the interaction between
a charged particle and the electromagnetic field, according to which the
particle should acquire momentum in the direction k and should emit
radiation in the form of a spherical wave.)

Since the field was originally defined in terms of the force on a charged
particle, saying that the field consists of photons amounts to saying that the
force on a charged particle is caused by its absorption of or collision with a
photon, as in the photo-electric effect or Compton scattering. Thus the electric



Fig. 1.11.
Feynman diagram for the
force between two electrons.
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repulsion beiween two electrons is understood as in Fig. 1.11. One electron
emits a photon and recoils; the second electron absorbs the photon and
acquires its momentum. (A picture like Fig. 1.11 is known as a Feynman
diagram.)

We have now come full circle in our view of forces, and have returned to a
pre-Newtonian view in which forces do not exist apart from matter, but
consist of the action of particles of matter in contact. However, this view is
only obtained at the cost of accepting apparently contradiclory properties for
matter, which behaves like particles in some circumstances and like a field in
others.

Bohr and Heisenberg based their explanation of these contradictory
properties on the principle that it is impossible to think of any physical system
as having an independent reality, divorced from the observer; at the level of
smallness we are considering, the physical processes used to observe the
system will involve an inevitable interference with the system, which has an
ineradicable minimum whose magnitude is of the order of Planck’s constant h.
This means that one must be chary of assuming that a property revealed by an
experiment is simply a property of the system under study, as one would in
classical physics; what an experiment reveals is a property of the system and
apparatus together. Thus an experiment appropriate for waves may well show
wavelike properties, while an experiment appropriate for particles shows
particle-like properties. These are indeed contradictory in that they cannot be
shown simultaneously, but they cannot be contradictory if regarded as
properties of a collective (system + apparatus), since they refer to different
collectives.

To illustrate this, consider the two-slit experiment (Fig. 1.10) with a beam of
electrons, emanating from a source at A, passing through the holes i, and H 5,
and impinging on a fluorescent screen at BC. This is an experiment
appropriate to waves, and it elicits wavelike behaviour in the form of an
interference pattern on BC. This can only be understood by saying that the
wave passed through both holes. A particle must pass through one hole or the
other; but this particle-like behaviour can only be demonstrated by changing
the experiment and putting detectors next to the holes. The detector will
register particles at either H, or H,, never both simultaneously; but now of
course the interference pattern is losl. When the interference pattern is present
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it contains an indication of particle-like behaviour, since it is not actually
continuous but is made up like a television picture of dots caused by individual
electrons, but it is not possible to understand the pattern on the assumption
that each of these electrons must have passed through one slit or the other.

Heisenberg’s uncertainty principle is a quantitative statement of these ideas.
It asserts that it is impossible to set up an experimeni which will prepare
particles with precise values of both the position x and the momentum pin the
x-direction. In general there will be uncertainty in both quantities, so that the
position is only known to lie in a finite interval Ax, and the momentum
similarly to lie in a finite interval Ap. The uncertainty principle states that these
obey the inequality

h
ﬂ-’f'ﬂlF’?"i‘;- {1.25)

so that they cannot be reduced to zero simultaneously.

Heisenberg originally explained the uncertainty principle in terms of the
uncontrollable change in momentum which is caused by determining the
particle’s position, as if the particle had definite values of both position and
momentum but we were prevented from knowing them by the inevitable effect
of our apparatus on the particle. The principles of quantum mechanics which
have emerged since then deny that a particle can have definite values of
position and momentum simultaneously: it can acquire a value for either one
of them when an experiment is performed to measure it, but the value acquired
will be unpredictable, and it is this forcing of a particular value on the particle
that constituies the uncontrollable effect of an observation on the sysiem
observed. As we will see in §2.4, insofar as (1.235) can be derived from the
principles of quantum mechanics, the uncertainties Ax and Ap are statistical
measures of the scatter in the precise values of x and p that the particle might
take up on measurement.

The uncertainty principle can also be regarded as an expression of the
conflict between wavelike and particle-like properties. If we use de Broglie's
relation (1.24) to express momentum in terms of wavelength, the uncertainty
principle (1.25) becomes

Ax-Ak> o, (1.26)
4n

where k=4"" is the wave number (the number of waves per unit length). Eq.
(1.26) can be proved to be automatically satisfied by any continuous function
of x if Ax is a measure of the range of x for which the function takes values of an
appreciable size, and Ak is a measure of the range of k which must be used if the
function is represented as a superposition of waves with wave number k (ie.
functions sin 2mkx). Thus (1.26) expresses the impossibility of describing
simultaneously particle-like properties (with a function which is localised at a
definite position x) and wavelike properties (with a function which has a
definite wave number k).



Fig. 1.12.
The force between an electron
and a positron.
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It 15 intuitively reasonable that there should be some such relationship as
this, since the function will need to have non-zero values over a range of values
of x (at least a few wavelengths) in order to establish the existence of even an
approximate repetition with that wavelength. Similar considerations should
apply to a function of time, so that there is a corresponding inequality

1
W " >
Ar-Avz = (1.27)

where v is the frequency of a phenomenon which varies in time. Using Planck’s
relation (1.22) to relate frequency to energy would give us

I
Ar-AE=—. (1.28)
4n

However, itis hard to interpret (1.28) in quantum mechanics, since time 1s not a
property of a particle as position is. The time-energy uncertainty relation does
not have the character of a well-defined and reasonably simple statement
which can be rigorously deduced from the basic postulates, as the position—
momentum uncertainty relation (1.27) does; nevertheless, echoes of (1.28) can
be heard throughout quantum mechanics.

The uncertainty relation makes it possible to understand how Fig. 1.11 can
describe forces of attraction as well as repulsion. Asit isdrawn, Fig. 1.11 looks
like a picture of repulsion, and the accompanying description seems to allow
only for repulsion; both the recoil of the first eleciron and the impact of the
second electron with the photon drive the electrons away from each other. But
the attraction between an electron and a positron can now be described as
follows: the electron emits a photon with momentum directed away from the
positron, and recoils towards the positron. This statement entails a degree of
definiteness in the momentum of the photon. By the uncertainty principle
there is a corresponding uncertainty in its position: it might be on the other
side of the positron, so that it can hit it and knock it towards the electron. This
is pictured in Fig. 1.12, in which both wavy lines represent the same photon.
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However, this process of attraction is usually represented by the same diagram
(Fig. 1.11) as is used for repulsion.

Thus it is possible for a pair of particles to exchange a photon whose
momentum can be directed in either direction along the line joining the
particles, Which of the two possibilities actually takes place depends, as in
classical mechanics. on the nature of the force; in the case of electromagnetism,
on whether the particles have the same or opposite signs of electric charge.

In the processes depicted in Figs. 1.11and 1.12 the photons have some of the
potential energy classically associated with the force between the electrons,
and so their energy is different from that of freely moving photons. For this
reason they are called virtual {as opposed to ‘real’); they cannot exist on their
own, but must eventually be captured by a charged particle so as to form part
of one of these processes. T This informal description of forces comes from the
formalism of quantum field theory, It will not be possible in this book to show
the full workings of this theory, but some of the mathematical features which
are represented in Figs. 1.11 and 1.12 will be described in §6.5, and the way in
which they are used in quantum field theory will be sketched in Chapter 7.

The basic events in electromagnetic interactions, according to this picture,
are the emission and absorption of photons by charged particles. They are
each represented by a single vertex in a Feynman diagram. The strength of the
force between two particles is given by the intensity of the field, which is
proportional to the number of photons; hence the greater the force exerted by
|or on) a particle, the more photons it will emit (or absorb). It follows that the
charge on a particle is proportional to the probability that it will emit or
absorb a photon.

The two basic events are shown in Figs. 1.13(a, b). Figs. 1.13(c, d) show two
further basic events invelving electrons, positrons and photons: the
annihilation of an eleciron and a positron to form a photon, and the creation
of an electron-posiiron pair out of a photon. These events cannot occur with
real particles (see problem 1.5); one of the particles involved must be a virtual
particle which moves on to another basic event to complete the real process, as
in Fig. 1.14 which shows a possible sequence of events by which Compton
scaltering can occur.

The relation between Figs. 1.13(a) and 1.13(c) is that the outgoing electron
line in 13(a) is replaced by an incoming positron line in 13(c). Such a
replacement is always possible at a vertex ofa Feynman diagram, This leads us
to adopt a new convention in drawing these diagrams. The arrows that we
have put on the lines up to now are unnecessary if it is understood that time

T It is often stated that in these processes the principle of conservation of energy is violated by
an amoeunt AE for a time Ar satisfying (1.28). This is incorrect. The only nonconservation in
these processes is of kinetic energy; as in classical mechanics, the total energy is the sum of
the kinetic and potential energies and the principle of conservation of energy holds exactly at
all times. It can appear to be violated because the energy does not always have a definite
value.



Fig. 113
Basic electromagnetic events.

Fig. 1.14,
Compton scattering.
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always runs from left to right across the page. Instead, we will use arrows to
identify electrons and positrons by putting an arrow on every electron line in
the direction of time, and an arrow against the direction of time on every
positron line. The basic vertex is then given by the single diagram of Fig. 1.15,
but the lines can go in any direction on the page. A complete Feynman
diagram will then contain solid lines of which some parts represent an electron
and other parts a positron, but the arrows on the line follow each other from
one end of the line to the other. Thus the Compton-scattering process of Fig.
1.14 is drawn as in Fig. 1.16{a). (It is amusing to think of this process as
involving a single electron which at one stage travels backwards in time and
appears as a positron). Another possible process for Compton scatlering is
shown in Fig. 1.16(b); both of these processes are included in Fig. 1.16(c). An
indication of the mathematical justification for these Feynman diagrams will
be given in Chapter 6.

A description of this type applies to each of the fundamental forces listed in
§1.7; each of them is associated with a particle like the photon, a field guantum
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Fig. 1.15.
The basic electromagnetic
vertex.

Fig. 1.16.
Compton scattering revisited.
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for the force. These particles belong to a class called bosons. The particles
introduced in Part A of this chapter, on the other hand, are called fermions.
The characteristics of these two classes of particles will be defined in §2.6.

The force of gravity, insofar as it is like the electromagnetic force, is expected
to be associated with a particle called the graviton which, like the photon,
travels at the speed of light. But there are two reservations to be made. First,
because of the extreme weakness of the gravitational force between elementary
particles, gravitons have not been and are not likely to be experimentally
observed. Secondly, the classical (i.e. non-quantum) theory of gravitation is not
like electromagnetic theory, but involves the subtleties of general relativity.
The problem of combining this with quantum theory has not been fully solved,
and so it is not absolutely certain that gravitons are required by theory (though
it does seem overwhelmingly likely).

The weak force is associated with three bosons, called W *. W~ and Z°. The
W = particles carry electric charge, as indicated by the superscript, and when
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Fig. 1.17.
N+v=—+pt+e .

Fig. 1.18.
n—p+e +W
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they are emitted or absorbed by a particle they change its identity. The
exchange of W* particles is responsible for processes like (1.16), as illustrated
in Fig. 1.17.

A related description. also involving the W~ particle, can be given for
neutron decay (1.13). The process is shown in Fig. 1.18; it involves the creation
of an electron-antineutrino pair out of the W~ which is emitted by the
neutron.

As we have seen, the strength ol a force is proportional to the probability
that the particle exerting the force will emit the associated boson. Thus the
weakness of the weak force implies that the decay shown in Fig. 1.18 is a rare
event, and therefore that the neutron has a long lifetime.

Fig. 1.18 incorporates the same convention as the Feynman diagrams for
electromagnetic processes: a backward arrow on a fermion line denotes an
antiparticle. It will be seen that Fig. 1.18 is obtained from Fig. 1.17 by rotating
the neutrino line.

Since the neutron and the proton are not elementary particles, the processes
shown in Figs. 1.17 and 1.18 are not fundamental processes but can be
analysed in terms of processes involving quarks, the constituents of the proton
and neutron. Now a neutron can be converted into a proton by changing a




Fig. L.19.
n=p+W" at the quark level.

Fig. 1.20.

The basic weak events: there
are also events involving the
muon and the 7 in place of
the electron.
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down quark into an up quark; thus the event at the vertex n — p+W ™ of Figs.
1.17 and 1.18 can be undersiood as being due to an event d = u+W = at the
quark level, as shown in Fig. 1.19. This illustrates how emission or absorption
of a W= by a quark changes the flavour of the quark.

The basic events of the weak force at the level of quarks and leptons are
given by the vertices of Fig. 1.20. Like the basic electromagnetic vertices, they
can occurin Feynman diagrams with the lines in any onentation. The vertices
involving the Z°, in which the fermion (quark or lepton) remains unchanged,
give rise to forces between fermions in the same way as the similar evenis
involving the photon give rise to electromagnetic forces; in fact there is a close
relation between the Z° and the photon in the Weinberg-Salam theory of the
electroweak force. A new feature of the Z° processes is that the force is
experienced by the neutrino; the observation of this force on the neutrino
provided the first experimental confirmation of the Weinberg—Salam theory in
1974. The W* and Z° particles were observed directly in 1983,

The vertices of Fig. 1,20 involve only the first family of quarks and leptons.
Subsequent families are involved in very much the same way: for the second
family, for example, the basic vertices can be obtained from those of Fig. 1.20
by substituting the corresponding particles (ie.u ™ fore”, v forv,.sfordandc
for u). There are also vertices involving particles from different families, like
that of Fig. 1.21{a). By means of processes in which these vertices occur, the
particles of the higher families decay to those of the first family. Thus all
hadrons containing a strange, charmed, beautiful or truthful guark eventually
decay into nucleons.

In the unified Weinberg-Salam theory, the basic electromagnetic vertex of
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Fig. 1.21.
The remaining electroweak
vertices.
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Fig. 1.15 goes together with the weak vertices of Fig. 1.20. Because the W*
particles have electric charge, there are also vertices involving these particles
and a photon, as shown in Fig. 1.21(b). There are also vertices in which the
photon is replaced by a Z°_ and finally there are four-line vertices in which four
bosons meet. The existence of these vertices which involve field quanta only is
characteristic of the particular mathematical form of this theory, which is a
non-abelian gauge theory. The meaning of this phrase will be explained in
Chapter 7.

As we have seen, the strength of a force is proportional to the probability of
the basic event which occurs in the Feynman diagram for that force. The other
characteristic of the forces listed in Table 1.3, their range, can also be
understood in terms of the exchange of field quanta, as in Feynman diagrams.
The electromagnetic force, which has infinite range, is due to the exchange of
photons, which travel at the speed of light and therefore have zero rest-mass.
In 1935 Yukawa suggested that bosons with non-zero rest-mass g, travelling
slower than light, would not be able to move as far as a photon could from the
particle that emitied them before being absorbed by another particle. The
force they give rise to would therefore have a finite range R; it is given in terms
of u by

R=— (1.29)

where h=h/2n (a combination which occurs in quantum mechanics more
commaonly than h itself). The inverse relation between distance and mass
shown in this equation is characteristic of quantum mechanics; in general,
short distances correspond to large mass. or equivalently high energy or
momentum. The same relationship can be seen in de Broglie's equation (1.24)
and the uncertainty relation (1.25).

Yukawa's proposal was made in the course of the search for a theory of the
strong force. The range R= 107"'% m quoted for this force in Table 1.3 would,
according to (1.29), imply that the field quanta should have a mass of u=
200 MeV. Particles of about this mass, and with other properties appropriate
to field quanta of the strong force, were discovered soon after Yukawa's
suggestion; these are the pions (symbols n~, 2% n*). They give rise to forces
between baryons as in the Feynman diagrams of Fig. 1.22. However, at the
deeper level of quark structure it appears that the pions are not elementary
bosons but are composite objects each made up of a quark and an antiquark.
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Fig. 1.22.
Muclear forces.

Fig. 1.23.,
Muclear forces at the quark
level.
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The processes of Fig. 1.22 can be analysed into more complicated processes,
shown in Fig. 1.23, whose basic components are forces between quarks. The
forces between baryons shown in Fig. 1.22 now appear as a residual effect of
the forces between guarks which hold them together inside the baryon, in the
same way as the forces between molecules which make ordinary matter cohere
ithe van der Waals forces) are a residual effect of the basic electromagnetic
forces which hold electrons and nuclei together inside atoms.

The field quanta of the interquark force, represented by curly lines in Fig.
1.23, are called gluons. Emission or absorption of a gluon does not change the
flavour of a quark, but it does affect its colour. There are six gluons
corresponding to the six possible changes of primary colour; there are also two
other gluons which do not change the colour of a quark. The mathematical
description of the relation of these eight gluons to the colours of quarks will be
given in Chapter 6; we will see that the gluons form the same pattern as the
eight baryons shown in Fig. 1.4 (the gluons being arranged in a colour
diagram. whereas Fig. 1.4 is a lavour diagram).

The basic vertex of this force as it affects quarks is shown in Fig. 1.24(a). The
probability of this event, and therefore the strength of the force, is determined
by the colour of the quark, in a generalisation of the way in which the strength
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of the eleciromagnetic force on a particle is determined by its electric charge.
MNow gluons must also be regarded as coloured (since they carry colour from
one quark to another), and so they themselves experience the same force as
quarks. This means that there is a three-gluon vertex, Fig. 1.24(b). There is also
a four-gluon vertex, Fig. 1.24(c), like the four-W vertex in the electroweak
force: the theory of the interquark force is also a non-abelian gauge theory.

Like single quarks, single gluons have never been observed directly, and it is
thought that they never will be because the force that binds them in hadrons
does not fall off at large distances, so that they cannot escape. (However, there
15 speculation about the possible existence of particles consisting of a number
of gluons and no quarks: these are called glueballs.) This feature of confinement
is a complicated (and so far unproven) secondary effect in a force which is
primarily an inverse-square force with infinite range, so that gluons are
massless particles like phoions.

The quantum theory of the electromagnetic force, which gave us our
paradigm for the description of forces by means of Feynman diagrams, is
called quantum electrodynamics (or QED). By analogy, the theory of the
interquark force is called quantum chromodynamics or QCD. The unified
theory of the electroweak force is sometimes called quantum flavourdynamics.
These forces and their associated bosons (which are called gauge bosons
because all the forces are described by gauge theories) are summarised in Table
I.4. Tables 1.2 and 1.4 include all particles which are currently regarded as
elementary.

Table 1.4. The fimdamental forces and their bosons

Discovery
Particles Gauge Theoret- Experi-
Force affected bosons Mass ical mental
Gravitational All Graviton ] = =
Electroweak Leptons Photon 3 0 1900 1857
and W= E1 GeV 1968 1983
quarks Z 931 GeV 1968 1983
Quanium
chromodynamics  Quarks 8 gluons 0 1974 —

Fig. 1.24.
Basic vertices of the colour
force.
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Further reading

Problems on Chapter 1

Problems i5

Fuller accounts of the structure of matter at the elementary level ofthis chapter
can be found in Einstein & Infeld 1938 (on the general structure of physical
theory), Weinberg 1983 (on the first subatomic particles), Davies 1979,
Polkinghorme 1979, Dodd 1984 (at a somewhat more advanced level), and
Sutton 1985, See also O'Brien 1974, Accounts of quantum mechanics at this
level can be found in Andrade e Silva & Lochak 1969, Zukav 1979 and
Polkinghorne 1984, Heisenberg's own exposition (Heisenberg 1930) and
Feynman's introduction (Feynman et al. 1965) are particularly recommended.

b

In electrolysis metal ions in solution are attracted to a negatively charged
plate (the cathode). Faraday's law states that the current is
FMvp

At

[=

where M is the mass of metal deposited on the cathode in time 1. the integer v
is the valency of the metal and A is its atomic weight, and F is a constant
which has the value 9.65 x 107 coulomb kg = ! if I is measured in coulombs per
second. Calculate Avogadro®s number (the number of atoms ol atomic weight
A in a mass of A kg).

. Calculate the mass of the electron in kg. [A charge of | coulomb falling

through a potential difference of | volt acquires energy of | joule, The speed
of light is 3 = 10" ms ', All other necessary information can be found in this
chapter.]

. An electron is suspended against gravity by an electric field between two

plates 10 em apart. Find the voltage between the plates.

. Obtain the expression ( 1.8) for the energy of the electron in the hypothetical

decay (1.4).

. Show that an electron and a positron cannot annihilate 1o form a single real

photon while conserving energy and momentum. Show that they can
annihilate 1o form two real photons, and draw the Feynman diagram
representing this process.

. Show that the potential ¥(r)=ge~*/r satisfies V2 V=4 V except at the origin,

and that if R is any region containing the origin,
I ?V‘ﬂ:ﬂ""[‘ Vd*r—dng
R #

where R is the boundary of R.



2.1. Some examples

Quantum statics

In this chapter we will develop the mathematical apparatus which is needed to
describe a physical system according to quantum mechanics. Our approach is
basically deductive: we list the mathematical objects to be used and the
properties assumed of them, and give precise statements of the fundamental
postulates concerning physical systems and their relation to these
mathematical objects. We then derive consequences of the postulates, in a
form which can be compared with experimental results. The original
postulates are justified to the extent that their consequences fit with the
experimental facts — in other words, the only justification for the postulates is
that they work. There can be no watertight argument leading from the
experimental facts to the basic principles of the theory.

This order of presentation reflects the general logical structure of scientific
theories, but it makes an uncomfortable situation for the student, who is asked
to accept some pretty peculiar statements without being given any reason (o
do so at the time. [ will try to soften the shock by leading up to the postulates
with an indication of how they are suggested by experiment; but it must be
remembered that these arguments are different in nature from those following
the postulates. The arguments preceding the postulates are not proofs, and
you have every right to find them unconvincing. On the other hand, the
arguments following the postulates are intended to be proofs (and are labelled
as such), and if you find them unconvincing then one or the other of us is at
fault, The symbol @ announces a proposition which is to be proved, and |l
indicates that the proof is complete. Sometimes the proof of a proposition can
be found in the discussion preceding the statement of it, and in that case the
symbol W is placed immediately after the statement.

The arguments in the first section of this chapter are entirely of the first,
heuristic, kind. The precise mathematical development starts in §2.2.

The description of particles and their behaviour given by quantum mechanics
is fundamentally probabilistic. It does not offer definite predictions about
what will happen in given physical circumstances, but can only state what
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events are possible and how probable each of them is. We have already seen a
number of phenomena that seem to call for this statistical approach:

1. Radioactivity

As was described on p. 5, it is not possible to predict when a particular
radioactive nucleus will decay. Two identical nuclei may survive for different
lengths of time before decaving, and no features have been discovered which
would distinguish the condition of the shorter-lived nucleus from that of the
longer-lived. The only statement which can be made about a particular
nucleus is to give the probability that it will decay in a given time interval.

2. Compion scatiering

The response of an electron to an evenly spread plane wave of electromagnetic
radiation is unpredictable: it may emerge from the encounter travelling in any
direction. Note that this is what we would expect if the radiation is described as
a collection of particle-like photons; not being able to predict the result of the
collision is a result of not knowing the precise positions of the photons. But if
the radiation is regarded as a field the probabilistic nature of the effect seems
more fundamental.

3. Electron diffraction

Probabilistic ideas can resolve the clash between the concepts of a particle and
a field, or wave. When a beam of electrons is passed through a crystal and
observed on a photographic plate, the diffraction pattern that it creates is not
truly continuous but is made up of a number of dots, just like a newspaper
picture, each dot being caused by a single electron striking the plate. The
pattern is a statistical effect of the large number of electrons,; each individual
electron moves like a particle, but its motion can only be predicied to the
extent of a statement that it has a high probability of moving to the bright part
of the diffraction pattern and a low probability of moving to the dark part.
This means that the motion of the electron must be described by a probability
distribution in space, i.e. there exists a probability density function pir) such
that the probability that the electron will be found in a small volume d V at the
point r is p(r) d V.

Let us examine the phenomenon of interference to see what it suggests about
the function p(r). Consider any wave which has a definite frequency v. A wave
does not necessarily involve the motion of a material medium (we speak of
‘crime waves' and ‘heat waves’); in general, any quantity that varies in space
and time can constitute a wave. We will usually call it a *disturbance’. To say
that it has frequency v is to say that it oscillates in time with frequency v and
with an amplitude A and phase ¢» which may vary from point to point. Thus at
the point r the disturbance is given by

fir, t)= Alr) cos (@t + ¢{r)) (2.1)
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where i =2rv. It is convenient to express this by means of complex numbers:
Jir r)=Re [ir)e ] (2.2)
where
ir) = A(r)e " (2.3)
(the choice of ¢ ™" rather than ¢ in (2.2) is purely a matter of convention). In
many types of wave phenomena the intensity of the wave at the point r, i.e. the
density of energy in the disturbance, is proportional to the square of the
amplitude:
1ir) =k A(r)* = k|y(n)|*. (2.4)
Mow suppose two waves with the same frequency, but with different
amplitudes A4, (r) and A.(r)and phases ¢, (r) and ¢,(r), are superimposed in the
same region of space. Then the total disturbance is

fir, 1= A, (r) cos (et + g, (r)) + A,lr) cos (w4 d,(r)

=Re [y, (1) + olr) e ™] (2.5)
where ¢, and ¢, are defined as in (2.3); and the total intensity is
Ir)= k|, () + (v 2. (2.6)

This is not equal to the sum of the intensities of the individual waves:it is larger
than that when y, and i, have the same direction in the complex plane, so
that the two oscillations are in phase, and smaller than either when they have
opposite directions, so that the two oscillations are out of phase. Thus (2.6) is a
mathematical description of interference.

The fact that electrons show interference patterns suggests that underlying
the probability density pir) (which, like Iir), is a positive function describing
how much effect the wave has at r) are amplitude and phase functions which
can be put together into a complex function y(r). Then the probability is given
by

plr) = k|, 27
i is called the wave function of the electron.

From (2.7) we see that the probability that an electron will be found
somewhere in a region V is k |, |y(r)]* ¥ If we take the region V to be the
whole of space then, since the electron must be somewhere, the probability
must be 1: this determines the constant k. Thus (2.7) can be replaced by

"
jw-i*.w

where the integral is taken over all space.

For(2.8) to make sense, the integral in the denominator must be finite, i.e.
must be square-integrable. In the mathematical development of quantum
mechanics we will want to repeatedly differentiate i and multiply it by the
coordinates of r, and assume that the result has the same properties as . We

(2.8)
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therefore impose the following conditions on y:
W1  is square-integrable, i.e. | ||* dV<au.

W2 i has uniformly continuous partial derivatives of all orders,
which are also square-integrable.

W3 If fir) is any polynomial in the coordinates of r, then the
product fif is square-integrable.
By a wave function we will always mean a function i satisfying W1-W3, These
conditions are not strictly necessary, but they make it possible to simplify the
general discussion, In particular problems it is often convenient to relax these
conditions; the justification for this will be discussed in §2.5.

MNote that the probability density (2.8) is unchanged if the function y(r) is
multiplied by any complex constant . Thus, as far as its position is concerned,
the description of the particle given by the wave function ¢il(r) is the same as
that given by (r). This makes it permissible to assume that [ [/|* dV'= 1, which
is convenient because it simplifies (2.8). A wave function satisfying this
condition 15 said to be normalised.

4. Polarisation of photons

As another example ol probabilistic behaviour for which we can give a
mathematical description, consider the photons in a beam of polarised light.
The classical description of a light ray as an electromagnetic wave is that it
consists of oscillating electric and magnetic fields at right angles to each other
and to the direction of the ray. We can concentrate on the electric field vector;
at every point on the ray, this lies in the plane perpendicular to the direction of
the ray. If at each point the electric vector oscillates along a fixed line in this
plane, the light is said 1o be plane polarised (because the lines along which the
electric vector oscillates at different points on the ray are all parallel to each
other and together make up a plane); the direction of the electric vector is
called the direction of polarisation.

A polaroid filter is a sheet of material consisting of crystals aligned along a
certain direction called the axis of the filter. The material allows polarised light
to pass through if its direction of polarisation is parallel to the axis of the filter,
but not if it is perpendicular to it. If the light is polarised along a direction
which makes an angle @ with the axis of the polaroid, it destroys the
component of the electric vector perpendicular to its axis. Thus if the electric
vector of the light just in front of the polaroid oscillates as

Elf)=E, cos wt, (2.9)
and if E;=E, + E, where E, and E, are parallel and perpendicular to the axis
of the polaroid, then just behind the polaroid the light will have electric vector

E{t)=E, cos mi. (2.10)
Thus the light emerging from the polaroid is polarised parallel to its axis. Its
intensity, which is proportional to the square of the amplitude of the
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oscillations of the electric vector, is determined by |E,|*; hence (see Fig. 2.1)
intensity of transmitted light _|E,|*
intensity of incident light ~ |Eg]*

What of the photons in such a beam of light? Each individual photon is
vither absorbed by the polaroid or passes through it, and since all the photons
are identical we cannot predict what will happen to a particular photon; we
can only give the probability that it will pass through the polaroid. Since the
intensity of the light is proportional to the number of photons in it, the
proportion of the photons that pass through is cos® #; this is thereforet the
probability that an individual photon will pass through.

The photons which do pass through the polaroid make up a beam with a
different direction of polarisation from the original beam. Thus passing
through the polaroid changes the state of polarisation of the photons,

The most general state of polarisation of a coherent beam of
monochromatic light is not plane polarisation but elliptical polarisation. If we
choose x- and y-axes in the plane perpendicular to the direction of motion of
the light, the x- and y-components of the electric vector at any point oscillate
independently, and in general have different phases:

Elt)=E qcos(wt+¢,), El)=E,coswt+¢,) (2.12)
(the light is plane polarised when ¢, = ¢, ). This means that the tip of the vector

E(t) moves round an ellipse in the xy-plane. As in our previous discussion of
waves, we can combine the amplitudes and phases to form complex numbers

ey=Ee ™™, ¢;=Ee™", (2.13)

cos? £, (2.11)

*5ee the note on probability on p.41.

axis of polaroid
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Then the electric vector is given by %
E(t)=Re [fe "] (2.14)

where

Y=c, i+, (2.15)
and its intensity is proportional to '

¥ =lc[* +les|? (2.16)

(the bar denotes complex conjugation). The condition of an individual photon
in such a beam can be described only to the extent that the whole beam can be
described; it is not possible to distinguish different photons. Thus the
polarisation of a photon is described by the vector E{t), or equivalently (the
frequency « being given) by the constant vector . But if ¢ is multiplied by a
real number r the only effect on the beam is to change its intensity, i.e. the
number of photons in the beam; thus a photon in the beam described by rjr is
in the same state of polarisation as one described by . Also, if § is multiplied
by a complex number of the form " the only effect is to change the phase of the
oscillation (i.e. the time at which E passes through a particular point of its
ellipse) but not the shape of the ellipse. It is found that it is impossible to
determine the phase of the oscillation for a single photon (there is an
uncertainty relation between the phase and the number of photons in the
beam): the polarisation of a photon is defined purely by the shape traced out by
the electric vector. Thus ¢y describes the same state of polarisation as ¥.

We can summarise this mathematical description of the polari: ation of a
photon travelling in the z-direction as follows:

1. every state of polarisation corresponds to a vector yr of the type (2.15)
(we will call such a vector a polarisation vector);

2. if yr is such a vector and ¢ is any complex number, ci represents the
same state of polarisation as .

Since probability is so fundamental in quantum mechanics, it may seem
surprising that we have assumed that the reader already knows what it means,
and have not explicitly defined it. It is not in fact possible to give a full
definition of probability in elementary physical terms. As with other primitive
terms in physics and mathematics, the most one can do is to give a partial,
implicit definition by stating the properties that probability has, in axiomatic
fashion.

We are concerned with the probability of a physical occurrence «, which we
will describe as the result of an experiment E. The probability will depend on
the conditions at the beginning of the experiment, i.e. on the state y of the
system being investigated; it is denoted by pglz|y). Its properties are as
follows:

Pl Suppose E is an experiment with possible results «,, ..., 2,
which are exhaustive and exclusive, i.e. one and only one of them must
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happen. The probability of the result », given the initial state J is a real
number pglz, | ) satisfying

0 O=pla|Wi<E;

@ X pele|¥)=1.

i=1
P2 Ila,u. .., =, are different possible results of the experiment E,
the probability that one of them will happen given the initial state i is
Pl or &y or - or & [W)=ppla| )+ - - +pla, | ). (2.17)

P3 Suppose E and F are independent experiments, ie. there is no
causal influence of one of them on the other and no common causal
influence on both of them. If %, .. ., &, are the possible results of E
and B, ..., f#; are the possible results of F, the probability that the
result of E (with initial state ) will be o, and the result of F (with initial
state ) will be B, is

Pearla; and fi;| ¢ and @)= pyla | W)p,(B; | D). (2.18)
P4 Suppose the experiments E and F are linked in such a way that
the initial state of F is determined by the result of E. Let ¢, be the
initial state of F which follows from the result = of E. Then the initial
states for E are initial states for the combined experiment E & F. and
the probability that E will have the result % and F will have the result
B, given initial state o, is

Prarla and B| )= pele|W)peB| ¢,). (2.19)

Ifthe set of possible results is infinite, then the probability must be regarded

asa measure on this set, i.e. a function ol its subsets, in the way that is described

in probability textbooks (e.g. Gnedenko 1968). Thus, for example, if E is the

expeniment of measuring the position of a particle and the initial state of the

particle is specified by a normalised wave function (r), the basic probability
stalement is

pelparticle will be found in region V| ) =I || V. (2.20)
B

It follows from P1-P3 that if the experiment E is repeated independently a
large number of times with initial state i, the probability is close to | that the
proportion of experiments which have the result « is close to p(x | ). In order
to explain the quantitative notion of probability we need only add the
qualitative statement that if the probability of an event is close to 1 then the
event is very likely to happen. This also shows how the probability of a result is
to be measured: the experiment is repeated a large number of times, and the
probability of the result « is taken to be the proportion of times that this result
occurred. The number so obtained is not certain to be exactly the probability
being measured, but it is very likely to be close to it (which is as much as can be
said of any experimental measurement).
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It is often said that the notion of probability is only applicable to repeatable
experiments (or that there are two kinds of probability, of which the kind that
refers to single events is not relevant to physics). The motivation behind this
distinction is the desire to accept only testable statements as meaningful, and
as we have seen the only way to test a probability statement about the outcome
of an experiment is to repeat the experiment a large number of times and
observe the proportions of the various outcomes. But one can only repeat an
experiment a finite number of times, and any finite collection of repetitions of
the experiment can be regarded as a single experiment to which one must
assign probabilities, in defiance of the above injunction. Thus the distinction
between the two kinds of probability is logically shaky.

An alternative view of probability (not usually adopted in physics books) is
that all probability is of the kind which is appropriate for single events: a
statement about the probability of an event is a statement of the speaker’s
degree of belief that the event will occur, as shown by the odds one will accept
in gambling on the event. This is logically unassailable, but is clearly not a
suitable concept to use in framing objective laws of nature.

Owr attitude in this book will be that a statement about the probability of an
outcome of an experiment has consequences both for the degree of belief with
which a rational being should believe in this outcome, and for the likely result
of a series of repetitions of the experiment, but it cannot be reduced to either of
these. [t implies them but is not implied by them; they explain the probability
statement but do not define it.

Attempts to define probability more explicitly than this are usually either
circular (involving an appeal to ‘likeliness’) or mysterious (involving concepls
like ‘propensity’ which are no more transparent than that of probability). This
is not to say that the question of what probability means, or ought to mean, 1s
not interesting and important; but the answer to that question, if there is one,
will not affect the properties of probability that are set out here, and we can
proceed without examining the concept any further.

We now have two examples of properties of a quantum-mechanical system, for
each of which we have given a mathematical description. In each case there isa
mathematical object which describes the state of the properties we are
interesied in: the state of an electron as far as its position is concerned (ignoring
any other properties it may have) is described by the wave function yi(r), while
the state of polarisation of a photon (ignoring its position, and assuming it has
a particular direction of motion) is described by the polarisation vector y. (The
word *state’, which has already appeared several times in this book, is to be
understood for the time being in its ordinary-language sense, as when a mother
complains to her teenage daughter ‘Look at the state of your room." It will
eventually be given a precise technical meaning, but we are not yet in a
position to define this) The objects y(r) and ¥ are very different
mathematically (as one might expect, position and polarisation being very
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different physical properties), but they share certain features which must be
present in the description of any quantum system. We will now embark on a
general description of these features, using the electron and the photon as
examples. (Although we are ignoring some properties of each of these, we will
regard them as complete physical systems. Thus for the purposes of this section
an ‘electron’ is a particle with position but no internal properties — we will also
call such a particle a simple particle — and a ‘photon’ is a particle with
polarisation but no position and a fixed direction of motion. In §2.6 we will
discuss how to put different properties together.)

Because we want to cover a number of different kinds of guantum system,
the discussion will be mathematically abstract: we will not specify exactly what
mathematical objects we are talking about, but will be content to say what
properties they must have in order to be capable of describing a quantum
system. These unspecified mathematical objects will be denoted by symbols
like |y »; the marks | » round the symbol indicate that it describes the state of a
quantum system, rather as in mathematical handwriting a wavy line under a
symbaol indicates that it denotes a vector. Even when we are considering a
definite system, so that we know exactly what the mathematical objects are, we
will continue to use this general notation. This has the same sort of advantage
as vector notation for three-dimensional vectors, in which one is not
committed to using any particular set of coordinate axes.

The mathematical objects > are called state vectors. The mathematical
properties that they are required to have can be summarised by saying that
they form a complex vector space with an inner product. The statement that
they form a complex vector space means that the following operations are
possible:

51 Scalar multiplication. If fl.tr} is a state vector and ¢ is a complex
number, there is a state vector c!a,&r}.

S2 Addition. If |\, > and |y,) are any two state vectors, there is a
state vector |, > + |i.).

These operations obey the rules

U W) +a) =)+, (221
) )+ + ) =) + )+ s 2.22)
(i) el >+ 2d) =clyy > +el; (2.23)
{iv) (e, +c ) =c ) +ea|d; 12.24)
(v erleal¥d)=(e x| (2.25)

{vi) If e=0, ¢|gb ) is always the same object, which is called the zero vector
and denoted by 0.

The set 5° of all state vectors, together with the zero vector, is called state
space. (Note that the zero vector is not written with the marks |» and is not
regarded as a state vector; we will see the reason for this shortly.) The state
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space for the position states of an electron is the set of all wave functions y(r)
satisfying W1-W3 (p. 39); the state space for the polarisation states of a photon
15 the set of all polansation vectors of the form (2.15). It is left to the reader to
verily that these satisfy S1 and 52 with the usual meanings for addition and
scalar multiplication.

The property 51 essentially says that state vectors involve complex
numbers: we have seen in our two examples that the use of complex numbers
reflects the fact that we are concerned with oscillatory phenomena. It is also
true in both of these examples that if i) is any state vector, then a scalar
multiple c|i)> describes the same physical state of the system as [§)>. We will
assume that this is true for any system. (This may seem to make scalar
multiplication unnecessary, but its significance becomes apparent when we
consider addition: |, > + ¢|y,» does not describe the same state as |y, » + [ 2)
ifc# 1.) It now follows that the zero vector does not describe any physical state
(for, if it did, it would describe every state, being a multiple of every state
vector). Again, this is a feature of our examples: if the polarisation vector is zero
there is no electric field and therefore no photon, and if the wave function is
zero there is no probability of finding an electron anywhere, and therefore no
electron.

Property S2, the possibility of addition, is at the heart of much specifically
quantum-mechanical behaviour. It is the possibility of adding, or
superimposing, two waves that gives rise to interference phenomena, for
example. The statement that this addition is always possible is called the
principle of superposition. [t is closely connected with the probabilistic nature
of quantum mechanics: for example. in the case of an electron, if J,(r) is a wave
function which 15 localised in a region ¥, and y},(r) is localised in a separate
region V5, then g, + ¢, is a wave function describing a state of the electron in
which it might be found in ¥ and might be found in ¥,

In general, |, > + i, describes a state of the system in which it might
behave as if it was in the state described by the state vector |y, ), and it might
behave as il it was in the state described by i, ». By using complex coefTicients
we can form a state vector ¢, |, » + ¢, ;» which describes a state in which the
relative probability of these two forms of behaviour depends on the relative
size of the coefficients ¢; and ¢,. A precise statement of this will be given in the
next section; it will require one further mathematical property of the state
space, namely

S3 Inner product. For any two state vectors |¢) and ) thereis a
complex number {¢ |} called their inner product which has the
properties

(i) if |Wy=c,|¥,>+calhz), then
(P> =c,{|¥) +ca{d|¥); (2.26)
(ii) Wby =<l (2.27)
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so that if |¢>=c,|¢,> +c;l¢,), then
(Pplud> =06 i+ | ¥ (2.28)
(i) for any |y», <W|¥>=0: if (f|wy=0. then [¥>=0. (229)

For the two systems we have been considering the inner product is defined
as follows:

For the states of motion of an electron, for which the state vectors are wave
functions, the inner product is

Lh|wy =jr£fr'}¢{n dv, (2.30)

the integral being taken over all space. It can be shown (problem 2.1) that this
integral 15 finite if ¢ and W are square-integrable.

For the polarisation states of a photon moving in the z-direction, for which
the state vectors are polarisation vectors = c,i+c,j, the inner product is

(b|y>=y. (2.31)
From now on we will stick to the ket notation for polarisation states, and we
will write the general polarisation state vector as

W) =ci|éy> +ealby (2.32)
where |¢, > and |$,) describe the states with polarisation vectors i and j. Eq.
(2.32) has the direct physical meaning that the most general oscillation possible
for the electric vector in light which is travelling in the =-direction is a
superposition of oscillations along the x- and y-axes with different amplitudes
and phases.

The statements in this section about state vectors constitute the first set of
postulates of quantum mechanics. We collect them together as

Postulate [ (the principle of superposition). The state vectors of a
gquantum system belong to a complex vector space with an inner
product, i.e. they satisfy S1-83. Every non-zero state vector El,l!a}
describes a physical state of the system, and every non-zero scalar
multiple of ¢ describes the same state. Every state of the system is
described by a non-zero state vector and its multiples, but by no other
state vector.

It is often convenient to restrict the choice of a state vector to describe a
particular state by requiring that it should satisfy {y|¢)= 1. Such a state
vector is said 1o be normalised. This requirement does not determine the state
vector uniquely, since it can still be multiplied by a complex number of the
form &% (which is known as a phase factor).

Two state vectors|¢) and |y are said to be orthogonal if {¢| > =0. A set of
state vectors |, >, |13, . .. is orthonormal if

1 ifis),
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A set of state vectors |, ) is complete if any state vector [y ) can be expressed in
the form

|¢}=Flllﬁj}+cll¢}>+-“‘ {2.34}
If the |y, are orthonormal, the coefficients ¢; in (2.34) are given by
=<y | ¥). (2.35)

We will assume that an orthonormal complete set of state vectors exists forany
state space. The number of elements in an orthonormal complete set of state
vectors is called the dimension of the state space. 1f the dimension is infinite. so
that the right-hand side of (2.34) is an infinite sum, questions of convergence
will arise, We will not explore these questions in this book (see the note on
Hilbert space at the end of §2.5). Our procedure in the rest of this chapter will
be (o give proofs which are valid if the state space is finite-dimensional, and
then (in §2.5) state without proof what results are true for an infinite-
dimensional state space.

The second general principle of quantum mechanics gives a statement of the
physical interpretation of the state vector by relating it to the properties of the
system in the corresponding state. As we have seen, these properties cannot in
general be known with certainty; we can only state the probability that an
experiment to determine them will have a particular result.

Suppose a photon whose state of polarisation is described by the state
vector | encounters a polaroid filter with its axis in the x-direction, and we
ask whether it will pass through. It the photon is polarised parallel to the axis
of the filter, so that |§) =|¢, >, then the answer will certainly be yes; if it is
polarised perpendicular to the axis, so that |y » =@, », the answer will certainly
be no. In general, however, when |3 =¢, |, > + ¢, >, light passing through
the polaroid will have its intensity reduced by a [actor

o e

p_|¢'1]2+lfz|2 (2.36)
(cf. (2.11)), and so for an individual photon there is a probability p that it will
pass through. If it does pass through, it will emerge polarised in the x-
direction; this state is particularly associated with this experiment, and is
called the ‘eigenstate’ corresponding to the result of passing through the
polaroid. The eigenstate is related to the probability p of this result when the
system is in its onginal state, described by the state vector |y); for the

eigenstate is described by the state vector |¢,, and p is given by

A,
P=0 vy o
The eigenstate corresponding to the result of not passing through the
polaroid is the state of being polarised parallel to the y-axis, described by the
state vector |¢, >, and the probability of this result is determined by the inner
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product (¢, |¥). This result, however, differs from the result in which the
photon does pass through the polaroid, for if it happens the photon does not
emerge in the associated eigenstate; instead it is destroyed by the experiment.
This is a complication which we can do without at this stage; we wish to
consider systems which can be observed in an experiment, and which,
although they may be affected by the observation, remain intact after it. For
this reason we will now switch our attention from a polarcid filter to a doubly
refracting (or birefringent) crystal. This is a crystal like Iceland spar which has
different indices of relraction for light polarised in the x- and y-directions (the
x- and y-axes being inherent in the crystal as the axis of a polaroid is inherent
in the polaroid). A narrow beam of light entening the crystal at an angle will
therefore emerge split into two beams as in Fig. 2.2, one beam B, polarised in
the x-direction and the other B, polarised in the y-direction. An individual
photon travelling in the direction of the original beam will emerge along the
path of B, ifits state vector is |¢,» and along the path of B, if its state vector is
|¢b, »: il its state vector is |y, there is a probability p (given by (2.37)) that it will
emerge in the direction B, when its state vector will have become |¢,>. and a
probability 1—p that it will emerge in the direction B,, when its state vector
will have become |, .

The polaroid filter and the doubly refracting crystal illustrate a distinction
between two types of experiment which can be observed in classical physics as
well as in quantum physics. In an experiment of the first kind the experiment
determines some property of the syvstem and leaves the system with the
property which has been determined; thus if the experiment is repeated
immediately afterwards it will give the same result. For example, a
determination of the momentum of a particle by measuring its time of flight
through a known distance is an experiment of the first kind; so is an
experiment to determine whether a photon is polarised along the x-axis or the
v-axis by passing it through a doubly refracting crystal. In an experiment of the
second kind the property being determined is changed by the experiment; it
may be possible to calculate the amount of this change, but the significant
point is that if the experiment is immediately repeated on the same system, it
will give a different result from when it was first performed. For example, a

By

Crystal
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measurement of the momentum of a particle by observing its collision with a
known mass is an experiment of the second kind; so is an experiment to
determine the direction of polarisation of a photon by seeing if it passes
through a polaroid filter. For simplicity, we will only consider experiments of
the first kind.

In general, an eigenstate of an experiment on a quantum system is a state of
the system in which the result of the experiment can be predicted with
certainty. The eigenstate is non-degenerate if it is the only state in which this
particular result will occur; in this case the result is also said to be non-
degenerate.

We can now give a general statement of what predictions can be made about
the result of an experiment,

Postulate 11, Let & be a non-degenerate result of an experiment Eon a
quantum system, and let |y, > be a normalised state vector describing
the eigenstate associated with . Then when the system is in a state
|yr>, the probability that the experiment will have the result « is

¥ |91*
Wl
The following statement is a consequence of the definitions of *eigenstate’
and ‘experiment of the first kind', but we state it as a postulate in anticipation
of the general case:

pelx|¥)= (2.38)

Postulate I11. Suppose E 15 an experiment of the first kind. If the result
of E is a, then immediately after the experiment the system will be in
the eigenstate associated with ax.

For a general statement, we must take account of degenerate results, ie.
results which are associated with more than one eigenstate. Let the state
vectors |, > and |if ;> describe two eigenstates of an experiment E, in both of
which the experiment would give the result «. According to the general
considerations of the previous section, a superposition ¢, |, » +¢,|¥, ) should
describe a state which will have the characteristics of one of the two
eigenstates, with probabilities determined by the coefficients ¢, and c,. But as
far as E is concerned, the characteristics of the eigenstates are the same, so the
superposition state should also have them: it should also be an eigenstate of E
with the result o. Thus the set 5, of all state vectors which describe eigenstates
of E with the result « has the property that if |, > and |} are state vectors in
5008 ¢, |\, » + 2|1 7, is a vector subspace of the state space # It is called
the eigenspace of E associated with the result a.

If |y is any state vector, not contained in %, it can be written as a sum of a
stale vector in 5, and one which is orthogonal to every vector in %,. To prove
this, let |y, >, [, . . . be an orthonormal complete set of states for %, and
write

[y = ;rxlxif.} +¢> (2.39)
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where ¢;= (| ). Then |y i » and therefore to every
vector in . The other term. which belongs to 5, is called the orthogonal
projection of | onto ¥, and denoted by P.|i):

Ploy=3 I (il (2.40)
The situation is pictured in Fig. 2.3 by taking %, to be a plane in the space of
real three-dimensional vectors,

P,. which is called the (orthogonal) projection operator onto %, is an
example of a very important type of mathematical object. A linear operator A
on state space is a rule which associates to each state vector [ ) another state
vector A|y) in such a way that

Ala|y) +Bld)=a ) +bAl) (2.41)

to see that P, is a linear operator.

In this situation where there is not a unique eigenstate associated with the
result  of the experiment E, we must expand on Postulate I by specifying just
which element of the eigenspace is to be used for |\, » in (2.38). The state vector
P,/ is the nearest element of &, to |} (in a certain precise sense: see problem
2.3), and it seems a reasonable choice. However, P, is not normalised: its
inner product with itselfis ¥ |c|*, which is equal to (W|P,|y>. Taking account
of this, we arrive at the following general form of the postulate concerning the
results of experiments:

Postulate I1 (continued). In general, if the result x is degenerate, then
the state vectors describing the associated eigenstates of E form a
vector subspace %, of state space. The probability of the result x when
the system is in the state described by the state vector |} is

(o |W)=—rr (242
where P, is the orthogonal projection operator onto %,
Mote that in terms of ..for
¥,, (2.42) can be written
|<¢r [oF
{z|y)= 2.43)

[

. P>
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This makes it clear that (2.42) is a generalisation of (2.38) to the case where
there are several eigenstates to be considerad.

It is also necessary to postulate which of the possible eigenstates the system
is in after the experiment, and again P i is the obvious choice:

Postulate I (continued). If the result of the experiment 15 , then
immediately after the experiment the system will be in the state
described by the state vector P, [y,
This is called the projection postulatet.
From Postulates II and 111 we can deduce some properties of the state
vectors which describe eigenstates of an experiment E (eigenstate vectors of E).

@®2.1 Ifthe experiment E always gives an unambiguous result, then

{i) eigenstate vectors associated with different results are orthogonal;
(ii) the eigenstate veciors of E form a complete sel.

Proof. (i) Let |y, and |,> be eigenstate vectors associated with different
results x and . First suppose that # and f§ are non-degenerate; then when the
system is in the eigenstate described by |if, > the experiment will certainly give
the result fi and so the probability of the result « is zero; hence, by (2.38),
AT
If the result « is degenerate. then the conclusion of the first paragraph would,
by (2.42), be {|P,Jw,> =0. But. as we saw in the lines preceding (2.42),
(WulPulwry > =<@| > where [¢) =P,y (2.44)
Hence, by the positivity of the inner product, (2.29), {yr,| P, |, > =0 implies that
P, |y s> =0; in other words, |, is orthogonal to every state vector |y, in %,
(ii) Now let o, a3, ... be all the possible results of E. If they are all non-

degenerate, let [y, >, |}, ... be normalised state vectors describing their
eigenstates. Let [§» be any state vector, and write
W =W (e +ealad + ) (2.45)

where ¢;= ;| . Then if [ were non-zero it would describe a possible
state of the system. But because the |y, are normalised and mutually
orthogonal, {J,Jrl-lﬂr’}=ﬂ for each i, and so the probability of any result g,
would be zero when the system is in the state described by |{'}. Since the
experiment must give some result, it follows that [ > does not describe a state
of the system, and so [y"> =0 by Postulate I. Hence | can be expanded in
terms of the eigenstate vectors ;).

In the general case we can use the projection operators P, P,,. . . associated
with the results a,, a5, ... and write

W =) —(P[¥>+Pz|¢d+-) (2.46)
By part (i), the P |y} are all orthogonal to each other; it follows that
PP Jy>=0 ifi#j, (247)

t Probably first formulated by Dirac, though it is often erroneously attributed to
von Meumann.
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while

PR =Py, (2.48)
Using these in (2.46) gives P |y» =0 for each i. Hence, by (2.43), the probability
of any result a; is zero and so, as before, |yf'» =0. Thus |y} can be written as a
sum of eigenstate vectors, which therefore constitute a complete set. [l

From now on we will follow common usage, which is careless of the
distinction between states and state vectors. Thus we will talk of ‘orthogonal
states’, ‘a complete set of states’, and say that a system is 'in the state 14,{:}‘. In
circumstances where this is likely to lead to confusion we will revert to the
more pedantic style of the last two sections.

An observable is a physical guantity which can be measured by an experiment,
of the type considered in §2.3, whose result is a real number (the measured
value of the observable). The possible results are called eigenvalues; each is
associated with an eigenstate (or possibly a set of eigenstates). From these
eigenvalues and eigenstates we _can construct for any observable A a
corresponding linear operator 4; this will then describe the observable
mathematically just as the state vectors describe the states of the system.

Let |, >, ;2. ... be a complete set of eigenstates of the observable 4, and
let &, &3, ... be the corresponding eigenvalues. We define the operator Aas
follows:

If W>=c > +ealdad+--,

then Ald=c,a > +ecpmfad+- -
Then |y,> and a; are eigenvectors and eigenvalues of 4 in the mathematical
sense, 1.e.

(2.49)

Al =a ). (2.50)
A linear operator is called hermitian if
WAl = (Pl Al (2.51)

for all states |¢) and |). We now prove that this is a property of the operator
we have constructed.
@22 If Aisany observable, the corresponding operator A, defined
by (2.49), 1s hermitian.

Proof. We can assume that the eigenstates [if,) in (2.49) are all orthogonal to
each other, by @2.1. Take any two states |¢) and |y), and write

[e>=2 blw, [Wd>=Y cilv. (2.52)
Using the properties of the inner product, (2.26) and (2.28), we have
<¢|‘ai'ﬂl"’) = z '1551('1
and (2.53)

‘('J"’Hl'?} — E o Eqby.

Since the eigenvalues a, are real, (2.51) follows. |
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In a finite-dimensional vector space there is a converse to @2.2: it is a
theorem of linear algebra that in such a space every hermitian operator has
real eigenvalues and a complete set of eigenstates, and therefore is qualified to
describe an observable. (A similar theorem is valid if the vector space is
infinite-dimensional, but it must be stated more carefully; see §2.5.)

As an example of an observable, suppose we define P, for a beam of light to
be the proportion of the light that will pass through a polaroid with its axis in
the x-direction. Classically, P, can take any value between 0 and 1; for plane
polarised light whose direction of polarisation makes an angle @ with the x-
axis, P_ has the value cos? 6. For a photon, however, which passes through the
polaroid either entirely or not at all, the proportion can only be 1 or 0. Thus the
eigenvalues of P, are 1 and (. The operator P is given, according to (2.49), by

Ple,|d.> +eald0)=c\|d.). (2.54)

Together with an observable 4, we can also consider f(A), where [ is any
function of a real variable; f(4) is measured by measuring 4 and applying the
function f to the result. Thus j(4) has the same eigenstates as 4, and
eigenvalues f(x) where x is an eigenvalue of A, If f(4)= A", then the
corresponding operator has the same effect on an eigenstate as applying A n
times: F

Al =a = A, (2.55)
Since the eigenstates are a complete set, it follows that A= 4" More generally,
if f is a polynomial function we have

T =) =AW (2.56)
and therefore
A =r1(A). (2.57)

If f is not a polynomial, (2.57) serves to define [ {.-‘i:l' for any hermitian
operator A,

Observables and their corresponding operators are often called g-numbers
to emphasise the fact that their algebra is different from that of ordinary
complex numbers, which by contrast are called c-numbers. In particular, the
product of two g-numbers may depend on the order in which they are
multiplied. Two operators A and B are said to commute if this is not so, i.e. if

AB=BA. (2.58)
A c-number c can be regarded as a particular kind of operator, whose effect is
to multiply every state vector by ¢. This operator is a multiple of the identity
operator; it commutes with all other operators.

It is often convenient to represent an operator on the state space of a photon by
a 2 x 2 matrix. A state > =¢,|¢, ) +¢;|¢,) corresponds to a two-component
column vector

(2
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then if A|y) =c}|d,» +¢4ld, > corresponds to a column vector ¢, the operator
A corresponds to a matrix A such that

c'=Ac, (2.59)
For example, the observable P, corresponds to the matrix

10
P,,=(u ﬂ). (2.60)

In general, for any system with a finite-dimensional state space a choice of
complete set [@, >, ..., |,» sets up a correspondence between states and
column vectors: if [ =e @, >+ +¢, >, the corresponding column
vector has the coefficients ¢, as its entries. Then any operator A corresponds to
amatrix A which relates the column vectors corresponding to |y ) and Al as
in (2.59). Alternatively, A=(a;;) can be defined by the equation

Ap=¥ agldy G=1...,n) (2.61)
[ ]
If the complete set [, >, ..., [, is orthonormal, the matrix elements a;; are
given by
ayy= <l Al (2.62)

Eqs. (2.61) and (2.62) are valid even when the state space is not finite-
dimensional. They show that the operator A4 is determined by the numbers
| Ajr;> where |y, [Wo), ... is any orthonormal complete set. These
numbers are called matrix elements of 4. More generally, in quantum
mechanics the phrase matrix element of A is used to denote any expression
{p| Al where |$) and |§) are any two states.

Given any linear operator X on state space, we define an operator X ' called the
hermitian conjugate of X by

(B X W) = | X (2.63)
An operator is determined by its matrix elements, so this is sufficient to define
X'. Then

X is called hermitian if X = X" (2.64)

X is called unitary if X'X=1. (2.65)
Hermitian and unitary operators are analogous to real numbers and complex
numbers of modulus 1, respectively; in particular their eigenvalues are such
numbers. This is shown in an appendix to this chapter, where some other
properties of these operators are collected.

We can also define a hermitian conjugate of a state vector | ); it is the
mapping which takes any state vector | to the complex number {H-‘|¢}. This
mapping is denoted by | and called a bra vector, because it is the left-hand
part of a bracket; the ordinary state vector [j 3, on the other hand, is called a
ket vector.
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Any linear operator X on state space can be applied to a bra vector ()| to
produce another bra vector {i|X which, like (i, is defined by completing the
bracket: (| X is the mapping which takes any state vector|¢) to the c-number
(| X[

If we define the hermitian conjugate of a c-number to be its complex
conjugate, we can give a general rule for the hermitian conjugate of any
product of a number of objects, which may be c-numbers, ket vectors, bra
vectors or operators. The rule is:

The hermitian conjugate of the product of any number of objects is
the product of their hermitian conjugates in the reverse order.

This rule incorporates (2.63) and all the following, in which c is any c-
number, [ is any state vector and X is any operator.

(a) (cX)=eX" (2.66a)
ib) (Xyy=v'xt" i2.66b)
(c) The hermitian conjugate of c|y) is e{\l; (2.66¢)
id) The hermitian conjugate of X |y} is (X" (2.66d)

Proof. (a) follows directly from (2.63) and (c) from (2.28). To prove (d). let [y =
X|i»; then

Gl dy =< | 1> =<{P|X > = (Y| X"|db).
Since this is true for all [¢).

<l =<l X
and (x| is the hermitian conjugate of ¢ » = X|if>. Finally, to prove (b}, let |w» =
Y|¢); then

(RUXY) | =W XY @) = (Y| X|w) = (] X[y = (| V' X[,
(d) having been used in the last step. Since this is true for all |¢+} and |i.6r}+ (k)
follows.

This can all be understood in terms of matrices. As we have seen, stale
vectors can be thought of as column vectors and operators as square matrices:
then the product X|¢) is given by matrix multiplication. Now think of a bra
vector as a row vector, with the products {¢|X |y and {4|y again given by
matrix multiplication. Then hermitian conjugation is given by the combined
operation of transposing the matrix and taking the complex conjugate of every
entry. Thus we have the following list of correspondences between matrix
notation and the notation of gquantum mechanics:

Quantum mechanics Matrices

State vector || Column vector a
Bra vector (| Row vector &'
Inner product {¢ | ¢ bTa

Operator X %uare matrix X
Hermitian conjugate X'
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The rule for the hermitian conjugate of a product in quantum mechanics now
follows from the rule for the transpose of a product in matrix algebra.
Using bra vectors, we can write down a useful formula which describes the
expansion of a state vector in terms of a complete set. Given a bra vector {:i:f
and a ket vector |}, we can form an operator |f» {$| which is defined by

(> <y = < | x>l (2.67)

Now let |if,> be a complete orthonormal set of states. Then the fact that any
state |y/> can be expanded in terms of the |{,>, and the formula for the
coefMicients in this expansion (see (2.34) and (2.35)), can be expressed as

Y o< =1 (2.68)

where 1 denotes the identity operator.

When the system is in a state |}, the value obtained in a measurement of an
observable A is a random variable with probability distribution given by
(2.42), = now being understood as a value of A. The mean of this distribution,
i.e. the average value obtained in a large number of measurements on identical
systems in this state, is called the expectation value of 4, and denoted by {A4}.
The standard deviation, which is a measure of the spread of the results, is called
the uncertainty in A and denoted by AA4; it is defined to be the square root of the
expectation value of (4 —{A4%)%

The expectation value and the uncertainty can be expressed in terms of the
operator A and the state vector | as follows:

923 If ||£r} is normalised, (4> and AA are given by

Ay =yl A, (2.69)

AA% = (Y| A% — (9| Al (2.70)
Proaf. Let v, be a complete set of eigenstates of A, with eigenvalues x,, and
expand | as a sum Y ¢l . Then ¢;= |y, so the probability that a
measurement of A will give the value &, is |c;|* (unless some of the , are equal,

in which case the probability is the sum of the corresponding |¢;|*). Thus the
mean value of 4 is

(Ay=} apia|¥)

= g {!I|-C;!1.

Using (2.53) with |¢) = |, we see that this is {y|A|y).
To find AA, we must apply this result to find the expectation value of
(A—{AY)?% This is a function of 4, and the corresponding operator is
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(A— £ A% hence
AA? = YA =AY
= (Y| 42> —2¢AY U Ay + CAY I | o)
= (Y| A%y —(A)?
since | is normalised. This proves (2.70). B

As an example of an expectation value, consider the observable P, for a
photon. When the photon is plane polarised at an angle 0 to the x-axis, its stale
is [ =cos ¢, > +sin )¢, >, and then the expectation value of P, is

(P =Y|P W) =cos® 8, (2.71)
which is the classical value of P, for light in this state,

Because of the way thal a measurement of an observable affects the system, it
may not be possible to measure two different observables simultaneously: it
may be necessary to use different experiments for the two observables, and
measurement of one may change the value of the other. For example, consider
the observable P, of a photon, which has the value 1 if the photon is polarised
parallel to the x-axis and 0 if it is polarised in the perpendicular direction; and
let P, be the similar observable defined with the x-axis replaced by an axis at an
angle #to it. Then il the photon has the value 1 for P, a measurement of P, will
result in the photon being polarised either parallel to or perpendicular to the
inclined axis, and then a measurement of P, will not necessarily give the value |
again, for the photon will not necessarily pass through a polaroid with its axis
parallel to the x-axis.

Two observables are said to be compatible if measurement of one does not
affect the value of the other in this way. Thus the condition for 4 and B 10 be
compatible is that if three measurements are performed, first of A, then of B,
and then of 4 again. the second measurement of 4 will give the same value as
the first: and vice versa.

The statement that two observables are compatible can be expressed very
simply in terms of the corresponding operators:

@24 Aand B are compatible if and only if A and B commute.

Proof. Wewill show that both statements are equivalent to the statement that
there is a complete set of states which are simultaneously eigenstates of 4 and
eigenstates of B.

First, suppose that 4 and B arecompatible and that three measurements are
performed as above. After the first measurement of A4, the system will be in an
cigenstate i, of A with the measured eigenvalue «. After the measurement of
B, the system will have jumped into an eigenstate of B, but the second
measurement of A is certain to give the value o again if 4 and B are compatible,
so the system is still in an eigenstate of 4 — not necessarily the same one as
before, but one with the same eigenvalue a. Now let |¢,), |¢,), ... be a
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complete set of eigenstates of B; then we can expand |if,) as

WD =cy|dy> +esldad+0 0, (2.72)
and cach ¢; will be non-zero only if there is a chance that the measurement of B
will leave the system in the corresponding state |¢b; ). In that case, as we have
just seen, |¢,» must also be an eigenstate of A with eigenvalue 2. Thus the
subspace %, of eigenstates of A with eigenvalue 2 has a complete set of states
consisting of states which are simultaneously eigenstates of B. Since any state
can be written as a sum of states from the various subspaces 5, it follows that
the whole state space has a complete set of states consisting of simultaneous
eigensiates of 4 and B.

Conversely, if there is a complete set of such states, then each subspace &,
has a complete set of eigenstates of B. Hence any state in %, remains in &, after
being projected onto a subspace ol eigenstates of B. Thus if the first
measurement of 4 gives the result x, putting the system in the subspace 5, the
measurement of B will leave it in the subspace &, and so the second
measurement of A will also give the result & So if such a complete set exists, A
and B are compatible,

Now AB and BA have the same effect on any simultaneous eigenstate of A
and B. Hence if there is a complete set of such states, AB=BA. Conversely,
suppose AB=BA and let |,) be an eigenstate of 4 with eigenvalue & Then

ABl,y=BA\.) =aBlb.;
so Bly,,» isalso an eigenstate of A with eigenvalue 2. Thus B acts as a hermitian
operator inside the subspace %, and s0 %, has a complete set of eigenstates of
B (if <, is finite-dimensional; the case of infinite-dimensional state spaces will

be discussed in the next section). It follows, as before, that the whole state space
has a complete set of simultaneous eigenstates of 4 and B. W

Mote the property of commuting operators which was used in this proof:

Suppose A and B commute. Then if i) is an eigenstate of A with

eigenvalue x, so is E|¢r}. Thus B acts as an operator on the

eigenspace 5. (2.73)
%, is said to be invariant under 8.

The proof of @24 shows how degenerate eigenstates of an observable, i.e.
eigenstates with the same eigenvalue, can be distinguished by means of the
value of a second observable which is compatible with the first. If two
simultaneous eigenstates of A4 and B have the same eigenvalues for both of
them, then there must be a third observable C which is compatible with both of
them, and which has different eigenvalues in these states or in some linear
combinations of them (for if no experiment could distinguish between the
states they would be the same physical state). If two states have the same
eigenvalues for all three of A, B and C, there must be a fourth observable D
which has different eigenvalues; and so on. A set of compatible observables is
said to be complete if no two states have the same eigenvalues for all of them, so
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that knowledge of the eigenvalues of all the observables specifies a state
uniquely. This can be used to give a precise definition: a state of a quantum
system is a set of values for a complete set of compatible observables.

The commutator of two operators A and B is the operalor

[A.B]=AB—-BA. (2.74)
It follows from @2.3 that if 4 and B are hermitian, so is i[A, B]. We can
therefore take this to describe an observable, which we denote by the same

symbol without the hats, viz. i[ A, B). This observable is a measure of the extent
to which 4 and B fail to be compatible, as is shown by the following relation.

@®2.5 Thegeneralised uncertainty relation. In any state of the system,
AA-AB=4|(i[ A, B])|. (2.75)

Proof. Let |if> be the state being considered, let A, =4 —{A4> and B, =B -
(B, and let |¢) be the state

9> = A, +ixBy |y (2.76)
where x is an arbitrary real number. Then
<ol =<wlA, —ix<y|B, (2.77)

since A; and B, are hermitian. Putting (2.76) and (2.77) together,
(B| b =CU|A, 20y —xCW|ilA,, B,]|W) +x*C¥|B, |
But [aii, fi, J= {.ai, fi] since ¢ A and ¢ B’ are c-numbers and commute with all
operators. Hence
(b|dy={A,*)—x{i[A, B]) +x*¢{B,*)
=AA*—x(i[A, B]> +x* AB?, (2.78)
using the definition of uncertainty. Now (¢ | ¢> =0 for all x, so the quadratic
expression (2.76) has either no zeros or equal zeros, hence
¢i[A, B])*<4 AA? AB?
(i.e. ‘b <4ac’), which proves (2.75). B
Knowledge of the commutators of observables is often sufficient to

determine their properties. The commutator satisfies the following algebraic
identities:

[B, A]=—[A, Bl (2.79)
[4, BC]=[A, BIC+B[A,C]; (2.80)
[A, [B,C11+[B, [C, A]]1+[C, [4, B]]=0. (2.81)

{2.81) is known as the Jacobi identity.

The previous section was expressed in terms appropriate to a finite-
dimensional state space, and must be adapted if it is to apply to an infinite-
dimensional space like the space of wave functions. To introduce the essential
ideas, it is sufficient to consider functions of one variable, i.e. wave lunctions for
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a particle moving in one dimension. Thus we consider the space W~ of
complex-valued functions ¢ of one real variable x which satisfy one-
dimensional versions of W1-W3 (p. 39): ¢ must be infinitely differentiable and
square-integrable, i.e. [* [Wlx)|* dx exists, and x"y(x) and "(x) also have
these properties for all n. The inner product in % is given by

| ¢}=J‘ P(x) () dx. (2.82)
We define hermitian operators X and K by
(X)x) = xy(x). (2.83)
- i
- —f—, 2.34
Ky i 12.54)

It is clear that X is hermitian with respect to the inner product (2.82), and K
can be seen to be hermitian by integrating by parts and using the fact that y(x)
must tend to 0 as x—+ oo if [|y(x)|*dx is to be finite. However, neither of
these operators has a complete set of eigenvectors; in fact, they do not have so
much as a single eigenvector. It is, of course, possible to find a function &,(x)
such that Ke, = ke,, namely &(x) = ¢**, but this is not relevant in this context
because it does not belong to the space %7 and there are no continuous
functions at all which satisfy X =ay for any number a.

The way round this difficulty is to regard the function g,(x) not as a state
vector but as a bra vector, namely as the map {g,| which takes any wave
function i to the complex number

a

@y =| alovixdx. (2.85)

This map exists, i.e. the integral converges, for all real k. Now we have
(& K = kg, (2.86)
in the sense that
Caol Ky =k<e | > for all [¢) ew”

Because of (2.85), <&/ can be called an eigenbra of K. We can also find
eigenbras of X, namely (4,| defined by

(b, | ) = a). (2.87)
Then ¢4,| is defined for all real a, and
(8| X =a(d,| (2.88)

These eigenbras of X form a complete set, in the following sense. Because
they are labelled by a continuous eigenvalue, the sum over eigenvalues which
was appropriate in the finile-dimensional case must be replaced by an integral.
Thus the appropriate expansion is

(¢|=r é,(8,| da. (2.89)

]
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This means

<¢r|¢->=r 68| b da for all [¢) e W: (2.90)

MNow if {i| is the conjugate bra vector of a ket vector [i\» e % and if the
coeflicients ¢, are given by
¢, = yla), (2.91)

then (2.90) follows from the definition (2.82) of the inner product. Thus the
expansion is possible for all such <y, and so the eigenbras {4,| form a complete
set for them.

The eigenbras {&,| form a complete set in a similar way. To show this we will
need the following facts from Fourier analysis:

Fourier inversion theorem. Let (k) be the Fourier transform of ¢,
defined by

= 1 ¢ ~ ikx
Pik)= F&;} o wix)e "™ dx. (2.92)
Then k) exists if y«(x) belongs to ¥, and
o 1 = ikx
MJ’] = v"'?{"j.—n] J.-' = Iﬁ“{]f n‘_:'c. {2.93}
For comparison with (2.89), we write
J,Grlell=-|.ﬂL cye™* dk  where ck=—;|— wik). (2.94)
=D vl :zﬂ_.l

Then for all | e ¥~ we have

gy = E]J‘ e~ "= dix) dx dk
|7 acald) k. (295
Hence 1
(W= €&y dk. (2.96)

Mote that not every bra vector (i.e. linear map from % to C) is of the form
{| where i) is an element of %7 and not every bra vector can be expanded in
terms of the sets { (6,|} or { (& }. These are complete sets only for the expansion
of bra vectors {if| which are the conjugates of ket vectors.

In general, a hermitian operator may have both ordinary eigenvalues
associated with eigenvalues as in the previous section, and eigenvalues of the
generalised sort, associated with eigenbras, that we have just been considering.
These are called discrete and continuous eigenvalues respectively; for provided
the state space satisfies certain technical conditionst it can be shown that there

t It must be a dense subset of a separable Hilbert space.
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is a countable number of the first sort of eigenvalue, and the second sort make
up a continuous set of real numbers, i.e. a collection of (possibly infinite)
intervals. The set of all eigenvalues, of both sorts. is called the spectrum of the
operator. Suppose for the moment that all the eigenvalues are non-degenerate,
Let > (i=1,2,...) be eigenvectors associated with the discrete eigenvalues
%, and let {y,| be an eigenbra associated with the continuous eigenvalue «;
then, suitably normalised, these form a complete set in the sense that if i) is
any vector in % the corresponding bra can be writlen as

(W=} e + Ic’.<¢,| da (2.97)
with the coefflicients ¢; and ¢, given by
=¥, e=qhL|v. (2.98)

If the eigenvalues are not all non-degenerate, we must consider a complete set
of commuting operators, all of which may have both discrete and continuous
eigenvalues.

Egs. (2.97) and (2.98) define the normalisation of the eigenbras {y,|. This
normalisation is not an intrinsic property of the {if,| as bra vectors, but relates
to the operator A of which they are eigenbras: for if B= f(.4) is any function of
A, (| is also an eigenbra of B with eigenvalue fi=f{(z). If this relation can be
inverted to write @ as a function of fi, (2.97) can be written

<¢|=Efl<'ﬁil+'[a{¢'nmtp{ﬁ} dp (2.99)

where p(ff) = da/dff. This can be restored to the form of (2.97) with respect to f,
ie

W= el +Jt_‘,<¢$|dﬁ- (2.100)

with ¢j = (|, if we define

(Wil =B |
where (2.101)
lg(B)* = plB).
We will say that the eigenbras (| are nomu_liml relative to A (the Yl
correspondingly, being normalised relative to B). The function g{f) is called
the :Imsity of states (in full, the density of eigenstates of A relative to eigenstates
of B).

Now suppose the operator we are considering represents an observable A.
Then the continuous eigenvalues, like the discrete ones, have the physical
meaning that they are possible values of 4; but the probability statement (2.42)
must be adapted to cater for the continuous variable. Thus Postulate 11 must
be supplemented by

Postulate II (continued). Let » be a non-degenerate continuous
eigenvalue of an observable A, and let {y,| be the corresponding
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eigenbra, normalised relative to A. Then when the system is in the
state |, the probability that a measurement of 4 will give a result
between o and a +dx is p,(x | ) dx, where

2
pala| )= AL . (2.102)

Note that if we apply Postulate 11 to an operator B=f{A) and express the
probability in terms of eigenbras {y,| normalised relative to A, the result is

|{-i’&f'-|‘ f;'- pif) (2.103)
where p is the density of states.
Because of (2.97) and (2.98), it is still true that the expectation value of A in
the state [} is {;&rlaﬂqﬁr}. and therefore that the uncertainty is given by (2.70).
The postulate about the stale of the system immediately after the
measurement becomes a little more complicated if precisely stated:

Pa{ﬁll.l:"]=

Postulate III (continwed). Il the measurement gives a result lying
between x, and x,. then immediately after the measurement the
system is in the state which is obtained from |} by orthogonal
projection onto the subspace of states which are orthogonal to all
states "> which satisfy

f*<w,[¢'> dz=0,

but we will see shortly that there is a non-rigorous version which is essentially
the same as our original statement.

Now let us return to the operators ¥ and K defined in (2.83) and (2.84),
which act on the space of functions of one real variable. Suppose these
correspond to observables X and K relating to a particle moving along a line.
As we have seen, each of them has a continuous spectrum consisting of all real
numbers, with eigenbras {4,| and (g, | respectively. According to (2.102), when
the system is in the normalised state | the probability density of the value of
X is

pla)=[(8,| >|* = |ia)l*. (2.104)

Thus by comparison with (2.7), X can be identified as the position of the
particle.

To identify K, note that its eigenbras {g,| do correspond to functions,
namely £,(x)=e¢™*, even though these functions do not belong to our state
space. The reason for excluding them is that it is impossible to multiply g (x) by
a constant to obtain a function ¥ for which | [i|* dx= 1, and so for any such
function |yix)|* cannot be a probability density. However, as long as it is
possible to integrate |¥|* over any finite interval, it can be interpreted as a
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relative probability density in the sense that

. I W|? dx
Probability that a, < X <a, .[. W (2.105)

Probability that a; < X <a, -J'“ W2 dx ]
oy

Thus (x)=e™* can be taken as the wave function of a particle for which all
positions are equally likely. This function actually describes a periodic wave
with the wavelength i=2n/k; hence according to de Broglie's relation (1.24)
the particle associated with this wave has momentum
h h

p—:—z'; k=hk, {llﬁﬁ}
But k is the eigenvalue of K; so the observable K is proportional to the
momentum of the particle.

Thus by extending our notion of state, we have found an eigenstate of K. It is
not described by a state vector according to our original conception, but by a
bra vector; nevertheless, this bra vector is associated with a function which can
be interpreted in a similar way to the wave functions which constitute true
state vectors,

By making a further extension of the notion of a state, we can do a similar
thing for X. The ‘wave function’ g,(x) for the eigenstate of K was suggested by
the representation of (g, | ) as an integral in (2.85); to find a similar function
for X we would need to represent {4, |y also in an integral form, with a
function d,(x) such that

o

Wla)=¢8, o=  B,(xhix) dx. (2.107)

=t
This is not possible; there is no such function. But it is convenient to pretend
that it is possible by taking

g {x)=d8{x —a)
where & is the Dirac d-function, which is supposed to have the properties
Mx)=0 if x#0; (2.108)
]
J dx)dx=1 il —a<0<h (2.109)
e
Jix) dx) dx=/(0) forany function f (2.110)

Clearly these are impossible properties for a true function; nevertheless, the 4-
function can be useful as a shorthand device for writing equations involving
integrals. Any equation in which it occurs must be integrated in order to make
sense. As an example of the use of the d-function, the Fourer inversion
theorem (2.93) can be written as

J.m SN dk=2m §(x — ). (2.111)
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In physical terms, 4(x) can be thought of as the line density of a distribution
of matter consisting of a point particle with unit mass, situated at the origin. In
quantum mechanics, &(x —a) can be regarded as a wave function describing a
particle which will certainly be found at x =a.

On physical grounds as well as mathematical ones, neither g(x)= ¢** nor
d | x)= & x —a) should be taken too literally as wave functions. The first would
describe a particle which was equally likely to be found anywhere in the
universe; the second, one whose position is known with infinite accuracy. But
they are convenient idealisations, corresponding to the fiction of infinitely
precise measurement. Such an ideal measurement can be regarded as the limit
of a sequence of increasingly accurate actual measurements; in the same way,
the states described by the ‘wave functions’ & or &, can be regarded as limits of
sequences of genuine states. The d-function can also be understood as a limit of
a sequence of genuine lunctions; for an explanation of it in these terms, sce
Lighthill 1958,

In terms of the ideal states described by such generalised wave functions, the
postulate concerning the results of measurements of a continuous quantity can
be phrased in the same way as for a discrete quantity: for momentum, for
example, we postulate that if the result of the measurement is p then after the
measurement the particle is in the state with wave function ¢** where p=hk.

For a particle moving in three dimensions, the basic observables are its
Cartesian coordinates (x, v, z), which we will also denote by x;(i=1, 2, 3), and
the components of momentum (p,, p,, p.) or p; (i=1, 2, 3. By extension from
the one-dimensional case, the corresponding operators, which act on wave
functions yi(r). are given by

(Xxy, X3, X3)= XXy, X3, X3), (2.112)
P = uiir:—*. (2.113)
0X;

These are components of the vector operators F and p= —ihV.

As a complete set of compatible observables we can take (x,, x;, x3). The
corresponding operators X; clearly commute with each other; their possible
simultaneous eigenvalues are any three real numbers (a,, a,, a,), i.e. the
componenis of any vectora. The simultaneous eigenbra with these eigenvalues
is <4,|, defined by

(3, ¥ = hﬁfh]=J-1#Er] dir—a)dV (2.114)

where the second equality defines the three-dimensional d-function.

An alternative complete set of compatible observables is provided by (py, p3.
pa). The possible simultaneous eigenvalues are the components of any vector
hk; the corresponding simultaneous eigenbra is {g| where

(e |¥) =Idrtr]e*‘"' dv. (2.115)
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The probability distribution of p is then given by the density function f(p)=
[<e | y>|* where p=hk. Thus the state can be described by the function of
momentum $(p)= (e, | > just as well as by the wave function y(r); these are
said to be alternative representations of the same state vector |$r). Their
relation to each other is similar to the relation of different sets of coordinates
{with respect to different bases) of a vector in a finite-dimensional space. The
function ¢{p) (essentially the Fourier transform of v(r)) 15 often called the wave
function in momentum space. We see here an indication of a fundamental
equality of status between position and momentum in gquantum mechanics.

In order to recognise this equal status, we take as the basis of the theory of a
single particle not the specification of the operators %, and g, in (2.112) and
{2.113), but the commutation relations which follow from them:

Postulate V. The components of the position and momentum vectors
of a particle in space are described by operators X, and p, which satisfy

[, £1=0=[§,, p;]. (2.116)
[%;, 5 =ihdy;. (2.117)
A particle with no internal properties has no observables which are
compatible with all the x; and p;.

Egs. (2.116442.117) are called the canonical commutation relations. We
define a simple particle as one which has observables x; and p; satisfying these
commutation relations, and no observables which are compatible with all the
x;and p.

Postulate IV is actually equivalent to (2.112)+2.113), for it has been shown
that Postulate ITT implies that the state space is (essentially) isomorphic to the
space of wave functions and that the operators x; and p; are given by
(2.112}-{2.113). This is the Stone/von Neumann theorem (sece Jauch 1968,
p. 201). Most of the arguments in this book will be based directly on the
commutation relations (2.116)—2.117) and do not use the specific forms
(2.112}42.113), but of course the latter are indispensable in most of the
applications of quantum mechanics.

From the commutator (2.117) we have

Clx, p) ={—hy=—h. (2.118)
Thus the uncertainty relation (2.75) becomes
Ax-Ap, =1h, (2.119)

which is the original Heisenberg uncertainty relation (1.235).

Eq. (2.119) can be understood as describing the relationship between the
wave function (r) and the wave function in momentum space, ¢{p). An
example is shown in Fig. 2.4. This shows the x-dependence of , so it is
concerned with a one-dimensional function which can be written as in (2.94):

.p.;x]=r e dk  where k=% and c,=¢;i']. (2.120)
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Fig. 24.
A wave packet.
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Thus if(x) is a superposition of the oscillatory functions ¢**. In the example the
coefficients are taken to be real and to be concentrated in a range of k of length
Ak. Then the different oscillations ¢™* in (x) cancel each other outside a range
of x of length Ax, where Ax - Ak =4, but reinforce each other inside this region
to produce a localised wave function. A wave function like this is called a wave
packet.

From now on we will not need to be pedantic about the distinction between
observables and operators. We will apply the same terms to both (referring to
observables as ‘commuting’, for example) and we will use the same symbol for
an observable and its operator (i.e. we will drop the circumflex on operators).

As we noted on p. 39, the demand that a wave function should satisfy W1-W3
is unnecessarily restrictive. The reason for imposing these conditions is that
they provide us with a state space on which x; and p;, and all products of them,
are well-defined operators. However, if we continued to work with this space
we would soon find that it had disadvantages: in particular, there are Cauchy
sequences of functions in the space that do not converge to a limit in the space.
It is usual to work with a space which is complete, i.e. which does include all
limits of Cauchy sequences. Such a space is called a Hilbert space. The smallest
Hilbert space containing our space of wave functions is [Z(R?), the space of all
square-integrable functions: this is often taken to be the true state space of a

t Re yi(x)

dx—
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single particle. It has the disadvantage that many interesting operators are not
now defined on the whole space; it is necessary to take into account the domain
of definition of every operator considered. This puts quite a lot of grit in the
way of the smooth running of the machinery, An account of the relevant parts
of Hilbert space theory can be found in Jauch 1968.

Owur approach can be formalised as the theory of a rigged Hilbert space,
which consists of a chain of spaces % = ¥ = &*, where #° is a Hilbert space, &
is a dense subspace of #, and %™ is the space of continuous linear functionals
on & (& is our space of wave functions and %™ is our space of bras). This
theory then accounts for generalised states like eigenstates of position and
momentum in the way we have described. An account of rigged Hilbert spaces
and their use in quantum mechanics can be found in Bogolubov, Logunov and
Todorov 1975 or Béhm 1978,

Suppose a system is made up of two or more parts, each of which can be
considered as a system on its own; for example, the system of several particles
moving in space, or a beam of light consisting of many photons moving in the
z-direction. or both of these put together, We want to describe the states of the
whole system in terms of the states of its component parts.

We will start by considering a system with two parts § and T; we will call the
combined system ST. The two parts can be put together with S in any state |¢)
and T in any state |y ); we will denote this state of the whole system by |¢h)[).
Then if we consider a fixed state |¢), the states |¢ )|y will correspond to all the
possible states of subsystem T. We will assume that the relations between these
states of ST are the same as those between the corresponding states of T;if |y
is a combination of |\, > and |, then |¢)|i¥) is the same combination of
¢y > and |¢>|ib;>, and (if |¢) is normalised) the inner product between
¢ > and |[@3[W,> is the same as that between |y, and |§;). Similar
considerations apply to the states of § combined with a fixed state of T, Thus

lley Wy > +ealdad)=ey @3 > +ealddad, (2.121)
(€61 +eald D> = s ds > +eald ]9, (2.122)

and
(W DD |wad) =< | Dy | Wad {2.123)

where the lefi-hand side of (2.123) denotes the inner product between ||y, »
and |¢%|,>. From this it can be deduced (problem 2.17) that

({@a [V D b2d WD) =<y | 2> by | W2 (2.124)
Eqgs. (2.121)-2.122) show that |¢ |y> can be regarded as a kind of product of
> and | ). In physical terms, they mean that any experiment which can be
performed on one subsystem can be performed in the presence of the other
without affecting or being affected by the state of the second subsystem.
Mot every state of the combined system can be expressed as a product
@[>, for by the principle of superposition there must be states of the form
{3 +|@" 30>, and these cannot be written as a single product. We will
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assume that there are no states of ST other than those demanded by the
principle of superposition; then every state of ST is of the form

¥ =@ +dD >+ (2.125)
Let|¢, »,|¢27... . beacompleteset of statesfor Sand |y, 3, |, 5,. . . acomplete
set of states for T, and write

|6y=3 alp. |¢'>=Eazi¢~.->} B
Wo=L b, Wr=Xbilvo] E
Then
o =3 (ab;+aibj+ - - b |w;>. (2.127)
i

Thus the states |¢:,}||J:j} constitute a complete set of states for 5T.

Let % denote the state space of § and F that of T. The state space of ST is
denoted by % & F and called the tensor product of % and #. If % and F are
finite-dimensional, the dimension of & & 5 is the product of the dimensions
of % and 7.

Operators on the individual state spaces %° and & can acton % & .7 in the
obvious way: if 4 is an operator on % and B is an operator on &, we definet

A{|¢>|¢}]=Mi¢>1l¢*}}
B(l>|w>)=|d>(Blu>) |

Then all the operators on & commute with all operators on . In the case of
operators representing observables, this reflects the fact that experiments on §
are not affected by the state of T. A complete set of compatible observables for
the combined system ST consists of the union of a complete set for § and a
complete set for T.

Let us see how this applies to a system of two particles moving in space,
Since a complete set of compatible observables for one particle consists of the
components of its position vector r, a complete set for two particles will be
given by their two position vectors ry,r;. Hence a state of two particles is
completely specified by its values for all eigenbras {4,,, {4,,|; in other (plainer)
words, it is given by a function of two position variables, iir,, r5). This has the
interpretation that one would expect by analogy with the case of one particle;
|lr, r3)|* dV; dV;is the probability that partiele | will be found in the volume
dV, atr;, and at the same time particle 2 will be found in the volume d, at r,.

Thus in this case % & F consists of functions ¥(r,. r,) satisfying similar
conditions to those specified in §2 for the wave functions of one particle, Let
i1, . . . be a complete set of one-particle wave functions. By expanding y(r,, 1)
in a series of y,(r,) with coefficients which depend on r;, and then expanding
these coeflicients in a series of ,(r,), we find that Y(r,, r,) can be expanded as

(2.128)

+ Strictly speaking, we should use different symbols for the operators on the two sides of
{2.128), since they act on different spaces; the operators on the lefi-hand sides should be
called A @ 1 and 1 & B. However, the notation used here is convenient and will not cause
confusion.
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Yl ry)= E gt (). (2.129)
i

Thus the functions ur(riylr;) constitute a complete set for %@ 7,
corresponding to the complete set [$5|¢,> in the general case: for wave
functions the tensor product is formed by ordinary multiplication.

The extension to a system consisting of several subsystems is
straightforward: one can define a tensor product of n state spaces, ), @ - @
,, whose elements are linear combinations of products i, 3|, - - - |, > with
;> taken from %. For a system of n particles moving in space. the state space
consists of wave functions Jir,, ..., r).

This formalism applies not only to a system consisting of separate objects,
but also to a system consisting of one object which has a number of separate
aspects. For example, to give a full description of a photon we should consider
not only its state of polarisation but also its state of motion in space; thus its
full state space is % ®.F where % is the two-dimensional space of
polarisation states and & is the space of wave functions for a particle moving
in space. Since & has a complete set consisting of two states ¢, > and |¢,>. the
general state in & @ F is

[¥> =% (ai|d. o> +bifd, > |:>) (2.130)

where |, » represents a complete set of wave flunctions. This can be written as a
two-component wave function

Wy (r)
Wir) [l}‘z[r]] (2.131)

where ,(r)=3 ap(r) and g (r)=% b r).

If the two subsystems are the same, as in the case of a system of two particles of
the same type, then the state space of the combined system, viz. % & %° where
& is the state space of one particle, has an exchange operator X which
exchanges the states of the two particles:

X(|do\o)=w>|e>. (2.132)
Not every state of the two-particle system is of the form |¢3[>, but (2.132) is
sufficient to define X since every state is a sum of states of this form. Now if the
two systems are really of the same type, then it will be impossible to distinguish
the state ||y ) from |yr)|¢»; for in order to tell whether it is the first particle or
the second that is in the state |¢> one would need some way of distinguishing
the two particles, and such a distinguishing mark would mean that they were
not after all of exactly the same type. Hence if |¥') is any state vector in & @ &,
X|¥} describes an indistinguishable physical state, and therefore the same
one. It follows, by Postulate I, that X|¥} is a multiple of [¥3:

X[y =e¥). (2.133)
But X*=1, so £*=I; hence the only possibilities for & are + 1.
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A state for which = 1 is called symmetric; it must be a sum of states of the
form

(3105 + |- (2.134)
A state for which £= — | is called antisymmetric; it must be a sum of states of
the form

[ @] — ] (2.135)

The state vectors (2.134)2.135) deseribe states in which the two particles are
in the states |¢b» and |3, but it is not possible to ask which particle is in which
state. This is the right sort of description for two truly identical particles.

We have argued that any physical state must be either symmetric or
antisymmetric; it cannot be a superposition of a symmetric state and an
antisymmetric state. But if both symmetric and antisymmetric states were
possible this would contradict the principle of superposition. It follows that,
for a particular type of particle, either all states are symmetric or all states are
antisymmetric; in other words, the state space for the two-particle system is
not & & % but either the subspace of symmetric states or the subspace of
antisymmetric states. Which of these two possibilities occurs depends on the
type of particle: the ‘particles of matter’ described in Chapter 1{A) (leptons,
baryons and quarks), which are called fermions, always have antisymmetric
two-particle states; the ‘particles of force’ described in Chapter 1(B) (photons,
W and Z particles, and gluons), which are called bosons, always have
symmetric two-particle states.

This extends naturally to a system of n particles. The n-fold tensor product
@RS =S ® - @ has foreach pair(i, j),an exchange operator X, which
exchanges the states of the particles numbered i and j:

Xiglla === ed) = oy > -y - - Wi - i

(2.136)

Then if |¥) e ®" is a state of n bosons,
Xyl¥»=|¥> for all pairs (i. ). (2.137)
Such a state vector is called totally symmetric. If ['¥'} is a state of n fermions,
Xy|¥r==|¥> forall pairs (i, j). (2.138)

Such a state vector is called totally antisymmetric.
By performing a number of exchanges in succession, we can put the states

W2, ..., [W2) into any order |W,.,>, ..., |V > Where p is a permutation of
(I, ..., n). Thus we have an operator X, for the permutation p:
Xptl'ig'l i '|IJ'-‘.}]=|¢,||.}‘ : '|*¢u|.}- (2.139)

The permutation p is called even or odd according as the number of exchanges
it requires is even or odd. The signature of the permutation, denoted by &g}, is
+1if pis even and — 1 if it is odd. Now (2.137)+2.138) give:

if ¥} is totally symmetric, X, =¥, (2.140)
if |'¥) is totally antisymmetric, X |¥) =z(p)|¥), (2.141)
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for all permutations p. Any totally symmetric state must be a sum of states of
the form

Sy [W>) where S=¥ X, (2.142)
@
any totally antisymmetric state must be a sum of states of the form

Al > - |W,)) where A=Y elp)X,. (2.143)

If the state vectors i, > are wave functions, then (2.143) gives an n-particle wave
function

'-I"[r, ..... r.IEE dﬂm’mu{rll' 3 'H"pu.r{rq]
|'."’|{"1} ree i)

: (2.144)

Valr) o e

This is known as a Slater determinant.
The principles introduced in this section can be summarised as follows:

Postulate V. If two systems § and T are combined to form a system ST,
the state space of ST is the tensor product of the state spaces of §
and T

Every elementary particle is either a fermion or a boson. A state of
many identical particles is totally antisymmetric if they are fermions,
totally symmetric if they are bosons.

Fermions and bosons obey different probability laws from each other and
from classical particles. Consider the elementary probability problem of two
particles which are placed in two differently coloured boxes at random. What
are the probabilities that (a) both particles are in the yellow box, (b) both are in
the blue box, (c) there is one particle in each box? In the quantum version of
this problem there are two particles which can occupy two orthogonal states
e or |y (i.e. each particle has a two-dimensional state space & in which |¢)
and | form a complete set of states), and it is assumed that all two-particle
states are equally likely. With |¢) as the yellow box and |y as the blue box, we
ask the same question. It can be shown (see problem 5.1) that the probabilities
are proportional to the dimensions of the corresponding subspaces - in other
words, despite the possibility of superposition one simply counts the numbers
of independent states in the same way as one counts the number of ways of
putting two beads into two boxes.

The state space we first thought of, namely & ® & which would be
approprate if the particles were distinguishable, has four mutually orthogonal
two-particle states:

[@o]d>, [Wold, [@dldd, i) (2.145)
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If the particles are bosons, there are three orthogonal states:

[@oldy. [old. |@dlw)+ ). (2.146)
And il the particles are fermions, there is only state:
210> —[ud ). (2.147)

Hence the probabilities we are looking for, with (2. 145) corresponding to the
classical answer, are:

I | Jalil i

Classical i 1 i
Bosons i i i
Fermions 0 0 1

Thus bosons are more likely than classical particles to occupy the same state;
they appear to attract each other. Fermions, on the other hand, force each
other into different states. This property of fermions is

$2.6 Pauli's exclusion principle. Two identical fermions cannot
occupy the same state. [l

This plays a crucial role in the explanation of the structure of atoms which
gives rise to their different chemical properties.

Fermions are said to obey Fermi-Dirac staristics; bosons obey Bose-
Einstein statistics.

If a particle is composite, like an atom or a nucleus, then its statistics (i.e.
whether it is a fermion or a boson) are determined by those of its constituents.
Consider first a particle P with two constituents A and B. A state of two Psisa
state of two As combined with two Bs, and the operation X of interchanging
the Ps is the product of the (commuting) operations X, and X, of
interchanging the As and interchanging the Bs. Now X, multiplies the state by
£y, where

{-H if A is a boson
g, =

—1 if A is a fermion, (2.148)

and similarly Xy multiplies the state by &. Hence

&p = EpEpy, (2.149)
i.e. Pis a boson if A and B are both bosons or both fermions, a fermion if one is
a boson and the other a fermion. The general statement is

®2.7 A composite system of m bosons and n fermions is a boson if n
is even, a fermion if n is odd.

Thus, since quarks and antiquarks are fermions, mesons (made of a quark and
an antiquark, i.e. two fermions) are bosons: baryons (made of three quarks) are
fermions. The a-particle (made of two protons and two neutrons, ie. four
fermions) 15 a boson.
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Appendix: properties of
hermitian and unitary
operators

2 Quantum statics

The eigenvalues of a hermitian operator are real.

The eigenvalues of a unitary operator have modulus 1.

Let |¢) and |¢} be eigenvectors of an operator A corresponding to
different eigenvalues. If 4 is either hermitian or unitary, [¢) and |y
are orthogonal.

4. If H is hermitian, ¢" is unitary.

b b —

Proofs: 1. Let i be an eigenvalue of the hermitian operator H,and let > be a
inon-zero) eigenvector. Then

H{y =iy (2.A1)
Taking the hermitian conjugate of this equation,

CY|H =24y (2.A2)
Multiplying (2.A1) on the left by (| and (2.A2) on the right by |y,

CUIHIY> = AW |y =T p ). (2.A3)

Since |\ is non-zero, it follows that A=J, i.e. Jis real. |

2. Let 4 be an eigenvalue and | an eigenvector of the unitary operator U.
Then

Ul =iy
<J]U=Eiﬂrl}' (2.A4)
Multiplying these equations together,
YUV = 230 |- (2.A8)
Since U'U= 1 and |y is non-zero, it follows that |4|=1.
3. First suppose A=H where H is hermitian. Then
H|py=id), Hlb)=puly) (2.A6)
where 4 and p are real. Multiplying by {¢| and {¥| respectively,
Y| H|@)=aily | b (2.A7)
CHH|O=pld | (2.A8)
S W H | = pli | ¢). (2.A9)
Since 4i#u, it follows from (2.A7) and (2.A 9) that {|¢ > =0.
Now suppose A= U where U is unitary. Then
Ulgy=e"|dD, (2.A10)
Uy =" (2.A11)
where x and f are real. Taking the hermitian conjugate of (2A.11),
YU =e""Y. (2.A12)

Multiplying (2.A11) and (2.A13) together and using U'U=1,
| g =" | ).
Since ¢ # &”, it follows that {y |¢>=0. B
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Further reading

Problems on Chapter 2

Problems T5

4. Let |, . [W;>.. .. be a complete set of eigenstates of H with eigenvalues
ApsAzy ... cand let U=¢”, Then

Wl Uy =€,
S U Ny =6, = (e -

Hence
L'r+|¢|'m> = E—rr-

W
and so
U'Ul? = Wi
Since the |y,,» form a complete set, it follows that U'U=1. W

Postulate 1. Principle of superposition 46

Postulate I1. Results of experiments 49, 50, 62
Postulate [11. Projection postulate 49, 51, 63

Postulate IV. Position and momentum of a particle 66
Postulate V. Combined systems 72

@21 Eigenstates are orthogonal and complete 51
@22 The operator of an observable is hermitian 52
@23 Expectation value and uncertainty 56

@24 Compatible observables <= commuting operators 57
@25 Generalised uncertainty relation 59

@26 Exclusion principle 73

@2.7 Statistics of a composite particle 73

The classic exposition of quantum mechanics, which remains unrivalled for
the elegance of its presentation of the general structure of the theory (despite -
or perhaps because of — its cavalier attitude to mathematical niceties) is Dirac
1930. Other excellent textbooks which are recommended for their careful
treatment of conceptual matters are Pauli 1933, Bohm 1951 and Gottfried
1966. Feynman et al. 1965 (Vol. I11) is also highly recommended.

Mathematically rigorous accounts of quantum mechanics can be found in
von Neumann 1932 and Jauch 1968. These follow a different line from the
approach via rigged Hilbert spaces which has been sketched in this chapter, for
this see Bohm 1978 or Bogolubov et al. 1975.

I. Prove that the set of all wave functions satisfying W1-W3 (p. 39) forms a
complex vector space and that (2.30) defines an inner product.

2. Let P, be the projection operator associated with the result 2 of an experiment

E. Show that

(i) Pl=Pg

(i) if x and § are different results of E, P.Py=0;
(iii) if & is non-degenerate, with eigenstate |y, >,

P> = | e, ;
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14,

(iv) L P, =1 where the sum is over all results of E.

. Let | beany state vector, let ¢ beany element of the eigenspace &, and let

0o = [ =Py, |8 =|>—|d>

where P, is the projection operator onto %, Show that

(0] 8= {0,] 053

[This shows that P[> is the nearest element of &, to [¥).]

. A gquantum system can exist in two states o, > and |a, >, which are normalised

eigenstates of the observable A with eigenvalues 0 and 1. A second observable
B corresponds to the operator B defined by
Blagy=Tlagy —24ila, 3. Bla,»=24ilags —Tla, >.
Find the eigenvalues and eigenstates of B.

The system is in the state |, when B is measured, and immediately
afterwards A is measured. Find the probability that the measurement of 4
gives the result 0.

. Let 4 and B be two observables on a system with a two-dimensional state

space, and suppose measurements are made of A, B and A again in quick
succession. Show that the probability that the second measurement of A gives
the same result as the first is independent of the initial state of the system.

. Il A is any operator, show that A'A has non-negative eigenvalues.
. If H is a hermitian operator and [} is an eigenvector of H with eigenvalue E,

show that (e = {y|.

. Show that the normalised state |y is an eigenstate of an observable A if and

only if (|42 = (]l

. Find the uncertainty in the polarisation observable P, when the photon is

polansed at an angle & o the x-axis.

. Let Py bethe photon polarisation observable for an axis at an angle 0 1o the x-

axis (so that Py = P, if #=0). Show that Pyand P, are compatible ifand only if
#—=14nn for some integer n,

. Prove that

AA*AB? = [CH[A, B + (<A A, B — CAY(BY)?
where 4 and B are any two observables and [ A, B} = AB+ BA.

. Check that the formulae (2.69)-2.70) for expectation value and uncertainty

remain valid if 4 has continuous eigenvalues.

. Use formal manipulations with the &-function to obtain Plancherel’s formula

J-IIF{F:JI’ dk= IMu}l’ dx

where (k) is the Fourier transform of y(x).
Show that

Sx—x)

| £ (x|

where the sum is over all zeros x; of f(x).

Hf(h=}
i
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15.

For a particle moving in oné dimension, find the uncertainty Ax when the
wave function is the Gaussian {x)=(2/ma®)* exp [ —x*/a*). Show that the
Fourier transform of this function has the same form, and deduce that Ax- Ap
has its minimum value in this state.

. From the commutation relations between % and p, show that

(i)~ '[p, "] =nx""",
Hence show that if f is a polynomial in x,, x5, x4, the commutation relations
(21162, 117) imply [f. 1= —ih df /éx;.

. Let D=r-p. If [ is a product of m position operators and n momentum

operators, show that
[D. f1=—ihim—mn) f

. Deduce (2.124) from (2.121)H42.123)
. Let X be a fermion with an n-dimensional state space. What is the dimension

of the state space of a system of r X particles? What if X is a boson?




3.1. The equations of
motion

Quantum dynamics

The previous chapter was concerned with describing the state of a system at
one instant of time, and with the results and effecis of an instantaneous
experiment. In this chapter we discuss how the system changes between
experiments, in response to forces which operate over an extended period. The
discussion is quite general, and applies to systems described by any kind of state
vector (e.g. polarisation vectors, wave functions, etc.).

The time development of a quantum system is specified by saying how the state
vector changes lrom one time to another; this is the quantum counterpart of
the classical equations of motion. (We will use ‘equation of motion’ to denote
any cquation describing a change of state; the term does not imply the
existence of motion in the classical sense of ‘change of position’.) An indication
of what the quantum equation of motion should be is provided by Planck’s
fundamental equation E = hv, which can be applied to any system as a relation
between its energy E and the frequency v of an oscillation associated with the
system. We saw in Chapter 2, when we were describing how the amplitude and
phase of an oscillation could be represented by a complex number, that the
oscillatory time dependence is given by a factor e . Thus Planck’s equation
implies that if a system has energy E, its state vector [(1)) at time ¢ should
contain a factor ¢ ~ans e

[Wi)) = ™™ |uhi0)). (3.1)
Now energy is an observable, so fora system to have a definite energy E it must
be in an eigenstate of this observable. Eq. (3.1) says that if this is so, the state
vector at time ¢ differs from that at r=0 only by a c-number factor, and
therefore describes the same physical state. For this reason an eigenstate of
energy is called a stationary state.

In order to say how a general state evolves in time we make the further
assumption that as long as the system is undisturbed by an experiment the
evolution of states is linear, ie. if (0> =¢, |, > +¢c;);» and if in time ¢ the
states |y, » and |, ) would evolve to |y, (1)} and |;(1)}, then |{{0)> evolves to

=2nivi P
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W)y =c, |y (1) + ¢, |@,(1)). In other words,
le)> = U{n)|i0) (3.2)
where U(r) is a linear operator. Since (3.1) holds whenever [(0)> is an
eigenstate of energy, we can identify Ult) as a function of the operator H
representing energy:
Ulty=¢="", (3.3)
It is usual to state this law of evolution in the form of a differential equation:

Postulate VI. Let [i(1)) be the state of the system at time 1. Then as
long as the system is not disturbed by any experiments, (1)} satisfies

ih % W)y = H|yln)» (34)

where H is the operator describing the total energy of the system.

This is a general statement prescribing the form that the equation of motion
must have in quantum mechanics, as Newton's second law of motion does in
classical mechanics. The equation of motion (34) is called the (time-
dependent) Schridinger equation. The operator H is called the Hamiltonian of
the system; it corresponds to the force in Newtonian mechanics - in fact, since
the total energy includes the potential energy, knowledge of the total energy is
equivalent 1o knowledge of the force.

The Hamiltonian takes its name from Hamilton’s formulation of
MNewtonian mechanics, which is suitable for a direct comparison with quantum
mechanics. In Hamiltonian mechanics the configuration and velocity of a
mechanical system are described by a number of coordinates ig,,.. ., g,) and
corresponding momenta (py, ..., po)i the motion of the system is determined
by a function called the Hamiltonian function H{g,,.. ... Pis- - .+ Pu). Whose
value 1s the total energy of the sysiem, by means of Hamilton's equations

dg; cH

e

dp, iH

a  dg,
Thus the state of the classical mechanical system is specified by the values of
(qys- <« s Ggs Pro- - Pp)ejust as the state of a quantum system is specified by the
state vector | ; an observable property of the classical system is a function
Slgy. - . gav P1s -+ Py), while an observable of a quantum system is an
operator on state space; and in both cases the behaviour of the system is
governed by a first-order differential equation giving the rate of change of the
state in terms of the particular observable H.

For a single particle moving in space, the classical state is given by the
position and momentum vectors (r, p); if the particle is acted on by a force Fir)
which is derived from a potential V(r), so that F= —V¥, the Hamiltonian

(3.5)
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function is

Hie,p)=3—+ V(. (3.6)

The operator corresponding to this observable in quantum mechanics is
obtained by substituting the operators r and p (see after (2.112}-(2.113)) for r
and p. The state vector [{t)}. being a wave function which varies with time, isa
function (r, t); thus in this context eq. (3.6) becomes the partial differential
equalion

I 2
T g 2’] V2 + V(. (3.7

Il n particles are moving under the action of forces which are derived from a

potential Fir,...,r.), so that the force on the kth particle is F,= — V, V' (where

¥i=1/cry), then the equation satisfied by the wave function y(r,, ..., 1) is

il h? h*

i — = e W A

ey~ oy Gt 2m,

Mow suppose the Hamiltonian H has a purely discrete spectrum, so that it

has a complete set of eigenstates |}, », | >,. . . with corresponding eigenvalues

E, E,,.... Then |(r)> can be expanded in terms of this complete set with
coefficients which will depend on r:

V, 5+ V. (3.8)

[}y =3 calO|Wmr (3.9)
and eq. (3.4) give:

0T 5= 4 = T Encu O
Hence, Bqu:ting l:ucfﬁcie:lts of ¥,

dr,
ih—"=E
if T L)

", Call)=e""5"Mc_(0). (3.10)
Thus
Wty =} e~ "c, (0. (3.11)
This is the same as (3.2) and (3.3), and shows that they follow from Postulate
V1.

As an example of the effect of time development on observables, suppose a
system is initially in an eigenstate |y, of an observable 4, where [,) isnot a
stationary state but a superposition of two different stationary states:

[Wo) =50 1> +ealdrs). (3.12)
Assume that |, ), |, and |y,) are all normalised, so that
ley|? +es|*=1. (3.13)

Then the probability that a measurement of A at time ¢ will show A to have the
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same value as it had mitially 15

[<Wro|We)>|* = |Cbolle e ™™g, ) + e~ )|

=|lc) e "B M+ |5 | 2e 52 (3.14)
since {y,|, > =¢, and {y,|¥ . =¢,. Using (3.13), this can be written as
<o | WD = 1 =dey[*lea]? sin® [WE, — Ex)t/h]. (3.15)
Thus the value of A oscillates with frequency
'EI _'EJ
- 316
¥ I {3.16)

Mote that if the energy of the system had been measured at r=0, when the
stale was given by (3.12). then the measurement would have changed the state
of the system in one of two different ways, and there would have been two
alternative courses of development. With probability |¢,|?, the measurement
would have given the value E,, the state of the system would have become
|, >, and at time ¢ this would have evolved to e™'*"*|i, ». With probability
|e,|?, the measurement would have given the value E;, the state would have
become |y, 5, and at time 1 it would be ¢~ "*+"*|f; . Thus the state at time 1
would be

e B,y with probability |c, |2,

i
e M,y with probability |e,|? it

instead of
¢, E—:E,I.'Hldr l:} +t.-;€‘|1'.'""'l$-z}_ 13’ IE}

If A4 15 measured at time r, the probability that it has the same value as it had
initially is [{Wo ¥, 3| =e,|? in the first case of (3.17), |{Wq|W27|* in the second
case. Hence the total probability is
feal?-Jes[* +leal - leal* =les|* +eal* (3.19)

This should be compared with (3.14) and (3.15). We see that the oscillation in
(3.15) has entirely disappeared. This oscillation is the result of interference
between the two states e **1"*|y, » and e ~*"*|yr,; it occurs when the states are
added coberently, asin (3.18). In(3.17), on the other hand, the states are added
incoherently. The mathematical difference between coherent and incoherent
addition is shown in the contrast between (3.14) and (3.19).

In the case of a system of particles governed by the time-dependent
Schrédinger equation (3.8), the solution (3.11) can be written

Plry, ..., r =Y e e (O)alr;,.. .1, (3.20)

where i, satisfies the equation

2 h?
] v < ;
2m, m,
which is known as the time-independent Schridinger equation. This is the

L (P T =E b,  (3.21)
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solution that would be obtained by the method of separation of variables (see
problem 3.4). If the Hamiltonian has a continuous spectrum, the sum in (3.20)
must be replaced by an integral to give

Plrg, oo i )= g7 ™M (r,,. .. ) dE. {3.22)

-

Write E=wh, ¢iry, ..., r,@)=Mjglr,, ..., r,); then

~

ey, ..., I, D)= |e ™Hr,,... .1, w)do (3.23)

so in this case (3.11) corresponds to solving the differential equation by taking
the Fourier transform with respect to r.

The simplest system of this type is that of a single particle moving in space
under no forces, so that the Hamiltonian is H = p?/2m. Since this is a lunction
of momentum, any eigenstate of momentum will also be an eigenstate of H, As
we saw in the previous chapter, there are no true eigenstates of momentum, but
there is an expression for the wave function corresponding to an expansion in
momentum eigenstates, namely the Fourier transform with respect to r:

w(r, r]njlﬁlptt}e‘" ok d*pf (3.24)

(we use p’ for the variable of integration to avoid confusion with the
momentum operator). The solution of the Schridinger equation that
corresponds to this as (3.11) corresponds to (3.9) is

x r3
g, )= Ilﬁp’] exp {ﬁ (p’ = 12%1 r)} dp'. (3.25)

@31 Let Abeany observable. As the state (1) » changes according
to Postulate VI, the expectation value of 4 in this state changes

according to

2 (A)= i[H A (3.26)

dt _<;I : ]>' 3
Proof. The expectation value at time ¢ is

CAY = (pln)| A|gn). (3.27)
We have

i
ih 7 V(0> = H[W(@).
r
Taking the hermitian conjugate of this equation,

god o
—ih 2 Vo] = Yol
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since H is hermitian. Now (3.27) gives

i d i
T (A= [.;ﬂ <|P‘[I]|]-4|¢"{f]> +(¢-’[F]'|-‘||:m |i.f‘|:l]'>:|
=[£{\ﬁ'{f]jff]fi|¢m> + W’Ullf‘i[ ";IHM'HD]

=<¢uu%[H;AM$HD

i
= —[H,A] ).
(jura). m
Let us apply this to the case of a simple particle moving in space in a
potential ¥ir). For this system

=1y (3.28)
2m

(here, and everywhere else, summation over repeated indices is understood; see
Appendix A). Using the commutator rule(2.80) and the form of the momentum
operators, (2.113), we have

[H,x0 =5 (1P x0+ [Py xdp) + [Vox]

ifr
il 329
ol (3.29)
Also,
i d
Jur=V¥| —ih— |+ih—(V
(Vv [ “m]*“m‘ "
av
= — i
i Ex,dr
20
oV
=[¥V pl=ih—. 3.30
[&m][_m]lgm (3.30)
Putting (3.29) and (3.30) in turn into (3.26), we find
d P>
S bt 31
s ) == (3.31)
d
- (py=—(VV)=(F) (3.32)

where F is the classical force on the particle. Thus the equations for the motion
of the expectation values are obtained by taking expectation values of all terms
in the classical equations of motion.

From eqs. (3.31) and (3.32) the classical equations of motion can be deduced
as approximations which hold if the particle can be described approximately
as a point particle, i.e. when its wave function is a localised wave packet. The
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precise statement is

@32 Ehrenfest’s theorem. If the wave function of a particle vanishes
outside a convex region V in which the force F is approximately
constant, then the particle behaves like a classical particle with
position {r} obeying the classical equation of motion

d?
m =5 £y =F(). (3.33)
Proof. From (3.31) and (3.32) we have
,2
m oy <) =<F(n). (3.34)

If the normalised wave function of the particle is i, the formula (2.69) for the
expectation value gives

{Fir)= J: [W(r)|*F(r) dr. (3.35)

MNow F can be regarded as constant in the region ¥, which contains {r’ since V
I5 convex, S0 we can wrile

CFir)) =F((r)) J. [r)|* d*r=F({r)) (3.36)

since W is normalised. i

The conditions of Ehrenfest’s theorem will not in general remain satisfied at
all times, as we can see by studying the change of the uncertainty in position.
As an example let us take the case of a free particle (F'=0), so that by (3.32) {p>
is constant. We will look at the 1-components x,, p; of r and p. From the
formula (2.70) for the uncertainty, together with (3.26), we obtain

d i d
{;mxﬁ1=<},w~xﬁ]>—zc:x.}l—f-E{.w.:», (337)
2 @, =(ittp, 1)~ 2p0> 5> (338)
7 1 ety o g P :

Since H commutes with p,, (3.38) shows that Ap,* is constant. Now a
calculation similar to that leading to (3.29) gives

ih
[H,x,*]= i (X301 + Py )

d
de

d? 1fi 2
s ;F (Ax, 1] =;<E[H,x1p; +p, x1]> —;{p, }1

| 2
Ia""rlie'l=' X Py + Py %0 —— X 0{py 2 (3.39)
n m

N DTl A
—M(P|:’ m{Pl}

2
= = (Apy)*. (3.40)
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Boundary conditions for
the Schrodinger equation
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Thus the expectation values and uncertainties in the components of
momentum are constant, but the uncertainties in the coordinates will in
general increase with time and the wave packet will spread out.

The time-dependent Schridinger equation for a single particle moving in a
potential V(r) is

ﬁﬁ' nz .
hi—=—— Virh. T
ih cy Im? w4 Vi (3.7
Multiplying this by & and taking the imaginary part gives
1 il h?
“h| f—+p— |= -— 2 — i VA, 341
1[ +nb ] 4mi["w"" V3] 341
which can be written as
‘:;}‘:-'w-j-u (3.42)
where
p=|vf*
and
h h
j=5 [PV —yVi]=—Im [} VY], (3.43)
FHi m

MNow p is the probability density: i a large number of particles were moving
in the potential ¥ simultaneously but independently, forming a cloud of dust, g
would (almost certainly) be the density of the dust (taking the total mass of the
cloud to be 1). Eq. (3.42), which is known in luid mechanics as the equation of
continuity, suggests that the vector j should be interpreted as the current
density describing the flow of the quantity whose density is p. The reason for
this can be seen by integrating (3.4 1) over a region V and using the divergence
theorem; this gives

d
d¥= — i 344
T J. 5 J‘J ds | |

where 7V is the boundary of the region V. Thus the total probability that the
particle is in ¥ decreases at a rate given by the flux of the vector j across the
boundary of V; we can imagine the probability being carried by the vector j.
(For a classical cloud of dust we would have j= pv where v is the velocity of the
dust at the point in question.) For this reason j is known as the probability
current.

We have seen (in eqs. (3.200~(3.21) that the time development of the wave
function of a set of particles is obtained by first solving the time-independent
Schrodinger equation (3.21), i.e. by finding the eigenfunctions and eigenvalues
of the Hamiltonian. In the next chapter we will tackle this eigenvalue problem
for the most interesting physical systems by algebraic methods; in general,
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however, the problem must be treated as a differential equation. Since this
book is concerned with principles rather than techniques, we refer to other
books (eg. Schiff 1968, Bohm 1951) for details of methods of solving the
Schrodinger equation. Here we will simply complete the specification of the
problem by finding the boundary conditions that the wave function must
satisly.

The simplest case to consider is that of a single particle moving in one
dimension, for which the time-independent Schrodinger equation becomes

W2 dhp

Hy= —o— =5+ Vi =Ey. (3.45)

As an element of the state space W defined by W1-W3 (p. 39),  is square-
integrable and uniformly continuous, and therefore satisfies

Plx)—=0 as x— 4+, (3.46)
This is sufficient to act as a boundary condition for the differential equation
(3.45). It is sometimes too restrictive; as we saw in §2.5, a hermitian operator
may have no eigenfunctions in the space defined by W1-W3, so that it becomes

necessary to look for eigenbras. These will also be given by functions W
satisfying (3.45), but with the conditions

I wx)dlx) dx<oo for all peW, (3.47)
In particular,
%—rﬂ as x—+ oo, (3.48)

If the Hamiltonian H is to be an operator on the state space ¥ taking
smooth functions to smooth functions, then the potential F(x) must also be a
smooth function of x. Physically, this is a reasonable condition. However, it is
often convenient to consider a discontinuous potential function; such a
potential can be a good idealisation of a physical situation, and it can give a
Schrédinger equation which is easy to solve. In order to admit discontinuous
functions as operators we must use a different space of wave functions; the
conditions to be imposed on the wave functions will depend on the nature of
the discontinuities in the potential. (This does not involve any departures from
the basic physical principles: remember that we are dealing with a
simplification of an actual physical situation in which the potential function is
smooth and the wave function belongs to our standard state space %7}

We consider only potentials which have simple jump discontinuities at a

finite number of points x,,. .., x, and are smooth everywhere else. We want to
extend the space % to a space % on which the operator
hl d]
cas Gl 3.49
H o gat (x) (3.49)

acts and is hermitian. Clearly the only modifications necessary refer to the
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points of discontinuity of V(x); thus we assume that the functions in % are

smooth everywhere except at x,...., x,. Then if ¢x) and y{x) are any two
functions in %, regarded as state vectors |¢), |, we have
Kys I
(P|H|W) = Z ﬁj{———T$+HHMm}m (3.50)

(with xg= =00, x, ., =0 :l. Integrating the first term by parts and comparing
with {|H|¢>, we find

=d I
Ol —cultipr=1 § a[ 59—y ] 651
l'ﬂ
where A, f denotes the discontinuity in the function [ at x;:
Af=flxi+)—fx—). (3.52)

ITH isto be hermitian, the right-hand side of (3.5 1) must vanish forall ¢,  in &%
The most natural way to ensure this is to demand that all functions in % are
continuous and have continuous derivatives. Then to ensure that functions in
& stay in % after H has operated, we need to impose a condition on the second
derivative: it must have a discontinuity to balance the discontinuity in ¥ Thus
the space % consists of all functions  satisfying

1. i and ¢ are continuous at x,, (3.53)

2

h
2 5 AW =AW, (3.54)

where the dashes denote differentiation with respect to x. (3.54) is only the first
in a chain of conditions giving the discontinuities in the higher derivatives ofy;
these conditions are all automatically satisfied if  is a superposition of
solutions of the Schrodinger equation (3.45) satisfying the basic continuily
conditions (3.53).

Ifit is necessary to look for eigenbras the problem becomes that of finding a
function y which satisfies

1 dllﬁ" x
.[ Wl j[ +V¢]dx-£f Ydx forall pe
(3.55)

In this case the same boundary conditions (3.53) anse as the condition for
(3.55) to be equivalent to the Schrédinger equation (3.45) (see problem 3.12).
For example, let us take Vix) to be a simple step function with a
discontinuity at x=0:
0 ifx<0,
“”'{m if x20.
Then if E=> ¥, the general solution of the Schrédinger equation (3.45) is
For x<0, (x)=Ae"*+Be *  where k*=2mE/h*
for x>0, y(x)=Ce™ +De ™ where K*=2m(E — Vp)/h*
and the continuity conditions impose the following relations on the constants
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A8 D
i continuous at x=0 = A+B=C+D;
i continuous at x=0 = ikd—-ikB=iKC—-IiKD.

A further idealisation which it is sometimes convenient to make is to
suppose that the particle can only be found in a certain region R, so that =0
outside R (this is often expressed by saying that ‘V'= oo outside R'). Let us take
R to be an interval [a, b]. Then the state space is a space of smooth functions
on [a, b]. with inner product

"_.
<¢i¢>=J Plx) Prix) dx. (3.56)

Boundary conditions at a and b are needed to make the Hamiltonian (3.49)
hermitian, even when F(x)is a smooth function on [a, b]. The condition for H
to be hermitian is

dyr d
[,i, ay u_j'E ,;,I (3.57)
This can be satisfied by imposing on all functions  in % the condition
pla)= ()= 10; (3.58)

there is no need to impose a condition on the derivative of . ((3.56) could be
satisfied by imposing the condition ¥'(a) = y'(h) =0 instead of (3.58); the latter
15 chosen because it makes the momentum operator p= = ih d/dx hermitian.)

For a particle which is conflined to the interval [a, b] but is otherwise free,
the Hamiltonian is H = p?/2m and the Schrédinger equation (3.45) becomes

h? d*y
=S =Ei (3.59)
with boundary conditions (3.58). The solutions of this differential equation are
= A sin kix —a)+ B cos k(x—a) (3.60)
where
kr=2mE/h*:
the boundary conditions then require
B=0, kib—a)=n=x (3.61)
where n is an integer. Thus E can only take the values
Jnlh 2
ZEW, nef, (3.62)

which form a discrete set. This discreteness is the basic quantum effect; it is
characteristic of a particle which is confined to a bounded region.

Suppose the physical system we are considering can exist anywhere in space.
Then we can consider the effect of moving every part of the system through the
same displacement a; such an operation is called a translation. To every state
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|#> of the system there will correspond another state |3 in the new position;
[¢'> is obtained by doing whatever was done to obtain [} but with the
apparatus all displaced through the vector a. Now if the basic laws of physics
are the same in all places, it seems reasonable to suppose that relations of
superposition between states will not be affected by the translation — that is,

Wr=cild+ealbd = Whr=c |, +eala (3.63)
- because whatever modification to the apparatus in one place is needed to
produce ¢, |, > + ¢,|W ;) rather than [y, > or [, 3, the same modification in the
new place will produce ¢, |/, "> +¢,|¢;">. (A more general possibility will be
considered later; see p. 96.) Thus the correspondence between |y ) and |y') is
linear:

W'y=UT)¥> (3.64)
where U{T,)1s a linear operator on state space. Similarly, the relations between
states expressed by their inner products will be the same after the translation,

(@' |Wr=<d|¥). (3.65)
Taking the hermitian conjugate of (3.64),

| =|UIT)". (3.66)
Hence (3.65) gives

CHUIT) UIT ) =< | ¥. (3.67)
Since this holds for any states |¢> and [}, we must have

UT)'UIT)=1. (3.68)

Thus U(T,) is a unitary operator,

The linearity and unitarity of U(T,) are consequences of the assumption that
the relations between states at one time are not affected by the translation, or
in other words that the general formalism for describing the system is invariant
under translations. We will say that translations are unitaristic operations.

In general, we will distinguish between an operation, which is performed on
the physical system itsell, and an operator, which acts mathematically on state
vectors. (The distinction runs parallel to that between states and state vectors.)
An operation is unitaristic if it does not affect the static laws of quantum
mechanics for the system, and is represented by a unitary operator on the state
space of the system. Our notation incorporates the distinction between
operations and operators: T, denotes the operation of translating the system
through the vector a, while U(T,) denotes the corresponding operator.

Mow suppose that the evolution in time of the system is also invariant under
translations, so that the relations between states at different times remain the
same after translation. Then if |i)(t)) is the sequence of states to which |[¥(0)}
evolves, the translated state U[T,]wr{ﬂ}} will evolve to the sequence U[T:]]&{r}}.
Thus if [(e)) satisfies the Schradinger equation, so does U(T,)|yi(r)):

ih < CUTWE) = HUT)W0). (3.69)
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But
T d
ih :TE LU(T)|ir)>] = U(T,) - ik & ey = U(T, ) H (1)) (3.70)

if [ue(r) > satisfies the Schrodinger equation. In particular this applies when r=0;
and since ||.i.r{l'.!]} could be any state, we can conclude that

HUIT)=U(T)H. (3.71)

Thus the condition for the behaviour of a system to be invariant under
translations is that the translation operators should commute with the
Hamiltonian.

Whether this invarance is true for a particular system depends on how
widely the system is defined. In classical mechanics, for example, the system of
a particle moving in the earth’s gravitational field is not invariant under
translations; the particle will behave differently if it is moved away from the
earth, because the field there is weaker. However, if the system is widened to
include the earth, then this wider system is invariant under translations: if the
particle and the earth are translated together to any position in the universe,
the forces between them remain the same because the distance between them
does. It is generally, and strongly. believed that il one includes all relevant
matier in the system, this invariance will always apply: the laws of physics do
not vary from place to place. This is the lasting legacy of the Copernican
revolution: the firm belief that there is no centre of the universe, or any other
special point in space.

When a =0 the translation has no effect on the system, so T(0) is the identity
operator. Now assume that U(T) is a differentiable function of a, and put

i
D= %, U(T))]ame (3.72)
D, is called an infinitesimal translation operator. Differentiating (3.68) and
putting a =10, we find
Dl + D; =ﬂ. {3.?3]

Thus D is antithermitian. Let P;=ihD; then P, is hermitian, and therefore is
qualified to describe an observable.

We will identify the observable P, for the case of a single particle in space by
determining the operators U(T,) and D,. The effect of U(T;) on a wave function
i is to produce a wave function ' whose value at r + a is the same as the value
of  at r(this is illustrated in Fig. 3.1, in which the value of y at a point is given
by the density of ink at that point). Thus we have

W'(r+a)=ir) (3.74)
or, writing "= U(T, i,
LU(T. W ](r)=yr(r—a). (3.75)



Fig. 3.1.
The effect of translation on a
wave packet.
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Hence, from (3.72),

D) == U= [¥lr—a)]uco

a;

- - (3.76)
x;
é
' Py=ihD;= —ih~—

—
o

(3.77)
Thus the observables P; are the components of momentum.
Now suppose the behaviour of the system is invariant under translations, so

that (3.71) holds. Differentiating, we find
HP,=PH, (3.78)
Le. P; commutes with the Hamiltonian.

An observable which commutes with the Hamiltonian is called a conserved
quantity or a constant of the motion. It can be seen from @3.1 that such an
observable has a constant expectation value; in fact it has the following
SLIONEgEr property:

@33 If the observable 4 commutes with the Hamilionian, the
probability that A takes a particular value « is constant.

Proof. Let 5, be the subspace of eigenstates of A with the given eigenvalue a,
and let P, be the orthogonal projection onto &, We will show that H
commutes with P,. First note that if |yr,» belongs to %, so that Al > =y, >,

then

AH,> = HA,> =aH,), (3.79)
ie. H|y,» also belongs to %,. Now any state [ can be written as

o> =|w.>+ o> (3.80)

where |, =P,y belongs to %, and |{ ) is orthogonal to %#,. Then H|{,>
belongsto & ;also Hl, » isorthogonal to &,, forif |¢ > isany vector in &, then
H|¢ is also in &, and so0

(P|H|W > =< |H|d>=0. (3.81)

e
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Thus H|,» is the orthogonal projection of H|{) onto &, i.e.
HP|y) =P H|y). (3.82)
Since [i) is any state vector, it follows that HP,=P,H.
MNow using the form (2.42) for the probability that 4 has the value «, and
@3.1 for the rate of change of an expectation value, we find

d d i
S pdaly)= YRy = ILH. PYY>=0. @

We have now seen the property of commuting with the Hamiltonian being
significant for two different types of operator: unitary operators, like those
which describe the effect of translations; and hermitian operators. which
represent observables. The significance is different in the two cases; the general
situation can be summarised as

@34 If a unitary operator commutes with the Hamiltonian, it
describes a physical operation on the system which leaves ils
behaviour invariant.
If a hermitian operator commutes with the Hamiltonian, it
describes an observable which is a conserved quantity. [l
And we can easily generalise the reasoning which, in the case of translations
and momentum, yielded a connection between unitary operators and
hermilian ones, lo prove

@35 If U(4) is a family of unitary operators depending

differentiably on a real parameter 4, with U{0)= 1, then

X = Ehﬂ (3.83)
di Jmi

is a hermitian operator. If the U(Z) describe invariances Q; of the

system, then X describes a conserved observable. Il

In many examples of physical interest, the operations @, form a group in which
the composition of operations is given by adding the parameters, i.e.

Q.00,=0;,, (3.84)
where @, o, is the combined operation of @, followed by Q,. In this case the
unitary operators U(Q, ) can be expressed in terms of the hermitian operator X,
as follows:

@36 Let Q; be a family of operations on a physical system which
are labelled by a real parameter and satisfy (3.84), and whose effect on
the states of the system is described by unitary operators. Then these
operators can be chosen to be of the form

U(Q,)=e~"X* (3.85)
where X is a hermitian operator.
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Proof. To simplify the notation we will write U(Q ;)= U/{4). Suppose that we start off by
associating the operation (; with the unitary operator U,(4). Then the state vector
U (AU, ()i > describes the state of the system obtained by applying first @, and then
Q; to the system when it is in the state [¢}. This state results from applying @, , . so it is
also described by U (4 + u)|ry. Hence

Uyl + oy = ol ) U (DU )l (3.86)

where w4, p) is a complex number with unit modulus; it is independent of | since
Uy (4+ ) has to be linear. This holds for all jlﬁ}_ 80

Uy (A4 p) = ol i, ) U (AN (). (3.87)
We can assume that U, (0)= ; this gives
wfd, 0)= o0, p)= L. (3.88)
Mow
EE.'_, ;i Ui+ &A‘} — U, (4) Y w4, 5;‘.]1'_!,:521_&’,1.1] = U, (4
d/. e - &A P ] .ﬁg
= Lim w4, AU (64)— U ,10)

et 1) 2 :
- ]U.lz.:-_-_l— [eol i, Uy ()], 0 Uy (2.
i == 5.‘. L]

Let (s/du)4, 0) =a(i) and iU, /du)= X; then

al, P
—ﬂ"[ﬂlﬂl + 'I.E:IU:H] (3.89)
since Uﬂﬂ]-’] and uﬂi,ﬂ}- 1. Let
Uli)=exp [ -[ 24 di’]U.I}J‘. (3.90)
(1]
then
dUr X
S Ui4). (3.91)
The solution of this differential equation with Li0)=1 is
Ull)=e """ (3.92)

as can be scen by writing |f(4)) = Ui, so that
d F | 3 -
ih = > =X [t 2)p; (3.93)

this is the same as the Schrédinger equation (3.4) with X instead of H and J instead of 1,
s0 115 solution is the same as (3.3) with these changes.

Since w4, u) has modulus | for all 2 and p, «(4) is purely imaginary and so the
exponential in (3.90) has modulus 1. Thus U(4) differs from U, {4) only by a phase factor
and so it describes the same physical operation Q..

Asan example of (3.85), take @, = T;; to be a translation in the x-direction, so
that U(Q;) acts on wave functions by (3.74). Take X = —ih d/dx; then by
expanding the exponential as a power series, (3.85) can be recognised as
Taylor's theorem.

The hermitian operator X is called the hermitian generator of the unitary
family U{(Q;). Note that in general X is not uniquely determined by the
unitaristic operations (,, because of the freedom to multiply the unitary
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operators U(Q,) by a phase factor a{4). This could have the effect of adding a
multiple of the identity to X. However, this possibility is often eliminated if
there are several families of 0, which combine to form a larger group (see §3.3).

As we noted in the course of proving @3.6, the hermitian generator X is
related to the unitary operators U(Q, ) in the same way as the Hamiltonian H is
related to the time development operators Ulr) of §3.1. Mow Ult) represents the
operation of taking the state at time t, to the state at time 1+, which
operation is to time as translations are to space. Thus the Hamiltonian can be
secn as the hermitian generator of time translations.

In classical mechanics as well as in quantum mechanics a continuous family
of invariances is associated with a conserved quantity (see Goldstein 1980,
p. 411). There, too, invariance under translations is associated with
conservation of momentum, Another important example is invariance under
rotations (about a given point, say the origin); the associated conserved
quantity is angular momentum {about that point). These two examples are of
fundamental importance, and need to be formulated as one of the basic
postulates:

Postulate VII. Translations and rotations are unitaristic operations:
i.e. on the state space of any physical system in space there are unitary
operators U(T,) and U{R(n, &) representing the effects of a translation
through the vector a and a rotation about the axis n through the angle
f. For fixed n, the observable associated with the family U{i)= U(T,)
is P-n, where P is the total momentum of the system, and the
observable associated with the family U4) = U(R(m, A))isJ *n, where J
15 the total angular momentum of the system.
From this postulate we can deduce the form of the operators representing the
components of angular momentum of a single particle described by a wave
function, using an argument similar to that which gave the components of
linear momentum in (3.77). A rotation R is an operation upon three-
dimensional vectors; if we regard these as three-component column vectors, R
can be identified with a 3 x 3 matrix. If R is a rotation about the z-axis through
an angle 8, for example,

cosfl —sinf 0
R=Rik,h=| sinf cosd 0]. (3.94)
0 0 1
The unitary operator U(R) acts on wave functions in a similar way to the
translation operator U(T,), as shown in Fig. 3.1; U{R) acts on a wave function
¥ to produce a new function " whose value at Rr is the same as the value of
at r. Hence
[U(RW r)=y(R " "r) (3.95)
(cf. (3.75)). In particular,

[U(R(k, §Wix, v, 2)=y(x cos O+ y sin §, —x sin @+ y cos 0, z).
(3.96)
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By @3.5 and Postulate VII, the z-component of angular momentum is
represented by the operator

!
J,=ih— U(R(K, 0)]s0. (3.97)
dt)
Hence. by differentiating (3.96) and putting #=0, we find

' Bt O S, s
= [ Jx, v, 2)=) A (x v.2)—x Gy (% ¥, 2);

=XP,— VP (3.98)
using the usual operators (2.112)-(2.113) for the components of momentum.
(3.98) is the z-component of the vecior equation

J=rxp, (3.99)
which is the classical definition of the angular momentum of the particle.
Similar arguments show that the x- and y-components of (3.99) are also true in
the quantum case.

Postulate VII also enables us to determine the angular momentum operator
for a photon. Consider a photon travelling in the z-direction, with its
polarisation states |¢h,> and |¢,». The effect of a rotation about the z-axis
through angle fis to take the state |¢, > to a state with polarisation vectoratan
angle 8 to the x-axis:

U(R(k, )|, > =cos B¢, » +sin O]¢,>
Similarly : {3.100)

U(R(k, 8)|¢p,» = —sin B, > +cos ¢,

Thus the z-component of angular momentum is given (as an operator) by

J:

d
¢:>=ih = [cos 01, +sin 01,)Tuco= b, |
; . (3.101)
J:I¢p> ook ‘n1¢1} I

The other components of angular momentum will involve states with different
directions of motion for the photon, since other rotations will take a photon
moving in the z-direction to one moving in some other direction.

A third kind of geometrical operation which assumes dynamical significance
in quantum mechanics is space inversion. Like the operations of rotation, it is
defined with respect to a particular point, which we take to be the origin; it
consists of taking the point r to the point —r. An operation which is somewhat
easier to visualise can be obtained by combining this with a rotation through =
about an axis n; the result is mirror reflection in the plane perpendicular to n.
Neither of these operations can be performed on a physical object;
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nevertheless they constitute physical operations in the sense that for any
physical system one can construct another system which is related to the first
by space inversion (if the first system had a particle at the point r, the second
has one at —r).

This operation changes a left hand into a right hand; thus to say that it is
unitaristic is to say that there is no particular handedness built into the laws of
physics. This seems a reasonable supposition. (The laws of economics may
discriminate against left-handed people who want to buy an appropriate pair
of scissors, but the laws of physics do not make the use of their scissors, once
they have found some, any more difficult than for right-handed people.) Ifit is
trug, there is a unitary operator P which represents the effect of space inversion
on state vectors: on wave functions, for example, it acts by

[Py]ir) =yl —r). (3.102)
If space inversion is applied to a system twice, it brings it back to its original

state; thus P?|i> must be a multiple of | ». By redefining P with a phase factor
if necessary, we can arrange that

Pio1. (3.103)

Since there is no continuous family of operators in this case, there is no
hermitian operator associated with inversion as in @3.5, and so we would not
expect there 1o be a conserved quantity associated with invarance under
inversion. In classical mechanics indeed there is no such conserved quantity. In
quantum mechanics, however, (3.103) and the fact that P is unitary give

P=p~'=pP" (3.104)
ie. P is hermitian as well. Thus P itsell represents an observable. This
observable is called parity; because of (3.103) i1ts eigenvalues can only be +1
(these eigenvalues are also called even and odd respectively). If the operation of
space inversion is an invariance of the system, then P (as a unitary operator)
commutes with the Hamiltonian and therefore (as an observable) is a
conserved quantity.

So far we have assumed that a physical operation must be represented on state
space by a linear operator. The grounds for this assumption were that an
equation of the form

o =cy W) +ealbad (3.105)
expresses a relation between the states |, [¥,> and |, which must be
preserved by the operation. However, this argument is careless of the
distinction between states and state vectors. The coeflicients ¢,, ¢, describe a
relation between state vectors, but it is only their squared moduli |c, |2, |c,|?
that are significant in the relations between physical states. Their phases are
significant, but only to the extent that they enter into probabilities, which are
given by expressions like |{¢| )| Thus the only property which is needed to
describe the effect of an operation which does not affect the static laws of
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quantum mechanics is that the state vectors |T¢), | Ty > which describe the
states |¢), |y after the operation should satisfy

[{T¢| T =|<d || forall |$). |} (3.106)

Wigner’s theorem (whose proofis sketched in problem 3.23) states that if Tis

a mapping of state vectors which satisfies (3. 106). then for each | we can find
a complex number w, with |w|= 1, so that the map U defined by

Uly = | Ty (3.107)
either is linear and unitary or satisfies
Ule, |, ) +call )= U, > + 6 U ). (3.108)

In the latter case U is said to be antilinear. As a consequence of (3.106), if U is
antilinear it musi also satisfy

(@ |Wr=Cd|¥> where|¢)=Uld), |[¢>=Ul): (3.109)
L is said to be antiunitary,
An example of an antilinear operator is the operator K of complex
conjugation with respect to a complete set [y, 3, [W3), ..., which is defined as
follows:

T Wy=3 cld, Kl)=cly. (3.110)
(Note that the notion of complex conjugation has no absolute meaning in a
vector space, but depends on a choice of complete set.) More generally, the

operator of complex conjugation with respect to a complete set of bras is
defined by

WilK o =<y | 9. (3.111)
Given such a complex conjugation operator K, any antiunitary operator U
can be written as U=K} where V is linear and unitary.

The only physically significant operation which is represented by an
antilinear operator is that of time reversal. This is the operation of leaving all
the parts of a system in the same positions but reversing all their momenta and
angular momenta. For a system of a single simple particle time reversal is
represented by the operator T of complex conjugation with respect to the
eigenbras of position, which simply has the effect of complex-conjugating the
wave function:

Toir) = yir). (3.112)
This leaves the particle in the same position, in the sense that it does not
change the probability that the particle will be found in a given position; it
reverses the momentum of the particle, for if ¢ =¢*" is an eigenfunction of
momentum with eigenvalue fik then Ty=e*" is an eigenfunction of
momentum with eigenvalue —#hk (more correctly: the probability that the

particle will be found to have momentum p when it is in state |{> equals the
probability that it will be found to have momentum —p when it is in the state

T|>).
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A system is invariant under time reversal if T|y/( —1)) is a possible sequence of
states (i.e. a solution of the Schrédinger equation) whenever |ib(1)} is a possible
sequence of states. The condition for this invariance is the same as the
condition for invariance under other operations:

@37 A system is invariant under time reversal if the Hamiltonian

commutes with the antilinear operator T.
In particular, a system of several simple particles moving in a real
potential Wiry,..., r,) is invariant under time reversal.

Proof. If |{(t)) is a possible sequence of states,
i
mi ey = H (). (3.113)
Let |¢(t)) = T{y(=1t)); then
e L TR
ih T |de)y =ihT o (=10

- T[ —:'fr;—i [ —IJ}] since T is antilinear

=TH(— 1))
=HTy(—1)) if T commutes with H
= H|d1)).

Thus |¢(1) > is also a possible sequence of states and so the system is invariant
under time reversal,

For a system of several simple particles moving in a real potential the
Hamiltonian is

2 ,_i gt _”_J !
H = v, : “'-:'_ + V),

This is a real operator and clearly commutes with complex conjugation of the
wave function:

Hy=Hy.
i.e. H commutes with T. Hence the system is invariant under time reversal. i

If two systems 5, and §; are put together to form a combined system 5,5, as
in §2.6, then the effect of a physical operation on the combined system can be
obtained by performing the operation on both §, and §,. Let % and % be the
state spaces of 8, and §,, and suppose the operation Q is represented by a
unitary operator U,(Q) on &} and by a unitary operator U,;(Q) on 5. Then if
the combined system S, 5, isin the state ¢ 3[y >, i.e. S, isin state ¢ and §; isin
state |, the result of the operation will be to put 5,8, in the state in which §,
is in state U,(Q)|¢> and S; is in state U,(Q)|y>. Denoting the corresponding
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unitary operator on %, & 55 by U(Q), we have

V@I |w>]1=[U(@)é>1LU Q)¢ >]. (3.114)
U{Q) is called the tensor product of the operators U, (Q) and U,(Q); we write
UQ)=U,10) ® U4Q). (3.115)

Ifwe identily U,(Q) with U,(Q) @ 1, as was discussed in §2.6 (in the footnote 1o
(2.128)). we can wrile

U(Q)=U,(@)U,(Q). (3.116)

MNow suppose we have a sequence of operations @, with @, being the

identity as usual. Then according 1o @3.5 there are observables K, and K ; of

the systems S, and 5, whose operators are the hermitian generators of the

families U,(Q;) and U,(Q;); these operators act on the combined state space
Y, ® 5 asin(2.128). The hermitian generator K of the family U(Q) is given by

!
K|@)> =7 [UQI>Timn

{
==;_,i (U@ UAQ, )] 0

=[K|¢2]|w) + | [K, |1, (3.117)
using the product rule for differentiation and the fact that U, (Qp) = U5(Q) = 1.
Hence
K=K, +K; (3.118)
the observable K for the combined system is the sum of the corresponding
observables for the constituent systems. An observable with this property is
called an additive quantum number. We have just proved

@38 If an observable is the hermitian generator of a family of
operations, it is an additive quantum number. 1l

Thus momentum and angular momentum, as we would expect from
classical mechanics, are additive (vector) quantities. Parity, on the other hand,
is not. Since the parity operator is itself the unitary operator representing an
operation, (3.116) gives for a combined system

P=P,P,. (3.119)
This means that the eigenvalues of parity in the combined system are the

products of its eigenvalues in the constituent systems. Such an observable is
called a multiplicative quantum number,

A physical operation like a translation or a rotation has an effect on the
observables of a system as well as its states. Il 4 is any observable, we can
define an observable A" which is measured by the same experiment as 4 but
with the apparatus all translated through a vector a. The operator
representing 4 can then be expressed in terms of A and the unitary operator
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UIT,). The general statement is

@39 Let 0 be a unitaristic operation on a quantum system,
represented by the unitary operator U'(Q). Let A be an observable of
the system, measured by an experiment E, and let 4’ be the observable
which is measured by the same experiment after the operation Q has
been applied to the apparatus. Then 4" is described by the operator

=U(Q)-A-U(Q)" . (3.120)
If @, is a continuous family of operations associated with the
hermitian operator X by (3.83), then

ifr dA =[X, A] (3.121)

) P
Proof. Let i, be an eigenstate of A with eigenvalue =, o that the experiment
E certainly gives the result . If the experiment is performed after applying the
operation Q then, since Q does not affect the static laws of physics, the result
will again certainly be «. This second experiment measures A'; the state of the
system is U(Q)|¥, ); so U(Q)|w,) is an eigenstate of A’ with eigenvalue a. Hence

AUQ)r,) =2U(Q)|w,> = UQ) Ay, ). (3.122)
Since the eigenstates |if,» form a complete set of states, we can deduce that
A'UQ)=UIQ)A, (3.123)

which is the same as (3.120).
In the case of a continuous family of operations we must replace  in (3.123)
by Q.. Di!‘f::rcnlialin,g with respect to i gives

L U@+ A 2 U= UQA

When i=0, U(Q;)=1 and A'= 4; hence, using (3.83),
L dAd

di |is

=XA-4X. &

This has important applications when the operations are translations and
rotations. First let us take Q to be a translation through a, and let A= fi{r) be
any function of the position vector r. If the position-measuring apparatus is
translated through a vector a, it will give the result r when the particleisatr=
r'+a. Hence

A'=f(r—a). (3.124)

Now put a=dn; then we have the family of unitary operators U(T.,).
According to Postulate VII, the associated hermitian operator is X =P n.
Taking n to be a unit vector along the ith coordinate axis gives

i ‘L"r——m Y _tp, 0] (3.125)




Fig. 3.2.
Explanation of (3.129).
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by (3.121). Taking f(r)=x; shows that the canonical commutation relation
(2.117) is a special case of (3.125).

Secondly, take @ to be a rotation R, and let A=m-V be the component in
the direction m of the vector observable V. Then when the apparatus is tilted
by the rotation R, it will measure the component of ¥ in the rotated direction
Rm; thus

A'=(Rm)-V=m-(R™'V), (3.126)
If U{R) is the unitary operator representing R, (3.120) gives

UIRIWVU(R)"'=R"'V, (3.127)
1.8,

U(R)VU(R) " '=(R~ 'J.,,- Vi=K;V; (3.128)

where R;; are the matrix elements of the orthogonal 3 x 3 matrix R. Now
consider the family of rotations Rim, 2). According to Postulate VII, the
associated hermitian operatoris X =J-n. In(3.121) dA'/d4 is a component of
the vector

%:R-'v@;—{ [Rn, —A)V],og= —nx V, (3.129)

which is the velocity of the tip of the vector ¥ when it rotates about the vectorn
with unit angular velocity (see Fig. 3.2). Thus (3.121) gives the vector equation

=imx¥=[J-n V]. (3.130)
Since n is any vector, this can also be written
[ V)= ihey b (3.131)

(sce Appendix A for the Eyx Notation).

Finally, let § be a scalar observable. Then § is not related to any particular
direction in space, and so it is unaffected by a rotation of the apparatus; thus
§'=5. Hence

U(RSU(R) '=5
and (3.132)
[J;. 5]=0.
In particular, this applies whenever § is a scalar product of two vector
observables or the magnitude of a vector observable (e.g. the distance r=|r).

—-axV
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Active and passive trans-
formations.
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To summarise, we have shown that Postulate VII implies the following:
@®3.10 The basic commutation relations

[P, f1= —m%. (3.133)
i

[J;. V] =iheg Vi, (3.134)

[J,. 51=0, (3.135)

where P is the total momentum of the system, J is its total angular
momentum, f(r) is any observable function of the position of a point
of the system, V is any vector observable, and § is any scalar
observable,

In this section we have considered operations which are actually performed on
a physical system, so that we have two states of the system to consider; the state
before and the state after the operation. Given a specific way of associating
states with definite mathematical objects (the state vectors), we then have two
state vectors, and these are related by the unitary operator U(Q). This is called
the active interpretation of U({2). A unitary operator can also be given a passive
interpretation when there is one state but two ways of associating states with
state vectors, and the latter are related by the unitary operator.
We can use translations to illusirate the idea. The change

r—-r=r+a (3.136)
describes, in the active interpretation, a movement of an object in which every
point of the object is displaced through the vector a (Fig. 3.3(a)). In the passive
interpretation it is a change in the way that points of space are associated with
vectors: the point that was called ris now called r'. This is just what happens if
the origin is changed by being displaced through —a (Fig. 3.3(b)). The
distinction extends to wave functions: if the system is actually translated
through the vector a, its wave function changes from W to ', where

'ir)=(r—a). (3.137)

A
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The same change occurs in the passive interpretation if the coordinates are
changed by the change of onigin shown in Fig. 3.3(h), The state which was
described in terms of the old coordinates by the wave function ¢ will now be
described by the wave function . Since §'(r') = y(r), the value of the function
at any point of space is unchanged, but its value at particular numerical
coordinates will have changed: eg. (1,0, 0)# (1, 0, 0).

If we change the way in which (physical) states are described by
(mathematical) state vectors, we must also change the way in which (physical)
observables A are described by (mathematical) operators A. Suppose the
change is given by a unitary operator Uy, in ils passive interpretation, so that
the state which was called | is now called Ug|y . A similar argument to that
of @3.9 shows that the operator which now describes the observable A4 is

A'=U AU~ (3.138)
The same applies to the operators representing physical operations . The
state which was called U(Q)|) is now called U, U(Q)[i¥>. This must be related
to Ugly> by applying the operator U'(Q) which now describes the
operation Q:

U U@y = U1Q) Ul >,
so that

V@)= U, V@)U, ". (3.139)

Many of the properties of the operations discussed in the previous section are
consequences of the fact that the operations have the mathematical structure
of a group. Other groups of operations are important in elementary particle
theory. The following is a brief summary of some general results from group
theory.

A set G of operations forms a group if (i) the composition of any two
operations in G also belongs to G, (ii) the identity operation (the operation of
leaving the system as it is) belongs to G, and (iii) every operation in G has an
inverse in G. The composition of operations is usuwally writien as
multiplication and called their product. (The fourth axiom for a group, that this
multiplication should be associative, is automatically satisfied for operations,)

A (unitary) representation of a group on a vector space ¥ is a rule which
assigns to each group element Q a (unitary) operator U(Q) on ¥ in such a way
that

UIQR)=U(Q)U(R) forall @, ReG. (3.140)
A projective representation is an assignment of operators U(Q) satisfying
VI@R)=w(Q, R)U(Q)U(R) (3.141)

where m{Q, R)is a numerical factor (which has modulus 1 if the operators U[(Q)
are unitary). We say that the space ¥ carries the representation U, The
representation is irreducible if it has no non-trivial invariant subspaces, i.e. if
thereis no subspace of ¥ (apart from 0'and ¥7) which is taken to itself by every
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UiQ). Such a subspace would carry another (smaller) representation of the
group, so the original representation could be regarded as being made up of
smaller representations: the irreducible representations are the basic building
blocks for representations. Two representations U, and U, carried by vector
spaces ¥ and ¥7, are equivalent if there is an isomorphism &: ¥ = ¥7 such
that 8U,(Q) = U,(Q)0.
[t can be seen from (3.75) that the operators U(T,), defined on the space of
wave functions, satisfy
UIT ) = UT, )= U(T)U(T,). (3.142)
Thus the operators U(T,) form a representation of the group of translations.
However, in the proof of @3.6 we saw that in general the operators
corresponding to a group of unitaristic operations form only a projective
representation of the group (see (3.87)).
A Lie group (of dimension n) is a group whose elements can be specified by n

real parameters, in such a way that if ¢{(¢,,. .., £,) denotes the group element
with parameters £, ..., {,, and
Q&yy- - Sy ey M) =@y, - 1 L)y (3.143)

then the {; are smooth functions of the &; and the y,. (More generally, a group is
a Lie group if it can be divided into subsets which can be parametrised in this
way. For luller details see Gilmore 1974.) A representation U of a Lie group is
differentiable il U(Q(£,,. . ., £,)) can be differentiated with respect to each £; we
will only consider such representations. We can then take over the notion of
hermitian generators from the previous section. A generator of a
representation of a Lie group G is an operator
d ..
X =1 UiQ;)

[

im0 (3.144)

where @; is a family of elements of G specified by parameters &,(4), ..., &4)
which are smooth functions of 4, such that @ is the identity. If we assume that
the identity has all its parameters (0, and take Q; to be the element whose
parameters are all 0 except for ;= 4, we get the generator

Xym— U@, - - s ENyes (3.145)
o,

If the representation U{(Q) 1s unitary, then, as in the case of the translation
group, X is antihermitian (cf. (3.73)). It follows that ihX is hermitian and
represenis an observable. In the physics literature the word ‘generator’ is often
used for this observable rather than the antihermitian X; we will continue to
distinguish them by calling thX a ‘hermitian generator’.

The basic mathematical facts about the generators of a representation of a
Lie group (see Gilmore 1974 for proofs) are:

LAl The generators form an n-dimensional real vector space with
basiz X, 0. X,
LA2 If X and Y are generators, so is [X,Y].
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It follows from these that [X;. X ;] can be expanded as a linear combination of
the X,.ie

[X, X]=Y cinXs (3.146)
k

where the ¢, are real numbers. We have

LAY The coefficients ¢, in (3.146) are the same for all
representations of G,

The ;5 are called the structure constants of G.
An (abstract) Lie algebra is a vector space A with a bilinear map from 4 = A4
to A, called the Lie bracket and written [X, Y], which satisfies

[X,¥Y]=—[Y, X], (3.147)
[X, [Y. ZI]+ LY. [Z, X11 + [Z, [X, Y]] =0. (3.148)

A representation of a Lie algebra A is a rule which assigns to each X €4 an
operator D(X) in such a way that

DILX, Y])=[D(X). D(Y)]. (3.149)

Thus LAI1-LA3 say that any Lie group G is associated with a unique Lie
algebra, and that the generators of any representation of G form a
representation of its Lie algebra.

An example of a Lie group is the three-dimensional rotation group. Every
element of this group is a rotation about some axis (a straight line through the
origin) and through some angle. It is not immediately obvious that these form
a group; the fact that they do is a consequence of Euler's theorem, which states
that every possible motion of a rigid body with one point fixed can be achieved
with a single rotation. In particular the product of two rotations is a rotation.
Euler’s theorem is proved by showing that the rotation group consists of the
operations on vectors given by r — Rr where R is a 3 x 3 orthogonal matrix
with determinant 1.

Thus the elements of the rotation group can be specified as Rin, ) where n is
a unit vector along the axis of the rotation and @ is the angle of the rotation,
with —m<f#<m. As parameters for the group we can take the components of
the vector fn=(&,, £,. &,); using (3.145) then gives basic generators X |, X ;. X ;,
where

; - 7 S
Xy =— U(R(&;, &3, &Ee o== U(RG, D)|p=o ele. (3.150)
]

o

& &l

Using the chain rule we find that the generator of the family of rotations Rin, )
about any axis n is

o

X #3% U(R(Bn,, ny, O )lpua=m X, +0;X 3 +n3X3=n-X, (3.151)

which illustrates LAl (see also problem 3.21).
According to Postulate VII the hermitian generator corresponding to X is
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Fig. 3.4
Explanation of (3.154).
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the angular momentum operator n-J, ie

n-J=ihX=ihn-X (3.152)
or

Ji=ihX,.
Now by taking ¥,=J,; in (3.134) we obiain

[Xi X;]=8,uX,. (3.153)

which illustrates LA2 and LA3, and shows that the structure constants of the
three-dimensional rotation group are ¢, =g,

We ought to prove (3.153) directly, for it is clearly a property of the rotation
group itself and does not depend on any particular application to physics; in
other words, we ought to check that Postulate VII is consistent with angular
momentum being a vector,

@311 In any representation of the rotation group, the generators
X, satisly (3.153).

Proof. We start from the equation
SRin, )= R(Sn, )5 for any rotation 5, (3.154)

a fact about rotations which is depicted in Fig. 3.4. The same equation must
hold in any representation U

UViS)U(Rin, ) = U{R(Sn, B)LS). (3.155)
Differentiating with respect to ¢ and putting #=0,
U(S)n - X =(5n) - X U(S). (3.156)

Mow put §=R(m, ¢). As in (3.129) and Fig. 3.2,
d
prs [R(m, #n], o=m xn. (3.157)

Hence differentiating (3.155) with respect to ¢ and putting ¢=0 gives
(m-X)}n-X)=(n-X)(m-X)+(m=xn) X,

[m-X.n'X]=(mxn) X, (3.158)
which is another way of writing (3.153). B

Sx

R(Sn, §) Sx = S|R(n, 6)x]
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This can also be expressed by saying that the Lie algebra of the rotation
group is isomorphic to the space of three-vectors, with the Lie bracket of two
vectors equal to their vector product.

The above proof is not valid if the operators U(R) only form a projective
representation of the rotation group, for (3.155) may include a numerical
factor. However, the result can be restored by redefining the U(R), as we did in
the proof of @3.6; that is,

@3.12 If U(R)isa projective representation of the rotation group. it
is possible to find a numerical factor w(R) so that the projective
representation U'(R)=w(R)U(R) has generators which satisfy (3.153).

Proof. We can write

UIRS)=n(R, S)U(R)U(S) (3.159)
where #(R, 5) is a numerical factor; the argument which led from (3.155) to
(3.158) will now yield

[m-X.n:X]=(mxn) X+azim,n)l (3.160)

where
=

a(m, ﬂ]'=;.'_-[”;5$ #[Rim, 8), R(n, $)]|5-s-0- (3.161)
(3.160) shows that #im, n) is pure imaginary if the generators X, are hermitian,
and itis an antisymmetric bilinear function of m and n. The only such functions
for three-vectors are of the form

aim,n)=imxmn)-p (3.162)
where p is some fixed vector. Define U(R) by
U'(R(n, §))=¢* " U(R(n, 0)); (3.163)

then the U'(R) form another projective representation of the rotation group,
with generators X'= X +ip which satisfly

[m-X.nX]=mxn-X" W (3.164)

Mote that the redefinition (3.163) may lead to ambiguities, for the angles @
and @+ 2x define the same rotation R(n, #) but may give different values of the
factor ¢®®". The assertion of @3.12 is only that the factor exists, not that it is
unigue: it does not imply that any projective representation of the rotation
group can be redefined to give a true representation.

The above proof made essential use of some special properties of the
rotation group; for a general Lie group it is not true that a projective
representation can be redefined so that its generators form a representation of
the Lie algebra of the group. An example of physical interest is the Galilean
group, which is described in problem 3.24, Classes of Lie groups for which a
result like @3.12 does hold are the semi-simple Lie groups and their
irreducible inhomogeneous extensions, which are defined as follows.

A semi-simple Lie group is one which has no abelian normal subgroup (i.e.
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no subset H =G which is itself a Lie group and which satisfies

0,0:,=0,0,. allQ,.0;eH;
QRQ 'eH, all QeG, ReH).
Let G be any Lie group, U(Q) a representation of G on a vector space V. The
inhomogeneous extension of G by V (also called the semi-direct product of G
and V) is the group of operations on V' given by
v—+ U(@Ww+u forsome QeG . uel (3.165)

We will denote this group by G =)V If G is semi-simple and the representation
U isirreducible, then both G and G =)V have the property described in @3.12.

It is not difficult to see that the rotation group is semi-simple. As an example
of an inhomogeneous extension, let & be the rotation group and let V be three-
dimensional space, the representation L' being given by the usual action of a
rotation about the origin. Then the inhomogeneous extension G x )V consists
of the combined operations of rotations and translations. This is the group of
all physically possible operations on a rigid body in space (an operation being
defined solely by the final position of the body, not by the details of how it was
taken there); these are called rigid motions, The group consisting of all rigid
motions together with all spatial reflections is called the three-dimensional
Euclidean group.

Some important families of semi-simple Lie groups are the following:

The orthogonal group Ofn) is the group of all n x n real orthogonal matrices.
The unitary group U(n) is the group of all n x n complex unitary matrices. The
special orthogonal group SO{n) and the special unitary group SUin) are the
subgroups of these consisting of matrices with determinant 1.

Let R(4) be any one-parameter family of orthogonal matrices with R(0)=1;
then

R(A)TR{A)= 1. (3.166)

Differentiating with respect to 4 and putting =0, we sec that the generator
X =dR/di is antisymmetric. It can be shown that any antisymmetric matrix
can be obtained in this way, so the Lie algebra of Oin) is the set of all nx n
antisymmetric matrices. This is also the Lie algebra of SO(n). (The relation
between these two groups is that O{n) consists of S0{n) together with another
separated piece; thus any continuous family of elements of O(n) which contains
the identity must lie in SOin), and so the generators of the two groups are the
same.)

A similar argument shows that the Lie algebra of Uin) consists of all n x n
antihermitian (complex) matrices. Finally, the formulat

det [&*]=¢"*
(consider the eigenvalues) shows that the Lie algebra of SU{n) consists of all
n > n antihermitian matrices with trace 0.

t The trace tr X of a matrix X is the sum of its diagonal entries, which is equal to the sum of
its eigenvalues, It satishies tr (XY )=tr{¥ X)
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We will see how some of these groups act as physical operations in later
chapters (in connection with elementary particles). A group of operations is
particularly important if the operations leave the behaviour of the system
invariant; in this case the group is called an invariance group or symmetry
group of the sysiem. The importance of the group structure derives from the
following simple fact:

@313 If G is a symmetry group of a system, then every energy
cigenspace of the system carries a projective representation of G.

Proof. Let U(Q) be the operator on the state space of the system which
represents the operation Q € G. By @3.4, since Q is an invariance of the system,
U(Q) commutes with the Hamiltonian. Let % be an encrgy cigenspace with
energy E: then for each state ) in & we have H|\) = E|y) and therefore

HU(@)|ry = UIQ)H |y = EUIQ)|W >, (3.167)
ie. UlQ)y also belongs to 5. Thus U(Q) is an operator on 5. which
therefore carries a projective representation of G. [l

The significance of this apparently trivial remark is that there are only a
limited number of projective representations of a given group, and so the
existence of a symmetry group places restrictions on the energy eigenspaces of
a system. In particular, only certain dimensions will be possible for these
eigenspaces. Thus the symmetry group controls the degeneracy of the energy
levels of the system.

The description of how things change with time which we have been using up
to now is known as the Schrodinger picture. The state of a system changes with
time; observable quantities are represented by operators which are constant in
time, reflecting mathematically the fact that the experimental procedure for
determining the value of an observable is always the same. This seems to be the
most natural point of view, but it is possible to look from a different angle and
see the observables as changing — after all, the position of a moving body does
change with time — while the system stays the same. This is the Heisenberg
picture, in which observables are represented by time-dependent operators
while the state is described by a constant state vector. In this picture the *state’
of a system is a concept which encompasses its whole history,

The relationship between the two pictures is given by a sequence of unitary
transformations in the passive interpretation. Let Ult) = ¢ ™™™ where H is the
Hamiltonian of the system; Ule) 1s the operator which describes how states
change in time t according to the Schrodinger picture. Now suppose we decide
to use U(r) ! to rename all states at time ¢, so that the state which was called
i) will now be called U{r) ™ *|f(r)>; in other words, we are specifying each
state at time r by saying what state vector it was associated with at time r=0.
Then, in this new picture, as the system evolves its state is always represented
by the same state vector,
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As was discussed on p. 103, changing the way in which states are associated
with state vectors entails changing the way in which observables are associated
with operators. Consider an observable 4, and denote by A, the operator
describing A in the Schrodinger picture. According to (3.139), A must be
described in the Heisenberg picture by the operator

Al = U(t)~ A, Ule), (3.168)
which changes with time if 4; does not commute with U{r), i.e. if it does not
commute with the Hamiltonian. Using the equations

dl

dt
which follow from the exponential form of U, we find that the rate of change of
Alr) 15 given by

ih

=U/H. m% (U~ Y= —-HU, (3.169)
i

iA
in ‘:E'r =[A. H]. (3.170)

This is Heisenberg's equation of motion.

Mote that the formula (3.26) for the rate of change of an expectation value is
an immediate consequence of Heisenberg's equation of motion, since state
vectors are independent of time in this picture. More generally, the fact that
operators which commute with the Hamiltonian represent conserved
quantities is clearly a feature of this equation of motion.

Heisenberg's equation of motion has a very close relationship to the
equation of motion of classical mechanics. In elassical Hamiltonian mechanics
any observable is a function Alg,.. .. g4 Pis-- p.) of the coordinates g; and
momenta p; of the system. For any two such observables A4, B a third one
called their Poisson bracket [ A, B} is defined by

" (A dB BACE
(4, Bl= e e ] (3.171)
I' ; |'-El ('ﬂ‘h op;  Ip; “3‘-’1'1)
Hamilton's equations (3.5) then give the general equation of motion
A
—={A,H} (3.172)
dt

for any classical observable 4. The Poisson bracket has all the algebraic
properties (2.79)+2.81) of the commutator in quantum mechanics; its values
for the basic observables g; and p, are

e qji’ﬂ={Pi-Pj}] ) (3.173)

{Qr» .Fj} - '1511
Comparing with the canonical commutation relations (2.116)-(2.117), we see
that there is a correspondence between {A, B} in classical mechanics and
(ih)~'[ 4, B] in quantum mechanics. Heisenberg’s equation of motion (3.170)
then corresponds exactly to the classical equation of motion (3.173).
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In eqs. (3.2) and (3.3) we have in principle a complete description of the time
evolution of a quantum system in terms of its Hamiltonian operator H.
However, in order to make this description explicit it is necessary to know the
eigenvalues and eigenstates of H, so as to expand the solution (3.2) in the form
{3.11). We will see some examples of such calculations in Chapter 4 (which can
be read before this section if the reader wishes). There are very few
Hamiltonians which permit exact caleulations; usually it is necessary to use an
approximation based on taking the first few terms of an infinite series which is
obtained by the methods to be described in this section.

This method is not just a practical technigue for doing calculations, for the
general form of the results it gives is of considerable theoretical interest. It
underlies the description of elementary processes by means of Feynman
diagrams, which was sketched in Chapter 1, and it gives rise to an alternative
formulation of quantum mechanics which will be described in §3.6.

The idea is to calculate the time development caused by the Hamiltonian H
in terms of the eigenstates and eigenvalues of a Hamiltonian H, which is used
as a standard for reference, either because it can be exactly solved or because its
eigenstates are experimentally significant. We write

H=Hg+eV (3.174)

where ¢ is a parameter (usually assumed to be small), and we expand the
solution in powers of &
Write
[Ji(e)> =™ [y(r), (3.175)
Pty et v~ Heh, (3.176)

These equations define a new picture called the interaction picture, which
would coincide with the Heisenberg picture if the Hamiltonian was H,. The
effect is to remove the part of the time dependence of states which is due to Hy:
using the equation

d
ih - W0y =(Ho+eV)p(0), (3.177)
we find that the equation of motion for |J(t)}is
d
ih = [e)) =P ()| (0))- (3.178)

The solution of this equation clearly depends on &. We assume that it can be
expanded as a power series in g:

|Fy =¥ &) (3.179)
=0
with
[F 0 =0 if n>0

sinceat t=0 the state |\J ) is the initial state [y, ), independent of &. Substituting
the expansion (3.179) into the equation of motion (3.178) and equating powers
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of £ gives a sequence of equations

oy |
ift E!’ 14;1:,{[]} =],

il
ih m [ljl-"l{f}) = F“}f';‘u{”}

etc.; the nth equation in the sequence is

d -
i a6y = PAD)|F, - 4 (1)) (3.180)
These can be solved successively to give
[Wol)s =g, (3.181)
1
W (0> == f:r:, Pley)|woD. (3.182)
ik g

liF..{ri}=_L de, | “de,_y e rzdill'f:r,}-~-17'u,1|:.ﬁrn}. (3.183)
iy Jo o 0

Suppose i, is an eigenstate of H,,, with eigenvalue Eg; at time ¢ it is no longer
certain that a measurement of H, will give the result E;. Let £ be another
eigenvalue of H, and let |/, » be the corresponding eigenstate (for simplicity
we suppose that Eis a non-degenerate eigenvalue). Then the probability thata
measurement of H at time ¢ will give the value E is |a,(E, 1)|* where a,(f) is
given by
a,(E, 1) = (reln)

={e|{|Wor +ef (1)} to first order in &

=e{Wg|y,(1)> since |yro» and ;> are orthogonal

=gl | (0))

1 -
=— gﬁrmf {bele Ve, )wop dt,. (3.184)
(1]

(If E lies in a continuous range of eigenvalues the probability that a
measurement of Hy will give a result lying between E and E+dE is
|a,(E, 1)|*p(E) dE where p(E) is the density of states.) Now a matrix element of
Fir) between eigenstates of H , is, by (3.176), related to the matrix element of V
by

{Wel Pln|Wop = e~ 5By Vo). (3.185)
If ¥ is independent of time, we can now do the integration in (3.184) to obtain
QIEStN _ GiELH
ay(E, f‘.l=£(¢fe|VlLPn}—E:E'—- (3.186)
0

Using the formula
| — €| =2 sin 4{0— ), (3.187)
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which is easily proved by looking at the Argand diagram, the probability can
be written as

WE, t)=ay (E, DI =KireleVIo >|1“""-‘-‘-- 2o (3.188)

where
w=(E—Egy)/h.

According to Postulates II and IV, this is the probability that a
measurement of H, at time ¢ will give the value E, provided that the system is
undisturbed by any measurement between times 0 and ¢. Since such a result at
time ¢t would leave the system in the state |)fz>, this is often described as the
probability that the system *will be found in the state [ at time 1. It is then
applied to situations in which there appears to have been a transition, or
‘quantum jump’, at some time between 0 and .

An example of a system which can be described in this way is the hydrogen
atom. The full system consists of an electron, a proton and the electromagnetic
field (the field has independent degrees of freedom, as is shown by the existence
of electromagnetic waves). i, is the Hamiltonian describing the electron, the
proton and the field by themselves, and also the electrostatic attraction
between the electron and the proton (its eigenvalues are determined in Chapter
4); ¥ is the Hamiltonian describing the interaction between the two charged
particles and electromagnetic waves. Classically, H , gives equations of motion
for the electron and the proton whose solutions are orbits like those of the
earth and the sun, and equations for the electromagnetic field whose solutions
describe electromagnetic waves, V' gives equations which describe the
radiation by an accelerating electron. The quantum counterpart of the planet-
like orbits is a set of ‘allowed orbits’, ie. eigenstates of Hy; that of the
electromagnetic waves is a set of states of photons; and that of radiation by the
accelerating electron is a transition between eigenstates of Hy. This occurs
because the full Hamiltonian H; 4 &V causes an eigenstate |/ to evolve into
a state |Wo» + el (1)3; if |y is an ‘excited state’, i.e. a state with eigenvalue of
H  which is higher than the minimum, then ||,L- £ could be a state consisting of
an electron-proton state which is an eigenstate of H , (with a lower eigenvalue
than |, ), together with a state of the electromagnetic field consisting of one
photon. A transition from |} to |y, » constitutes a quantum jump from the
higher electron—proton state to the lower, accompanied by the emission of a
photon,

This description can of course be generalised so as to apply to any atom or
molecule. A similar description can be given of the radioactive decay of a
nucleus, or the decay of an unstable subatomic particle. It is not always clear
that the postulates of quantum mechanics, as we have stated them so far, are
sufficient to justify deductions about the probability of decay; in particular,
Postulate [11 refers to measurements taking place at a definite time, while an
unstable system may be kept under continuous observation to see when it
decays. In order to cover this situation, we extend Postulate 111 as follows:
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Postulate 111 (comtinued). II the observable H, is observed
continuously, the Hamiltonian being H=H,+ &V, then the system
will make spontaneous transitions between eigenstates of Hy. The
probability that there will be a transition from |\o > to |, in time ¢ is
PE, )= |CWele™ "My o>, (3.189)
This and the other parts of Postulate 111 will be discussed further in Chapter 5.
The first-order expression (3.188) for the transition probability has two
parts: the square of the matrix element {y|e V|r,!‘:¢}~whi::]1 measures the extent
to which the force described by V links the states |, > and | g); and a time-
dependent factor which is the same for all processes and depends only on the
‘energy difference’ E — Ej. (This is an inaccurate terminology, since E and E,
are eigenvalues of H; which is not the full energy operator, but it is a common
one.) The second factor is plotted as a function of w=(E — E,)/h in Fig. 3.5. Its
main features are the central peak, which gets higher and narrower as t
increases, and the fall-off at large «, which goeslikew ™ *for all r. The total area
under the curve is
T . x .
J' smmEWI n‘m=% J. ﬂ:z—t .‘.‘x='g. (3.190)

-

In many circumstances | > is one of a set of states with a continuous range
of values of E. For example, in the decay of an excited state of the hydrogen
atom | consists of a lower-energy state of the atom together with a photon,
and the photon can have any energy. (We are again using the term ‘energy’
loosely and identifying it with *eigenvalue of H,'. We will continue to do this
without further comment.) In this case p{ E, t) must be multiplied by the density
of states p{ E), which depends on the reference Hamiltonian H ;. The physically
significant quantity is the total probability that a transition has occurred into a

I nn“’hut

m

¥
=N
7l
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state with energy in some finite range [E,. E,], which is

Ez
P{r}=j PLE, 1)plE) dE
E)
2
:2 M@ ﬂu—l_’ d (3.191)
where
M) = eleV]o)|plE).

If E, lies outside the interval [E, , E,]. the range of integration in (3.19) does
not include the central peak of Fig. 3.5, which is where the integrand depends
significantly on w; as long as r is large compared with 2z/w, il is a good
approximation to replace sin® 4wt in (3.191) by its average value of 1, so that

Pl}i‘]zizvr- M;[.;_ﬂ—] du-:‘?ﬂ-nﬂ (3.192)
ht ), w oy
Thus the probability of transition to a state with ‘energy’ different from the
initial value E, soon becomes constant, and is small if the ‘energy” difference is
large.

On the other hand, if E; < E,; < E; the range of integration in (3.191) will
include the central peak of Fig. 3.5, and this will dominate the integral. If M{cw)
varies slowly as a function of e, we can treat it as constant over the region of
the peak, which is narrow if ¢ is large, so that

iy o
Pi1)= i?f M) LL J‘“‘” doz i= M(0) f : S'“ﬂj“” dw

=[{r—K) where F=— M0 (3.193)

and where

& ' sin %w: = sin %w: | 1
i tz e T mw, Mw,

-
which is small and approximately constant.

Eg. (3.193) shows that apart from a small term which soon reaches a
constant value, the probability of transition to a state with energy close to the
original value E, increases steadily with time. Thus there is a constant
transition probability per unit time which is equal to I'. This, of course, cannot
continue to be true for all r, or the probability would become greater than 1.
The reason for this apparent inconsistency is that in calculating the
probability in (3.188) we failed to normalise the state ||,£r:r}}¥ since this would
have involved terms of higher order in & Thus (3.193) holds only to lowest
order in I (which contains ¢* as a factor). Note that an exponential decay law
of the form (1.3) gives the probability of decay in time t as

Pi)=1—e"" where F=t"", (3.194)

which also gives constant probability per unit time as a first approximation if
[ is small.
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Iffirst-order perturbation theory is used to calculate the rate of a decay process

like

X—=A+B, 3.195)
eq. (3.193) shows that the decay rate is proportional to

MI0)=|¢AB(E)e V|X)|*p(Eq) (3.196)

where E, is the energy of the X particle, |AB(E,)} is the state of the A and B
particles with energy £, and p(Eg) is the density of the AB states relative to
energy. The appropriate states for decay processes are momentum eigenstates
of A and B, for in most theories these states give constant matrix elements
{AB(E,)| If'|}i>. Thus the decay rate is proportional to the density of
momentum eigenstates relative to energy, which is called the phase-space
factor.

We will calculate the phase-space factor for the case that the unstable X
particle is at rest (so that, by conservation of momentum, the A and B particles
have equal and opposite momentum + p), and that the eigenvalue of H, for an
AB state is given by the relativistic formula

E=E,+Ey=\/(mc*+ p*c?) +/(mg*c* + p*c?) (3.197)
where p=|p|. The AB states are normalised relative to the components of p, for
which the element of integration is

dp, dps dpy=p* dp dQ (3.198)

where d€ (= sin 0 dif d¢p in spherical polar coordinates) is the element of solid
angle for the direction of p. The density of states p(E) is defined by

dp, dp; dpy=plE) dE dQ,

d
.ﬂlE}=p*£, (3.199)
From (3.197) we have
dE, dEJ\™* .fpc* pe*\~' pE,E
= e — R e = R
2 ”(dp*dp) ”(Eﬁﬁ.) E? G

In the decay (3.195) the initial energy is E, =myc?. Hence in this case p(Eg) can
be written in terms of E, + Ey=myc? and E,2 — Eg*=(m,2 —mg?)c? as

;Jub:n]=4%m3i Imy* —(my? —my ). (3.201)
The momentum p can be obtained from (3.197) (or using four-vectors) as

1
p=2—m [(my +m, +my)imy+m, —m,}lmx—mﬁ+mnj{mx-m*-—ml]]l.

This phase-space factor is larger for smaller masses m,, my, since then the
momentum p is greater; thus we have as a rule of thumb
The rate of decay is greater for decays which release more kinetic
energy.
This also holds for decays into more than two particles.
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Second-order theory The second-order term obtained from (3.183) is
l!f"sz]}=¢'m A0

_“T'- o J" ;!‘rz.l. dey P(e) Vie, Mg d. (3.202)

If we include this in the caleulation of the probability of transition to a state
|, we will have

PE, =|a(E, 0| =|a,(E, 1)+ a,(E, 0 (3.203)
where
a(E ) =e"( | (). (3.204)

Suppose H; has a complete set of states |y, » with cigenvalues E, (we will write
our equations as if these were discrete, for the sake of simplicity, but they can
easily be adapted to cover the continuous case). Then we can use the resolution
of the identity (2.68) to insert the complete set lib, > in (3.202); this gives

e -
ajlE, F}=”—:J1 f“:J. dty ¥ (elePlea)wns Odle Pl o b
ih)” Jo o k
(3.205)

Using (3.185), we can extract the time dependence of the integrand in this
expression and do the integrations to get

E.{)= ¥ ¥ —_
aylE.t) :E{'leﬁ [ e |’J'"n}E o

Fl'f,r_fi_flfi.'l E"E"M i elt_‘r_-ﬁ-
x{ T } (3.206)

The terms in the curly brackeis are quotients of the same type as that
appearing in (3.186), which gave rise to the function shown in Fig. 3.5 when the
squared modulus was calculated. Such a quotient is only significant when its
denominator is small. Thus the second term in the curly brackets only
contributes when E,= E,, 1e. only for a few values of k. The first term,
however, contributes for all k as long as E= E,;. This means that to a good
approximation we can ignore the second term; a,(E. 1) then has the same time
dependence as a,(E, t), as given by (3.186), and the factor {YgleV|¥, > ina, is
replaced by

z CeleVig) e VN’n}
E,—E; :

(3.207)

Interpretation: transition The full result of the perturbation theory calculation is that the probability of
amplitudes  transition from |j,» to [¥,> by time ¢ is

piy=la{t)|* =la, () +ax(t)+ - |* (3.208)
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where

1
ﬂ'|{”= ;j"r{$I|EF[f1}|¢ﬂ}df1, ‘.3‘.2']9:
1]

I ¥
aslt) = ﬁf‘”’f dt, ¥ W ele Ple ey e PUe o s (3.210)
in* Jo o &

| - i
aulf) = (ihy J:dI'J: Ay -J‘n £ (3 g.-. {¢£Igp“"“%""}
i {'ﬁ't,'*‘ﬁ'”mﬂ} (3.211)

(these formulae differ slightly from (3.184) and (3.198) in that we have removed
the common phase factor ¢ which does not affect the probability). If a(f) was
the total probability, these formulae would have the natural interpretation
that at time s the probability of transition from |y} to | in a time interval dt is
(ih) ™ "{ dle Pis)|wy dr. Then a,(r)in (3.209) would represent the total probability
that there is a transition direct from |¢, > to |, at some time ¢, between 0 and
£ a5(1) in (3.210) would represent the total probability that there is a transition
from |g> 10 some other state |y, at some time 1, followed by a transition
from |y to |ibe> at a later time 1,; and so on, a,(1) in (3.211) representing the
total probability of an indirect transition in n stages.

In fact, of course, each quantity a, mentioned in the last paragraph is not a
probability but a complex number whose squared modulus is a probability. It
is characteristic of quantum mechanics that it deals with such complex
numbers, which are added and multiplied as if they were probabilities. They
are called probability amplitudes. The probability amplitude for a process
consisting of two successive stages is the product of the probability amplitudes
for the individual stages; the probability amplitude for a process which can
happen in a number of alrernative ways is the sum of the probability
amplitudes for the individual alternatives. When a probability is calculated by
taking the squared modulus of such a sum of probability amplitudes, the cross-
terms give rise to the interference effects which typify quantum physics.

We have seen that in the cases of a,(1) and a,(r) the interference effects
guarantee that the probability of transition from |[,) to | is small unless
their ‘energies’ (eigenvalues of H ) are approximately equal; this continues to
be true for the higher-order terms a,(r). Thus the intermediate states |, in
(3.210) and (3.211) are states which are unlikely to be the result of an actual
transition from |y,). Nevertheless the probability amplitudes for transitions
to these states make imporiant contributions to the total probability
amplitude for the actual transition to | ). These transitions are called virtual
transitions.
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Owr series solution of the equation

m%|¢§{rj}=a|‘f{n|;ﬁm> (3.178)
is

Foy= 5, (5 Lt [ dteso [0 700 P

mEl i
(3.212)

The n-fold integral is the integral of the product F(t,)- - - F(t,) over the region
of R" consisting of the points (r,,..., 1,) which satisfy

I E-8F < PESRLE 4 I 4 (3.213)

There are n! regions like this one, corresponding to the n! possible orderings of
(ty.....1,), which together make up the region 0 1, <. Geometnically, thisis a
dissection of the n-dimensional cube into n! n-simplices (an n-simplex is the n-
dimensional analogue of a tetrahedron). We could obtain the integral by
integrating the product of the (1) over any of these simplices, provided we put
the factors in the right order. To express this in symbols, we define the time-
ordered product of n time-dependent operators X{(i;) to be
TEX(ty): - - Xt )]=X{1, )- - - X(1,)

where

L=h,< =0, (3.214)

Then the integral in (3.212) can be written as

J dey - dey TEV(,) - - - Pley oy (3.215)
&

where R isany one of the simplicial regions mentioned above, Since these all it
together to make up the cubic region 0<r, <t the sum of all the integrals
(3.215) is the integral over this cube:

E [ doan 000 )
B JR

=J7 de,-- J-' de, TLP(t,)- - - Pe,)]

o 1]

ﬂ[(f ['?{:']dr')l:l, (3.216)
o

which defines an extension of the time-ordered product symbol T. Since the
integrals (3.215) are all equal, any one of them is equal to 1/n! of their sum
(3.216); hence we can put this into (3.212) to obtain

o5 A o] o
=T[=xp (H' () dc')][wu:a. (3217
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As well as being pretty, this formula is useful in quantum field theory. It shows
the relation between the perturbation solution of (3.162) and the exponential
solution of the similar equation (3.4) in which the operator on the right-hand
side is constant.

We have seen that to first order, perturbation theory gives a probability for
survival of an unstable state which is of the form

PHi)=1—-Pl)=1-T1. (3.218)
To first order in the decay constant I', this agrees with the exponential form
PHi)=e ", (3.219)

which would be obtained if quantum transitions occurred as a classical
Poisson process, as in the simple discussion of radioactivity on p. 5. We will
now derive this exponential law from quantum mechanics by an argument
which, though not exact. is not restricted to the first order of perturbation
theory. We will also see that the approximation in this derivation is
unavoidable, because the decay law in quantum mechanics cannot be exactly
exponential.

As before, we assume that the unstable state |i,> is an eigenstate of a
reference Hamiltonian H, and that the decay is caused by a small term &V in
the full Hamiltonian H=H,+ eV, Write

s> = Vo) (3.220)
by redefining &, if necessary, we can assume that |\, > is normalised. We think
of |, » as the state immediately after the decay. It is not necessarily an
eigenstate of H, (for example, il an unstable particle decays to form two
different particles, we would expect the two final particles to separate after the
decay); thus we must suppose that [, » belongs to a subspace %" consisting of
states of the decay products, and that H, acts as an operator inside %, The
states of the decay products must be recognisably different from |y, s0 |y
must be orthogonal to the subspace 5. Thus we can take the full state space to
be %, @ 9" where % is the one-dimensional subspace containing |i¥,).

Since V is hermitian,

gl VI =y [Vl = 1. (3.221)

Thus V], » necessarily contains a component in %,. We will assume that this
is the only component of V|, » (we can always arrange this by changing the
way we split the total Hamiltonian into Hy and V). Now V is completely
defined by (3.220) and the equation

Vv =<y |0 ey  for > e s (3.222)

We can write the state at time r as

W)y =F (o) + (0> (3.223)
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with [#'(1)» € #”; then the equation of motion gives
lpn aiioe
ih i [Wo +ih - W
=(Hy+eWV)| fDo) +|W'(1)]
=Eo f()ro) +ef (0, > + Hold'(e)) + iy | ()3 ] o) (3.229)

uating components in %, and %,
B p o

d
ih j—:nEuﬂnH{m (), (3.225)

ih % V(0> =ef (0> + HolW (0). (3.226)

After multiplying by the integrating factor ¢"*'*, the second equation can be
integrated to give

T
Irk'ub“;?, J drft)e 14"y >, (3.227)
i

This expresses the state of the decay products as a superposition of states, one
for each time r' in the interval (0, r): the state corresponding to ¢’ describes the
possibility that |y, decayed to |, > between times ¢’ and ¢ +dt’, and the decay
state then evolved for a time r—1t' according to the Hamiltonian H,. The
coeflicient of this state is the produet of f(r'), the probability amplitude that
o survived undecayed at ¢, and the decay amplitude (if) ™ 'e dr'.

Putting (3.227) into (3.225) gives an integro-differential equation for the
non-decay amplitude (1)

2
j—f= —% _r glt—)F(e) dr (3.228)
(1]
where
Flt)=e"""f(r) (3.229)
and
gl =<y le= ™M, . (3.230)

Now g(r) is the amplitude for finding the decay products in their initial state
|, » after a time 1. If the decay products disperse quickly. g(r) will vanish after
some short time 1. Let us see if (3.228) has a solution F(t) which varies only
slightly over time intervals of the order of . Il F satisfies this condition, the
integral can be replaced by AF(1) where A= (" glt') d’, so that the equation
becomes

dF £2A

et F(). (3.231)
Thus the condition on F(r) is satisfied if £ 4/h? is small com pared witht ™! or,
since A is of order t, if g/h is small compared with = ~'. If this is so there is a
solution for F(t) of exponential form, and the probability that the unstable
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state has not decaved in time 1 is
|f@0}=|F)|*=e* with i=2 Re[e*4/h?]. (3.232)

This result is necessarily approximate. In our model it follows immediately
from (3.228) that the exponential decay law must break down at small times,
for this equation shows that the derivative F'(1) must vanish at t =0. In other
calculations it has been found that the exponential law also breaks down at
large times (see Fonda, Ghirardi & Rimini 1978, Peres 1980).

There is a general argument to show that the time development of a state
cannot be exactly exponential. Suppose the state ||, > develops to |¢(1)}, and
that

Qo | WD)y =™ (3.233)
where y=(4I+iE,)/h is a complex number. For t<0 we have

o | WD) = Cilrgle ™ Mgy = (ol ™o

= (ol —1)) ="
S50
(o | Wit)) =exp [ —(iEqt +4TJe))/h]. (3.234)
This holds for all r. Now expand |y, in eigenstates of the exact Hamiltonian:
o) = f plE)W(E)) dE. (3.235)
Then
o | WD = Crple™ ™ |Wod> = J‘l:ﬂ‘i-“i-'llzé"'z"Ji dE. (3.236)

Hence, by the Fourier inversion formula (2.93),

1 .
iﬂ{E}|z=m (g | Wln)pe™™ dt

4 r2n
A +(E-Eg)*
But the energy of a system always has some minimum value E_,, 50 p(E) must
vanish for E< E__; whereas (3.237) is strictly positive for all E.
The function (3.237) is called the Breit-Wigner energy distribution. It is

shown in Fig. 3.6. Although it must be cut off at some point on the left, an
approximation to this distribution is found in a wide range of quantum

(3.237)
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systems, corresponding to the exponential decay law which is usually found to
be approximately true for unstable systems. The parameter I is called the
width of the distribution. The inverse relation between I” and the lifetime 1=
I/T is often described as an example of the “time-energy uncertainty refation’,
but it should be noted that I' is not the same as the uncertainty AE. For the
distribution (3.237), indeed, AE is infinite.

In the previous section we saw that the probability of an event in quantum
mechanics has a strange structure. If the event can be achieved by a number of
alternative processes, each process consisting of a succession of intermediate
events, then the total probability of it is calculated, not by the classical formula
in which the probabilities of alternative processes are added and the
probabilities of successive processes are multiplied, but by a similar-looking
formula in which probabilities are replaced by probability amplitudes -
complex numbers whose squared moduli give the probabilities,

In Feynman's formulation of quantum mechanics these probability
amplitudes are taken to be fundamental: the theory starts from the assignment
of probability amplitudes to basic physical processes. For a single simple
particle, a ‘basic process’ is described in the same way as in classical mechanics:
it is the motion of a particle from a point r, at time 1, to another point r, at
time [, along a definite trajectory ri1). Thus the probability amplitude isto be a
function of the whole trajectory {r(f):t, <r<t,}, which we will denote by [r(r)].

In classical mechanics an important function of the trajectory of a particle is
the action 5. This is an integral of the form

S([rin)])= J"2 Lir(), He)) dr (3.238)

where L is a function of the position and velocity of the particle called the
Lagrangian. L depends on the forces acting on the particle; for a particle of
mass m moving in a potential V(r) it is

L=4mi* - V(r). (3.239)
A Lagrangian L, and consequently an action §, exists for any mechanical
system; if the configuration of the system is specified by coordinates g,,. . . . g,.
L is a function of q,, ..., q, and gy, ..., 4, which is normally the difference
between the kinetic energy and the potential energy of the system, as in (3.239);
5 is the time integral of L, as in (3.238). The significance of § is that the
trajectory followed by the system when it follows the equations of motion is
that which makes 5§ minimum (or, more generally, stationary); this is the
principle of least action.

Feynman's postulate is that the probability amplitudes for all trajectories
are equal in modulus, but their phases are given by the action (in units of h,
which has the same dimensions as action). Thus the probability amplitude for
a trajectory with action § is proportional to ¢*" The total probability
amplitude for a particle to move from r, at time ¢, to ry at time t, must be the
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sum of the probability amplitudes for all the ways this could have happened,
i.e. all the trajectories e(t) with rir,)=r, and rtz)=rg. Since these trajectories
form a continuwously infinite set, the sum must be some sort of integral; the total
amplitude must be of the form

P

Ir gt Fas ty) =J S G e(h)] (3.240)

where, in some sense, the integral is over all trajectories with the given end-
points at r, and 1.

The integral (3.240) is called a path integral. It can be defined as a limit of
integrals over polygonal paths. in the following sense. Divide the interval
[ty tg] into N subintervals by means of intermediate times t, =g, .. .ty =15
Let us call this dissection D. Given D, and given N+ 1 points r,=rg, ry.. ..,
1y =rg, we can define a polygonal trajectory r{r) which passes through r, at
time ¢, and moves with constant velocity between these points:

rt)=r,+ (r,s;=r) HL=Is 4. (3.241)
LPES Bl
Let Sylrg, . ... ry) be the action of this polygonal trajectory, and let
Iyl as ta; Tas 1) ! 5. | i L 'SP
s Egs Py fg)= = Bl - iKY | = i ——— .
plFa: Ly Tas Lg exp j 2o\fo Iy K, Ko
where i
2imh
K,= {%- G=r L1} (3.243)

(m 15 the mass of the particle). The path integral I{r, ¢ ;; ry, fy) 15 defined to be
the limit of I, as the dissection I} becomes infinitely fine, i.e. as n — 2 and
max (t,, , —t,) = 0. (The factors K, as we will see in the proof of @3.12, are
necessary if the path integral [ is to be a continuous function of ry.)

Clearly there are formidable mathematical problems surrounding the
existence of this limit. We will ignore these and proceed purely formally,
making no attempt to be rigorous. In this spirit we can state the basic
assumption, generalised to an arbitrary mechanical system, as

Feynman's postulate. Consider a mechanical system with coordinates
denoted collectively by g, and with dynamics determined by an action
functional 5[qlt)]. The probability amplitude for the system to move
through the sequence of configurations gi1) is

exp | 1 SLa01 | ata) (3,244

This refers only to systems with counterparts in classical mechanics, and not to
the purely quantum mechanical systems which we will encounter in later
chapters, such as particles with spin or other internal properties. Feynman’s
postulate can be extended to such cases through the medium of quantum field
theory (see §7.3).
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Let us now see how the equation of motion of conventional quantum
mechanics can be derived [rom Feynman’s postulate.

@®3.14 Let S([r(r)]) be the action for a simple particle moving in a
potential Fir)(see(3.238)(3.239)),let Iir,, t ;. ry. t5) be the probability
amplitude given by (3.240), and let

glr, () =Nry, tg; ¥, 1) (3.245)

for some fixed ry, 1. IF o fulfils the conditions W1-W3 (p. 39), then it
satisfics the Schrédinger equation (3.7).

Proof. Look at the construction of fr,  + dr) as a path integral. 1t is the limit
of a set of integrals defined with reference to a dissection D of the interval
[tg. 1+ dr]; if d¢ is small enough we can consider the last subinterval in the
dissection to be [t, 14 d1]. Then the amplitude I,(r,. 1,: ¥, 1 + 51) is given by
(3.242). which is an integral over a set of polygonal trajectories each consisting
of a polygonal trajectory from (ry, 1) to (r', 1) for some r' =r,_,, followed by a
straight line from (r', 1) to (r, t + dt). Now il a trajectory is divided into two
contiguous parts, its action can be written as the sum of the actions for the two
parts, as can be seen from (3.238); hence (3.242) gives

Iplrg, to: v, 1+ 8t)

: 3 3 3
xmp[% s, r}]"’ L e d ¥ (3.246)
with

2imh 61\}
K,...l=(fﬂ- '), (3.247)

Here S(r', r) is the action of the straight-line trajectory from (r', 1) to (r, f + dz);
this can be written as

S, 0= L"f 0

i r—rh? ,_m{r-—r’}z
J.' ﬁmf‘ dt' = J: ‘iﬂl(’ﬁ—) dr = 2 o1 (3.249)

(] I
W b= f V(r’ +L‘i_ r— r]) d:’nélj. Vir' +sir—r') ds. (3.250)
i L]

- Wir',r) dt (3.248)
where

and

Thus both U and W depend only on r and r’ and not on 4t
In the limit as the dissection of [1,, r] becomes infinitely fine but the last
subinterval (r, ¢ + 1) is kept fixed, (3.246) becomes

Wy s S o "5 3
“’"‘”"”‘(zma )J.uﬁ{r’ fexp [2&5 r—r)* —— Wir', r}]d .
(3.251)
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If r is continuous, this should give y(r, 1) as dr = 0. Now the function & s
integrable, with integral

I & dx = (in)t (3.252)
{see problem 3.35(i)); it follows that

Lim 1 7 = (i)t 8l x) (3.253)

a—=0 il

for if [ is any bounded continuous function we have
Lim J‘ fix)e"* dx=Lim J. flay)e” dy=(inff(0)  (3.254)
a=0 -

(a more careful version of this argument is outlined in problem 3.35(ii)).
Putting a* = 2h &t/m, and considering all three components of the vectorr—r’,
we obtain from (3.253)

;
- 2 | (imt o(r —
{:ﬂ(znar)“ [znm“‘ ”} () o(r ). (3.255)

Thus the right-hand side of (3.251) does indeed give yir, r)as dr = 0. (This is the
reason for the factors K, in the definition (3.242)-(3.243) of the path integral.)
Now we expand f(r, t + 1) as

n}rlr,r+5t}=|,!:{r.t}+%f: 8t +0(d1%) (3.256)

and find /¢t by differentiating (3.251) with respect to 4t and letting dr — 0.
The differentiation gives

i : :
i _d im s 2 : 5
(Emh -:if) J‘{ 250 i (r=r) . Wir', r}}‘l‘@d r (3.257)

where

=ifr’, 1) exp [ —% Wir', r}].

v b 2
o [2.* ot tr rr}]

Using V' to denote differentiation with respect to r', we have

i ﬂ, il
Vb= h& {3+h 3 (r—r) }¢. (3.258)
5o that (3.257) can be written as
m N D pree ! ywel s (3.259)
2imh &t 2im h ;

Mow if i satisfies the conditions to be a wave function, ¥ decreases fast enough
at large r to make it possible to apply Green's theorem and convert the
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integral to

n i h i
Syt o gy 1o 3
(2:'1;'!1 :’TW) j¢{ 2im i h i ‘F} dr- S

Taking the limit as dt — 0 and using (3.255), we get the part of the integrand in

curly

brackets, evaluated at r'=r, Since Wir, r)= V{r), this gives
WP oy gy
h

8 2im

which is the Schrodinger equation. [l
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Ehrenlest’s theorem 54

Observables which commute with H give constant probabilities 91
The significance of [H, X] =0 for unitary and hermitian X 92

The hermitian generator of a family of unitary operators 92
Unitaristic operations are represented by operators e~ *** 92
Time reversal 98

Hermitian generators represent additive quantum numbers 99
Transformation of observables 100

$3.10 The basic commutation relations 102
@311 Commutators in a representation of the rotation group 106
@3.12 Commutators in a projective representation of the rotation

group 107

@3.13 Energy eigenspaces carry representations of a symmetry group 109
@®3.14 Feynman's postulate implies the Schridinger equation 125

The general references on quantum mechanics given in Chapter 2 are equally
relevant to this chapter. There is a great number of textbooks (e.g. Schifl 1968)
which can be consulted for details of calculations with specific Hamiltonians.
The relevance of group theory to quantum mechanics was emphasised in one
of the first quantum mechanics textbooks, Weyl 1928. Other textbooks on
group theory and quantum mechanics are Gilmore 1974 and Comnwell 1984,
For Feynman’s formulation see Feynman & Hibbs 1965,

1. ‘A quantum system can exist in two states |a,» and |a, 3, which are normalised
eigenstates of an observable A with eigenvalues 0 and | respectively. The
Hamiltonian operator is defined by

Hlagy=alagy + fla, >, Hla,»=flagy +alagy
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bl

where xz and 7 are real. If the system is in the state a, ) at time t=0, show that
its state at time r is ¢ ~™{cos Pilagy —i sin frla, 2

The observable A i1z measured at 1= T, but the value is lost. It is measured
again at t=2T. Find the probability that the second measurement gives the
result 0.

. It i5 possible that the three neutrinos mentioned in Chapter 1 are different

states of a single system, being eigenstates ol an experiment whose results are
called v,. v, and v,, and that they are not stationary states. It is also possible
that the masses {(energy eigenvalues) of this system are not exactly 0. Let |;»
{i=1, 2. 3) be the normalised cigenstates of energy, with cigenvalues m,e?, and
suppose the cigenstates of the ‘neutring type” experiment are

fved =ty > + Yf;m.;,:}‘ vp =3y > — /342D =4y,

If the system starts at time r=0 in the electron-neutrino state, find the
probabilities that at time ¢ it will be found to be in (a) the g-neutrino state, (b)
the T-neutrino state.

. A quantum system can exist in two states i, » and ;3. which are eigenstates

of the Hamiltonian with eigenvalues E, and E;. An observable A has
cigenvalues + | and eigenstates |, =2~ !{||,b] 3+ |y 5) This observable is
measured at the imes 1=0,1,21,.. .. The (normalised) state of the system at
r=0, just before the first measurement, is ¢, ¥, > + cala) IT p, denotes the
probability that the measurement at t =nt gives the result A= 1, show that

Pory=3%1—cos 2} +p, cos 2. where 2=(E, — E,}/h,
and deduce that
Pa=311—cos" &)+ 4jc, +c,)* cos" 2.
What happens in the limit as n — ou with nr=1 fixed? [Sec @5.7.]
Show that if the time-dependent Schridinger equation (3.8) has a solution of

the form “Wir,, ..., r,)f(1). then ¥ must be an eigenfunction of the
Hamiltonian and fit)= e B where E is the cigenvalue associated with .

Forany observable A, show that t ; AH =4h, where H is the Hamiltonian and
ra=d{AD/d| ™" AA
Il [H, A]= —iihA, show that AA=Ce" where C is constant.

Find the energy levels of a particle moving in space and confined 1o a cubical
box of side a, but subject to no other forces.

. At time =0 the wave function of a free particle of mass m moving in one

dimension 15 Y glx)= Gix, ay)= t.‘.:,],,ws"':'l:]l'i exp ( —xz.n'zanlj. By writing y, asa
Fourier transform (see problem 2.15), find the wave function at time r and
show that [#{x, 1)| = Gix. a) where a®=a,* +h*r*/m?a,’.

. Find the probability current density for the wave function yix)= Ae**+

Be™™ and show that it is the same as the current density of two beams of
classical particles with densities | 4)* and | B|* moving in opposite directions. [s
this true if k is replaced by &' in the second term?

. A particle is moving along the x-axis in a potential which vanishes for x<a

and x=b Il the wave function in the regions of zero potential is Y(x)=
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14.

Ae ™+ B for x <a. plx)=Ce ™ for x<b, show that |4|*=|B|* +|C|*.
What is the physical significance of this? (See problem 9.)

. Let Fix) be a function which is infinitely differentiable everywhere exceptat a

fimite number of points x,. Show that il y 1s a superposition of solutions of the
Schrodinger equation (3.45) and satisfies the continuity conditions (3.53) at x;,
then o 15 infimitely differentiable at x,.

. Suppose the function g(x) is an eigenbra of the Hamiltonian H = p*2m+

Vix), so that it satisfies (3.55) for all ¢ satisfying the continuity conditions
13.53). Show that i satisfies the Schridinger equation (3.4 5)if and only if it too
satisfies (3.53),

. A particle of mass m 15 moving in one dimension in a potential in the form of a

barrier with value 1} in the region 0 < x <4 and 0 everywhere else. Find the
eigenfunction of the Hamiltonian which has the form e™®* + Be™ for x <0
and Ce™ " for x > a. [This can be regarded as the wave function of a particle
which is incident on the barrier from the left; there is probability |B]* that it
will be reflected from the barrier and probability |C|? that it will pass through
it. The fact that |C|*#0 even if E<¥,, when a classical particle would be
unable to penetrate the barner, is the quantum tunnelling effect.]

In the case E> I, ind the relative probability that the particle will be
found in the interval [0, a]. compared with the probability that it will be
found in an interval of the same length in the region x> a. Find the limit as
h =0, and compare with the ratio of the times spent in these intervals by a
classical particle with energy E.

A particle is moving in space in a potential which vanishes in a certain region
D. It has a stationary state in which its wave function in D is f(r)=f(r)e**"
where [ is a real function of a scalar variable and k is a real constant. Find the
function f and the energy of the state. [Use V[ (r)=/"{r) +2{"(r)/r.]

Calculate the probability current in D. Is it possible for D to consist of all
space except for a neighbourhood of the origin?

. Find {x}» and Ax for the nth stationary state of a free particle in one

dimension restricted to the interval [0, ]. Show that as n — o these become
the classical values.

. Show that if a system 15 only invanant under translations in the direction n,

then the momentum component n- p 1s conserved.

. Show that the system of a free particle moving in space is invariant under

translations.

. If a particle moves in a potential V(r), find U(T)VU(T,)"". Deduce that the

system is invariant under translations only if there is no force on the particle.
Is the same true classically?

. Describe the translation operators for a system of two simple particles

moving in space. If they are subject to forces deriving from a potential

¥ir,,rz), find conditions on ¥ for the system to be invariant under
translations.

. For photons travelling in a certain medium the states |¢,> +il¢,> are

eigenstates of the Hamilionian with energies E, and E_. Show that this
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22,

23

24,

25.

26.

27

system is imvariant under rotations about the z-axis, and describe the
propagation in the z-direction of plane polarised light in this medium.

Show that the rotation Rin, @) is given by
Rin, )x =x cos 1 +(x nmi | —cos i) +n = x sin !

and verify that the generator of rotations about the axis n, acting on the space
of wave functions, is n-J where J= —ilir= V.

An operator ¥ has ¢ven party if PV=FP, odd panty if PF= — VP, Show
that position and momentum both have odd parity, but angular momentum
has even parity. Show that the expectation value of Vin a state |y vanishes il
V¥ has odd parity and |\ is an eigenstate of P,

Wigner's theorem. Let [ — [T be a map of state space which satisfies
[{Tg| Ts|=|<ds| | forall |3, | 3. Fill in the details of the following proof
that phase factors w(iy) can be found so that the map [ — Ulds = ()| T
i5 either linear or antilinear.

Choose an orthonormal basis [y, and let [¢,> = {#,> + | >. Show that U
can be defined so that Ul =Ty + vyl > with [y,|=1and y,;=1. Let
[é>=Y eily> be any vector; then U|¢) can be defined so that Ujé)=
¥ /| Ty with ¢y =1 and |¢|=|e,|. Show that either ¢/ =¢; (say that ¢, is a
‘linear coordinate’) or cj=mwm¢, where w=c,/c, (say that ¢; is an “antilinear
coordinate’); and that if ¢; is a linear coordinate but ¢; is an antilinear one,
then either ¢;= 7,0 or ¢;= Jme;. Deduce that there is a vector whose ith
and jth coordinates are either both linear or both antilinear. By considering
[£5 together with ¢, |w, 3 + o)), show that all vectors have ith coordinates of
the same kind (either linear or antilinear), and conclude that U is either linear
or antilinear,

Let U(4) be a set of non-singular operators depending on a real parameter 4.
Show that (d/dA[LNA) "] = - U~ "WUdAU ",

Let @; be a group of operations labelled by a real parameter 4 and satisfying
Q;.,=0,0,. Let U be a representation of the group on a vector space I, with
generator X; let 4, be any operator on V¥ and let 4(i)=U(Q; )4, 000",
Show that dA/di=[X, A(i)] for all i

Let U= U(Rik, &) and let A be any operator. By setting up a differential
equation for U(MAL(D) ", show that (taking fr=1)

v
Uio)AUB) ' =4+ 3 ln;.r o Vase oo e A1--°0]

where the ath term in the sum contains an n-fold commutator,

For a system of n spinless particles an operator U(B,) is defined by U(B, W(r,,
oo I =exp lilmry + - - +mr) vhg(ry, ..., r,) where my, ..., m, are the
masses of the particles. Show thatU(B, )~ "p, U(B,) = p, + m,¥, and deduce that
U(B,) represents the operation of giving the whole system a velocity v.
The Galilean group consists of translations T,, rotations R, time
translations T, and boosts B,, which are transformations of space-time R*
acting as follows: T.: (¢, r) — (t, v +a), R: (t,r) = (1, Rr), T: (1, 7) = (1 +1,1), B
(t,rd—+(t,r+wv). Show that T, and B, commute but U(T,)U(B,)=
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28.

29

wl{B,)UIT,) where |w|=1. Find the hermitian generators of the boost
operators U(B, ).

Show that the factors w(@, R} in the definition (3.141) of a projective
representation  satisfy w(Q, RS)w(R, 5)=cAQ, Ro{QR, 5), and that if
alQ, Ry= HOMHR)/INOR) for some function § on the group, there is a true
representation associated with the projective one,

Let U be a representation of a group & on a complex vecior space V. For any
QeG and vel define an operator T(Q,v) on V@ C by TIQ, vhw,c)=
(Ui@)w +cv.c). Show that T is a representation of the inhomogeneous
extension G = )¥ Deduce that the Lie algebra of G =)V is isomorphic 1o
L@ V where L is the Lie algebra of G, and determine the Lie brackets.

. Let U be a unitary represeniation of a group G on a vector space ¥ Show that

31:

32

33

34,

35,

(i

—

if W is an invariant subspace of the represeniation, so is its orthogonal
complement W, Deduce that if I is finite-dimensional it can be written as
V=V, @- - @ ¥, where each ¥ carries an irreducible representation of G.
[The representation L' is said to be completely reducible.]

By considering the representation T of problem 29, show that a non-
unitary representation need not be completely reducible.

Show that the space of three-vectors forms a Lie algebra with Lie bracket
given by the cross product.

Let £a) be the 3 x 3 matrix defined by Q{ajx=a = x where a and x are
three-vectors. Show that }a) is antisymmetric and that [{Xa).C{b)]=
0a x b). Deduce that the Lie algebra of S0/ 3) is isomorphic to the Lie algebra
defined in the first sentence of this problem.

A particle of mass m and electric charge ¢, moving in one dimension, is
confined to an interval of length a and is subject to an electric field E. Initially
it is in the eigenstate of kinetic energy with cigenvalue Ey=k*z*h?/2ma?
where k isan integer. Find, to first order in ¢, the probability that after a time
1 its kinetic energy will be found to be E, where k# /[

A system has Hamilionian H;+eV and makes transitions. between
eigensiates of Hy. There are three such eigenstates ||Jn-I . |25 and |43 with
cigenvalues E, such that E, —E,m E; — E, = E#0. If V is independent of
time, with (3| V|t » =0, and if the system is in state [, at time ¢ =0, find
the probability of finding it in the state |, at time 1, to lowest non-vanishing
order,

A system makes transitions between eigenstates of H, under the action of the
time-dependent Hamiltonian Hy+ &l cos wr. Find an expression for the
probability of transition from |, » to [, in time r, where |, > and |, > are
eigenstates of H, with eigenvalues E; and E,. Show that this probability is
small unless Ey — E| =wh.

[This shows that a charged particle in an oscillating electric field with
frequency v will exchange energy with the field only in multiples of E=hv.]

Fill in the following details in the proof of @3.14.
By considering an integral over a triangular contour with corners at 0, R and
R+iR, show that [, exp (ix?) dx = Yin)"
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fii) Let ¢b be an integrable function of a real variable with j'_ o lx)dx=k< o,
Let f be any continuous function of a real variable, and let f{s;a. b)=

1" fx)sdlsx) dx. Show that

(a) 0<a<h, [sa.b)=0ass—=x;
ib) If —a<O<h, IHsab)—kf(0)ass—x.
Deduce that

Lim [sisx)] =k dix).

A=
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4.1. Angular momentum

Some quantum systems

In this chapter we will investigate mathematically some of the operators whose
physical significance was explained in Chapters 2 and 3. In particular, we will
find the cigenvalues of the operators and the number of independent
eigenvectors associated with each, so obtaining a complete description of the
corresponding physical observable.

In §3.3 we saw that the components of angular momentum (J,, J,, J.), which
are the hermitian generators of rotations about the origin, satisfy the
commulation relations

e J=itd,, [0, d0=ihd,, [J.J]=ihl,. (4.1)

Since no two of these operators commute, they will not in general have
simultaneous eigenvalues. However, the operator

P=J 241242 (4.2)

commutes with all three of J,, J, and J_, as can easily be venified by using the
identity {2.80) for a commutator containing a product. This means that we can
look for simultaneous eigenvalues of J? and any one of the individual
components, say J..

Consider a system for which J? and J, are a complete set of commuting
observables, so that there is a complete set of states l.-l"..._u} consisting of
simultaneous eigenstates with eigenvalues 4 for J? and p for J_:

Ji, wy =44, 1),

X i i4.3)
oy g =g, p.
We define the operators
Jy=Jd,+il,. (4.4)

Then J, and J_ are hermitian conjugates of each other:
Jo=J_1, (4.5)
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and their products can be expressed in terms of J* and J

J I =J=J 20T, (4.6)
J_J, =3=J2=hl.. (4.7)
From (4.1) we obtain the commutators of J, and J_ with J. as
o i]=hi;, (4.8)
[T ]==hJ_. (4.9)
The crucial properties of J, are the following:
1. J.|4, uy are also eigenstates of J* with eigenvalue i, (4.10)

For J* commutes with J,, and so
J2 i = J B30, > =20 |, 1)
2, Either J |4, u>=0o0rJ |i, u) is an eigenstate of J_ with eigenvalue
o+ (4.11)
For from (4.8) we have
LI o = o J+hd A, ) =(p+ R |2, .
3. Either J_|4, p»=0o0r J_|i p} is an eigenstate of J, with eigenvalue
p=h. (4.12)
This is proved in the same way as (4.11), using (4.9).
Because of (4.11) and (4.12), J, and J_ are known as raising and lowering
operators for J.. In symbols, we have
Jo|duy=c.|duth). (4.13)
To determine the factors ¢, note that since the states |4, u) are normalised we
have, writing |, >=J |4 u},
lesF=Cd. | @ d>=Chpld T )
=, p|(I* = J2 —hJ )4 uy, using (4.5) and (4.7),
=j—p? —ph. (4.14)
Similarly,
le_|P=<¢_|¢_>=4—p*+uh. (4.15)
(Only the modulus of ¢, can be determined since any state vector can be
multiplied by an arbitrary phase factor.)

From (4.14), using the positive-definite property (2.29) of the inner product,
we have

A—p?—uh =0, (4.16)

A—pt—ph=0<=|p, >=J |4 uy=0. (4.17)
Similarly, (4.15) gives

A—pt4phz=0, (4.18)

A—pl4ph=0<=|p_d>=J_|i,pu>=0. (4.19)
The statements (4.11}+4.12) and (4.16}4.19) are sufficient to determine the
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possible values of /i and p. From (4.11) we see that, unless J |4, > =0, an
eigenvalue grof J. is accompanied by a higher eigenvalue g + h, which in turn is
accompanied by an eigenvalue g 4 2h, and so on; the eigenvalues rise in steps of
h, like a ladder, and will only stop if they reach a value g, for which

J A Ban =0, i4.20)
There must be such a maximum value, for if i continued indefinitely it would

reach a value which violated the inequality {4.16). According to (4.17), this
maximum value is given in terms of 4 by

A= P + 1) 4.21)
(the value of 4 is the same for every state in the ladder of eigenstates |4, i3,
J A g . .., because of (4.10)).
Similarly, the lowering operator produces a sequence of eigenvalues going
down from g in steps of i, which must reach a minimum value g, or else (4. 18)
would be violated, and for this value we must have

J A, iy =0 4.22)
and therefore, according to (4.19),

A= fhin (Ui — ). {4.23)
From (4.21) and (4.23) we find

[ mar F Bomin ) (Mmar — Bimin + 1) =100, (4.24)

Since Mo ZHon it Tollows that po.= —le,. Write p...=jf; then the
difference between g, and g is 2jh. But we can get from g, 10y, by going
up in steps of h; hence 2j is an integer. From (4.21) we find the value of i as
Jjli+ 1)k*. The values of u that are contained in our ladder of eigenvalues of J_
are —jh, (—j+ Dh, ... (j — 1k, jh; no other values are possible for states with
the same eigenvalue of J?, because we started with a general eigenvalue of J.
and showed that it belonged to this set.

Finally, let us note that because of (4.6) and (4.7), if we start with a state [4,
and apply first the raising operator J , and then the lowering operator J _, or
vice versa, we arrive back at a multiple of the state we started with. Thus the
ladder of states with a given value of £ span a space % such that the operators
Jy J,. J, act entirely inside 5%

From now on we will replace the labels 2 and p by j and m, where A=
jii+ 1)h? and p=mh:

we write |jm) instead of [jij + D3, mh.
Then our results can be summarised as

@4.1 The possible eigenvalues of J? are j(j + 1)h* where 2/ is an
integer. For each of these there are 2j+ 1 states

ij}r m==j, =j+1,...,j—1j
on which the components of the angular momentum vector J act
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Fig. 4.1.
The Stern-Gerlach
experiment.
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according to
J|jmy =mh|jm}, (4.25)
Jolimy =i+ 1) —mim+ ))hjm+ 1) (4.26)
where

J.=J,+iJ,. W

For the remainder of this section we will assume that the units are such that
h=1.

Experimental confirmation of these results is provided by the Stern—Gerlach
experiment, in which a beam of atoms or other particles 1s directed past a pole
of a magnet onto a screen where they make a mark (Fig. 4.1). [tis found that the
beam splits into a number of pieces, so that the marks made by the particles on
the screen form several distinct small patches. These are equally spaced alonga
line parallel to the axis of the magnet, and are placed symmetrically on either
side of the point where the original line of the beam meets the screen.

In classical physics, a spinning object made of electrically charged material
acts like a magnet, with a magnetic moment (=pole strength x length)
proportional to its internal angular momentum (i.e. angular momentum about
its centre of mass). On moving past a pole of a magnet it will be deflected by an
amount proportional to the component of angular momentum parallel to the
axis of the magnet, say J.. Thus the Stern-Gerlach experiment, in which the
beam is split into 2j + 1 parts separated along the z-direction, so that there are
only 2j+ 1 possible values for the deflection of an individual particle, gives
evidence that there are only 2j<4 1 possible values for J, for each particle.

The number j is characteristic of the type of particle in the beam; it is called
the spin of the particle.

AN
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For a simple particle, which has no internal properties and in particular no
spin, the angular momentum about the origin is given by the classical
expression J=rxp. Such angular momentum 15 called orbital angular
momentum, and is often denoted by L. We have seen (p. 95) that for this
system L coincides with the angular momentum required by Postulate VII.
The corresponding operator (taking h=1) 1s

L=—irxV. (4.27)

In spherical polar coordinates (r, 6, ¢) the operators L., L. and L* are

-

b

oI f— 4.
I ,F'ﬂ' (4.28)
£y =“=H(i¢;ﬁ +icutﬂé) (4.29)
and
| &\ &
2 i izt ey R e
L= = I”«]I(mnl‘l'(.,!,}) +ﬂ?=}‘ (4.30)

The eigenfunctions of the operator L. given by (4.28) are of the form
pir)=f(r, 0)¢™. Since (r, 0, ¢+ 2m) are the coordinates of the same point of
space as [r, 0, ¢), this function must be unchanged if ¢ is increased by 2, which
means that m must be an integer (not hall an odd integer). A similar point
applies to the operator L* given by (4.30). This is the angular part of the
Laplacian operator V*, and in the study of that operator it is found that L? has
eigenvalues [/ + 1) where [ is an integer (again, not half an odd integer). The
simultaneous eigenfunctions of L* and L. are

Yi(0, )= P (cos D™, m= =1, =I+1,..., | {4.31)

where P,™ is an associated Legendre polynomial, The functions Y, are called
spherical harmonics; it is also sometimes useful to consider the solid harmonics
Simlr, 0, @)=Y, (0, ). (4.32)

The only special property of these functions that we will need is the
following:

@42 Let ¢ be an eigenfunction of L* with eigenfunction N[+ 1).
Then i has parity (= 1), i.e.
Pydr)= (= r)=(— 1)'ir). (4.33)

Progf. Consider the function

Brj=ix+iyf =r sin' B".
Using (4.28) and (4.30), you can readily verily that

Lib=Nl+ )b, L &=I0. (4.34)
It follows that

Or)=r'Y, (0, ) |
s0 that
L_"""®r)=r"Y(0, ¢)=§,.(r). (4.35)
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Since @ is a homogeneous polynomial of degree [,
W —r)={—1)f®r).
The parity operator P commules with rotation operators and therefore with the
angular momentum operators, and in particular with the lowering operator L _; from
(4.35) it follows that all the solid harmonics §,.(r) satisfy

Sl =r)=(=1}5,.(r). (4.36)
MNow any eigenfunction of L? with eigenvalue !+ 1) must have the form
Win=Y [(NY.(0, ¢)=F r ' (rS.(r) (4.37)

for some functions [_ir). Hence (4.39) gives
Wl —n=% (= 1r LS =(= D). B

Since the eigenvalues of L? are of the form N[+ 1) where | is an integer,
eigenstates |jm)» of J* and J. in which j (and therefore m) has an odd half
cannot be realised as wave functions. Nevertheless, operators satisfying the
commutation relations for angular momentum and having such half-odd-
integral eigenvalues certainly exist mathematically — they are exhibited in
(4.25)-(4.26) — and physical states with these eigenvalues occur in nature, since
there are particles for which the Stern—Gerlach experiment gives a splitting
into an even number of beams (as in Fig. 4.1, where the number of beams (equal
to 2j+ 1) is six, so that j=4).

The ‘internal’ angular momentum of a particle which is revealed by the Stern—
Gerlach experiment is called the spin of the particle. (The same word is used for
the number j.) This is angular momentum which the particle has even when it is
at rest, i.e. when it has zero ecigenvalues for p and therefore for r=p. In
describing the Stern-Gerlach experiment we implied that this was like the
internal angular momentum of a classical spinning body, which has angular
momentum about its centre of mass obtained by adding up terms like r x p for
all the parts of the body (r being the position vector relative to the centre of
mass). For a composite particle like an atom, it makes sense in quantum
mechanies to talk about the angular momentum about the centre of mass, and
it may be possible to identify this with the spin. However, this cannot be the
case if the spin j is half an odd integer, for the angular momentum about the
centre of mass is obtained by adding together orbital angular momenta, with
integer eigenvalues, and, as we will see in the next section, this can only give rise
to integer eigenvalues, Since particles with half-odd-integer spin do exist, we
must conclude that it is possible for a particle to have a spin which does not
arise from the motion of its parts about its centre of mass. In particular, it is
possible for a truly elementary particle (which has no constituents) to have an
intrinsic spin.t

t This should not really be surpnsing, in view of the relation between mechanics and geometry

expounded in §3.2. Geometrically, rotations cannot be reduced to translations;

correspondingly, one should not expect angular momentum to be reducible to linear
momentum. This view can be held in classical mechanics also; it dates back to Euler.
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There is a general rule relating the spin of a particle to its statistics (i.e.
whether it is a fermion or a boson). This can be proved as a theorem in
relativistic quantum field theory, but we will assume it as a basic law of nature:

The spin-statistics law. All bosons have integer spin; all fermions have
half-odd-integer spin.

Of the particles described in Chapter 1, all the fermions (the baryons, leptons
and quarks) have spin §; the gauge bosons (the photon, W+, Z° and gluons)
have spin 1; and the mesons (m, K and 5) have spin 0. There are, however, other
baryons and mesons with different spins.

With j=4 there are two possible values of m, namely m= +4: we will simplify
our notation still further by denoting the corresponding eigenstates of J, by
|+ and |- (these are often called spin up and spin down states). From (4.25)-
{4.26) we find the action of the components of J on these states as

Jl+dy=4+> J|->=4+>
Ll+>=4=> J|->=-%+> ;. (4.38)
J:|+}=il+>- Jpl_"):-'ﬂ"}-

The matrices representing these (as in §2.4) are the components of 1o where

0 1 0 —i 1 0
cr,=(l l])' ﬁf_.,_=(l, U)‘ u==(ﬂ —I)‘ (4.39)

These are known as the Pauli matrices. Their matrix products are given by

ol=a=0’=1, (4.40)

o0, =—a06, =id_, (4.41)
and cyclic permutations of x, y, z, which can be summarised as

66;= 0+ ig;u04 (4.42)
or
(a-a)(bra)=ab+ila = b)a. (4.43)
The general state of a spin-} particle (as far as its spin is concerned) is a
superposition ¢, |+ » +¢,| —». This state vector is called a spinor. An actual
particle has not only spin properties but also properties due to its motion in
space, of the sort which are described by a wave function (r). Asin the case of
a photon (p. 70), these two aspects can be combined by making the
coefficients ¢, and ¢, into wave functions: thus the full state space of the
particle consists of spinor wave functions ¥, (r)| + » + () = », which can also
be written as

(';"J.lf})
Walr))

Ifmis any unit vector,n - J is the hermitian generator of rotations about the axis
m; hence, according to @3.6, the operator representing the rotation through
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the angle # about n is

U(R(n, 8))=e~"™", (4.44)
In the case of a spin-} particle we can evaluate the exponential by using

(na)=1, (4.45)
which follows from (4.43); this gives the matrix

U{R(n, 8))= e "™ *=cos 10+ in* & sin 10. (4.46)

Notice that when #=2n this is — 1. At first sight this looks wrong, since a
rotation through 2n is the identity operation and one might expect it to be
represented by the identity operator. However, since a state vector — |y
describes the same physical state as |if», the operator — I can validly represent
the identity operation. The operators (4.46) form a projective representation of
the rotation group, as discussed in §3.3, which cannot be redefined to give a
true representation. This happens whenever j is half an odd integer, as can be
see by considering the effect of a rotation about the z-axis on a state |jm}:

U(R(k, B))|j my = e[ jm)=e~"™|jm)
=—|jm) when 8=2x (4.47)
since m is also half an odd integer.

In the terminology introduced in §3.3, these facts about rotation operators
can be expressed as follows:

®4.3 Foreach eigenvaluejij+ 1) of J? thereis a(2j+ 1)-dimensional
projective representation of the rotation group, in which J® actsasa
multiple of the identity. This representation is unigue {up to
equivalence). It isa true representation if and only if jis an integer. |l

We will denote this representation (or the vector space on which it acts) by &,.
It defines a set of (2j + 1) % (2j + 1) matrices D/(R) with matrix elements ¢/_ (R)

{m,n=—j, ..., ), where R is any rotation and
i
UR)jmy=} d\m(R)|jn); (4.48)
L |

and also a set of three matrices representing the generators, forming a vector of
matrices t/=(/, ¢/, /) with matrix elements t/,, where

i
Jjmy= 3 v,lin (4.49)
m=—j
(in the case j=1, t/=14g). From (4.25}-(4.26) we find the explicit formulae
(U o= (0 00 = U+ D —lm £ 1) s (4.50)
(V. o =M s (4.51)

There is one obvious representation of the rotation group which at first sight
does not seem to be included in @4.3, namely the vector representation in
which the vector space consists of three-dimensional geometrical vectors and
the rotation operator acts by rotating these vectors in the geometrical sense.
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Thus there is a complete set of three states |x), |y}, |z) corresponding to the
unit vectors i, j, k. and a rotation about the z-axis, for example, is represented
by the unitary operator U(R(k, ) defined by

U(R(k, M)|x =cos O]x +sin 8]y

U(R(k, 0))y> = —sin O]x) +cos 0y . (4.52)

U(R(k, 8)|=3 = |z>.
Differentiating with respect to f) and putting 8=0 gives J, as

J =iy, J|pp=—ilxp. J.|>=0. (4.53)
There are similar expressions for J, and J,.

We can now show that this representation is the same as that given by @4.1
with j=1. Define the states |1 m} by

1
1 t|>=_&{|x}:t:'|y>}. [10)=|2; (4.54)
i

then (4.53) gives

JJU+1y= 4|1 £13, J]10)=0 (4.55)
which is the same as (4.25) with j= 1. The expressions for J, and J_ similar to
(4.53) likewise yield (4.26) with j=1. Thus the wveclor representation is
isomorphic to the representation &,.

In the case j=1 the unitary operator U(R) representing a rotation can be
identified with a 2 x 2 matrix, as in (4.46). Naturally, this matrix is unitary.
Furthermore, its determinant is 1, as follows from the identity

detug+a- tr}=|“n+”"' S =a,’—a?, (4.56)

d+idy dg—ay

which holds for any (complex) scalar a, and vector a. Conversely, any unitary
2 x 2 matrix with determinant | {i.e. any element of SU{2)) must be of the form
{4.46) and therefore could represent some rotation. However, if we specify that
the angle & should satisfy 0 < < 2n, we only get half the elements of SU(2); the
other matrices are given by values of @ between 2x and 4x. Thus for every
rotation there are two possible 2 x 2 matrices: if Rin, ) can be represented by
the matrix Uin, &) it can also be represented by

Uln, 04 2n)= — Ulm, ). (4.57)

Each matrix in SU{2), however, corresponds to just one rotation.

This two-to-one correspondence between elements of SU(2) and rotations is
described mathematically by a map ¢ from SU(2) to the rotation group,
associating each matrix U in SU(2) with the rotation ¢(U) that it represents;
then (4.57) implies that ¢(—U)=(U). The rotation ¢(U) can be simply
defined in terms of the set V of hermitian 2 x 2 matrices with zero trace; any
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such matrix is of the form

i R 1]
o ' =ae (4.58)
iy iy —ily

where (a,, a5, a5) are real, so V is a three-dimensional real vector space which
can be identified with the space of physical vectors a. From (4.43) we have

triABj=2a‘b il A=a-eand B=b"g, (4.39)
so the scalar product between vectors is given in V' by the inner product
(A, By=141tr(4B). {4.60)

Mow, given any U in SU(2) and any other 2 x 2 matrix X, we define a matrix

¢U)X by

HUX=UXU" 4.61)
Then $(U)X is hermitian if X is, because of the identity (XY)'=Y'X", and it
has the same trace as X, for

e (UXUN=te(U'UX)=tr X {4.62)
since U 1s unitary. Hence ¢ U) maps the space V to itself. Moreover, from (4.60)
we have

{pUNA, plU)By = A, B, (4.63)

so () is an orthogonal operator on ¥ It is clear from (4.61) that (U, U,) =
AU, ) U5, so ¢ is a homomorphism of SU(2) into the group of orthogonal
operators on ¥ Our previous remarks based on (4.46) can be put in group-
theoretical terms by saying that the image of ¢ is the group of all rotations of ¥,
and its kernel contains just the two elements + 1. (See problem 4.5.)

The state space of a particle with spin is.%° @ #, where 5 is its ‘internal’ (spin)
space and ¥ is the space of wave functions. The rotation operators act in W,
taking y(r) to ¢(R"'r), and in % as shown by (4.44). Similarly, the parity
operator P, which acts in % by taking y(r) to i —r). may also act in & Now P
commutes with all rotations, and therefore with the angular momentum
operators; hence, like J?, it has just one eigenvalue in 5 Since P?= 1, this
eigenvalue must be + 1. Like the spin, this is characteristic of the type of
particle; it is called its intrinsic parity. This applies even if the particle has spin
0, when & is one-dimensional and so & & # is isomorphic to #. Thus if we
regard the state vector of a spin-f particle as a (2j + l)}-component wave
function, like the spinor wave function we introduced for spin-} particles, the
effect of the parity operator is given by

(Py)r) =gl —r) (4.64)
where ¢ is the intrinsic parity of the particle.

Of the particles mentioned in Chapter 1, the massive fermions have positive
parity, their antiparticles have negative parity, and both the gauge bosons and
the light mesons have negative parity. The neutrinos are a special case, as will
be discussed in the next subsection,
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Fig. 4.2
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The spin space of a particle can be defined as the space of momentum
eigenstates with eigenvalue 0. This space is taken into itself by rotations; hence
rotation operators, and therefore angular momentum operators, are defined
on it, and so it must be of the form described in @4.1.

This argument breaks down in the case of massless particles, which must
travel at the speed of light and therefore have no zero-momentum eigenstates.
For such particles it is impossible to isolate a spin space on which rotations act
without affecting the momentum. All one can do is consider the space & of
eigenstates of momentum with a particular non-zero momentum p. This space
is invariant under rotations about the direction of p, which means that it
carries an operator p-J where p is a unit vector in the direction of p, but no
other components of angular momentum. (The other components exist as
operators on the full state space of the particle, but they do not leave the space
“yinvariant.) The observable p- J is called the helicity of the particle. Since it is
a component of angular momentum, its eigenvalues must be integers or hall-
integers, but they need not make up a full range —j, ..., j. A complete
explanation of the situation requires the theory of relativistic transformations
ithe Poincaré group); see Cornwell 1984, Chapter 17.

Of the massless particles mentioned in Chapter 1, the graviton has helicity
+2. the photon +1, the neutrinos —1 and the antineutrinos +3. The
neutrinos spin about their direction of motion like a left-handed screw; they
are said to be left-handed, and antineutrinos right-handed.

The operation of reflection in a plane parallel to p, applied to a particle with
momentum p, would leave its momentum as p but would reverse its helicity: it
would make a left-handed particle right-handed, and vice versa (see Fig. 4.2),
Thus such an operation cannot be applied to a neutrino, since there are no
right-handed neutrinos. Now a reflection in a plane can be obtained by
combining the parity operation with a rotation through = in the plane. Since
rotations can be applied to any state, we conclude that there is no parity
operator on the state spuce of o neutrino,

Mirror

=5, ol
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The spins and parities of particles are summarised in Table 4.1. Some of
these parity values are purely a matter of convention, since the intrinsic parity
of a particle does not always have an absolute meaning (see Gibson & Pollard
1976).

Consider two systems (which we will think of as ‘particles’) which have
individual angular momentum vectors J, and J,. As was explained in §3.2,
these can be regarded as commuting observables for the combined system, for
which the angular momentum is J=J,+J,. The theory of angular
momentum developed above applies both to the individual angular momenta
J, and J,, and to the total angular momentum J. We will now look at the
relationship between these.

Since we are only concerned with angular momentum, we will continue to
assume that there are no other observables, ie. that J,? and J,. form a
complete set of observables for particle 1, and J,* and J,, likewise for particle
2. Suppose further that J, * takes the single value j,(j, + 1) (ie. particle 1 has
spin j, ). so that the state space % of particle 1is (2j, + 1)-dimensional, with a
complete set of states |j, m, > where m, (taking values —j,, —j, +1,....j,) is
the eigenvalue of J, .. Similarly, suppose particle 2 has spin j,, so that it has a
(2, + 1)-dimensional state space & with complete set of states |j;m;) (my;=
—jz: - - - + J2)- Then the state space of the two-particle system is &, ® %5; this
has dimension (2f, + IN2j; + 1) with a complete set of states |j, m,>|j, my»,
which we will write as |j,m,, j,m, . Since j; and j, are fixed, these states can be
identified by the eigenvalues m, and m,: thus J, . and J,_ form a complete set of
commuting observables (J,* and J,* being multiples of the identity).

Now consider the total angular momentum operators J* and J, acting on

Table 4.1. Spins and parities

Spin Helicity Parity
Quarks u, d, s, c. b, t 4 +4 +
Octet baryons o, p, A. £, = i 14 +
Decuplet baryons A, %, 2%, 0~ 3 +4, +3 s
Charged leptons e™, . 1 1 +4 i

The antiparticle of a fermion always has the same spin as the fermion and the
opposite parity.

Neutrinos v, v,, v, =}
Antineutrinos v, v, ¥, +4

Graviton +2 +
Photon =+1 =
w= Z° 1 0, +1 -
Gluons l +1 i

Octet mesons =, K, K, n 1] 0 -




Fig. 4.3,
Simultaneous eigenstates of
Sy and J.
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the state space % ® %, Since J,=J,.+J,., each state |jm, j,m,} is an
cigenstate of J_ with eigenvalue m; +m,. For a given eigenvalue M of J_, there
will be a number of eigenstates, since there are a number of pairs (m, , m,) with
m, +m; = M; the possibilities are shown in Fig. 4.3. From this diagram it can
be seen that among the states |j;m,j,m; > are one with M =j, +j,, two with
M =j,+j;— 1, three with M =j, +j, — 2, and so on until we reachm=j, —j, (il
Ja<idor M =j,—j, (il j; <f5). Il we continue to reduce M in steps of 1, the
number of stales for each value of M remains the same until we reach M =
—|jy —jal: thereafter the number of states decreases as we decrease M, until
finally there is just one state with M = =(jj, +j,).

Let Z,, be the subspace of %, ® % spanned by the states |j,m,.j,m;) with
m, +m;=M; then 2, contains all the eigenstates of J. with eigenvalue M.
Thus the raising operator J, maps ), into 29, ,. We have just seen that for
[i2—jal = M <j, +j;, the dimension of 2, is greater (by 1) than that of 2, . ,:
hence J. must have a null vector in &,,, i.e. a state |¥) such that J . |¥>=0.
Using J_J . =J*—J_*—J_. it follows that this null vector is an eigenstate of
J?, the eigenvalue being J(J + 1) with J= M. According to @4.1, this state
stands at the head of a ladder of simultaneous eigenstates of J* and J_, all with
the same eigenvalue J(J + 1) for J? and with the eigenvalues for J_ ranging
from —J to J. There is one of these ladders for each value of J between | j, —j,|
and j, +j,: the states in them are shown in Fig. 4.4, in which each blob stands
for a simultaneous eigenstate of J? and J.,, the blob with coordinates (J, M)
having eigenvalues J(J + 1) and M.

In Fig. 44 each horizontal row represents a complete set of states for the
subspace Z,,; each vertical column is one of the ladders of states described in

pm,
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@4.1. We will denote the subspace spanned by this ladder of states by %, as in
@4.3, the rotation operators act in this subspace according to the (2J + 1)-
dimensional representation of the rotation group.

The results of this discussion can be summarised as follows:

@44 Let S, and 55 be two systems for which the z-component of
angular momentum constitutes a complete set of observables, the
eigenvalue of J? being j,(j, + 1) for §; and j;(j,+ 1) for §,. Then the
eigenvalues of J* for the combined system §, 8, are J(J + 1) with

J=|jy =, iy =Jal + L, .oy iz
In terms of representations of the rotation group, this can be
written as
%,09,=2%, 9@, B (4.65)
This is ecasily extended to cover the case where the systems S, and §, have
more than one eigenvalue for J,* and J,2. If, for example, S, has eigenvalues
Jaliy + 1) and j, '(j," + 1) for J, %, then we wrile its state space as ¥, =& @ %
and we have
'?7' @ jfi={£/h E'E?h: @ E(J:= 5:I".h ® E.t;‘.l'z @ E}:II. EI (-_.ifj;
T fftfl =i @ @ 'rf.h *ia $ QL‘: ~Id @ = @ 2‘-""1:‘ "46&}
This arises in combining three or more systems with angular momentum: one
first combines two of the systems, say §, and 5., and then combines each
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component of §, 5, with the third system 8,. Forexample, if j, =j,=j,= 1 this
procedure gives
SR8 R =GR DY) L,
=4 D GHDY DL D(Z @LET). (467

Mote that since orbital angular momentum is characterised by integer
values of j, the combination of any number of systems with orbital angular
momentum can only give rise to integer values of j. This is the justification for
the remark on p. 138 that half-odd-integer spin cannot be explained in terms of
orbital motion.

Figs. 4.3 and 4.4 show two different complete sets of states for the combined
system §,5,, corresponding to the two sides of (4.65). The states of Fig. 4.3 are
the original states |j,m,, jsm,»; those of Fig. 4.4 will be written as [JM . All of
these state vectors are taken to be normalised. In each of the complete sets the
states have different eigenvalues for a pair of hermitian operators, and so each
is an orthonormal set. Now any state can be expanded in terms of either of
these complete sets; in particular, each state |j,m,.j;m; ) can be written as

|.j|m1 gy = E‘:J.\rlJM}- (4.68)

I

The coefficient ¢;,; can be obtained by taking the inner product with the state
[SM

o= CIM|jymy jamy). (4.69)
These coefficients are called Clebsch-Gordan coefficients. A way of calculating
them is outlined in problem 4.6. The calculation involves an arbitrary choice of
phase at one point; this reflects the fact that the state vectors [JM} are not
uniquely defined, but can be multiplied by an arbitrary phase factor. The
phases can be chosen so that the coefficients are all real. There is a table of
Clebsch-Gordan coefficients at the back of this book.

Since the Clebsch—Gordan coeflicients relate two orthonormal complete
sets of states, they form the elements of a unitary matnx (the rows being
labelled by J and M, the columns by m; and m,) — in fact, since the coeflicients
are real, the matrix is orthogonal. Thus

z IM|jym, -fzmz}‘:Jerl.flmlsz.?.) = Bypars (4.70)
.
E‘:JM]jlml Jama pCIMjym jamy) =8, i B, (4.71)

Mot only states, but also observables may be subject to transformation by
rotations. For example, in §3.2 we considered a set of observables ¥ which
form the components of a vector. We saw that the appropriate transformation
for an observable 4 was 4 = U(R)AU(R) ™" with infinitesimal version 4 —
[J;. A] (sec @3.8); and that if V] are the components of a vector the three-
dimensional space of operators consisting of linear combinations of the V| (i.e.
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the set of operators a - V) is invariant under these transformations. This can be
generalised. The components of a vector are equivalent to the basic states of a
system with angular momentum j= 1, so the space of operators a- V behaves
like the space 2,. In the generalisation we consider a space of operators
corresponding to any .
An irreducible set of operators (under the rotation group) of spin type j is a set

of 2j+ 1 operators T/, (m= —j, ..., J) satislying

[J., T )=mT.,.

[J.. )= /({li+ ) =m(m+ )T,
where J is the total angular momentum of the system. These equations
generalise (3.131), which can be put in this form by taking T' ;= V, T' =
V. iV, (cf. (4.54)). They can be wnitten as

[ Pud=) VT, (4.73)
and are equivalent to the statement that

4.72)

VRIT UR) ™ '=% & (RIT, {4.74)
i

where ' (R) is the matrix representing R in the representation %, given by
(4.48), and v/ . given by (4.49), is the vector of matrices corresponding to the
angular momentum operators in this representation.

The following theorem says that applying such an irreducible set of
operators to a system with angular momentum j° is similar to combining it
with another system with angular momentum j.

®4.5 The Wigner-Eckart theorem. Let T/, be an irreducible set of
operators of spin type j, and let [jmz) be eigenstates of a set of
commuting operators which include J* and J,, where j(j+ 1) is the
cigenvalue of J*, mis that of J_, and « stands for the eigenvalues of the
other operators. Then the matrix elements of T/_ are proportional to
Clebsch-Gordan coefficients:

Gma [T ey = (om” | jm, fm' (e | T/ ') (4.75)
where { j"&’ | T/| j«'% is independent of m, m’, m".

Proof. Consider the (2 + 12/’ + 1) states T/, |i'm'a">. On the space spanned by
these states we can define operators J, which act like angular momentum
operators on the index m, and similar operators J; to act on the index m'. The
action of the actual angular momentum operators is

IT9 | ima'y =[J, T4 i'mta> + THI|ima’>
=+ 3T fma’, (4.76)

i.e. the states T/, |[/'m'a’) behave like product states describing particles with
spins j and j. Hence, in analogy with (4.68)-(4.69), they can be written as

Tl fmay =} (IM|jm, jm'>|IMa’y, (4.77)
M
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where the states |[JM 2"}, behave like the two-particle states with definite total
angular momentum, i.e. they are eigenstates of J* and J.. Since J? and J. are
hermitian, we have
£ _;"'m*"u:ut"l..l'Mlﬂt’}1 =0 wunless J=;" and M=m". (4.78)
Moreover o Tl 2R S
(m"+ 1| m" + Loy = <;*:j“i- |;I] '_'::_l‘;ﬂmslil
rm (32 —J 2= J )| imma ),

T TG )

={f"'m"a"|"'m"a,.
Thus this quantity is independent of m”. Calling it j""|| 77| j'«"%, we find that
(4.75) follows from (4.77) and (4.78). W

{j"a"| T fa'y is called a reduced matrix element.

The full state space of a system of two particles is

(@B RIS @SB (W, ®@Y)) (4.79)
where %] and %% are the spin spaces of the two particles and %7 and % (both
isomorphic to %) are the spaces of wave functions. We will call a state in
5, @ 5, a spin state and a state in % & ¥ an orbital state: thus the basic
state of the two-particle system is a product of a spin state and an orbital state
ithe general state being a superposition of such product states).

Consider the orbital states first. % @ %", is the space of wave functions
i(r,, ry), where r, and r, are the positions of the two particles. In the classical
mechanics of two particles it is a good idea to change variables from r, and r,
to the centre-of-mass position R and the relative position r, which are defined by

1
R=‘—f{mtr, +m,r,), (4.80)

r=r, —r;, (4.81)
where m, and m,, are the masses of the particles and M =m, +m,. In quantum
mechanics this change of position variables goes with a change of the
momentum variables associated with the partial derivatives: using the chain
rule for partial differentiation, we find that the momenta associated with R and
rare

200 s
P= —il‘lﬁ= —1I|(E +ﬁ_—z)—|:l| + 3, (4.82)

M

If the forces on the particles are derived from a potential function Fir,, r,),
i.e. if they are

o fms @ my @ myp, —m,p;
= —ffj—=—ill ————— — = ——=, .
P 2 ar ”(M ar, M E‘r]) {%53)

av av
F,m= _-:?I-'_, and F1=ﬂ —a_-:-. (4.84)
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then the Hamiltonian is

2 2
H=tl 422 4 Vir 1), (4.85)

m, 2,

which can be expressed in the new variables, using (4.82)-(4.83), as

PZ F_! ;
lej.'\f.'-z_ﬂd.‘ "‘R. rl '#85‘
where
| | |
L (4.87)
Hom my

4t is called the reduced mass of the system.

Now suppose the two particles form an isolated system, i.e. each particle is
subject only to forces exerted by the other. Then by Newton’s third law of
motion the forces on the two particles are equal and opposite and so (4.83)
gives

ey (4.88)
iz dr,
According to (4.81), this means that ¢V/fR=0, i.e. V is a function of r only.
Thus the Hamiltonian (4.85) looks like the Hamiltonian of two (fictitious)
particles, one of mass M situated at the centre of mass R and moving as a [ree
particle, and one of mass u which moves in a field of force derived from the
potential Fir).
The total orbital angular momentum of the two-particle system is
L=r,xp+ryxp;
=Rxp+rxp (4.89)
from (4.80)-{4.83). This is the sum of the orbital angular momentum associated
with R, i.e. with the motion of the centre of mass, and that associated with r,
which is an internal quantity of the two-particle system. The latter term, r x p,
is called the internal angular momentum.

This change of variables shows that the space % & W can also be written
as W, & W, where W, and W, are the spaces of wave functions with
arguments r and R respectively. The full state space of the two-particle system
can now be put in a form analogous to that of a single particle; it is

FRW,, where $=% @L O W, (4.90)
We will focus attention on the internal space % by assuming a fixed wave
function Y,(R) in #_ (usually we take ¥, 1o be an eigenfunction of the total
momentum with eigenvalue 0).

The total internal angular momentum of the two-particle system is thus
obtained by adding three angular momenta, namely the two spins and the
relative orbital angular momentum r x p. Since the last-named has eigenvalues
Jij+ 1) with j an integer, a composite particle with two constituents will have
integer spin if its constituents both have integer spin or both have half-odd-
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integer spin, and it will have half-odd-integer spin if one of its constituents has
integer spin and the other has hall-odd-integer spin. This is similar to the rule
for combining fermions and bosons (@2.7), and shows the consistency of the
spin-statistics law with this rule. Generalised in the obvious way to a system of
n particles, it also provides the justification for the assertion on p. 6 that the
spin of nuclei is not consistent with the assertion that they are composed of
protons and electrons; for example, if the nucleus of *He consisted of three
protons and an electron its spin would be an integer whereas in fact it has
spin 4.

Il the two particles in our system are identical, the possible states are
restricted by the requirements of statistics (i.e. that the state should be
symmetric or antisymmetric). If r, and r, are interchanged, the centre-of-mass
position R is unchanged (since m, = m, for identical particles) and so the state
space W, is unaflected; thus we can continue to restrict attention to ¥ &
S5 @ W, e to products of spin states and relative orbital states. If the
particles are fermions, so that the product state is antisymmetric, then either
the spin state is symmetric and the orbital state is antisymmetric, or vice versa;
if the particles are bosons, the spin state and the orbital state are either both
symmetric or both antisymmetric. We will now look separately at spin states
and orbital states to determine the consequences of symmetry and
antisymmetry.

For the spin state, suppose the particles have spin j, so that % =%, =%,
Then we want to know which are the symmetric and antisymmetric states in
%; @ %,;. The answer is

@46 In % ® %, the symmetric states are those with J=2j, 2j -2,

Proof. Since J, and J; act identically on the individual spin spaces, the
exchange operator X satisfies
XJ,=J,X and XJ,=J,X. (4.91)

Hence XJ=JX; in particular X commutes with the raising and lowering
operators J .. It follows that if, in the ladder of states with a given value of J,
there is a symmetric state, then all the states in that ladder are symmetric; and
likewise for antisymmetric states.

Asin Fig. 4.4, let Z,, be the subspace spanned by the states | j,m,,j,m,) with
a given value of M =m, + m,. Then X takes 2, into itself. Since X commutes
with J ., theuniquestate |y, » in &, which satisfies J , |, > =0 isan eigenstate
of X, i.e. either symmetric or antisymmetric. Since this state stands at the head
of the ladder 2, with J= M, all the states in the ladder are either symmetric or
antisymmetric.

Now if M=2j—2k+1>0, the subspace #, has k symmetric states
|jmy, jmy»+|jm,, jm;» and k antisymmetric states |jm,, jm;>—]jmg, jm, >, all
linearly independent; if M =2j—2k, 2, again has k symmetnc and k
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antisymmetric states, together with an additional symmetric state |jm,jm}
where m=j—k. In order to make up these numbers of symmetric and
antisymmetric states, the ladders 2, must consist of alternately symmetric and
antisymmetric states, starting with %, which is symmetric since its top state
Lij.ji» is symmetric. This gives the pattern stated. |l

In particular, for j=14 the state with J =0 (in which the spins are said to be
‘antiparallel’) is antisymmetric; the states with J=1 (‘parallel spins’) are
symmetric. For j= | the states with J=0 and J=2 are symmetric and those
with J= 1| are antisymmetric. This last fact is related, via the isomorphism
between &, and the vector representation, to the properties of the products of
two vectors: the scalar product (corresponding to ) is symmetric (i.e.
commutative), while the wvector product (corresponding to 24) is
antisvmmetric (anticommutative).

For the orbital state we have

@®4.7 In a state with relative orbital angular momentum [, the
orbital state is symmetric if | is even, antisymmetric if / is odd.

Proof. 1fr, and r; are interchanged, r becomes —r. Hence on %, the exchange
operator X is the same as the parity operator P:

X(r)= Pyrlr)=g( —r). (4.92)
The result now follows from @4.2. B

Example If a particle decays into two n° mesons, its spin must be an even
integer. For by conservation of angular momentum, the spin of the decaying
particle must be the same as that of the internal angular momentum of the 2=
state, Since pions have spin 0, there is only an orbital state to consider; since
they are bosons, this must be symmetric; so by @4.7 the internal angular
momentum | must be even.

For example, there is a spin-1 meson p® which decays into n* +n~ but not
into 2n°.

@4.7 makes it possible to determine the intrinsic parity of a two-particle
system. We have seen that for a single particle, with state space % ® W, the
parity operator P acts on the spin space % as well as on the wave function
space W. A two-particle system can be treated in a similar way, with ¥ =%, ®
55 @ W ,,. In this space P no longer acts as a multiple of the identity, for in the
internal wave-function space %, it takes fi{r) to @ —r). Now @4.2 shows that
the eigenstates of parity are the eigenstates of relative orbital angular
momentum [. These are usually the states of interest, since there may be only
one value of [ for which the particles bind together to form a composite
particle; more generally, the energy (and therefore, in a relativistic context, the
mass) of the composite particle may depend on |. For these eigenstates, since
parity is 2 multiplicative quantum number, 4.2 gives the rule

@48 The intrinsic parity of a two-particle state is g,&,( — 1), where
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&, and g, are the intrinsic parities of the two particles and [ is their
relative orbital angular momentum. Wl

Examples

1. The relative orbital angular momentum of the quark and antiquark in a #-
meson must be even. For the quark and the antiquark have opposite intrinsic
parities, so the intrinsic parity of the pion is —(— 1)’. But pions have negative
intrinsic parity, so [ must be even.

As we will see in the next two sections, the lowest energy in a two-particle
system usually occurs for [=0, so it is assumed that this is the case for the
mesons m, K and », which are the lightest quark-antiquark composites.

2. The deuteron d. the nucleus of deuterium (heavy hydrogen), has spin 1. [t
forms an atom’ with a =~ meson in which the relative orbital angular
momentuem is 0, This decays into two neutrons:

- +d—=n4n {4.93)

If the Hamiltonian governing this process is invariant under reflections, the
deuteron must have intrinsic parity +.

Forif the Hamiltonian is invariant under reflections, parity is conserved, By
@4.8, the intrinsic parity of the 2n state is (— 1) where [ is the relative orbital
angular momenitum; and the intrinsic parity of the initial state is g.24(— )" =
—&;. Hence g,=(— 1) "!. Now we use conservation of angular momentum,
Since the spin of the pion and the relative orbital angular momentum in the
initial state are both 0, the total angular momentum initially is the spin of the
deuteron, which is 1. The final total angular momentum is the sum of the total
spin, which can be 0 or 1, and the relative orbital angular momentum /. Since
neutrons are fermions, the final state must be antisymmetric. If the total spin
was 0, the spin state would be antisymmetric (by @4.6), so the orbital state
would have to be symmetric and by @4.7 [ would be even; then the total
angular momentum would not be 1. Hence the total spin must be 1, the spin
state is symmetric, so the orbital state is antisymmetric, / is odd and therefore
the intrinsic parity of the deuteron is (= 1) *'= + 1,

In this section we will determine the energy levels (i.e. the eigenvalues of the
Hamiltonian) for a system of two particles attracted to each other by a force
which is inversely proportional to the square of the distance between them,
This 15 a simplified model of the hydrogen atom, the inverse-square force being
the electrostatic attraction between the electron and the proton (it omits the
magnetic force between the particles and the emission of radiation by them),

Since the force is a function only of the relative position r=r, —r;, the two-
body problem can be reduced to a one-body problem. We look for eigenstates
in W, (i.e. cigenfunctions y(r)) of the Hamiltonian

R (4.94)
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since V(rj= —=7v/r is a potential function for the force

A L0 Y (4.95)
rr

Here 7 is the constant in the inverse-square law (for the hydrogen atom, y=
¢* /4ne, where ¢is the magnitude of the charge on the electron), u is the reduced
mass given by (4.87) and p is the relative momentum (4.83). The variables rand
p can be treated just like the position and momentum vectors of a single
particle; in particular, they satisfy the basic commutation relations (2.116)-
(2.117).

In this one-particle system the particle is attracted 1o a fixed point, the
origin, by the force (4.95). Classically, it can move in a closed orbit consisting of
a plane ellipse with one focus at the origin. The other possible motions are
unbounded orbits in which the particle gets indefinitely far from the origin.
These two types ol orbit are distinguished by the sign of the energy E = H(p. r),
which is a constant of the motion; if E <0, (4.94) shows that r cannot become
indefinitely large and so the particle moves in a closed orbit. The shape and
orientation of the orbit are described by two vector constants of the motion,
the angular momentum L =r x p, which is perpendicular to the plane of the
orbit, and the Laplace-Runge-Lenz vector (or ‘Lenz vector” for short)

M=pr_§' r, (4.96)

which points along the major axis of the ellipse. The size and shape of the
ellipse are determined by the energy E and the magnitude of M; the major axis
has length 7/|E| and the eccentricity is |M|/ypu.

The vector M can be used to study this system in quantum mechanics also,
but because p and L do not commute the product in (4.96) must be defined
carefully. In order to obiain a hermitian result we take each product AB in the
classical expression to be the symmetrised product §(AB + BA), for which it is
convenient to use the notation

{A,B}=AB+BA (4.97)

(this 15 called the anticommutator of 4 and B). Thus for the guantum Lenz
vector we take

1 "
MfEiEUI{FJ' Lyi '”—;IJ- (4.98)

Then we have

@49 The Hamiltonian H of (4.94), the orbital angular momentum
L. and the Lenz vector M of (4.98) satisfy the following equations:

[H,L]l=[H M]=0; (4.99)
[Li, L] =iheuly; (4.100)
(L, M =ihe oM, (4.101)
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[M;. M;]= —2piheu L H: {4.102)
L'M=M-L=0 (4.103)
M2 = 2uH(L2+ W)=y’ (4.104)

Proof. Since H is a scalar observable, it commutes with the total angular
momentum by @3.9. It clearly commutes with the spin and the centre-of-mass
angular momentum, so this means that it commutes with the three
components of L. Hence, using the rule (2.80) for the commutator with a
product,

[H, M]=%e,{[H, p]. Ly} =i [y xi/r]}

] i X
ﬁwm{x Lt} += iy { ) f—}!} (4.105)
r roF
using (3.133) for the commutators with p;. Now write
Ly = EaimX 1P = it P X1 (4.106)

the first term in (4.103) becomes
1 X ‘ X%
2 lh}'ﬂmﬁu_ xlpq + pm-xj' 3, 'frftair"ﬁ almﬂ_j’!] Fan r_] 1

which cancels the second term.

This proves (4.99). The next two equations are examples of the basic
commutation relation (3.134), since L is the only relevant part of the angular
momentum. (4.102) is an exercise in commutator and tensoralgebra, for which
we will trace a path through the manipulations. First calculate the
commutators

[p,-,hf,]=.-h(p:.pj—plau+$ Ju—%’ x,.x,). (4.107)
X o |
[TT Mj]=!h(; zijk'LI: 2r a3 pul{ i L}

1 X 1 ¥
+3 {p., ?j}_i 5”{;:“. 7‘}) (4.108)

The latter yields (remembering that r-L=p-L=0)

: L
r r
Substituting from (4.98) for M, and using (4.107) and (4.109), we find
el M. M1 =ih(—p* + 3up/r)Ly +iheu{pi M} (4.110)
MNow substituting for M; gives
&l P My} =(—2p* + 2uy/r)L,, (4.111)
so that
eu LM, M ] =2ih(— p* + 2pay/r)Ly = 2ih{ — 2uH)L. (4.112)

Eq. (4.102) follows by multiplying by &;.
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To prove (4.103) and (4.104), write M, in the form
MJ='E|'JIPJLI:'_'I-hFP_#:"-{TJ' (4.113)

Since p-L=r-L=0, this gives

M- L=eup;LaLi=leiap;[Li, L] =hilp-L=0.
Finally, calculating MM, from (4.113) and using the basic commutation
relations gives (4.104). W

A bound state is a stationary state with a negative eigenvalue for H; the
bound states are the quantum states corresponding to the closed orbits of the
classical theory. We will now use @4.9 to find the bound states.

Let @, be the space of eigenstates of H with eigenvalue E. If these are bound
states we can write — 2uE =x* where » is real. Since L and M commute with H,
they leave 3, invariant; as operators on #; their commutation relations are
(4.100)-{4.101) and

[M,, M) =iix,L,. (4.114)
Let
P=4L+x"'M), Q=4L—-x"'M); (4.115)
then (4.100)-{4.101) and (4.114) give
[P, P, =ihe P, (4.116)
[Qi, Q] = ihe; 30y, 4.117)
[Fi"gj]=ﬁ'
while (4.103)-{4. 104) become
P:-Q2=0, (4.118)
pryQrth Ly (4.119)
22 2

Egs. (4.116)-(4.117) show that P and ) both satisly the commutation
relations of angular momentum. The arguments of @4.1 therefore show that
P? and Q? have eigenvalues of the form jij + 1)i* where 2j is an integer. (4.118)-
(4.119) show that these eigenvalues are equal and are given by

e J |
1
{+ ”=4}r_,.-:::=_i' (4.120)
Hence
| 2
I e HY (4.121)

w24+

Since each component of P commutes with each component of Q, every

eigenspace of P, is invariant under Q and therefore contains the full ladder of

2j+ 1 eigenstates of Q5. Thus the space @, 15 of the form &, @ 2, 1.e. it is like

the spin space of two particles of spin j, their individual angular momenta

being P and Q. The total spin would then be P+ Q = L; according to @4.4, this
has eigenvalues I/ + 1) with I=0, 1,..., 2j.
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Writing 2j=n, and using the value y=e¢*/4ne,. we can summarise these
results as follows.

@4.10  The energy eigenvalues of the bound states of the hydrogen

atom are

1 e’

E=—cs——

" (4neg)? 2n%h?
where n is a positive integer. With this energy there are states with
relative orbital angular momentum /=0, 1,....n=1. @

(4.122)

We now see how quantum mechanics explains the spectrum of hydrogen.
which was mentioned in Chapter 1. The frequencies v, of (1.1) are related to

the differences between the energies E, of (4.122) by Planck’s relation:

pet

B
This 15 indeed the measured value of the constant R. Thus the encrgy of each
photon in the radiation with frequency v, is the energy lost by an atom of
hydrogen in changing from one bound state to another. (As explained in §3.5,
the bound states we have determined are not exactly stationary states, since we
have omitted the part of the Hamiltonian describing the coupling to the
electromagnetic field, which causes transitions between bound states)) The
state of lowest energy is called the ground state; it is a truly stationary state.

E,—E,=hv, if R= (4.123)

There is a close relation between the set of bound states of the hydrogen atom,
as described in @4.10, and the set of chemical elements, with the structure of
the periodic table, It is as if the £ electrons in the ground state of an atom with
atomic number Z were all in states [n [ m)|s} where |n [ m) is one of the bound
states of the hydrogen atom (m= —1,. .., lis the eigenvalue of L.) and |5} is a
spin state, Because of the Pauli exclusion principle, the electrons must all be in
different states; since there are two spin states, there can be at most two
electrons in any orbital state |n [ m». As Z increases, the states are filled in the
order shown in Fig. 4.5, which also shows the resulting elements and should
be compared with the periodic table (Fig. 1.1).

This description of the states of atoms is called the aufbau (‘building-up’)
principle. It would be justified ifall the electrons independently were moving in
the fixed field of the nucleus, so that the Hamiltonian would be a sum of terms
like (4.94), one for each electron; then the stationary states would be products
of one-electron states which would be independent of the number of electrons
in the atom. But in fact the electrons all repel each other, so that each electron
moves in a changing field due to the other electrons: quantum-mechanically,
the Hamiltonian is not just a sum of one-electron terms. The success of the
aufbau principle can be explained by assuming that the effect of the electronic
repulsion is the same as that of a constant average field, so that the electrons
can be treated as a cloud of negative charge which shields (or ‘screens’) the ficld



158

4.5, The harmonic oscillator

Fig. 4.5.

The Aufbau principle: for each
I there are 2(21+ 1) states to be
filled.
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of the nucleus. This produces an effective spherically symmetric potential
which, although not the same as the inverse-square potential of (4.94), will
have similar eigenvalues. Thus the states available to the electrons can be
labelled as |nlm) like those of the hydrogen atom, but their energy
eigenvalues will be changed: in particular, states with the same value of n will
no longer have the same energy. The tendency is for the energy to increase with
{, so that the order of the energy eigenvalues becomes as shown in Fig. 4.5

A harmonic oscillator is a particle which is attracted to a fixed point O by a
force which is proportional to its distance from G, We will first consider the
one-dimensional problem, so that classically the particle is described by a
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single coordinate x which satisfies an equation of motion of the form

T:;—: = —wx 14.124)
in which o is the angular frequency of the oscillator. The Hamiltonian for this
system 13

.

= o E o B :, 4.'
o 2mm 4 4.125)

The quantum-mechanical eigenvalues of this Hamiltonian can be found by
a similar technique to that which was used for angular momentum in §4.1. Let

a= m (p—imowx), o'= ;{E.Frmm] (p+ imeax); {4.126)
then the standard commutator [x, p]=ih gives

[a.a']=1, {4.127)
and H can be written in terms of ¢ and o' as

H = hedla’a +4). i4.128)
From (4.127)—4.128) we obtain

[H.a]=hwla', ala= —hwa (4.129)
and similarly

[H,a']=hwa'. (4.130)

MNow let [ib> be an eigenstate of H with eigenvalue E. Then (4.130) implies
that a'|yr) is an eigenstate of H with eigenvalue E + heo (provided a' |y #0); for

Ha'ly> =(a'H + hoa 'y = (E + hola' |y . (4.131)

Similarly, (4.129) implies that aif> is an eigenstate of H with eigenvalue
E — heo, unless alyy =0. Let |¢>=alyy; then

H 1 E 1

= ¢ dlatalds = Xl L, A
e @132)
if [y > is normalised. Hence, by the positive-definiteness of the inner product,
Ez=ihe (4.133)

and

E=4hw <= alyry =0. (4.134)
We can write H = heaa’ — ) and apply the same argument to a'[y): this yields
Ez =it and E=—lhwea'|yd=0. {4.135)

Thus starting with an eigenvalue E, we can find a descending chain of
eigenvalues E = fup, E—2hw, . .. by repeatedly applying the lowening operator
a, and an ascending chain E + hew, E+ 2ho, . . . by applying a'. The descending
chain must terminate, otherwise (4. 133) would be violated; it can only do so by
reaching an eigenstate [> for which a|y) =0, and then (4.134) shows that the
corresponding eigenvalue is $hew. On the other hand, the ascending chain can
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never terminate, for if it did there would be an eigenstate satisfying a'|i)> =0,
and (4.135) shows that this would have an eigenvalue which violates (4.133).
Thus the eigenvalues of H are ho, 3ho, ..., (n+ e, ...

Because of (4.128), applying the lowering operator « and then the raising
operator a' to an eigenstate of H brings you back to (a multiple of) the state
you started with. Thus for a single spinless particle, for which x (or p, or a')
constitutes a complete set of commuting observables, there is just one state for
each eigenvalue of H. We denote the normalised eigenstate with eigenvalue
(n+45)hes by |n): then the operators « and o' act by

any=cln—13, a'lndp=dn+1 (4.136)

for some coefMicients ¢, and d,. To find these, note that
n H 1
lea)? = (nja’aln = {;ﬂ(m - i)l"} =n

=d,_cln|nd>=d,_c.. (4.137)
We can choose the phases of the states so that ¢, is real and positive; then ¢, =
J'nand d,=./(n+1).
To summarise,
@4.11 The harmonic-oscillator Hamiltonian has eigenvalues
{n + 4)hw where n can be any non-negative integer. It can be written as

H =(a'a+Yhe
where the operators a, a' satisfy
[a.a']=1
and act on the eigenstates [n) of H by
alny=/njn—1)
: 4.1
e b

The classical equation of motion for a harmonic oscillator in three dimensions
15

d!

L = . (4.139)

de*
The ith component of this equation involves the ith coordinate x, only; thus
each coordinate separately satisfies the simple harmonic equation (4.124). The
Hamiltonian is

ipe i |

=B e
H 3 ma P {4.140)

which is the sum of three terms, each having the form of the one-dimensional
Hamiltonian (4.125), There are three raising and lowering operators

1 1
o -, = = i
o= Je }Ipi imox), a {ﬂwm}lp,hmmxij (4.141)
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whose commutation relations are

L

[r..r,-..uj ]=t5” x } 14.142)

[a.a]=0=[a, a; 1
and in terms of which the Hamiltonian is

H =(a'a;+ $)hw. (4.143)
Each of the raising operators then creates a series of energy eigenstates

;= Jl"—, (a'1}0> (4.144)
where |03 is the unique ground state, which satisfies

@ [0) =a,[0) =a,|0) =0. (4.143)
The general eigenstate of H is

Ffmn}-m fa, " Viay" ™ay' )05, (4.146)

which has energy E=(I4+m+n+3)hw. Thus the energy eigenvalues of the
three-dimensional harmonic oscillator are (N + 4)hes, where N can be any non-
negative integer, and the number of independent eigenstates for a given N is
the number of ways N can be written as N =[+m+n, which is {N + 1)(N +2).
But this can be made clearer by looking at the angular momentum of the
states,

The components of (orbital) angular momentum are

Li=gux,py = ihepa;'ay, (4.147)
using (4.141) and (4.142). This gives

L*= —h*(a,'aa,'a, —a;'aa,'a)),
which can be put in the form

L= —h[A'A-N(N+1]] 4.148)
where
A=aa, (4.149)
H 3
— l i, S
N=a, 4=y =3 (4.150)

Now since H is a scalar observable, it commutes with the angular momentum
operators and so each eigenspace of H can be split into spaces %, which are
eigenspaces of L? with eigenvalue I{l + 1). Being a scalar product, 4 is also
a scalar operator (though not an observable, since it is not hermitian) and
commutes with L?, so it preserves the eigenvalue of L?; also, since A contains
two lowering operators, it reduces the value of N by 2. Thus if there is a state
n I with eigenvalues nand I(i + 1) for N and L?, there is also a state A|n [} with
eigenvalues n—2 and (I + 1), unless A|n I =0. From (4.148),

(n 1A' Aln 1y =n{n+ 1)K+ 1), (4.151)
s0, a5 in (4.133)-(4.134),
nzl and n=l<=Apn[)=0. {4.152)
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Since the number of states with eigenvalue n for N increases with n. the
operator A (mapping a larger space into a smaller one) must have a null vector
InI> among the eigenvectors of N; (4.152) then shows that this has [=n.
Applying A" repeatedly to this state gives states [n [ withn=[[+2,1+4.....
Thus for each n there are states |n [ with I=n,n—2, .. .. But there is no state
with I=n— 1. for then A|u I’y would be non-zero (by the second part of (4.152))
but it would have N=n—2=1— 1, violating the first part of (4.152).

The structure of the sel of stationary states of the three-dimensional
harmonic oscillator is shown in Fig. 4.6(b). The states of the hydrogen atom
are shown for comparison in Fig. 4.6(a).

All the quantum systems considered so far have consisted of a fixed number of
particles with given forces between them (i.e. a given Hamiltonian). In classical
mechanics this is practically the definition of a physical system. But if we are to
describe processes like those mentioned in Chapter |1, eg. the decay of a
neutron into a proton, an electron and an antineutrino, we will have to
consider systems in which the number of particles may change. In this section
we will develop a formalism to do this, which is mathematically very similar to
the formalism developed in the previous section to describe the harmonic
oscillator.

Consider a system consisting of a variable number of indistinguishable
particles, and suppose these particles are bosons. Let & be the state space for
one particle. Then the space of states in which two particles are present is the
symmetric subspace of % @ % which we will denote by % v % or v 2% in
general, the space of r-particle states is v "% the subspace of &% consisting of
symmetric states. The full state space for our system of a variable number of
particles is

Y=y prevEsevyae {4.153)
nf nt
7 . & @ & 9 @ (] [ ] L] L
6 * & & & @ 5 L] - L
5 * @ & @ 4 L] [ ]
49 & & @ 3| w .
3 L I 2 L ]
2 L] 1 .
1 LS R e b i | 0e | B ] e [ | ] |
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where ¥ is a one-dimensional subspace containing a single state [0 in which
no particles are present (the vacuum state). Note that [0} is a non-zero state
vector and should not be confused with the zero vector 0.

Let | €% be any one-particle state, and let %, be the subspace of #
consisting of many-particle states in which every particle is in the state [},
Then %, has a basis [0}, |y}, |24, ... where

Iy = o> - <[y € v
is the state containing n particles. Thus %, has the same structure as the state
space of the harmonic oscillator, and we can introduce operators a,, a,' to
correspond to the raising and lowering operators of the harmonic oscillator:

a,Jmpy=/nlin— 1y, a,/lmpd=/(n+ Djn+ . (4.154)
Then, as for the harmonic oscillator,
[a,.a,']=1. (4.155)

a is called an annihilation operator; u,' is called a creation operator.

These operators can be extended so as to act on the whole of 4 as follows.,
There is a complete set of states like |ru,£r. ¥, ..., ¥, >, which contains n
particles in the state |y and m particles in states |y, orthogonal to | . The
annihilation and creation operators u, and a,' act on such a state by ignoring
the particles in states other than [ ):

aglm s = = D
aglln e = D] DD (4.156)

There is a more general definition of the annihilation operator a, as an
operator on the product space @"%":

agldy) - '|¢.}=\—;l-; P @01d2) - |dad + <l D 20| S D3> by

L {31 1 P R [ I 3 &
(4.157)

The operator a, of (4.156) is obtained by restricting this to the symmetric
subspace of @"% (for a proof see problem 4.28).

Now let |, ), |W5),. . . be a complete set of states for & For each |y, > there is
a harmonic-oscillator space 4, and annihilation and creation operators a,, a,".
Let |n, ny- > be the state containing n; particles in state |y,): these form a
complete set of states for %, and we have

alll..nlll..}-'\',l'l.luill.lni_l...} }
. 4.158
all--omp =+ 1| om+ 10> ' !

It follows from this that

[ai.a;' 1=, } (4.159)
[a,a]=0=[a;.a;"]
By identifying the state |n, n, -+ > with the product state n, >|n,) - - -, where
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|n;» € ¥, we have an isomorphism
=¥ ¥, ® - (4.160)
In other words

@4.12  The state space of a variable number of bosons of a given
type can be identified with the state space of a fixed number of
distinguishable harmonic oscillators, one for each independent state
of the bosons. |l

If the particles do not interact with each other, the energy of a state of n
particles is the sum of the energies of the individual particles. Thus if |} isan
eigenstate of the single-particle Hamiltonian, with energy E. the state [mf) is
an eigenstate of the total Hamiltonian with eigenvalue nE. Comparing this
with the harmonic oscillator, which has eigenvalues (n+%ijhow and a
Hamiltonian (a'a + )ho, we see that the Hamiltonian in the subspace %, can
be written

H=Ea,'a,. (4.161)
If the one-particle states |J,> are all eigenstates of the one-particle

Hamiltonian, with energies E,, then the many-particle state [n, n;-- > has
energy ny E, 4+ n,Es+ - +; it follows that the full Hamiltonian is

H= E Ea'a;. {4.162)

If the particles are fermions, the space of r-particle states is the antisymmetric
subspace of @5, denoted by ~"% and the full state space is

=1, @S D A S D i4.163)
In this case the subspace ¥, consisting of states in which all the particles are in
the state |y 3, is only two-dimensional: since at most one particle can be in the
state |\, the only possible states are the vacuum |0} and the one-particle state
[¢r>. We can still define annihilation and creation operators a, and a,',
avoiding the danger of creating two particles in the same state by making n,*
annihilate i ». Thus for the general state, if [y, ">, |5, . . . are all orthogonal
to |y,

aglV ¥ =D agl =0,
a W =0, a[ ey D=l (4.164)
These annihilation and creation operators do not satisly the harmonic-

oscillator commutation relation (4.127), but they do satisfy a similar
anticommutation relation

{ag,a,'}=1. (4.165)
They also satisly
a2 =(a,")2=0. (4.166)



4.6 Amnihilation and creation operators 165

The fermion annihilation operator a,, can be defined as an operator on the
product space @"%" by a formula similar to (4.157);
agld d|d2d + [bar = W@ ] d2)  * [dad — (Wb 2| B 0] da > |,
LA ot R ) 211" PO R [ M ¥ (4.167)
Now let |, 5. |0, ... be an orthonormal complete set of one-particle
states, There are corresponding pairs ol annihilation and creation operators

a,. ;" each of which satisfies (4.165){4,166). We will now show that the «, all
anticommute with each other, Let

)= ¥+ 1), |fi>=::qil¢.->+fl¢;>*~

s0 that

l
dy= —,-5 la;+a), ay= 7
W L
(the minus sign occurs in a, because a,' involves ' +ia,"). Then a, and a, also
satisfy (4.165)-(4.166). These four sets of equations (for a;, a;. a, and a,) yield

ety = iat;)

la,'a)'} =dy, (4.168)

:t.l'i.HJ:= :Hr*-ﬂj*: =ﬂ. t4.16‘9}

The fact that ," and ;' anticommute is to be expected for fermions: a,'a,'|¥')
and a;'a;"|'W) should differ by the interchange of two particles. and therefore by
a lactor of —1.

The formula (4.162) for the Hamiltonian of a system of non-interacting
particles holds for fermions as well as for bosons. The isomorphism (4. 160) also
holds. except that each space %, is not a harmonic-oscillator space but a two-
dimensional space spanned by [0 and |y).

The anticommutation relations (4.168)(4.169) mean that there is a
complete symmetry between the creation operators and the annihilation
operators for a fermion (at least if the state space is finite-dimensional), which
15 not true of the boson operators. For a boson the annihilation operators have
a simultaneous null vector, namely the vacuum state; the creation operators
do not. For a fermion, on the other hand, the creation operators also have a
simultancous null vector [Q) =a,'- - -a,"|0}, where N is the dimension of the
one-particle state space ; |2} is the unique state in which all single-particle
states are occupied. This means that any state can be obtained by applying
annihilation operators to the full state |2 just as well as by applying creation
operators to the empty state [0). The annihilation operators can be regarded
as creating holes in [}, and in some circumstances (e.g. in semiconductors)
these holes behave like particles. If the original particles were electrically
charged (as in the case of electrons in a semiconductor), the holes behave like
particles with the opposite charge.
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States containing several different types of particle can be described by putting
together many-particle states of the sort we have just been considering. If the

particles are A, B, ..., with state spaces 5, 5%. ..., this gives a total stale
space
W=, O W GO (4.170)
where
#y= Y v'% il Xisa boson, {4.171)
r=(
Wy= E a5 if X is a fermion (4.172)
Fe

(the summation sign denotes a direct sum of vector spaces).

For each particle X and each state | € % there are annihilation and
crealion Operators ay,. ay,' which act on % by acting on #y. Then % has a
complete set of states of the form

iyt g Tag o |03 (4.173)
where ay, ' ax.",. . . create different states of particle X and the vacuum state |0
in ¥ is the product of the individual states in %, , %y, . . . . In this construction

creation operators referring to different particles commute with each other.
There is an aliernative description which can be used when the particles are
all fermions or all bosons: the space ¥ of (4.170) can be replaced by

W=y vi#®Fy® ) for bosons {4.174)
r=0

(replace v by ~ il the particles are fermions). In other words, the one-particle
state spaces are pul together to form a big one-particle space, so that the
different particles A, B, ... appear as different states of a single underlying
particle, which is then treated as a boson (or a fermion) in forming many-
particle states. There is a natural correspondence between states in 4 and
states in 4": the basic state (4.173) in %, which can be wrilten as

S(A13|AZ) -« )S(BIYB2): ) (4.175)
where § is the symmetrisation operator (2,142), corresponds to the state
S(AI)|A2) -+ |B1|B2)--+) (4.176)

in %" (replace § by the antisymmetrisation operator (2. 143) for fermions). Thus
4 and 4 are equivalent descriptions of the same physical system. However, in
the case of fermions the two descriptions lead to different creation operators,
for 4 has a structure like (4.172) which suggests that all creation operators
should anticommute (even when they refer to different particles). The choice of
description (% or %) will therefore affect the physical content of a statement
involving annihilation and creation operators.

The 9" description (leading to anticommuting creation operators) is always
used for the states of a fermion and its antiparticle. Thus if the fermion A has
state space %, and its antiparticle A has state space %,, the state space of
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variable numbers of A and A is

i

P I AT T (4.177)

r=0
The two types of description can be mixed: for example, in describing several
particle-antiparticle pairs the creation operators for different pairs can
commute, the total state space being 97, & ¥ & - - with each ¥ given by
(4.177).

Since a particle and its antiparticle have the same mass and spin, their state
spaces are isomorphic: if [X¢» is a state of the particle X, there is a
corresponding state [Xy of its antiparticle X. Charge conjugation C is an
operator which interchanges these two states, i.e. it changes every particle into
its antiparticle without changing its spin state or wave function:

ClXyy =Ry, CRy>=|Xe. 4.178)
This defines C as an operator on %, @ #,. The definition can be extended to
the many-particle state space ¥, in the obvious way, by making C act
simultaneously on all the one-particle states in a product state, so that it
changes all particles in a state into their antiparticles.

Like the parity operator, the charge conjugation operator satisfies C*=1
and is both unitary and hermitian. For a particle X which is distinct [rom its
antiparticle, (4.178) is the most general form of a charge conjugation operator
with these properties, for the phase of the X state can be adjusted so as to make
{4.178) true. If X is its own antiparticle, however, this no longer applies: the
effect of charge conjugation on a state [Xy) of X must be to give the same
physical state, but this only means that the state vector C[Xy> must be a
multiple of |X¢): thus |Xy} is an eigenvector of C. Since C* = 1, the possible
cigenvaluesare + 1. This eigenvalue is a property of X like its intrinsic parity; it
is called the charge conjugation parity and denoted by 5. It 15 only defined if X
is totally neutral, i.e. if it has the value 0 for all addituve guantum numbers like
electric charge and baryon number, since otherwise it would have a distinet
antiparticle. The values of . for some totally neutral particles are given in
Table 4.2,

If there is symmetry between matter and antimatter (as we might expect
from classical electrodynamics, in which positive and negative charge are both
on the same footing). then charge conjugation will be an invariance: the
operator C will commute with the Hamiltonian and n- will be a conserved

Table 4.2. Charge conjugation parity

Particle Photon Z0 n® i

e -1 -1 +1 +1
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quantity. This is true of strong, electromagnetic and gravitational interactions;
it leads to restrictions on possible processes like those which can be deduced
from parity conservation.

Example: positronium annihilation

Positronium is a bound state of an electron and a positron - a hydrogen atom
with the proton replaced by a positron. Unlike the hydrogen atom, though, it
has no stable ground state, as the electron and the positron can annihilate each
other to form photons. This is an electromagnetic process, and is invariant
under charge conjugation; hence #. is conserved.

The state space of positronium is part of the two-particle space built from
the one-particle space & @ .9 where & is the state space of an electron and &
that of a positron; this contains states |e ") and |e "4}, Since # and 7 are
isomorphic, @ % can be identified with ¥ ® % where % is a two-
dimensional space (the ‘charge space’) with basic states |e™ > and |e ™. Then
charge conjugation acts on % by interchanging |e”> and |e” ). Thus two-
particle states which are symmetric or antisymmetric in charge space are
eigenstates of C with eigenvalue n-= + 1 (for symmetric states) or =1 (for
antisymmetric ones). The two-particle state must be antisymmetric overall;
hence if the spin/orbital state is symmetric (/ even and 5= 1, or | odd and s=0,
where [ is the relative orbital angular momentum and s is the total spin) then
must be — |, and if the spin/orbital state is antisymmetric ({ odd and s= 1, or
! even and s=0) y. must be + 1. If the positronium is in its ground state we
have | =0{rom the theory of the hydrogen atom; hence y.= — | if the spins are
parallel (s= 1) and n-= + | il they are antiparallel (s=0).

If the electron and positron annihilate each other to form n photons, the
charge conjugation parity afterwards will be { — 1y, since the photon has 5=
— 1. Energy-momentum conservation makes n=1 impossible (in the rest
frame of the positronium the photon would have zero momentumy), so the two
smallest possibilities are n=2 or 3. Charge conjugation invariance then shows
that the positromium will decay into two photons when the spins are
antiparallel but into three photons when the spins are parallel. Since the phase
space factor is greater for the two-photon decay, this decay is faster and so the
ground state of positronium with parallel spins is longer-lived than the state
with antiparallel spins.

Parity is also conserved in positronium annihilation; this can be applied to
the two-photon process to obtain information about the polarisation of the
photons. The parity ol the ground state (I=0, s=0) of positronium is
—(=1)'= —1, since the electron and positron, being fermionic antiparticles,
have opposite intrinsic parities. Thus the two-photon state must have parity
= 1 and angular momentum 0. Suppose one of the photons is in an eigenstate
of momentum with eigenvalue k; then, taking the positronium to be at rest, the
other photon must have momentum —k. The two photons must have opposite
values for the component of angular momentum in the direction of k, since the
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total angular momentum is 0; this means that their helicities must be equal.
Hence, labelling the photon states as |p+ » where pis the momentum and + is
the helicity of the photon, and taking into account the fact that photons are
bosons, we have a two-photon state of the form

Ak + 3 —k+>+|—k+3k+2+ 0k =3 -k=>+]|-k—3k-13)

(4.179)

The effect of the parity operator on a one-photon state is to reverse its
momentum and to leave the components of angular momentum unchanged
(since P commutes with J), which is to reverse the helicity:

Plpt)=—|-pF> (180
(the minus sign is the intrinsic parity of the photon). Hence if the two-photon
state (4.179) is to have negative parity we must have z= — fi.

The helicity of a photon is related to its polarisation. Eq. (3.101) defines the
operator J_ for a photon moving in the z-direction, L.e. its helicity, in terms of
polarisation states |¢,» and |#,>. From this the eigenstates of helicity can be
calculated as

1 1
ket =—pllkxdxifky)). |[—kid=—p(|-ke)Fil-kp)).
»/ b

In terms of these the two-photon state (4.179), with = —fi, is
k)| ey — k| —koe + | —kydfkx) — [~ k) ky. (4.181)
Thus the two photons are polansed in perpendicular directions.

Creation and annihilation operators are used to construct Hamiltonians
which change the number of particles present. To illustrate this, we will
suppose that each particle has a one-dimensional state space (i.e. we ignore the
spin state and wave function of each particle. We will refer to these suppressed
degrees of freedom as kinematical). Then for particles A, B, ... there are
creation operators ag', ag, . .., and there is a complete set of states like

|mA, 1B, ...} i {ap Plag')" - - - |03, (4.182)

"3 Jlmlinl. .
Mow suppose that the single state of particle X has energy Ey. Then if the
particles do not interact, the Hamiltonian is
Ho=E,a,'a,+Egaglag+--- 4.183)
(cf. (4.162)). We will describe interactions between the particles by adding an
extra term £V to this Hamiltonian and using time-dependent perturbation

theory.
Suppose there are five particles A, B, C, D, #, and let

V=a,ac'a, +agap'a, +a,'aca, + ag'aga,’. (4.184)

(this is dimensionless, so the expansion parameter g, which in this context is
called a coupling constant, has the dimensions of energy). Then V is hermitian,
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since it is of the form W+ W' Suppose the initial state is |, » = | 4>: then from
(3.182) and (3.176) the first-order term in the perturbation expansion is

By = I.—Lfdr. PN Y M
o

=-lj"_“I‘_:ru.'cc-!.',-E_qu',.wc‘z}_‘ !4.155}
ih o

Thus the effect of the interaction (4.184) is to induce the decay
A= C+a. (4.186)
It is clear that the part of (4. 184) responsible for this is the first term, destroying
A and creating C and x. From the theory of §3.5 we know that il E, #£ E.+ E,
the integral in (4. 185) is very small and so the decay is highly unlikely to occur,
Suppose the particle A is at rest, so that E, = m,c?; then, since the energy of a
moving particle is at least me?, the condition for this decay to be possible is
My = M+ m,. (4.187)
If this condition is not satisfied, the term in V describing the process (4. 186} is
still significant because of its contribution to higher-order processes. Suppose
the initial state is |[AB and consider the second-order term in the perturbation
expansion, namely

‘| i
|§5)y = e J-'d'r, f diyetle et =r -l A By (4.188)
s Jo
(see (3.183)). From (4.184) we have
V|AB) =|BCx) (4.189)
and
V|BCzx) =|AB) +[CD}; (4.190)

thus the second-order term (4.188) contains a multiple of [CD}, and so the
interaction induces the process

A4+B=C+D. (4.191)

These calculations can be represented by diagrams as follows. The terms in ¥
can be drawn as in Fig. 4.7, which shows the annihilations and creations
performed by the operators in each term (the diagrams are to be read from left
to right). These provide four types of vertex which can be put together to form
composite diagrams like Fig. 4.8, which represents the process (4.191). The two
vertices of this diagram show that the process it represents takes place in
second order of perturbation theory; the two halves of the diagram, on either
side of the dotted line, illustrate the two equations (4.189)-(4.190) which
contribute to the perturbation theory calculation. The dotted line itself
intersects the virtual intermediate state |B{':::} which occurs in (4. 189){4.190).

This procedure can be continued to draw diagrams which illustrate
processes occurring in any order of perturbation theory. These are the
Feynman diagrams introduced in Chapter 1.



4.6 Ammihilation and creation operators 171

Calculating the integral (4.188), we find that the amplitude for the process
A+B = C+D. to second order in &, is

{CD|e~"|{fral1))

4 {'.REA-EBu’_H-i;F{!-EDI {,—iE|+E-,+Ecl¢_L,—IE{+EDI
= [ﬁﬁ‘* - Ef— EJ[E;."P E; — Ec T3 En]‘ 3 "EA e El:'_ E:.“-El = ED + -Es-]]
4.192)

If £, is large compared with both ¢ and the energies of A, B, C and D, so that
E,/E, is a small quantity of the order of ¢/E,,, then the second term in (4.192) is
of third order and the first term is approximately

El e IE'.AJ-EH.!'_",--I!["ED]J
=L e = ; (4.193)
E.l Ex+ En E{' En
This is the same (apart from sign) as the first-order amplitude that would be
obtained from the Hamiltonian H=H,+ &'V, where

t'=—, V=auagacay +a,layacap. (4.194)

F* is called an effective Hamiltonian, and £ is called an effective coupling

Fig. 4.7. B
The terms of F in (4.184).
D
a,acaf :‘HJF agap'a,
B
} D

a,' apa, ay'apa, a

Fig. 4.8,

A+B=C+D.
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Fig. 4.9.
The terms of ¥ in (4.194),
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constant. The terms in ¥ are depicted by the vertices shown in Fig. 4.9. They
appear to describe processes occurring by direct contact between the four
particles,

The equivalence between the Hamiltonian (4.184) and the effective
Hamiltonian (4.194) when the energies of the particles are small compared
with E, is an aspect of the inverse relation between the range of a force and the
mass of its associated particle x, which was mentioned in Chapter 1. The
energy E, is of the order of m,c?. An energy E which is much less than this is
associated with momentum of the order of E/c. and therefore with lengths of
the order of he/E, which are much greater than the length h/m,c which was
given in (1.29) as the range of the force. On this length scale, therefore, the force
appears to operate only when the particles are in contact, which is the picture
given by Fig. 4.9,

When the kinematical states of the particles are taken into account, it
becomes of interest to consider Hamiltonians like (4. 184) in which A=C and
B=D; for now we have an annihilation operator a,, for each state |,> of
particle A, and V¥ can include terms

d ,.L,ﬂ_.,;a,’ (4.195)
describing the emission of a field quantum « by particle A, which is left in a
different state. The diagram corresponding to Fig. 4.8 then depicts a process in
which A and B both change state, i.e. the operation of a force between them. If
A and B are both electrons and x is a photon, the force is the eleciromagnetic
force between the electrons.

This method of describing interactions between particles constitutes
quantum field theory, which will be introduced a little more fully in Chapter 7,
though a proper development is beyond the scope of this book. This theory
requires that annihilation and creation operators must always occur in the
form of a quantum field, which is a combination

Py =ay, +ag (4.196)
referring to a state |y;> of particle X and a state |[i§;"> of its antiparticle X. The
states |, » and |, > are the same for bosons, but for fermions they differ in their
spin parts; |, > is obtained from |y}, by replacing each eigenstate of helicity by
the eigenstate with opposite eigenvalue.

A C c A

a, agae' ap' a,' ag' oz ap
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In Chapter 6 we will give a description of the fundamental interactions
between particles ignoring kinematical states, for which the appropriate model
will be that introduced on p. 169, each particle having just one state. The
quantum field for particle X will then be

=ty +ag', (4.197)
which we will call a reduced quantum field. All interaction Hamiltonians are to
be constructed from such operators. The effect of this is that if an interaction
admits a Feynman-diagram vertex involving the emission of a certain particle,
it also admits a vertex in which this is replaced by absorption of the
antiparticle, and vice versa.

The interaction Hamiltonian (4.184), which we have used for illustrative
purposes, does not fulfil the requirement that it should be constructed out of
quantum fields. To be physically acceptable, it would have to be replaced by

V=dg,+J'¢,' (4.198)
where

J=, e+ dudp’. (4.199)
The operator J is called the current associated with the force carried by the

particle x. The low-energy effective Hamiltonian derived from (4.198)
(corresponding to (4.194)) can be expressed entirely in terms of J:

Vi=JJ (4.200)

The last three chapters of this book are largely independent of each other. The
reader who is irritated by the loose ends in the last section ($4.6), and is
interested in the further formal development of quantum mechanics, can
proceed straight to the account of quanium field theory in Chapter 7. A reader
who wants to know about elementary particles should turn to Chapter 6,
which contains applications of the theory of the last three chapters. However,
this theory has a number of puzzling features, and so Chapter 5is devoted to a
deeper look at the concepts of quantum mechanics.

The spin-statistics law 139

@4.1  Eigenvalues of angular momentum 135
@4.2  Parity of orbital states 137

@43 Representations of the rotation group 140
@44 Addition of angular momentum 146

@45 The Wigner-Eckart theorem 148

@46  Symmetry properties of spin states 151
@47 Symmetry properties of orbital states 152

t The free-particle Hamiltonian (4.183) cannot be constructed in this way, but this difference
between H; and ¥ is an artificial feature of our simplified formalism; it can be removed if the
particles are allowed more than one state. See problem 4.31.
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4 Some quanium systems

945
949
®4.10

@11
@412

Intrinsic parity of a two-particle state 152

Commutation relations of hydrogen-atom operators 154
Energy levels of the hydrogen atom 157

Energy levels of the harmonic oscillator 160

Bosons and harmonic oscillators 164

The topics in this chapter are covered in most textbooks on quantum
mechanics. See the ‘Further reading’ for Chapters 2 and 3.

. For a simple particle moving in space, show that the wave function g ir)=

x* 4+ p? =22 represents a simultancous eigenstate of J* and J., with
cigenvalues K+ h* and mh where | and m are to be determined. Find a
function with the same eigenvalue for J® and the maximum possible
eigenvalue for J_.

. Show that there are 2/ + | independent totally symmetric tensors I

1,2, 3) satisfying ¥, Ty ,I=ﬂ, and that the functions JE)=4, . % X, are
eigenfunctions of J* with eigenvalue I(1 + 1)4*. [Consider V(]

. Show that for a system with angular momentum j the eigenstates of n-J are

UiR)[j m where R isa rotation which takes the z-axis to the axis n, Deduce
that |/, (R)| is the probability that a measurement of n- J will give the value
nh after a measurement of J. has given the value mh.

How are these results compatible with the fact that R is not uniquely
defined?

. A beam of electrons in an eigenstate of J_ with eigenvalue 4h is fed into a

Stern-Gerlach apparatus, which measures the component of spin along an
axis at an angle 0 to the z-axis and separates the particles into distinct beams
according to the value of this component. Find the ratio of the intensities of
the emerging beams.

. Let U and A be the 2 x 2 matrices U = cos 40+ in - o sin 4, A =a- o where n is

a unit vector, Show that UAU " =a'- g where a’ is obtained by rotating a about
nthrough the angle . Deduce that the homomorphism ¢ of (4.6 1) maps SL{2)
onto a group isomorphic to S0(3). Show that ¢ has kernel { 41},

. In the spin state space &, @ % of two particles with spins j, and j;, show that

liyja2lizizy is an cigenstate |J M of the total angular momentum operators
J? and J.. By applying the lowering operator J_=J,_+J,., find the
Clebsch-Gordan coeflicients {J J — 1|j,m,. j;m, > for all relevant values of m,
and m,. Find the state |[J — 1 J— 1)) (which must be orthogonal to |J J - 13),
and hence find the Clebsch-Gordan coefficients {J—1 J—1|j,m,. jimz).
Consider how this process can be continued, and show that
r{.f. M}{JM_ ]ljj ml,jlm’>

=r{jymy + DCIMjymy + 1jamgy +rlizmy + DEIM |y my jymy + 1
where r(j,m)=./[ij+ )—mim—1)].

Calculate the Clebsch-Gordan coefficients <t m, |l m;, $my> for all
relevant values of m,, m, and m,.
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7.

13.

16,
1.

18,
. The decay =" — 2y takes place by the (parity-conserving) electromagnetic

In a system of three particles, each with angular momentum j and no other
properties, how many independent states are there with total angular
momentum [, where 0= /< 3, and a given value of J.?

. Show that the five operators

2 a1 23 =2 2

&z
3 ] 32 =
P (:— 2 f)
vy 2\ dx cX oy oyp”
form an irreducible set of operators of spin type 2. Find the ratio of the

expectation values of Ty in the five eigenstates of J_ of a particle with orbital
angular momentum 2.

. An electron in a state of 4 hydrogen atom with n=23, [=2 has total angular

momentum 4. Caleulating any Clebsch-Gordan coefficients you need, find
the ratio of the expectation values of z in the eigenstates of J_ with eigenvalues
i and 4. What are the expectation values of x and y in these states?

. Show that in a state with angular momentum 0, the expectation value of any

vector operator is 0. Deduce that a spin-0 particle has no magnetic moment or
electne dipole moment.

. Show that in any irreducible representation of the rotation group, every

vector operator s a multiple of J.

. Let |+ 13, |0} be the three eigenstates of J. of a particle with orbital angular

momentum |. Show that the expectation values of z* and r? are related by
¢ = 1]r?| = 13 = 02|03 = (1]r?| 1y = €0|27]0) + 2¢ = 1]2%| = 1).

A hydrogen atom is placed in a uniform electric field with magnitude E in the
z-direction. Labelling the states by the usual quantum numbers n, [, m, find
the ratios of the first-order transition probabilities P, from |n l=2,m} to
|nd=1.m} for m=0, + 1.

. M8, (—f, =m; <j,)and T, (—j; < m; <j;)are irreducible sets of operators of

spin types j, and f,, show that

U= 3 Cmljymy jamy S, T,

My

is an irreducible set of operators of spin type /.

. A particle A with spin 4 decays into two particles B and C, where B has spin 1

and C has spin 1. What are the possible values of the relative orbital angular
momentum of B and C? If this relative orbital angular momentum is 0, and il
A 15 in an eigenstate of the z-component of spin with eigenvalue +4, find the
probability that the z-component of the spin of B will also have the value +4.

The n-meson is a neutral particle with negative parity. Show that it cannot
decay into two n” mesons if parity is conserved,

If two neutrons could form a bound state with total angular momentum 1,
show that it would have negative parity.

Show that a particle which decays into two =° mesons has even integer spin.
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21.

22

23,

26.

27

29,
. If the Hamiltonian is H,+ eV where H, is given by (4.183) and V= W'+ W

il

interaction. Treating the photons as ordinary (massive) spin- 1 particles, show
that their relative orbital angular momentum is 1.

. Show that in the p-meson (J"=1") the quark and antiquark have parallel

spins.

Prove (4.107), (4.108) and (4.104).

The Zeeman effect. The Hamiltonian for an atom in a magnetic field of
strength B along the =-axis is H, + pBL. where H; is the Hamiltonian of §4.4,
L is the relative orbital angular momentum and u 15 a constant. What are the
stationary states and energy levels of this Hamiltonian?

Show that when a hydrogen atom decays from an excited state by emitting a
single photon, the value of [ changes by + 1.

24. Anexperimenter has carefully prepared a particle of mass m in the first excited

state (energy 2hes) of a one-dimensional harmonic potential Vix)=dmo*x?,
when he sneezes and knocks the centre of the potential a small distance a to
one side. 1t takes him a time t to blow his nose, and when he has done so he
immediately puts the centre back where it was. Find, to lowest order in a, the
probabilities P, and P; that the oscillator will now be in its ground state and
its second excited state. Show that the probability that it will be in its nth
excited state is of order ¥~ 1,

. For any complex number z, a state |z} of a harmonic oscillator is defined by

|zy =expiza")|0y. Show that {z)|z;>=exp(Z,z;) and that the expectation
value of the energy in the state |23 is(|z]* + 4w where @ is the frequency of the
oscillator. Il the oscillator is in the state |z, » at time ¢ =0, find the probability
that it will again be found in the state |z, > at time ¢,

Show that the nine operators a,'u;+ ufu,. ifa"a; —u_ﬁql represent conserved
observables of the three-dimensional harmonic oscillator, and that when
multiplied by i they form a Lie algebra isomorphic to that of U(3).

Let & be a single-particle state space, with complete set of states |, and let
ay be the corresponding annihilation operators on the space % of an indefinite
number of particles. If H is the single-particle Hamiltonian, show that the
Hamiltonian on % for a system of non-interacting particles is

Eu {'#1|H1¢'1>"il“r C

. Let [#> be an n-particle state ]\Ir,l}- “*[w, > where the |i,> make up an

orthonormal set and {i,, ..., i} contains r different indices in groups of k,.
vy k. Let §=3% X, be the symmetrisation operator. Show that

(¥|S'S|¥y=n'k,! ... k. Hence show that the annihilation operator a,, of

(4.156) is the restriction of (4.157) to the symmetric subspace of @*%

Prove (4.192).

where W=a,ac'a,’ +agap'a, +apag'ay’, show that the probability of the
process A+B—=C+E+F is of order £*, and draw the corresponding
Feynman diagram.

Let ay; be the annihilation eperator for particle X in state {, and suppose the
definition of quantum fields is extended to include operators like ¢y=
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¥, o0, + ,'I”ﬂg.,'}. Show that it is possible to find matrices x;; and fi,; so that

the free-particle Hamiltonian H, of (4.183) can be written as ¥, (¢y,'dx).
32. Consider a model of a charged particle X, with antiparticle X, interacting with

a photon y, in which cach particle is assumed to have just one state and the

Hamiltonian is Hy+ &V with

Ho=Eylay'ax +ag'ag)+ Ea'a. V=dé"¢xb.

where g and a" denote annihilation and creation operators and ¢y and d, are

the field operators ¢y=ay+ay, ¢.=a +a,'. Draw the lowesi-order
Feynman diagram for the process X + X —2y, and write down the amplitude

for this process to occur in time 1.
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5.1. Statistical formulations
of classical and quantum
mechanics

(a) Classical mechanics

Quantum metaphysics

The conceprual structure of qguantum mechanics today is as unhealthy as the conceptual
structure of the calewlis was at the time Berkeley's fumous eriticism was issued. Hilary
Putnam {1965)

The fuct that an adequate philesophical presentation [of guantum mechanics] has been
so long delaved is no doubt coused by the fact thar Niels Bohr broinwashed o whole
generation of theorists into thinking that the job was dene fifty vears age. Murray Gell-
Mann (1979)

As these quotations show, the reader who finds quantum mechanics hard to
understand is in good company. In this chapter we will examine some of the
main difficulties and describe some proposals for how they should be
understood. The chapter also contains some alternative formulations of
quantum mechanics which are equivalent (at least mathematically) to the
formulation of Chapters 2 and 3.

In classical mechanics the state of a system is completely specified by the values
of the coordinates and momenta (g,.. . . . 4, P+ - - - » ). Which we will denote
collectively by (g, p). The set of all possible values of these is called the phase
space of the system; this is the classical counterpart of the state space in
quantum mechanics. We will denote it by 2

In order to compare the statements of classical mechanics with the
essentially probabilistic statements of quantum mechanics we will consider a
more general specification of the system in which the information one has is
not so precise as to determine the state with certainty, but only gives a
probability distribution of the values of (g, p). This is a more realistic
description of the knowledge available in practice about the state of the
system, for any actual method of preparing the system will not lead to infinitely
accurate values of g and p. Thus we define an experimental status (or simply
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status)t to be a probability measure on phase space; by definition this is a non-
negative real-valued function defined on appropriate subsets of 2 but it will be
precise enough to think of it as a non-negative real-valued function p on 2
satisfying

J. My, pldgdp=1 (5.1)
>

if we allow g to be concentrated on a single point, i.e. to be a d-function. Then
the measure of a subset ES 2 is :

mE:=J pdg dp. (5.2)
E

The observables in classical mechanics are real-valued functions of g and p.
The status p determines the probabilities of the values of an observable Alg. pi:
the probability that the value of A lies in an interval A of the real line is

PA Eﬁl=_[ g, p) dq dp. (5.3

A" "y
It follows that the expectation value of 4 is

(A= J. Alg, p)plq, p) dg dp. (5.4)
-

This formula for the expectation value of any observable can be taken as the
fundamental statement, for the probability statement (5.3) follows from it by
replacing 4 by y,(A4). where ¥, is the characteristic function of A:

1 ifAeA

alA)= {n if AgA.

For future reference, we note that the probability distribution p 15 uniquely

determined by the expectation values { A}, for all observables, for by taking 4

to be the characteristic function y, of a subset E = 2 one obtains from (5.4) the

probability that (g, p)€ E. Thus an experimental status could be defined as a
function which assigns to each observable A its expectation value {4},

Il p; and p; are two statuses and w; and w, are two real numbers satisfying

0w, wyl, w,+w,=1, (5.6)

(5.5)

then

p=wyp +Wap, (5.7)
is another status. If E, and E; are the experimental procedures which produce
the statuses o, and p,, the status w, g, +w,p; can be produced by tossing a
biased coin which has probability w, of coming down heads, and following the
procedure E, if the coin shows heads, E, if it shows tails. Such a status is called
a mixed state. A pure state is one which cannot be written in the form (5.7). It is
not hard to see that a pure state must be concentrated on a single point of

t In mathematical discussions of the foundations of mechanics this is often called a ‘state’, but
this assumes particular answers (0 some guestions which we want 1o leave open.
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{b) Quantum mechanics: the
statistical operator

5 Quantum metaph ysics

phase space. i.e. it must be a 4-function; thus a pure state, corresponding to a
point of phase space, is what we previously called simply a ‘state’.

A set of elements of a vector space which contains all linear combinations of
its members like (5.7). with coeflicients satisfying ( 5.6), is called a convex set. An
element which cannot be written as such a linear combination is called an
extreme point of the set. Thus pure states are extreme points of the convex set
of experimental statuses.

The time development of a classical system is governed by the motion of the
point (g. p) in phase space according to Hamilton's equations (3.5). This causes
the probability disiribution p to change according to the equation

%= (H, p} (5.8)
where Hig, p) is the Hamiltonian of the system and the curly brackets denote
the Poisson bracket (3.171).

The maximum available information about a system, according to quantum
mechanics, is contained in the state vector |). To parallel the statistical
discussion of classical mechanics, we now consider how to describe less than
maximum information in quantum mechanics. Suppose the normalised state
vector of a system is one of a number of states |y, ), ..., |y,>. the probability
that it is |J,&',} being p;. The statistical operator of the system {also known as its
density matrix) is

p= E Fil'ﬂ:"i:’{‘;"il- (5.9)
=]

Since the p; are real, p is a hermitian operator. It yields the probabilities of the
values of observables as follows:

@5.1 Il the statistical operator of a system is p, the probability that
a measurement of an observable A gives the value z is

paz|p)=1r(pP,) (5.10)

where P, is the projection onto the eigenspace of 4 with eigenvalue z.
The expectation value of A is

CAd, =tr (Ap). (5.11)

Proof. Let |y beany normalised state vector, let X = |y »{y|,and let ¥ be any
other operator. Then if {|¢,>} is a complete orthonormal set of states we have

tr(XY)=Y (D|XY|d) =% Y|Y |6 <{bl¥> = WY V>, (5.12)
i i

using (2.68). Now the probability that a measurement of 4 will give the result 2
when the statistical operator is p is given in terms of the probabilities when the
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state vector is |y,) by

palz|p)=Y (probability that the state is |y »)p. (x| ¢;)
i

= E PV

P\

=Y ptr (W fP) by (5.12)

=LripP,).
Similarly, the expectation value of A is

Ay, =Y plAlg > =1r(pA). B

By putting A=1in (5.11) and P,=|y3{¥| in (5.10) we obtain
trp=1 (5.13)
and
{Ylply>=0 for all ). (5.14)

An operator p satislying (5.14) is said to be positive. The set of all positive
hermitian operators with trace 1 forms a convex set. A system is saidtobe ina
pure state if its statistical operator is an extreme point of this convex set;
otherwise it is in a mixed state. The meaning of convex linear combinations of
statistical operators. and the significance of pure states, is the same as in
classical mechanics:

@52 (i) A situation in which there is probability w, that the statistical
operalor is p,, and probability w, that it is p,, is described by the
statistical operator w,p; +w,p,.

(1) A system i5in a pure state il and only if its statistical operatoris of

the form [y <{y].
Proof. (i) Suppose
m= E F:]'ﬁ'i}{'i!Hl* 2= ? ‘-'i‘.i!'d'j}{‘i"ﬂ-

In the situation considered, the probability of the state of the system being |+,£r,-}
is w,p; and the probability of it being |¢;> is w,q;. Hence the statistical
operator is

p=Y wip |+ X wag | (@
i i

=wip+wapy. B

(i) Since p is hermitian, it has a complete set of eigenvectors |¢,) and so can
be written as

p=Y ploo{p] (5.15)
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with ¥ p,= 1 since tr p= 1. If the state is pure, only one of the p, can be non-
zero, so p is of the form [y >¢{|. Conversely, suppose

p=0Y|=wp +wyp,. (5.16)

Writing g, as in (5.15), we have

Wl |w> =.Z- nl miwl’a[ﬁ_jm][; 1<¢Jl¢r>|=]= I (5.17)

with equality at the second step only if
po=|<;|¥3]*=1 for some i (5.18)

since otherwise there will be positive cross-terms in the product. If(5.18) 15 true,
o> =|y> and so p, =p. Thus

Either {y|p,|¥> <1 or p,=p. (5.19)
Similarly, either {|p > <1 or p,=p. But
L= ol =w, (o, s +wo (o). (5.20)

Since w, +w, =1, we must have {|p, |¥> = {¥|p,|¥> =1 and therefore p;, =
pr=p. Thus p=|> (Y| describes a pure state. Il

From the Schridinger equation and its hermitian conjugate, we oblain the
equation of motion of the statistical operator as

0 4 o
n 2= (in 1)< 1o (i 5 o)

=¥ pdHW <l + Wi (= il H)}

=[H, p]. (5.21)
The solution (3.2}-(3.3) of the Schrédinger equation gives
_‘ir] =g -rHr_'#M[’}Piﬂr-k- {5.22}

The comparison between classical and gquantum mechanics, in this
statistical form, is summarised in Table 5.1.

One feature of quantum mechanics which has no counterpart in classical
mechanics is the effect of a measurement on the state of the system. In both
theories it is permissible to take account of the result of a measurement by
changing the status p, for the probabilitics contained in p reflect inadequate
knowledge of the system, and by its nature a measurement improves this
knowledge. Thus in classical mechanics an exact measurement of g and p
increases one’s knowledge of the system to the point where it can be described
by a d-function rather than the broader density p which was appropriate
before the measurement. We suppose, however, that it is not the state of the
system that has changed, but only the state of our knowledge: the experimental
status of the system has changed because the result of the measurement is an
extra element in the experimental preparation of the system. It is possible to



5.1 Swvistical formulations 183

perform the measurement but not take its result into account: this does not
affect any probabilities and the status p is unaffected by the measurement.
In quantum mechanics, on the other hand, the measurement has a physical
effect on the state of the system. and the status will change even if the result of
the measurement 15 not taken into account. The change in the statistical
operator is given by
@5.3 Il the statistical operator of a system is p just before a
measurement of an observable A, then immediately after the
measurement its statistical operator is

p'=Y P,pP, (5.23)

where P, is the projection operator onto the eigenspace of 4 with
eigenvalue =, and the sum is over all eigenvalues of A.

Proof. Suppose first of all that the system is in a pure state |f> before the
measurement, so that p=|¢>{y|. After the measurement. according to
Postulates I1 and 111 (p. 50-51), it will be in the eigenstate P,|¢> with
probability ¢|P,|y>. The state vector obtained by normalising P,y is

__ Pl
W= TPy

hence the statistical operator afler the measurement is

{5.24)

p=Y PO, <
=Y P> P, (5.25)

since P, is hermitian.
Now consider the general case p=} p|y;>{¥;]. With probability p, the

Table 5.1. Classical and quantum mechanics

Classical Quantum

Pure state Phase space point (g, p) State vector |y
General status Probability density plg. p}  Positive hermitian operator p
J.pdqd'jrﬂl irp=1
Condition for pure  p=é-function p=|r
state (» has rank 1)
3 3
Equation of motion = {H, p} ih L =[H, p]
or ot
Observable Function Alg. p) Hermitian operator A

Expectation value J‘.dp dg dp tridp)
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statistical operator aflter the measurement will be
pi =2 P> {wilP,. (5.26)

and so the full statstical operator is
p=Ypp/=YPpP. R
' |

@5.1 and @5.3 show that all experimental probabilities are determined by
p. The probability that the system is in a given state, however, is not
determined by p, for different probability distributions over states may give the
same statistical operator. For example, suppose the state space is n-
dimensional, and let [, 5. . ... |, > be a complete orthonormal set of states.
Suppose the system is known to be in one of these states, but they are all
equally probable; then the statistical operator is

| |
p==L|¥h|=-1. (5.27)

by (2.68). Thus this same statistical operator could be obtained from any

orthonormal complete set. It can also be taken to describe complete ignorance

of what state the system is in.

The statistical operator can be used to prove

@54 Let 4 and B be two observables such that 4 commutes with
MM B~ MY Syppose A is measured at time t=0and B is measured at
time r. Then the probabilities of the various results of measurement of
B are the same as il the measurement of A did not occur,

Proof. Let p be the initial statistical operator. If there is no measurement of A4
the statistical operator at time ¢ is e “**p¢™™* and the probability that the
measurement of B gives the result f§ is
.ﬁ'ﬂﬂ- t) TIT[E_IHI."PEWI'"PF]

where P, is the projection operator associated with f. On the other hand, if
there is a measurement of A at r=0 the statistical operator becomes ¥ P pP,
immediately after the measurement (where the sum is over the eigenvalues x of
A).and thisevolvesto ¢ ""* ¥ P_pP,¢""™" so that the probability of the result f
al time 1 15

palB.0)=tr [}: F'Igi-"‘""'P,ﬂ.",r""'*:l= u[z p,t-""ﬂr,c-*“'*‘?,p].

Now ¢"""P e~ is a projection operator onto an eigenspace of ¢""Be~ """
and therefore commutes with A, since the eigenspaces of ¢"**Be~""™ are
invariant under the commuting operator 4. Hence

palf ) =tr [E P, 2P e un-,-r.p]

=tr [P‘(’- Iﬂl.lipPJHJ.'H:[
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{since EPf:z P.=1), which is the same as il there had been no
measurement of A at r=0. |

Consider a system composed of two subsystems § and T, with state space
S @ .F. The statistical operator p for the combined system will then be a
positive hermitian operatoron & & F.1f {|¢, >} is a complete orthonormal set
of states for % and {|,>] is a similar set for .7, the trace of any operator Q on
F@F is

lr!‘-1=:!:'j i<l i (5.28)

Let 4 be an observable of system T. Regarded as an observable of the
combined system, it is represented by an operator 1 & 4 on % & 7; hence its
expectation value is

(Ay=tr[p(1 @ A)] =T, [{hfp(1 @ Al |

=¥ WlKdilpldr A=Y <o)l trs (p)- Al
J J

=try [tr; (p)- A] (5.29)
where trg (p) is the operator on F defined by
s (p)|w) =X {ilef|di W), (5.30)
i

a bra vector of . being regarded as a map {¢|: ¥ ® ¥ — F in the obvious
way (i.e. taking [¢3|W> to {¢|z>|>). This can be written as

trs (p)= 2, {dulp|d>- (5.31)

The operator trg (p) is called the partial trace of p. Eq. (5.29) shows that it acts
as a statistical operator for system T considered on its own.

The most radical difference between quantum and classical mechanics is the
special role played by the process of measurement in quantum mechanics. It is
not just that the process of observing a physical system unavoidably changes
the properties of the system — that is true in classical physics also, since any
observation entails an interaction between the observing apparatus and the
observed system — but that the change in question is specially described in the
fundamental postulates of the theory. The result is that there are two distinct
laws governing the change of state of a system. The [irst is the Schrodinger
equation (Postulate V1), whose writ runs as long as the system is not disturbed
by an experiment; this is completely deterministic, giving a unique prediction
for the future state of the system if its present state is known. The second is the
projection postulate, which operates whenever the system is subjected to an
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experiment; this is a probabilistic statement, and describes an unpredictable
change in the system brought about by the experiment.

This seems very unsatisfactory for a fundamental physical theory: it is at
best ill-defined, at worst inconsistent. An apparatus is a physical system, and
an experiment is a physical process; it ought therefore to be subject to the
Schrodinger equation like any other physical process. How is this to be
reconciled with the projection postulate? Alternatively, what defines a physical
process as an experiment which obeys the projection postulate rather than the
Schrodinger equation?

Bohr's answer to this difficulty was that quantum mechanics only applics to
microscopic systems, on a much smaller scale than the apparatus which is used
to perform experimenis upon them. The apparatus must be macroscopic, large
enough for its properties to be directly apprehended by human observers, in
the way that is assumed by classical physics. Thus the apparatus is always
described by classical concepts. Both the Schrédinger equation and the
projection postulate apply only to quantum systems. and the latter comes into
play when the quantum system interacts with a classical apparatus.

This view divides the physical world into two sorts of object, quantum and
classical, each obeying its own characteristic laws, It is still open to objections
like those raised above. How are we to decide whether a particular object is of
the classical type or the quantum type? A classical apparatus can be described
as a collection of quantum objects; why should quantum mechanics not apply
to it?

Let us pursue the idea that as a fundamental theory quantum mechanics
should apply to all physical systems, and investigate the quantum mechanics
of the measurement process so as to clarify the relation between the
Schrodinger equation and the projection postulate. Let 5 be the state space of
the quantum object on which an experiment is being performed, and let .= be
the state space of the experimental apparatus (also regarded as a quantum
system). We will consider the development of the combined state of the object
and apparatus in the state space & ® of Let [, ), |, € & be two cigenstates
of the object corresponding to two different results of the experiment; these
results must leave the apparatus in different states |2, and |x,) (describing,
say, different positions of a pointer). Suppose the apparatus is initially in a
state |x, ). The experiment consists of allowing the object and the apparatus to
interact in such a way that if the object state is |, ). then after the experiment
the object state will still be |, » and the apparatus will record the appropriate
result, i.e. will be in the state |«, »; and similarly if the state is initially [, then
the apparatus state changes to |z;>. Thus during the experiment the
Hamiltonian must be such that

e“"*"l|k5':}1!u}}=¢’a'f'ﬁ'l}|“1>}
e VAR AT

where 15 the time taken by the experiment, and #, and 8, are phases that may

(5.32)
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be introduced by the experiment. Mow suppose that before the experiment the
object 18 in a state

War=cili) +ealdrad: (5.33)
then after it the object and apparatus together will be in the state

T *{1‘.&u>liu>]="’" rm'ﬁ'-r[ |'£'1 >izu> + f:hﬁ":}i%}}
="e i o > + e eaa s (5.34)

Postulate Il applied to this state yields the statement that if an experiment is
done on the apparatus to determine the position of the pointer - for example,
by photographing it - the result will be x, with probability |¢,|* and x, with
probability |¢,| If the result is z, then, according to the projection postulate,
the state of the object and the apparatus after the apparatus has been examined
is [, 3}z, > and so the state of the object is |y, .

Thus applying the Schrodinger equation to the combined system of the
object and apparatus is equivalent to applying the projection postulate to the
object alone. This does not, however, resolve the difficulty attached to the
projection postulate, because in order to interpret the result of applying the
Schrédinger equation, namely the state (5.34), we had to apply the projection
postulate at the level of the apparatus. This could in turn be replaced by a
Schrédinger evolution applied to whatever observes the apparatus — the
camera, if it is photographed - but again the projection postulate would have
to be applied to the state of the camera, the apparatus and the object. This can
be continued indefinitely — we can include the developing equipment, and then
the eye and then the brain of the experimenter who looks at the film — but
clearly we will never get away from the necessity of invoking the projection
postulate at some stage, the Schrodinger equation having been applied at all
previous stages. We still have to divide the world into a quantum realm and a
classical realm, with different laws applying in the two realms. Part of the
objection to this division has been removed by this analysis, for it shows that
there is no need to give a precise definition of the boundary between quantum
and classical — wherever one places the boundary, the results will be the same.

One proposal is that the boundary between the two realms should be placed at
the boundary of human consciousness, so that the division between quantum
and classical is identified with the division between body and mind. On this
view, the full quantum-mechanical state vector should include the states of the
guantum object, the experimental apparatus and the brain of the
experimenter. The projection postulate is applied when the experimenter
becomes aware of a particular brain state. This view assigns a special status to
human brains, and is attuned to the philosophical opinion called Cartesian
dualism, according to which mind and matter are two separate substances,
mind having a particular relationship to human brains.

Schrodinger's cat paradox is designed to illustrate the strangeness of this
view. Suppose a cat is shut up in a box containing the following ‘diabolical
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device”: a single atom of a radicactive substance, with a half-life of one hour, is
placed next 1o a Geiger counter which is wired up so that if it discharges a
sealed glass tube is smashed, releasing poison gas which kills the cat. Let |y be
the state of the atom before it decays and |4} its state after decay, so that in
isolation the state [ would develop in time ¢ to

e+ —e T)y> (p=1tlog2hr ). (5.35)
The diabolical Hamiltonian is such that in time ¢ the state of the whole system
develops from | )[cat alive) to

e "l fcat alived + /(1 —e )|y dlcat dead (5.36)
ithe state |cat dead ) includes a discharged Geiger counter. some broken glass
and a smell of bumt almonds). Unless we apply the projection postulate, we
cannol say that the cat is either alive or dead at any particular time. According
1o the view described in the previous paragraph, the projection postulate is not
1o be applied until a human observer interacts with the system; thus it is only
when a would-be rescuer opens the box that the cat has a definite state. Even if
rigor mortis has set in and the cat-lover deduces that the atom decayed at the
beginning of the hour, this version of quantum mechanics insists that the cat
only entered the state of death when the box was opened.

The paradox is compounded in an elaboration due to Wigner, Suppose that
when another hour has passed after the box was opened, you go into the room
to find out the fate of the cat. If you find out by looking for yourself, then you
would seem to be in the same position as the other investigator: you will regard
the cat as being in a superposition state like (5.36), which is only projected to a
state of life or death when the information reaches your consciousness.
However, if you find out by asking the other person what they found when they
opened the box, you may regard the projection as having occurred at that
earlier time: the cat is already either alive or dead, and you are simply finding
out which. But you may alternatively regard the other person as part of the
physical universe, to be described by a state vector like anything else; in that
case they, and the cat, and the atom are all in a superposition state

I
7 | >|cat alive ) |observer happy )

+- 1.:-’ | > |cat dead s jobserver sad). (5.37)
b
The actual state of the cat then depends on whether the projection postulate
should be applied to states of your consciousness or to states of any human
consciousness. But then why not feline consciousness?

Clearly this discussion is quite unreal. It is tempting to conclude that a
superposition state [@) + |¥) means simply that the state is either |0} or [¥),
and that an experiment just consists of finding out which of these is true.
However, this would not allow the interference effects which are typical of
quantum mechanics; in the two-slit experiment, for example, where the states
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|@> and |¥ could be the wave functions describing the passage of the electron
through the two slits, the assumption that the state is either [®) or [V} (‘the
electron went through either hole A or hole B') would not give the interference
pattern which results from the superposition |®)+|¥). In general,
interpreting the state @) + |'¥) as ‘either |®) or ['¥»" would lose the distinction
between |[®3 + e'“’|‘[-"> for different phases f). The difference shows clearly in the
statistical operators for the two situations: if the state is 27 4|®) + £'|¥)) the
statistical operator is

p=4(0) + "D NCD| + e F))
=4O O] +4 ¥y ¥+ WD+ e 0] (5.38)

whereas if the state is either |@) or |V (with equal probabilities) the statistical
operator is

=403 D|+ ¥ (5.39)
The interference effects lie in the extra terms in (5.38). This represents a
coherent superposition of the two states, (5.39) an incoherent one, in the same
sense as on p. 81.

Nevertheless, it is clearly true that the difference between |@) + | ) and @)
or ¥}’ is not manifested by macroscopic systems of the kind we have just been
considering; interference phenomena are not observed in cats, and if the state
of the world is |y )|cat alive} + |y'>cat dead’ then, at least for all practical
purposes, we can take this as meaning that either the cat is alive or the cat is
dead. We will now see how this can be justified by arguments within quantum
mechanics.

Consider the experiment described on p. 186, in which the apparatus is
initially in the state |« > and the object is in a superposition state [y =¥ ¢y,
where |ib; > are eigenstates of the experiment. The statistical operator is initially

Po=[¥>lod <o (W] = [W><v] @ oD <o), (5.40)

The partial trace of this, representing the statistical operator of the object
alone, is

try (pol = E. {:lﬁ'llpﬂf'ﬁﬂ}

(where |$,> is a complete set of apparatus states)

=3 | {dafear (ol <]
=[y> <. (5.41)

using 3 |¢.0¢{¢,| =1 and the fact that |x,) is normalised. This is just the
statistical operator we expect for the object when it is in the state | ». After the
experiment, when the apparatus state has become correlated to the object state
s0 that the combined state is

|T}=Efi¢m|“"i}|ﬂi>+ 542)
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the statistical operator is
p=¥){¥|=Y e Nl 2w (5.43)

whose partial trace 15

try () = Y { balpldd = Yedi " Wbl o> <o)
4 ij

(5.44)
- E.fif_r‘iu'lh}{ 'i"_a|
(since the different apparatus states |x;» must be orthogonal)
=3 leilP <l (5.45)

This is the appropriate statistical operator for the object when it has
probability |¢,|* of being in the state |y,5. Thus we have
@55 Iftwo systems S and A interact so that states i, > of S become
associated with states |z,> of A, the statistical operator tr, (p) of §
reproduces the effect of the projection postulate after an experiment
on S with eigenstates |y,>. I

IMote that the statistical operator (5.43) does not give licence to conclude
that the state of S is one of the |, ), the probabilities being |c;|*. This can only
be done if the projection postulate is applied to the state of the apparatus. (In
this connection, it is salutary to recall the comments about the ambiguity of
the statistical operator on p. 184.) This status of S, in which it does not have a
definite state but is part of a larger system which is in a pure state, is called an
improper mixture,

Now let us take account of the fact that the apparatus is a macroscopic
system. This means that cach distinguishable configuration of the apparatus
(for example, each position of the pointer) is not a single quantum state but
corresponds to a vast number of different guantum states (to say that the
pointer is against a certain mark on the scale does not by any means determine
the state of motion of each molecule in the pointer). Thus in the above analysis
the single apparatus state [a,» should be replaced by a statistical distribution
OVEr MICroscopic quantum states |z, , »; the initial statistical operator should
be not (5.40) but

Po=Y PV o, s 2<%, s|<¥]: (5.46)

Each apparatus state |x, ,» will respond to an eigenstate |, > of the object by
changing to a state |x,,» which is one of the quantum states whose
macroscopic description is that the pointer i$ in position i; to be precise,

MM (Widlao, ) =" [l - (5.47)
The important feature here is the phase factor, which depends on the index s
The differences between the energies of the quantum states |, , >, in relation to
the time t, are likely to be such that the phases 0, , (mod 2r) are randomly
distributed between 0 and 2n.
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It follows from (5.46) and (547), with Y=} ¢|y,>. that the statistical
operator after the experiment is

p= Y pei N <y, 0 (5.48)
¥ 1, J'

As well as satisfying (5.4 5), so that it reproduces the projection postulate for the
object, this also shows that the projection postulate is effectively satisfied for
the apparatus. "Effectively’ here means ‘in its consequences for macroscopic
observables”. Such an observable will be unable to distinguish between
different quantum states with the same macroscopic description, so its matrix
elements between |y )|, ,» and | 3|x; > will be independent of rand s. If this
is true of an observable A, its expectation value will be

tripAd)= Z F;fjfj"-’""" i J{'x_j, ;I{'ﬁ;|-"1|"#r}|:¢l.;}

& 0,.0

= Yok X pdt . (5.49)
i s

Because of the random distribution of the phases 0, ,. the sum over 5 will
vanish il i# . hence

tripd)=Y e a;=trlp'A) (5.50)
where
p'=T lel*palvdla, <o J<wil (5.51)

This is the statistical operator which is appropriate if the projection postulate
is applied to the apparatus in the sense that if the pointer is observed to be in
position i, its state will be |z, ,» for some 5, and the probability thatitis |x, , 3 is
the same as the probability that its original state was |z, ,». Thus we have

@56 Suppose a quantum system interacts with a macroscopic
apparatus so as to introduce random phases in the apparatus states.
Let p be the statistical operator of the apparatus after the experiment,
calculated according to the Schrodinger equation, and let p° be the
result of applying the projection postulate to p. Then it is not possible
to perform an experiment with macroscopic apparatus which will
detect the difference between p and o'. ll

For a wide class of possible apparatus, the randomness of the phases
required in @35.6 has been shown to apply if the apparatus evolves irreversibly
s0 as to form a permanent record of the experiment, This is the Daneri-
Loinger-Prosperi theorem (Daneri et al. 1962).

So far in this section we have concentrated on a single experiment or
measurement, which takes place in a short time compared with the natural
time development of the quantum system. If this time development is studied
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by means ol an experiment which covers a period during which the state of the
system changes appreciably. as in determining the rate of decay of an unstable
particle or system, the last part of Postulate ITI (p. 114) applies. This raises new
questions concerning compatibility with the Schridinger equation.

A period of continuous observation cannot be reduced to a succession of
short measurements, as is shown by the following:

5.7 A watched pot never boils. Let 4 be an observable of a
quantum system with eigenvalues 0 and 1. Suppose that
measurements of 4 are made at times O=rg, £, ..., {y=T in the
interval [0, T], and that the projection postulate is applied after each
measurement. Let p, be the probability that the measurement at time
t, gives the result 0. Then if N =00 in such a way that
max (p, ., —p) =0,

py—po—0 (5.52)

{so that if the system is in an eigenstate of 4 at ¢ =0, it will still have the
same value of A at time T).

Proof. Let P, be the projection operator onto the eigenspace of 4 with
cigenvalue 0, and let P, =1— P, be the projection onto the subspace with
eigenvalue 1. Let p, be the statistical operator just before the measurement at
time 1,; then by @3.3 the statistical operator after this measurement is

Pu =Pop,Po+ P p.F,. (5.53)
so the statistical operator just before the measurement at time t,., 1s
Pr+1 = E_IHr-pn’E‘Hh {5'54:'

where H is the Hamiltonian of the system and r,=1, ., —t,. Note thatif p,is a
sum of k terms of the form |y > (. p, . , is a sum of at most 2k such terms; since
Po=|War{ ol it follows that p, contains a finite number of such terms. From
{5.54) we have

Pas1=ps —it[H, p,1+0(r,%). (5.55)
Since P,*=P, and P,P, =0, this gives
PDF- #+1 'Pﬂ o PﬂpnPD = if-[FaHPm PﬂpnPb] r o D{tnz}r {556‘}

Hence the probability that the measurement at time 1, gives the result 0 is
Pasi=tr (o s (Poy=tr {Pgp,+1Py) (because Pyi=P,)
=tr(Pop,Po)—it, tr [PoHP,, Pop,Pol +0l1,2). (5.57)

But Pyp,P, is the sum of a finite number of terms |[¥>{y|. and for any
operator X

tr (X[ <w) = (WX [ =tr (g <o X). (5.58)
Hence the trace of the commutator in (5.57) vanishes, and
Pu+1=Pa+O(T,7). (5.59)
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Let t=max/(t,): then there is a constant k such that

Pas1 _Pn'ékrnzikttu {5-‘6{}1
and therefore

N-1

N=1
Pv—Po= Y, (Pasy—Po) <kt } 1,=ktT—0 ast—0. W
a=i n=i

In some situations a system 15 subjected to genuine repeated interactions
which determine whether it has changed or not: for example, an unsiable
particle in a bubble chamber undergoes such an interaction on each encounter
with a molecule of the liquid in the bubble chamber, In these circumstances
@5.6 indicates that the decay of the unstable particle will be slowed down by
the continual projection of its state vector, The effect is too small 1o be
experimentally detectable.

Aharonov & Vardi (1980) have shown that given any sequence of states
there is a continuous sequence of measurements which will force the system to
follow the given sequence of states. An interesting feature of this process is that
il the sequence of stales is a sequence of eigenstates of position, so that it
corresponds 1o a trajectory in space, then the final state acquires the phase &%
of Feynman's postulate, where § is the action of the trajectory.

In situations where the system is continuously coupled to an apparatus
which will respond to its decay the second form of Postulate 11 (p. 114} is used.
In terms of the statistical operator, this can be expressed by saying that if P, are
the projection operators onto the eigenspaces of the experiment, the statistical
operator at time [ is

P“' i E P‘ ¢ -i!frrlpiu}fﬂh.'ﬂPi_ 1'5.6”
i

Ifthisis applied to the apparatus and object together, rather than to the object
alone. the effect is approximately the same (i.e. an approximate version of the
measurement theorem @ 5.5 can be proved: see Sudbery 1984).

The force of @35.7 is 1o show that the continuous part of Postulate [11
inamely (5.61)) cannot be deduced from the first part (the projection postulate,
p. 51). It can be argued that @5.5 shows that (5.61) should be taken as
fundamental and the projection postulate deduced from it. since an apparatus
can be regarded as continuously observed. However, (5.61) has some
unsatisfactory features: it cannot be expressed as a differential equation and (as
a result ol this) if p(s) is substituted for p(0) in {5.61), the result is not the same as
pls + ). Thus the development of the statistical operator for a time s followed
by development for a time ¢ is not the same as development for a time s+¢.
Another aspect of this is that the development of the system from time ¢ is not
determined purely by the state at time 1, but is also affected by what the state
was before time r.

Clearly Postulate 111 is in a mess. In §5.5 we will discuss proposals that it
should be eliminated entirely.
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The perplexities discussed in the previous section could be taken as an
indication that the gquantum-mechanical state vector does not tell us
everything there is to know about the state of a sysiem: that there are some
further variables, at present hidden from us, whose values will completely
specily the state of the system and determine its future behaviour more
definitely than quantum mechanics allows. Another argument that such
further variables must exist was put forward by Einstein, Podolsky and Rosen
in 1935,

Consider an electron and a positron which are created together (asin Fig. 1.3}
in a state with total spin 0. According to @4.6 this is the antisymmetric
combination of two spin-4 particles, so the spin state is

I
[¥>=— (T[> =] (5.62)
b Al

where |1 and || » denote the one-particle eigenstates of the spin component s.
with eigenvalues +4 and — % respectively, and in the two-particle spin state the
state of the electron is written as the first factor.

Since a state with zero angular momentum is invariant under rotations, it
must retain the form (5.62) whatever axis is used to define the basis of one-
particle spin states. Thus we can also write

1
¥ =—7 (=) <> =|=>|=») (563)
>

where |—r} and |+ are one-particle eigenstates of s,.

Now suppose the electron and the positron move in opposite directions
until they are separated from each other by a large distance, and then the z-
component of the spin of the electron is measured. This is an observable s.(e ™)
of the whole system, and after the measurement the state of the system will be
projected onto an eigenstate of this observable: if the measurement gave the
value +4, then the result of the projection will be that the system is in the state
[t>|1>. This means that the positron is in the state ||, and a measurement of
the z-component of its spin, s.(e "), will certainly give the value — 4. Now this
information about the positron has been obtained by means of an experiment
conducted a long way away from the positron, without any possibility of
affecting it. Einstein, Podolsky and Rosen argued that this implied that the fact
about the positron discovered by the experiment, namely s, (e " )= —4, must
have been a real objective fact which was already true before the experiment on
the electron,

But now suppose the experiment on the electron measures not the -
component but the x-component of its spin. Then from (5.63) it follows that the
state of the system is projected to either |—3|«> or |«=}|=), so that the
positron now has a definite value for the x-component s.(e " ). Again, this must
have been true before the experiment. Hence before the experiment the
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positron had definite values for both sje”) and s.(e”). But these are
incompatible observables, and have no simultaneous ecigenstales; so no
quantum-mechanical state can assign definite values to both of them. The
conclusion drawn by Einstein, Podolsky and Rosen was that the quantum-
mechanical description is incomplete, and that there are ‘elements of reality’
which it does not include.

Before going on to consider the possibility of making quantum mechanics
into a more complete theory as this argument requires, let us look more closely
at the orthodox quantum-mechanical description of the EPR (Einstein-
Podolsky-Rosen) situation. The experiment on the electron leaves the whole
system in an eigenstate: IT}ll) if s.(e”) is measured and the answer is +1,
|-}|—} if 5,(27) is measured and the value is +4 This means that the
positron is now in a definite state, || » or| < in these cases, which it was not in
before the experiment. It does not mean, however. that the state of the positron
has been changed by the experiment on the electron, because the positron did
not have a definite state before the experiment. If we insist on describing the
positron separately. we can only do so by means of its statistical operator: from
(5.62) or (5.63) this (before the experiment) is

pe-=tr [FH P =TT+ <UD (5.64)
=Y = 2(=|+| =2, (5.65)

which is 4 x the identity operator on the two-dimensional spin space. Now
consider the statistical operator of the positron immediately alter the
expeniment, before information about its result has had time to reach the
vicinity of the positron. If the experiment measured s_, the state of the positron
is either |1 or |1}, with equal probability, and the statistical operator is (5.64):
if the experiment measured s,. the state of the positron is either | =3 or |« 3,
with equal probability. and the statistical operator is (5.65) — which is the same
as in the other case. and the same as before the experiment. Although the three
situations — before the experiment, after the s, experiment, and after the s,
experiment — have different descriptions in terms of states of the positron, they
all have the same statistical operator, and there is no observable difference
between them. Thus there is no observable action at a distance between the
experiment on the electron and the distant positron; in particular, it is not
possible to use the EPR experiment to send information faster than light,

The EPR paradox was originally formulated not in terms of spin states but in terms of
wave functions. Suppose two simple particles have a wave function

Wlry . rah=dx, —x;0,(v,. :L]'ﬁ;l}';-fgl (5.66)

where ¢, and ¢, are well separated wave packets. The x,-dependence can be written as
a superposition of the eigenfunctions &x, —a) of £,;

ilx, —le=r dix; =a)d{xy=a) da. (5.67)

Then if x, is measured and found to have the value o, the projection postulate implies
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that the wave function of the two-particle system becomes Mx, —ald{x; —a)d, ;. s0
that x, certainly has the value a. On the other hand, we can also write &x, =x,)as a

superposition of the eigenfunctions ™™ of f,:

1 [=
8(x, —x;}nﬂj. ghix =% g (5.68)

This implies that il p, is measured and found to have the value hk, the wave lunction g
becomes ¢**'e~"“*i¢h, ¢b;. and so p, certainly has the value —hk. The same argument as
before then leads to the conclusion that particle 2 has definite position and momentum,
in contradiction to the uncertainty principle.

Now let us consider in what ways quantum mechanics could be
supplemented so as to make it a more complete theory in the sense of Einstein,
Podolsky and Rosen: what hidden variables could there be? The most obvious
form for such a complete theory, perhaps, would be to describe quantum
particles as made up of smaller constituents, whose positions and velocities
might constitute the hidden variables. The behaviour of the quantum particle
might be rigidly determined by the precise configuration of these constituents;
the reason for the probabilistic nature of our present laws would then be our
lack of knowledge of this configuration. However, although constituents of
quantum particles have indeed been discovered (namely quarks), there is no
experimental indication that they behave in any way differently from quantum
particles themselves.

The characteristic features of gquantum mechanics (particularly the
interference effects between probabilities) make it difficult to construct hidden-
variable theories along the lines just suggested. Indeed, for some time it was
widely thought to have been proved (by von Neumann) that no such theory
could reproduce all the consequences of quantum mechanics. This proof,
however, was mistaken, as the following counter-example shows.

Consider a single simple particle moving in space in a potential V(r). Suppose
that the particle is described at time ¢ not only by a wave function yr, ¢) but
also by a vector q(r). and that the wave function satisfies the usual Schrédinger
equation
= 4
Y= -2 vy vy, (5.69)
l 2m

while the vector q satisfies

dq_j@.0)
dt  plq.1) (379
where j and p are the probability current and density introduced in §3.1:
h
i-;}lm [ V], p=|l. (5.71)

Mow suppose that at time r =0 we have a large number of such particles all
with the same wave function w(r,0) but with varying values of q, the
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proportion of the particles for which this value lies in a region d V' containing q
being plg, 0).d V. Let this proportion at time  be #{q, 1) then if we think of q as
the position of a particle we can regard the whole collection of particles as a
Muid with density & and velocity distribution u=j/p, according to (5.70). These
must satisfy the equation of continuity

‘{': +V-(ou)=0, (5.72)
i.e

i S (f-‘). (5.73)

o P

This has a unique solution air, t) if air. 0), jir. r) and pir. t) are given. But o=p
satisfies the equation, since then it becomes the continuity equation (3.42)
which was shown to be a consequence of the Schridinger equation (5.69).
Hence if the distribution of the values of g among the particles is given by p at
time t=10, it is given by p at all later times.

Thus we can suppose that every particle whose wave function satisfies the
Schrodinger equation (5.69) has a definite position vector g, and that all our
experimental arrangements happen to produce particles with a particular
distribution of positions: of those particles whose wave function is ¢, a
proportion |y(q)|* V' lie in the volume d V at the point q. This will be trueif the
experimental arrangement that produces particles with wave function ¢ has
probabilityt |¢r|= dV of producing a particle in the volume d¥ If y and q
develop according to the deterministic equations (5.69)-(5.70), this statement
of distribution will remain true at all times if it is true at any one time.

If this 15 to be taken seriously as a theory of quantum particles, it must show
how Lo realise the possibility that it admits of having a collection of particles
with the same wave function y but with a different distribution in space from
the usual |y|*. There are no experimental indications whatsoever that this can
be done. However, the significance of this idea is not so much that it is a serious
deterministic theory as that it shows that such a theory can be compatible with
quantum mechanics.

The theory can be extended to discrete quantum numbers like spin,
essentially by linking these to position variables in the apparatus by which
they are measured (Bell 1982). It can also be extended to deal with several
particles. When this is done a strange feature becomes apparent. Consider the
case of two particles: the variables are q,, q; and a two-particle wave function
Wir,,ry), and the equations of motion are the Schridinger equation together
with

dq, j, dq; J,
R A i (5.74)

1 The argument can be framed entirely in terms of probability rather than proportions of a
large number of particles, but the latter idea 15 very useful as an aid to thought in dealing
with probability.



198

Bell's inequalities

5 Quantum metaphysics

where
ji= (/m) Im [§ VW), Ja=th/m) Im [§ Vau), p=|yf

Here j,. and therefore dq, /dt, can be a function of q,: the motion of the first
particle depends on the position of the second particle. Thus there is an action
at a distance between the two particles, and this is true even if the potential
Fir,.r;) contains no forces between the particles. It is a reflection of a
correlation between the particles produced purely by the formalism of
quantum mechanics, if the wave function is suitably chosen. In particular, the
EPR wave function (5.66) will produce such a correlation between separated
particles.

We will now see that this action at a distance is an inescapable feature of
hidden-variable theories which reproduce the predictions of quantum
mechanics.

We will consider a situation in which experiments are performed on two
separated particles, and draw consequences from the assumption that the
result of an experiment on one of the particles is determined by the nature of
that experiment alone, and is not affected by any experiment that may be
performed on the other particle, This is the assumption of locality. We will find
that it leads to restrictions on the possible correlations between experiments
on the two particles which are not satisfied by some of the predictions of
quantum mechanics.

In principle there is no connection between locality and determinism.
Locality could be a property of a theory which only gave probabilities for the
results of experiments, in the following way. Suppose that all probabilities are
determined by a number of variables which we will denote collectively by 4 (in
the case of two separated particles. these could include vaniables describing the
particles individually and also variables describing general conditions
alfecting them both). Then for any experiment E there will be a probability
pel | A) of getting the result = when the variables have the values A The theory
is local if experiments E and F which are separated in space are
probabilistically independent; according to P3 (p. 42), this implies that

Pearle & ﬂ| i)= P£{1| Apelf F A). (5.75)

However, any local theory which reproduces the predictions of quantum
mechanics for the separated spin-{ particles in the EPR experiment is
equivalent to a deterministic theory for this situation. Let E be the
measurement of the spin component of the electron in a certain direction, and
let F be the measurement of the spin component of the distant positron in the
same direction. Let T and | denote the two possible results. Then, since the
total spin is zero, we know that E and F always have different results; in
probabilistic terms,

Pearll & T)=prasll & |)=0. (5.76)
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Let pi4) be a probability density giving the probability that the variables have
the value 4; then the total probability of (5.76) is given by

Prad & 1)= .[Fur{T & 1))l di

— J.FJE” j‘i}FF:T | AplA) di. (3.77)
If this is 0, the integrand, being positive, must vanish everywhere:
either p(i)=0 or pgt|A=0 or pg(T]|4)=0. (5.78)
Similarly,
either p(d)=0 or pgl|2)=0 or pg(l|A)=0. (5.79)
Since E has only the two possible results T and |,
peT]A)=0 = pull|d)=1 (5.80)

It follows from (5.78)-(5.80) that if p(4) # 0, all four probabilities must be O or 1.
So for all values of 4 which are actually possible, the results of the experiments
are completely determined by A

Thus, if we assume that the probability distribution of the hiddenvariables is
not affected by what experiments are to be performed on the particles, we need
only consider deterministic theories, Suppose that the two separated particles
can each be subjected to one of three experiments A, B, C, each of which has
two possible results (say, ‘positive’ and ‘negative’). Then in a deterministic local
theory the outcome of experiment A on particle 1 is determined by a property
of the system which we will denote by a,; this is a variable which can take
values + and —. Similarly we have variables by, ¢, a;, b3, ¢,. Suppose now
that experiment 4 always gives opposite values for the two particles; thena, =
— . Similarly, if B and C always give opposite results for the two particles we
have by = —=b; and ¢; = —¢;.

Mow consider particles which are produced with a fixed probability that
they will have a particular set of values of g, band ¢. Let Pla=1, b= 1) denote
the probability that a particle has the specified values of a and b. Then

Pib=1l,c=—1)=Pla=1,b=1,c=—1)+Pla=—1,b=1,c=—1)
=Pla=1b=1)+Pla=—1l,e=-1). (5.81)
Hence when pairs of particles are produced with opposite values of a, b and c,

P(by=1,c;=1)<Pla,=1,b;= = 1)+ Pla,=—1,c;=1). (5.82)

Each of the terms in this inequality is a probability for the outcomes of
experiments on different particles, and so the inequality can be tested even if
the experiments A, B, C cannot be performed simultaneously on a single
particle.

The inequality (5.82) is violated by the probabilities calculated from
quantum mechanics in the following case. Suppose the two particles are spin-4
particles produced in a state of total spin 0, like the electron and positron
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considered at the beginning of this section; then we know that a measurement
of the component of spin in any given direction will give opposite results for
the two particles. Let 4, B, C be measurements of the components of spin
along three coplanar axes, with an angle ff between the axes of 4 and B and an
angle ¢ between those of Band C. Let us calculate the term Plb, = l,e;=1)on
the left-hand side of (5.82): this is to be interpreted as the probability that
measurements of spin components of particles 1 and 2, along axesat an angle ¢
to each other, both give the result +4. Take the axis for particle 1 to be the =-
axis; then if the measurement of its spin component gives the result +4,
particle 1 is left in the eigenstate |1} and particle 2 in the eigenstate || . The
eigenstates of the measurement on particle 2 are obtained by rotating |1 and
|L> through the angle ¢ (about the x-axis, say); thus the eigenstate with
eigenvalue +14 is

|+ () =e~"*"|1 3 =(cos L +2iJ, sin 1|1

=cos §¢| 1) +isin 4¢|L> (5.83)
using (4.46) and (4.38). Hence the probability we are looking for is
Piby = 1,6, = N=Y{+()1}]* = Lsin’}¢ (5.84)

(since the probability of the result +1 for particle 1 is ). Similarly,
Pla,=1,b;= — l)=4cos*40

and
Pla,=1,c,=1)=4cos? {0+ ¢).

Thus {5.82) becomes
sin? L < cos? 404 cos? K+ &)

or
cos B +cos ¢ +cos (0 +¢) = — 1. (5.85)

This is violated il 0=¢=23n/4.

To summarise,
@58 Bell's theorem. Suppose two separated particles can each be
subjected to one of three two-valued experiments, and that when the
same experiment is performed on both particles it always gives
opposite results. If the particles are described by a local theory, and if
the probabilities of their properties are not affected by what
experiments are going to be performed on them, the probabilities of
the results of the experiment satisfy the inequality (5.82).
This inequality is violated in quantum mechanics by the system of

two spin-} particles having total spin 0. |l

Bell's inequality (5.82) has been tested by a number of experiments, all but
one of which have shown (with one mild extra assumption) that it is violated
(see Clauser and Shimony 1978). Note that quantum mechanics predicts
greater correlation between the particles than local theories; the effect of any
experimental inefficiency would be to destroy the correlation, so the
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Fig. 5.1.
The Aspect experiment.
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observation of a violation of (5.82) is more significant than a failure to observe
it.

The experiments have been performed with electron—-positron pairs (as
described in this section), with protons, and with polarised photons (see
problem 5.9). The condition that the state of the particles should not be
affected by the measurements to be made on them has been guaranteed by an
experiment on pairs of photons by Aspect, Dalibard & Roger (1982) in which
one photon may encounter either apparatus 4 or apparatus B; the change
from one to the other occurs while the photons are in flight. This is shown in
Fig. 5.1.

The mathematical apparatus of quantum mechanics contains an assortment
of objects — state vectors. inner products, hermitian operators, unitary
operators, groups of invariances, .... All this ironmongery is connected
together in various ways. From the usual point of view, which is the one
adopted in this book, these connections are seen as definitions of all the other
objects in terms of state vectors, which are regarded as basic. It is possible,
however, to move around the apparatus and look at it from a different
direction; then one of the other objects might appear as basic. Any of the
objects in the above list can in fact be taken as fundamental and the others
defined in terms of it. The problems of interpretation posed by quantum
mechanics can take on a slightly different complexion if the mathematical
formalism is swung round, so we will briefly describe some of these other
formulations before discussing possible interpretations,

Instead of starting with state vectors as the basic concept, it is possible to start
with operators. There are already elements of this in the approach to
particular quantum systems in this book. In Postulate IV, for example,
describing the system of a single simple particle, we did not describe the state
space of the system and specify how the operators x; and p, act on this space;
instead we postulated some equations satisfied by the operators (namely the

Polarsation Polarisation
apparatus apparatus
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canonical commutation relations) and deduced the properties of the state
vectors from these. In this case, because of the Stone/von Neumann theorem,
the state space is essentially uniquely determined by the commutation
relations of the operators; in other cases (such as angular momentum
operators) this is not so, butit is still true that the lundamental statements take
the form of relations between operators which do not refer to the space they act
on. They may say that the operators form a certain group like the rotation
group, or that they form a certain Lie algebra like the canonical commutation
relations or the angular momentum commutation relations (as we have seen,
these are closely related). In either case the algebraic relations between the
operators pose a problem which is solved by finding a linear representation of
the algebraic system.

An approach due to Jordan takes the basic objects to be hermitian
operators in their capacity ol observables. The basic algebraic operations
between them are modelled on the operations of addition and multiplication
which are defined also for classical observables; this makes it possible to
formulate a common theory of mechanics which includes both classical and
quantum mechanics, the difference between them appearing as that between
different structures in the same algebraic theory. In terms of orthodox
quantum mechanics the product of two observables 4 and B cannot be
described by the operator product AB, since this is not hermitian if A and B do
not commute, Because of this Jordan took the product of two observables A
and B to be the observable whose corresponding operator is

A« B=YAB+ BA). (5.86)
This product is commutative and satisfies
As(A2aB)=A «(A+B) (5.87)

where 4% = A4+ A. A Jordan algebra is a vector space on which is defined a
commutative (but not necessarily associative) bilinear multiplication 4+ B
satisfying (5.87); thus it is an algebra whose product is modelled on the
anticommutator of operators in the same way as the product in a Lie algebra is
modelled on the commutatort,

In a Jordan algebra of hermitian operators it is also true that

A2+ B*=0 = A=B=0. {5.88)

A Jordan algebra satisfying this condition is called formally real. In a formally
real Jordan algebra the powers of a single element obey the associative law;
this means that it is possible to define functions of an observable to correspond
to functions of a real variable.

A theory of mechanics can now be characterised in terms of a set of
observables £ which form a Jordan algebra with an identity element 1. The
t Mot all Jordan algebras can be represented by linear operators with the Jordan product

being given by the anticommutator, Bul those that cannot are exceptional: there is only one

such algebra among the finite-dimensional formally real Jordan algebras which are
algebraically simple (have no non-trivial ideals).
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values of the observables are introduced through the notion of a status (usually
called a *state’, but this can be confusing). A status is defined to be linear map o:
0} — R satisfying

a(A})=0, all)=1; (5.89)

o(A) is to be interpreted as the expectation value of A in the status . Then the
statuses form a convex sel. A pure state is defined to be an extreme point of this
set, as n §5.1.

Suppose for the moment that the Jordan algebra £ is finite-dimensional,
Then if it is isomorphic to an algebra of hermitian operators on some vector
space, a status o is necessarily of the form

a{A)=tr(4p) {5.90)

where p is a hermitian operator satisfying tr p= 1, and o is a pure state if and
only if p=|i» (| for some vector |y). Thus the state vectors can be recovered
from the structure of the algebra of observables. On the other hand, if the
Jordan algebra © is associative it must be isomorphic to an algebra of
functions on some finite set X, and a status must be of the form

ald)=} Alx)p(x) (5.91)

xeX
for some function p on X; ¢ is a pure state if and only if p(x) is non-zere for just
one element x X,
In the infinite-dimensional case topological conditions must be imposed on
the Jordan algebra. Then (5.91) can be replaced by

ald)= J. Alx)plx) dx (5.92)

where p{x) dx is a probability measure on the set X thus the phase space of
classical mechanics can be recovered from an associative algebra of
observables. If the Jordan algebra 1 is isomorphic to an algebra of operators
on a state space, the pure states on £2 are not in one-to-one correspondence
with state vectors but can include extra elements corresponding to.eigenbras
of an operator with a continuous spectrum,

Modern work along these lines tends to concentrate on C*-algebras, in
which the product is modelled on the simple operator product. These are
particularly useful in dealing with systems with infinitely many degrees of
freedom, ie. field theories,

An awkward feature of the use of state vectors to describe physical states is that
the correspondence between them is not one-to-one. If we want a single
mathematical object to describe a physical state we must declare all multiples
of a particular state vector to be equivalent to each other, and work with the
equivalence classes so formed. These are the one-dimensional subspaces, or
rays, of state space, and they form the objects of a well-established
mathematical theory, namely projective geometry.
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A projective space can be defined to be the set of one-dimensional subspaces
of a vector space, which in this context are called points. A line in the projective
space is the set of rays contained in a two-dimensional subspace of the vector
space, a plane is the set of rays contained in a three-dimensional vector
subspace, and so on. This can be visualised by taking the vectar space to be B*
and identifying each ray with the point in which it intersects a fixed plane in B*
which does not contain the origin (this omits some rays, namely those which lie
in the two-dimensional vector subspace parallel to the fixed plane; these make
up the line at infinity’).

Alternatively, a projective space can be characterised intrinsically, without
starting from a vector space, by means of the axioms of projective geometry.
For a projective plane, these are:

[Tl  Any two points lic on a unique line,

12 Any two lines meet in a unique point.

M3 There is a line and a point not on it.

[14 Every line contains at least three points.
These axioms contain only the undefined terms ‘line’, ‘point’ and lie on’ ("meet’
and ‘contains’ are to be regarded as defined in terms of ‘lie on’). Thus the
essential structure of a projective plane can be given by listing all the points
and all the lines and saying which poinis lie on which lines. Let us write P <[ il
Pisapointand !isaline, and P lies on [; then a projective plane consists of a set
# (points and lines) together with a relation < which holds between some
pairs of elements of the set. We can use < to mean “< or =7, as usual. Let us
add two more elements 0 and IT to 2 to get a set 25 and specily0=xand x =11
for every element x of 5°; then the relation < satisfies

Ll x<x forall xe %

L2 x<y& y=:z = x=z

L3 x=y& y=x = x=y,

L4 Given x,y € % there is an element x v y such that

XEXVY YEXVY

and

x=z& y=z = x v y=r

L5 Given x,y < % there is an element x » y such that

XAPEX, XAFRY

and

tEx & zEy = z€x A )

A set & with a relation < satisfying L1-L5 is called a lattice. The elements

x v yand x ~ yare called respectively the join (or least upper bound or Lu.b.)
and the meet {or greatest lower bound or g.l.b.) of x and y. In a projective plane
x A yistheline containing x and y if they are distinct points; if x is a point and
yisaline, x v yis yif x lies on y, otherwise it is [T; and if x and y are distinct
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lines, x v yisIL Similarly, x A yis the point of intersection of x and y if they
are distinet lines; if x isa point and yisaline, x ~ yis xif x lies on y, otherwise it
15 (; and if x and y are distinct points, x ~ y is 0,

A possible set of axioms for a projective space (of any dimension) can be
obtained by replacing T2 by

M2 A line and a point not on it lie in a unique plane.

Il the projective space § is isomorphic to the space of rays in a vector space over
a field (or other algebraic structure) F, then both F and the dimension of the
vector space can be recovered from the geometric structure of S, (The algebraic
nature of F is determined by the geometric properties of §: for example, if
Desargues’s theorem is true in § then F is associative, and if Pappus’s theorem
is true in 5 then F is a field.)

The lattice description of a projective plane can be extended to a projective
space 5 of any dimension by adding the planes, 3-spaces, . . . of § as elements of
the lattice. IT § is the set of rays in a vector space ¥, the lattice can then be
described as the lattice of subspaces of ¥, ordered by inclusion, the meet of two
subspaces being their intersection and the join being their linear sum:

MEN=McN, M rN=MnN, MvN=M+N (5.93)

where M+N={u+p:ueM,veN}, and M and N are subspaces of I
Lattices also occur in the contexts of set theory and logic, which are closely

related to each other. The set of all subsets of a set forms a lattice if it is ordered

by inclusion, the meet and join being the intersection and union of subsets:

S€<T<ScT SAT=SAT SvT=SuT (5.94)

A set of propositions, ordered by implication, forms a lattice if it is closed
under conjunction (*and’) and disjunction (‘or’), which give the meet and join:

P<Q<PimpliesQ), PAQ=P&(Q, PvQ=PorQ. (595

(In order to satisfy L3, the elements of the lattice must be taken to be
equivalence classes of propositions, with P equivalent to Q if P<=(Q.)

The lattices (5.94) and (5.95) differ from the subspace lattice (5.93) in that
they satisfly the distributive law

xa(pva=xayvixaz) (5.96)

This fails for subspaces of a vector space, as can be seen by taking M, N, Ptobe
three one-dimensional subspaces of a two-dimensional space, as in Fig. 5.2. In
this situation we have M A N=M » P=0,s0 the right-hand side of (5.96)is(;
but N+ P is the whole space, so the left-hand side is M.

The lattices of subsets and propositions both have clements 0 and 1
satisfying 0= x and x < | for all x; for subsets of X" the empty set is 0 and the
whole set X is 1, while for propositions the class of contradictions is 0 and the
class of tautologies is 1. It is also true in these lattices that every element x is
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Fig. 5.2.
Failure of the distributive law.
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associated with an element x" such that

OLl (x}=x;

OL2 xwvx'=I;

OL3 xsy=y=x
{for subsets of X, 8" is the complement X — 8; for propositions P' is the negation
‘not P'). Such a lattice is said to be orthocomplemented. The lattice of subspaces
of a vector space Vis orthocomplemented if V has an inner product: M’ is the
orthogonal complement M* = {u: {u, v =0, YeeM |.

MNow propositions can be associated with subspaces of the state space of a
quantum system by considering, for any subspace M, the orthogonal
projection onto M. This is a hermitian operator P, with eigenvalues 0 and 1,
and therefore represents an observable which can take these values; we
associate M with the proposition “P,, takes the value 1'(*Py, = 1' for short). This
proposition is true when the system is in a state belonging to the subspace M. If
N is another subspace, the intersection M ~ N contains simultaneous
eigenstates of Py, and Py, for which the propositions ‘P, = 1" and ‘P, = 1" are
both true. These similarities between the lattice of subspaces and a lattice of
propositions led Birkhoff and von Neumann to suggest that the two lattices
should have the same interpretation in all respects, so that the join of two
subspaces should correspond to the disjunction of the corresponding
propositions: the subspace M + N corresponds to the proposition ‘Py,=1 or
Py=1". The failure of the distributive law then shows that propositions in
quanium mechanics do not obey classical logic, and this is held to account for
our difficulties in understanding quantum mechanics,

To see the relevance of this approach to some of the problems we have been
discussing in this chapter, consider two state vectors |¢} and |¥). The one-
dimensional subspaces P and () containing these are identified with
propositions which we can state as “The system is in the state [¢)" or " .. [§).
The two-dimensional subspace N spanned by |¢» and |y is the lattice join
P v @, which is to be identified with the disjunction of the corresponding
propositions: “The system is in the state Eif;} oritisin the state |¢}‘. Thisisto be
regarded as true whenever the state of the system belongs to N, i.e. whenever it

M N
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is a superposition of |¢» and |¥}. In §5.1 we rejected this interpretation of
superposition on the grounds that it would lead to the disappearance of the
interference effects of guantum mechanics, but this argument fails il the
distributive law is not used. Let us examine the argument concerning the two-
slit experiment. Here |¢) and |> are the wave functions ¢(r) and (r)
describing waves radiating from the slits A and B respectively. When both slits
are open, and the electron is intercepted on a fluorescent screen, an
interference pattern is observed on the screen. In this situation the wave
function is ¢ +¥; the interpretation being questioned is that the electron is
either in the state |¢» orin the state [y, i.e. it passes through either slit A orslit
B. The ensuing argument can be phrased as follows:

The wave function is ¢+ and there is interference. (0
', By assumption, the electron passes through slit 4 or slit B and
there is interference; (2)
*, Either the electron passes through slit 4 and there is
interference
or it passes through slit B and there is interference, (3)

But both alternatives of (3) are false;
.. The assumption in (2) must be false.
The step from (2) to (3) clearly uses the distributive law
(PorQjand R = (P and R)or (Q and R). (5.97)
The quantum-mechanical lattice of subspaces of state space has, instead of
the distnibutive law, the weaker law
xgy = (xvy)ay=x (3.98)
A lattice in which this holds is called orthomodular. Two elements of an
orthomodular lattice are compatible if

(xapvixayl=x (5.99)

If this holds the sublattice generated by x and y is distributive. A similar result
is true for the sublattice generated by any number of compatible elements. The
significance of this in quantum mechanics is that if a number of propositions
can have their truth or falsity decided by the same experimental arrangement,
then they obey classical logic. The centre of a lattice is the set of elements which
are compatible with all elements of the lattice, A lattice is irreducible if its centre
is {0, 1}.
An atom in a lattice is an element a such that
x€£a = x=0 or x=a. {5.100)

Alattice is atomic if for every element x there is an atom a with a < x. Thus the
lattice of a projective geometry is atomic, the atoms being points; so is the
lattice of subspaces of a vector space; so is the lattice of subsets of a set. If the
elements of a lattice are regarded as propositions, the atoms are the mutually
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exclusive propositions which constitute complete statements about the
system.

The theory of orthomodular orthocomplemented lattices provides a general
framework for the discussion of physical theories, including both classical and
quantum mechanics. A status can be defined as a function o from the lattice to
the unit interval [0, 1] satisfving

ii) al0)=0, a(l)=1; {5.101)
1i) x=y = alx v ¥=o(x)+aly); (5.102)
1ii) gix)=a(y)=1 = alx A y)=L (5.103)

These requirements (and their extensions to countable infinite subsets) imply
that  is a status of the kind we have already met. If the lattice is distributive,
with the completeness property that every countable subset has a least upper
bound, then it is a lattice of subsets of some space and o is a probability
measure on that space. Thus a distributive lattice corresponds to classical
mechanics. There is no simple logical (i.e. lattice-theoretic) characterisation of
the lattice of subspaces of state space, but Gleason’s theorem states that a
status ¢ on such a latticet must be of the form

a(M)=tr(Pyp) (5.104)
where p is a hermitian operator satisfying trp=1.

The lattice—thecretic approach leads to a generalisation of guantum
mechanics which is physically significant. The lattice of subspaces of state
space is irreducible; considered as a logic, it is as non-classical as possible -
every proposition is incompatible with some other proposition. It is a simple
matter to construct a reducible lattice, which contains propositions obeying
classical logic as well as a non-classical part. Given two lattices %] and 2, we
define their direct sum to be the Cartesian produce £ x 2% with the ordering

(X1, 2%2) €(yy, ¥2) = X, €y, and x, <y, (5.103)
This direct sum has a non-trivial centre consisting of the four elements (0, 0),
(0, 1), (1,0) and (1, 1). The two non-trivial propositions (0, 1) and (1, 0) obey a
classical logic in relation to all other propositions.

If &, and %, are the lattices of subspaces of two vector spaces % and %5, 50
that their atoms are all the one-dimensional subspaces of 5 and %, then the
direct sum has these atoms but no others: in particular, it does not have
elements corresponding to superpositions of a vector in % and onein &5. Thus
the direct sum describes a system in which the superposition principle does not
hold: the state vectors of the system belong to the space | & %5, but they are
restricted to the subspaces % and ;. Superpositions of vectors from different
subspaces do not describe possible physical states.

A rule restricting possible states in this way is called a superselection rule.

T More precisely, a lattice of closed subspaces of a Hilbent space.
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There is a superselection rule for each of the absolutely conserved discrete
quantum numbers, namely electric charge, baryon number and the three kinds
oflepton number: for example, no superposition of states with different electric
charges has cver been observed.

A lattice whose elements are regarded as propositions is sometimes called a
logic: an orthomodular orthocomplemented lattice is a quantum logic, a
distributive orthocomplemented lattice is a classical logic. This should not be
confused with other systems of logic, in particular the propositional calculus.
In a lattice of propositions, if x and y are propositions then x v vandx A yare
also propositions ('x and ' and *x or ') but x < y (*x implies ') is a statement
about propositions. In the propositional calculus, if x and y are propositions
then so are x v y, x A yand x>y ("x materially implies y'). In this system the
notion of truth value plays a central role; this is an assignment to every
proposition of a value ‘true’ or “false’, with rules giving the truth values of
x v 1nx a yand x= yin terms of those of x and y. The relationship between
the two systems can be seen by writing 1 for “true’ and 0 for *false’; then an
assignment of truth values to a set of propositions can be regarded as a status
which only takes the values 0 and 1. It can be shown (problem 5.13) that
{5.101}45.103) then imply the usual rules for the truth values of x v y and
X AN

However, it is easy to see that it is impossible to assign truth values to the
lattice of subspaces of a state space. (Proof Let x be a one-dimensional
subspace with truth value a(x)= 1, X a two-dimensional subspace containing
x. Then a(X)= 1. Any other one-dimensional subspace y<X must have
a(y)=0, for sly)=1 would imply #(0)=alx A yj=1. But we can find
orthogonal y and z, different from x, such that y v z=X; hence a(X)=
aly v 2)=0, which is a contradiction.) In other words, if a system is in a state
which is not an eigenstate of an observable 4, a statement *A has the value o is
neither true nor false. To cater for this it has been suggested that the classical
propositional calculus should be extended to admit a third truth value
‘undecided’. The rules giving the truth valuesof x v yand x » yare extended
as follows:

Table 5.2. Truth table for three-valued logic

x 1 t t r f f u u u
¥ 1 f u ! [ u 1 ] u
xXAYy t I u f f [ u f u
XVY¥ t t t t f u t i u

For further details see Wallace Garden 1984 or Reichenbach 1944,
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This section consists of a summary of the main answers that have been
proposed 1o the questions of what quantum mechanics means and what it can
tell us about the physical world. First we will look cursorily at some general
views on what any scientific theory can mean; this is just a list of isms. Then,
after reminding ourselves why quantum mechanics calls for interpretation so
much more than classical mechanics, we will examine the various applications
of these isms to gquantum mechanics, paying particular attention to the
question of whether they can be reconciled with each other,

ivocabulary for use in statements about scientific statements),

Empiricism is the doctrine that the justification for any beliel can only,
ultimately, come [rom sense experience. There is room for a considerable range
of views about what beliefs are justified, and to what extent, by what
experiences; an extreme position is solipsism, which is the belief that nothing
exists outside oneself.

Positivism is the view that the meaning of any statement resides in the way it
is to be verified (which must be by consulting sense experience - in the scientific
context, this means doing an experiment). If a statement is not verifiable, it is
meaningless. (This is the verification principle.) However, most scientific laws
are not verifiable, since they are general statements and cover an infinite
number of cases; according to the verification principle, this book is entirely
meaningless. A more realistic account of the relation between meaningfulness
and experiment is Popper’s falsification principle, according to which a
statement is meaningful if it can be falsified by experiment; that is to say, if the
statement has logical consequences which can be found empirically to be false,
(Popper actually proposed this not as a condition for meaningfulness, but as a
criterion for a statement to be scientific.)

Operationalism is the view that individual terms in a scientific theory should
be defined by reference to experimental procedures. The model theory for this
view is the special theory of relativity, with its operational definitions of
distance and time. A more permissive account is that a scientific theory is a
hypothetico-deductive system, which may refer to unobservable quantities in
its basic postulates, and need only give empirical meaning to quantities
derived from the basic ones. Quantum mechanics provides a good example of
this procedure: the state vector [ is not defined in operational terms, and it is
only the derived quantities |[{¢ |y}|* that relate to experiment.

Pragmatism is the general philosophical view that the meaning of a
statement resides in the way in which it governs our actions; it is true if it is
useful. Instrumentalism is the related view concerning scientific theories, that
they are to be regarded as instruments for making predictions about the results
of experiments.

1. Indeterminism. Quantum mechanics differs radically from previous
physical theories, not just because its assertions are probabilistic, but because
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of the fundamental status that is claimed for these assertions. Other uses of
probability in physics arise in statements of partial knowledge about a
situation; it is assumed that it would be possible to obtain further knowledge
which would resolve a probability into certainties. If guantum mechanics is
taken as a final theory, however, it must be accepted that there is no possibility
of such further knowledge.

This feature of quantum mechanics is not hard to understand, but it is hard
to accept. Until the advent of quantum mechanics it had been a basic
assumption of physical science that every event had a cause; if the fundamental
laws are probabilistic then some aspects of some events are uncaused. The
feeling that to accept this is to do violence to the scientific spirit was expressed
by Einstein in his famous saying ‘1 cannot believe that the good Lord plays
dice’. To put this in a slightly different light, a general statement like “every
event has a cause’ can be regarded not a statement of fact (it can never be
falsified), but as a statement of intention: we are going to look for a cause for
every event. Then quantum mechanics constitutes an admission of failure.

It is sometimes argued that the indeterminism of quantum mechanics is to
be welcomed as allowing free will. Readers wishing to pursue this line of
thought should be aware of the argument that ‘free will’ neither means nor
implies the existence of uncaused events. Many thinkers believe that free will is
compatible with (indeed, requires) determinism; see Berofsky 1966.

However palatable or unpalatable it may be, indeterminism raises no
concepiual problems which are peculiar to quantum mechanics. In examining
any proposed interpretation of quantum mechanics, it is important to
consider to what extent it serves to elucidate probability statements in general
and to what extent it specifically attends to quantum mechanics.

2. Indeterminacy. The way in which properties are ascribed to particles and
systems in quantum mechanics is a more puzzling departure from the
procedures of classical mechanics. This has two aspects. First, there is the
denial of definite values for properties which every particle must have in
classical mechanics - the fact that a particle need not have definite position or
momentum (and cannot have both simultaneously). It is particularly puzzling
that although a particle can have a definite position at one time, it cannot have
definite positions at all times in an interval (i.e. a definite trajectory), since that
would give it also a definite momentum. One might argue that there is nothing
special about the properties of position and momentum, and we should not
necessarily expect a particle to have them any more than we expect it to havea
definite shape, smell or sense of humour, but there is a deep-seated feeling that
position and momentum are ‘essential’ properties (as opposed to ‘accidental’
ones) and that a particle is inconceivable without them.

Secondly, and more seriously, there is the indeterminate status of a
property of a system (i.e. an observable) when the system is not in an eigenstate
of it, Does the system have this property or not? Since the observable can be
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measured and will be found to have a definite value, we cannot say that
statements about it are meaningless: on the other hand, any statement that the
observable has a particular value will be falsified by some experiment on the
system when it is in this state.

Indeterminacy is related to indeterminism, since it is the fact that the results
of measurements are not rigidly determined by the state vector which makes it
impossible to ascribe definite values of an observable to a system; but they
should be distinguished. since there are conceivable theories in which all
observables have definite values but the development of the system is not
uniquely determined by those values.

3. Inseparability. The peculiarities of state vectors of the form |¢, 2|y, 5 +
[¢h2 2|2, for a system composed of two subsystems, have been discussed in
§5.2 in connection with the Einstein-Podolsky-Rosen paradox. When the
whole system is in a state of this form, it is not possible to say that either
subsystem is in a definite state, but it is possible to gain information about one
subsystem from an experiment performed on the other.

In principle, therefore, quantum mechanics denies the possibility of
describing the world by dividing it into small parts and completely describing
each part - a procedure which is often regarded as essential for the progress of
science, Because of this feature, quantum mechanics is sometimes called a
holistic theory.

4. The projection postulate. The difliculties associated with the projection
postulate were discussed in detail in §5.2. To summarise, they are;

1. The projection postulate is ill-defined: there is no precise definition of
what constitutes a measurement, and no specification of the time at which
projection is supposed to occur.

2. It is dualistic, requiring a division of the world into (microscopic) object
and (macroscopic) apparatus. It also splits the law of time development into
the deterministic Schridinger equation and the probabilistic projection
postulate.

3. Itisanticausal: as Schrodinger's cat paradox illustrates, it makes physical
events consequences of their observation, instead of saying that events are
observed because they happen.

4. It gives no account of continuous observation.

In discussing the various interpretations of quantum mechanics we will pay
particular attention to the way they explain the projection postulate.

An interpretation of quantum mechanics is essentially an answer to the
question “What is the state vector?” Different interpretations cannot be
distinguished on scientific grounds - they do not have different experimental
consequences; if they did they would constitute different theories. They can,
however, be rationally compared with regard to their intelligibility and
satisfactoriness as explanations. No one interpretation is generally accepted
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{although the phrase ‘the Copenhagen interpretation® is often used as a
synonym for ‘orthodoxy’, whatever the user thinks that is; it has been applied
to at least four different interpretations). After each interpretation we will give
the main objections to it. These are not meant to be definitive, or even
necessarily meaningful; you may well decide that some of them are wrong or
do not make sense. On the basis of these objections, however, it will be argued
that many of the differences between interpretations are more apparent than
real, and that on analysis a number of the interpretations turn out to be saying
the same thing in different ways.

1. The minimal interpretation

On this view, which was strongly expressed by Bohr, one should not attempt to
interpret the state vector in order to extract information about quantum
objects; one should not even speak of quantum objects. The state vector is just
a mathematical device used in calculating the results of experiments; to
perform such calculations successfully is the sole purpose of any scientific
theory. The experiments must (logically must) be described in the terms of
classical physics, since the apparatus consists of macroscopic objects; we do
not know how to describe our experiences with such objects to each other
except in the terms of classical physics. If we mention microscopic objects it is
only as a shorthand device to refer to some features of a calculation which
relates different classically described states.

In following this interpretation it is important to distinguish between
preparation and measurement of a system. A preparation occurs at the
beginning of an experiment and is associated with a state vector |y.); a
measurement occurs at the end of an experiment and its various possible
outcomes are associated with bra vectors {¢,|, {¢,|,.... The expenimental
arrangement is associated with a Hamiltonian H and a time r; then the
probability that the measurement has the ith outcome is

p= |{¢,I_|,,_.—-m.-ni *ﬁ'n}|!~ (5.106)
Note that |yg>, H and (¢, are all defined in terms of macroscopic
experimental arrangements.

This view dissolves all the puzzles concerning quantum objects, since there
are no objects to be puzzled about. There is no projection postulate, for any
calculation concerns only a preparation and a measurement, and cannot be
extended to describe anything that happens after the measurement. If an
experiment carries on after a measurement M which gave the result &, then one
is embarking on a new experiment whose preparation procedure consists of
performing the measurement M and selecting the cases in which the result was
a. There is nothing surprising in the fact that this preparation has associated
with it a state vector |¢,> which is different from e~ """y 5.

Some preparation procedures will be associated not with a state vector |y,
but with a statistical operator p, (for example, one might prepare a beam of
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electrons without lixing their spins). In such a case the probability (5. 106) must
be replaced by
po=tr [P~ e"™] (5.107)

where P, is an appropriate projection operator, which reduces to (5. 106) for a
pure state {_u.;.=|:irc.}<l,"rn|l. Thus in this interpretation there is no logical
distinction between a pure state and a general statistical operator; both
describe preparation procedures. Hence our term “(experimental) status’;
hence also the usage of ‘state” to refer to statistical operators.

Objections. This interpretation has been called ‘extended solipsism’. A
solipsist refuses to accept that the experience of seeing a tree is evidence that
the tree exists: there are only sense experiences. Likewise, a follower of the
minimal interpretation refuses to accept that the formation of a charged
particle track in a bubble chamber is evidence for the existence of the charged
particle; there are only macroscopic events. This is a solipsism on behalf of
macroscopic apparatus towards the microscopic objects they perceive, and is
as implausible as the human version of solipsism.

Moreover, it cannot be true that the sole purpose of a scientific theory is to
predict the results of experiments. Why on earth would anyone want to predict
the results of experiments? Most of them have no practical use; and, even if
they had, practical usefulness has nothing to do with scientific inquiry.
Predicting the results of experiments is not the purpose of a theory, it is a test to
see if the theory is true. The purpose of a theory is to understand the physical
world.

Although the instrumentalist philosophy which underlies the minimal interpretation
15 often expressed in the form given here, and is open to the above objection, Bohr's
formulation was less crude: “The task of science is both to extend the range of our
experience and reduce it 1o order’. Heisenberg combined this with an operationalist
view which derived from his own discovery of matrix mechanics, which he developed by
considering matrices of lrequencies of spectral lines. He taught that a theory should
only contain experimentally observable quantities, and proposed that this principle
should be applied to elementary particle physics by renouncing all mention of the time
evolution of the state vector between preparation and measurement. This more radical
form of quantum mechanics is called S-matrix theory, and stands in opposition o
quantum field theory. As will be seen in Chapter 7, it has not been successful as a theory
of elementary particles; in this area quantum field theory has been triumphant.

It is not necessary to be so austere as to renounce all belief in quantum
objects to embrace the above solution of the problem of measurement, namely
that being careful to distinguish between preparation and measurement makes
the projection postulate unnecessary. In answer to the question ‘What is the
state of a system after a measurement? it has been argued (particularly by
Margenau) that true measurements on a quantum system always destroy the
system, For example, to measure a component of polarisation of a photon one
must not only pass the photon through a doubly refracting crystal (Fig. 2.2)
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but also detect it when it emerges from the crystal; and the act of detection (say,
by making it impinge on a photographic plate) destroys the photon. This
argument denies that there are any measurements ol the first kind (p. 48).
However, such measurements must exist for macroscopic apparatus, which
must retain a permanent record of the results of experiment; thus this solution
of the problem of measurement depends on refusing to extend quantum
descriptions to macroscopic objects.

References: Bohr 1958, Stapp 1972, Peres 1984

2. The literal interpretation
This is the interpretation which is implicit in most modern textbooks
{including this one, so far). They speak as if the state vector (more precisely, the
corresponding point of projective space) is an objective property of a system in
the same sense as the values of coordinates and momentum are objective
properties of a system in classical mechanics. The projection postulateis then a
stalement about an actual change in the state vector following a measurement.
In this interpretation indeterminism and indeterminacy are simply accepled
as facts about the world. Inseparability means that it is not possible to apply
this interpretation to subsystems; one cannot say that individual objects have
state vectors, but is forced to consider the state vector of the universe,

Objections. The stale vector cannot be an objective property of an individual
system, for in general it is not possible to establish by experiment that the state
vector is one vector rather than another. For example, if ) is an eigenstate of
an observable 4 with eigenvalue %, and if |} is not orthogonal to |}, then a
measurement of 4 which gives the value  does not prove that the state vector
is [#» rather than |¢ ), because the measurement might give this result when
the state is |¢b). (This argument is valid if it is assumed that an objective
statement must be capable of being proved true by experiment, but not if it is
only assumed that there must be a possibility that it could be ]':rmved false. As
Popper pointed out, the latter is the normal situation in science.)

All the unsatisfactory features of the projection postulate, as listed above,
stand as objections to the literal interpretation of quantum mechanics.

3. The objective interpretation
The literal interpretation can be modified by supposing that the state vector is
restricted to lie in certain subspaces of state space, and that it makes
spontaneous and instantaneous transitions from one of these subspaces to
another with probabilities determined by the solution of the Schrodinger
equation. If the state space is

=S @NHD (5.108)
where %, are the allowed subspaces, and if the solution of the Schrédinger
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equation is
[y = (00> + o)y + -+ with [0 e 5, (5.109)

then the state of the system at time ¢ is assumed to be one of these |y,(1)), the
probability that it is [¥{f)} being

pult)= W) [ (). (5.110)

This statement is the same as the continuous part of the projection postulate

(p. 114; see also (5.61)). It can be derived from the following assignment of
probabilities for the transition from one subspace to another:

Bell's postulate. The probability that the state of the system is in the
subspace % at time r and makes a transition to % between times t and
t+dt is wy; t, where

~ [2 Re [lil) "'y (0 Hy(6)>] if this is 20,
M= {ﬂ if it is negative. (5.111)

Then we can prove
@59 The probabilities {5.110) follow from Bell's postulate.

Proof. First we cast the statement of probabilities (5.110) in the form of a
differential equation. Let P, be the projection operator onto %, so that

d
W) =Py and  ih = [¥(0)> = P.H (D).

Then

ih % = (W )| PH|Y()) — CWO[HP|(0))

= (| H (1)) = (0| H |wile) . (5.112)

Now Bell's postulate gives the probability that the state of the system is in
the subspace & at time ¢ + dr as the probability that it was in % at time t, minus
the total probability that there was a transition out of .% between ¢ and ¢ + 3¢,
plus the probability that there was a transition into % in this time:

pilt+8t)=plt) =% w, e+ Y wy, dt, (5.113)
jni T
so that
dp;
_'=Et“r —W }‘ {5.]]4]
i A

Foragiven i, let P be the set of j for which the first condition in (5.111) holds, so
that the imaginary part of {y (0)|H|w,(t)} is positive or zero, and let N be the set
of j for which it is negative. Since H is hermitian, (W |H|w,> and ¥ |H|,) are
complex conjugates and so their imaginary parts have opposite signs. Hence

JeP = w;20 and w;=0,
jeN = wy=0and w;=0,
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which gives

IEEZ{“H wy)=— X wy+ Z Wy

i j&F

= E 20m [h™ "W | H 1+ X 20m (A Q| H 0]

L

= Z 2 1m [h™ "y Hge, 0]
i
=(ih) ' ¥ (Wil H|g;> — <o H D) (5.115)
)

which is the same as (5.112) since [¥(1)) = ¥, | ,()). For a given probability at
t=0, therefore, the solution p(f) is the same as that of (5.112), namely
ln | . |

There are a number of possibilities for the subspaces %. They can be taken
as the eigenspaces of macroscopic observables, or they can be defined in
microscopic terms, for example as the spaces with definite numbers of particles
of some specified kind (c.g. photons, or fermions),

This interpretation eliminates all mention of measurement and projection,
and thus avoids all the problems associated with the projection postulate.

Objections. Since the equation (5.110) for the probabilities involves all the
states |W,(1)>, the development of the system is not solely determined by the
state that it happens to be in. The whole state |u:-m> must be regarded as a
property of the system as well as one of the |,(1)). Thus the interpretation
involves a proliferation of properties of the system. Moreover, some of these
properties cannot be determined by experiment. In an experiment, according
to this interpretation, one determines the state |,(t) in one of the subspaces
S yet its future evolution is determined by the accompanying states |y,(1)).
which the experimenter cannot know about. (The proliferation of properties
can be avoided by abandoning the use of a differential equation to describe the
development of the system. In this case the experimenter’s failure to determine
future probabilities stems from their lack of knowledge of the past history of
the system.)

It is not clear to what extent this interpretation is compatible with special
relativity. Because of EPR effects, the state vector must be taken as describing
the entire universe, and instantaneous transitions in this state vector seem to
conflict with the fact that simultaneity is relative.

Finally, the freedom in the choice of the subspaces & casts some doubt on
the abjectivity claimed for the state vector which lies in one of these subspaces.

Reference: Bell 1984,
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4. The epistemic (*subjective’) interpretation

Instead of being taken as an intrinsic property of the system, the state vector
can be regarded as a representation of the observer's knowledge of the system,
Then indeterminacy in the values of observables becomes simply lack of
knowledge of these values; and both inseparability and the projection
postulate lose their mystery. There is nothing mysterious in the fact that the
state vector of a system changes after a measurement if that just means that the
observer’s knowledge changes; the very purpose of a measurement is to
increase one’s knowledge. Similarly, in the EPR situation there is nothing
mysterious in the fact of an experiment on one object changing the state {i.e.
one's knowledge) of a distant object; I change my knowledge of distant objects
every morning when I pick up the newspaper.

Objections. Because it refers to a particular observer, this interpretation is
sometimes criticised for being subjective. However, the concept of knowledge
contains both subjective and objective elements: a statement that a person N
knows a proposition P is a statement both about the person (that they believe
P) and about the proposition (that it is true). The subjective element can be
removed from the epistemic interpretation by considering all possible
observers and defining a unique state vector for the system as that which
represents the maximum possible knowledge which any observer can have.
Thisis then an intrinsic property of the system, so that we are back to the literal
interpretation.

The attempt to explain away the projection of the state vector as simply an
increase in knowledge is shown to be unsuccessful by considering the
maximum obtainable knowledge. If this changes, it must be because of a
change in the system itself; and the problems of when this happens, and why it
should happen when it cannot be derived from the Schrédinger equation,
remain unresolved. This can be clearly seen by considering the case of a
decaying unstable particle; when the observer acquires knowledge that the
particle has decayed, this is clearly because it has decayed. The idea is more
plausible when applied to an instantaneous measurement, but it is hard to
distinguish it from the classical idea that the function of a measurement is to
find out something which is already true. This is to make the mistake of
confusing a superposition |a) + |b) with a mixture *|a) or |b)".

On the other hand, if one is prepared to accept the charge of subjectivity and
insists that the state vector refers to the knowledge of a particular observer,
then one faces the question “What is it that that observer knows? If it is
something about the system, we are back to the literal or objective
interpretation; if it is something about the results to be expected from future
experiments, we are back to the minimal interpretation.

Reference: Heisenberg 1959,



3.5 Interpretations 219

5. The ensemble interpretation

Some authors (including Einstein) deny that the state vector describes the state
of an individual system: it can be properly applied only to a large number of
systems, all prepared in the same way. This collection of systems is called an
ensemble. Then the probabilities |{ | ,»|* in Postulate II refer to the fraction
of the ensemble in which an experiment has a particular result. Those systems
for which a result «; was obtained in the experiment constitute a subset of the
original collection, and therefore form a different ensemble; naturally, this is
described by a different state vector. Thus the process of projection is not an
interruption to the Schridinger evolution of the ensemble, but a shift of
attention to a different ensemble.

If an ensemble E, containing N, systems is combined with a different
ensemble E, containing N ; systems, the resulting ensemble is called a mixture
of E, and E,. If E, and E, are described by state vectors |y, » and |y}, the
mixture i5 described by the statistical operator

N
p=wylg 3|+ waldap{,| where w'=W'N2' (5.116)
i

Thus in this interpretation, as in the minimal interpretation (and also in the
epistemic interpretation), there is no conceptual distinction between a status
and a pure state (i.e. a description by a statistical operator and a description by
a slate vector).

Objections. This interpretation is not addressed to the specific problems of
quantum mechanics, but is a way of understanding any probabilistic theory.
As an account of probability its defects have been discussed in Chapter 2
(p- 43). The concept of an ensemble is vague, because it is not clear what is
meant by ‘a large number’ of systems. If the statements about fractions of an
ensemble are to be experimentally meaningful, the ensemble must consist of a
finite number of systems. But then there is the possibility (remote but
undeniable) that an experiment on the ensemble will yield results in
proportions different from those given by the theory, and one cannot claim
that these proportions are definite predictions of the theory.

On the other hand, if the ensemble is infinite and any finite collection of
systems is just a sample from it, then the ensemble has no empirical reality:it is
a theoretical entity associated with a particular system in exactly the same way
as the state vector is associated with the system in the literal interpretation.
The ensemble has an advantage over the state vector in that it exists (in this
theoretical sense) when the state vector does not; for example, in an EPR
experiment with two separated electrons in a state of total spin 0, neither
electron has a definite state vector but each can be associated with an ensemble
described by the statistical operator 4|13, +|/>|1). The fullest possible
description, however, must encompass the complete system of two electrons
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and assign it a definite state vector; this has the same conceptual status as an
infinite ensemble of two-electron systems,

As with the epistemic interpretation, the account of the projection postulate
offered by the ensemble interpretation does not resolve any problems. If an
ensemble can be divided into experimentally distinguishable subensembles, it
isa mixture; an ensemble described by a single state vector is homogeneous, in
the sense that there is no detectable distinction between its members. In the
course of an experiment an initially homogeneous ensemble becomes a
mixture, This is an objective change in the ensemble which cannot be
explained away in terms of a shift of attention on the part of the observer.

Reference: Ballentine 1970,

6. The relative-siate and many-worlds interpretations

Everett's relative-state interpretation is a version of the literal interpretation
which makes it possible to speak of the state of a subsystem. It insists, however,
that the state of any system has no absolute meaning but is only defined
relative to a given state of the rest of the universe. The only state which has an
absolute meaning is that of the whole universe, including all observers and
their consciousness, The idea can be demonstrated by considering a system §
with two states |/, > and |y, ); then the state of the universe can be written as

¥ = >+ faa) (5.117)

where |2, > and |2,) are states of the rest of the universe which could include
states of an apparatus showing different results of an experiment whose
eigenstates are |, » and |y, 5. Then the state of the system, relative to the state
|z;» of the rest of the universe, is |, ). This incorporates the projection
postulate by emphasising that it is a conditional statement - if the result of the
experiment was x,, then the state of the system is |, > - and including this
conditionality in the formalism. (The conventional formulation, as in
Postulate I11, has an antecedent which refers to experience and puts only the
consequent in the formalism.) By developing von Neumann's theory of the
measurement process (see §5.2), Everett (1957) proved the consistency of this
procedure of retaining the full state vector (5.117) and showed that it could
account for the agreement between different observers about what they
thought had happened in a particular experiment (even though another part of
the universal state vector described a different result). He also showed that
Postulate I1, giving the probabilities of the different results of an experiment,
could be reduced to a natural probability distribution on state vectors, (This
result is claimed to mean that ‘the formalism yields its own interpretation’.)

The many-worlds interpretation is a picturesque account of the relative-
state interpretation which describes the state of the universe given by (5.117) as
a universe which has split into two branches, in one of which the state of the
system is |§f, 5, the experiment has given the corresponding result ,, and all
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observers are aware of that result; while in the other branch the course of
events has gone according to the state |,). In general, wherever the
conventional theory requires an application of the projection postulate the
many-worlds interpretation says that the universe splits into parallel worlds of
the kind familiar from science fiction stories such as Philip K. Dick’s The Man
in the High Castle (Dick 1962). It can accommodate possible interference
between different terms in the universal state vector by assuming that the
different strands of the universe can recombine,

Objections. The relative-state interpretation differs very little from the
objective interpretation. By making the universal state vector develop purely
according to the Schrodinger equation, it does not formally include the
indeterminism which is nevertheless present in the reality experienced by any
of the observers it describes, It might seem more honest to make the formalism
describe that reality and no other, i.e. to drop the parts of the universal state
vector which describe a situation which we actual observers know to be false.
However, by not doing this the relative-state interpretation avoids the
ambiguities of the projection postulate.

The many-worlds interpretation sells the pass. To say that an experiment
had a result f in some parallel universe (when we observed it to have the result
z) is surely just another form of words for saying that it might have had the
result . but didn’t. We are perfectly entitled to define the ‘real world' to be the
one in which what we observed to happen did happen; then the splitting of the
universe into several branches, only one of which is real, is exactly the same
process as that described by the projection postulate, and is beset by exactly
the same problems of defining when and under what circumstances it should
happen.

In defence of the many-worlds interpretation, it can be claimed that it is
justifiable to call an event ‘real’ if it can have an observable effect, and that this
is true of the experimental results which we did not observe, because of
possible interference between different parts of the universal state vector.
These effects are present in the objective interpretation, in which the situation
is described by saying that the future development of the system is affected by
the unrealised possibilities for the results of past experiments. The difference
between this and the statement that these possibilitics have been working
themselves out in an alternative universe is purely verbal.

Both the relative-state and the many-worlds interpretation are open to the
objection that they do not make it possible to represent the knowledge
obtained from experiment. If an experiment on a system has the result «,,
corresponding to the eigenstate |, », and if |z, » is the appropriate state of the
apparatus and the experimenter and the rest of the universe, one cannot
deduce that the state of the universe is [, »|x, >; it might be [, )]at, > + |3 ¥2a)
or |, dla, > +4W |, ). One can, however, deduce that the relative state of the
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system is |, »: and it can be argued that there are logical reasons why one
should not be able to represent oneselfl in a theory.

References: DeWitt & Graham 1973, Borges 1941,

7. The quantum-logical interpretation

Cuantum logic (described in §5.4) was developed to support the contention
that difficulties in the interpretation of guantum mechanics all stem from the
use of classical logic in discussing physical systems. An analogy is drawn
between logic and geometry in their relations to physics: just as Euclidean
geometry is only one among several possible forms of geometry, and the
question of which geometry applies to the physical world is to be decided
empirically, so. it is argued, classical logic is only one among several possible
forms of logic, and the laws of physics may show that it is not valid in the real
world. This is what happens il we interpret subspaces ol state space as
propositions, with the lattice symbols =, v and ~ interpreted as “implies’,
‘and’ and ‘or’ as described in §5.4.

This interpretation is directed mainly against the problem of indeterminacy.
The idea is that it makes it possible to assert that a system has definite values
for all observables, even though some of them are incompatible. For example,
let X denote the position of a particle moving in one dimension, and let P
denote its momentum, Let p,, p,,. . . denote the possible values of P(written as
if they were countable for convenience). Then a proposition X=x is
incompatible with each of the propositions P=p,. Nevertheless, X =x 15
compatible with the proposition “P=p; or F=p,or.. '(i.c. ‘P has some value')
because, according to non-distributive quantum logic,

(X=x) and (P=p, or P=p,or...)
15 not equivalent to
(X=xand P=py) or (X=xand P=p,) or....

This solution of the problem of indeterminacy brings with it a solution of the
problem of measurement. If every observable has a definite value, then the
process of measurement simply reveals what that value is, and the projection of
the state vector is a matter of refining the propositions that are true of the
system (moving from ‘P=p, or P=p,or..." to ‘P=p,’, say). The problems of
inseparability can be resolved in a similar way; EPR correlations between two
subsystems are explained as correlations between their separate properties
dating from the time of their joint production. Bell's theorem, which normally
shows that this explanation is incompatible with locality, can be discounted
since it uses classical (distributive) logic.

Objections. This interpretation is based on nothing but a mathematical pun.
To interpret v (the linear sum of subspaces of state space) as the logical
connective or is to change the meaning of ‘or’ too drastically to be acceptable:
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among other things, in quantum logic the statement *P v ( is true’ does not
imply ‘either P is true or @ is true’. This means that it is only in a very weak
sense that quantum logic makes it possible for every observable to have a
value. We saw on p. 209 that it is not possible to suppose that every quantum
proposition is either true or false.

The analogy between logic and geometry is superficial. It is possible to
formulate non-Euclidean geometry without using or mentioning Euclidean
geometry, but it is not possible to formulate quantum logic without using
classical logic (in the meta-theory). Thus the solutions to the problems of
measurement and inseparability are cheap; they depend on a selective ban on
the distributive law. If quantum logic were consistently adopted as a logic in
the true sense of the word (i.e. a method of reasoning), it would involve
reconstructing the whole of mathematics — a herculean and probably
impossible task.

If it 15 admitted that arguments about quantum propositions must be
conducted according to classical logic — this is the normal situation in
mathematical logic - then the apparatus of quantum logic becomes simply a
reformulation of the mathematical machinery of quantum mechanics. It is
then no longer an interpretation of the theory, but itself stands in need of an
interpretation.

References: Birkhofl & von Neumann 1936, Putnam 1968,

8. Hidden-variable interpretations

The hypothesis that the behaviour of quantum systems is governed by hidden
variables normally constitutes a new theory, whose purpose is to explain
quantum mechanics and which can, in principle. be distinguished from it by
differences in its empirical predictions. It becomes an inmterpretarion if
assumptions are added to make the differences unobservable even in principle.
For example, the de Brogliec/Bohm theory of §5.3 becomes such an
interpretation if it is assumed that for any particle, whatever its source and past
history, the probability of its position being r is |y(r)|*. (Remember that both
the position vector and the wave function are intrinsic properties of the
particle in this theory.)

The de Broglie/Bohm interpretation is designed to remove the element of
indeterminism from quantum mechanics. This objective is shared by many,
but not all, hidden-variable interpretations; the hidden variables may be
supposed to change unpredictably. The defining property of a hidden-variable
interpretation is that all observables have precise values which are expressed in
terms of the hidden variables; like the quantum-logical interpretation, their
main target is indeterminacy.

Objections. I the hidden variables are so carefully hidden as to make them
undetectable apart from the state vector, one has very little reason to believe in
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them. In the de Broglie/Bohm example, the assumption about the distribution
of particle positions is highly implausible if these positions really do have a
separate existence.

There is a continuum between hidden-variable interpretations and
objective interpretations; if the special subspaces in the objective
interpretation are laken to be ecigenspaces of particle position, that
interpretation becomes the same as a hidden-variable interpretation (see
problem 5.14).

Bell's theorem shows that these interpretations, whether deterministic or
not, must postulate instantaneous action at a distance and therefore conflict
with special relativity.

Reference: Belinfante 1973.

9. The stochastic interpretation

There is a formal similarity between the Schrodinger equation and stochastic
differential equations, which describe the unpredictable motion of a particle
subject to random impulses, like a floating pollen particle undergoing
Brownian motion. This leads to an interpretation of quantum mechanics in
which a particle is supposed to have a definite position r at each time, and in
each time interval d¢ there is a definite transition probability for this position
to change by a given amount ér.

Objections. Like the hidden-variables interpretations, this runs foul of Bell's
theorem: il one thinks of the transition probabilities as being caused by
impulses from a medium (as suggested by Brownian motion, or by a model of
randomly fluctuating electromagnetic fields), then the properties of this
medium depend on the instantaneous position of distant particles. The
properties of the medium as it affects a particular particle also depend, at all
times t, on the form of the wave function of that particle at r=0. This is a
strange and implausible feature of the interpretation.

Reference: Ghirardi, Omero, Rimini & Weber 1978, Nelson 1985

In the absence of empirical indications, the interpretation of quantum
mechanics is a matter of individual choice. The arguments sketched in this
section suggest that the choice i5 between the tough-minded (but boring)
minimal interpretation; the satisfying (but puzzling) objective interpretation;
and the comprehensible (but implausible) hidden-variables interpretation.
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Thorough general discussions of conceptual problems in quantum mechanics
can be found in Jammer 1974, d’Espagnat 1976 and Primas 1981. Wheeler &
Zurek 1983 is an invaluable collection of reprints, which includes the original
papers on many of the topics discussed in this chapter. For measurement
theory see also Bohm 1951. On hidden variables and Bell's inequalities see
d"Espagnat 1979 (for a non-technical account), Bell 1971, Clauser & Shimony
1978 (for details of experiments) and Belinfante 1973 (for a thorough survey).
For quantum logic see Hughes 1981 (a non-technical account), Piron 1976
and Jauch 1968,

. Consider a system with a state space of finite dimension a. The statement that

all states of the system are equally likely could be taken to mean that its
statistical operator is p = [ | 3{y| d where the integral is taken over the set
of unit vectors (which form a sphere $7°~ ') and di is the usual measure on
§=1_which is invariant under unitary transformations of [i§. Show that
p=n~llL

. Prove that for a system with a finite-dimensional state space, il all states are

equally likely then the probability that an experiment will have a given result
is proportional to the dimension of the eigenspace of that result.

. A system is subjected to random repetitions of an expenment E, the

probability that an experiment happens in a small time interval 5t being w 1.
If E has just two possible results, show that the statistical operator p satisfies

dpfdr= (i)~ '[H, p] + w(2[1pN —[p — pIT)
where I1 is the prajection operator onto one of the eigenspaces of E.

., Let {|:jr"}| be an orthonormal complete set of states for a system S, and let T

be another system. Show that any state [y of the combined system ST can be
written as [¥) =Y |y, |0, for some states [6,> of T. and that when the
combined system is in the state |} the statistical operator of § is

trg (P =¥ €0, ] 600w,

. Asystem has two orthogonal states |9 and |'¥>.and an operator A is defined

by Al =¥}, A¥)=|®}. Calculate the expectation values of A in the
situations described by the statistical operators p and p' of (5.38) and (5.39).

. Let # be the phase space of a classical particle moving in one dimension, and

let #° be the space of wave functions for a quantum particle in one dimension.
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For any function gix, p) on # an operator 4, on % can be defined by
(A dix)=(2x)" ! J.y{x +4hr, pre"Pdix 4+ he) di dp.
Given a wave function v, define a function g on 3 by

glx, pl= j‘wlt_—i!rs] e~ Pyl x 4 Lhs) ds.

Show that

(i) = [y ()

(ii) gix, p) dp=2alp(x))%;
(i) gix, p) dx =2z p)|*

where  is the Fourier transform of .

. Let 8T be a combined system with a Hamiltonian of the form Hy @ 1+

| @ Hy, where Hg and Hy are operators on the state spaces of § and T. Show
that the result of an expériment on systern S cannot be affected by performing
an experiment on system T. Hence show that no EPR experiment can be used
for faster-than-light signalling.

. Describe the evolution of the full state vector. including the state of the

apparatus, in the EPR experiment.

. Let |¢,» and |¢, ) be the polarisation states of a photon moving in the =-

direction, as in Chapter 2. Show that the state of two such photons with total
angular momentum 015 27 !'i_|¢,};|¢,} +|é,3|¢b,2). Il two photons are in this
state, find the probability that one of them will pass through a polaroid at an
angle i to the x-axis if the other passes a polaroid aligned with the x-axis.

Let A, B and € be the experiments of seeing whether a photon will pass
through three polaroids, with an angle 0 between the axes of A and B and an
angle ¢ between those of B and C, and suppose these can be applied to either
of two photons whose total angular momentum is 0. Find a version of Bell's
inequality appropriate to this situation, and find values of # and ¢ for which it
is violated by the predictions of guantum mechanics.

. Given a lattice of subsets of a set, construct a corresponding lattice of

propositions.

. Find the meet and join of two elements of the direct sum of two lattices.
. Show that an orthomodular lattice 15 irreducible if and only if it 15 not a direct

sum.

. Show that if a lattice has a status ¢ taking only the values 0 and 1, it is

distributive. Determine ai{x A y) and (x v v} in terms of o{x) and o).

. Consider a particle moving in one dimension in a potential F{x), with wave

function yix). Let x, be a sequence of points on the line, labelled (in order) by
an integer i, and let v (x, 1) be a wave function which coincides with gix, 1) for
X, =x=x, ., and which vanishes for x < x, —zand x> x,_ . , + & Show that if
Bell's postulate is used to find transition probabilities between the El.ﬂ'lﬂiﬂ'q}.
then in the limit as g — 0 the probability of transition from |, _ > to [} in
time 4t is f(x_) ot if this is positive, where j is the probahility current associated
with . Relate this to the de Broglie/Bohm pilot wave model.
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THE PROPERTIES OF PARTICLES

In this chapter we return to the topic of elementary particles and apply the
theory of Chapters 2. 3 and 4 to make the qualitative description of Chapier |
into a quantitative one, at least as far as the intrinsic properties, or quantum
numbers, are concerned. The description of the interactions between the
particles given here is not fully quantitative, but is a simplified account of the
type outlined in § 4.6,

Throughout this chapter we take h=1.

The proton and the neutron are distinguished by their electric charge, so that
their responses 1o electromagnetic forces differ; but in their behaviour under
strong forees they appear to be very similar, as is shown by the following pieces
of evidence.

First, mirror nuclei. There are many pairs of nuclei in which the number of
protons in one is equal to the number of neutrons in the other and vice versa,
for example *H (tritium), which contains one proton and two neutrons, and
the helium isotope *He, which contains two protons and one neutron. Other
examples are ("*,F, 5, '?;oMNey) and (*,Cg, '*,0,). It is found that in such
pairs the structures of the set of energy levels of the two nuclei are very similar,
and the resemblance is enhanced if allowance is made for the extra electrostatic
potential energy of the nucleus with more protons, If we assume that the
Hamiltonian is the sum of several terms, one for each pair of particles in the
nucleus, this suggests that the potential for two protons is the same as that for
two neutrons. No conclusions can be drawn concerning the potential for a
proton and a neutron, since the number of such pairs is the same in each of the
two nuclei.

Scattering data, however, suggest that the n—p potential is the same as the
n-n and p-p potentials. Scattering experiments determine the distribution of
particles emerging from a collision, and are thus concerned with unbound
states (whereas the states of a nucleus are bound states). It is found that the
wave functions of these states for two protons, after allowing for the
electrostatic repulsion, are similar to those for a neutron and a proton,
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provided one compares states with the same spin and orbital angular
momentum. The point of this proviso is that, since protons are fermions, there
are restrictions on the spin/orbital state of two protons that do not apply to a
proton and a neutron: if the spin state is symmetric (total spin s = 1), the orbital
state must be antisymmetric (relative orbital angular momentum [ odd), and if
the spin state is antisymmetric (s=0), the orbital state must be symmetric (/
even). In these states the n—p scattering is the same as the p—p scattering.
These facts can be accounted for by regarding the proton and neutron as
two states of a single particle, the nucleon, and supposing that the Hamiltonian
of the strong interaction does not discriminate between these states. Then the
nucleon's state space is (W & )6 .F where W ® % is the familiar
spinjorbital state space and . is a two-dimensional state space with a
complete set of states {|p»,|n>]; the strong Hamiltonian is of the form
H,=H' & 1where H' actson % & 5 so that H_, commutes with all operators
on .#. In particular it commutes with the unitary operators U defined byt

Ulpy=alp) +pln>
Ulny=7|p> +djny |

where the matrix

G 5)

belongs to SU(2) (any unitary operator on .# is a multiple of such a U). Thus
the identical behaviour of the proton and the neutron under the strong force
can be regarded as the result of invariance of the strong force under the group
of operations represented by (6. 1); this group is isomorphic to SU(2), and it acts
on the state space .# in the same way as rotation operators act on the spin
space S

Since this is a continuous group of invariances, it has hermitian generators
which, according to @3.5, represent conserved observables. These operators
act on the state space & in the same way as the generators of rotations - the
angular momentum operators — act on the spin space % Thus . has three
operators [, I, I, defined by the 2 x 2 matrices 4g,, }7,, o, where 5, are the
three Pauli matrices (4.39) (but usually denoted by 1, in this context). These
represent conserved observables; they are called the components of isospin.
The proton and neutron are in eigenstates of the third component of isospin

(6.1)

+ This definition contains superpositions of stales with different electric charge, whose existence
is forbidden by a superselection rule. It might seem. therefore, that the operator U has no
physical significance. However, we can consider a fictitious world in which the
electromagnetic force does not operate; in such a world there would be no eleciric charge
and therefore no superselection rule. Since the strong force is so much stronger than the
electromagnetic force, it is reasonable to expect this fictitious world to be a good
approximation to the real world. In particular, if we can use the transformations (6.1) to
derive consequences which do not refer to the forbidden superpositions, we can expect these
consequences to be (approximately) true in the real world.
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with eigenvalues +4 and —4 respectively. The symmetry operations of (6.1)
are called isospin transformations,

The components of isospin have the same commutation relations as the
components of angular momentum. Hence the theory of §4.1, which was based
solely on these commutation relations, can be applied to isospin. Thus the
quantity 1*=1,%+1,?+1, has eigenvalues [{I + 1) where [ is an integer or
half-integer; the proton and the neutron, whose isospin was constructed on the
model of a spin-4 particle, have [ =4

There are many consequences of isospin conservation in nuclear physics.
The isospin of many-nucleon states is obtained by adding that of the
individual nucleons, in the same way as angular momentum is added. The
invariance of the Hamiltonian under isospin transformations then implies that
the 27 + | states with a given value of I should all have the same energy. Thusin
the mirror nuclei (*H. *He) each pair of corresponding energy levels
constitutes a doublet with I' =4, the *H state having I, = —% and the *He state
having I1,=14. These states can be regarded as being formed by adding one
nucleon (with I=1%) to a two-nucleon state which has I=0 (ie. a state
containing a proton and a neutron). Similarly, the pair (' °C, '*N) have I =4
and are formed by adding one nucleon to a 12-nucleon core in which the
isospins of the individual particles have combined to give [=0.

The pair (**C, '*O) are formed from the 12-nucleon core by adding two
nucleons (two neutrons in the case of "*C, two protons for '*0). These two
nuclei have I,= + | and must belong to the triplet of states with [ = | which
can be formed by adding the isospins of the two nucleons outside the core. The
third member of this triplet, with I, =0, must be a state of '*N. Another state of
14N will be formed by adding the two nucleons in the state I =0. These two
states of "*N must satisly

{Wrole™ M|y > =0 (6.2)
since they havedifferent values of 12 and H, commutes with I; thus there will be
no transitions between these states on the time scale of the strong interaction.
The actual situation is shown in Fig. 6.1. The ground state of **MN. which is
stable, has much lower energy than the ground states of '*C and "*O; these are
unstable and decay to the ground state of '*N, but by the weak interaction (i.e.

Energy
(eigenvalue of H,}

I.IC I.iNi Iq:’

f=1

I=0
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by fi-decay). not the strong. There is also a long-lived excited state of 4N,
which decays to the ground state by the electromagnetic interaction (y-decay),
not the strong. This excited state is close in energy to the ground states of '*C
and "*0, and the differences between the three can be accounted for by the
differences in their electrostatic energies, Thus the four states of Fig. 6.1 clearly
show how the energy levels of the strong Hamiltonian carry representations of
the invariance group SU{2). in accordance with @3.13.

So [ar isospin transformations have only been defined on states containing
nucleons. By analogy with rotations, they should be defined on all states in the
fictitious world in which only the strong force operates, i.e. on all states of
hadrons. Then, as with nuclei, the energy levels of hadrons will carry
representations of SU(2) labelled by the total isospin I. Since each single-
particle state is an eigenstate of the strong Hamiltonian, this means that the
hadrons are classified into isospin mulriplers: a multiplet with isospin [ contains
21 + 1 particles which all have the same mass (because of the relativistic
equivalence between mass and energy). The particles are nol necessarily
eigenstates of the weak and electromagnetic Hamiltonians, so this equality of
mass in a multiplet is only approximate. Some of these multiplets are listed in
Table 6.1. In each multiplet the value of [, is related to the electric charge ) by
a formula of the form

Iy=0-1Y (6.3}
where ¥ is an integer which is characteristic of the multiplet. It is called the

hypercharge of the multiplet.
The isospin of hadrons can be understood in terms of the quarks which

Table 6.1. Isospin multiplets

Iy ) Y ar

Baryons (B=0)
Nucleons (n, p) (-4 4 § 1 i
b Sy B 10 (=1,0,1) 1 0 -
AP 0 0 0 3
E5EY (-4 4 4 -1 1+
(A=, A% AT, A*Y) (-3 =549 1 1 1*

Mesons (B=0)
Pions (x~, 2% = ") (—1,0,1) 1 1] 0
Kaons {{Ku. K_j (=33 3 : 9
(K-, K% (-Ld ] -1 0"
n 0 1] 1] o
@ 0% p*) (=1,0,1) ! 0 1=
@ 0 1] 0 fi=

(J =spin, P=parity)
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make them up, in the same way as the isospin of nuclei is understood in terms
of nucleons. The u and d quarks form an isospin doublet, with d having I, =
—4 (isospin down), u having I,=14 (isospin up); all other quarks have I =0.
Then all isospin transformations follow from the following basic
transformation on u and d states:
Uluy =aju) + fid>
Uldy =y|u) + djd>

Each of the multiplets in Table 6.1 is to be regarded as a set of states of a
single particle, like the nucleon: this particle then has a complete state space of
the form #° @ % @ #. The discussion of many-particle states in § 4.6 shows
that the multiplet particle can be treated as a fermion if the individual members
of the multiplet are fermions, and as a boson il they are bosons: the
requirement of symmetry or antisymmetry should be applied to the total state,
including the isospin state. The baryons are fermions, and the state of two
baryons from the same multiplet must be antisymmetric overall (eg.
symmetric in the orbital state, antisymmetric in spin, symmetric in isospin); the
mesons are bosons, and the two-particle states must be symmetric overall.

Example 1. The deuteron. The deuteron (the nucleus of deuterium, *H) is a
bound state of a neutron and a proton. Since it is formed from two isospin-{
particles. its isospin [ is either O or 1. If it had I = 1. it would be a member of a
triplet; the other members would be proton-proton and neutron-neutron
bound states. Such states do not exist, so the deuteron must have [ =0. This is
the antisymmetric combination of the two I =1 states. From our experience
with the hydrogen atom and the harmonic oscillator (Fig. 4.5) it seems likely
that the lowest-energy bound state will have relative orbital angular
momentum [=0 (intuitively, il | is non-zero the particles experience a
centrifugal force tending to break up the bound state); then the orbital state
will be symmetric. Since nucleons are fermions, the overall state must be
antisymmetric, so the spin state must be symmetric; therefore the total spin i1s
s= 1. Thus the total intrinsic angular momentum of the deuteron, the sum of
I=0and s=1,is I; and its parity is (= 1)'= + L.

A number of consequences of isospin conservation follow from the fact that
the time evolution operator ¢ "' commutes with isospin transformations and
is therefore an isoscalar operator, the isospin analogue of a scalar operator in
the theory of angular momentum. We can apply the Wigner—Eckart theorem
{4.75) to deduce that if |I I, o) is a set of states labelled by isospin and some
other quantity x, then

Iy ale™™|I' Ty = 6,08, Cat| U)o (6.5)
The significance of this equation is twofold: since isospin is conserved, the
values of I and I, are the same at time ¢ as at =0 and since the process is
invariant under isospin transformations, the probability amplitude is
independent of [,.

Example 2. Nucleon-nucleon scattering. Take |2 to be the spin/orbital

(6.4)
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state of the two nucleons. If this state is symmetric, the isospin state must be
antisymmetric and so the total isospin is [ =(; by conservation of isospin, the
value of I remains 0 and therefore the spin/orbital state remains symmetric.
The reduced matrix element x| Ug4r)|a"> in (6.5) then describes the neutron-
proton scattering in the symmetric spin/orbital states. If the spin/orbital state
is antisymmetric, the isospin state must be symmetric, so I = I; there are then
three possible states, corresponding to p-p, n—p and n-n scattering, and (6.5)
says that all three scattering processes are governed by the same amplitude
Cal Uyted ey, This shows how the charge independence of nuclear forces is
incorporated in isospin invariance,

Example 3. Decay rates. Each A-particle decays into a neutron and a pion.
We wrile

A—=N+n (6.6)

which covers the six decays

Attt =p+n*, AT—=p+n®, AT—=n+n”,

(6.7)
A—wn+n" A—p+r-, A —=n+n".

Consider the two decays of the A*. This has I =4, I ,=1; by conservation of

1505pin it evolves into the nucleon—pion state with the same values of l and [ ,.

Adding the isospin of the nucleon and the pion is done by means of Clebsch-

Gordan coeflicients, which give
BE =100+ APR-5110
=./4px" + . /4nx*). (6.8)
The probability that this state will be observed as p+ n° is £; the probability of
n+n"is} Hencethedecay A" — p+n®occurstwiccasoftenasA* - n+=n"*:
MA" = p+a"=2IA"—=n+x") (6.9)
where I" denotes the rate (probability per unit time) of the decay.

Using (6.5), we can relate the rates of decays of different A-particles. Taking
the labels =, o' to refer to A states and Nr states, and writing fﬂ. m® for the A
state with [y=m, we have

{Nm; dmle™ ™A m) = (N=| U A)

{Nm; dmle " |A m>=0 -
Thus all six decays (6.7} are governed by a single function of 1, which, according
to §3.5, is approximately exponential:

[{N=R US| AS? =e". (6.11)
Here I is the total decay rate of any one state |Am); thus, for example,

(6.10)

MA** —+p+zr*)=TA* +p+a°)+T(A* =n+x). L

The statement that the charge conjugation operator C acts on a state so as to
change every particle in the state into its antiparticle does not completely
specify it as an operator, since there is an ambiguity of a possible phase factor.
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Some of this ambiguity can be removed by reference to isospin
transformations.

Let X, (m=-I,..., I') be particles forming a multiplet with isospin I, and
denote their states (for a given spin/orbital state) by |X m). Then

X my=% t' X n) (6.13)

where t' is the set of three (21 + 1) = (21 + 1) matrices representing the hermitian
generators of isospin transformations (given by (4.30)-(4.51) with j=1). Since
all guantum numbers are reversed on going from a particle to its antiparticle,
C|X m}isan eigenstate of I, with eigenvalue —m. Suppose the phases aresuch
that the states

| X —m)y=(—1"C|X m) (6.14)
behave like | X —m) with respect to isospin:

X —my=31t_, X —n}. (6.13)

From the formulae {4.50}-(4.51) it can be seen that

tI_"I _“={__.”qin+1'1'm*=:__”m'q-lﬂm' {ﬁiﬁ'
(the second equality because the matrices t’ are hermitian), so that (6.15) gives

ICIX my==F . ClX ny==¥ ¢ _C|X n). (6.17)

Hence the effect of an isospin transformation R (the isospin version of a
rotation through angle @ about axis n) is

U(RIC|X m) =exp (ifn-1)C|X m)

=Y [exp(—ifnt')],.C|X n>

=Y d' (R)C|X n) (6.18)

where d{R)=exp (—ifln-t) is the (27 + 1) = (2] + 1) matrix representing the
isospin transformation R. Thus the charge conjugate states C|X m} transform
by the complex conjugate representation of isospin transformations. We will
take it to be part of the definition of the charge conjugation operator C that it
has this relation to isospin.

The requirement (6. 18) does not completely fix the operator C, since it is still
possible to multiply all the states C|X m} by the same phase factor. If the
multiplet contains a particle X® which is its own antiparticle, this one
remaining phase is determined by the charge conjugation parity 5. of X° Since
X" must be totally neutral, it must have / ;=0 and electric charge ¢ =0; hence
the multiplet has hypercharge Y = 0. The antiparticle of each multiplet particle
X Will be another member of the multiplet, X _, (the multiplet as a whole is
self-conjugate). From (6.14) we know that C|X m> must be a multiple of
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(= 1/"|X —m}), and by taking m=0 we see that
C|.'-'i’ my=(—1"n X —m}. (6. 19)

Thus n, is a property of the multiplet as a whole. [t 1s often discussed in terms
of G-parity, which is the eigenvalue of the operator

G=Cé". 16.20)

It can be shown (by the reader: problem 6.8) that (6.19) makes C an isospin
analogue of reflection in the (13)-plane; the isospin transformation in (6.20) is
the analogue of rotation through = about the y-axis, so that G is an isospin
analogue of space inversion. [t commutes with isospin transformations, so that
every member of a self-conjugate multiplet is an eigenstate of G with
eigenvalue an., where z depends only on the isospin I of the multiplet (see
problem 6.9). The internal properties of isospin and G-parity are collected
together in a single symbol I“ like the symbol J” for the space-time properties
of spin and parity. Some values of I are given in Table 6.2,

The behaviour of operators under isospin transformations can be discussed in
the same way as their behaviour under rotations. An irreducible operator of
isospin type I is a set of 21 + | operators Q' (m=—1, ..., I) satisfving

o)=Y 0 (6.21)

(cf. (4.73)). An example of such a set of operators is provided by the creation
operators ay,,  for a multiplet X,, with isospin [; for if ¥ ) is any state, ay,,'[¥) is
a state with an added X-particle. and the isospin operators | act on this as a
sum of an operator which acts on the state |¥' ) and an operator which acts on
the state of the X-particle:

lay,'T¥) =a. 1V + [ i u,.;,,,']|‘[-" 5. (6.22)
Hence
[Lag, =3 t' ay'. (6.23)

The annihilation operators ay,, have different isospin properties, which can
be found by taking the hermitian conjugate of (6.23):

[1,axm]= _EF:“:(.= -t dx, (6.24)

Table 6.2. Self-conjugare multiplers

Multiplet iy e i,
n 0- i= o
] 0- o +
p [ 17 -
w b 0~ -
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(since the matrices t' are hermitian). Comparing with (6.17). we see that the
annihilation operators ay, have the same properties as the creation operators
Cay,'C which create the antiparticle states C|X m}. Conversely, the
antiparticle annihilation operators Ca,,C obey the same equation as the
creation operators dyy, -

These commutation relations can be conveniently expressed by collecting
the creation operators ay,,' into a row vector ay'=(ay _,"..... iy ) and the
annihilation operators into a column vector ay, and the antiparticle operators
Cay,.'Cand Ca,,.C into a column vector ay' and a row vector ayx. Then we have

I].ﬂx‘]=ux.‘j. [I.ﬂx]= _t‘ﬂx

6.25
[Luﬂﬂaxt'. [I.Hx']ﬂ -t‘ﬁ'_\:+ ( }

The quantum fields of the particles X, are
P =l + Clix'C. (6.26)

We can collect these into a column vector ¢, =ay +ag' and their hermitian
conjugates into a row vector ¢y these satisly

[1.¢xd=—t'gy. [Lep']=gx't". (6.27)

IT X is a sell-conjugate multiplet the fields are
Do =l + Cllyg C = g+ (= 1V™".0x "
by (6.19): thus they satisfy the hermiticity condition
Pxm == 1" bx (6.28)

Particularly important types of irreducible operator are the isospin
analogues of scalar and vector operators. An isoscalar operator is one which
commutes with all isospin operators; this is another name for an irreducible
operator with [ =0. An isovector operator is a set of three operators (V,, Vs, V)
which satisfy

[1;, V]=ig V- (6.29)
This is another name (and a different choice of basis) for an irreducible
operator of isospin type I = 1, for from such an operator T' (m=0, £ 1) we
can form an isovector operator } by defining

¥ =[I£\,="2HT' =T Va=(f /T i+ T ), HB=T.

(6.30)

As with ordinary (rotation group) vector operators, from two isovector
operators V and W we can form an isoscalar operator ¥-W and an isovector
operator ¥Vx W,

Let ¢ be the column vector of quantum fields of a multiplet X with isospin
I. and let

‘rx = ¢x*t;¢x. l&3 t}
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This is an isovector operator, for
[ Ved =1 ¢x']'|j'f-"x + 't [V i)

— ¢:I:“rEHj ¥ "ijil:“ﬁ‘:-;

- ‘px'{f-ﬁmilﬂﬂh‘x = iﬂm Fix (6.32)
since the generators 1, satisfy the SU(2) commutation relations. Note thatasa
consequence of the components of t' being hermitian matrices, the
components of ¥y are hermitian operators.

Let(x ,x° a ") be a self-conjugate isospin triplet with n, = + 1. According to
{6.30), the fields ¢,," yield an isovector operator A. Since the multiplet is self-

conjugate the fields satisfy (6.28), from which it follows that the components of
A are hermitian. Hence if the fields ¢y and ¢, commute, the operator

H' =ty A (6.33)
is a hermitian isoscalar, which is therefore qualified to be a part of a
Hamiltonian describing an isospin-invariant interaction.

Let us take X, (m= +1) 1o be the nucleons and =, (m=0, + 1) to be the
pions. Then, adopting the common practice of denoting the quantum field of a
particle by the same symbol as the particle itself, the Hamiltonian (6.33)
becomes

H'=N"N'n where N=(D

o ey 1 S
o 450
=p'pn® —/2p'nn"t + /2n'pr” —n'nn®. (6.34)
This is the Yukawa-Kemmer interaction. It represents a theory of the strong

force between two nucleons in which the field quanta are pions, and which has
the feature of isospin invariance,

Since isospin invariance proclaims the equivalence of states with different
electric charge, it is flagrantly violated by electromagnetic interactions.
Likewise, the decay of the neutron involves a change in the value of I, (the
leptons having no isospin), so the weak interactions also do not conserve
isospin. However, this only means that the electromagnetic and weak
Hamiltonians have non-zero commutators with the isospin operators; it is
possible to apply isospin to these interactions by determining the exact form of
the commutators.

The formula (6.3) shows that electric charge is the sum of I,, which is a
component of the isovector I, and a quantity —4Y which has the same value
for all members of an isospin multiplet and therefore commutes with all
isospin transformations, ie. it is an isoscalar. The electromagnetic
Hamiltonian H__ has a similar structure:

Hp=elmd,=e(J"+J" )¢, (6.35)
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where g, 1s the photon field and the electromagnetic current J_, is the sum of an
isoscalar J® and the I,=0 member of an isospin triplet [J' :m=0, +1}.
Example 4. Radiative decay. The p-mesons (p~, p% p*) are an isospin

triplet. One of their rarer decay modes is to emit a photon and become a pion.
Since the electromagnetic Hamiltonian contains the small parameter e, the
decays can be treated by first-order perturbation theory; this gives the
amplitude for p* — n 7 +7 (ignoring kinematical factors) as

M.={n"yHalp* ) =e(n" [Jalo*>- (6.36)
Labelling the particle statesas|p I I,>=|p | m} and |z | m}, we have from the
Wigner—Eckart theorem (p. 148)

¢ 1 m|J®p 1 my={1 mj00, 1 m){r|J°) p) = (x| J°| o)
and

{rlmld oo 1my=L1m|10, 1 mdn| | o).
Hence, using the Clebsch-Gordan coefficients in Appendix 111,

M,=(n*[Jalp*y=<{r LI+ 0 ) m 1 1)

={nl|Jfo> + [ o).
Mo= (a0 0% =< 1% p>

and
My=(r" Pl ™y =<l 0> — ir| o
Thus the three amplitudes are related by
M., +M_=2M,. (6.37)

The weak interaction, at the level of hadrons and leptons. can be described
by an effective Hamiltonian

H,=g.Ja' s (6.38)

where the charged weak current J, is the sum of a number of terms which
include the leptonic current

Jp=ev +pu'v, +1'v, (6.39)

and also a term J'_ which belongs to the same isospin triplet as the
electromagnetic operator J' ;. The third member of this triplet, J! ., occurs in
Jy'. The terms J,_'J' _ and J', Ji, in the weak Hamiltonian are responsible
for nuclear fi-decay processes like those on the left and right of Fig. 6.1; the
electromagnetic Hamiltonian J' ;. is responsible for the y-decay in the centre
of that figure. Thus the three processes shown there are related to the three
components of a single isovector, and are governed by a single reduced matrix
element (see problem 6.11). This is a pointer towards the unified electroweak
theory, which will be described in §6.7.

It is remarkable that all weak processes, whatever particles they involve
(whether hadrons, leptons or both), can be described in terms of the single
coupling constant g,’. This fact is called the unmiversality of the weak
interactions.
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The property of strangeness was discovered in the new particles that are
created in the collisions between cosmic rays and terrestrial matter. Cosmic
rays themselves are mainly ordinary nuclei which originate outside the solar
system and arrive here with enormous energies; when they collide with other
nuclei this energy makes it possible to produce a numerous burst of particles. A
number of the particles listed in Table 6.1 were first observed in these cosmic
ray bursts, in particular the A”, the £* and the = doublet among the baryons,
and the two K doublets among the mesons. They are unstable, decaying as
follows:

AP=N+nm Ef=N+nr, S—=A+m (6.40)
K—=2r, K =3z, K—=n+i+7, (6.41)

where N denotes a nucleon and / a lepton (e* or g*). Their lifetimes are of the
orderof 107 '%to 10~ * s, which is time enough for them to leave a visible track
(centimetres long) in a photographic emulsion or, if neutral, a visible gap
between the point of production and the point of decay. This time scale is
characteristic of the weak interactions,

On the other hand, large numbers of these particles appear in cosmic ray
collisions: there is a high probability that they will be produced. This means
that the Hamiltonian governing the process has large matrix elements; in fact
the rate of production is consistent with its being governed by the srrong
Hamiltonian. This seems to conflict with the fact that their decays are
governed by the weak interactions. Most of the decays involve strongly
interacting particles; one would therefore expect them to be governed by the
strong interaction (the particles involved in the original production being
available as a virtual intermediate state), and to exhibit the typical strong-
interaction time scale of 10~ **s, There is something strange about these
particles.

The resolution of this puzzle was proposed by Pais, Gell-Mann and
Nishijima in 1952. They suggested that the reason that the decays did not take
place by the strong interaction was that they involved a change in a quantity
which was conserved by the strong force. This quantity belongs to the strange
new particles but not to the other particles (nucleons, pions and leptons); the
decay of a strange particle can therefore only take place by the weak force,
which does not conserve strangeness. The production of strange particles can
take place by the strong force if strangeness can take positive and negative
values, like electric charge and the other quantum numbers, and if particles are
produced in pairs with total strangeness 0. Observation confirmed that
strange particles are produced in pairs and confirmed the idea of strangeness.

The assignment of strangeness to particles is shown in Table 6.3. The
baryons all have strangeness of the same sign (conventionally chosen as
negative; their antiparticles have positive strangeness), while one of the K-
meson doublets has strangeness + | and the other has strangeness — 1, At
moderate energies the production process will yield a strange baryon together
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with a positively strange K-meson, e.g.

p+p—=n+EX " +K", 6.42)
To produce a negatively strange K-meson requires more energy, since it must
be accompamied by a particle (either another K-meson, or an antibaryon)
which cannot be obtained by converting a nueleon. Thus the K ™ is rarer than
the K *; in this sense K * and K" go together with nucleons and other barvons
to count as ‘matter’, while K~ and K are antimatter.

In the decays (6.40){6.41), in which the particles lose their strangeness, the
total strangeness changes by just one unit at a time. Thus the Z-particles, with
strangeness § = =2 must decay twice before becoming a non-strange particle.
For this reason E is sometimes pronounced ‘cascade’. An example of such a
two-stage decay is shown for the antiparticle of the 27 in Fig. 6.2,

Strangeness is a property of an isospin multiplet as a whole: all members of
the multiplet have the same strangeness. In this respect it is like baryon

Table 6.3. Strangeness

Particle x A ELEY RUK- N 4

Strangeness -1 -1 -2 +1 -1 0 0

Fig. 6.2. Two-stage decay of
E" (=E7) (photo: CERN).

K- +p=—e3* 4 A4 (+5%)
pem
Aem®

fome
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number. There is a relation between these two properties and the multiplet
property of hypercharge: a comparison of Tables 6.1 and 6.3 shows that

Y=B+85. (6.43)

As was descrnibed in Chapter 1, strangeness is now understood as the
characteristic property of a third quark s which is heavier than the u and d
quarks. The £ and A particles each contain one s quark,asdo K ~ and K% the
E particles contain two s quarks, while K” and K* contain the antiquark 5.

The decays of strange particles can all be understood in terms of the decay of
the strange quark:

s—=u+W- or Zd+W", (6.44)
followed by the creation of a pair of particles from the W. If the particles
created are a quark and an antiquark, the result 15 a set of quarks and
antiquarks which then rearrange themselves into the final particles. [t is found
that, to a good degree of accuracy, the effect of this whole process is to change
the total isospin by 4: the process is described by an effective Hamiltonian
which transforms as one member of an isospin doublet. Thus in the decays
A = N+n the final state is the combination of [nn}-and |[pn ™) with total
isospin 4, which is /Ann"+./%lpr~ ) (Clebsch-Gordan coefficients);
hence

DA = p+x :TA? - n+a")=2:1. (6.45)

The actual ratio is 64:36.

This Al =4 rule appears to be hopelessly wrong in the decay K * — n° + 27,
for since all the particles are spinless the two-pion state, with zero relative
orbital angular momentum., is symmetric in its spin/orbital state and therefore
must be symmetric in its isospin state. This means that its total isospinis 0 or 2;
but I,=1, so /=2. Since the K-meson has [ =1, the isospin carried by the
Hamiltonian must be Al =2 or 4, and the amount of Al =1 is strictly zero.
However, the rule successfully passes the test of this exception, for this decay is
considerably slower than the decay K° — 2n which does obey the Al =4 rule,
the ratio of the rates being 1:138 This indicates that the part of the
Hamiltonian which has isospin § is very much larger than the other parts,
which is the sense in which the AI'=14 rule is to be understood.

The semileptonic decays of strange particles, i.e. the last decay of (6.41) and
rare decays like

A=p+e +i, (6.46)
can be understood in the same way as f-decay, in terms of the current-current
Hamiltonian (6.38) (the purely hadronic decays do not fit simply into this
scheme). They can be incorporated by adding a strangeness-changing term

Ji =Ap+ (%) K"+ (6.47)
to the weak current. As the notation indicates, J ! _ transforms as a member of
a doublet under isospin transformations. Like the leptonic term (6.39), this
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current involves a change in electric charge; it also involves a change in
strangeness of the same amount. Thus in all decays like {6.46), the change in
charge and strangeness of the hadrons are equal:

AS=AQ. (6.48)

One further modification must be made to this current-current
Hamiltonian. The force responsible for (6.46) and similar strangeness-
changing decays is weaker than that of fi-decay by a factor of about 20; thus the
Hamiltonians governing these decays must be of the form g.'J! ~J\p and
g _J with g, #.". This spoils the universality of the weak interactions.
An insight into this can be obtained by writing

gu =g, c0s . g,"=g, sin f; 6.49)
and taking the full current to be
Jo=J"_ cos O-+J'_sin O.+J,. (6.50)

The hadronic current is then a superposition of two parts J' _ and J*_ which
are regarded as orthogonal. The angle £ is called the Cabibbo angle; its valueis
about sin~" (0.23). The Hamiltonian J,J," constructed from this current
differs from (6.3%) in its action on non-strange particles: the various parts of
this new Hamiltonian have coupling constants g, cos? 0, ¢, cos 0 and g,
instead of having a single universal coupling constant. Since cos f-= |, the
differences are small; experiments confirm that (6.50) is the true weak current.

Strangeness is not the only quantity that is conserved in the production of
strange particles but not in their decay; the same applies to parity. This is
illustrated by K-mesons. The production of kaons, and all scattering processes
involving kaons and other hadrons, are consistent with parity conservation if
the intrinsic parity of the kaon is taken to be negative; this is also what would
be expected from its quark composition, by the same argument as for pions
(see p. 153). But in the decay K = 2n the final state has parity (= 1), where [ is
the relative orbital angular momentum, since all pions have the same intrinsic
parity; and since pions and kaons are all spinless, | =0 and so the parity is + 1.
Thus the weak interactions do not conserve parity and therefore are not
invariant under mirror reflections,

Let us consider the possibility that the weak interactions are invariant under
the combined operation CP, so that there is symmetry between particles and
their mirror-image antiparticles. This has particular consequences for the
neutral kaons K° and K°, which we will denote collectively by (K)°.

The only difference between K and its antiparticle K is the value of
strangeness. Since this is not conserved, it does not commute with the total
Hamiltonian and it is not necessary for the eigenstates of 5 in the (K)? system
to be eigenstates of the Hamiltonian; K° and K° need not be stationary states.
If the system is invariant under CP, the stationary states must be eigenstates of
CP(more precisely, there must be a complete set of simultaneous eigenstates of
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H and CP). If we consider the states of a (K)° at rest, the effect of CP on the K
state is to take it o a K" state, and we can define the states so that there is no
phase factor:

CPIK®=[R®), CP|R%=|K"). (6.51)
Then the eigenstates of CP are

[Ks®y = MK +|R%) and |K. *»=/HK>=|K®) (6.52)
with eigenvalues + 1 and — 1 respectively.

MNow consider the decays (K)" — 2z, Any state of two pions with zero total
charge must be an eigenstate of CP with eigenvalue + 1, for the effect of CP is
to interchange the particles (P doing the job in the orbital state and € in the
charge state), and pions are bosons. Hence if CP is conserved, only the +
cigenstate K" is free to decay into two pions; the other eigenstate must decay
into three pions or a pion and two leptons. The phase space factor is much
larger for the 2z decay than for the 3x decay, so the 2r decay has a faster rate.
This rate is also faster than that of the other three-body decay K — m+ 1+, It
follows that the + eigenstate K. has a shorter lifetime than the —
cigenstate K, "

These conclusions are confirmed experimentally. There are two observed
neutral kaons, the short-lived K" which decays into two pions with a lifetime
ofty=T3 ' =09x 10~ "' 5,and thelong-lived K, ® whose lifetimeisr, =", "=
5% 10785,

The existence of the superpositions (6.52) offers a clear demonstration of the
basic principles of quantum mechanics. When the particles are first produced
(by a strangeness-conserving strong interaction), they are in an eigenstate of
strangeness; as explained above, a collision process at moderate energy will
produce the positively strange K.° This can be distinguished from K by its
interactions with ordinary matter; the K” undergoes only elastic or charge-
exchange scattering

K'+n—=K%n. K%p—-K"+n, 6.53)
while the K” can be absorbed:
RO+p—A+n* (6.54)

(it behaves like antimatter). Roughly speaking, matter is transparent to K but
opaque to K".

The K” is a superposition of K” and K, ? with equal coeflicients, so it has
equal probabilities of decaying quickly into 2x or slowly into 3n. Thus if a
beam of K. particles is prepared and left for several short lifetimes, about halft
of the particles will remain and they will all be K, °, decaying only into 3. This
is a superposition of K" and K° with equal coefficients, so if the beam is passed
through a slab of matter half of the particles will behave like K° and be
absorbed (whereas none of them would have done immediately after

t To be precise, {[exp (=T t)+exp(—Cst)]; Tor is small and Cgr is large.



Fig. 6.3,
Polarised light and neutral K-
mesons: (a) polarised light;

{b) neutral K-mesons.
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production). The particles that emerge from the slab will be K° and again half
of them will decay into 2n. The K" particles have been regenerated from the
K, ? beam.

This behaviour is strikingly analogous to the behaviour of polarised light
passing through crossed polaroids (see Fig. 6.3). K® and K° are analogous to
light polarised in the north-south and east—west directions, while K ® and K®
are analogous to light polarised NE-SW and NW-SE. A slab of matter acts
like a polaroid with its axis pointing north, while the analogue of passing light
through a polaroid oriented NE is the operation of waiting several short
lifetimes. A (K)° exhibiting 2n-decay is like light passing through a polaroid
oriented NW. Now the fact that a slab of matter will regenerate K.° particles,
causing a resurgence of 2m decays. corresponds to the fact that no light can
pass NE-oriented and NW-oriented polaroids placed together, but some light
can pass il a N-oriented polaroid is placed between them. Leaving the (K)?
system to evolve acts like a measurement of CP, forcing it into an eigenstate
|K. "> or [Ks"): scattering it off nuclei acts like a measurement of strangeness,
forcing it into an eigenstate |[K?) or |[K%).

Let us look more closely at the time development of the K? after its
production. If the particle is at rest the eigenvalues of the Hamiltonian are my¢?
and mgc® where m, and m are the masses of the K, ® and K" particles; hence,
taking into account the decays of the particles (and taking h=c= 1), the time

S
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development of K" can be represented as
K =/ HIK. ") +[Ks")
- |KU!I} = \-':{:[exp (=4l — i'm._!}]lK. oy

+exp (=45t —imgt)| K. (6.55)
The probability that the particle will behave as K" after a time r is therefore
[CKOR( [P =4[e "V + "5 + 26 4L T5¥ cog (Ami)] (6.56)

where Am =m; —ms. Thus the system oscillates with frequency Am. The period
of these oscillations is of the order of the short lifetime rg, and is easily
measurable; it yields a mass difference Am with the astonishingly small value of
10~ """ MeV. This makes the (K)® system a sensitive detector for delicate effects,
including even gravitational effects.

It is ironic that the K,° particle, whose existence was deduced from CP
invariance, was the agent of the discovery that CP is not conserved. In 1964 it
was found that the K, ® does decay into 2x. Thus either K, ” is not an eigenstate
of CP, in which case CP does not commute with the Hamiltonian in the (K)°
system, or it is, in which case CP is not conserved in the decay K,° — 2n. In
either case CP invariance breaks down. The effect is small, and is not
understood.

Isospin transformations can all be built up from the fundamental
transformations (6.4), which change the u and d quarks into combinations of
each other. The transformations act on any hadron by acting on all the quarks
in the hadron; quarks other than u and d are left unchanged. Clearly this can be
extended so as to include the other quarks. To start with, we will just include
the strange quark s; this requires transformations like

u) — afu) + pid> +7ls)

[d) — djud +eldd + (s> }. (6.57)

[y = nluy +0jd> +xis>
where the matrix of coefficients belongs to SU(3). These give rise to a group of
transformations of hadron states which are called simply SU(3)
transformations.

If the strong force had the same effect on all three quarks, u, d and s, these
SU(3) transformations would commute with the Hamiltonian and particles
would form equal-mass multiplets carrying representations of the group SU(3).
This cannot be quite true, since the s quark is significantly more massive than
the u and d quarks, and at least the free-particle part of the Hamiltonian will
not be invariant under SU(3) transformations. But this does not affect the
existence of the multiplets, it only introduces differences in mass between
members of a multiplet.

In order to find the form of these multiplets we will examine the structure
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and representations of the group SU(3). As in the case of the rotation group,
this is best done by examining the Lie algebra of the group. The Lie algebra of
SU(3) consists of all antihermitian 3 x 3 matrices with zero trace (see p. 108),
We multiply these by i to obtain hermitian generators, The set of all hermitian
3 x 3 matrices is a nine-dimensional real (not complex) vector space (three real
numbers are needed to specify the diagonal entries, six to specify the three
independent complex entries off the diagonal). The condition of tracelessness
removes one dimension, so SU{3) has eight independent hermitian generators.
A standard set of generators is the following:

[0 1 0] [0 =i 07 [ 1 0 0
.l:.| = I ﬂ U .|;.2 == i1 ﬂ ﬂ ' j,_; - ﬂ = 1 D e
g 0 0] 10 0 04 |0 0 0
[0 0 17 e I v R [0 0 O
Ag= 1070 Al SAe= | R0 Oy de=]0" 00 17,
B I | R 1 Li U 0] 0 1 0
[0 0 © I I 0 0
Aq=] 0 O —f], Ag= 7 [ 0. {6.58)
1+ v S 1 VL0 0 =2
These are called Gell-Mann's A-matrices. They have the property
ir :';‘J":'J'}= :Ii;j. [ﬁ.i?l
Their commutation relations are written
L A =2if (6.60)

{here, as in all equations in this section, suffices |, j, k take values from 1 to 8 and
the summation convention is used for repeated indices). The constants are the
structure constants of SU(3) (in this basis); clearly fz= —f, and as a
consequence of (6.59) we have

Sin= =i (Gdh — LA = —dite (A4, — AAd) =fuy 6.61)

Thus the array fi is totally antisymmetric. It does the same job for SU(3) as
&u does for SU(2).

The generators (6.58) are chosen so as to bring out the structure of the group
SU(3). The matrices 4,, 4, and 4, consisting of the Pauli e-matrices bordered
by Os. are the generators of a subgroup which is isomorphic to SU{2); referring
to (6.57) we see that these generators act in the subspace spanned by |u} and
|d>, so this is the isospin (or I-spin) subgroup. The matrices 4, and 4, together
with

00 0 I /3

iy=[0 1 0|=—ciy+Xdy, (6.62)
00 -1 = E

generate another SU(2) subgroup which acts in the (d, s) subspace; this is called

the U-spin subgroup. A third SU(2) subgroup, acting in the (u, s) subspace, is
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generated by 4, A, and

1 © 0 | /3

Vo= [u 0 n} =5 Ay 42— 1 (6.63)
00 -1

this is called the V-spin subgroup.

The physical SU(3) operations are represented by a group of unitary
operators on the state space of all hadronic states. Their hermitian generators
are a set of eight hermitian operators F,, . .., Fg which bear the same relation
to the Gell-Mann matrices as the isospin operators I, [,, I, do to the Pauli
matrices; they have the commutation relations

LFy Fil=ifipFs- (6.64)
Fora=1,2,3 we have F, = [ the other two SU(2) subgroups have generators
(U, Us, Us)corresponding to (45, 4., p3),and (¥}, V5, V3) corresponding to (4,
—Ag, —v3). Thus we have

I;=F,, Uy=—-4F,+1/3F, V,=—4F, —iq’.’ih. (6.63)
The raising and lowering operators in these subgroups are
I,=F,+iF;, U,=F4+iF,, V.=F,FiF;. (6.66)

We will now see how their roles of raising and lowering operator fit together in
the wider context of SU(3), and at the same time obtain a more meaningful
form of the commutation relations (6.64).

Among the matrices (6.58) two which commute are the diagonal matrices 4,
and 4 none of the others commute with both of them. Hence F; and F form a
complete set of commuting operators in any representation of SU(3), and we
can label states by their simultaneous eigenvalues for these operators. Now [,
act as raising and lowering operators for F 5, and commute with Fg; hence their
effect on a simultaneous eigenstate |r, 5 is

Lrsy=|r 1,5 (6.67)
Let us regard (r, 5) as the components of a two-dimensional vector | and write
the simultaneous eigenstate |r, s> as |I>; then

I D=+i) (6.68)

wherei=(1,0). The effects of U, are similar. They act as raising and lowering
operators for Uy= —4F,;+4,/3F; and commute with the orthogonal
combination 4, /3F ; + 4F g |I) is an eigenstate of U, with eigenvalue u- | where
u=(—1, £,/3), so the effect of U, is

U, |lp=[1tu). (6.69)
Similarly,
Vo> =[1£v) (6.70)

where v=( —4, —1,/3). The vector | of simultaneous eigenvalues of F, and Fy
iscalled a weight, and the simultaneous eigenvector |1’ is called a weight vector.
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The roots of SU(3).
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Because 1., U, V. shift the weights around in a plane. we will call them shift
operators.

The Lie algebra of SU(3) (i.e. the commutators of F,,..., Fg)can now be
described as follows. It is characterised by the six special vectors +1i, +u, +vin
the plane R (see Fig. 6.4), which are called the roots of SU(3). For each root a
there is a shift operator E{a) (e.g. E{ —u)= U _}; we define E{a)=0ila is not one
of the six roots. Let H=(F,, F)and let a and b be any two-component vectors;
then the commutators are

[a-H.b-H]=0, (6.71a)
[H, E(a)] =aE(a), (6.71b)
[Ela), E{—a)] =2a-H, {6.71c)
[Ela), Etb)] = Ela +b). 6.71d)

(a) is the statement that Fy and Fg commute; (b) shows the E{a) as shiflt
operators; (c) shows the SU(2) algebra in which E(+a) play the roleof J .. The
form of (d) is a consequence of the Jacobi identity:

[H, [E(a), Eib)]]=[[H, E(a)], E(b)] + [E(a), [H, E(b)]]
=(a +b)[ E(a), E(b)] (6.72)
which, by comparison with (b}, shows that [E(a), Eib)] must be a multiple of

Eia +h). Note that

[y=i-H, Us=u-H, Vy=v-H. 16.73)
A representation of SU(3) can be described by giving the pairs of
simultanecous eigenvalues of F; and Fg in the representation; thus it
corresponds to a diagram consisting of a number of points in a plane with
Cartesian axes labelled F, and Fg, cach point representing a simultaneous
eigenvector. This is called the weight diagram of the representation. [t must have
the property that neighbouring points are connected by one of the root vectors
of Fig. 6.4; also, because of the symmetry between i, u and v in the structure of
the Lie algebra (which comes from the symmetry between the three SU(2)
subgroups in the group) the weight diagram must be symmetrical under
rotations through 120° about the origin. We will not undertake a general

te
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description of all possible representations of SU(3), but will just describe a few
which are particularly important for particle physics.

The fundamental representation is the three-dimensional representation in
which each element of SU(3) is represented by itsell as a matrix; the
representation space consists of complex 3 x | column vectors. F, and Fg are
represenied by the diagonal matrices £, and 44, 50 their eigenvalues are given
by the diagonal entries. This gives the weight diagram of Fig. 6.5(a). The points
of the diagram are labelled by the quarks which form the corresponding
eigenstates in the representation (6.37),

The conjugate representation is the three-dimensional representation in
which each element U of SU(3) is represented by the complex conjugate matrix
U. The hermitian generators of this representation are of the form

xes”ﬁﬁpu=—kthq=—f (6.74)
s s

where X is the hermitian generator of the fundamental representation
corresponding to the sequence Uls) of group elements. Thus the eigenvalues
are the negatives ol those in the fundamental representation, and the weight
diagram is obtained by inverting that of the fundamental representation
through the origin (Fig. 6.5(h)). The eigenvalues thus obtained are thequantum
numbers of the antiparticles of the quarks of Fig. 6.5(a).

If the fundamental representation p is regarded as acting on a three-
dimensional state space. like the quark space with basis |u}, |d), |s) with which
we opened this section. then the conjugate representation p actson the space of
bras as follows (see problem 6.19):

MUY= y|U". (6.75)
The adjoint representation acts on the space of all traceless 3 x 3 matrices A

according to
A= UAU '=p(U)A. (6.76)

The hermitian generators of this representation are given by
A= :s [Us)AU(s) " '], 0=L[X, 4] (6.77)

where X is as in (6.74). This operation, of taking the commutator with X, is

Fig. 6.5 Fy
Weight diagrams for SU(3): 4 Ag+idy | A +idy
i u L 1 - -
{a) lundamental; (b) conjugate; . . T
N | R | Aq. Al"'ul
{¢) adjoint. $
Fl Al
43 n* L] 3 =
Ay | a-a

{a) (3] {e)
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The sextet and decuplet
representations.
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denoted by ad X'. Thus the generators F 4 and F, for the adjoint representation
are
Fy=adl;, Fy=adig. (6.78)

The weights of the representation are the pairs ol eigenvalues of these. Now the
commutator (6.7 1d) shows that in any representation the effect of adH on the
shift operator Ela)is to multiply it by the root vectora. Taking H=(4,, i;), this
shows that each root vector is a pair of eigenvalues for (adi s, ad;). Also (0,0)
occurs twice as a pair of eigenvalues, the eigenvectors being 4, and iy
themselves. Thus the weights of the adjoint representation are the eight points
shown in Fig. 6.5(¢).

The adjoint representation can also be described using the form (6.64) of the
Lie algebra, by saying that the representation space is eight-dimensional with
a basis |,y (i=1....,8) and the hermitian generators X, act according to

Xijvp =ifiulo- (6.79)

These three representations are also called the triplet, antitriplet and octet
representations and denoted by 3, 3 and 8. The singlet representation 1 is the
trivial one-dimensional representation in which all elements of SU(3) are
represented by the identity operator, and all hermitian generators are zero.
The triplet representation is the first of a series of representations with
triangular weight diagrams; the next two representations, the sextet and the
decuplet, are shown in Fig. 6.6. These representations can be defined as
follows. The representation A, whose weight diagram is a triangle with sides n
times as long as the triangle of the fundamental representation, Fig. 6.5(x), acts
on symmetrised products of n vectors taken from the fundamental

representation space ¥, ie the representation space of A, is
¥ w ¥ v v ¥ (ntimes). The weight vectors of A, are of the form S(|l, - - -
l,>) wherel,,. . ., are weights of the fundamental representation; there is one

such weight vector for every unordered choice of n weights 1, and its weight is
I, + - -+ +1,. They can all be obtained by starting with [I;3[lo3 < * - [lg). where
ig the top right-hand weight of Fig. 6.5(a), and changing up to n of the weights|,
into one of the other two; the total weight is obtained correspondingly by

{a) (b
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Fig. 6.7.

SU(3) multiplets: {a) baryons
JP=1" lifetimes ~ 1079 sec;
(b) baryons J"=3" lifetimes

~ 1072 sec;

ic) mesons J* =07, lifetimes

1078 1o 10~ 19 sec;

(d) mesons J©=1", lifetimes

~ 107 %% ser;

{e) meson J* =0, lifetime

ju—lﬂ 56

(f) meson J = 1", lifetime

10722 sec.
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starting with nl, and moving up to » times along one of the arrows —iorv.
This gives the triangular weight diagram.

By starting with the conjugate representation we can obtain a similar series
of triangular representations, the triangles now, like that of Fig. 6.5(b), being
the right way up.

We have already seen the patterns of Figs. 6.5(c) and 6.6(h) in Figs. 1.4 and
1.5, which show how hadronic particles do indeed fall into multiplets carrying
representations of SU(3). The lightest baryons (which have zero charm, beauty
or truth and decay only by the weak force) form an octet like Fig. 6.5(c), while
the next lightest baryons, which (with one exception, to which we will return)
are unstable to decay by the strong force, form a decuplet like Fig, 6.6(b). The
mesons also fall into SU(3) multiplets, all octets and singlets. These multiplets
are collected together in Fig. 6.7; their decays are summarised ip Table 6.4,

Let us see how the SU(3) multiplets of mesons and baryons can be described in
terms of quarks. The quarks u, d and s form an SU(3) triplet, as in Fig. 6.5(a).
Let 2 be the three-dimensional state space of these quarks, and let 2 be the
state space of their antiparticles, so that 2 and J are the representation spaces
for 3and 3. The states of a quark and an antiquark form the two-particle state
space 2 @ Z. In this space the eigenvalues of Fy and Fy are obtained by adding
the eigenvalues for the individual particles; so each weight of 2® 2 is the
vector sum of a weight of 2 and a weight of 2 Hence the weight diagram of
2 @ Fis the union of three copies of the weight diagram of 7, each centred on
one of the points in the weight diagram of 2 This yields the octet diagram with
one extra point (Fig. 6.8), which suggests that 7 ® J splits into an octet and a

il p A= A® At Ar¥
™ ® (940) . - . e (1232)
A° (1115)
. -. o— (1190} — a4 a— (13E5)
E- E% B+ E- o

E_ ;‘ {1320) E'I';_ E-" (1530)
(@) ®) »0- (1672)

Kl‘ h'.lr Ki! Kld-

- . (495) ® . (892)
LI ) : ;i‘ ,_ (1020)
pu g (140} P PO (TT0)

- L3 (495) [ ]

K- K® | S i“ (892)
ic) (d)
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singlet;
Ii=8gl (6.80)
Algebraically, this decomposition can be understood as follows. If 2 is a
space of kets, 7 can be regarded as the space of bras. Then 2 ® 7 (which is

isomorphic to 7 @ 2) is spanned by products | > (/. i.e. operators on 2 They
transform under SU{3) transformations. according to (6.75), by

lé> <] = Uldr U= Ul (y|Uu ! 6.81)
(since U is unitary), i.e. in accordance with (6.78). The octet representation
space, consisting of traceless operators, is a subspace of this 2 ® #; the
orthogonal one-dimensional subspace is the space of multiples of the identity
operator, which is invariant under the transformations (6.78) and so
constitutes the singlet representation.
SU(3) invariance now fixes the quark composition of the three neutral, non-
strange mesons n, y and 5", If the iy’ is an SU(3) singlet, it corresponds to the

Table 6.4. Principal decays of the particles in Fig. 6.7

Weak decays (lifetimes 107'° to 1078 51

Baryon octet 0~ meson octet
AS=0 n—p4+e +7, BT = u" 4%, "7 —pT 4y,
A+ MN+n K- =u +7, K'—=pu’+y,
o E* s N+n K% =2z 3a
0 E=+A+n K" =2, K\"=3x

Baryon decuple: ™ = =247, 0" = A"+K~

Electromagnetic decays (lifetimes ~ 10~ *" g)*

Baryon octet 0~ meson octet 0~ meson singlet
n° - 2y 8
A4y n—2y Wer piy
= I N —n+2n

Strong decays (lifetimes ~ 10~ 2%g)*

Baryon decuplet 1~ meson octet 1~ meson singlet
A—=+N+n p=In

E*=E+n, A+m ¢—=K+EK, In o — 3n
E'+Z=4n K*+K+n

* The neutron lifetime is exceptionally long because of a very small phase space factor.
* The question of how particles with such short lifetimes are observed will be taken up
in &6.4.
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identity operator

1=|u){u|+|d>{d|+]s><5 (6.82)
on 4. Since each bra vector transforms like the corresponding antiquark state,
this gives

[y =(1//3)(uit) +|dd> +[s3)) (6.83)
as the normalised quark-antiquark singlet state. The octet particles n° and n

must correspond to traceless operators on 2 and therefore to quark-antiquark

states of the form
L

Y culaarl@s> with ¥ e,=1, (6.84)
z, = a

writing (u.d.5)=1(q,.93.93). The n” has isospin 1,50 it must be composed of the
isospin-% particles (u. @i, d, d); the neutral I =1 combination of these is

[7% = /4(|uiay —|dd}) (6.85)

since from (6.14) the antiquark isospin doublet is h‘|ﬁ}. -ila}} and we can
ignore the phase factor i. Now the 5 must be orthogonal to both (6.83) and
16.85):

Iy =/Hua) +|dd) —2ss>). (6.86)

The full set of nine quark-antiquark combinations is called a nonet. Fig. 6.7
shows two such nonets, one with J* =07 (which can be identified as the set of
quark-antiquark states with /=0 and s=0, since the quark and antiquark
have opposite intrinsic parities), and one with J*=1" (I=0, s=1). In each
nonet there are two isospin singlet states, the SU(3) singlet like (6.83) and the
SU(3) octet state like (6.86); the states observed as particles can be
combinations of these if SU(3) invariance is not respected. It appears [Perkins
1982, £5.4] that in the 0~ nonet the observed particles n and n'’ are close to the
SU(3) octet and singlet states, but in the 17 nonet this is not true and the
particles are better represented as

|2 =1s5), |wd=/Hud[a>+[d>|d>). (6.87)

The barvons are three-quark states. To understand these, first consider the
two-quark state space 2 & 2. The procedure of Fig. 6.8 leads to the weight
diagram of Fig. 6.%a). We know that this must contain the sextet
representation, since this acts on the symmetric subspace 2 v 2 of 2 @ 2; if

this is separated out, as in Fig. 6.9%(b), what is left is the antitriplet
representation:

I@3=6@l (6.88)

To obtain the weight diagram for three-quark states, we must superimpose
the quark weight diagram on both diagrams for 6 and 3, in the manner of Figs.
6.8 and 6.9. We know that this must contain the decuplet, which was defined to
be the symmetric three-particle state space 2 v 2 v 2, this occurs in 6 & 3,



Fig. 6.8,
Imi=8@l.

Fig. 6.9.
II=6@ 3

6.3 The eightfold way 253

which also contains an octel. Thus we have

IR3RI=62I2I=623I23R)=10a84881. (689
S0 the three-quark states include a decuplet and an octet, which occur as
multiplets of baryons.

As expected, these SU(3) multiplets do not contain particles with equal
mass. In the baryon decuplet, for example, the mass of each isospin multiplet is
greater than the one above by about 145 MeV, Since the particles in each
isospin multiplet contain one more s quark than those in the one above, this
can be simply understood as being due to the s quark’s having a greater mass
than the u and d quarks. This also gives a qualitative understanding of the
mass differences in the baryon and meson octets. A more quantitative
understanding can be obtained by assuming definite SU(3) transformation
properties for the Hamiltonian (see problem 6.22),

The particle at the bottom of the baryon decuplet, the 27, is composed of
three s quarks and has strangeness 5= —3. A state with this strangeness
cannot be made up from any set of particles with total mass less than that of the
027 hence the decay of this particle must involve a change of strangeness and

NS

(@) )
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Fig. 6.10.

Production and decay of an

2

(photo: CERN).
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s0 it must be a weak process. Thus the lifetime of the 2~ is of the order of the
weak interaction times, about 10~ %*s. At the time when the theory of SU(3)
symmetry was developed the £2 ™ was not known but the other particles in the
decuplet were. The discovery in 1964 of this long-lived particle with such a
relatively high mass confirmed the ideas of SU(3) symmetry, in a striking
parallel to the confirmation of Mendeleev's periodic table by the discovery of
missing elements. Fig. 6.10 is a bubble-chamber photograph of the production
and decay of an Q"

Operators with definite SU(3) transformation properties can be formed
from the fields of particle multiplets in the same way as for isospin. Let the 3 x 3
matrix ¥ be an element of SU(3), and let U{Y) be the corresponding unitary
operator on the full state space; then if ¢, is the set of fields of the quark triplet,
regarded as a column vector &,

UiYiouiy)y '=Y®d

and ] ’ (6.90)
Uyeuy) ' =9'y"

of which the infinitestimal form is
[F.®]=i® and [F,®"]=-9'i, (6.91)

K-+p—1-+K"4+a*{+K")

Lonssor




SU4, 5 and 6)

6.3 The eightfold way 255

The combinations

V=00 (6.92)
form an octet operator, i.e.

[Fi. Kl=ifia k. (6.93)
More generally, if ¢, .. . . ¢y are the fields of any SU(3) multiplet of particles

regarded as a column vector @, and t; are the N x N matrices which are the
hermitian generators of SU(3) in this representation, then @'t @ is an octet
operator. This is the SU(3) counterpart of the SU(2) vecior operator (6.31).

If ¥ and W are both octet operators in the sense of (6.93), then VW, is an
SU(3) scalar and fj; V;W, is another octet operator. These correspond to the
scalar product and vector product of two SU(2) veclor operators.

An SU3) version of the Yukawa-Kemmer Hamiltonian (6.34) can be
constructed with a self-conjugate octet of particles, L.e. an octet in which the
particles at diametrically opposite points of the weight diagram are
antiparticles of each other. An example of a self-conjugate octet is the meson
octet of Fig. 6.7(c). Such an octet vields a set of hermitian fields «; which form
an octlet operator, defined by comparing the weight diagram with Fig. 6.5(c)
(for example, from Fig. 6.7(c) we have ¢y - =ay +ixs). The particles of a sell-
conjugate octet can be taken as field quanta for an SU(3)-symmetric force
acting on any SU(3) multiplet; the corresponding Yukawa-Kemmer
Hamiltonian 1s

H=0"1d 2 (6.94)

where @ is the column vector of fields for the multiplet.

The notion of symmetry between quarks can of course be extended
successively to the quarks ¢, b and t. This leads in turn to the symmetry groups
SUi4), SU(5) and SLI(6), which, in the same way as SU(2) and SU(3), can be
used to classily particles in multiplets and to obtain relations between decay
rates. The representations of SU{n) are described by (n — 1)-dimensional weight
diagrams; as an example, Fig. 6.11 shows the weight diagram for the adjoint
representation of SU{4). This has 15 points in a three-dimensional figure (a
cuboctahedron). There should be a multiplet of 0™ mesons corresponding o
this figure, comprising an SU(3) octet, a singlet, a triplet and an antitriplet.
These all contain a quark and an antiquark, as shown in Fig. 6.11. The axes in
this figure label I 4, strangeness and charm. The relation between [ ; and electric
charge is modified in the presence of charm, and modified again by further
flavours; the general relation can be expressed by the formula (6.3) where the
hypercharge is

Y=B+S+C—B+T (6.95)

(B=baryon number, §=strangeness, C =charm, B’ =beauty, T=1truth).
As the mass differences between successive quarks get steadily larger, the
symmetry beiween them becomes less and less real, and it becomes more
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Fig. 6.11

The adjoint representation of
SU4): thick lines outline
SU(3) multiplets.
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meaningful to classify particles in simple terms of quark content rather than by
SU(n) multiplets. The difference is a matter of the degree of superposition of
different quark structures, and can be illustrated by referring to the totally
neutral mesons n”, y and 5. From the three quarks u, d, s and their antiquarks
one might naively expect to form three totally neutral mesons ui, dd, 5. In
fact, because of the very good symmetry between u and d, the observed particle
7" is an equal superposition of ui and dd, and as shown in (6.83) and (6.86) the
other two particles are also superpositions. However, because SU(3) is not an
exact symmetry the observed particles are not actually given by these
expressions but by combinations of them, so that i is closer to s§ and i’ to ui +
dd. In the 1~ octet this is even more true, and the observed d-meson is almost
exactly s5. With the heavier quarks this trend continues, so that the totally
neutral mesons formed from them can be considered as ¢€, bb and tt.

Once it is known that hadrons (baryons and mesons) are composed of quarks,
the object of the study of hadrons becomes to understand the forces between
quarks. There are precedents for this in the study of the higher-level composite
systems, molecules, atoms and nuclei, which we will now briefly review.

In quantum mechanics forces are described by a Hamiltonian, whose most
charactenistic feature is its spectrum, the set of energy levels of the system. Inan
atom or molecule these energy levels are directly accessible to experiment,
since the differences between them give the frequencies of the radiation emitted
by the atom. Thus in atomic and molecular spectroscopy the basic
information-giving event is the decay of an excited state with the emission of a
photon.
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Another piece of information that is given by this event (or rather, by a large
number of similar events) is the lifetime of the excited state. This is not
measured directly (it is typically of the order of 107 "# 5), but deduced from a
second property of the emitted radiation, the width of the spectral line. The
radiation in a given line of the spectrum of a substance (i.e. that associated with
a given pair of energy levels) is not all emitted ai precisely the same frequency,
but is distributed over a narrow range of lrequencies, so that the line observed
in a spectrometer is not infinitely thin but has a finite width. This is to be
expected from the general discussion of decay in §3.5; the unstable excited
siate, not being a stationary state, is a superposition of energy eigenstates with
coefficients p(E) which, for the case of exponential decay, satisfy the Breit-
Wigner formula

5 Cf2n
Io(E) A+ (E-Ey)* (6.96)
After the photon has been emitted, the decay interaction can be neglected and
the energy can be taken to be the sum of the energies of the atom and the
photon. Since the energy of the atom is fixed, the total energy is measured by
measuring the frequency of the photon, which will show a distribution like
(6.96).

Foran atom to emit a photon from an excited state it must have been excited
in the first place. One way in particular in which this can happen is for the atom
to absorb a photon. In this case the whole process can be regarded as a
collision in which the photon is scattered by the atom, since it will not in
general be emitted in the same direction as it was absorbed from. If the atom
returns Lo the state it was in before the collision, the emergent photon will have
the same energy as the incident one; this is called elastic scattering. Time-
dependent perturbation theory shows that the scattering will only take place if
the eigenvalues of H, are nearly the same before and after, so that conservation
of energy can be applied by simply adding the energies of the atom and the
photon (as one would expect: when they are far apart, the potential energy of
interaction is negligible). Thus the absorbed photon has the same energy as the
emitted one, and it is distributed as in (6.96). More generally, the atom will
decay to another excited state and the overall process will be inelastic
scattering:

X+y=X+7. (6.97)

It is still true that the energies of both absorbed and emitted photons are
distributed in the Breit-Wigner form (6.96).

The upshot is that if the amount of scattering is plotted against the energy of
the incident photons, the graph shows a number of peaks at the energies of the
excited states of the atom, as in Fig. 6.12. In the case of atoms and molecules,
the scattering of photons when a beam of light is passed through a material
causes a depletion of the beam in the incident direction; peaks like those of Fig.
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Fig. 6.12.
Resonances.
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6.12 show up as dark lines when the different frequencies of light are spread out
in a spectrometer, This is called an absorption spectrum.

In general, for any scattering process in which a beam of one type of particle
is scattered off a target of another type of particle, we can plot the amount of
scattering against the total energy of one beam particle plus one target particle.
The "amount of scattering’ 1s defined as

number of particles scattered per unit time

R e e T o e 1635}

where the flux of the beam is the number of particles crossing unit area in unit
time. This ¢ has the dimensions of area, and is called the scattering cross-
section, because if each target particle presented a cross-sectional area which a
beam particle must hit if it is to be scattered, (6.98) would give that area. (If the
direction of scattering is specified, and (6.98) is taken to mean the number of
particles scattered per unit solid angle at that direction, the result is the
differential cross-section do/d(); the total cross-section o is the integral of this
over all directions.)

Eq. (6.98) is also used to define the cross-section for a process in which the
particles may change their identity, 1.

A+B—=C+D+E+--- (6.99)

The top line of (6.98) must then be understood to mean the number of beam
particles which initiate the particular process being considered.

A peak in the graph of scattering cross-section against energy is called a
resonance; if it can be approximated by (6.96) near some energy E,, I is called
the width of the resonance. We can now generalise from our discussion of
atomic and molecular specira to draw the following moral:

A resonance in a scatlering cross-section, at energy E, and with width
I, 1s an indication of an excited state of the target with energy E; and
lifetime I'~'.
In the inelastic process (6.97) there are two excited states involved: a first one
which is produced by the absorption of the incident photon, and a second one

Scatlering cross-section
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formed by the decay of the first. This second state will also decay, so that the
end result is

X+p—X+2y, (6.100)
the full description of the intermediate processes being
X+y=X"=X+7

XL (6.101)

If both decays occur so quickly that only (6.100) is observed, then both excited
states must be treated as resonances. The first is a resonance in the total cross-
seclion, as has already been described (in this context it might be more
appropriate to replace the word ‘scattered’ by ‘absorbed’ in the definition
(6.98) of the cross-section); this is called formation of the resonance, The second
excited state X', however, can only be detected by looking at the emitted
photons: if the energy of each photon is added to that of the final ground-siate
atom, it will be found that there are a large number of such Xy pairs with
energy close to that of the excited state X', and their energy is distributed about
the X' energy according to the resonance formula (6.96). This is called
production of the X' resonance.

These considerations are relevant not only to emission and absorption
spectroscopy, which we have been describing as the study of photon-atom
scattering, but also to other forms of atomic scattering. An atom can be put
into an excited state by a collision with another atom or ion or an electron, 5o
the scaitering of beams of ions or electrons off atoms can give information
about excited states. Also, an excited state can sometimes decay by the
emission of an electron; such a state is called an autoionising state. An
autoionising state of an atom X, which decays into theion X * plus an electron,
will show up as a resonance in the scattering of electrons from the ion X °; this
resonance represents not an excited state of the target but a bound state of the
target and the beam particle combined together.

Thus there are many scattering processes of the form (6.99) which can give
information about the excited states of atoms and molecules. The same is true
in nuclear physics: the excited states of a nucleus are determined by means of
scattering experiments in which the nucleus is bombarded with z-particles,
proions or neutrons.

To apply these ideas to particle physics we will have to take account of the
fact that particle collisions occur at high energy; the recoil of the target will be
significant, and relativistic mechanics must be used. In a process like (6.99), if
the two initial particles form a state X it will be characterised not by its energy
(which depends on its velocity, i.e. the centre-of-mass velocity of A and B), but
by its rest-mass my given by

my et = Ey? —pic?
=g ’c* =(E, + Ep)® —(ps+pa)c?, (6.102)



Fig. 6.13.
Barvon resonances.
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by conservation of energy and momentum. It is this guantity m,, the centre-
of-mass energy or invariant mass of A and B, which is significant in scattering
experiments: resonance formation is shown by a peak in the scattering cross-
section as a function of ;. Similarly, production of a resonance which then
decays into C+D is indicated by a peak in the number of CD pairs as a
function of mep.

All the ‘particles’ mentioned in this chapter which were ascribed lifetimes of
the order of 10~ 23 s, characteristic of the strong interactions, are observed
only as resonances. Thus the isospin-3 A multiplet is a set of resonances formed
in pion-nucleon scattering; the other unstable particles in the baryon decuplet,
the £* triplet and the Z* doublet. are produced as £x and Zn resonances and
seen in the final states of antikaon-nucleon scattering:

E+NoZ*4+n
[
—+ E+m, (6.103)
K+N—=Z*+K+n
|
<=+ (6.104)
These particles can only be seen as production resonances and not in
formation experiments, because their masses are too low for them to be formed
in K-N scattering.

There are many baryon resonances with masses in the region from 1 GeVio
3 GeV, with spins up to ¢ and possibly greater. They all have isospin and
sirangeness the same as one of the particles we have already met, N, Z, A, ZE or
A. These symbols, together with the mass, are used as names for the
resonances: for example, £{1670) denotes a triplet of resonances with isospin 1,
strangeness — | and mass 1670 MeV. The most prominent baryon resonances
are shown on a plot of spin against mass in Fig. 6.13,
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There is a similar profusion of meson resonances, including the nonet with
J'=1" which we encountered in $6.3. Their isospin and strangeness are
restricted to the values exhibited by m, K. K and y. They are mainly observed in
production processes such as

RN =aN+p

— 2m. {6.105)

This applies also to the g, the I=0 member of the 0~ octet whose other
members live long enough to form visible bubble-chamber tracks. However,
there is a class of meson resonances, namely totally neutral resonances with
J¥= 1", which are also observed in formation processes in electron-positron
scattering. Thus the p”, @ and ¢ mesons appear as resonances in the cross-
sections for

e +e'=a +n* or n +a'+a" (6.106}

These facts about resonances all go to confirm that hadrons are composed
of quarks, each baryon being a bound state of three quarks and each meson a
bound state of a quark and an antiquark. The isospin and strangeness values
of N,E, A, E. A and  are just those that can be obtained by putting together
three quarks chosen lrom w, d and s, while the isospin and strangeness of =, K.
K and n are just those of the quark-antiquark combinations of these three.
Thus the original particles with these names seem to be ground states of the 3q
or gq systems, and the resonances are excited states which decay to the ground
state. The set of masses of the resonances with given charge and strangeness
form a spectrum, like the set of energies of the excited states of an atom, which
should give information about the forces between the relevant quarks; thus
Fig. 6.13 should be regarded as being the same sort of diagram as Fig. 4.6.

These excited states usually decay by emitting a pion or kaon; this is not
analogous 1o the decay of an excited state of an atom, with the emission of a
photon, but involves the creation of a guark and its antiquark. This is
illustrated in Fig. 6.14 for the decays of the A** and the ¢. The
quark—antiquark pairs in these processes are created by virtual gluons, the
quanta of the interquark force, which play the same role inside hadrons as
photons do inside atoms.

Fig. 6.14{c) shows a method of decay for a meson resonance which is much
rarer than the tvpe of decay shown in Fig. 6.14(h). The Zweig rule states that
any process involving an intermediate state containing only gluons is
suppressed, i.e. has a very low rate compared with processes like Figs. 6.14(a)
and (b), in which there are quark lines which join the initial state to the final
state,

The formation of neutral meson resonances in electron—positron annihilation
can be understood by means of the Feynman diagram Fig. 6.15. The quark
and the antiquark in a totally neutral meson are antiparticles of each other,
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Fig. 6.14.

OQuark diagrams for resonance
decays: () is suppressed by the
Zweig rule,

Fig. 6.15.
Formation of a neutral 1°
MESON ESONANCE.
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and so they can annihilate to give a (virtual) photon, or be created from a
photon, in one of the basic events of the electromagnetic force. The probability
of this pair creation will be enhanced in a resonance-like way at energies at
which the quark and antiquark form a bound state. Such a bound state must
have the same angular momentum and parity as the photon, namely J"=1".
Itcan decay to produce hadrons (with the aid of further quark—-antiquark pair
creation, as in Fig. 6.14), or it can annihilate to give another virtual photon,
which then creates either an electron-positron pairora g~ u” pair. Thus the
formation of neutral 1~ meson resonances shows up as a simultaneous peak in
the cross-sections for e” +e” — hadrons (like (6.106)), " +e* =~ +pu",
and the elastic scattering e” +e¢” — ¢~ +e’.

&) g~ K+ K- H

(C)p—+m* 41 'ﬂi""ﬂ




Fig. 6.16.

J /iy decay: in accordance with
standard practice, gluon lines
are not shown.
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This process provided one of the first pieces of evidence for the existence of
the charmed quark. In 1974 an extremely sharp resonance in ¢ "¢ " scattering,
with a mass of 3100 MeV, was observed at SLAC (Stanford, California). It was
observed simultaneously in a production experiment at Brookhaven, New
York, where collisions of high-energy protons with beryllium nuclei produced
e ¢” pairs whose invariant mass showed a sharp peak at 3100 MeV. This
double discovery led 10 a double christening for the resonance, which is still
known as the J/i.

The width of the J/ is 0.06 MeV, which is very much smaller than the
widths of the other resonances and corresponds to a lifetime of about 10727 5,
characteristic of electromagnetic rather than strong interactions. If it was
composed of u, d and s quarks it would decay into pions and kaons and its
width would be of the order of 10 to 100 MeV like those of the other
resonances. This is reminiscent of the strangely long lifetimes of particles
containing the s quark, and can be explained in a somewhat similar way by
supposing that the J/i is a bound state of the fourth quark ¢ and its antiquark
€, which carry the new quantum number of charm. In the case of strange
particles an s quark and an 3 antiquark are created by strong interactions and
are prevenied from being destroved by them because they move apart in two
hadrons. In the case of the J/y the annihilation of the ¢ and the € is prevented
not by physical separation but by the Zweig rule, which would allow the ]/ to
decay only as in Fig. 6.16{a), for example. This will be impossible if all mesons
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Fig. 6.17.
{a) The  family;
{b) positronium.

6 Quantum nombers

with non-zero charm (like cd and éd) have masses greater than hall the J/\
mass. This was subsequently found to be the case. Thus the J/i can only decay
asin Fig. 6.16(b), which is an electromagnetic process, and Fig. 6.16(c), which
violates the Zweig rule and so has rate similar to that of the electromagnetic
process.

The existence of charmed quarks was confirmed by the discovery of the D-
mesons. These comprise two isospin doublets (D%, D ) and (D, D% and are
the charmed analogues of the K-mesons; their quark composition is (cii, cd)
and (d&, ug). They have lifetimes of the order of 10~'2 5 (like kaons, they can
only decay weakly). There are also charmed barvons A_” (an isospin singlet
containing c, u and d quarks) and £ _(an isospin triplet), and a strange charmed
meson F"=ci

The composition of the J/ as a particle-antiparticle bound state is
confirmed by some further spectroscopy. There are several resonances in the
neighbourhood of the I/ (some formed as resonances in e e’ scattering,
some produced in the decay of the first type) which can be understood as states
of the c€ system. Instead of classifying these by their spin and parity (J7) it is
more instructive to try to deduce the relative orbital angular momentum L and
total spin § of the quark and antiquark: values of these which are consistent
with the J* values of the resonances are presented in Fig. 6.17(a) on a plot of L
against the mass of the resonance, For companson, Fig. 6.17(b) shows the
stationary states of positronium (this is a refined version of Fig. 4.5(a), the
diagram of stationary states of the hydrogen atom, in which the eifects of
special relativity and the magnetic properties of the electron and positron have
been taken into account; these cause a separation between the degenerate
eigenvalues of the nonrelativistic, spin-independent Hamiltonian of $4.4). The
resemblance between the two is so close that there can be little doubt that the
resonances are states of a particle-antiparticle system like positronium.
Because of this resemblance, the o€ system is called charmonium, The spacings
between the energy levels of charmonium are greater (by factors of 107) than
those in positronium, showing that the force responsible for binding the c and ¢
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together is not the electromagnetic force but a very much stronger force of
similar form.

The discovery of the b quark followed a similar course to that of the c guark.
A narrow resonance was observed in the invariant mass of e e” pairs
produced in collisions between protons and uranium nuclei; it has a mass of
9460 MeV and a width of 0.04 MeV, This particle, called the T (capital
upsilon) is interpreted as a bound state of the fifth quark b and its antiparticle
b. It has been investigated by means of electron-positron scattering. which
again shows a spectrum of resonances very like the spectrum of positronium,
The bb svstem is called beautonium or (more commonly) bottomonium. A pair
of particles with non-zero value of the associated quantum number B’ (beauty)
has been observed: these are (B?, B*)=(db, ub) and (B, B%) = (bii, bd).

The sequence of 1~ resonances p°, @ (which are linear combinations of ui
and dd states), ¢ (=s5), J/i and T gives a consistent method for estimating
quark masses. Assuming that these states are close to the limit of zero binding
energy, we have

m,=my=4m, = 390 MeV
m,=4im,=~ 500 MeV

m, = 4m, , =~ 1600 MeV

iy, = kmy = 5000 MeV

The sixth quark t was observed in a different way from the others; it was
produced not by strong but by weak interactions, in the decay of the W boson:
W —t+b. (6.108)

This will be discussed in $6.6. The mass of the t quark is not known with
certainty, but it seems likely that

m, =40 GeV, (6.109)

(6.107)

There are a number of empirical reasons for believing that each quark has an
additional property beyond those we have already considered, which has three
possible values, so that the state space for quarks of a given flavour (u.d,s,c.b
ort)is not the usual spin/orbital statespace ¥ @ S but ¥ & % @ % where®
is three-dimensional. We will describe two pieces of evidence for this further
degree of freedom, which is called colour.

The first comes from baryon spectroscopy. The spins, parities and isospins
(and SU(3) multiplets) of baryon resonances formed from u, d and s quarks
correspond very well to the rortally symmerric states of three particles, each
having spin § and belonging to an SU(3) triplet, occupying the states of a
central potential like the harmonic oscillator or the hydrogen atom (the
relevant feature of which is that the states fall into orbital angular momentum
multiplets). For example, the A multiplet, with spin 4 and isospin 4, is the
symmetric combination of three spin-} isospin-§ particles all having orbital
angular momentum [=0 (this extends to the 1 decuplet, which is the
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symmetric combination of three SU(3) triplets); the A multiplets with spins 4,4,
3,7 with masses around 1900 MeV (see Fig. 6.13) can be obtained as symmetric
combinations in which two particles have [=1 and one has [=0. But since
quarks have spin 4 they should be fermions and should only exist in
antisymmetric combinations. Thus there must be another degree of freedom to
provide the antisymmetry; if quark states have a factor in the colour space %,
many-quark states can be symmetric in space, spin and isospin and
antisymmetric in colour.

The second piece of evidence comes rom the production of hadrons in
electron-positron annihilation. We have seen how resonances occur in this
process through the formation of quark-antiquark bound states as in Fig.
6.15. If the energy is not equal to that of a bound state the photon in this
diagram can still produce a quark-antiquark pair, which will then separate
and combine with other quarks and antiquarks formed from the vacuum as in
Fig. 6.14, to produce a final state of many hadrons. Away from resonances the
virtual photon is equally likely to produce any particle-antiparticle pair of a
given charge, provided it has sufficient energy. [n general, the probability that
it will create a particular particle-antiparticle pair is proportional to the
square of the charge on the particle (the charge occurs as a factor in the term of
the Hamiltonian describing the photon-particle-antiparticle vertex, and
therefore in the amplitude for the process; this must be squared to give the
probability). Thus at a given energy E we can compare the total probability of
quark-antiquark creation, leading to a final state of hadrons, with the
probability of u~p " creation, which does not lead to hadrons:

IMe ¢* — hadrons)

= - z
R(E) e e san’) Y a (6.110)

where g, is the charge of quark number i and the sum is over all quarks with
mass below LE.

The experimentally determined form of the function R(E) is shown in Fig.
6.18. It shows a steplike rise each time the energy reaches a value at which
another quark-antiguark pair can be produced; these thresholds are marked
by resonances showing the formation of a bound state at energics slightly
lower (because of binding energy) than that at which the quark and antiquark
can separate. This qualitatively confirms the picture that the elementary
constituents of hadrons, in increasing order of mass, are u,d, s,cand b (the t
threshold has not vet been reached). But the value of R is not what this picture
would give; instead of being ($)° +(—4)*=4 in the low-energy region where
only u and d quarks are involved, it is more like 3, and it continues to be too
large by a factor of about 3. This suggests that every g2 in the sum (6.110)
occurs three times, i.e. that there are three different quarks for each of u, d,....

Although we have evidence that the three different colour states of quarks
exist, we have no idea what the difference between them is; it does not
correspond to any detectable difference between the particles we observe. This
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has two very important consequences. First, it means that the laws of physics
are unchanged if the different colours are changed round: thus it implies the
existence of another symmetry group in nature. Unlike the isospin and SU(3)
symmetries (flavour symmetries) which declared the approximate equivalence
of particles which were in fact detectably different, this colour symmetry is
exact. All the states in the three-dimensional colour space are equivalent to
each other under this symmetry, so the symmetry operations consist of all
transformations of these states which preserve the basic quantum-mechanical
relations of linear dependence and inner product; as with the flavour
symmetries, this leads us to the group of all unitary transformations of the
colour space, Separating off the multiples of the identity (which refer to the
symmetry of all states under multiplication by phase factors, and are not
specific to colour symmetiry), we find another symmetry group with the
mathematical structure of the group SU{(3).

Since colour differences between states are not observable, all physical states
must be unaffected by colour transformations. This does not mean that the
transformations are meaningless, for they act on single-quark states and
isolated quarks are never found in nature; all physical states are combinations
of several quarks. The effect of colour transformations on such combinations is
obtained by combining the representations of the colour SU(3) group, in the
same way as was discussed for the lavour SU(3) group in §6.3. This must result
in the representation in which all colour transformations act as the identity
operator. Thus the second consequence of the unobservability of colour 1s that
all physical states belong to singlet representations of the colour SU(3) group.

This rule explains why there can be quark-antiquark combinations
{mesons) and three-quark combinations (baryons) but no two-quark
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combinations. Each quark belongs to the triplet representation of colour
SU(3), each antiguark to the antitriplet; the combination of these two contains
a singlet (see (6.80)). The combination of two triplets does not contain a singlet
ieq. (6.88)), but the combination of three tripleis does (eq. (6.89)). Moreover,
this singlet is the antisymmetric combination of the three triplets, as it must be
if colour is to do the job of restoring antisymmetry to the quarks in a baryon.

The eight hermitian generators of the colour SU(3) group represent the
observables which are conserved as a result of the symmetry. They are called
colour charges. In this case ‘'observable’ is a misnomer, since different values of
these quantities distinguish different colour states, and this difference is not
observable. Mevertheless, the colour charges are of great physical significance,
for they act as the source of the sirong force between quarks in the same way as
the electric charge is the source of the electric field.

Each of the eight colour charges is associated with a boson, the quantum of
the field generated by the charge, in the same way as electric charge is
associated with the photon {this is explained more fully in §7.4). These bosons
are called gluons; they form an octet representation of the colour SU(3) group,
which is self-conjugate (the antiparticle of a gluon is another gluon in the
octet). As discussed on p. 235, such an octet is described by a set of hermitian
fields y;, and a Hamiltonian describing the colour-symmetric interaction
between gluons and quarks is

H =200 7 6.111)
where =, is a coupling constant giving the strength of the interaction and ®'=
(e thy', @) is the set of Nelds for a colour triplet of quarks (say red, blue and
yellow). This refers to a given flavour of quark (e.g. u quarks only); the
Hamiltonian for the strong interactions of all quarks is

=i i

H'=a,C%; where Ci=} &/ i, (6.112)
f

the sum in C;% being over all flavours f=u, d, s, ¢, b, t. This interaction
Hamiltonian has an exact SU(6) symmetry under flavour transformations (the
coupling constant x, being the same for each flavour);, unlike the colour
symmetry, this is not an exact symmetry of the full Hamiltonian since it is
broken by the different masses in the guark free-particle terms.

The operators €7 of (6.112) are the components of the quark colour current;
each of them can be written as

Ci=Y (aa'+d'a +ad,+dd) (6.113)
J

where a; and o, are the annihilation and creation operators for the colour state
of a quark which is an eigenstate of the ith colour charge, a; and a," refer to the
antiquark, and the sum is over all flavours. Thus C;* gives rise to lines in a
Feynman diagram along which the ith colour charge flows in the same way as
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electric charge Mows along the electron-positron lines of electromagnetic
Feynman diagrams: the ith gluon 1s attached to these lines in the same way as
the photon is attached to electron—positron lines.

Since the gluons also carry colour charge, they must themselves experience
the colour force and therefore must contribute to the total colour current.
Their contribution will be

Cr=T"n,I 6.114)
where I is the eight-component column vector containing the gluon fields 7,
and 1,15 the 8 = ¥ matnx representing the ith hermitian generator of SU(3). This
is given by (6.93). which, together with the fact that the gluon fields y, are
hermitian, gives

Cr= Hjjl}.j}.k' (6.115)
Il each gluon had only one state the gluon colour current CF would vanish,
since fi is antisymmetric. But in fact gluons are spin-1 particles, and the

different spin states give a non-zero contribution to (6.115). This then gives an
extra interaction term which can be writlen as

H =a,CFfy=a a0y % 1) (6.116)
where the spin-1 gluon felds are regarded as vector operators under the
rotation group. This vector character of the gluon fields plays a crucial role in
making the field theory of the colour force a gauge theory; this is explained in
Chapter 7.

The term (6.116) gives rise to three-gluon vertices in Feynman diagrams:
gluons, having colour charge, can themselves emit and absorb gluons. It can be
seen that this term depends on the structure constants f, being non-zero,
which is equivalent to the group SU(3) being non-abelian. The gauge theory
also requires a four-gluon term

H "=a2CFCE. (6.117)

Il gluons are attracted to each other by a strong force, as the three-gluon and
four-gluon vertices suggest, then it seems possible that they might form bound
states. Since the product of two 5U( 3} octets contains a singlet, a bound state of
two gluons could exist as an observable physical particle. Such a hypothetical
particle is called a glueball. There are one or two meson resonances which
might be candidates for identification as a glueball, but there is no
incontrovertible evidence that glueballs exist.

The dynamical consequences of a gauge field theory cannot be treated
properly in this book; we will simply summarise the main conclusions. The
effect of complicated Feynman diagrams on the rate of a particular process is
to reproduce simple, low-order diagrams but with a changed coupling
constant «, which depends on the momenta of the particles involved: in
particular, for two-body scattering A+B— C+D, a, depends on the



Fig. 6.19.
(i) Confinement of colour
lines of force; (b) jet formation.
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momentum transfer

qgi=(ps—ps)? (6.118)
where p, are the energy-momentum 4-vectors of A before and after the
collision, and the square denotes the Lorentz-invariant square of a 4-vector
(see Appendix I). This can also be regarded as a dependence on the distance
between the particles, with high values of ? corresponding to small distances
and vice versa. The fact that quantum chromodynamics is a gauge field theory
has significant consequences for this varation of =,

It has been proved that », becomes small at large values of g, so that quarks
behave like free particles. This fact, called asymptotic freedom, explains the
results of high-energy electron-proton scattering experiments (the hadronic
analogue of Rutherford scattering off nuclei), in which electrons which are
deflected through large angles and therefore transfer high momenta to the
quarks (so that g7 is large) scatter elasticallyt off the quarks as if they were free
point particles. More precisely, the quarks behave like particles bound in a
weak potential (with small coupling constant) like the electrons in an atom.

It is canjectured that a, is large at small values of ¢°, corresponding to large
distances. This leature, called confinement, would explain why isolated guarks
have never been observed and why all physical states are colour singlets.
Together with confinement of quarks goes confinement of gluons; gluons,
being coloured objects, cannot escape indefinitely far from their quark sources
{even though they are massless and, like photons, are associated with an
apparently infinite-range force). Thus the lines of force of the gluon field must
all begin and end on quarks, forming a tube of force as in Fig. 6. 1%a). This gives
rise to a constant force between quarks, so that the amount of energy required
to separate them is proportional to the separation, and beyond a certain

t But note that this occurs in ‘deep inelustic scattering’. This is because the energy which is
transferred to the quark is then used 1o disrupt the hadron it belongs 1o and to create more
hadrons, as explained below.
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separation is sufficient to create a quark—antiquark pair from the vacuum.

If a quark and an antiquark are in a state with high energy, as for example
when they are created from a photon in electron-positron collision
experiments, then in their centre-of-mass frame of reference they will be
moving away from each other with high momentum. This stretches the tube of
force between them until another quark-antiquark pair is created, as in Fig,
6.19(b); this is repeated until eventually a crowd of hadrons has been produced.
If each quark-antiquark pair is created as soon as there is sufficient energy in
the tube of force, they will have small relative veloeity; in particular, the new
quark and antiquark in Fig. 6. 19%5) have low transverse velocity relative to the
original tube of force, and so the two new tubes have momenta in the same
directions as the onginal two particles. As these in turn get stretched and
produce new particles, the momenta will continue to be in the two original
directions. On the basis of this intuitive classical reasoning, it is conjectured
that the hadrons produced by this process will appear in two jets of particles:in
each jet the momenta of the particles are all in approximately the same
direction, which is the direction of motion of the original quark or antiquark,
A jet of hadrons can also be expected to form if a high-energy gluon is radiated
by a quark.

The hadrons produced in electron-positron collisions do indeed appear in
the form of jets (see Fig. 6.20). Events with both two and three jets have been
observed.

The ideas of asymptotic freedom and confinement are confirmed by the
spectroscopy of the heavy quark systems of charmonium and beautonium.
The excited staies of these systems are consistent with a potential of the form

p{”=§+ﬂr (6.119)

with # = 4. The smallness of the coupling constant on the Coulomb-like term
a/r shows the effect of asymptotic freedom; the linear term will give rise to
confinement.

The 1~ mesons ¢, J/iy and T are each a bound state of a quark and its
antiquark. They could decay by the mutual annihilation of this pair, but this
decay has a very slow rate. The structure of quantum chromodynamics, in
conjunction with the rule that all physical states are colour singlets, provides
an explanation for this.

Colour conservation prevents the quark and antiquark annihilating to form
a single gluon, since they are in a colour singlet state and the gluon 1s an octet
state. If they annihilate to form two gluons, these must be in the SU(3) singlet
state formed from the product of two octets, which is a symmetric combination
(asan SU(3) scalar, it is given by the scalar product ¥, W)). Hence the two-gluon
state has charge conjugation parity +, for the effect of charge conjugation in
this totally neutral state is to interchange the two gluons. But the mesons in
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question are produced from photons and therefore have odd charge
conjugation parity. Thus they cannol form two gluons, but must form at least
three. There are therefore at least three qdg vertices in the Feynman diagram
for the process, and the amplitude has a factor of «,”. Since =, is small at the
distance involved, the probability for the process is considerably reduced.

Before discussing the unified theory of the weak and electromagnetic forces we
need to review some characteristic properties of the weak force. The first of
these, which we noted in discussing neutral K-mesons, is that the weak force
does not conserve parily. The clearest manifestation of this is that neutrinos,
which engage in no other interactions except gravity, are always left-handed
(have helicity —%); thus the parity operator P, which would change a left-
handed neutrino into a right-handed one travelling in the opposite direction, is
not defined on the state space of a neutrino. (Antineutrinos are always right-
handed, so the combined operation CP is defined.)

The failure of reflection symmeiry in weak interactions was shown
experimentally by C. 5. Wu in 1957, by observing the electrons emitted in the
fi-decay

*%Co — *'Ni+e +7,. (6.120)
The "?Co nuclei, which have spin 5, were placed in a strong magnetic field B.
The effect of this is to add a term —pJ - B to the Hamiltonian of the nucleus
(the spin J giving the nucleus a magnetic moment J); thus il the magnetic field
is along the z-axis the ground state of the nucleus is the eigenstate of J_ with
eigenvalue 5. (Like a compass needle, the spin of the nucleus points along the
magnetic field.) It was found that the electrons in the decay (6.120) had an
angular distribution

Nif)=1—"cos 0 (6.121)
[

where N(#) d@ is the number of electrons with velocity v emitted between
angles ) and 0+ d@ to the magnetic field. Thus more electrons are emitted in
the opposite direction to the nuclear spin than in the same direction. Fig. 6.2
shows that this situation is not symmetric under reflection in a mirror placed
parallel to the nuclear spin.

The asymmetry shown in this experiment can be explained qualitatively by
the hypothesis that the electrons all have negative helicity. The *°Ni nucleus
has spin 4, so the ®*°Co nucleus has lost angular momentum AJ with
magnitude at least 1 (i.e. AJ?=j(j+ 1) withj= 1) and z-component éJ, = 1; this
must be made up from the spins of the electron and the antineutrino, their
orbital angular momentum and that of the **Ni nucleus. Let us ignore orbital
angular momentum for the moment, and consider electrons emitted in the z-
direction (#=0 or x). Electrons emitted upwards (# = 0) have spin component
s.= —4(by hypothesis), so they cannot make up the required AJ_; thiscan only
be done by a downward electron (s.=1) accompanied by an upward



Fig. 6.21.
Parity violation.

Fig. 6.22.

Helicity of an electron: the
electron is left-handed in the
frame of reference in which A
15 at rest, but right-handed in
the frame in which B is at
resl.,
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antineutrino (s.=} since antineutrinos are righthanded). Thus if only spin is
taken into account, electrons can be emitted in the direction f=x but not in
the direction 0=0. The effects of orbital angular momentum will not
distinguish between the two directions, so there will be a net surplus of
electrons in the direction #=m=, as is shown by (6.121).

It is not consistent with special relativity to postulate that all electrons
produced in ff-decay are lefi-handed, for if an electron is lefi-handed in one
frame of reference it is right-handed in a frame of reference moving faster than
the electron in the same direction (see Fig. 6.22). Instead, one must postulate
that an electron produced in f-decay will be in a spin state

L5 = /1 —v/e| + > + /G + o)) - > (6.122)
where | + 5 are states with helicity + 4, and v is the velocity of the electron, It is
shown in §7.2 that this is a relativistically invariant statement. An electron in
the state L} is more likely to be left-handed than right-handed, and this
likeliness becomes certainty {(as for a neutrino) as v — ¢

The orthogonal state to L} is

R) = /({1 +v/e))| + > — /({1 —v/e))| =>. (6.123)
This is the appropriate state for the antiparticle of a particle in the state |[L). All
positrons produced by weak interactions are in the state |R).

Since the state |L ) becomes the negative-helicity state | — » when v=c, we see
that both electrons and neutrinos are in the state |L) when produced by weak

el

5 =

A

Rt =
A
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interactions, while their antiparticles are in the state |R . This statement is true
of all the basic fermions (leptons and quarks), and shows a general left-
handedness of the weak force. However, it must be modified to take account of
angular momentum conservation: the final state of fermions in |L} and |R}
states must be projected onto the subspace with the same angular momenium
as the inital state.

Example: pion decay

Charged pions decay predominantly into a muon and the appropriate
neutrino. By the universality of the weak interactions, there should be an equal
amplitude for the decay of the pion into an electron or a muon. Assuming that
this 1s so, we will calculate the ratio of the rates of the decays

A =pu~ 4% and m —e 4, (6.124)
The decay Hamiltonian W acts on the initial #~ to produce an equal
superposition of electron and muon states:

Wir~y =g, D, R +gMje~, L[5, R> (6.125)
where g 15 a coupling constant and IT is the projection onto the initial angular
momentum state: in this case, since the pion is spinless, and taking it to be at
rest, I1 is the projection onto the state with zero angular momentum. By
conservation of momentum the lepton and the antineutrino have opposite
momentum; since the antineutrino has helicity +1, the lepton must have
helicity —1 to give zero component of the total angular momentum in the
direction of motion. Thus IT projects the lepton state |[L onto the positive-
helicity state |+ %; from (6.122), this gives

| Wir™ ) =g./(4{1—vy/c) (6.126)
where /= ¢ or u, and v, is the velocity of the lepton I. As in §3.5, the relativistic

kinematics of the decay give the lepton’s energy and momentum as

_m,,’-b-ﬁmi":1 _m.—m’

E= 5 c, (6.127)

2m,

so that = -

ci B T, Dl B

¢ E mi+m® 125
From (3.200) (1aking A to be the lepton and B the antineutrino, so that E, = E,
and Ey= pe), the phase-space factor is

P2E, (m?—m)(m.? +m)e

e Bm (6.129)
Hence the ratio of the rates of the decays is
Cx™ 2 e7%) _pkeTw|Win P _mimi-mb? (o0 o000

]‘{n = H -TPJI] _pﬂl{;{-?pfu’lﬂ_}P i mu'-z["h2 "'mnz.ll =
To summarise: the electronic decay is suppressed because it can only take
place with a right-handed electron and the weak force prefers to produce a left-
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handed electron; this preference is stronger for the lighter electron than for the
heavier muon. This consideration outweighs the fact that the electronic decay
is more favourable energetically than the muonic.

The examples just discussed show that an electron in the state |L} and an
electron neutrino (in its sole helicity state) form a pair under the weak force;
they are produced in the form of a particle-antiparticle pair in fi-decay and
pion decay. The third helicity state of the electron-type leptons, namely the |R
state of an electron, stands alone, unaffected by the weak force. The Salam-
Weinberg theory of weak interactions introduces an SU(2) group of
transformations called weak isospin transformations which mix the first two
states and leave the third as it is. Thus we have a weak isospin doublet (g, v.)
and a singlet ¢;. The other leptons are classified similarly, forming doublets
(sty.v,) and (r,, v,) and singlets pg and 1.

The quarks also form left-handed doublets and right-handed singlets under
weak 1sospin transformations. The situation here is a little more complicated,
since the u quark is coupled both to the d guark (asin f-decay, where one of the
d quarks in the neutron becomes a u quark) and to the s quark (as in the
semileptonic A° decay (6.46), where the s quark in the A” becomes a u). Since
the coeflicients of the strangeness-conserving and strangeness-changing parts
of the hadronic weak current are given by the Cabibbo angle #l., the weak
isospin doublet containing |u,L} is taken to include the superposition

d', Ly =|d,L} cos fc+|s, L sin fc. (6.131)
The orthogonal combination
§,Ly=|s,L)cosf.—|d.L> sin i {6.132)

is taken to form a doublet together with the charmed quark state jc, L. The
third quark doublet contains the lefi-handed states of the t and b quarks. The b
component is in fact a superposition and contains an admixture of d and s, and
correspondingly thed’ and 5" states should contain some b. These terms appear
to be small and for simplicity we will ignore them, but they must be present
since otherwise the b quark would be stable.

For each of these particles except the neutrinos we have two possible states
and therefore there will be two annihilation and creation operators; from these
we can form two field operators which we will denote by the name of the
particle with the suffix L or R. Thus for the electron we have the fields

e =a.-  +(a. p)'
: 6.133

ey =0, p+(a. ) { ;
Mow we arrange these fields in column vectors according to their weak isospin
properties, as in Table 6.5. In each multiplet the electric charge is given by

Q=I-J+ill [6.'3‘4’
where i, is a generator of the weak isospin group and y is a property of the
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multiplet called the weak hypercharge. The values of y are also shown in Table
6.5,

Let ¥ be one of these two-component column vectors of fields. Then we can
form a weak isovector ¥'t¥ where r denotes the vector of Pauli matrices. The
total weak current is the sum of all these operators:

k]
J.= ¥ WP+ 3} ¥ WM, (6.135)
[mepr guuel i=]

(the second term includes a sum over quark colours i). The Salam—Weinberg
theory postulates a set of bosons W*, W? which form a weak isospin triplet, so
that their fields can be considered as a weak isovector operator W (cl. 6.30)),
and which go together with the current J, in an interaction Hamiltonian of
Yukawa-Kemmer type. The theory also includes a single boson B? which
forms a weak isospin singlet, and which couples with the weak isoscalar
operator

Jo=Y YV, +3 vé ¢, (6.136)
i I

where the first sum extends over all the doublet (left-handed) fields %, the
second over all the singlet (right-handed) fields ¢, and y is the weak
hypercharge. Thus the full electroweak interaction Hamiltonian is

H.,=g),-W+g'J,B (6.137)
where g and g' are independent coupling constants.
The four bosons in this theory correspond to the four generators of a group

G.. =SU(2), x U(l), (6.138)

in which SU(2), is the group of weak isospin transformations and U(1), is a
one-parameter group whose single generator is the weak hypercharge
operator. As a group, U(1), is isomorphic to the group of complex numbers of
unit modulus; the element ¢" is represented by an operator U(#)) which acts on
a state with weak hypercharge y by multiplying it by & where n=13y.
Classifying states by their weak isospin and weak hypercharge is equivalent to
putting them into representations of G, .

Table 6.5. Weak isospin multiplers

y= =2 £ Hy Ty
u C I
— "P = ‘P = =
y=4 (). =(2). v=(y)
y=% uy g I
y= —§ d'y 5y by

{d'=d cos B+ 5 sin O, 5'= —d sin 0-+5 cos ;)
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We will now see how the Hamiltonian (6.137) incorporates both weak and
electromagnetic effects. Each term involving W= yields a Feynman vertex in
which one member of a weak isodoublet enters and the other one leaves, with
the emission or absorption of a W*. These vertices account for all the weak
processes we have considered so far: some examples are shown in Fig. 6.23.
Mote that the doublets containing d' and s give rise o processes involving d
and s in which the amplitude is multiplied by a factor of cos fl- or sin (i for
each vertex. Thus, for example, the ratio of the rates of the decays of the
charmed meson D shown in Figs. 6.23(g) and (h) is

MD°—K*n") [sin? O]
MD° =K n* |cos® O

Mote that if the bosons W* are very massive, then at low energy the part of

the Hamiltonian containing them, namely

Hoy=gll W_ +J,'W,) (6.140)
iwhere J,=J, ., J., =J__;‘ch’stands for ‘charged’) can, according to (4.194),

=tan* fe~3x 10~ 2, (6.139)
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be replaced by the effective Hamiltonian

HymE_ 100, (6.141)
My
describing second-order processes like those of Fig. 6.23. This is the
Hamiltonian of (6.38).
The remaining terms in the electroweak Hamiltonian (6.137) are those

containing the neutral bosons W” and B™:
Hneut = HJJ w_; + H'Jn.ﬂ. [ﬁ I42;|
Mow for any isodoublet ¥ =(¢,.¢,)" we have

Wi ¥=1¢,"¢, —1¢:'¢=} i1/ (6.143)

k
Hence

Jy= g W', = % 2iyd, 'y (6. 144)

where the second sum is taken over all the individual fields in the doublets, and
might as well include the singlet fields since these have i, =0. From (6.136) we
can write Jy also as a sum over individual fields. so H,., can be writlen as

How=Y & dul29i,W° +4'yB) (6.145)
E

(since the third component of the isovector W is the W? field).

The fields in (6.145) are those of eigenstates of weak isospin, and therefore
create the Cabibbo-rotated states d', s' rather than the physical particles d and
s. However, because these have the same values of i, and y, and because they
are orthogonal combinations of d and s, the fields occur as

&l 5 =d'd +5's. (6.146)
Thus the fields can after all be taken as referring to the physical particles.
Write
W=7 cos 0, + A sin &,

6.147
B= —Z sin Oy + A cos By, { }
where
tan ﬂw=%: (6.148)
then
Hyu=Y eliy + 1), dp A + 3 (25 cot By — 4y tan 04),'$,Z
k k
(6.149)
where
e=12g sin O,. (6.150)

Since iy + 4y is the electric charge in units of the charge on the electron, the
first term in (6. 149) is the electromagnetic Hamiltonian if e is the charge of the
electron and A4 is the photon field. The second term describes new interactions,
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mediated by the neutral particle Z, in which the identity of particles does not
change; for example, this term gives rise to a force on neutrinos which will
cause elastic scattering of neutrinos off nuclei. This is called a weak neutral
current force, and was thought to be non-existent before the Salam—Weinberg
theory was proposed.

Ifthe d’ field was not balanced by the 5’ field, the Hamiltonian would contain
a term

d"d'Z =[d"d cos® O +(d"s +5'd) cos O sin 0-+5's sin? 0.]Z, (6.151)

which would cause processes in which quarks did change their identity: an s
quark could change into a d quark and emit a Z. Such a strangeness-changing
neutral current has long been known to be absent: if it existed, for example,
neutral kaons could decay into u ™ 4+~ by a similar process to pion decay (see
Fig. 6.24). It was the need to cancel the d's terms in (6.151), by means of an
equation like (6.146), that led Glashow, lliopoulos and Maiani to the
hypothesis that the c quark must exist as a weak isospin partner of s, some four
years before it was discovered experimentally. The cancellation of the
strangeness-changing neutral current so achieved is known as the GIM
mechanism.

Like quantum electrodynamics, the Salam-Weinberg theory is a gauge
theory; the significance of this will be explained in Chapter 7. Unlike the gluons
of quantum chromodynamics, the bosons W=, Z and 7 of gquantum
favourdynamics are not all massless; it will be shown that this is related to the
fact that weak isospin is not an exact symmetry like colour,

Events in which a muon neutrino interacted with a proton without being
changed into a muon were observed in 1974. An example of such an event is

LEp—n+nT 4. (6.152)
This is a neutral-current event, of the sort which is required by the existence of
the Z boson.

The W and Z bosons were discovered in 1983 at CERN, Geneva. They were
produced in high-energy proton-antiproton collisions, in which a quark and
an antiquark produce a boson according to the Feynman diagrams of Fig.
6.25, and were detected by their subsequent decay into leptons:

Wraetdy, W ae 4%, ZVae® " (6.153)

K®
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and similar processes with muons. The characteristic feature which signals the
presence of the W and Z bosons is the extraordinarily high energy of the
electrons and positrons. The mass of the W is 81 GeV (162 000 times that of the
electron), and that of the Zi593 GeV, and all this mass is converted into energy
of the leptons. The W and the Z also decay into a quark and an antiguark,
producing two jets of hadrons.

The angle 0, is called the Weinberg angle. Its value 15 determined by the
coupling constant g, which can be obtained from the low-energy effective weak
coupling constant once the mass of the W is known. The result is

sin 0, ~0.48. (6.154)

The success of the Salam—Weinberg theory in reducing the number of
unrelated fundamental interactions from three to two encourages attempts to
continue the process and develop a theory which combines the electroweak
force with the colour and gravitational forces. Gravity is a special case, because
of the unique relation to the geometry of space-time which it is accorded by
general relativity: this means that it is still problematic whether it can even be
combined with quantum mechanics satisfactorily. It seems, therefore. that the
most promising order of attack is to try to unify the electroweak and colour
forces first,
The bosons of the colour and electroweak forces correspond to the

generators of the group

Goew=SU(3), x SU(2), % U(1), (6.155)
{colour x weak isospin x weak hypercharge). There are three independent
coupling constants because of the three commuting subgroups in this group. A
unified theory, with only one coupling constant, could be obtained by
embedding G_, in an algebraically simple group G (one with no factor
subgroups) whose generators would correspond to the bosons of the unified
theory and whose representations should classily the known particle states.
The simplest possibility, which was proposed by Georgi and Glashow, is

Gy =SU(5) (6.156)
with the subgroups as indicated below, where the 5x 5 matrix belonging to
SU(5) is partitioned as (342) x (34 2)

U o T M, 0
SU{B-}:Q[D lj]f sum},a[n u} Um,a[ 2 e-”h]'

(6.157)
In each family there are 15 pairs of fermion states, each consisting of a left-
handed particle state and the right-handed state of its antiparticle; there is a

u et u et
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field operator for each pair. In the first family the left-handed states, arranged
in representations of G, , are as follows:

(v, v, d.d,dy),=3x2(n=1)
(0, 0,,0,),=3x1 (n=—4)
(d.d,,d.) =3x1(n=2)
(v,e h=1x2(n=—3)
(" )g=1%x1(n=26) (6.158)

where the Roman subscripts label the colour states of quarks (red, yellow and
blue, say); bold numerals denote the representations of SU(3). = SU(2), (for
example, the six states in the first multiplet each belong to a triplet of SU(3),
and a doublet of SU(2),); and the representation of U(1), is denoted by the
value of n=3y. (Compare Table 6.5) Now SU(5) has a five-dimensional
representation (consisting of 5-component vectors &,) and a 10-dimensional
representation (consisting of antisymmetric second-rank tensors f,) which
break up into representations of the SU(3) x SU{2) x U(1) subgroup as follows:

5=3x1n=2)@1x2(n=-73), (6.159)
W=3=2n=1)23x1ln==4P1=1(n=56). (6.160)

Thus between them these representations can accommodate all the left-
handed fermion states in a family.

Because the weak hypercharge subgroup U(I), occurs as a subgroup of a
simple group, and not as an abelian subgroup commuting with evervthing else,
the group representation theory requires its eigenvalues to be quantised (in
very much the same way as the representation theory of the rotation group,
based on the angular momentum commutation relations, forces J. to be
quantised). Thus this theory would explain the quantisation of electric charge.
In fact, (6.157) shows that the hypercharge generator has the same eigenvalue
for members of a colour multiplet, and the sum of its eigenvalues in any SU(5)
multiplet must be nought; the theory therefore explains why the electric
charges on colour triplets (quarks) are multiples of a third of the charges on
colour singlets (leptons).

SU(5) has 5% — 1 =24 generators, so a theory based on this group will have
24 bosons carrying the force between the fermions. The photon, W=, Z° and
gluons are 12 of these. The remaining 12 correspond to 5x 5 hermitian
matrices with entries in the off-diagonal blocks in the partition of (6.157).
These bosons X, Y couple quarks to leptons, in the same way as the W,
bosons couple the u to the d and s quarks; thus the theory contains Feynman
diagram vertices like those of Fig. 6.26. Just as the W-mediated weak
interactions do not conserve strangeness, the X-mediated processes will not
conserve baryon number. They should lead to the decay of the proton into
leptons. The lifetime of the proton is expected to be about 10*?* years (for
comparison, the age of the universe is about 10'? years). Experiments looking
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for proton decay are under way al present; so far there are no reliable
indications of it.

The fact that SU(5) is a simple group means that there can only be one
coupling constant in a theory based on this group. Thus the two coupling
constants g and g° (equivalently, ¢ and ) in electroweak theory. and the
coupling constant x, of quantum chromodynamics, should be related to each
other by purely group-theoretical factors. The calculation is complicated by
the fact that in the full theory the coupling constants change with distance, in
the way that was sketched for the colour force in §6.5. After allowing for this, it
is possible to calculate the Weinberg angle fy; from the grand unified SU(5)
theory. The result agrees reasonably well with the empirical value,

The masses of the extra bosons X and Y can also be estimated from the
dependence on distance of the electroweak and colour coupling constants.
Calculations in these theories show that the coupling constants become equal
at a distance of about 10™*° m. This corresponds to the enormous mass of
10" * GeV. It is unlikely that this will ever be accessible to experiment; so if the
grand unified theory is correct. there will be no very interesting experiments to
be done between the present energies of a few hundred GeV, the scale of the
electroweak force, and this grand-unification energy of 10'* GeV.

In the search for a unified description of particles the importance of internal
symmetry groups, from the SU{2) of isospin to the SU(5) of grand unification,
is obvious. However. there are lundamental limitations on the extent to which
particles can be unified by being grouped together according to
representations of a symmetry group. All the particle multiplets we have seen
contain particles with the same spin. Now the spin states of a particle form a
representation of the rotation group R. so il we have a multiplet of particles
forming a representation # of an internal symmetry group G, and if they all
have the same spin s, then their spin states form a space % & %, which carriesa
representation of the product group G = R. To get multiplets which contain
particles with different spin it would be necessary to consider representations
of a group which contained the rotation group as a subgroup in a less trivial
way than this (see problem 6.31).

More generally, the spin/orbital states of a particle in a theory which
incorporates special relativity must carry a representation of a group which
includes rotations, translations and Lorentz transformations. This group is
called the Poincare group P. An irreducible representation of P is determined

X Y
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by two parameters m and s acts on the state space of a particle with mass
m and spin 5. The Coleman-Mandula theorem siates that, given ceriain
physically reasonable assumptions, any symmetry group which contains the
Poincare group as a subgroup must be of the form G = P. This means that it is
impossible to have symmetries which relate particles with different spins.

The idea of supersymmetry is to circumvent this result by extending the
concept of symmetry. We find the representations of a symmetry group by
finding the representations of its Lie algebra, which is a mathematical
structure defined by commutators. In a supersymmetry this is replaced by a
Lie superalgebra, which is a mathematical siructure defined by commutators
and anticommutators, The precise definition is that a Lie superalgebra L is a
direct sum of two vector spaces, L =L, & L,, with an antisymmetric bilinear
map [X, Y] from L, % L, to L, which makes L, a Lie algebra, a bilinear map
[X.¥Y]from L, = L, to L,,and a symmetric bilinearmap | X, ¥ | from L, = L,
to L. which satisfy

[[X,Y),Z)=[X,[Y.Z]]-[Y.[X.Z]] (X.Yel;ZeL,
[X.(Y,Z]={[X.¥). Z} +{Y.[X.2Z]} (XeLyY,Zel,)
[X. YL, Z)+[Y. 2}, X1+ [IZ. X).Y]=0 (X,Y,ZeL,)

(6.161)

L, is called the even part of the superalgebra, L, the odd part.
A representation of a Lie superalgebra L is an assignment of operators p(X)
to the elements X of the superalgebra in such a way that

p[X, YD) =[p(X), p(Y)] (X &Ly YeLgor Lu}

AUX.Y )= {p(X), p(Y)] (X.YE€L,) A
where the square brackets and curly brackets on the right-hand sides denote
the usual commutator and anticommutator of operators.

With Lie superalgebras it is possible to find examples which contain the Lie
algebra of the Poincaré group in a non-trivial way, and which have irreducible
represeniations containing particles with different spins. Here we will give only
a non-relativistic version to show how the idea works; for the relativistic
version see problem 7.4,

Let L, be the Lie algebra spanned by the angular momentum J,, position x;,
momentum p; and energy H of a single free particle. together with the identity
operator. The Lie brackets in L, are given by the basic commutation relations
of @3.10 together with

[H,J)=[H.p]=0, [H,x]=p/m (6.163)

where m is the mass of the particle. Let L, be a four-dimensional space with
basis elements ,.(," (x=1,2), and define the brackets

[JE!Q:] - “i{a!}lﬂgl! [JE! Q:*]="!!{‘Fr]hgg*
[H or p,or x;, @, or 0,']=0 ; (6.164)
10,0, =10,".0,'1 =0, 10..0,'}=md,,

(6.162)



Substructure

6.7 Further speculations 285

where o, are the Pauli matrices and the summation convention applies to
Greek (spinor) indices.

The Lic algebra L, has irreducible representations corresponding to single
particles, with representation spaces of the form % @ &, where % isa space of
wave functions and &, 15 a (25 + 1)-dimensional spin space. The odd part of the
superalgebra obeys anticommutation relations like those of the annihilation
and creation operators of a two-state fermion. For a given eigenvalue of H
these have a representation containing four states: a vacuum, two one-particle
states, and an antisymmetric two-particle state, A representation p of the full
superalgebra, obeying the ‘unitarity’ condition p(Q,") = p(Q,)".can be obtained
by taking a representation of L, and replacing every eigensiate of H by these
four states. If the representation of L, described a particle with spin s, the
representation of the superalgebra describes four particles with spins s, 5,5 — 4
and 5+% (when s=0 it describes three particles with spins 0, 0 and 4).

Other superalgebras can be constructed to include internal symmetries. [t 1s
characteristic that their representations include particles with spins differing
by 4. Thus the idea of supersymmetry offers the hope of a unified description of
fermions and bosons. It also, because of its relation to space-lime
transformations, offers the hope of a quantum theory of general relativity and
therefore of unifying gravity with the other forces. However, the experimental
prognostications are not good. Supersymmetry requires that the spin-2
graviton should belong to a multiplet which also contains a massless spin-3
fermion called the gravitine, and that the gluons and the W and Z bosons
should have spin-} partners called gluinos, Wino and Zino. Also, the quarks
and leptons should be accompanied by spin-0 particles called squarks and
sleptons. None of these supersymmetric partners can be identified with any
particles yet observed.

The pattern of families of quarks and leptons naturally prompts
speculation that they themselves are composite objects. However. there are no
dynamical indications of any imternal structure to these particles. The
compositeness of a particle like the proton means that its electric charge s
distributed over an extended region, so that its electrodynamical behaviour
differs from that of a point charge: it is not described by the form of quantum
electrodynamics appropriate to point particles (see §7.3). The leptons,
however, behave electrodynamically like point particles to a very high degree
of accuracy. The experimental limits on their deviations from pointlike
behaviour imply that their spatial extension is less than 107 m, or
alternatively that the energy needed to liberate their constituents is greater
than 10° GeV.

For a review of composite models and experimental limits on them see
Lyons 1983,
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Further reading  For luller accounts of the material in this chapter the textbooks by Perkins

Problems on Chapter 6

(1982) and Halzen & Martin (1984) are recommended. A less systematic
account, intended to communicate the “oral tradition” of particle physics, is
Gottfried & Weisskopl 1984,

A fuller treatment of isospin and other symmetries can be found in Gibson &
Pollard 1976. For hadron spectroscopy see Leader & Predazzi 1982, chapters
8-12. The reader whe would like to understand the details of electroweak
theory without first learning quantum field theory is referred o Aitchison &
Hey 1982, For supersymmetry see Wess & Bagger 1983,

Mon-technical accounts of the physics which here has been treated sketchily,
oromitted. can be found in the following Scientific American articles: Bloom &
Feldman 1982 {on hadron spectroscopy), Glashow 1975, Schwitters 1977,
Lederman 1978 and Mistry, Poling & Thorndike 1983 (on charm and beauty),
Ishikawa 1982 and Quigg 1985 (on the colour force), Nambu 1976 and Rebbi
1983 (on quark confinement), Jacob & Landshefl 1980 (on proton-proton
scattering and jets), Weinberg 1974 (on the electroweak force), Perl & Kirk
1978 (on heavy leptons), Cline., Rubbia & van der Meer 1982 (on the
experiments on W and Z particles). Georgi 1981 and Weinberg 1981 {on grand
unification), Freedman & van Nieuwenhuizen 1978 {on supergravity), and
Harari 1983 (on substructure). Some of these are collected in Kaufmann 1980,
See also the Nobel addresses by Weinberg, Salam and Glashow (all 1980) and
the New Scientist articles collected in Sutton 1985,

I. The p® which belongs to the isospin triplet(p =, p% p "), decays into two pions
by a strong interaction. What are the charges on the pions? Show that the spin
of the p° is an odd integer and its parity is negalive.

2, A neutral particle X* is a member of an isospin triplet and decays into two p-
mesons. If isospin is conserved in the decay, show that the spin of the X® is at
least 1.

3. The w-meson is an isospin singlet with spin 1. Explain why it decays
predominantly into three (rather than two) pions.

4. Show that in the isospin-conserving, parity-conserving processn+p— a1~ +
7" the relative angular momentum of the two pions is odd, while that of the
neutron and the antiproton is even. Deduce that the neutron and the
antiproton have parallel spins.

Discuss the processes p+p—n' 41~ and p+p = n%+ 7",

5. The N{1470)1s a pair of particles (n*, p*) with the same quantum numbers as
the neutron and the proton; they decay into A-baryons and =-mesons by an
interaction which conserves isospin. Find the ratio of the rates of the decays
pPr=A tnT p* = A 4" and p* = A"+ ",

6. (A, 4,%4A,% 4, " and (A; 7, A" AL ", Ay ) are two isospin multiplets
of baryons; the latter decays into the former by an isospin-conserving process
A; — Ay +n. Find the ratio of the rates of the decays A, = A, " +n°,
AP = A +rPand At — A+,
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[

20,

21.

2

Express the amplitudes for the isospin-conserving processes 1° +n = 1% +p,
n 4+n—=n"+nand 7" +p=n" +pintermsof an I =4 amplitude and an
=% amplitude, and hence find a relation between them.

. Find CI,C where C is the charge conjugation operator, and deduce that in a

sell-conjugate isospin multiplet C acts as reflection in the (13)-plane.

. Show that the eigenvalue of G-parity for a self~conjugate multiplet is ( — 1)'x,

where [ is the isospin of the multiplet and #, is the charge conjugation
eigenvalue of its neutral member.

. The magnetic moment of an ¢lementary particle is the expectation value ofan

operator which has the same sospin properties as the electromagnetic
Hamiltonian. Show that the magnetic moments piA) of the A multiplet are
related by

pAY)=2p(A ") =A™ T =HuA T A T).

. Find the ratios of the lifetimes of '*C, "*N* and '*0, decaying as in Fig. 6.1

{Use first-order perturbation theory.)

. Suppose there was a neutral particle X° with spin 1, which decayed into two

neutrons by a strong interaction. Show that it would have negative parity and
that there would be two other particles with the same properties as X except
for electric charge. How would these particles decay?

. There are particles with spins as high as 5. Why are there no particles with

isospin greater than 47 (*Particle’ here means something with baryon number
Oor +1.)

. Assuming that the Al =1 ruleappliesin thedecays Z* - p+a° L = n+nr"

and - —=n+x", find a linear relation between the first-order decay
amplitudes.

. Use the Al =4 rule to calculate the ratio of the lifetimes of 2 and =°,
. Use the Al'=4 rule to explain the following decay rates:

ME* =% )=1711x 10757,
ME?=a"z2")=7.689=10"5"",
MEK.? = x%%)=3942 = 10% 57",

. Give an example of a process which vou would expect to produce a K~

MESON.

. Show that parity is conserved in K — 3n decays.
. Show that the conjugate representation g of SU(3), defined by (6.75), has a

matrix which is the complex conjugate of that of the fundamental
representation p.

Write down the action of the generators on the weight vectors in a triangular
representation of SU(3) and its conjugate representation.

Express electric charge and hypercharge in terms of the SU(3) operatorsi-H,
u*H and v-H. Deduce that electric charge is constant in U-spin multiplets.

Suppose the strong Hamiltonian has the form H =H,+H, where H,
commutes with SU(3) transformations and H 4 is the eighth component of an
octet operator. Show that H, is the sum of a U-spin scalar and the third
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component of a U-spin vector. Deduce that masses (identified as expectation
values of H ;) are equally spaced in a U-spin multiplet. Hence (i) reproduce
Gell-Mann’s prediction of the mass of the {27, given the masses of the other
particles in the decuplet: (i) prove the Gell-Mann/Okubo formula

My +niz)=Hmyg + Imy )

for the masses of the octet baryons. (You will need to identify the combination

|E°,% of [ and [A"> which is the U, =0 component of a U-spin triplet.)
Compare with the data (Appendix 1I). How well does the Gell-Mann/

Okubo formula work for the meson octet? Try it with m? instead of m.

. Write out the 5U(3) Yukawa—Kemmer Hamiltonian (6.94) in terms of isospin

multiplets.

. Suggest a way of measuring the 7 lifetime,
. The guantum numbers of strangeness, charm, beauty and truth can be

understood as ‘s quark number’, ‘¢ quark number’, etc. What are u quark
number and d quark number?

. Consider the model of particle interactions in which each particle has just one

state, with interaction Hamiltonian V=W+ W' where W=1¢,l*¢, +
" b,. Show that in second-order perturbation theory the amplitude for
A+B — C+D becomes infinite il E,+ Ey=E,. Show also that il E, is
replaced by E, + il the transition probability has the Breit-Wigner form as a
function of E=E,+ Ey. [This indicates how resonance behaviour is
associated with a certain sort of Feynman diagram.]

. Define ‘left-handed’.
. Prove (6.129).
29,

For each of the following sets of decays, state the quark composition of the
particles involved and draw a diagram to show the events underlying the
decavs in terms of quarks and leptons. Ignoring kinematical factors, find the
ratio of the rates of the decays in each set in terms of the Cabibbo angle.

(il n=p+e +7, (i) T =A+e 47,
A"—p+e +%, E T A"4e 40,
iv) A" = A+e" +v, (Vi K- =a%+e " +5, (vi)i DK™ +e" +7,

At =n+et 4y, n—nldeT 47, D% n” +e’ 47,
(viii) D* = K~ +n%+n* (ix) F*=n%+n’
P K-+ +x? ©  Ftsy+K*
D= n” +n%+x’ F*=+K%+x*
D"—r" +K%x* F*-K%+K*.

. Find the ratio of the rates of the decays in each of the following sets of decays.

{Each ratio is the product of a Cabibbo factor and a phase-space factor. Use
sin f-=0.23 and the particle masses given in Appendix 11.)

i) =~ —=p~+%, (i) D"=K~+r"
K- =u~+7%, D= K- +K*
D= g~ +x*

[ L S
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31. Prove (6.159)-6.160).

32, Let G = R denote the direct product of a group G and the rotation group R.
Show that every irreducible representation of G = R is of the form &, ® %y
where % is an irreducible representation of G and %, is an irreducible

representation of R.



7.1. Field operators

{a) The electromagnetic

field

7

Quanrm;r ﬁekis_

The theoretical framework needed for the full development of the ideas of
Chapter 6 is that of quantum field theory. This chapier is intended to take the
reader onto the threshold of that theory. It follows directly on from Chapter 4,
being concerned with the general theoretical structure, and is independent of
Chapters 5 and 6 until §7.4, when the concept of isospin (§6.1) will be needed. In
§7.5 and §7.6 the quantum field theory aspects of the colour force and the
electroweak force (quantum chromodynamics and quantum Mavourdynamics)
are described in outline,

This chapter requires a fuller knowledge of special relativity than the other
chapters of the book. In particular, it will be assumed that the reader is
acquainted with the 4-vector formalism (see Appendix [ for a summary).
Knowledge of the electromagnetic field will also be assumed.

In §4.6 the notion of a reduced quantum field was introduced. We will now see
the full concept from which this reduced notion was derived. We will arrive at
this concept from two different directions: first, as the quantum counterpart of
the classical concept ol a field, and secondly by developing theideasof84.6 on a
system of an indefinite number of particles.

The classical theory of the electromagnetic field concerns two vector fields, the
electric field E(r, ) and the magnetic field Bir, t), which (in the absence of
dielectric or magnetic material) satisfy Maxwell's equations:

V-E=f, (7.1)
£o
V:-B=0, (7.2)
| )
VxE=——, 73
i ¢ ot et)
1 1&
VeB=—j+- i (7.4)

[Tialr T o
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where p and j are the charge density and current density of the electrically
charged matter which generates the fields, &, and p, are dimensional constants,
and c=(gqug) " is the speed of light. We will suppose that units of electric
charge, length and time have been chosen so that g,=u,= 1 (and therefore
c= I); we also continue to take h= 1.

Maxwell’s equations imply the existence of a scalar leld ¢dr, r) and a vector
field Alr, £) which determine E and B according to

dA

E=-Vgp——, (7.5)
ot
B=V=x A, (7.6)
and which satisly
=]
!E;f+\'r'~.-t=ﬂ, (1.7
¢ ol
!.'-.2@, x
= —Vig=p, (7.8)
i P
=i =1 1.
P ViA=j (7.9

The fields ¢ and A are called the electromagnetic potentials.

We will now consider the electromagnetic field as a dynamical system. Since
the fields E and B are determined by the potentials ¢ and A, we can fix our
attention on the latter. The value of ¢ at some given point r is a varying
guantity whose variation in time is given by the second-order differential
equation (7.8); in this respect it resembles a single coordinate g; of a classical
mechanical system. The same goes for each component of Air). Thus the set of
all values {¢(r), A(r):re [*] at an instant t can be regarded in the same light as
the set of coordinates (g,, ..., g,) which define the configuration of a
mechanical system; the point of space r plays the role of a label like the index i
on the coordinate g, When we pass o the corresponding quantum-
mechanical system g, becomes an operator g, labelled by the index i; thus the
quantum mechanics of the electromagnetic field will involve operators :fH_r]_
Air) labelled by r. These operator-valued functions of position are quanium
fields.

Now let us suppose that p=0 and j=0, so that we are considering the
electromagnetic field by itsell. The ‘equation of motion® (7.8) for ¢(r) involves
the values of ¢ at nearby points o r, since these are involved in Vi¢$. We can
obtain decoupled equations, each referring to just one varying quantity, by
taking the Fourier transform of ¢:

R
(2n)!
Al each time the quantities Mk, 1) completely specify the field values ¢(r, r):
considering fi(k) instead of ¢(r) is like changing coordinates in the mechanical

dir,1)= J.ﬁlk, fe*'d’k. (7.10)
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system. However, the different k) are not independent, for the fact that ¢ is
real (= gb) gives the relation

(k) = B —k). (7.11)

Applying (7.8), with p=0, and taking the inverse Fourier transform gives

EJ

53 +k3 k) =0. (7.12)

This shows that filk) obeys the same equation of motion as a simple harmonic
oscillator with angular frequency |k|.

In the same way we can perform a Fourier transform of the vector potential
A:

Alr.:j:ﬂ—:ﬂ! J‘:{k.:}.r“ *dk (7.13)
with

alk., ) =l —k, 1); (7.14)
the equation of motion (7.9) then shows that each component of (k) oscillates
with angular frequency |k|.

Thus as a dynamical system the electromagnetic field behaves like a set of
independent oscillators. The corresponding quantum-mechanical state space
will be the tensor product of a set of harmonic-oscillator state spaces, one for
each of the independent oscillators among a;(k) and fk). We know from
@4.12 that this state space is isomorphic to that of a variable number of
bosons; these bosons can be identified as photons. Thus the existence of
photons (and the fact that they are bosons) is a consequence of the quantum
mechanics of the electromagnetic field,

The potentials ¢ and A are not uniguely determined by the physically

significant quantities E and B. In the case of a radiation field (no charge or
current density) they can be chosen so that

¢=V-A=0, (7.15)

N Bik) =k - afk)=0. (7.16)

This choice of potentials gives a simple expression for the total energy in the
field, which electromagnetic theory shows to be

H=% I{E=+Bz}d¥ (7.17)
From (7.5}-7.6) we find that the Fourier analyses of E and B are
| ey
E= ; krf’k, B=—— : k.
@ alk, t)e G k x aik, )e™"d*k (7.18)

where the dot denotes differentiation with respect to 1. Hence, using
Plancherel’s theorem (see problem 2.13),

H=%I{|ﬂ1+|kxq2}d’k (7.19)
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(writing |v|*=v-vif v is a vector with complex components). Let 2; and «, be
two components of (k) along two directions perpendicular to k; then, in view
of (7.15), (7.18) becomes

1
=1 j (ot 2+ Ko+ 2 4 k) ey

Comparing this with the energy of a harmonic oscillator,

H=5mx? +Lmw®x?, (7.21)
and bearing in mind (7.14), we see that the total energy of the electromagnetic
fNeld is the sum of four harmonic-oscillator terms (one each for the real and
imaginary parts of 2, and a,). with mass m= 1 and angular frequency « =k,
for each pair of vectors (k, —k). Each oscillator corresponds to a photon state,
with two polarisation states for each direction of propagation. The energy of
each photon state is the quantum of the corresponding oscillator, namely
(reinstating h# 1 for the moment) fio = hv where v=2re is the frequency. Thus
Planck’'s equation E=jv also emerges from the quantum mechanics of the
electromagnetic field.

The above argument refers only to energy differences; the increase in energy
due to adding one photon is equal to the quantum of the corresponding
oscillator, but the total energy of the collection of oscillators is not the same as
that of the collection of photons because of the zero-point energy of the
oscillators (the odd half in the formula (n+4)he for the oscillator energy
eigenvalues). With an infinite number of oscillators, this gives rise to an infinite
zero-point  energy, which, however, is constant and has no physical
significance. It can be eliminated by taking the Hamiltonian for each oscillator
to be not Ya'a+aa')e but a'aw. This is just another way of resolving the
ambiguity which attends any attempt to find a quantum-mechanical version of
a classical expression, because of the necessity to specify the order of the factors
in quantum mechanics. This choice of order is called normal ordering: all
creation operators are put to the left of annihilation operators.

In order to disentangle the two directions of propagation k and —k it is
more convenient to work in the Heisenberg picture rather than the
Schrédinger picture. In the Heisenberg picture the operator A representing a
given dynamical quantity is time-dependent, satisfying the differential
equation

i dAjdt=[A, H] (71.22)

{see (3.170)). Thus for the lowering operator a of a harmonic oscillator, for
which

[H,a]l=—wa (7.23)
where e is the frequency of the oscillator (see (4.129)), we have
da/dt = —iwa (7.24)

and so
alt) = e~ ""a(0). (7.25)
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For the raising operator a' we have
a'(r)=ea'(0). (7.26)
The real and imaginary parts of the Fourier components z,(k) and z.,(k) are
dynamical variables analogous to the position variable x of the harmonic
oscillator. In the quantum theory they can therefore be expressed in terms of
raising and lowering operators. Let a,' and a," be the raising operators at r=0
corresponding to the real and imaginary parts of a(k); then from (4.126) we
have

a.'—a a,'—a
) [ e R | e K 727
=27 *'(zwrkl) ey
Write
| BT | , S
2')="20 2L, al(—k)="2 (7.28)
_\_.'2| \"ll';
then
a'(k)+al—k)
alk, y=————: {7.29)
Vv (2[k])
so that (7.25)7.26) give (in the Heisenberg picture)
k, )=————— {e™a'k)+e ™a{ =k)!. 7.30
alk, 1) x-“’{2|k|l' a'(k)+e "™a(-k); (7.30)
Mote that
alk, 1) =a( =k, 1), (7.31)

which is the quantum version of (7.14).
The Fourier analysis of the vector potential A can now be written as
d*k

V2[k)

where E = |k| is the energy of a photon with momentum k. This expression fora
field in terms of creation and annihilation operators for particles is
characteristic of quantum field theory.

1 ;
Alr,1)= @ J{a’{kle"ﬂ“'" +a( — ke E-AT} (7.32)

We will now express the decomposition (7.32) in a form which is manifestly
invariant under Lorentz transformations, using 4-vectors. Let x (with
componenis x”) denote the space-time position 4-vector x=(r,r); then the
exponentials in (7.32) can be written as ¢ ™ * where k = (k,, k) is a 4-vector with
kg= +*|ko|, and k-x denotes the Lorentz-invariant inner product of 4-vectors.
Then k satisfies

k= kot — k|t =0 17.33)
il kg =0 then k can be regarded as the 4-momentum of a massless particle (the
photon).
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From (7.33) and the property of the d-function (see problem 2.14) we have
M2 =(2]k]) " { ko = [K|) + ko + K]} (7.34)

hence (7.32) can be wrilten

Alx)= Q—Lii J.h{klm,k*le“ ol b {7.35)
where
(2[k|)a (k) if ko= k|
bik) = { (2[k]ia(—k) if ko= — K| (7.36)
0if k2z0.
Thus
(k) = bik)dk?) (7.37)

is the four-dimensional Fourier transform of A(x).
The commutation relations of the components of a(k) and a'(k) are those of
annihilation and creation operators:

[adk),ak’)'] =00k —K'). (7.38)
In terms of the operators e(k), depending on the 4-vector k, these can be
written as

Lok, e (k)] = 8,00k *)dk + k' Jelk o) (7.39)
where #lky)=+1 is the sign of k; which is invariant under Lorentz
transformations.

Eqs. (7.35) and (7.39) show that the division of the 4-vectors x and k into
space and time components which is apparent in (7.32) is not essential. There
remains the fact that A(x) (and therefore a(k) and bik)) is a 3-vector, not a 4-
vector; this appears to make the theory non-relativistic. The reason for this is
the special choice (7.15) of potentials, which can only be valid in one frame of
reference. In a general frame both ¢ and A will be non-zero; they make up a 4-
vector A= (¢, A). The condition (7.7) is invariant, as can be seen by writing it
as

d,4"=0 (7.40)
where 8,=d/éx*=(d/dr, V). This means that for the theory to be valid in a
general frame of reference the 3-vector e(k), satisfying k-e =0, must be replaced
by a 4-vector c,(k) satislying k"c,=0. Then ¢, has three independent
components, even though it only describes two independent physical states
(the polarisation states of the photon). The redundant component can be
eliminated by imposing an extra requirement like ¢, =0, corresponding to
(7.15), but there is no canonical way of doing this; in particular it cannot be
done without mentioning a frame of reference. Imposing such an extra
requirement is called making a choice of gauge. The freedom to make this
choice is a highly significant feature of electromagnetic theory, and we will
return to it in §7.3.
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The condition k"¢, =0, although Lorentz-invariant, is of the same kind as
the condition ¢,=0 and can also be relaxed: this must be done if the
commutation relations (7.39) are to be put in covariant form, namely

[e k). e, (k)] = —g,.8(k*)3(k + K )elko). (7.41)
Foreach k ¢ (k) now has four independent componentis, but only two of these
describe physically independent states.

To summarise:
@7.1 The electromagnetic field is described in the Heisenberg

picture by a 4-vector quantum field A,(x) (an operator-valued
lunction of space-time), whose Fourier components ¢, (k), defined by

A (x)= J‘{“,{k}e* £ d*x (7.42)

consist of creation and annihilation operators for photons. If ky =0,
¢, k) is a creation operator for a photon with 4-momentum k; if k, <0,
¢, (k) is an annihilation operator for a photon with 4-momentum

= |
From (7.41) we can obtain commutation relations for the fields A4 (x),
namely

[A(x) Aix)]=g,Alx =) (7.43)
where

Alx)= Sk Nelk o) d*k. (7.44)

(2m)?
It follows that the fields have the following property:
@7.2 Locality of the electromagnetic field

[A,(x), A(x)]=0 if (x—x)*<0. (7.45)
Proof. From (7.43) we have

Alx)= —A(—x), (7.46)
while the covariant form of the integral (7.44) shows that

AlAx)=Alx) (7.47)

where A is any Lorentz transformation. Now if x* <0 there is a Lorentz
transformation A taking x to —x; hence Alx)=01if x*<0. W

According to @5.4, this means that a measurement of A4, at an event x
cannot affect the result of a measurement of 4, at x"if (x —x)* <0, i.e. if a signal
would have to travel faster than light to get from x to x". Thus the theory obeys
the requirements of causality as imposed by special relativity.

This theory has been developed in the Heisenberg picture. The Schrodinger
picture is not so well adapted to relativistic description, since its time-
dependent states require a separation between space and time and therefore a
particular frame of reference. The fact that the Heisenberg picture, applied to
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the quantum mechanics of fields, gives a satisfactory relativistic theory
suggests that field theory is the natural framework for a relativistic quantum
theory. We will now see how field theory emerges even if one starts with the
quantum mechanics of particles.

Consider the system of an indefinite number of purticlci each of which 15 a
simple particle moving in space. If the particles are bosons, the state space is

=" Q¥ DI P (7.438)
where 7 is the one-dimensional vacuum space and ¥ is the space of wave

functions (see {4.153)). This space has annihilation and creation operators a,
and a,' for each wave function e % Let

g st =S > <+ ) (7.49)
be a typical n-particle state, § being the symmetrisation operator of (2.142);
then the action of the annihilation operator a, is given by

aghy > =n U | D W+ U Dy )+

(7.50)

by (4.157). This makes sense not only for wave lunclions i € ¥, but for any bra

iz in particular we could take {4,&] = (&,|. This gives an annihilation operator
which we will denote by gr), for each point of space:

SO -y =n gl ) F O s )+
(7.51)

Then ¢ is an operator-valued function of position, i.e. a quantum field.

In guantum mechanics the numbers of classical mechanics, like the
coordinates of a particle. become operators. Mow we are seeing the numbers of
one-particle quantum mechanics, namely the values of the wave function,
themselves become operators ¢{r). For this reason the construction of the
many-particle theory is called second quantisation.

In 2.5 we found that one consequence of a state space being infinite-
dimensional was that not every bra corresponded to a state vector: the
d-function bra {4, was the first example. A similar phenomenon is that not
every operator on an infinite-dimensional space has a hermitian conjugate.
The operator ¢(r) is an example of this, for if ¢{r)" existed its action on the
vacuum state |03 would be defined by

{‘P|¢|r}'|ﬂ}={_ﬁ|¢{r}|‘[-'} for every state |'¥). (7.52)

This requires ¢ir)'|0 to be a single-particle state whose inner product with any
other single-particle state is given by

CW|le)']0) = wir); (7.53)

in other words, ¢(r)'|0} is the non-existent ket corresponding to {4, As
explained in §2.5, it is convenient to pretend that this ket exists and to write
equations involving the 4-function’ ,(r') = &(r' —r) as shorthand for equations
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involving integrals. In the same way, it is convenient to pretend that the
operator ¢{r)’ exists. though equations involving it only really make sense
when multiplied by a smooth function and integrated. The operator

¢'[f]= JJ (rigir)’ d*r (7.54)

is a genuine creation operator for the state described by the wave function f;
the quantum field $(r)" can be thought of as the creation operator for the
idealised state of a particle precisely localised at r.

A similar construction can be performed with the eigenbras of momenium
{#&| replacing ¢4 /. We define an annihilation operator a(k) by

uik:lllh"‘*.} =”_!E <51|i['i}|*1 Wi WD, (7.55)

and regard its fictitious hermitian conjugate a'(k) as a creation operator for a
particle in the fictitious momentum eigenstate with wave function (2x)~fe* *.
The operators a(k) and ¢(r) are related as follows. From (7.55) we have

l ~
alk)yry =, =n dre " E WOy Wi Wi )
1 ~
=@ ﬁ”.rf_‘.'¢lr}|$" ..1¢'}. [?.Sﬁ}

Hence

e 1 i =ilr g3,
isnlllnt]—“,h“!.J lele=""d"r: (7.57)

alk) is the Fourier transform of ¢(r). By the Fourier inversion theorem we can
write

) =%§ alk)* " dk (7.58)

(see also problem 7.2).

Now let us consider these operators in the Heisenberg picture. The
operators ¢(r) must be replaced by time-dependent operators ¢ir, 1) satisfying
the differential equation

=
i%f=[¢.H]. (7.59)
Suppose the Hamiltonian is that of a non-relativistic theory describing
particles moving in a potential ¥, so that its restriction to the n-particle

subspace is

H=P P e VR, (7.60)
" 2m 2m :

For a one-particle wave funclion we wrile

b=Hy= —ﬁ?ﬂw Vi (7.61)



7.1 Field operators 299

Then
), A, -y =3 (O, - By
i
_E. H"'I"rf"]'l"&'l g T JPORAR
=Y Gdrly W W D
i
1
=["2—_.,', i ""irl:’tﬂrlll.ﬁr: W (7.62)
Thus
0 1 o ,
T i (7.63)

in the second-quantised theory the field operators oir. 1) satisfy the
Schrodinger equation, just like the wave function in the single-particle theory.

In the case of free particles (V=0) we can explicitly determine the time-
dependence of the operators a(k) in the Heisenberg picture. Applying the wave
equation (7.63) to the Fourier integral (7.58) gives

¢ 3 k* 3
0 ¢ Pr o | X ' i
J: = alk, ne* " d’k Im alk, ne* * d’k, (7.64)
so that
alk, =alk)e ™ (7.65)
where
kl
_E. :?.ﬁﬁ‘j
Thus for free non-relativistic particles
I = iEr+ ik gy
- it 1.67
dir. 1) By J‘ﬂﬂﬂe (7.67)

where E = E(k) is the kinetic energy of a particle with momentum k. In general,
an expression like this for ¢{r. t) in terms of time-independent annihilation
operators requires knowledge of the solutions of the Schridinger equation
(7.63).

Let us consider how problems in quantum dynamics can be formulated in
terms of the field ¢. In the Schrodinger picture these problems are of the form
*At r=0a single particle has wave function y,; what is its wave function at time
17 The answer can be expressed as a matrix element;

i, 1) =, Je =" |- (7.68)
This can be written in terms of the Schrodinger field operators ¢*(r) = ¢ir, 0):
W, 1) ={0|g*(r)e ™" f Wolr)' d*r|0> (7.69)

where |0} is the vacuum state. This has zero energy and is therefore the same in
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both Schridinger and Heisenberg pictures:

o n’fr!n> = Fﬂ.} t??ﬂi
Hence in terms of the Heisenberg operators
Blr. 1) =e~""H¥(r)e™, (7.71)

the wave function al time 1 18

Wir, f)= [‘d"’r'wulr’ )< 0|eblr, t)eb(r’, 0)']0. (7.72)

This shows that the vacuum expectation value {D|¢lr.riq&+[r'.ﬂl|ﬂ} is the
Green's function for the Schridinger equation (7.61): it is the kernel of the
integral operator which converts the initial conditions fr,(r) into the solution
of the differential equation at time 1,

The non-relativistic Schrodinger equation for a free particle is formed from the
non-relativistic relation between energy and momentum, eq. (7.66), by making
the substitutions

E—id/ft, k= —iV. (7.73)
These can be written as
k, — ”ﬁp (7.74)

where k*=(E, k) 1s the (contravariant) energy-momentum 4-vector and ¢, =
¢/éx” is the (covariant) space-time derivative. Thus the obvious way to make
the theory relativistic is to keep these substitutions but to replace (7.66) by the
relativistic relation

B +\;’{k2+mz} (7.75)
where m is the rest-mass of the particle. Because of the square root, however,
this does not lead to a dilferential equation; it is therefore necessary to square

the relation. The substitutions (7.73) then give the differential equation

{12

o Vid= —mid, (7.76)

which is called the Klein-Gordon equation. The differential operator on the
left-hand side is invariant under Lorentz transformations and is usually
denoted by %

¥

I:Il=i_'__l,:,r2=e: !.‘!- ’
[

. , (7.77)

The Klein—-Gordon equation is not considered suitable to be a wave
equation for a one-particle theory, as the Schradinger equation is, because it
has negative-energy solutions (a result of the squaring of (7.75)). The general
solution of the Klein—-Gordon equation is

@, 1) = :

2y J.!a[ kle ™ +a'(k)e'™ }e™ 'dk (7.78)
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where alk) and &'(k) are arbitrary and E is given by (7.75). Regarded as wave
functions in the Schrédinger picture, the terms a'(k)e* "¢® have negative
energy. But if ¢ is not a wave function but a quantum field, the form (7.78) can
be acceptable. It differs from the form (7.67) of a non-relativistic quantum field.
but the possibility of a reasonable physical interpretation for the extra
(‘negative energy’) terms can be seen by comparing with the expression (7.32)
for the electromagnetic field, in which such terms appear associated with the
photon creation operator a'{ —k).

Thus in (7.78) a'(k) should be interpreted as a creation operator for a state
with momentum —k:

a'(k)=b"{—k). (7.79)
In the case of the electromagnetic field this is actually equal to a'( — k), but that
is because the field A is hermitian (being related to the observables E and B). In
general there is no reason why a quantum field should be hermitian; this means
that the particle created by »' may not be the same as the particle destroved by
a. These two particles are antiparticles of cach other.

By changing variables from k to —k in the second term, we can write (7.78)
as

olr. ) =——

—#Ee— 3 A
~ }! a(k)e~*E-*n g k+{? i J.h{lr,] AEI-kon) 3

=¢.r,O+¢_(r,0) (7.80)

where ¢, is an annihilation operator for the particle associated with the field
(ef. (7.67)), and ¢_" is a creation operator for its antiparticle. This is the
Jjustification for the introduction of ‘reduced quantum fields’ in §4.6.

The Dirac equation is a partial differential equation which is relativistic in the
sense that it incorporates the relation (7.75) between energy and momentum,
yet it is first-order in the time derivative. The eguation is

i S =mi (7.81)
in which the meaning of the symbols is as follows:

(i) ¢,=42/dx" where x"=(t,r) is the space-time position 4-vector.
(ii) 7" is a set of four 4 x 4 matrices which satisly

Py =g (7.82)

where g""=diag(l, =1, —=1. —1) is the metric tensor of special
relativity, and the 4 x 4 unit matrix is understood on the right-hand
side. We will always take these matrices to be

1 0 0 g
QE 3 ‘= .
¥ [{} - I]' ¥ [—“s ﬂ]' (7.83)
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in which the entries denote 2 x 2 blocks and o; are the 2 x 2 Pauli
matrices. Note that the * are fixed matrices, and do not change with
the frame of reference.

(1ii) @ix)isa four-component wave function. It is not a 4-vector; it is 1o be
regarded as a 4 x | column vector suitable for multiplication by a y-
matrix, and the number of its components is a different four from the
dimension of space-timet. It is called a Dirac spinor. The symbaol i is
usual for Dirac spinors, although they are a different sort of object
from the one-component wave function appearing in the Schrodinger
equation. For the rest of this book t will always denote a Dirac
spinor,

{iv) m is the rest-mass of the particle whose state is described by 1.

MNow we will derive some of the properties of the Dirac equation and the
matrices 7",

@7.3 The Dirac equation implies the Klein-Gordon equation:

i e =mp = = —mi (7.84)
Proof. Il ¢ satisfies the Dirac equation then
(" E M O W= —im(y* é W= — . (7.85)

But (7.82) gives

(7 &Ny 8, ) =3y +y'7" 0, 8, =g" 6,6, =102
Hence (7.85) shows that every component of ¢ satisfies the Klein—-Gordon
equation. Wl

The components of the Dirac spinor  must depend on the frame of
reference, for otherwise the Dirac equation would not hold in all frames of
reference. If the frame of reference is changed by means of a Lorentz
transformation A, so that the space-time coordinates change by

Xt x "= AR (7.86)
{see Appendix I), then the corresponding change in  is given by

@74 For each Lorentz transformation A there 1s a 4 x 4 matrix

S(A) satisfying

SIA) 1 SIA) =AY (7.87)
Let ' be the spinor wave function defined by

¥x’) = S(AWH(x) (7.88)
where x" is given by (7.86); then

iy &,y =my’ (7.89)

where ¢,'=d/dx".

t If space-time had dimension 2n, o would have 2* components.
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Proof. The condition on A to be a Lorentz transformation is
"I\'M-; Ap’]l - y‘“'" {?-m]

IT A(4) is a sequence of Lorentz transformations labelled by a real parameter 2,
with A" (0)=&"_ and with generator

o, = ’Iﬁt s (7.91)
then (7.90) gives

w,, +w,=0. (7.92)
Conversely, if e satisfies this condition and € is the 4 x 4 {vector) matrix with
entries e, then

A" (D) =(e"y, (7.93)
is a sequence of Lorentz transformations, for

Lt T Ll T

|
%; (AR AL =0 AR A, + AR 02, A, = (0,0 + @, AT A, =0,
[N

Then the solution of the differential equation

dx”

— = X’ 7.

m ol (7.94)

15

xPA =AM (A)x"(0). (7.95)
In particular, if =0 and w;;=¢,n, for some 3-vector n, (7.94) becomes

dt dr

d{—*ﬂ. L—L";LEHXI'. l?.gﬁl

Comparing with (3.129) shows that in this case ¢ is a rotation about the axisn

through angle 4. On the other hand, if w,;=0 and wq=n,, (7.94) becomes
i‘f=|’|-r. -‘-I.-[n-r}=r: i{m-r]=ﬂ if m-n=0, (7.97)
da ai da

The solution of this is

t=t, cosh 4+n-r,sinh 4,

n r=t,sinh 4 +n-ry cosh 4,

m-r=m-'r, il m-n=0, (7.98)
which is a boost in the direction n with velocity tanh 4. Thus both rotations
and boosts are Lorentz transformations of the form %,

Now define the spinor matrix corresponding to A=¢ to be

S(A)=exp [Liw, 0™] (7.99)

where

a* =4[y 7).
Then
d/dALSIA) ' SIA)] = —=1S(A) " 'w,, [0, v*IS(A). (7.100)



304

T Quantum fields

MNow
[e”, ¥1=30". "], 7
=50 0% =0
=P g
by (7.82). Hence (7.100) becomes
d/dALSIA) " S(A)] = SIA) " '5'S(A). (7.102)

Comparing with (7.93)-(7.94), we see that
S(A) " 'S(A)= Ay,
as stated.
If x*=A*x" then é,/=A_'¢, and so
PO =7 C[SIAW].
But
AP SIA) = ASAY SN =S(A)y
by (7.90); hence
iy a0 =Sy ol =SA)mr =mj’. B

We can now use Postulate VII to determine the angular momentum of the
system whose state vectors are the spinor wave functions ¢{x). In a single-
particle theory the state space will consist of all suitably well-behaved spinor
functions of spatial position r (as with the Schridinger equation, the fourth
space-time coordinate 1 describes the change of the state vector in this state
space). On this state space the unitary operator representing a rotation R is
given by

[U(RW(r) =S(RWAR ™ 'r) (7.103)
where S(R) is the 4x4 (spinor) matrnx assigned to R as a Lorentz
transformation by @7.4. Suppose R is a rotation about an axis n through angle
4; then the angular momentum component n-J is given by

[n-Jy](r) = [(i d/d2)S(R)WJ(r) + (i d/dA)p(R " ). (7.104)
The second term is calculated as in §3.3, and gives the usual orbital angular
momentum term —in-(rx Vi¥). For the first term we use (7.99) with wg, =0,
;= ;M 10 obtain ie;a,(r). Hence

J=s+rxp (7.105)
where

s ="4igg 0= ieulrn1,]. (7.106)
From the form (7.83) of the y-matrices and the multiplication rules (4.39) for
the Pauli -matrices we obtain

o, O
=3 [ 0 ﬂ]. (7.107)

This shows that the state space is of the form % @ %, where both % and %,
are isomorphic to the state space of a single spin-} particle: % consists of
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spinors in which the bottom two components vanish, while %, consists of
spinors whose top two components vanish.

In order to see the significance of these two subspaces, consider the
eigenstates ol momentum with eigenvalue 0. These consist of spinor wave
functions i x) satisfying ¥ =0, 50 i} is a function of t only: the Dirac equation
becomes

F0 i fdt = . (7.108)
With +° given by (7.83), %, is an eigenspace of 7° with eigenvalue I; a spinor i
belonging to %) and satisfying (7.108) therefore has energy m (as is to be
expected for a particle of rest-mass m when it is at rest). Il  belongs 10 5,
however, it is an eigenvector of 3" with eigenvalue — 1. and so (7.108) implies
that it has energy —m. Thus the Dirac equation, like the Klein-Gordon
equation, has negative-energy solutions,

From the spinor matrices S(A) of @7.4 we can construct such a matrix for any
Lorentz transformation which can be written as a product of rotations and

boosts. These matrices constitute a projective representation of a subgroup of
the Lorentz group, whose elements are known as proper Loreniz
transformations. Space inversion P, which takes (t.r) to {1, —r), is also a
Lorentz transformation according to (7.90), but it does not belong to this
subgroup. It can be represented by a spinor matrix by taking S{P)=7".for then
the basic relation (7.82) gives

S(PY"S(P)~' =y, S(PW/S(P)™'= -7, (7.109)
m analogy with (7.87).

A wave function satisfying the non-relativistic Schrodinger equation gives rise
to a probability density and a probability current (see (3.43)). Similar
quantities can be constructed from Dirac spinors as follows:

@7.5 Thereis a hermitian spinor matrix J which satisfies [>=1 and

=" (7.110)

Let i ='; then

g is a Lorentz scalar;

Jy* and § &, are 4-vectors.

If  satisfies the Dirac equation, then

8,y =0. (7.111)
[The meaning of these statements is as follows: Let " be the spinor obtained

from y by a Lorentz transformation A according to (7.88). The statements that
¥ is a scalar and §7*y is a 4-vector mean that

VW =9y and Py =AY (7.112)

for all Lorentz transformations A.]
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Proof. Although the existence of { can be shown to follow from the y-matrix
relations (7.82), we will be content to exhibit { for our particular choice (7.83).
Since in this choice y° is hermitian and the ' are antihermitian, (7.110) is
satisfied by taking {=7".
MNow we have (using [*=1)
Lot =40y I =300 SO =40 v (7.113)
==y ==

so that if A=¢ is a boost or a rotation,

CSIAK ={ exp (w0 ) =exp (w,, L o*C)

=exp [—(e,,0”)]=[S(A)"']" (7.114)

If A is space inversion, both sides of (7.114) are equal to »? The equation can

now be extended to any product of boosts, rotations, and space inversions.
Thus if A is any such product we have

W' =S(AW (7.115)
and
¥ =U"SA)L = WISIA) T = JIS(A) (7.116)
Hence
V' =gy (7.117)
and
Py = BS(A) T SIAN = A"y (7.118)
by (7.87). Also, since é,=A'¢,,
U8,V =0S(A) A SAW =N, (7.119)

(7.117}47.119) show that ¥, §*y and IIrt‘-_l.ir are respectively a scalar, a
contravanant 4-vector and a covariant 4-vector.

Now suppose that  satisfies the Dirac equation:

iy O =my. (7.120)

Then

— iy [ =m. (7.121)
Multiplying (7.120) on the left by ¢ and (7.121) on the right by ¢ and
subiracting gives

Al =0. W
Let j*=Jy* and write j°= p; then (7.121) becomes
3p/ot +V-j=0, (7.122)

which is the same as the continuity equation (3.42). Because of this equation j*
is calledt a conserved current; its time component g can be interpreted as the
density of some substance whose rate of flow is described by the current 3-
vector j. In fact

p=yy =y =y (7.123)

t Illogically; it should be called a conserving current.
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{since J=17"). so p is positive definite. Originally p was interpreted as a
probability density; but in the second-quantised theory which is made
necessary by the negative-energy solutions of the Dirac equation, p has a
different interpretation (see p. 311).

Another significant set of bilinear quantities can be constructed by means of
the matrx

o= iyOyiy iy, i7.124)
Since the 3" all anticommute, this can also be written as

7s={41)" ig, YY"y (7.125)
where £, is the totally antisymmetric tensor with &5, ;3= 1. From this the
Lorentz transformation properties of v lollow:

SNy sSIA) ™ =(4) " e L ARAGAT AT = (det Ays. (7.126)
Thus 7 is invariant under proper Lorentz transformations, but changes sign

under reflections. Such an object is called a pseudoscalar. Similarly, "4 is a
pseudovector:

S SIA) ! =(det A)y™ys. (7.127)
The important properties of 74 are the following:

@076 (i) ys'=L (7.128)
(i) ys¥"=—¥7s (7.129)
(i) 7"yys=g"7s—He" " (7.130)
fiv) Syel=—7s" (7.131)

{v) §ysi is a pseudoscalar,
¥y<y*¥ and §iy, &, are pseudovectors;

(vi) if yrix)=ulp)e ™" is a plane-wave solution of the Dirac equation,
its helicity is given by

2 ..(E}'u"’ﬂ) 7.132

Proof. (i) and (ii} are easily calculated from (7.124), using the fact that the
anticommute. On the other hand, using the form (7.125) for y . and repeatedly
applying the anticommutation relation (7.82), we find

Prs=vsr"+ i’ n"y 'y (7.133)
so that

Trs =3 gy "y (7.134)
Thus 37y, is a product of the three matrices ¥* with p % v. Hence y* commutes
with 3y if g #v. But a calculation like the above, starting from (7.134) and
using (7.82), gives

Ve it TEt b T il O o (7.135)
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so that
Pys=—dig" i pEv (7.136)
Also
P s=4"vs if p=v. (7.137)
{(7.136) and (7.137) can be put together as (7.131).
(1v) follows t‘mm (7.110), which gives

= |"‘ J' < | e i ke ol 1) g T
‘-i::'b_'d Y ==y TP ==Y

since the 7" anticommute and reversal of order is an even permutation of four
objects.

iv) is established in the same way as @7.5; because of (7.126), we find that if
W' =8(A)), then

¥y =(det A)y s, (7.138)
¥y =(det A)A" Py <7, (7.139)
and
Wys 00 =(det A)A, Ty s G0 (7.140)
Finally, if (x)=uwlp)e " " is a solution of the Dirac equation, so that
idy=py and pfY=my, (7.141)
then

p-dy=p-(s+rxpW=dipeur’y'y by (7.106).
But (1) gives

i apdu b — i nyfdng ey TLT
M:nf_jl.r"'.r e L jl" =2y ;aj"z.rs.l T

p I =4y %y =4y 7 Im— poy "W =3y s(my® —polt. W

Mote that if m=0 and ¥ is a positive-energy solution of the Dirac equation,
so that p, = |p|, the helicity operator is just —4y,. Now the property of being an
eigenspinor of v, is invariant under proper Lorentz transformations, for from
(7.127) we have

po=ep = 75S(AW =S(A)ys¥=eS(AW. (7.142)

Thus for a massless particle it is a Lorentz-invariant (but not parity-invariant)
statement to say that it has negative helicity (in order to change to a frame of
reference in which a particle has opposite helicity, it would be necessary to
overtake the particle and look at it from the other side, as in Fig. 6.22, and this
is not possible if the particle is travelling at the speed of light). This explains
how it is possible for all neutrinos to be left-handed: a neutrino is described by
a Dirac spinor satisfying the pair of equations

P op=0, yf=y. (7.143)

For a massive particle the Dirac equation is not compatible with the
equation 74 = . This can be seen by writing

Y=y +yp
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where

Ve=H1+y00. de=41-y; (7.144)
then the Dirac equation becomes

i e =myg, i g =my, (7.145)

The spinors ¢, and gy are the left-handed and right-handed state vectors
introduced in $6.6. They are not eigenstates of helicity. but they are eigenstates
of an operator — 4y, which tends to the helicity as the velocity of the particle
tends to ¢ (see @7.6(vi); as v — ¢, p,/|p| = 1 and m/|p| — 0).
MNote that from @7.6(iv) we have
'}L= 'I"LT =%d"+“ + 3'5}1‘: 25’?}‘ 1=7ysh

and similarly

V=31 +74). (7.146)
Since y¢*=1, it follows that

Vi =dadr=0. (7.147)

As with the Klein-Gordon equation, the existence of negative-energy
solutions of the Dirac equation raises a problem which can be resolved if the
ficld is an operator in the Heisenberg picture. Following the lead given by
(7.32) and (7.80), we write

h[’lﬂ=J-:m|FJf_"ur_' iy H+{plfﬂn“|—r *I} f.”'p (7.148)

where p®= +,/(p?+m?), and «(p) and f'(p) are Dirac spinors whose
components are annihilation operators and creation operators respectively.
To specify « and ' more fully, for each 3-momentum p we define a basis
{1.(p)v.(p)} for the space of Dirac spinors as follows:

S5, (p)= +u.lp) puyu L (pl=mu. (p)

Sye.(p)=+v.(p), —pv.(p)=mo.(p)
where p* =(p°, p) and s’ is the third component of spin in the rest frame of p*;
we choose a Lorentz transformation A such that A" p"=(m, 0), and define 5, =
SIA " ")s,S5(A) where s, is the spin matrix of (7.107). In other words, u, (p) are
positive-energy spinors and v.(p) are negative-energy spinors (for explicit
formulae, see problem 7.7). Then we can write

z(p)=a_(phu.(p)+a.(plu_(p)
fipl=b."(pr.p)+b_"(plo_(p)

If  is the electron field, a. (p) are annihilation operators for electrons and
b, '(p) are creation operators for positrons. The labelling correctly indicates
the spin properties of the states that these operators create and annihilate. This
can be seen by starting with the transformation of the field y{x) under

(7.149)

(7.150)
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rotations, namely
U(RWAx)U(R)~" =S(R ™ ")Wi(Rx) (7.151)
where U(R) is the unitary operator on state space representing the rotation K,

and 5(R) is the spinor matrix of @7.3 (with A=R). This leads 1o a spin
observable £ which satisfies

[E. yix)] =swix) (7.152)

where s is the spinor matrix of (7.106). This must also hold with z(p) and [i'(p) in
place of yix). Since u, and v, are eigenspinors of s, this leads to

[Z;. 0:(p)]= taz(p) (7.153)
[Z3b."(p)]=£b.(p) (7.154)

The second of these equations shows that b_ ' create states with spin up and

down (s.= +1) respectively. The hermitian conjugate of the first equation,
[Z5 a:'(p)] = Fa:'(p)

shows that a, are also correctly labelled.

This means that in the left-handed and right-handed fields v, and ¢ defined
by (7.144), particles and antiparticles have opposite helicity; yr, is the sum ofan
annihilation operator for a left-handed electron and a creation operator for a
right-handed positron.

Since the Dirac equation describes particles with spin 4, they are always
fermions and so their creation and annihilation operators obey
anticommutation relations. As described in $4.6, this can be extended to
antiparticles. The result can be summarised, in a similar fashion to (7.39), as
follows: Let

o : (1]
nip)= { = iﬂﬂﬂ{?}_ ir I-‘n =0
B (=p if p <ty
and let y(p)=n(p)dp* —m?). Then z(p) is the four-dimensional Fourier
transform of (x), and satisfies the anticommutation relations

(7.135)

L) P =0={xlp)", x:lp)'}, } .156)

13Ap), 1l P)'} = 8, 8(p* —m?) &p—p). g
These have the consequence that

{Plx), pix)} =0 f‘or all x,x’; } (1.157)

(x), Plx)} =0 if (x—x)* <0.

Like the corresponding relations for the electromagnetic field, these
anticommutation relations define the property of locality for a fermion field.

Finally, let us consider the conserved current §y*y. The quantity which is
conserved by this current is the space integral of its Oth component; at t =0 this
is, by (7.148) and Plancherel’s theorem (problem 2.13),

_[mrrwm d'r= I{atp]* + Bl =pi}aip)+ f(—p)'} dp. (7.158)
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MNow v, (—p) satisfy
p)y"r=—mv where p*=(p®, —p).
From the properties of 7% we have
(B) =P =py*
so ihat
v'pt= —mi’,
But u, (p) satisfy
Py u=mu,
from which it follows that
v —]]}1!1: (p)=0.
Hence (7.154) becomes

j#trl'w{rld’r= Y {a,p)a,ip)+b,ipib,(p)} d°p.

Since the anticommutator of b, and b." is a c-number, this is

.[E {a,(p)a,(p)—b(p)'bp)} d*p, (7.159)

apart from an (infinite!) c-number term which is similar to the infinite zero-
point energy of the electromagnetic field, and is ignored with a similar
justification. If a . ' create electrons and b, " create positrons, this integral is the
total number of electrons minus the total number of positrons, Thus 7% is
the density of a quantity which has opposite values for electrons and positrons.
Muluiplying by the electric charge ¢ of an electron, we are led to the
identification of efy* as the electric current density 4-vector.

We have now constructed three types of quantum field: the scalar ¢4(x), the
spinor ¥(x), and the 4-vector A (x). Each of these is an operator function of
position which, being in the Heisenberg picture, depends on time as well as
space. We know how they are made of certain time-independent creation and
annihilation operators: each component & of any of these fields is of the form

ﬂx}=J:uIP]?'“"+le*e"""}d""p (7.160)

where a(p) is an annihilation operator for a particle with 4-momentum p*
(p” being given as a function of p), and bip)' is the creation operator for its
antiparticlee. We can (although we have not done so) work out the
commutation relations between field operators from the known commutation
relations of the creation operators a, a', b and b, and, knowing that the
Hamiltonian is of harmonic-oscillator type in terms of the creation and
annihilation operators, we can express it as an integral of products of fields (see
(7.17) and problem 7.8). Being Heisenberg operators, the fields satisfy

Br, )= e~ 6(r, 0). (7.161)
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Using (7.160), any state of a number of particles can be expressed in terms of
products of field operators acting on the vacuum. As in (7.72), the amplitude
for one such state at time ¢ to become (in the Schrodinger picture) a different
state at time ¢ can be expressed in terms of vacuum expectation values of
products of (Heisenberg-picture) operators. Thus to answer dynamical
questions about the system it is not necessary to know the Hamiltonian
explicitly; it is sufficient to know the time dependence of the field operators.
This time dependence is implied by the differential equations satisfied by the
fields, which are the same as the equations satisfied by the c-number fields of
the classical or first-quantised theory (eg. Maxwell's equations or the
Schradinger equation). Thus the quantum dynamics of a system described by
quantum fields is determined by the field equations.

In classical field theory, as in classical mechanics, the field equations can
usually be obtained from a principle of least action. The action for a system
with a finite number of degrees of freedom is an integral _i' L dit, where the
Lagrangian L is a function of the coordinates g; and their rates of change ¢,. In
a field theory the ‘coordinates’ are the values of the field at each point of space,
say O(r); the Lagrangian, which is to be a function of these infinitely many
variables, can be taken to be an integral

L#J‘.'-?’ [r), Vi), )] d*r (7.162)

where % the Lagrangian density. is a function of the values of the field and its
derivatives at one point of space; and then the action is

S= J‘L dt = jrz’: 8, d,0) d*x. (7.163)

In this equation x, as usual, stands for the space-time position (r,r). The
principle of least action is the requirement that this fourfold integral should be
stationary under arbitrary variations of the field which vanish at the boundary
of the region of integration; this leads to the Euler-Lagrange equations

L L
=7 "'(F‘Ifﬁ])_ﬂ (7.164)
(see Goldstein 1980 or problem 7.9). This is sometimes written as
a8
— = (7.165)
ol x)

the expression on the left is called the functional derivative of 5 with respect to
B(x). Its value at x, roughly speaking, gives the change in the integral § if the
value of @ is changed at the one point x (by means of a é&-function),

If there are several fields in the theory % will be a function of all of them and
there will be an equation like (7.164) for each field.

Eqgs. (7.163)=(7.164) show that the Lagrangian formalism fits in with special
relativity much better than the Hamiltonian formalism. The fundamental
quantity § is an integral over space and time and does not require any
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separation between them; it is the same in all frames of reference, and the
integrand % is a relativistic scalar. The equation of motion likewise puts space
and time on an equal footing and is manifestly invariant under Lorentz
transformations. On the other hand, Hamilton's equations in classical
mechanics and field theory, and Schrédinger’s equation in guantum
mechanics, all specify time derivatives and assign a special role to the time
coordinate. The Hamiltonian itsell, being the total energy, 15 not a scalar bul
the time component of a 4-vector, and its form depends on the frame of
reference. (In field theory it is the space integral of a Hamiltonian density
which is even further from being a scalar, being the (0, 0) component of a
tensor T,..)

In the context of field theory Feynman’s formulation of quantum mechanics
becomes particularly natural. This formulation is most appropriate for
quantum systems which have a classical counterpart; it assigns amplitudes to
paths which are defined in terms of classical coordinates, It is difficult to apply
it to quantum observables like spin and isospin. But Feynman's formulation
can be used in field theory by taking the first-quantised theory as the classical
counterpart. For example, the spin of elecirons and positrons is described by
means of a Dirac spinor ¢. In quantum field theory ix) is an operator.
Nevertheless, we can develop a theory of the Dirac equation as an equation for
a c-number field W, construct an associated action 5, and then apply
Feynman's postulate to obtain an amplitude for a field configuration at one
time to evolve to another configuration at a later time. @3.14 can be
generalised to show that this is equivalent to the development based on
Postulate V1, in which the Hamiltonian is fundamental.

For all of these reasons the Lagrangian density % is regarded as the
quantity of fundamental significance in quantum field theory. It is commonly
referred to simply as the “Lagrangian’.

The field equations we have considered so far can be obtained from
Lagrangians as follows:

For the Klein-Gordon equation, 1ake

P =d,0" " —m'd). (7.166)
Then

o o

E - Eﬂ(m) ==Mm l",;l - (qﬂ{-l?l{#].

so the Euler-Lagrange equation is the same as the Klein-Gordon equation.
For the Dirac equation, take

P =Lilfy* 0 0 — -y —mi, (7.167)
which is often written as
L=ify & —miy.

The components of i are complex quantities whose real and imaginary parts
can vary independently, so for each component there are two Euler-Lagrange
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equations which are the real and imaginary parts of a single complex equation.
Now any function f(x, y) of two real variables can be written in terms of the
complex variable z=x <+ iy as a function giz, Z), and the real partial derivatives
of f can be combined to form the complex derivative

-] 3 3

B (7.168)

g2 X oy
which is calculated by treating = and Z formally as independent quantities and
differentiating partially with respect to Z. (The other partial derivative dg/dz is
just the complex conjugate of dg/7z, il f is real.) Thus the Euler-Lagrange
equations for the Lagrangian (7.167) can be written as

P 3L

D= __"'. = =--_J,|--l| o - 4 -r:y r}dj A

P fﬂ(df—a"‘#'j) ey ], —my], +%i 6,057 v]
= [{(iy" &, —my],.

which is the same as the Dirac equation.
For Maxwell's equations, take

L — —ﬂﬂrn{,,—F‘,.-'l"j[E"‘,-'l'—c""A"j. (7.169)
Then

(hhed 0.

=== kahy I MEE e FE £ - L

24, ‘"(e{r-,,i.:) A =& A), (7.170)

s0 the Euler-Lagrange equations reproduce Maxwell's equations in empty
space,

& Fre =0, (7.171)

where F_ =&, 4, -2, 4, is the electromagnetic field tensor (Fy,= E; and F; =
&4 B, where E and B are the electric and magnetic fields). This is not the same
as the equation on which we based our discussion of the electromagnetic field,
namely []*A, =0, unless one adds the condition ,4“=0. It is permissible to
add this condition, because of the arbitrariness of the potentials 4, but it is not
essential; for the purposes of developing the theory il is more convenient o
leave A, unrestricted but to bear in mind that it is the field tensor F,, that is
physically meaningful and not the potentials 4,. As we shall see in the next
section, the fact that the theory can be cast in this form has great physical
significance,

Mote that the masslessness of the photon is expressed by the Lagrangian’s
being constructed entirely out of derivatives of the fields; there is no term like
the ¢* in (7.166) which gives the mass in the Klein-Gordon equation.

The discussion of invariances and conserved quantities in §3.2 was based on
the Hamiltonian as the fundamental dynamical quantity. In order to apply
these ideas to quantum field theory we will need to return to their source in
Lagrangian classical mechanics.

In the classical mechanics of a system with a finite number of degrees of
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freedom, with coordinates g, .. ., g, and a Lagrangian Lig,, ..., o R
q4,). Noether's theorem states that il g; — g,1g,.....4..2) (with ¢,/ =g, il x=0)
is a set of transformations which leave the Lagrangian invariant, so that
Lig'.4 )= L{g.q) for all «, then
2 dLdyg
i=1 Fq‘i i ]
is a constant of the motion. We will now prove two extensions of this theorem
to Lagrangian feld theory.
®7.7a Noether’s theorem 1. Let #(#,,....0,,6,0,,....6,0,) be a
Lagrangian density which is invariant under the transformations
Oplx) = 0,00,(x), ..., iix), =) (7.173)
where x is a real parameter and £, =40, when x=0. Then the field
equations (7.164) obtained from % imply that ¢_j"=0 where
nLoa auf
=3 !

=1 ﬂﬁn'ﬂl" 't-':: {J-II:I

(7.172)

(7.174)

Proof. Writing 0=(8,...., @), we have
LD, a), 2,000, 2)) = L10, 8,0) (7.175)
for all o. Differentiating with respect to x,
E‘E ﬂ a5 ﬁ(‘,[}f']=ﬂ
700 da A6 da
When «=0 the field equations give
0¥ g a5
a0, a6, “(W)

il 8 [a0; ae; oy
il - o 7 o] Lt o | Sk Bl bR v LR R L
2 = (au, g f) dx g, ! ‘"(a:)

Hence when x=0 (7.176) becomes

(7.176)

Also

Le. d"=0. A

The equation J /=0 is a continuity equation (see (7.122) and the sentence
after it); if / vanishes at spatial infinity, it implies that

G=J-j“lr+r}d~"r (7.177)

is constant in time. This conserved quantity is called the charge associated with
the invariance @, — 8, and the ‘conserved” current J*,

As an example of Noether’s theorem, consider the transformation of the
Dirac field consisting of multiplication by a phase factor:

Vi, a)=e""y (7.178)
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where the ¢ in the exponent is the charge on the electron. Clearly the
Lagrangian (7.167) is invariant under these transformations. As explained
after (7.167). we can take ¥, and its complex conjugate 1, as independent
variables: to simplify the algebra still further, we can change variables from i,
{the components of ¢') to %, (the components of ). Then

o i

_ = —ieW, —| =iey (7.179)
ot |oeg [5» o IR
so that (7.174), with & taken from (7.167), gives
J-F = ‘g['a:.i] (— fﬂlﬂ,} -+ f(—'lI’, f{f:f}j
=4ify¥ — i) + il —Liey*)
= ey,

which is the electric current 4-vector. Thus the conserved quantity associated
with invariance under the phase transformations (7.178) is the total electric
charge.

A phase transformation like(7.178) can be defined for any additive quantum
number A; the field of a particle for which A =a (with an antiparticle for which
A= —ua) transforms by

W= ) =e"y (7.180)
We will call this an 4 phase transformation; thus we have baryon number
phase transformations, lepton number phase transformations, hypercharge
phase transformations, and so on.

This derivation of the existence of a conserved quantity associated with an
invariance appears quite different from what was proved for non-relativistic
gquantum mechanics, based on a Hamiltonian, in §3.2. However, it can be
shown that in fact there is the same relation between the invariance and the
conserved quantily: one can construct a unitary operator Ulx) such that

Ulee), Ulze) ~ * = 8,(0(x), ) (7.181)
and then
Q=f@- - (7.182)
"

i.e. 0 is the hermitian generator of the transformations # — . It follows that if
we consider transformations depending on several parameters and forming a
Lie group G, the various charges associated with them satisly the
commutation relations of the Lie algebra of G.

The transformations (7.173) involve no change of space-time points and
therefore cannot describe ‘external’ symmetries like invariance under
rotations or translations. Indeed the Lagrangian density 2(0, ,0) is not
invariant under translations {x) — 0(x 4+ a). By analogy with systems with a
finite number of degrees of freedom, however, we would expect a form of
MNoether's theorem to hold for such transformations, since the total
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Lagrangian L= | & d”x is invariant if % does not depend explicitly on x. We
will prove the theorem for translations; for rotations and Lorentz
transformations see problem 7.11.
@7.7b  Noether’s theorem for translations. Let 20, .... 0., ¢.0,.
..., 0,0,)bea Lagrangian density which does not depend explicitly
on x. Then the field equations (7.164) imply that
a,T"=0 (7.183)
where

'R — g™, 7.184
Eﬁem" q (7.184)

Proof. If % does not depend explicitly on x,

F.f o G aiin a8 N . (kA
ety gy el
ax" el 0+ ﬁ_"ﬁ'jr”{ i (:"E: ﬂj){'f'+ﬂ;1rﬂl.|["f‘ﬂ'

by the field equations
oy a5 0,
"(ﬁ[f‘ ) G

It follows that £, 7" =0. W

For a fixed v we can regard the four quantities T* (u=0, 1, 2, 3) as the
components of a conserved current 4-vector. The associated charge

=J‘T"" d*r (7.185)

is then a conserved quantity. Since it is associated with invariance under
translations in space and time, we can identify it as a component of the total
energyv-momentum 4-vector. In particular, (7.184)-(7.185) enable us to
construct the Hamiltonian H = P° from the Lagrangian.

The discrete operations of space reflection, time reversal and charge
conjugation are related in quantum field theory by the CPT theorem, which
states that any Lorentz-invariant Lagrangian field theory with fields which
satisfy local commutation or anticommutation relations must be invariant
under the combined operation CPT (for a proof see Itzykson & Zuber 1980).

Each of the three Lagrangians described on p. 313-14 involves a single kind of
field, and yields a field equation appropriate to free particles. We will now see
how these Lagrangians can be modified to yield field equations describing
particles which exert forces on each other; that is to say, we will introduce
interactions between the fields.

The paradigm theory of interacting fields is the theory of electrons and
positrons together with the electromagnetic field. The electrons and positrons
provide a charge and current density /* which must be included in Maxwell's



318

T Quantum fields

equations, whose full form is

0, F =], (7.186)
In £7.2 we found that the current density 4-vector for electrons and positrons is
j*=efry™; thus the field equation for the electromagnetic field becomes

8P = ey, (7.187)
The right=-hand side can be regarded as a force term in the equation of motion

of the photons.

On the other hand, of course, the electrons and positrons experience a force
exerted by the electromagnetic field. In order to see how this can be
incorporated in the field equation for the Dirac field i, let us first go back to
the classical equation of motion of a charged particle in an electric field Eand a
magnetic field B, which is

2
m%=rlﬂ+eﬁ—: x B. (7.188)

If E and B are given in terms of potentials (¢, A) by (7.5)-(7.6), this equation of
motion is equivalent to Hamilton's equations (3.5) with the Hamiltonian

Hir, p=(2m) ™ '[p —eAlr, 1)]* + edir, 1) (7.189)

(see problem 7.12). With the usual substitutions H — i¢/ft and p — —iV, this
gives a non-relativistic Schrodinger equation
i 1 £
:'—'P=— ( =iV —ed) "y + edupr (7.190)

ot 2m

which is obtained from the free-particle Schradinger equation by making the
substitutions
id/et = id/dt—ed, —iV—= —iV—eA. (7.191)
This suggests that the corresponding relativistic equation for a simple particle
in an electromagnetic field should be obtained from the Klein—Gordon
equation by making the same substitutions, which can be written in 4-vector
form as
i, = id,—ed,. (7.192)
{Mote that 4" = (¢, A).s0 A, = (¢, — A).) Finally, we obtain the relativistic wave
equation for a spin-} particle in an electromagnetic field by making these
substitutions in the Dirac equation:
Plid,—eA W =my. (7.193)
In the first-quantised theory of a single electron, this equation is to be solved
for (x) to find the wave function of an electron in a specified field 4 (x). On
applying second quantisation, as we saw in connection with the Schrédinger
equation (7.63), (x) becomes an operator but continues to satisfy the same
equation. If we want a completely quantum-mechanical description, the
electromagnetic field 4,(x) must also become an operator.
Thus (7.187) and (7.193) are coupled equations for the quantum fields A (x)
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and t(x). They can be obtained as Euler-Lagrange equations from the
Lagrangian

L= —LF, P+ iy )+ mi + ey A0, (7.194)

which is the sum of the Lagrangians (7.167) and (7.169) for free photons and
free electrons, with i¢, in the electron Lagrangian replaced by id, —eA,, as in
the Dirac equation.

The Lagrangian (7. 194) gives rise, according to Noether's theorem @7.7b, to
an energy-momentum density

a7 0¥ o
R R AL e

T ar

= E"ﬂ.ﬁljrl it !\:ﬁuq'_.i
= _%FWF-F_FI'&-}.PE!:lﬁ._ygﬁ“ (7.195)
which yields the Hamiltonian

H=ff*°“ d’r=j-:ﬂ£* £B2) 4 i 0+ Vb —mig)

- _[@r“aﬁré.d’r. (7.196)

The first integral is the sum of the Hamiltonians given by the Lagrangians
(7.167) and (7.169) which describe the free motion of electrons and photons
respectively; the second integral contains the interaction between them. When
the fields are expressed in terms of annihilation and creation operators by
means of their Fourier transforms, the first integral corresponds to the free
Hamiltonian (4.183) in the simplified theory of §4.6; the second integral
contains annihilation and creation operators for electrons, positrons and
photons in combinations like aaa, as in (4.184), which cause processes
described by the Feynman diagrams of $4.6.

It is beyond the scope of this book to begin to describe the calculations based
on the Hamiltonian (7.196) (or equivalently the Lagrangian (7.194)). We will,
however, give a brief gualitative mention to one of the most striking and
notorious features of these calculations.

One of the Feynman diagrams required by the Hamiltonian (7.196) is shown
in Fig. 7.1. This shows a process whose initial and final states both consist of a
single electron and which, therefore, we might expect to be adequately
described by the theory of an electron on its own (i.e. the Dirac equation).
However, the transition amplitudes given by the perturbation theory
calculation associated with this diagram do not agree with those given by the

o5l
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Dirac equation derived from the free-electron part of the Lagrangian (7.194);
instead, they relate to the Dirac equation with a different mass m+ dm. It is
this, not the parameter m in the Lagrangian, that is measured as the mass of the
electron.

In the perturbation theory calculation based on the Lagrangian (7. 194) dm is
given by an integral which diverges. Nevertheless, it is possible to carry out
consistent calculations concerning interacting electrons and photons by
supposing that the original mass m is infinite in such a way that the observed
mass mg=m-+dm is finite, for it is only m, that appears in the final results.

There are other divergent integrals occurring in calculations of
electromagnetic processes, but these can be removed by redefining thecharge e
to ¢, = Ke. The constant K is infinite, so that the original parametcr ¢ must be
regarded as infinitesimal, but as with the mass it is only the finite quantity e,
that appears in the final answers. This procedure is called renormalisation. A
similar procedure must also be applied to the normalisation constant in the
wave functions of the particles involved; when this has been done the resulis of
all calculations are finite, and agree with experiment so well (to one part in
10'") as to make this one of the most accurate of all physical theories.

The fact that the infinities in the perturbation theory solution can be
removed by means of a finite number of renormalisation constants is a special
feature of quantum electrodynamics; it is said to be a renormalisable theory.
Most Lagrangians lead to theories which do not have this property, and have
an infinite number of essentially different divergent integrals in their solutions.

The Lagrangian (7.194) of quantum electrodynamics is, like the free-clectron
Lagrangian, invariant under the phase transformations § — e ). The
conserving current given by Noether’s theorem is the same as for the free case,
namely the electric current 4-vector j* = iy

The Lagrangian is also invariant under the wider class of local phase
transformations

Ylx) — r'(x)= e i(x), (7.197)
in which the phase « varies from point to point of space-time, provided they are
accompanied by a transformation of the electromagnetic potentials:

A(x) = A(x)= A, (x)— & a(x). (7.198)
This transformation is known in classical electromagnetic theory as merely an
alternative permissible choice of potentials, for both 4, and A’ give the same
electric and magnetic felds:

F,=8A,-8A,=38A'-8A (7.199)
The choice of potential is called a gauwge, and (7.198) is called a gauge
transformation.

The free-electron Lagrangian (7.167) is not invariant under local phase
transformations, but only under global phase transformations in which the
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phase x is constant. The passage from global to local invariance is
accomplished by replacing ¢, by
D, =0, +ied; (7.200)

the electromagnetic Lagrangian is
L=F"F _+ify"D (7.201)

and Db, unlike b, transforms under the local phase transformations
(7.197)~(7.198) in the same way as i

Dy — (D) =00 +ied, W =e "D . (7.202)
D i is called the covariant derivative of .

Thus the existence of the photon field A, . with its transformation law (7.198),
can be regarded as a consequence of invanance under local phase
transformations for charged particles. It is called the gauge field of these
transformations.

A Yang-Mills theory resulis from applying similar considerations (o a
theory of free particles with some other symmetry replacing phase
transformations. Let us consider, as Yang and Mills orniginally did, a theory
with isospin symmetry. A pair of spin-} particles forming a doublet with
isospin 4. like the proton and the neutron, can be described by a pair of Dirac
spinor fields ., ¥, which can be put together to form an isospinor field Y¥':

Y= (E”) T =, ) (7.203)

The free-particle Lagrangian is

2Pyt g, (7.204)
which is nothing but the sum of two free-particle Lagrangians with the same
mass. It is invariant under SU(2) (isospin) transformations

YaY'=UF=c™"p (7.205)
where g is a coupling constant (like the electric charge ¢ in (7.197)), and the
2 2 matrix U'=¢"" is an element of SU(2) which can be written in terms of
the Pauli matrices (t,, 7, 1,) by means of three real parameters (a,, a,,a,)=a.
Each of these parameters can play the role of 2 in Noether's theorem; putting
a=(x,0,0) and applying Noether’s theorem we obtain a conserving current
J1". Similarly there are conserving currents j," and j,". These three currents
form an isovecior

P=¥o"¥. (7.206)

We can form local SU{2) transformations by letting the parameters a,, and
therefore the SU(2) element U, depend on the space-time point x:

¥=¥=Ux)¥="""Y. (7.207)

The Lagrangian (7.204) is not invariant under such local transformations; it
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will become so if the derivative ¢, (acting on the isospinor *¥') is replaced by the
covanant derivative

D.,=& +igA,-t=3,+igA, (7.208)
where A, is a set of three 4-vector fields (like the photon field) which form an

isospin  triplet and whose transformation under the local SU(2)
transformations (7.207) is best expressed in terms of the matrix 4, =A 't as

A = A =U(x)A,U(x)" ' +ig~ (e, U)U" (7.209)
Then the covariant derivative transforms by
D¥ —(D,¥) = U(x)D,%¥, (7.210)

which guarantees the invariance of the Lagrangian term
j'?-,".';"‘!' +mPP, (7.211)

The transformations (7.207) and (7.209) are called SU(2) gauge
transformations. A, is the SU(2) gauge field; the particles created by it are the
SU(2) gauge bosons.

The Lagrangian must also contain a term describing the free motion of the
A, field. corresponding to the term —3F"F,, in the electrodynamic
Lagrangian. In the electrodynamic case this term is gauge-invariant because
the field tensor F_, is itself invariant under gauge transformations, as is shown
by (7.199). In the case of SU(2) gauge theory the same definition of F,, would
not give a gauge-invariant result, because of the homogeneous part of the
transformation of 4, (the first term in (7.209)), which rotates the isovector
A, in isospin space. An appropriate SU(2) version of F, can be obtained by
noting that in electromagnetic theory F,, is the commutator of covariant
derivatives:

[D,, D, Jy=ieF, . (7.212)
Applying this to SU(2) Yang-Mills theory gives

[D.D]1Y=igF ¥ (7.213)
where F_, is the 2x 2 hermitian matrix

F.=0d,A4,-8A,+ig[A, Al (7.214)

To see how this behaves under SU{2) transformations, note that if ¢ is any
isospinor which transforms like ¥ (ie. according to (7.207)), then D @
transforms in the same way (see (7.210)). In particular, we could take @ to be
DM to show that D, D ¥ transforms in this way. The same applies to D,D,'¥;
hence

[[Dj" Dw]..{"]r - Utx}[ﬂ.ub DT]T‘
e

F,."W'=Ulx)F. Y,

from which we get

F. =U(x)F, Ulx)™". (7.215)
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Feynman vertices in a gauge
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It follows that the Lagrangian term
~4tr(F"F, )= 2, Tt

is invariant under SU(2) gauge transformations. The full gauge-invariant
Lagrangian is the sum of (7.211) and (7.216).

Since F, is a hermitian 2 x 2 matrix. it can be written as F_, =F_ -t where
the isovector F,, is rotated in isospace by the transformation (7.215). The
Lagrangian term (7.216) is then equal to —4F, - F*, i.e. it is the sum of three
terms like the free electromagnetic Lagrangian, one for each component of the
SU(2) gauge field A . However, because of the extra commutator term in the
field tensor F_,, the Lagrangian term ', also contains products of three and
four A-fields or their derivatives. These give rise to interactions between the
particles which are described by the Feynman diagrams of Fig. 7.2.

In comparison with electromagnetic theory, we can say that the SU{2) gauge
bosons are the quanta of a force which they also experience themselves since
they have non-zero values of the charge (namely isospin) to which this force is
coupled. This arises because of the non-zero commutator in the definition of
F_..ie because the gauge group SU(2) is non-abelian.

Like the photon, the gauge bosons governed by the SU(2) gauge field A4,
with the Lagrangian (7.216), are massless. A non-zero mass would require a
term m*4,4" in the Lagrangian (like the term m*@? in the Klein-Gordon
Lagrangian (7.166)): but because of the inhomogeneity of the gauge
transformation (7.209), such a term would not be invariant under gauge
transformations. Gauge invanance requires massless gauge bosons.

A gauge theory can be constructed for any Lie group. The general
construction is as follows. Let G be a Lie group of m x m matrices, and let the
m x m maltrices Ty, ..., T, be a basis for the Lie algebra of G. If G is compact,
these can be chosen so that

tr (T;T;) = A0, (7.217)
for some constant 4. Let p be an n-dimensional representation of G (so that for
each § G, plQ) is an n x n matrix) with generators X, =p(T) (i=1,. . ...1). The
gauge field is a set of 4-vector fields A (x)(i=1,....!) from which we can form
matrices whose entries are ficlds:

A=Y A 0T,
I i {7.218)
PLA) () =2 A, (X)X,
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The field strength tensor is the matrix fieid

F.xj=8,4,—dA,+ig[A,, A.]. (7.219)

The other fields in the theory may be either Dirac fields or Klein-Gordon

fields. Let "¥{x) denote an n-component column vector whose entries are Dirac
fields. 9 x) one whose entries are Klein—-Gordon fields. For both of these the
covariant derivative is

D, =32, +igplA),. (7.220)
A gauge transformation is defined in terms of a function Q(x) from space-time
o the group G:

W= W'=p(Qx))¥, = D'=p(Q(x))D, (1.221)

A, = A/ =0x)A"Qx)"" +ig~ (6,000 " (1.222)
The right-hand side of (7.222) belongs to the Lie algebra of G, so this defines a
transformation of the fields A, Its effect on the nx n matrix p(A), is

plA), — plQ(xNp(A),pQ(x) " +ig '[p @@= "".  (7.223)

MNow we have

@78 The gauge transflormations (7.221)-(7.222) make the field
strength F_, and the covariant derivatives D @, D, ¥ transform by

F, — Q(x)F,.0(x)"", (7.224)
DY — plQ(x)D, ¥ (7.225)
(and similarly for D,®). Any function of F,,,®,%, D, ®and D,¥ which

is invariant under constant transformations by elements of G is also
invariant under gauge transformations; in particular,

@ = =337 tr (F, F*)+ 99D, + mP¥ + {D,0' DO — m @' D)
(7.226)

isa gauge-invariant Lagrangian. Ifthe Lagrangian is gauge-invariant,
the gauge bosons are massless.

The proof is implicit in the preceding discussion. and follows the same lines as
the special case of G=5U(2). B

The only known massless boson is the photon (though presumably the
graviton also exists). Nevertheless, both the strong and the electroweak
interactions are thought to be governed by gauge theories, The main reason
for this is that gauge theories have been proved to be renormalisable (they are
the only forms of quantum field theory which are known to have this property,
and therefore to be consistent). The manner in which the lack of observed
massless bosons is reconciled with the theory is different for the two
interactions.

Quantum chromodynamies, the field theory of the strong force, is obtained
by taking G =SU(3) (the colour group). There are then eight gauge bosons,
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corresponding to the eight generators of SU(3); these are the gluons of §6.6.
The basis T; can be taken to be the Gell-Mann matrices 4;, which satisfy (7.217)
with A=13; the gauge field A, then consists of 3= 3 hermitian matrices. The
other fields are the colour triplets ', of quark fields. one for each flavour f=u,
d, s. ¢, b, t. The Lagrangian is then

P= e (FF,) + Y (19 5, D), +m, P W), (7.227)
r

This Lagrangian has the peculiar feature that all the particles in it, both
quarks and gluons, have failed to manifest themselves as free particles. (As
discussed in §6.5, quarks have been observed just as well as atomic nuclei have
been observed, as bound particles,) This is thought to be a consequence of
SU(3) gauge theory; the forces it represents increase with distance so as to
prevent quarks and gluons escaping from combination with other quarks and
gluons. Confirmation of this idea has been obtained from numerical
calculations in which the space-time continuum is replaced by a discrete lattice
of points.

The application of gauge theory to the clectroweak force, with no
corresponding massless boson, requires a further theoretical development
which is described in the next section.

In the previous section we encountered Feynman diagrams in which three or
more lines representing the same type of lield meet at a single vertex. These
arise from terms in the Lagrangian which are cubic or of higher order in the
field and its derivatives. We will now examine this phenomenon more
carefully, in the simple case of a single scalar field ¢ which, if free, would satisfy
the Klein-Gordon equation. Suppose the self-interaction arises from terms in
the Lagrangian containing only the field ¢ and not its derivatives; adding these
to the Klein-Gordon Lagrangian (7.166) gives a full Lagrangian of the form

F =4 PNd"d) - Vi) (7.228)
where Vis a scalar function of a scalar variable. We will examine the quantum
field theory arising from a Lagrangian of this type fora general function V; the
only assumption we will make is that V7 is a twice differentiable function of ¢.

The field equation (7.164) obtained from this Lagrangian is

O= - Vi) (7.229)
If V¥ is twice differentiable, we can expand the right-hand side to get
O*¢=a+bd+ Rid) (7.230)

where a and b are constants (a= V'(0), b= V"(0)), and R is a function of ¢
satislying R{0)= R'(0)=0. On taking the Fourier transform of ¢ we expect to
get an equation of motion for the Fourier components @(k, t) of the form

2
-;;f&ﬂn.rh —(k? +m*) ik, 1) + R() (7.231)
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where R is of higher order than the linear term. This represents a harmonic
oscillator (leading to the particle interpretation of the field) with an extra
interaction described by R(@). However, this does not happen unless the
constants ¢ and b n (7.230) satisfy

a=0, b<(, (7.232)

s0 that Fig) has a minimum at ¢=10.

In general, the appropriate variable is not ¢ but ¢ — ¢, where ¢i; isa value of
¢ which makes ¥ a minimum. This can also be understood by looking at the
Hamiltonian which, according to (7.184)(7.183), is

H=J:¢=+I‘F¢J‘+ Vig)} d'r. (7.233)

In the classical theory of a e-number field ¢(x) satisfying the field equation
(7.229) this is the total energy in the field; it is a minimum if ¢(x) has the
constant value ¢, Now the state of minimum energy is the vacuum; thus the
ficld describing departures from the vacuum is ¢(x) — ¢, This is the field
which, in the quantum theory, is an integral of annihilation and creation
operators as in (7.80). It follows that [¢{x) —¢,]|0 is orthogonal to |0} and so

{0|eplx)|05 = . (7.234)

This is the quantum counterpart of the classical statement that ¢{x) takes the
value ¢, in the vacuum.

If the minimum value of V{¢) occurs for two different values of ¢b, say b, and
&, then the vacuum state is no longer uniquely defined. In the classical theory
the field confligurations ¢(x)=¢, and $(x)= ¢, are both possibilities for the
vacuum, since they both have less energy than any other state of affairs. In the
quantum theory ¢(x)— ¢, and ¢{x)— ¢b, can both be written as integrals of
annihilation and creation operators, The two sets of annihilation operators,
say a, (k) and a,(k), annihilate different vacuum states |0, > and |0,). These can
be shown to be orthogonal to each other, as are the finitely many-particle
states (a, )"0, > and (a,")"|0; > constructed on them. Thus the two minima of
the potential Vig) give rise to two orthogonal worlds which are unrelated to
each other as far as perturbation theory goes.

The situation considered in the last paragraph arises when there is a symmetry
operation which preserves the potential ¥(¢) but not the position ¢ of its
minimum, In this case the symmetry operation must take ¢, to another value
of ¢ which minimises ¥. For example, consider

Vig)=Al¢?—a?)? (7.235)
{Fig. 7.3(a)). This is invariant under the reflection ¢ — — ¢, but its minima
occur at the two values ¢= + a which are not invariant but are taken to each
other by this operation. To construct a quantum field theory we must work

with one of the fields ¢ +a, say f{x)= ¢(x) —a. The relevant state space is the
space .5 . of many-particle states constructed on the appropriate vacuum
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state |0, , viz. that for which

0, |¢(x)|0, > =a, ie <0.,|Hx)]0.)=0. (7.236)
The Lagrangian becomes
P =He, 00— A0* + 2ab)?, (1.237)

which is still invariant under the symmetry operation, now appearing as § —
——2a. However, the corresponding operation on states would take the
vacuum state |{L} to the other vacuum state |l] _ %, which satisfies

0_|p(aj0_y=—a, ie {0_|0{x)0_>=—2a. (7.238)
For the state space %, with vacuum state |0, » there is no unitary operator
representing the symmetry operation. Such an operation, which leaves the
Lagrangian invariant but not the vacuum state, is called a hidden symmetry or
a spontaneously broken symmetry. An operation which preserves both the
Lagrangian and the vacuum state we will call an overt (or unbroken) symmetry.

If there is more than one field ¢ there may be a continuous set of minima of

the potential V{g), and correspondingly a continuous set of vacuum states (all
orthogonal to each other). For example, suppose there are two fields forming a
two-dimensional (column) vector ®=(¢,, )", and the potential is

V(D)= ADTD —a)P = Ap, * + d,* —a®). (7.239)
This potential is shown in Fig. 7.3(b); its minima form the circle ¢, * + ¢, *=a*
in the & plane. The potential is invariant under the rotations

[y, gfa) — (g COS e+ P, SiN o, — by SIN 2+ 5 COS @), (7.240)

but no individual minimum point @, is invariant. The particle interpretation
of the quantum field theory must be based on a particular point @, on the
circle by means of the field

Bfx)=D(x)—D,, (7.241)
in terms of which the Lagrangian becomes
F=40,0)(70)- (070 +20"d,)~ (7.242)

Let 6, and 0, be the components of © in the direction of @, and perpendicular

Fig)

(a) ()
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to it, i.e. 0, =u'® and EI;=¢:"E) where u and v are vectors satisfving

Hu=o=1, =0, u==0,a. (7.243)
Then the Lagrangian can be written in terms of #, and f, as
=40 0,(0,)—4ia0, -3, 0. 00) +1(0,.0,) (7.244)

where f(#,, ;) contains third-order and fourth-order terms and describes an
interaction between the particles created by the fields 8, and 0,. The other
terms show that ), creates a particle with mass 2a,//. while the particle
created by 0, is massless.

Note that 1, is the component of @ tangential to the circle of minima of ¥i.e,
in the direction in which the symmetry operation of rotation moves the point
. This appearance ol a massless particle in connection with a continuous
hidden symmetry is a gencral phenomenon, as is shown by

@79 Goldstone’s theorem. Consider the Lagrangian
P =Yoo (D) — V(D) (7.245)
where @ is an n-component column vector of real fields subject to
transformations @ — (@) by an orthogonal representation p of a
Lie group G, and ¥: B"— R is a function which is invariant under
these transformations. Suppose ¥ takes its minimum value on a k-
dimensional manifold M = R", any two points of which are connected
by a transformation in G, and let ®, e M. Then the field @(x)=q{x) —
&y, creates n interacting particles of which k are massless.

The resulting theory has an overt symmetry group H which is a
subgroup of G with dimension dim G —m.

Proof. Since V¥ has a minimum at ®,, all its partial derivatives vanish there.
Hence Taylor's theorem gives the expansion of V about @, as

V(@)= V() + 10T V(D)0 + W(O) (7.246)

where ¥7() is the matrix of second derivatives of V at @, and W(®)contains
terms of third and higher orders. Since () is symmetric, it has n orthogonal
eigenvectors u;: hence

bl =

1
F=3 T {0,000)-m072}—W(©) (7.247)
i=]

where 8, = @"u, and m;? are the eigenvalues of ¥*{®,), which are non-negative
since V' has a minimum at @,

Since the minimum set M has dimension &, there are k curves @s) through
@, with independent tangent vectors at @, on which VFidys)) is constant, We
can choose the parameter s so that @"(s)=0at ®,. Then differentiating V(d{s))
twice with respect to s gives

(5T V(D )dr (5) = 0. (7.248)

Since V"(dg) is positive semi-definite, each @'(s) must be an eigenvector of
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F7(th,) with eigenvalue 0. Thus k of the eigenvalues m;” are 0, and so k of the
particles created by the fields ¢, are massless.

Let H be the subgroup of G which keeps &, fixed:

H={QeG: p(Q)D;=Dy;. (7.249)
Then for each O € H we can define a unitary operator U(() to act on the many-
particle space constructed on the vacuum |0 for which {0|®(x)|{0> = @, and to
salisfy

vigoy =10y, all QeH, (7.250)

U@)ex)UQ) " = pl@)0(x). (7.251)
Since these operators leave the vacuum invariant, H is an overt symmetry of
the theory.

To see that dim H =dim G —dim M, take a neighbourhood N of &, in M
and for each ® &N choose an element 0, G such that p(Q, )P, =®. Then if
(€ is close enough to the identity it can be written as 0 =Q.R with de N,
ReH. Thus locally G is like M x H, so dim G=dim M +dim H. @

@ 7.9 refers only to real fields. but complex fields are included by treating the
real and imaginary parts separately.
The k massless particles are called Goldstone bosons,

In the last two sections we have seen two attractive theoretical ideas which are
promising as formats for a theory of fundamental forces: gauge theories, which
give a renormalisable quantum field theory, and hidden symmetry, which
offers a way of having a symmetry in a theory while being realistic by not
having exact symmetry in its observable consequences. Both ideas, however,
suffer from the same drawback in comparison to reality: they both require the
existence of massless bosons which have not been found. We shall now see that
when these two ideas are put together the two kinds of massless boson
magically disappear.
@7.10 The Higgs mechanism. If the theory of @79 is made
invariant under local transformations @x) — p(Q{x)®{x), then there
is a gauge in which the fields of the Goldstone bosons vanish and an
equal number of the gauge fields create massive particles.

Proof. We make the Lagrangian (7.243) gauge-invariant by introducing |
gauge fields A, (i= 1.....]), where [ =dim G, and the corresponding n x n field
matrix p(A), (see (7.218)), and by replacing the derivative &, ® by the covariant
derivative (7.220). This gives

F=—={di) 1 lFH,F“‘}+i-{DHID}'{D“¢l] — F{D). (7.252)
As in @7.9, let ®, be a point at which ¥ has a minimum, and let @ =0 —&;
then

D, ®=D, 8 +igp(A), D, (7.253)



330

T Quantum fields

50 that in terms of & the Lagrangian becomes
P = —(43)" " tr (F,,F")+4D,0)"(D'O) - V(b, + B)
+ig(D"©)(p(A), D) — g (p( AF D) (p(A) Dy ). (1.254)
using the fact that the generators X, and therefore the field matnix p(4),, are
antisymmetiric since the representation p is orthogonal.

In a gauge theory we can always adjust the values of the field @®{x) by means
of a gauge transformation which takes it to p(Q(x))@{x). If the group G is
compact, we can choose Q(x) ! to be the maximum of the function f:G—=R
where

Q) =01x)" plQ)D,,. (7.255)

Let Ris) be a set of elements of G depending on a real parameter s, with R(0)
being the identity of G; then Q(s)=Q(x) ' R(s) passes through the maximum of
S, when 5=0, so that

d d
75 Q) = [O()p(Q(x) " R(s)]Po =0. (7.256)
But since p is an orthogonal representation, this is

[PQ()O)]T 5,’— [(R($)D], o =0. (7.257)

Now in the conditions of @7.9, dys)= p(R{s))d, is a curve of points on the
minimum set M of V(®). and any such curve can be obtained in this way; hence
@'(0) is a null vector of V'(d,), and the gauge-transformed field ©%x)=
MOx)NO1x) satisfies

(©%)"u,=0 (7.258)
where u, are the k eigenvectors of V() with zero eigenvalue whose existence
was demonstrated in @7.9. But the combinations @, = ©"u, were the fields of
the Goldstone bosons; thus there is a gauge in which these fields vanish.

17 ©%(x) satisfies (7.258) for all x, it is normal to the manifold M at the point
@, Since M is invariant under the transformations p(Q) and these are
orthogonal, p(Q)2* is also normal to M and therefore so is X ;©* where X isa
generator of the representation p, since a generator is obtained by
differentiating p(Q(s)) for a set of group elements Q(s). Also X @ is a tangent
vector to M, since p(Q(s))dy, is a curve in M. It follows that in the gauge in
which the Goldstone fields vamish,

(D*O*) p(A), Dy =0. (7.259)

MNow let us examine the last term of the Lagrangian (7.254). We can find a
basis X,, ..., X, such that the last | —k elements form a basis for the Lie

algebra of the subgroup H; these satisly X @, =0 since plQ)Py=P, iTQeH.
But X, @, is non-zero for i=1, ..., k; hence this term becomes

k
- ¥ mPA, A" where m?=g*X @) (X, ), (7.260)
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assuming that the X, have been chosen so that @' X,"X @,=0 for i #/. This
gives non-zero masses to the k gauge fields corresponding to the k Goldstone
bosons. W

Ina full treatment of gauge field theory it is shown that the time components
of the 4-vector fields 4, can be eliminated by the remaining freedom to make
gauge transformations. This leaves each field with three components, which is
the right number for a massive spin-1 particle. The full freedom of gauge
transformation would make it possible to eliminate another component,
leaving two components, the right number (helicity= + 1) for a massless
particle. By insisting on a gauge which satisfies (7.258) we have renounced this
possibility, and the fields retain three components. In the course of the gauge

transformation which works the Higgs mechanism, as Coleman has put it,
the gauge bosons eatl the Goldstone bosons and become heavy.

We are now in a position to describe the basic structure of the Salam-
Weinberg theory of the electroweak force. It is a gauge theory, with
spontaneous symmetry breaking, based on the group

G = SLI(2) > U{1) {7.261)
in which the subgroup SU(2) is the group of weak isospin transformations, and
Ui 1) (the multiplicative group of complex numbers with unit modulus) is the
group of weak hypercharge transformations. The fields on which the gauge
transformations act are the fermion fields of the leptons and quarks, as well as
the Higgs field which must be described separately.

The classification of quark and lepton states by weak isospin was given in
Table 6.5. The left-handed helicity states form a number of doublets, the right-
handed states are singlets. Mow if v is any Dirac field, the ficlds which destroy
left-handed and right-handed states are, according to (7.144),

Yi=H1+7¢ and Yp=H1-y .
For a weak isospin doublet like the quarks (u, d), therefore, we can form the
fields
¥ =[£1 l+}-sl-h] v =H1-73¥,,

; H1+7a)y . War=H1—7s)a,
which are subject to the local weak isospin transformations

W e B P, War — Ve (7.263)
where g is a coupling constant.

The direct product structure of the group G, makes it possible for the two
subgroups to have different coupling constants; thus weak hypercharge phase
transformations can be defined as

Vir— e WY, o (7.264)

for a left-handed or right-handed field ¢, ; with weak hypercharge y (which
will have different values for y, and yr,: see Table 6.5). Note that the product

(7.262)
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¢ vlcoupling constant x multiple of %) plays the same role as the electric charge
in the electromagnetic phase transformation (7.197), the electric charge of a
quark or lepton being the product of a coupling constant ¢ and a multiple of 4.

The group G, has four generators, so to form a gauge theory we need four
gauge fields: the components of a weak isovector W, corresponding to the
generators of SU(2), and a weak isoscalar B, for the generator of U(1). The
covariant derivative is then

D =(¢, +4ige- W, +3ig'vB,)¥, for a doublet ‘¥, ,

Doty = (&, +5ig' yB, Wiy for a singlet . (7.265)
The fields W, and B, can be put together in a 2 x 2 matrix
W,=W, t+B,1, (7.266)
from which we can form the field matrix
F,.= g W - W+ ig[H-:,, w]. (7.267)

A gauge-invariant Lagrangian for the gauge fields and fermions alone is

Fy= —h tr (F, F)+ T ¥, 7D, ¥, + T il D, (7.268)

I

where the sums extend over all lefi-handed doublets ¥, and all right-handed
singlets grp. Since the symmetry is unbroken, the gauge fields are all massless.
Moreover, invariance under transformations which act in different ways on
the left-handed and right-handed components of a fermion field requires that
the fermions should also be massless; for the Lagrangian term describing the
mass of a fermion is

g = ml gy + Py + ) = mif e + Pa) (7.269)
using (7.147), and since ¢, is a scalar under weak isospin transformations while
i, is a member of a doublet, this is not invariant unless m=0.

The Higgs mechanism produces masses for the fermions as well as the gauge

fields. There are four Higgs fields ¢,.. ... ¢, forming the real and imaginary
parts of a two-component complex vector
P+ "‘-'i!'z]
= ! (7.270)
I:‘#’J + "4'-’4
which responds to the 5U(2) = U{1} transformations (7.263)-(7.264) by
L T L] ) (7.271)

These are orthogonal transformations of the real vector (¢, , ¢, ¢5, ¢,) with
the usual inner product, which can be written in terms of @ as

(@, O,y =Re (D,'D,). (7.279)
The covariant derivative of @ is
D, ®=(0,+igW, t+ig'B,)®. (7.273)

The Higgs potential F{t) can only have quadratic and quartic terms in a
renormalisable theory. It is taken to be a function of ®'® = Z ¢,* which has a
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minimum at a non-zero value v? of its argument, so that the minimum
manifold in @-space is the sphere @'® =%, We can choose the reference point
®, on this manifold to be (0, r)" and expand the fields as

0, +il
D= = AT 7.274
b+ [L‘+;¢+I:‘J4] : )

— we use y instead of §, because this is the component which cannot be
generated by the action of the group SU(2) x U{1), and which will remain in the
theory as the field of a particle. The Higgs mechanism @ 7.10 makes the other
components disappear and gives masses to the corresponding components of

the gauge fields; the mass term (the last term of (7.254)) is

—Re [@,'®"] where @, =D, ®;=(igW, -t +ig'B, ),

=g W, W+ W, W)+ wiyiZ 77 [T.275)
where y?=g%+g'%, Z,= W,, cos (b, — B, sin O, and tan fly =g'/g as in (6.147}-
(6.148). Thus the Higgs mechanism produces the massive bosons W* and Z"
with masses in the ratio

oW _9_cos Gy (7276)

mx ¥

The last Goldstone boson, which remains massless, is given by the gauge

field 4, = W, sin By + B, cos By It is associated with the subgroup of SU(2) =
Ut1) keeping @, fixed. which consists of the transformations

:[;...,I:i: ?]ﬂl=ﬂxp [Fif] +14)]D (7.277)

and is therefore a one-dimensional subgroup with generator 31 +1,).
The covariant derivatives of the fermion fields are
DW= {4, +ig(W,t, + Wt ) +3ieZ (cot flyty —y tan fy)
+1ied, (y+13) ¥y (7.278)

Dobg =10, —%ivetan Oy Z, +3iyed, g
where e =g sin fy,. The formula for the doublet ¥, applies also to the Higgs
fields @ with y= I; this shows the association of the massless gauge field A,
with the generator {1+ t;) of (7.277). Since the electric charge in units of e is
4y +1i,. where i, is the eigenvalue of 4 1, for a member of a doublet and 0 for a
singlet, (7.278) shows that the massless gauge field A, is the electromagnetic
field.

Finally, the fermion masses arise from an interaction between the fermion
fields and the Higgs field. Consider the leptons first. In each family there is a
massive lepton [ and a massless left-handed neutrino v, giving three fields ¢',,
'y, ", which are classified by weak isospin into a doublet ¥, with y= —1and

a singlet with y= —2 (see Table 6.53). From these, together with the Higgs
doublet @ with y=1, we can form a Lagrangian term

H=ay( ,I,Rmh;r]_ + ¢L¢¢l} {(7.279)
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which is invariant under 5U(2), x U(1), transformations. Expanding @ about
the minimum point @, as in (7.274) and choosing the gauge in which 8, =0, =
f1,=0, we obtain (using (7.269))

B =mol + ol (7.280)
where

My =gb.
Thus % gives a mass to the charged lepton while keeping the neutrino
massless, and also describes an interaction between the charged lepton and the
Higgs particle whose field is .

The quarks in each generation form a lefi-handed doublet ¥, with y={and
two singlets ¢ *p, "y with y=% and y= —4% respectively. The difference
between the weak hypercharges of ' and i)y is the same as in the case of the
leptons, and the same method can be used to obtain mass terms. This gives
masses Lo the u, ¢ and t quarks. A mass term for the d, s and b guarks can be
constructed as

P =u P pdet (@) +det (PP Ty} (7.281)
where det (d, ¥, ) is the determinant of the 2 x 2 matrix whose columns are @

and ¥, and det (@', P, ) similarly has rows &' and ¥, .
Thus the full electroweak Lagrangian is

L= B+ HDOND"D) + V(D) 4+ Y HK+Y #+3 &7 (7282
where the sums extend over all families. %, is the gauge-invariant
Lagrangian (7.268), containing the Kinetic terms for the gauge bosons and the
fermions and the gauge interactions between them. The second term contains
the kinetic term for the Higgs ficld, the mass terms for the gauge ficlds, and the
interaction between them. The third term V(®) contains the mass of the Higgs
boson and its self-interaction. The last three terms contain the masses of the
quarks and leptons and their interactions with the Higgs boson (¥, having
the same structure as %9).

The undetermined parameters in the theory are the electromagnetic
coupling constant ¢, the Weinberg angle #y,, the Higgs vacuum expectation
value v, and the masses of the Higgs boson and the fermions. All other
parameters can be expressed in terms of these as follows:

W-fermion coupling constant; g=ecosecth,

Z-fermion coupling constant: g sin Oy =etan Oy

W mass: iy = el cosec fy

Z mass: my = 2evcosec 20y,
Higgs-fermion coupling constant: =p ! x mass of fermion.

Bones of Chapter 7 @7.1  Quantisation of the eleciromagnetic field 296

@72 Locality of the electromagnetic field 296
@73  Dirac equation = Klein—-Gordon equation 302
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Problems on Chapter 7

Problems 335

@74 Lorentz transformation of Dirac spinors 302

@7.5 Spinor bilinears 305

@®7.6 Properties of y; 307

@77 MNoether's theorem 315, 317

@®7.8 Transformation of covariant derivatives and field strengths 324
@79 Goldstone’s theorem 328

@7.10 The Higgs mechanism 329

The reader who wants to study quantum field theory seriously will find an
introduction in Mandl & Shaw 1984 or Ryder 1985. A different approach,
based on Feynman’s formulation, is adopted in Ramond 1981, ltzykson &
Zuber 1980 is a comprehensive treatise. For gauge theories see Aitchison 1982,
and for the applications to quantum chromo- and flavourdynamics Leader &
Predazzi 1982. A complementary account, not using the full apparatus of
quantum field theory, is given by Aitchison & Hey 1982. The lattice approach
to calculations in quantum chromodynamics is treated in Creutz 1983; there
are elementary accountis by Rebbi (1983) and Wallace (1983). Gauge theories
have interesting mathematical aspects (the theory of fibre bundles) which have
been described by Atiyah (1978); see also Bernstein & Phillips 1981. On the
cosmological relevance of the Higgs field see Guth & Steinhardt 1984,

1. Prove (7.19).
2. Prove(7.58) by starting with (7.51) and writing each , as a Fourier transform.
3. Show that the Lorentz group has generators M, = — M, satisfying
M M=, M=M= e Mo+ g M,
and that these commutation relations are satisfied by r:rp,=i{j'p. Yol
4. Show that the Poincaré group (consisting of the Lorentz group together with
translations in space and time) has generators M, P, where M, areasing.3
Eﬂd [""I..r' P.-} =3 Ep..-Pv e g\]IPpﬂ [PJ.:- Plr] =(.
The Poincaré superalgebra consists of the Lie algebra L, of the Poincaré
group, as above, together with an eight-dimensional space L, with basis f_,
§* (xm=1,....4). Brackets are defined as follows:
M, b=l (M, 371=—0,)% [P.¥.]=0=[P, ]
(oW =0={F" 9", (4o ¥} =0""P,.
Show that these satisly the conditions (6.161) to be a Lie superalgebra.

5. Show that if W(x) is a Dirac spinor, §7* &,y is a Lorentz scalar.

6. For any 4-vector p". let [I(p) be the 4x4 (spinor) matrix [(p)=
{1—m~"y"p,). Show that [(p) =(p*—m?){d4m*)+Nlip), Mip)Tli—p)=
(pt—m®)/m?, and T{p)+ M —p)=1.

Deduce that any spinor can be written as u(p)+ v(p) where u{;:—j.e“"" * and
vip)e™ " are solutions of the Dirac equation.

Show that I1{p) commutes with S(A ™ "5, 5(A) where 5, are the spin matrices
of(7.107) and A is a Lorentz transformation such that A", p" =(m, 0). Deduce
the existence of the basis u. (p), v.(p) of (7.149).
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1.

11.

Find the spinor matrix S(A) representing the Lorentz transformation A
consisting of a boost in the direction n with velocity tanh 4. By applying such
a transformation to the eigenspinors of 5,, ind explicit formulae for the basic
spinors u.(ph vaip).

. Show thatilthe creation operators for the Klein-Gordon field are taken to be

E!ﬂ+ﬂ¢| and E!b*ﬂi]. the harmonic oscillator Hamiltonian (alter normal
ordering) is

H =% [{m1¢*¢ +o'¢+ Vo' Vo) d'r,

and show that this is the same as the Hamiltonian given by applying
Moether's theorem to the Lagrangian (7.166).

. Let S[H] denote the integral (7.162), caleulated with a function Mr, 1), and

suppose that to first order in £, S[0+&q] = 5[] for ull continuous functions
wir, 1), Show that @ satisfies the Euler—Lagrange equations (7.164).

. Prove Moether's theorem for a Lagrangian system with a finite number of

degrees of freedom (see p. 315).

Let #gh, A, 6., 6,4, ) be a Lagrangian density which depends on a scalar
field ¢, a 4-vector field 4, and their derivatives, but not on x explicitly, and
which is Lorentz-invariant in the sense that 29(¢, A, d,'d, 8,4, )= Lid.A,,
dp, 0,4,) where A'=A'A, d'd=A"éd d/'Ad'= hﬂ"'.-'h.,’ d,A,, for any
Lorentz transformation A. By putting A = ¢™" and differentiating with respect
to 4, show that the field equations imply that &, =0 where

o o
" 4P A L T
Ay aa,a,;”"m &

. Show that the equation of motion (7.188) for a charged particle in an

electromagnetic field deriving from given potential functions ¢(r. t), A{r, 1)
can be obtained as Hamilton's equations from the Hamiltonian (7.189).

. Show that the effect of translation operators on a quantum field f(x) is given

by
DT Wor, LT ) =ir +a,1)

and explain the difference between this and the action (3.75) on a wave
function.

. Write down the equation which replaces the Klein—Gordon equation for a

charged relativistic particle in an electromagnetic field, and show how the
Klein—Gordon Lagrangian (7.166) can be adapted to this situation. Show
that this adapted Lagrangian is invariant under local electromagnetic phase
transformations. Find the electric current 4-vector.



Appendix 1

d-vectors

3-vector and 4-vector algebra

The components of a vector u, with respect to a particular set of axes, are denoted by u;;
the indefinite index i stands for 1, 2 or 3{ifthe components of u are wrillen as (1, 1y, 1y}
or for x, y or = (if the component of u are written as (i, u,, u.)). The summation
convention is that il a term 15 writlen as a product of such components in which the same
indefinite index occurs twice, it is 1o be understood as a sum over all values of the
repeated index. Thus the scalar product bétween two veclors is
3
u-v=uw, which means ¥ wpo,. (L.1)

=1
If two (or more) indices are repeated in a term, it is to be understood as a double (or
multiple) sum.
Symbols with two or more indices denote the components of tensors. Normally these,
like vectors, have different components with respect to different coordinate systems.
Two special tensors whose components are the same for all coordinate systems are

1 il im,
&, m 12
¥ {n if i#). s
and
I 0 if any two of i, j, k are equal,
Ea= 1 (L k)=(1,2.3),(2, 3 1) or (3, 1,2), (1.3)
i =1 il (L j. k=12 1,3L(1,3. 2)or(3.2.1)

i, g5 is the signature of the permutation that takes (1, 2, 3) to (i, £, k). It is completely
specified by the statements that it is totally antisymmetric in £, j, k. and that g,,,=1.
The summaltion convention applies to terms containing tensors; thus the equation

Tij=E iy (L4)
stands for the set of six equations

fyp=tly,  Ipp=l; Iy =l } (1.5)
[y ==Uy [3==Hu [3==H
The tensors &;; and ;5 are related by the identity
Ep gyt = 0t g = O e (L.6)
which is equivalent to the vector identity

ax(bxec)=(a-clb—(a-bk. (.7
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4-vectors

Appendix 1

fonly reguired in Chapter 7)

A contravariant 4-vector x consists of a pair of physical quantities, a scalar sand a 3-
vector u which can be assigned definite values relative to a frame of reference, in such a
way that the values assigned in different frames of reference are related by the Lorentz
transformation: if F and F' are two frames of reference with a common space-time
origin. F* moving relative to F with velocity v in the direction af the unit vector n, and if
x has values (s, u) relative to F and (s, o) relative to F', then (taking ¢=1)

fS=ps—vu-n), v-n=pu-n—uvs), u '=u, (1.8)

where y=(1=p?)" Land u; and v, " are the components of u and v’ perpendicular to n.
For example, the coordinates (t, r) of an event constitute a contravariant d-vector.

The four components of a contravariant 4-vector x are denoted by x* (u=0, 1, 2, 3)

x =g x'=y, Il yis another contravariant 4-vector, consisting of a scalar r and a 3-

vector v, then the inner product
X y=si—u-y (L9}

is a Lorentz scalar, i.e. it has the same value in every frame of reference. This can be
written as

X y=g,x"y {1.10}
(using the summation convention), where g =0ifpsv, gop=1and g,;, =g;,=g53=
=],

A covariamt 4-vector consists of a scalar s and a 3-vector w such that (s, —w)
constitute a contravariant 4-vector. The four components of a covariant 4-vector are
denoted by a subscript index, as x_. If x* are the components of a contravariant
4-vector, the components of the corresponding covariant 4-vector are

X =g, (111}

For brevity, we say ‘x" is a contravariant 4-vector’ and “x, is a covariant 4-vector’,
If x" is a contravariant 4-vector and y,, is a covariant one, x°y, is a Lorentz scalar. In
general, to ensure that equations are valid in all inertial frames of reference, the
summation convention should only be applied to pairs of indices in which one index is
in the upper position and the other is in the lower position.
The inverse of (1.11) 1s
mgx (1.12)
where g has the same numerical values as g, (L.11H1.12) exemplify the process of
raising and lowering indices which can be applied to a quantity with any number of
indices, some in the upper position and some in the lower. The effect is that raising or
lowering the index O leaves the component unchanged, while raising or lowering an
index i{= 1, 2 or 3) changes the sign of the component. In particular, raising an index of
i, Bives g, = 6", (the usual Kronecker 8, defined as in (1.2)).
The general Lorentz transformation is a linear transformation of 4-vectors specified
by a 4% 4 matrix A",
X = x™ = AN R (1.13)
such that
x-y'=x-y for all contravariant 4-vectors x, y. (1.14)
From (L.10) it follows that the condition on A", is

gpﬁ’ﬂh", = ﬂ.] 5]
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J-vector and d-vector algebra

1L
AN =0,0- (1.16)

The symbol £, . 15 otally antisymmetric with £5,,; = + 1: hence it vanishes if any

two of i v, p, o are equal, and for i, j, k=1, 2 or 3 we have

Eoip™= — Eipa =Epe= — Epo =Ep. (L.17)
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Particle properties

Elec-
Mass Lifetime tric  Iso-
MName (MeV) (s) Spin  Parity charge spin  Other flavours Main decays
Gauge bosons
Photon 3 0 aw 1 - 0
k. 1000  >06x10°%* | - ! ks ] e
w -1 [ 7 T 8
. 93 000 =05=1072* | — ete, utu”
Leptons
Electron ¢~ 0511 + -1
Muon p~ 106 2x 107" + -1 Ty,
T 1784 Ix 10712 1 - -1 € W v i Vv, hadrons
Meutrinos v,
YF 0 L i
?I
+antiparticles
Mesons
0 135 BT b = 0 1 b
nt 140 26x107% 0 - 1 1 !
K* 494 R e e - #l Strangeness +1 K° v n°n’ %
K.° 498 52x10°* 0 = 0 ety ate™V
K" 498 B9x10°'" 0 - 0 b A S
N 549 47x107" ¢ - 0 0 .30
D* 1869 92x 10" 0 - +1 4 Charm +1 ¢*'¥+ hadrons
o '
Be 1865 P et | 0 4  Cham +1 K* + pions
KK® + pions
& Strangeness +1 .
t 13 =
F 1971 1910 0 +1 0 Charm +1 Pians
B* 5271 14=10°2 @ - +1 1 Beauty + 1 D° + pions
5 5274 l4x10°"2 0 - o 3 Beauty + 1 e*'V)+ hadrons
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Barvons

Proton p 9383 = 1072 yr t + +1 3

Neutron n 939.6 898 v 0o 1 pe v,

AP 1116 26 10" + 0 0 Strangeness —1  pr~, na®

=Y 1189 0= 101 + +1 1 Strangeness —1  pr®, nn*

b 1192 58x 1072 + (1T Strangeness —1 A%

g 1197 e T + -1 1 Strangeness —|  nm~

= 1315 i [ i S | + 0 4 Strangeness =2 A%x®

=i 1321 1.6x 1010 - -1 1 Strangeness —2 A"

a- 1672 g2 101 * = ol Strangeness —3 A"K ", E% , Ex°
A7 2282 2310713 + +1 0 Charm +1 A+ pions, pKn

+ antiparticles

Adapted from the Review of Particle Properties (Particle Data Group 1984)
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Clebsch—Gordan coefficients

Each table displays the coefficients {J M|j, m,, j, m, ) for particular values of
jl-h and M.

j1=i! J:2=Ji
M=l M=0
[ =
_ 1 1 0
| P 1 M, M
R [GgeaEing. ' ok
| 343 & =
h=1 J"r_"‘%
M= M= M=-}
J J J 1
3 } i H 4
my My my My Lo e
1 & I = b =i e 1
0 +f |Ji -./i -1 +1 Ji =i
M=-1

L N

-1 -+ |1
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I "i’v fz”&
M=2 M=l| M=
i ) ! J J

2 2 2 1
my Ry my  miy my, my
L Y O -+ Vi 3

+ 4 gl -+ 1 Vi =4

M==1 Ma=2

" i J

2 1 2
my my iy iy
3 e S =4 %
5 Wk ol 1 LB
h=2, .!':‘f
M=i M=i M=%
J J I

§ i 4 i 1
m, m, my my My My
2 % |4 3~ LA A SR Y B

i . (e
H-—i H-—i M-__i
i i i 3 J
m; my my My i
my my

0 -4 =1 =& V'
-1 ﬁ —ﬁ =2 & |/ -J{ -2 - |1
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h=l ja=1
M=2 M=] M=0
\.r \ J
2 2 1 2 1 0
ek i Rl L - e -1 |4 A
o 1 J -Ji (1] Ji 0 —,?{;
I | =4 3
M=-1 M=-2
J J
1 2
0 =1 -] =] 1
g1, ¢ Ji -fi
.!-1=i- =1
M=1 M=4 M=
J J J
H 3 i \ H 3 1
5 | 1 0o |vi A § =1 [t o
1 |V =4
2 i vioov -
-1 v =/ A
M=-} M=-3 M=-4
J ¥ J
{ 4 \ 3 i
§ =1 |of v i -+ -1 | A -+ =4 |}
-+ 0 -4 0 -1
:JEE R
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h=2 j=1
M=3 M=2 M=l
J J J
3 2 3 2 1
mry iy m M My My
r B | 2.0 J1 4 2 =l
T ), Iy ):& Jé -/ 15
0 -A Vs
M=0 M=—1
J \
3 2 1 3 2 1
m, My m; m
T -ﬂ.t JE 0 -1 |/i /i i
0 0 i -1 B & -Ji -JB
-1 1 -..f"i -J1 b1 -2 1 |Jf =4 Vi
M==2 Mm=3
J ¥
i 2 3
Fiy  Fiy L
-1 =1 -2 =1 1
-3 1] ﬁ —

Taken from the Review of Particle Properties (Particle Data Group 1984)




Answers to and help with problems

vl o

13.
15.
16.
17.
18.
19.

Chapter 1
603kg~".

9% 107 kg,

5.68x 107" volts,

. The total energy E and momentum p cannot satisfy E=|plc.

Chapter 2

. Show that | gy dV|* <(f |@]* dV)[ |é|* dV).
. Use @2.1. Eigenstates of E with result = correspond 1o eigenvectors of P, with

eigenvalue 1.

. Eigenvalues + 25, eigenstates dlay > + $ila, >, $lay» —3ila, . Probability 337/625.
. Let |ag}, la, » be the cigenstates of A. Il ajay ) + fla, > is one eigenstate of B, the other

must be flay> —ala, ¥, and the probability is always |a|* + |f]*.

. Let ¢ =Aly) and use {$|¢>=0.
. Probabilistic argument: Ad=0= A certainly has value {A%. Algebraic argument:

consider |¢ )= Al — {ad|y}.

. cos® @ sin® f.
. Let|¢3=A,|¥>+zB,|¢> where A, and B, are as in @2.5 and z is arbitrary (or apply

Cauchy-Schwarz to A, |} and B, [iy)).

Use (2.111).

Ax=a/,/2.

Use (2.80).

Show that [D, x)= —ihx, and [ D, p]=ihp; then use (2.80).
Put [¢)=|@, > +|d;> and @) =|d, > +il¢s) in (2.123).

Fermiun:( :) |
L)

(the number of choices of r objects from m, with repetitions).

Boson:



16.
18,

24,
25,
2T
28.
. For X,Y e L (generators of representation Uand w,ve V.[X, Y]isasin L [X, ¢]=Xv

k¥

3.

P’ (Y fsnke i) )

12.
13.

om0 e B B

Answers to and help with problems 347

Chapter 3

cos* iT+sin* AT

(&) 1% sin® 4et. (b) 7% sin® deor, where w=(m, —m)c*/h.

For any x, cos" (x/n) =1 a8 n =, 50 p, = P,

Lse @25 and 3.1.

Use @3.1 1o find o de(AAd).

(mh® 2 W P+ m? + 0f), L m, n integers > 0.

Wix, fl=n" 1!::., + ihi fmag)” i exp | —x¥ag? + 2ihefm) 1),

No; il k# k' there is a non-classical interference term.

|4]* = |Bj* + |C|* shows conservation of probability.

Relative probability =41+ &%/ K*)+(4Ka)™ (1 — k*/K*)sin 2Ka where k*=2mE/h?,
K*=2m(E — V,)/h. Limit as h — 0 is 41+ 4%) where 4 is the classical ratio.
firy=C/r (C constant), E=h2k*/2m [use V=1"+2"/r].

j=1C*hk/mr)r. This is impossible in a stationary state for a region enclosing the origin,
as the probability of finding the particle near the origin would be steadily decreasing.
(xd=4a. Ax®=(*/12)1-6/n’n?). For a classical particle, equally likely to be
anywhere, Ax? =a?/12,

Use (d/d2) fAin)=n-Vf with fia)=U(T,).

UiTIWIT) ' =¥ where V'(r)= Vir—a).

Mo; in classical mechanics the motion of a particle in a constant force 15 invariant under
translations.

The plane of polarisation rotates with angular velocity (E, — E_)/2h

Differentiate U{ALIA) ' =1.

See the proof of @3.6.

w=¢ "% hermitian generators — MR (M =1total mass, R =centre of mass).

Use the associative law,

and [u, v){ =(),
iy =(2/a sin (kax/a);, V= —eEx;
probability = (2'%* E*m?a® /m**u®) sin® (un®h? dma®) where u=k*— 1%,

P(r) = 4e/EV{w | VW3 50| VI, 5| sin® BEL/R.

where ¢, =(E; —E;)/hto.

Chapter 4

=2, mm0. gy =(J P = —x+iy)F.
. R can be replaced by RS where § is a rotation about the z-axis; but U{R)|jm}> and

d!_iR) would only be multiplied by a phase factor.

. cos® 4f0:sin? 440,
CARNITogls) Y=-1+100 i<
AT T T T Ty == 11 =2: = 122

(€ To om=<m| Tolm) o (2 m(2 0, 2 m3).

. CHD iy = = 5T () =) =0.

Use g.1 to write = in terms of r* and an operator of spin type 2.
P_,:Py:P,=3:4:3,
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15. [=0, | or 2: probability ={.

22. Stationary states |n [ m (simultaneous cigenstates of H,, L and L.) with energy E, +
gl

23. Al=0, +1 by angular momentum conservation; Al odd by parity conservation.

24, Use time-dependent perturbation theory with V= amew®x.
P, =i mea® () sin® Yo with ip=2, i, =4,

25, exp (—4|z,|" sin® deor).

"
32, —h’I dt, r di e~ 25 AE 2NN AR = Exy
L] L]

Chapter 5
L r{dp)=cos O, tr(Ap)=0.
. Use @54,
. Probability =cos? 0. Inequality sin® ¢ = cos® 6+ cos® (0+ ¢).
10. Subset X « proposition xe X.
11, (xy. X3) ¥ (). ya)=(xy ¥ ¥y X3 v ¥3k same for a,
12. If = belongs to the centre of & 2 is the direct sum of {x: 0<x} and |x x<2'}

MO =] LA

Chapter 6

1. #7n” (the antisymmetric isospin state).

. Neither of the pp processes can oocur if the p and p have antiparallel spins; the 2z°

process cannot occur if the p and p have even relative orbital angular momentum.

CHp* = A p elip* = A n? :Tp* = A% " )=3:2:1.

A=A TA = A, r)T(A, " = A ") =618,

. 2¢x%le” ™ r 0+ (r*nje" ™ |x *n)=(xt ple™™ [n* p).

8. CI,.C==I,, CI,C=1l,, CI,C=—1,.

11. ﬂ“Cl:ﬂ“”":f{“ﬂj'E‘l:#..z-'l"]-

12X "=n+p X" " =p+p.

13. There is no isospin analogue of orbital angular momentum.

14, .Jrz{pn“|h']£’ y4{nnt|HIE® p=<{nn"|H[E ).

15. =7 =) =1:2.

17. For example, n° +p—=n+K"+K".

20. Iyjnlg—ri+svy="4n—2r—s)|nly —ri+sv),

L |nly —ri+svy=(rin—r—s+dnl,—(r+ i+ 5},
with similar formulae for Uy, U,, ¥y and ¥V, .

21, Y=%u-v)-H, ¢=%i-v)H.

22, (i) |£y"» = —4E°) +/3|A"). The reason for the better fit of the Gell-Mann/Okubo
formula to the meson octet with squared masses instead of masses is not fully
understood.

23. u quark number=1,+33B+5-C-F'-T),

d quark number= -/, +4{3B+5-C-F-T).
_ ). (i), (5ii) and (v): all cot? B (iv) tan? O (vi) and (vii): both cot® fcot® 1.
L (1) 043, (i) 320:13.4:15.6:1.
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Chapter 7

6. I{ +p) are projection operators onto eigenspaces of p'y_.

# 3 'Pﬂ -1)
coshbi i_sinhii]n.u) & Wipot1) LHZ_IFI_ s

7. SiA)m=
v (1sinhi.i]n.n coshid

Vipo—1)
2p|

is(p)and v, (p) are the columns of this matrix.
13. D, D"p=—m’¢; L =D $)(D"$)—m’¢'$ where D, =7, +ied,. j*=ed' i ¢.

p.o L /(pe+1)
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active and passive transformations, 102-3
additive quantum number, 10, 99
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in field theory, 336 (g. 11)
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162-7, 294, 297-8
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antilincar operators, 97
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antiparticles, 8 301
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antisymmetric states, 71, 151-2
antitriplet, 249
apparatus, 186-8, 189-9]
Aspect, A, ef al., 201
associated production, 238
asymptotic freedom, 270
atomic lattice, 207
atomic number, 4
atomic theory, 2
atomic weight, 2
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Aulbau principle, 157-8
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number, 10
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Belinfante, F. 1., 224
Bell, J. 5., 197, 217
Bell's incqualities, 198-201
Bell’s posiulate, 216
Bell's theorem, 200
Berofsky, B, 211
F-decay, 6-7, 9, 220-30, 237
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birefringent crystal, 48
Birkhoff, G. & von Meumann, J., 223
Mack-body radiation, 19
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Bohm, [, §6
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bootstrap, 354
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boundary conditions, 85-8
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Breit—Wigner distribution, 112, 257
Brownian motion, 2
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c-numbers, 53
Cabibbo angle, 241, 276
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energy, 260
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colour, 268
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Coleman-Mandula theorem, 284
colour, 14, 265-9
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symmetry, 267
combined systems, 68-73
commulte, 53

with the Hamiltonian, %2
commuling observables, 38, 184
commutation relations
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canonical, 66

for electromagnaetic field, 296
commutator, 59
compatibility, 57-9. 207
complete set

of states, 47

of compatible observalbles, 58
complele vector space, 67
completely reducible, 131
Compton scattering, 23, 37
confinement, 15, M. 270-1, 325
consciousness, 187-8
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conserving current, 306, 315
constants of the motion, 91-9, 314-17



contmuily, equation of, 85, 306, 115
comtinuous cigenvalues, 61-3
continuous observation, 114, 192-3
convex sci, 180
Copenhagen interpretation, 213
cosmic rays, 16
coupling constant, 169, 334
running, 269-70
covariant derivative, 321
CF. 2414
CPT theorem, 317
cross-section, 258
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colour, 268
conserved, 306
electromagnetic, 237, 311, 317-18
lepromic, 237
weak, 237
Current-current Hamiltomsan, 173

Daneri-Loinger-Prospen theorem, 191
de Broghe relanonship, 23
de Broglie/Bohm pilot wave, 196-8, 223
decay, §, 120-3, 170, 193, 256-7
and sospin, 132
of pions, 275-6
of strange particles, 238, 240, 251
radiative, 237
semileptonic, 240
decuplet, 13, 249, 250
deep inelastic scattering, 270n
d-function, 64-3
Al=1 rule, 240
&, 337
density matnx, 180
density of states, 62
deuteron, 153, 231
DeWint, B. 5. & Graham, M., 222
Dick. P. K.. 221
diffraction, 21
dimension, 47
Dirac d-function. 64-5
Dirac equation, 30111
sccond quantisation of, 309-11
Lagrangian for, 313
Dirac projection postulate, 51
Dirac spinor, 302
projection operators for, 335 (q.6)
distributive law, 206-7
doubly refracting crystal. 48
down quark, 14
Dyson's form of the perturbation series,
119-20

Effective Hamiltonian, 171
Ehrenfest’s theorem, B4
eigenbra, 60

Index

cigenspace, 49
cigenstales, 47, 49, 51
eigenvalues, 52
discrete and continuous, 61
cightfold way, 244-56
Emstein, A, 20n
Emnstein-Podolsky-Rosen paradox,
15946
eleciric charge, 311, 316
measurement of, 17
quantisation of, 282
electromagnetic field, 290-7
Lagrangian for, 313
locality of, 296
electromagnetic potentials, 291, 295
electromagnetism, 18, 290-7, 317-19
relativistic description, 294-5
cleciron, 3
diffraction, 23, 37
number, 12
electron—-positron annihilation, &, 35,
261-3, 266
pair creation, 8, 9
electron volt. 10
electroweak force, 31-2, 273-81, 3314
elements, 2
empiricism, 210
energy, measurement of, 17
relativistic, 6
energy-momentum, 317, 319
ensemble, 219
imerpretation, 219-20
epistemic interpretation, 218
£y, 337
Egrpas 339
equivalent representations, 104
n-meson, 251-2
Euclidean group, 108
Euler's theorem, 103
Euler-Lagrange equations, 312, 336
Ewerett, H. 11, 220
exchange operator, 70
cxcited states, 257-8
cxpectation value, 56, 82-5
in classical mechanics, 179
experiments, 41-2, 47-32
of the first and second kinds, 48
exponential decay, 120-3

falsification principle, 210
families, 15

faster-than-light signalling, 195, 226
Fermi's golden rule, 115

fermions, 29, 71

Feynman diagrams, 24, 26-8, 170-1
Feynman’s formulation, 123-7, 313
Feynman's postulate, 124

fields, 19, 290
dynamics of, 311-20
electromagnetic, 290-7
locality of, 29
quantum, 172, 291-301
fMavour, 18
symmetry, 267
Fonda ot al, 122
formulations of quanium mechanics,
201-9
algebraic. 201-3
Fourner transform. 61, 291-2, 298
functions of observables, 53
functional derivative, 312

G-parity, 234
Galilean group, 130
y-decay, 229-30
y-matrices, 301
¥as 0T-9
p-rays, 4
gauge, 295, 320
bosons. M, 268, 277-9
field, 321, 323
field stremgth tensor, 124
theory, 269-70. 280, 320-5; non-
abelian, 12, 323
transformation, 320, 324
Gaussian wave function, 77
Gieiger counter, 16
Gell-Mann, M., 178
Gell-Mann z-matrices, 243
Gell-Mann/Okubo formula, 288
general relativity, 29, 285
generations, 15
generator, 93, 104
hermitian, 92-3, 99, 316
Ghirardi et al., 224
GIM (Glashow-1iopoulos-Maiani)
mechanism, 280
gluchalls, 34, 269
Gleason’s theorem, 208
gluinos, 285
gluons, 33, 268-9
Gnedenko, B. V., 42
golden rube, 115
Goldstein, H., 94
Goldstone bosons, 326-9
Goldstone’s theorem, 328
grand unification, 281-3
gravitation, 18, 285
gravitino, 285
graviton, 29
Gireen's function, 300
ground state, 157
group of operations, 92, 103
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hadron, 15
spectroscopy, 256-63
Hamilton's equations, 79
Hamiltonsan, 79
harmonic oscillator, 158-62
three-dimensional. 160-2
Hesenberg, W, 218
Heisenberg picture, 109-10
helicity, 143-4, 2734, 307-9
Hermitian, 52
conjugate, 84-% non-existence of, 297
generator, 92-3, 99, 316
operators, 52, 74-5
hidden symmetry, 325-31
hidden variables, 194-2010, 2234
Higgs miechanism, 329-31
Hilbert space, 67-8
rigged, 68
holes, &n, 165
hydrogen atom, 153-7
spectrum of, 4, 157
hypercharge, 23, 240
hypothetico-deductive system. 210

I-spin, 245
identical particles, 70-3
identily operator, expansion of, 56
independent experiments. 42
indeterminacy, 211-12
indeterminism, 210-11
infinitesimal translation operator, 90
inner product. 45
inseparability, 212
instrumentalism, 210, 214
interaction. 169-73, 317
picture, 111
interference, 21, 37-8, 188-9
interpretations of quantum mechanics,
210-24
invariance, 88-103
in field theory, 314-17
invarianl mass, 260
inversion, space, 95
ons, 5
irreducible lattice, 207
irreducible representation, 103
irreducible set of operators, 148, 234
isoscalar, 231, 235
1sospin, 227-37
in weak and electromagnetic
interactions, 236-7
multiplets, 230
transformations, 129
isolopes, 6
isovector, 235

Index

Ji, 2634

Jacobi identity, 59
jets, 271-2

join, 204

Jordan algebra, 202-3

K-mecsons, neutral, 241-4

kaons | = K-mesons), 230

ket vectors, 54

kinematical factors, 169

kinetic theory, 1

Klein-Gordon equation, 300-1
Lagrangian for, 313

knowledge, 218

Lagrangian, 123
density, 312
formulation of field theory, 312-17
Laplace-Runge-Lenz vector, 154
lattices, 204-9
least action, principle of, 123
left-handed and right-handed, 143
states of electron, 274-5, 308-9
Lenz vector, 154
leptons, 10
mass of, 3334
lepton number, 10
Lie algebra, 105
Lie group, 104
Lie superalgebra, 184
lifetime, §, 257
Lighthill, M. J., 65
literal interpretation. 215
local symmetry, 321-4, 310-11
locality, 198-201
of fields, 296, 310
Lorentz scalar, 138
Loreniz transformation, 294-5, 302-4,
336, 34
Luecy, 43
Lyons, L. 285

macroscopic systems, 189-91
many-worlds interpretation, 220-2
mass of nucleus, 5
massless particles, 143=4, 308
massless bosons, 324
mainx element, 54
Maxwell's equations, 290, 317-18
Lagrangian for, 314, 319
measurements, 52, 56-8, 81, 1824, 213
theory of, 185-93
meet, 204
meson, 15
octets, 250-1
resonances, 261: with J* =1, 261-5
nonets, 252

MeV, 10

minimal interpretation, 213-15%

mixture, 179, 181
improper, 190

molecules, 1. 35

momentum, 63-6
and translations, 90-=1
measurement of, 17
relativistic, 6

monochromatic, 21

multiplets, 13, 230, 2334, 250
weak isospin, 277

muon, 11

muon number, 12

negative-energy solutions, 300-1, 305
MNelson, E, 224
neutral current, 280
neutrino, 7, 128, 143, 308
neutron, &

decay, 7
MNoether's theorem, 315-17
non-degenerate, 49
nonet, 252
normal ordering, 293
normalised, 39, 46

relative to observable A, 62
nucleon, 228
nucleus, 3

objective interpretation, 21517
observables, 51-9
in classical mechanics, 181, 183
iransformation of, 99-102
observer, 24, 188, 218
octet, 13, 249, 250
-, 13,2534
open system, 225 (q. 3)
operationalism, 210
operalions, 89
operators, lincar, 50
and matrices, 53-4, 55
positive, 181
orthocomplemented lattice, 206
orithogonal, 46
complement, 206
group, 108
orihonormal, 46
overt symmetry, 327

pair creation, 8, 9

parity, 95-6, 137, 143
intrinsic, 142, 144, 153-3
non-conservation of, 143, 241, 273-6

path integral, 124

Pauli exclusion principle, 14, 73

Pauli matrices, 139, 228
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phasc factor, 46, 315
phase space, 178
phasc-space [actor, 116
phase transformation, 315-16
photo-clectnic effect. 20
photons, 20

wirtual, 262
pions. 32, 236

decay of, 275-6
Plancherel's formula, 76 iq. 13)
plane polarised, 39
Poincare group, 283, 335
Poincaré superalgebra, 335
Poisson process, §
Poisson bracket, 110
polansation, 3941, 70, 243

elliptical, 40

plune, 39

vector, 41
polaroid filver, 39
positron operator, 63-6
positron, 8
positronium, 168-9, 264
pragmatism, 210
preparation, 213
probability. 36-8, 41-3, 47-50

amplitude, 118

current, 85

density, 37-8; relative, 64
projection, S0

postulate, 51, 63, 185-7, 212
projective geometry, 203-5
projective representation, 103
proton; §

decay, 282-3
pseudoscalar, 307
pseudovector, 307
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324-5
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quantum field, 172, 291-301
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quantum favourdynamics, 34, 276-81,
314
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substructure of, 285
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reduced quantum feld, 173, 301
reductionism, 17
Reichenbach, H., 200
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relative-state interpretation, 220-2
relativistic
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formulation of electromagnetism,
294-6
repormalisation, 319-20
representations of state vector, 66
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