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Preface 

This book provides a detailed introduction to the mathematics used by modero 

game engine programmers. The first three chapters cover the topics of linear al­

gebra (vectors and matrices), transforms, and geometry in a conventional manner 

common to many other textbooks on the subject. This is done to provide a famil­

iarity with the usual approach so that it's easy to make connections to similar 
expositions of the same topics elsewhere in the literature. Along the way, we will 

make several attempts to foreshadow the discussion of a manifestly more elegant 

and more correct mathematical model that appears in the fourth chapter. The last 

quarter of the book endeavors to provide a deeper understanding of many of the 

concepts discussed earlier by introducing Grassmann algebra and geometric al­

gebra. Knowledge of these branches of mathematics also allows us to convey 

intuition and provide details in the first three chapters that are difficult to find 
anywhere else. 

One of the goals of this book is to give practical engineering advice. This is 

accomplished through many short code listings appearing throughout the book 
showing how the mathematics we've discussed is implemented inside real-world 

game engines. To avoid filling pages with code listings that are illustratively re­

dundant, sorne data structures or functions referenced in various places have in­
tentionally been left out. This happens only when the form and behavior of the 

missing code is obvious. For example, Chapter 1 includes code listings that de­

fine a data structure and operations corresponding to a three-dimensional vector, 

but it doesn't show similar code for a four-dimensional vector, even though it's 

used by other code listings later in the book, because it would be largely identi­

cal. The complete library of code is available on the website cited below. 

ix 



X Preface 

We assurne that the reader has a so lid understanding of basic trigonornetry, a 

working knowledge of the C++ language, and sorne farniliarity with standard 

floating-point nurnbers. A bit of calculus appears in Chapter 3, but a full grasp of 

this isolated usage is not essential to the rest of the book. Otherwise, all of the 

rnathernatics that we cover is built frorn the ground up. Advanced readers pos­

sessing a thorough knowledge of linear algebra rnay wish to skip rnuch of the 

first two chapters. However, we recornrnend that ali readers take a look at Chap­

ter 3 before proceeding to the final chapter because Chapter 4 assurnes a familiar­

ity with the notation and conceptual details discussed in Chapter 3. 
Irnportant equations and key results appearing in the text are boxed with a 

blue outline. This is intended both to highlight the rnost valuable information and 

to rnake it easier to find when using the book as a reference. 

Each chapter concludes with a set of exercises, and rnany of those exercises 

ask for a short proof of sorne kind. The exercises are designed to provide addi­

tional educational value, and while rnany of thern have easy solutions, others are 

a little trickier. To ensure that getting stuck doesn 't deprive any reader of a srnall 

but interesting rnathernatical revelation, the answers to all of the exercises are 

provided on the website cited below. 

This book is the first volurne in a series that covers a wide range of topics 

related to garne engine developrnent. The official website for the Foundations of 

Game Engine Development series can be found at the following address: 

foundationsofgarneenginedev .corn 

This website contains information about all of the books in the series, including 

announcernents, errata, code listings, and answers to exercises. 
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Chapter 1 

Vectors and Matrices 

Vectors and matrices are basic mathematical building blocks in the field of linear 
algebra. They show up in the development of game engines practically everywhere 

and are used to describe a wide array of concepts ranging from simple points to 

projective coordinate transformations. The importance of acquiring a strong intui­

tion for vector mathematics and mastering the fundamental calculations that are 

involved cannot be overstated because a great number of game engine tapies 

inescapably depend on these skills. With this in mind, we begin at the earliest 

possible starting point and build from the ground up with a thorough introduction 

that assumes only an existing proficiency in trigonometry on the part ofthe reader. 

1.1 Vector Fundamentals 

Traditionally, basic numerical quantities arising in geometry, physics, and many 

other fields applied to virtual simulations fall into two broad categories called sca­

lars and vectors. A sea/ar is a quantity such as distance, mass, or time that can be 

fully described using a single numerical value representing its size, or its magni­

tude. A vector is a quantity that carries enough information to represent a direction 

in space in addition to a magnitude, as described by the following examples. 

• The difference between two points contains information about both the dis­

tance between the points, which is the magnitude of the vector, and the direc­

tion that you would need to go to get from one point to the other along a straight

line.

• The velocity of a projectile at a particular instant is given by both its speed (the

magnitude) and the direction in which it is currently travelling.

1 



2 Chapter 1 Vectors and Matrices 

• A force acting on an object is represented by both its strength (the magnitude)
and the direction in which it is applied.

In n dimensions, a direction and magnitude are described by n numerical co­
ordinates, and these are called the components of a vector. When we want to write 
down the complete value of a vector, we often list the components inside paren­
theses. For example, a three-dimensional vector v having components 1, 2, and 3 
is written as 

v=(l,2,3). (1.1) 

We follow the common practice ofwriting vectors in bold to distinguish them 
from scalars, which are written in italic. We identify an individual component of a 
vector v by writing a zero-based subscript such that v0 means the first component, 
v1 means the second component, and so on. Notice that we write the vector itself 
in italic in these cases because the component that we're talking about is a scalar 
quantity. Using this notation, an n-dimensional vector v can be written as 

V=(Vo, V¡, ... , Vn-1). (1.2) 

Beginning with a subscript of zero for the first component is a departure from 
the usual convention in purely mathematical circles, where the subscript for the 
first component is typically one. However, zero-based indices are a much better fit 
for the way in which computers access individual fields in data structures, so we 
use the zero-based convention in this book to match the values that would actually 
be used when writing code. 

The meaning of a vector's components depends on the coordinate system in 
which those components are expressed. lt is usually the case that we are working 
in Cartesian coordinates, and this being the case, the numbers making up a three­
dimensional vector are called the x, y, and z components because they correspond 
to distances measured parallel to the x, y, and z axes. (In two dirnensions, the third 
component doesn 't exist, and we have only the x and y components.) 

In addition to numerical subscripts, we can identify the components of a vector 
v using labels that correspond to the coordinate axes. In three dimensions, for ex­
ample, we often write 

v=(v.,, ,v
y

,vz
), (1.3) 

where it's understood that each subscript is to be interpreted only as a label and 
not as a variable that represents an index. lf we want to equate the components to 
their values, then using the example in Equation (1.1), we can write them as 



1.2 Basic Vector Operations 

Vx = l Vy = 2 Vz = 3. (1.4) 

Four-dimensional space is a setting in which a great deal of mathematics is 
done in the course of game engine development, as will be discussed frequently in 
the chapters that follow this one. The first three components of a four-dimensional 
vector are still called x, y, and z, but we have run out of letters in the alphabet 
beyond that, so the universally accepted practice is to call the fourth component w.

The fourth component is sometimes called a "weight" value, so it's especially con­
venient that w happens to be the letter closest to x, y, and z.

It may be tempting to think of one-dimensional vectors as no different than 
scalars since a member of either set is represented by a single numerical value. 
Ordinarily, there is no need to make a distinction between the two, but you should 
be aware of the fact that algebraic structures exists in which values are composed 
of both scalars and one-dimensional vectors. Sorne of these structures will be dis­
cussed in Chapter 4. 

It becomes a bit cumbersome to write out the words "two-dimensional", 
"three-dimensional", and "four-dimensional" every time it's necessary to state a 
number of dimensions, so throughout the rest of this book, we shall use the short­
hand notation 2D, 3D, and 4D in many instances. 

The definition of a simple data structure holding the components of a 3D vec­
tor is shown in Listing 1.1. The structure is named Vector3D, and it has floating­
point members named x, y, and z that can be accessed directly. A constructor tak­
ing three values can be used to initialize the vector, and this is useful for imple­
menting the vector operations that are discussed below. A default constructor is 
explicitly included so that it's possible to declare a vector object without perform­
ing any initialization. (This is necessary because default constructors are not im­
plicitly generated when other constructors are present.) The structure also includes 
two overloaded bracket operators, enabling access to the components using zero­
based indices, consisting of one operator for non-constant objects, which can be 
used for component assignment, and one operator for constant objects. Note that 
these operators do not check that the index is in the valid range of [ O, 2 ], so using 
an index outside of this range will cause memory outside of the data structure to 
be accessed erroneously. 

1.2 Basic Vector Operations 

For vectors to be of any practica! use, we need to be able to perform calculations 
with them, and to know what calculations to perform with vectors, we first need 
to associate sorne physical meaning with them. This is often done by visualizing 

3 



4 Chapter 1 Vectors and Matrices 

Listing 1.1. This is the definition of a simple data structure holding the components of a 3D vector. 

Structures for vectors of different dimensionality are similar. 

struct Vector3D 

} ; 

float x, y, z; 

Vector3D(} = default; 

Vector3D(float a, float b, float e} 

X = a; 

y= b; 

z = e; 

float& operator [) (int i} 

return ( (&x} [i)}; 

const float& operator [) (int i} const 

return ( (&x} [i)}; 

a vector as a line segment having an arrowhead at one end, as illustrated in 

Figure 1.1. The orientation of the line segment and the end on which the arrowhead 

appears represent the vector's direction, and the length of the line segment repre­

sents the vector's magnitude. We use the term arrow after this point to mean the 

combination of a line segment and an arrowhead. 

It's important to realize that a vector by itself does not have any specific loca­

tion in space. The information it possesses is merely an oriented magnitude and 

nothing more. If we draw a vector as an arrow in one place, and we draw another 

arrow with the same direction and length somewhere else, then they both represent 

the exact same vector. A vector can be used to represent a point that does have a 

location in space by thinking ofthe vector as a relative offset from a given origin. 



1.2 Basic Vector Operations 

Figure 1.1. A vector can be visualized as a line segment having an arrowhead at one end. 

1.2.1 Magnitude and Scalar Multiplication 

When we need to express the magnitude of a vector v, we place two vertical bars 
on either side to make it appear as llvll . The magnitude of an n-dimensional vector 
is calculated with the formula 

( 1.5) 

which is just the Pythagorean theorem in n dimensions. In three dimensions, we
can expand the summation and write 

IJvll =�v; +v� +v;, (1.6) 

where we are now using the labels x, y, and z instead of the numerical subscripts 
O, 1, and 2 to designate the different components. Note that the magnitude can 
never be negative because each term in the summation is a squared quantity. 

The vector whose components are ali zero is called the zero vector, and it is
the only vector for which the magnitude is zero. The zero vector is sometimes 
represented by a bold zero as in 

0=(0,0, ... ,0). (1.7) 

The magnitude of a vector can be changed by multiplying it by a scalar value. 
When we multiply a vector v by a scalar t, we simply write them side by side, and
we apply the multiplication to each of the components to obtain 

tv = (tvo,lv¡, ... , lvn-1 ). (1.8) 

Scalar multiplication is a commutative operation, meaning that it doesn't matter 
on which side we multiply by t because it's always the case that tv = vt . In the 

5 



6 Chapter 1 Vectors and Matrices 

formula for the magnitude of tv, the value t 2 now appears in each term of the 
summation, so it can be factored out and removed from the radical as ltl. Thus, 
multiplying a vector v by a scalar t changes the magnitude of v by a factor ofltl. 
This property can be written as 

lltv ll = Jtl llvJI, (1.9) 

demonstrating that the absolute value of a scalar quantity can always be pulled out 
of the expression for evaluating a magnitude. 

As shown in Figure 1.2, scalar multiplication produces a vector with a new 
magnitude but with a direction that is parallel to the original vector. When the 
scalar is positive, the new vector still points in the same direction as the original, 
but when the scalar is negative, the new vector points in the opposite direction. A 
negated vector, written -v, is one that has been multiplied by the scalar -1. In this
case, the direction is reversed, but the magnitude is not changed. 

A vector that has a magnitude of one is called a unit vector. Unit vectors are 
particularly important because they are able to provide directional information 
without a magnitude when a meaningful size of sorne kind is not necessary. Any 
nonzero vector can be tumed into a unit vector by dividing it by its magnitude. The 
magnitude is a scalar quantity, and when we say that we're dividing a vector by a 
scalar t, we really mean that we're multiplying by the scalar's reciprocal, 1/t. Thus, 
a nonzero vector v can be tumed into a unit vector v using the formula 

V 

A V 

v---llvii"

/ 

1.v2 

.!.v2 

( 1.1 O) 

-v

Figure 1.2. Scalar multiplication changes the magnitude of a vector while keeping the di­

rection parallel to that ofthe original vector. Ifthe scalar is negative, then the new vector 

points in the opposite direction. 



1.2 Basic Vector Operations 

The hat written above the v on the left side of this equation is a common way of 

indicating that the vector has unit length, or a magnitude of one. The process of 

setting a vector's magnitude to one is called normalization, and a unit vector that 

has been produced by this process is often referred to as normalized. To avoid 

confusion, you should be aware that this is not related to a type of vector called a 

normal vector, which is a concept described in Chapter 3. 

In Listing 1.2, functions that implement scalar multiplication and division are 

added to the Vector3D data structure as overloaded operators. A special function 

is provided for vector negation by overloading the unary minus operator. This code 

also includes a function that calculates the magnitude of a vector and another func­

tion that divides by the magnitude in order to normalize a vector. 

Listing 1.2. This code adds scalar multiplication and division to the Vector3D data structure. It 
also includes functions that calculate the magnitude of a vector and produce the nonnalized version 
of a vector. (Note that the Normalize () function can be implemented more efficiently by using a 
reciproca! square root function, if one is available, with scalar multiplication instead of division.) 

struct Vector3D 

} ; 

Vector3D& operator *=(float s) 

X *= s; 

Y *= s; 

z *= s; 

return (*this); 

Vector3D& operator /=(float s) 

s =l.OF/ s; 

X *= Si 

y *= s; 

z *= s; 

return (*this); 

inline Vector3D operator *(const Vector3D& v, float s) 

return (Vector3D(v.x * s, v.y * s, v.z * s)); 

7 



8 Chapter 1 Vectors and Matrices 

inline Vector3D operator /(const Vector3D& v, float s) 

s = l.OF/ s;

return (Vector3D(v.x * s, v.y * s, v.z * s) ); 

inline Vector3D operator -(const Vector3D& v) 

return (Vector3D(-v.x, -v.y, -v.z)); 

inline float Magnitude(const Vector3D& v) 

return (sqrt(v.x * v.x + v.y * v.y + v.z * v.z) ); 

inline Vector3D Normalize(const Vector3D& v) 

return (v / Magnitude(v)); 

1.2.2 Addition and Subtraction 

Vectors can be added and subtracted by applying these operations componentwise. 
That is, for two n-dimensional vectors a and b, we have 

a+ b = ( Go + bo, G¡ + b1, ... , Gn-1 + bn-1) (1.11) 

and 

a-b = (ao -bo, G¡ -b¡, ... , Gn-1 -bn-1 ). (1.12) 

Vector addition and scalar-vector multiplication exhibit many of the same basic 
algebraic properties as ordinary numbers due to the componentwise nature of the 
operations. These properties are summarized in Table 1.1, and their proofs are ob­
vious enough to be omitted here. 

The effect of adding two vectors a and b can be visualized by drawing the 
vector a anywhere and then placing the beginning of the vector b at the end of the 



1.2 Basic Vector Operations 

Property Description 

(a+b)+c=a+(b+c) Associative law for vector addition. 

a+b=b+a Commutative law for vector addition. 

( st) a = s (ta) Associative law for scalar-vector multiplication. 

ta =at Commutative law for scalar-vector multiplication. 

t (a+ b) =ta+ tb 
Distributive Iaws for scalar-vector multiplication. 

( s + t) a = sa + ta 

Table 1.1. These are the basic properties of vector addition and scalar-vector multiplica­
tion. The letters a, b, ande represent vectors ofthe same dimensionality, and the Ietters s
and t represent scalar values. 

vector a where its arrowhead is drawn. The vector a + b is then drawn as the 
arrow beginning where a begins and ending where b ends, as illustrated in 
Figure l .3(a). Because the addition operation applied to the individual components 

is commutative, the sum b + a produces the same vector a s  a + b, and placing the 

beginning of the vector a at the end of the vector b gives the same result, as shown 

in Figure 1.3(b ). 
The difference between two vectors a and b can be visualized in much the 

same way as their sum, except that in the case of a - b, the vector b is negated 
before its beginning is placed at the end of the vector a. We simply reverse the 

direction of the vector being subtracted, as shown in Figure 1.4. 
In Listing 1.3, functions that implement vector addition and subtraction are 

added to the Vector3D data structure as overloaded operators. 

a 
(a) 

a+b 

Figure 1.3. (a) The sum oftwo vectors a and bis visualized by placing the beginning ofb 
at the end of a and drawing a new vector a+ b that begins where a begins and ends where 
b ends. (b) Reversing the roles of the two vectors produces the same result because vector 
addition is commutative. 

9 



10 Chapter 1 Vectors and Matrices 

a -a

(a) (b) 

-b b 

Figure 1.4. The difference of two vectors a and b is visualized by adding the negation of 
the second vector to the first. (a) Toe difference a - b is given by a+ (-b ). (b) The differ­
ence b -a is equal to the negation of a - b and thus points in the opposite direction with the 
same magnitude. 

Listing 1.3. This code adds vector addition and subtraction to the Vector3D data structure. 

struct Vector3D 

} ; 

Vector3D& operator +=(const Vector3D& v) 

x += v.x; 

y += v.y; 

z += v.z; 

return (*this); 

Vector3D& operator -=(const Vector3D& v) 

x - v.x; 

y - v.y; 

z - v.z; 

return (*this); 

inline Vector3D operator +(const Vector3D& a, const Vector3D& b) 

return (Vector3D(a.x + b.x, a.y + b.y, a.z + b.z) ); 

inline Vector3D operator -(const Vector3D& a, const Vector3D& b) 

return (Vector3D(a.x - b.x, a.y - b.y, a.z - b.z) ); 



1.3 Matrix Fundamentals 

1.3 Matrix Fundamentals 

A matrix is a mathematical object composed of a set of numerical quantities ar­
ranged in a two-dimensional array of rows and columns. When a matrix has n rows 
and m columns, we say that its size is n x m, which is read "n by m". If it's the case 
that n = m, then we say the matrix is a square matrix. The numbers that make up a 
matrix M are called its entries, and using a 2 x 3 matrix as an example, we write 
them inside brackets as in 

M=[l 2 3]·
4 5 6 

(1.13) 

As with vectors, we write the letter representing a matrix in bold, and although 
not an established convention, we use uppercase letters for matrices and lowercase 
letters for vectors in this book to make it easier to distinguish between the two. An 
individual entry of a matrix M is identified by writing two zero-based subscripts 
such that the first subscript represents the row index, and the second subscript rep­
resents the column index. The symbol M ij means the entry appearing in the i-th 

row and j-th column. Sometimes, a comma may be inserted between the indices 
for clarity. Using this notation, an n x m matrix M can be written as 

Moo Mo1 Mo,(m-1¡ 

M= M10 M11 M1,(m-1¡ 
(1.14) 

M<n-1¡,o M<n-1¡,1 M(n-1),(m-l) 

The entries M;;, where the row index and column index are equal to each other, 
are called the diagonal entries of the matrix M, and they are said to reside on the 
main diagonal ofthe matrix. The main diagonal starts with the upper-left entry and 
continues downward and to the right. The entries M ij for which i * j are called the 
off-diagonal entries of the matrix M. Any matrix for which ali ofthe off-diagonal 
entries are zero is called a diagonal matrix. For example, the matrix 

lH ;1 (1.15) 

is a diagonal matrix because the only nonzero entries appear on the main diagonal. 
Note that sorne or all of the entries on the main diagonal itself could be zero, and 
the matrix would still be considered to be a diagonal matrix. 

11 



12 Chapter 1 Vectors and Matrices 

The transpose of a matrix M is the matrix denoted by Mr whose rows are 
equal to the columns of M, or equivalently, whose columns are equal to the rows 
of M. If the matrix M has size n x m, then the matrix Mr has size m x n, and its 
entries are given by MJ = M

Ji . The transpose of a matrix can be thought of as the 
reflection of its entries across the main diagonal. As an example, the transpose of 
the matrix M shown in Equation ( 1.13) is given by 

(1.16) 

If a matrix M is equal to its transpose Mr, meaning that it's always the case 
that M

u 
= M

Ji , then it is called a symmetric matrix because ali ofthe entries above 
and right of the main diagonal are the same as the entries below and left of the 
main diagonal, with the row and column indices reversed, as in the example 

1 � ! �1-
l-3 2 O 

(1.17) 

A matrix must be square in order to be symmetric, and every diagonal matrix is 
automatically symmetric. 

If the entries of a transpose M r are equal to the negations of the same entries 
in the matrix M, meaning that it's always the case that MJ =-M

u
, then the matrix 

M is called an antisymmetric matrix or a skew-symmetric matrix. Note that for this 
to be the case, ali ofthe entries on the main diagonal must be zero as in the example 

( 1.18) 

A special type of antisymmetric matrix is mentioned in the discussion of the cross 
product later in this chapter. 

An n-dimensional vector can be regarded as an n x 1 matrix or as a 1 x n matrix, 
and as such, is called a column vector or a row vector, respectively. While many 
textbooks make no meaningful distinction between these two types of matrices and 
casually use the transpose operation to convert from one to the other, there is an 
important difference between the two that is addressed later in this book. For now, 
we need only to choose either column vectors or row vectors as our convention 
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and stick to it. The mathematics works the same way no matter which one we se­
lect, and both conventions appear in various technologies used in 3D rendering, 
but the tradition in the more mathematically-oriented literature has been to write a 
vector as a matrix having a single column. We follow the same rule in this book 
so that a vector v is written as 

v=(vo, V1,···, Vn-1) = [ :: ]· 

Vn-1 

( 1.19) 

A comma-separated list of n components is equivalent to an n x 1 matrix containing 
the same numbers in the same order. Ifwe apply the transpose operation to v, then 
we get the row vector 

V T = [ Vo V¡ Vn-1 ], (1.20) 

which despite its horizontal layout, is different from the comma-separated list of 
components. It is sometimes convenient for us to create row vectors at this point 
by using the transpose operation, but you should be aware that doing so actually 
changes the meaning of the vector. This will be discussed in Chapter 4, at which 
point the transpose operations that we currently use become unnecessary. 

It is frequently useful to treat a matrix as an array of colurnn vectors or row 
vectors. For example, suppose that a, b, ande are 3D column vectors. Then we can 
construct a 3 x 3 matrix M by making those vectors the columns of the matrix and 
writing it as 

M=[a b e]. ( 1.21) 

When matrices are used to transform from one coordinate system to another in 
Chapter 2, treating the columns of a matrix as a set of vectors will beco me partic­
ularly meaningful. 

The matrices that arise in game engines are very often 3 x 3 or 4 x 4 in size. 
Listing 1.4 shows the definition of a structure named Matrix3D that holds the 
entries of a 3 x 3 matrix in a two-dimensional array. It has two nontrivial construc­
tors, one that takes floating-point parameters for ali nine matrix entries and another 
that takes 3D vector parameters that become the three columns ofthe matrix. 

We have a choice about the order in which we store matrix entries in memory 
because we could have consecutive entries grouped along the rows, or we could 
have them grouped along the columns. This choice is independent of whether we 

13 
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use column vectors or row vectors as our mathematical convention, but there is an 
advantage to keeping the entries together in such a way that vectors can be refer­
enced inside the matrix without having to copy entries. Since we have already de­
cided to use column vectors, we want to store matrices such that consecutive 
entries run down each column. This gives us the ability to extract column vectors 
for free by simply computing the memory address at which each column begins. 
In this case, the indices of the entries, viewed as a flat one-dimensional array, are 
given by the illustrative matrix 

(1.22) 

This arrangement of entries in memory is called column-major order, as opposed 
to the row-major order that we would be using had we chosen to group consecutive 
entries by row. 

In order to implement column-major storage order in a two-dimensional array, 
we need to make the first array index the column number and the second array 
index the row number. This is the opposite of the mathematical notation that eve­
rybody uses, so instead of allowing direct access to the matrix entries, we make 
those prívate and provide overloaded parentheses operators that take two indices 
in the familiar row-column order. As with the Vector3D structure, the operators 
defined for the Matrix3D structure do not check whether the indices are in the 
[ O, 2] range, so care must be exercised by the calling code to ensure that accesses 
stay within bounds. 

The code in Listing 1.4 also includes overloaded bracket operators that access 
entire columns of a 3 x 3 matrix as 30 vectors. Suppose that mis a Matrix3D ob­
ject. Then m[O], m[l], and m[2] are references to Vector3D objects occupying 
the same memory as the first, second, and third columns of the matrix. 

Listing 1.4. This is the definition of a simple data structure holding the entries of a 3 x 3 matrix. Toe 
( i, j) entry of a matrix is accessed by using opera tor ( ) , and the j-th column is accessed as a 3D 
vector by using operator [J. Structures for matrices of different size are similar. 

struct Matrix3D 

private: 

float n[3] [3]; 
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} ; 

public: 

Matrix3D() = default; 

Matrix3D(float nOO, float nOl, float n02, 

float nlO, float nll, float nl2, 

float n20, float n21, float n22) 

n[OJ [OJ 

n[l) (0) 

n[2) (0) 

nOO; n[OJ (1) 

nOl; n[l) [l) 

n02; n[2) [l) 

nlO; n[O) (2) 

nll; n [ 1) [ 2 J 

nl 2 ; n [ 2 ) [ 2 J 

n20; 

n21; 

n22; 

Matrix3D(const Vector3D& a, const Vector3D& b, const Vector3D& e) 

n[OJ [OJ 

n[l) [O) 

n[2) [O) 

a.x; n[O) (1) 

b.x; n[l) (1) 

c.x; n[2) (1)

a.y; n[OJ (2)

b.y; n[l) [2) 

e.y; n[2) [2)

float& operator () (int i, int j) 

return (n[j) [i)); 

a.z;

b.z;

c.z;

const float& operator () (int i, int j) const 

return (n[j) [i]); 

Vector3D& operator [) (int j) 

return (*reinterpret_cast<Vector3D *>(n[j))); 

const Vector3D& bperator [) (int j) const 

return (*reinterpret_cast<const Vector3D *>(n[j))); 

15 
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1.4 Basic Matrix Operations 

Like vectors, matrices can be added and subtracted entrywise, and they can be 
multiplied by scalars. These operations require little explanation, and they are 
rarely encountered in game engine development, so we spend only a brief moment 
on those before moving on to the much more important operation of multiplying 
matrices by other matrices. 

1.4.1 Addition, Subtraction, and Scalar Multiplication 

Two matrices of the same size can be added or subtracted by simply adding or 
subtracting corresponding entries. That is, for n x m matrices A and B, we can write 

(A+B);¡ =A;¡ +B;¡ (1.23) 

and 

(1.24) 

A matrix M is multiplied by a scalar t by applying the multiplication to every 
entry of the matrix, which we can write as 

(tM);¡ =tM
;¡
. (1.25) 

The basic properties of matrix addition and scalar-matrix multiplication are 
summarized in Table 1.2. These are the same properties that are listed for vectors 
in Table 1.1, which is unsurprising because vectors can be regarded as matrices 
having a single column. 

1.4.2 Matrix Multiplication 

Matrix multiplication is one of the most frequently used algebraic operations in 
game engine development. It is primarily applied to the transformation of geomet­
ric objects such as directions, points, and planes from one coordinate system to 
another, which is an important topic discussed at many places throughout the rest 
ofthis book. Here, we introduce the purely computational aspects of matrix mul­
tiplication and describe sorne of their fundamental properties. 

Two matrices can be multiplied together if and only if the number of columns 
in the first matrix is equal to the number of rows in the second matrix. The result 
is a new matrix having the same number of rows as the first matrix and the same 
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Property Description 

(A+B)+C=A+(B+C) Associative law for matrix addition. 

A+B=B+A Commutative law for matrix addition. 

(st)A = s (tA) Associative law for scalar-matrix multiplication. 

tA=At Commutative law for scalar-matrix multiplication. 

t(A+B)=tA+tB 
Distributive Iaws for scalar-matrix multiplication. 

(s+t)A=sA+tA 

Table 1.2. These are the basic properties of matrix addition and scalar-matrix multiplica­

tion. The letters A, B, and C represent matrices of the same size, and the letters s and t 

represent scalar values. 

number of columns as the second matrix. That is, if A is an n x p matrix, and B is 
a p x m matrix, then the product AB is an n x m matrix. Note that the order of mul­
tiplication cannot generally be reversed. The product BA <loes not exist in this ex­
ample unless n = m. Also, matrix multiplication is not generally commutative, so 
when both products do exist, it' s not true that AB = BA except in special situations.

When an n x p matrix A is multiplied by a p x m matrix B, the (i, J) entry of 
the matrix product AB is given by the formula

p-1 

(AB)
;¡ 

= ¿A;kBkJ . (1.26) 
k�o 

The calculation of the ( i, J) entry of the matrix AB involves only row i of the
matrix A and only columnj ofthe matrix B, which both containp entries that are
multiplied together and summed. An example of this calculation is illustrated in 
Figure 1.5, where a 2 x 3 matrix is multiplied by a 3 x 2 matrix to produce a 2 x 2 
matrix. 

One ofthe most common matrix products arising in game engine development 
is a 3 x 3 matrix M multiplied by a 3 x 1 column vector v. The result is a new 3 x 1
column vector that has possibly been rotated to a new orientation or scaled in sorne 
way. The components of the transformed vector are calculated by applying Equa­
tion (1.26) three times with i = O, 1, 2. The value ofj is always zero because v has 
only one column. The full product Mv can be written as 

17 
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column 1 

l entry (0,1) 

�r3 -21 
/ 

rowO-
[� 

3 

: fi3 /1]-1

1 ¡ 
2x3 3x 2 2x2 

Figure 1.5. A 2 x 3 matrix is multiplied by a 3 x 2 matrix to produce a 2 x 2 matrix. The parts 
highlighted in blue are the entries that participate in the calculation of the (O, 1) entry ofthe 
product, highlighted in green. The entries in row O ofthe first matrix are multiplied by the 
corresponding entries in column 1 ofthe second matrix and summed, yielding the calcula­
tion 1 ·(-2)+3·5 +(-2) ·4 = 5. 

(1.27) 

U pon taking a closer look at the right side of Equation (1.27), we see that the 
matrix-vector product Mv is a linear combination of the columns of M, and the 
coefficients are the coinponents of v. If we write M = [ a b e], then we have 

1 Mv=vxa+v
y
b+v,c. ¡ (1.28) 

This is particularly illuminating if we consider the unit vectors parallel to the co­
ordinate axes. If v = (1, O, O), then Mv = a; if v = ( O, 1, O), then Mv = b; and if 
M = ( O, O, 1 ), then Mv = c. The columns of M tell us exactly how the x, y, and z
axes are reoriented in a new coordinate system established through multiplication 
by M. This is the key concept within the topic of coordinate transformations, which 
is covered in Chapter 2. 

Functions that implement multiplication of3 x 3 matrices by other 3 x 3 matri­
ces and by 3D vectors are shown in Listing 1.5. Both functions are overloaded 
operators that take a reference to a Matrix3D object as the first parameter and 
either a Matrix3D object or a Vector3D object as the second parameter. Because 
it's a practica! thing to do for matrices of this size, the code attains maximum speed 
by explicitly computing every term for each entry of the products without using 
any loops. 
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Listing 1.5. This code adds matrix-matrix and matrix-vector multiplication to the Matrix3D data 

structure. 

Matrix3D operator *(const Matrix3D& A, const Matrix3D& 8) 

return (Matrix3D (A(O, O) * 8(0,0) + A(O,l) * 8 (1, O) + A(0,2) * 8 (2, O),

A(0,0) * 8 (0, 1) + A(O, 1) * 8 (1, 1) + A(0,2) * 8(2, 1),

A(0,0) * 8(0,2) + A(O, 1) * 8 (1, 2) + A(0,2) * 8(2,2),

A(l,0) * 8(0,0) + A(l, 1) * 8 (1, O) + A(l,2) * 8(2, O),

A(l, O) * 8(0,1) + A(l,l) * 8 (1, 1) + A(l,2) * 8(2, 1),

A(l, O) * 8(0,2) + A(l, 1) * 8 (1,2) + A(l,2) * 8 (2, 2),

A(2,0) * 8(0,0) + A(2, 1) * 8 (1, O) + A(2,2) * 8 (2, O),

A(2,0) * 8(0,1) + A(2, 1) * 8 (1, 1) + A(2,2) * 8(2, 1),

A(2, O) * 8(0,2) + A(2, 1) * 8 (1, 2) + A(2,2) * 8(2, 2)));

Vector3D operator *(const Matrix3D& M, const Vector3D& v) 

return (Vector3D(M(0,0) * v.x + M(O,l) * v.y + M(0,2) * v.z, 

M(l,0) * v.x + M(l,l) * v.y + M(l,2) * v.z, 

M(2,0) * V.X + M(2,l) * v.y + M(2,2) * v.z)); 

Sorne of the basic properties of matrix multiplication are listed in Table 1.3. 
Most of these are easily pro ven, but the last property stating that ( AB) r = B r Ar 

is not quite as obvious. Suppose that A is an n x p matrix and B is a p x m matrix. 
The ( i, J) entry of ( AB) r is the ( j, i) entry of AB, and after swapping the indices
i andj in Equation (1.26), we can write 

p-1 

(AB)� =(AB) Ji = ¿A1kBki· (1.29) 
k=O 

The summand on the right side of the equation is just the product between two 
numbers, so we can reverse the order ofthe factors. We can also replace each factor 
by the entry ofthe corresponding transpose matrix with the indices reversed to get 

p-1 p-1 

¿AjkBk; = ¿B;IAl. 
k=O k=O 

(1.30) 

The right side of this equation is now precisely the definition of the (i, J) entry of 
the product B r A r_ 

19 
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Property Description 

(AB)C = A(BC) Associative law for matrix multiplication. 

A(B+C)=AB+AC 
Distributive laws for matrix multiplication. 

(A+B)C =AC+BC 

(tA)B = A(tB) = t (AB) Scalar factorization for matrices. 

(AB)T = BT AT Product rule for matrix transpose. 

Table 1.3. These are the basic properties ofmatrix multiplication. Toe letters A, B, and C 
represent matrices, and the letter t represents a scalar value. 

1.5 Vector Multiplication 

There are a number of ways to multiply two vectors together. The most obvious is 
to apply the multiplication componentwise, and this is what happens in ali modern 
shading languages when the multiplication operator appears in the code. However, 
this has very little physical significance and is mainly used for multiplying colors 
together. When vectors are being used to represent quantities with sorne geometric 
meaning, the most constructive methods of multiplication are two operations 
known as the dot product and the cross product. We provide defining formulas for 
these products here and discuss their properties and applications. In Chapter 4, we 
will demonstrate that these formulas can actually be derived from a more funda­
mental principie. 

1.5.1 Dot Product 

The dot product between two n-dimensional vectors a and b is a scalar quantity 
given by the formula 

n-1 

a·b= ¿a;b;. 
i=O 

(1.31) 

 The corresponding components of the two vectors are multiplied together and
summed. This product gets its name from the notation a · b in which a dot is placed 

,-_ 
.· 

between the two vectors participating in the product. Because it produces a scalar
, _· quantity, the dot product is also known as the sea/ar product. 

· ., 
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In three dimensions, the dot product can be written as 

(1.32) 

and this is the most common form in which the dot product is calculated. The im­
plementation of the Dot ( ) function in Listing 1.6 uses this formula to compute 
the dot product between two Vector3D data structures. 

Ifthe vectors a and b are regarded as column matrices, then the dot product be 
also be expressed as 

a· b = a Tb = [ a0 a1 .. · ªn-l] [ :: ¡, 
bn-1 

(1.33) 

which produces a 1 x 1 matrix having a single entry whose value is given by the sum 
in Equation ( 1.31 ). There is significance to the fact that this is the product of a row 
vector and a column vector, and this is a topic that will be discussed in Chapter 4. 

Comparing the definition of the dot product with the formula for vector mag­
nitude given by Equation ( 1.5), we see that the dot product of a vector with itself 
produces the squared magnitude of that vector. W e use the special notation v2 in 
place of the dot product v · v or the squared magnitude llvll

2 for its conciseness. Ali 
three expressions have the same meaning. When squared, it is a common conven­
tion to write the letter representing a vector in italic because the result of the dot 
product of a vector with itself is a scalar quantity. 

A few basic properties of the dot product are listed in Table 1.4, and each one 
is easily verified. Of particular importance is that the dot product is commutative, 
meaning that the order of the factors doesn 't matter. This is different from the cross 
product, discussed next, which changes sign when its factors are reversed. 

Although not at ali obvious from its definition, the dot product between two 
vectors a and b satisfies the equality 

Listing 1.6. This code implements the dot product between two Vector3D data structures. 

Í inline float Dot(const Vector3D& a, const Vector3D& b) 

1 { 
return (a.x * b.x +a.y* b.y + a.z * b.z);

21 



22 
Chapter 1 Vectors and Matrices 

Property Description 

a·b=b·a Commutative law for the dot product. 

a·(b+c)=a·b+a·c Distributive law for the dot product. 

(ta)· b =a· ( tb) = t (a· b) Scalar factorization for the dot product. 

Table 1.4. These are the basic properties ofthe dot product. The letters a, b, ande represent 

vectors ofthe same dimensionality, and the letter t represents a scalar value. 

a· b = llall 11h11 cos 0, (1.34) 

where 0 is the planar angle between the directions of a and b if they were to be 
drawn as arrows starting at the same location. This equality represents the main 
application ofthe dot product, and it provides a computationally cheap way to de­
termine how much two vectors are parallel to each other or perpendicular to each 
other. If a and b are both unit vectors (i.e., they both have a magnitude of one), 
then a · b is always in the range [ -1, 1] because in this case a · b = cos 0, and the 
range of the cosine function is [ -1, 1]. 

Assuming the magnitudes of a and b remain the same, the dot product a · b 
attains its largest positive value when a and b are parallel and point in the same 
direction. When a and b are parallel and point in opposite directions, a · b attains 
its largest negative value. If a and b are perpendicular, then a · b is zero no matter 
what the magnitudes of a and b are. In general, the dot product is positive when 
the angle between the vectors is less than 90 degrees and negative when the angle 
is greater than 90 degrees, as illustrated in Figure 1.6. Loosely speaking, the dot 
product provides a measure of how much one vector is like another. 

When a · b = O, the vectors a and b are said to be orthogonal, and this terrn is 
used even if one of the vectors being multiplied together is the zero vector. Or­
thogonality is a concept that includes the geometric state oftwo vectors being per­
pendicular to each other, but it also has a more abstract meaning in different 
settings that are not explored in this book. 

The trigonometric relationship stated by Equation ( 1.34) can be understood by 
considering a triangle having two sides forrned by drawing vectors a and b from 
the same starting location, as shown in Figure l .  7. The third side of the triangle is 
then given by the vector a - b, drawn between the ending locations of a and b. For 
the angle 0 between a and b, the law of cosines states that 

(a-b)
2 =a2 

+b
2 -2llall llbllcos0. (1.35) 
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a-b = O

b 

b 

Figure 1.6. The dot product a· b is positive when the angle between vectors a and b is less 
than 90 degrees, and it is negative when the angle is greater than 90 degrees. The dot prod­
uct is zero when a and b are perpendicular. 

b 

0 

a 

Figure 1.7. The equality a· b = llall llbllcos0 follows from the law of cosines applied to the 
triangle having sides a and b. 
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The squared magnitude on the left side of the equation is equivalent to the dot 
product ( a -b) · ( a -b ), which can be expanded as 

(a-b)·(a-b)=a 2 -a·b-b·a+b 2
. (1.36) 

The a 2 and b 2 terms cancel the same terms on the right side of Equation (1.35), 
and due to commutativity, the two dot products are equal. We can thus write 

-2 (a· b) = -2 llallllbll cos 0,

from which Equation (1.34) follows immediately. 

1.5.2 Cross Product 

(1.37) 

The cross product between two 3D vectors a and b is another 3D vector given by 
the formula 

1 axb =(a
y
b, - a,b

y
,a,bx -axb,,axh

y 
-a

y
bx)· 1 (1.38) 

Each component of the result involves products of the other two components of 
the vectors being multiplied together. For example, the z component of the cross 
product is calculated using the x and y components of the input vectors. A way to 
remember the formula for the cross product is to realize that the subscripts for a
and b used in the positive term of each component of the product are the next two 
letters in the sequence x � y � z, with wraparound, and the subscripts are simply 
reversed for the negative term. The next two letters for the x component are y and 
z, the next two letters for the y component are z and x (because x follows z after 
wrapping), and the next two letters for the z component are x and y.

As with the dot product, the cross product gets its name from the notation ax b
in which a cross is placed between the two vectors participating in the product. 
Because it produces a vector quantity, the cross product is also known as the vector
product. The implementation of the Cross () function in Listing 1.7 uses Equa­
tion (1.38) to compute the cross product between two Vector3D data structures. 

The cross product ax b can also be expressed as a matrix product by forming 
a special 3 x 3 antisymmetric matrix denoted by [ a L and multiplying it by the col­
umn vector b. The matrix [ a L is defined as 

[aL =l :,
-a

y 

o (1.39) 
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Listing 1.7. This code implements the cross product between two Vector3D data structures. 

inline Vector3D Cross(const Vector3D& a, const Vector3D& b) 

return (Vector3D(a.y * b.z - a.z * b.y, 

a.z * b.x - a.x * b.z,

a.x * b.y - a.y * b.x));

and when multiplied by b, it gives us 

axb=[aLb=I :z

l-ay

-az
o (1.40) 

The matrix formulation can sometimes make the proofs of vector identities easier,
and this is demonstrated for a common identity later in this section. 

It's important to emphasize that the cross product is defined only for three
dimensions, whereas the dot product is defined for ali numbers of dimensions. This
limitation is a consequence of the fact that the cross product is actually a subtle
misinterpretation of a more general and more algebraically sound operation called
the wedge product, which will be a central concept in Chapter 4. However, use of
the cross product is well established throughout science and engineering, and its
properties are well understood, so we provide a conventional introduction to it here
under the notice that a more elegant presentation of the underlying nature of the
mathematics appears later in this book. 

If two vectors a and b are parallel, either because they point in the same direc­
tion or they point .in opposite directions, then the cross product a x b is zero no 
matter what the magnitudes of a and b are. Because they are parallel, one of the 
vectors can be written as a scalar multiple of the other, so we can say that b = ta 
for sorne scalar t. The fact that the cross product is zero then becomes obvious 
when b is replaced by ta in the definition to get 

a x (ta) = ( a yfa z - a zfa y, a zfa x - a xfa z, a xfa y - a yta x ) = ( O, O, O). ( 1.41) 

When two vectors a and b are not parallel, the cross product ax b is a new
vector that is perpendicular to both a and b. This is evident if we calculate the
dot products a · ( a x b) and b · ( a x b) because both of them are always zero, as
exemplified by 
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in which each pair of like-colored terms cancels. The vectors a and b, not being 

parallel, establish a plane to which the cross product ax b is perpendicular, and we 
have two choices as to what direction the vector ax b actually points. If we are 

looking at the plane from a position not lying in the plane itself, then a x b could 

point toward us, or it could point away from us. The correct direction is determined 

by the handedness of the coordinate system. 
As shown in Figure 1.8, there are two possible configurations for the three 

coordinate axes, and they are called left-handed and right-handed because the pos­
itive z axis points in the direction of the left or right thumb when the fingers of the 

same hand curl around the z axis in the direction from the positive x axis to the 

positive y axis. Toe same rule is applied to the cross product a x b with the vectors 
a and b assuming the roles of the x and y axes and the vector ax b assuming the 

role ofthe z axis. Because a and b are not required to be perpendicular, we need to 
stipulate that the fingers curl from a to b in the direction of the smallest angle 
between them. The universal convention in scientific fields is that the underlying 
coordinate system is always right-handed, and thus the rule for determining the 

direction in which ax b points is called the right-hand rule. When the fingers of 

the right hand are held such that they curl in the direction of the smallest angle 
beginning with a and ending with b, then the right thumb points in the direction of 

ax b. This is illustrated in Figure 1.9, where it also becomes apparent that reversing 
the order of the vectors causes the cross product to point in the opposite direction. 

z z 

y y 

""-¿;__ ___ __... X 

left-handed right-handed 

Figure 1.8. 1n a left-handed or right-handed coordinate system, the left or right thumb 
points in the direction of the positive z axis when the fingers of the same hand curl around 
the z axis in the direction from the positive x axis to the positive y axis. 
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axb 

a 

b 
b 

a 

axb 

Figure 1.9. In a right-handed coordinate system, the cross product follows the right-hand 

rule. When the fingers ofthe right hand curl in the direction ofthe smallest angle from the 

vector a to the vector b, the right thumb points in the direction of ax b. 

The magnitude of the cross product between two vectors a and b satisfies the 
equality 

JJa x bJJ = JJaJJ JJbJJ sin 0, (1.43) 

where 0 is the planar angle between the directions of a and b if they were to be 
drawn as arrows starting at the same location. This can be proven by first squaring 
the cross product to obtain 

(ax b ) 2 = ( ayb, -a,by )
2 + (a,bx -axb, ) 2 + ( axhy -ayhx ) 2 

2b2 2b2 2b2 2b2 2b 2 2b2 =ay z +az y +az X +ax z +ax y +ay X 

-2(aya,byb, +a,axh,bx +axaybxby)• (1.44) 

Ali ofthis factors nicely ifwe add a;b; + a;b; + a;b; at the beginning and subtract 
it back at the end. We can then write 

(axb) 2 =(a; +a; +a;)(b; +b; +b;)-(axhx +ayby +a,b,)2 

=a2b 2 -(a·b) 2
• (1.45) 

(This equation is known as Lagrange 's identity.) By substituting a2b2 cos2 0 for 
the squared dot product, we have 

(1.46) 

and taking square roots finishes the proof. 
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(a) (b) 

' 

b ! llbllsin0 b 

0 
A =½llaxbll 

a a 

Figure 1.10. (a) The equality lla x bll = lla ll llbllsin0 shows that magnitude ofthe cross prod­
uct ax b is equal to the area of the parallelogram having si des a and b. (b) The area A of a 
triangle having sides a and b is half the area of the parallelogram and is thus half of the 
magnitude of the cross product ax b.

As shown in Figure l .lO(a), the trigonometric relationship stated by Equation 
(1.43) means that the cross product ax b has a magnitude equal to the area of the 
parallelogram having sides a and b. The length of the base of the parallelogram is 
llall, and the height of the parallelogram is llb ll sin 0. If we split the parallelogram in 
half by making a cut along the line connecting the ends of a and b as shown in 
Figure 1. lO(b), then we create two congruent triangles that both have halfthe area 
of the parallelogram. Thus, the area of a triangle having si des a and b is given by 
half of the magnitude of the cross product ax b. More generally, the area A of a 
triangle having vertices at the points p 0, p1, and p 2 is given by 

A =½ll(P1 -po)x(pz -po)II- ( 1.4 7) 

Several properties of the cross product are Iisted in Table 1.5. The first one 
states that ax b = -b x a, and this is called the anticommutative property of the 
cross product. When the order ofthe vectors multiplied together in the cross prod­
uct is reversed, the result is a vector that is negated. This effect can be seen by 
reversing the roles of a and b in the definition of the cross product given by Equa­
tion (1.38). We also mentioned this property earlier in the discussion of the right­
hand rule. If the order ofthe vectors is reversed, then the right hand would have to 
be tumed upside down for the fingers to curl in the proper direction matching the 
order of the input vectors, so the resulting cross product points in the opposite 
direction. 

Table 1.5 includes a property that involves the multiplication of three vectors 
using the cross product, and it is called the vector triple product. This property is 
an identity that lets us rewrite the cross products of three vectors a, b, and e as 



1.5 Vector Multiplication 

Property Description 

axb =-bxa Anticommutativity ofthe cross product. 

ax(b+e)=axb+axe Distributive law for the cross product. 

(ta) x b =ax ( tb) = t ( a'X b) Scalar factorization for the cross product. 

ax (b x e)= b (a· e )-e (a· b) Vector triple product. 

(axb)2 =a 2b 2 -(a·b)2 Lagrange's identity. 

Table 1.5. These are the basic properties ofthe cross product. The letters a, b, ande rep­
resent 3D vectors, and the letter t represents a scalar value. 

ax (b x e)= b (a· e )-e (a· b ). (1.48) 

The mnemonic "bac minus cab" is often used to remember the way in which the 
cross products are transformed into a difference of the input vectors b and e mul­
tiplied by the dot products of the other two input vectors. If we move the parenthe­
ses in Equation ( 1 .48) so that the cross product ax b is calculated first, then we 
have 

(ax b) x e= -ex (ax b) =ex (b x a) ( 1.49) 

after a couple applications of the anticommutative property. Thus, changing the 
order of the cross products in the vector triple product has the same effect as ex­
changing the vectors a ande in Equation (1.48), from which we can conclude 

(ax b) x e= b (a· e )- a (e· b ). (1.50) 

This highlights the fact that the cross product is not generally an associative oper­
ation. The exception is the case in which a = e, where it is true that 

a x ( b x a) = ( a x b) x a. ( 1.51) 

The nonassociativity of the cross product raises an alarm that something isn't quite 
right, and this is an issue that will be cleared up in Chapter 4. 

One possible proof of the vector triple product identity makes use of the anti­
symmetric matrix introduced by Equation (1.39). If we replace the cross products 
in Equation (1 .48) with the equivalent matrix products, then we have 

ax(b xe) = [a ]J[b Le)= ([ a ]Jb ]Je, ( 1.52) 
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where the associativity of matrix multiplication allows us to move the parentheses. 
After multiplying the two antisymmetric matrices together, we can write the vector 
triple product as 

(1.53) 

The 3 x 3 matrix in this equation almost looks like the matrix product bar , if only 
the diagonal entries had the forro akbk. Fortunately, we can add and subtract a term 
of this forro to each of the diagonal entries to get 

and now we can simplify and reassociate the matrix products to arrive at 

[ a L [b Le= ha re -(a· b) e 
=b(a·c)-c(a·b). 

1.5.3 Scalar Triple Product 

(1.54) 

(1.55) 

The sea/ar triple product of three vectors a, b, and e is the scalar quantity produced 
by multiplying two of the vectors together using the cross product and then multi­
plying by the third vector using the dot product, as in (ax b) · c. It turns out that it
doesn't matter where the cross product goes and where the dot product goes, and 
the scalar triple product gives the same result as long as the vectors are multiplied 
together in the same order with wraparound. As such, the special notation [ a, b, e], 
without any specific multiplication symbols, is often used to represent the scalar 
triple product, and we can write 

1 [a,b,c]=(axb)·c=(bxc)·a=(cxa)·b.1 (1.56) 

If the order of the input vectors is reversed, then the scalar triple product is negated 
to give us 

[ e, b, a]= (ex b) ·a= ( b x a)· e= (ax e)· b = - [ a, b, e]. (1.57) 

This accounts for ali six possible perroutations of the vectors a, b, and c. 
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a 

Figure 1.11. The scalar triple product (ax b) · e yields the volume of the parallelepiped 
spanned by the vectors a, b, and c. The area of the base is given by lla x bll, and the height 
is given by llcllsinq¡. Because q¡ and 0 are complementary angles, the height is also given by 
llcllcos0, so the dot product (ax b) ·e is equal to the area ofthe base multiplied by the height. 

Suppose that the vectors a, b, ande form the edges of a parallelepiped as shown 
in Figure 1.11. We already know that the cross product ax b has a magnitude equal 
to the area of the parallelogram spanned by a and b that forms the base of the 
parallelepiped. The height is given by jjcjj sin rp, where <p is the angle between the 
vector e and the plane containing the base. Because the angle 0 between the vectors 
ax b and e is complementary to rp, we know that sin <p = cos 0. The cosine function 
suggests that we take the dot product between a x b and e to get 

(ax b) ·e= jja x bjj jjcjj cos 0 = lla x bll llcll sin rp, (1.58) 

and we now have, on the right side ofthe equation, the area ofthe base multiplied 
by the height. We conclude that the scalar triple product (ax b) · e yields a value 
equal to the volume of the parallelepiped spanned by the vectors a, b, and c. Chang­
ing the order of the vectors simply causes the volume to be calculated from a dif­
ferent perspective with a possible change in sign due to the orientation of the 
vectors participating in the cross product. 

1.6 Vector Projection 

We learned early in this chapter that vectors can be added together to form new 
vectors, but situations arise in which we need to perform the opposite task. Given 
a particular vector, we might want to find two or more other vectors with specific 
alignments that add up to our original vector. This is a process called decomposing

a vector into its separate components. 
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The most straightforward decomposition involves breaking a vector into 
pieces that are aligned to the coordinate axes. The letters i, j, and k are commonly 
used to represent unit vectors aligned to the positive x, y, and z axes, and they are 
thus defined as 

i = (1, O, O) 

j=(0,1,0) 

k=(0,0,1). (1.59) 

If we wanted to decompose a 3D vector v into components parallel to the coordi­
nate axes, then we could write 

(1.60) 

by simply picking out each component of v and multiplying it by the unit vector 
for the corresponding axis. We would like to develop something more general than 
this, however, so we need to find a way to write the same thing without referring 
to the actual x, y, and z coordinates of v. The way to accomplish this is to realize 
that each coordinate is equal to the magnitude of v multiplied by the cosine of the 
angle that v makes with the corresponding axis. This means that v x = v · i, v Y 

= v · j, 
and v, = v · k, so we can rewrite Equation ( 1.60) as 

v = ( v · i) i +(v · j) j +(v · k) k. (1.61) 

This is illustrated in two dimensions in Figure 1.12. Each component of Equation 
( 1.61) is called the projection of v onto one of the vectors i, j, and k parallel to the 
coordinate axes. 

j 

V 

(V. j) j 

(v·i)i 

Figure 1.12. The vector vis projected onto vectors i and j parallel to the x andy axes. The 
component of v parallel to i is given by ( v · i) i, and the component of v parallel to j is given 
by (v · j)j. 
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In general, we can use the dot product to project any vector a onto any other 
nonzero vector b using the formula 

(l.62) 

The notation a 11b indicates the component of the vector a that is parallel to the vector 
b, and Equation ( 1.62) gives us the projection of a onto b. (The alternative notation 
proj b a is sometimes used in other texts for the projection of a onto b, and it has 
the same meaning as a 11b.) Here, the word "component" meaos part of the decom­
position ofthe vector a without referring to any particular coordinate. The division 
by b 2 accounts for the possibility that b is not a unit vector. We divide by the 
magnitude of b once for the dot product and again so that the projection points in 
the direction of the unit vector b/llbll- Note that if the dot product a· b is negative, 
then a 11b is still parallel to b but points in the opposite direction. 

The projection of a onto b can be expressed as the matrix product 

1 T a 11b = -2 
bb a. 

b 
(1.63) 

The product bb r yields a symmetric matrix that can be multiplied by the vector a
to perform the projection. In three dimensions, we have 

(1.64) 

The matrix in this equation is an example of an outer product. In general, the outer 
product between two vectors u and vis written as u® v, and it produces a matrix 
for which the ( i, J) entry is equal to u;v j as in 

rUxVx 

v,]= UyVx 

u,vx 

(1.65) 

If we subtract the projection a 11b from the original vector a, then we get the part 
that's perpendicular to the vector b because we've removed everything that is par­
allel to b. The perpendicular part of the decomposition is called the rejection of a
from b and is written 
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a·b 
a.1b =a-a11b =a-¡;zb, (1.66) 

The notation a .Lb indicates the component of the vector a that is perpendicular to 
the vector b. Of course, it is always the case that a11b + a.1b = a.

As shown in Figure 1.13, the projection of a onto b and the rejection of a from 
b form the sides of a right triangle in which a is the hypotenuse. Clearly, 
( a llb ) 2 + (a .Lb ) 2 = a 2, and basic trigonometry tells us 

lla11b 11 = llall cos 0 

lla.1b 11 = llall sin 0, (1.67) 

where 0 is the angle between a and b. The presence of the sine function in the 
magnitude of the rejection suggests that there is another formula for the rejection 
that involves the cross product, and this is explored in Exercise 5. 

In Listing 1.8, functions named Proj ect () and Rej ect () implement the 
projection and rejection operations for the Vector3D data structure. Faster ver­
sions of these functions can be implemented by omitting the division by b 2 for 
cases when the caller knows that the vector b has unit length. 

One of the primary applications of vector projection is a process called 
orthogonalization in which each member in a set of vectors is modified so that it 
is perpendicular, or orthogonal, to ali of the other vectors. If we have only two 
nonparallel vectors a and b, then they can be made into an orthogonal set by either 
replacing a with a.1b or by replacing b with b .1a. In both cases, we are subtracting 

a 

a·b a.1b =a--
2 

b 
b 

b 

Figure 1.13. The projection a11b of a onto b and the rejection a.1b of a from b form the sides 
parallel and perpendicular to the vector b, respectively, of a right triangle in which the 
vector a fonns the hypotenuse. 
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Listing 1.8. This code implements projection and rejection operations for the Vector3D data 

structure. 

inline Vector3D Project(const Vector3D& a, const Vector3D& b) 

return (b * (Dot(á, b) / Dot(b, b)) ); 

inline Vector3D Reject(const Vector3D& a, const Vector3D& b) 

return (a - b * (Dot(a, b) / Dot(b, b))); 

away the projection of one vector onto the other vector so that the parallel compo­
nent is removed, leaving only the perpendicular component. 

We mentioned that two nonparallel vectors a and b could be made orthogonal. 
If a and b happened to be parallel, then a _lb and b _¡_3 would both be the zero vector 
because there is no component of either that is perpendicular to the other. Techni­
cally, the zero vector is orthogonal to any other vector, but it's not a very useful 
result. Being nonparallel means that one vector cannot be written as a scalar mul­
tiple ofthe other. This concept can be extended to a greater number ofvectors, and 
it is known generally as linear independence. A set of vectors { v 1, v 2, ••• , v n } is 
linearly independent if there do not exist scalars a1 , a2 , • • •  , a

n such that 

(1.68) 

This is a concise way of stating that no one vector v; can be written as a sum of 
scalar multiples of all the other vectors in the set. Linear independence means that 
every vector in the set has a component that is not possessed by any of the other 
vectors. Consequently, a linearly independent set of n-dimensional vectors can 
have at most n members because after that many, we have run out of orthogonal 
directions. 

Suppose we have a set of n linearly independent vectors { v 1, v 2, ••• , v n}. The 
general procedure for producing a set of mutually orthogonal vectors { u 1, u 2, ••• , 

u n } is called the Gram-Schmidt process. It works by first setting u 1 = v 1 and then 
considering each additional vector v; with i = 2, ... , n, one at a time. The vector v;

is made perpendicular to the vectors that have already been orthogonalized by sub­
tracting away its projection onto every u k with k < i, as done with the formula 
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i-I 

U¡ =V¡ - ¿(v i ) llu, (1.69) 
k=I 

For example, a set ofthree vectors {v 1,v 2 ,v 3} is orthogonalized by using the 
calculations 

U1 =V1 

U2 =V2 -(v2) 11u , 

U 3 = V 3 - ( V 3 ) llu, - ( V 3 ) llu 2 • ( l. 70) 

It is a common requirement that the vectors U; be renormalized to unit length 
after the orthogonalization process by dividing each one by its magnitude. In this 
case, the process is called orthonormalization, and a typical example of its appli­
cation is the adjustment of the columns of a 3 x 3 transformation matrix. If such a 
matrix has undergone repeated multiplication by other matrices, floating-point 
rounding errors tend to accumulate, and this causes the columns to become nonor­
thogonal to a significant degree. As will be discussed in Chapter 2, the columns of 
a transformation matrix correspond to the directions of the axes in a particular co­
ordinate space, and we usually want ali of them to be unit length and perpendicular 
to each other. Thus, the orthonormalization procedure is often used to enforce these 
requirements after a matrix has suffered a large number of limited-precision 
calculations. 

1.7 Matrix lnversion 

One of the main reasons that matrices appear so frequently in game engines is 
because they represent coordinate system transformations. That is, a matrix M de­
scribes how a vector, point, line, plane, or even another transformation can be 
moved from a coordinate system A with its own origin and set of axes to another 
coordinate system B with a different origin and set of axes. lt is often necessary to 
be able to perform the reverse transformation from coordinate system B back to 
coordinate systemA, and to accomplish this, we must be able to find a matrix M-1, 
called the inverse of M, that undoes the transformation performed by the matrix M. 
In this section, we describe what an inverse matrix is, and we show how to compute 
the inverses of matrices having the typical sizes that arise in game engines. 

1.7 .1 ldentity Matrices 

The identity matrix I
n 

is the n x n matrix whose entries on the main diagonal are ali 
ones and whose entries everywhere else are ali zeros, which can be written as 
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(1.71) 

When it' s obvious what the size of the identity matrix is based on context ( or it 
doesn't matter), the subscript nis often omitted after the letter I. 

' 

I n is called the identity matrix because it has the property that Ain = A for ali 
r x n matrices A with any number of rows r, and I nB = B for all n x e matrices B 
with any number of columns c. This is easily verified by plugging the identity 
matrix into the formula for matrix multiplication given by Equation ( 1.26) as in 

n-1 

(IB)¡¡ = "'f.l;kBk1 =B¡¡. (1.72) 
k=O 

The only nonzero term in the summation is the one for which k = i, and because 
l;; = 1, no change is made to B

¡¡
, Multiplying a matrix by the identity matrix is 

analogous to multiplying an ordinary scalar by the number one. 
We mention the identity matrix first because it's what allows us to define the 

inverse of a matrix. Inverses are defined only for square matrices, and the inverse 
of an n x n matrix M is a matrix denoted by M-1 having the property that 
MM-1 = I n and M-1M = I n. An inverse <loes not always exist, and the rest of this 
section discusses how to determine whether it <loes exist, and if so, how it can be 
calculated. 

1.7.2 Determinants 

The determinant of an n x n matrix M is a scalar value that can be thought of as a 
sort of magnitude for M. It is written as det (M) or IMI. Ifwe consider the n col­
umns or the n rows of the matrix as a set of vectors, then the determinant is equal 
to the hypervolume of the n-dimensional parallelotope formed by those vectors, 
and it can be positive or negative depending on the orientation of the vectors. A 
matrix has an inverse if and only if its determinant is not zero. 

The calculation of the determinant for an n x n matrix M requires that we sum 
over n ! terms corresponding to all of the possible permutations of the sequence 
{ O, 1, 2, ... , n - l }. Each term has n factors that are taken from the n rows of the 
matrix M, and each factor comes from a different column as specified by the per­
mutation for the term to which the factor belongs. For example, the determinant of 
a 3 x 3 matrix has six terms corresponding to the six permutations of the sequence 
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{0,1,2}. These permutations are {0,1,2}, {1,2,0}, {2,0,1}, {0,2,1}, {1,0,2}, and 
{ 2, 1, O}, and they supply the column indices for the three factors that make up each 
term. The row indices for these factors are always O, 1, and 2. Thus, the determi­
nant of a 3 x 3 matrix M is given by 

det(M)=MooM1 1M22 +Mo1M12M20 +Mo2M10M21 

(1.73) 

This formula is implemented in Listing 1.9 for the Matrix3D data structure with 
terms grouped by their first factor. 

Notice that the last three terms are negated. A permutation is either even or 
odd, and the terms corresponding to odd permutations are negated. Whether a 
permutation is even or odd depends on how many transpositions it requires to re­
arrange the original sequence into the order represented by the permutation, where 
a transposition means the exchange of two indices. The permutation { O, 1, 2} is 
even because it doesn't change anything and thus requires zero transpositions. The 
permutations { 1, 2, O} and { 2, O, 1} are even because they each require two transpo­
sitions. The permutations { O, 2, 1}, { 1, O, 2}, and { 2, 1, O} are odd because they each 
require only one transposition. 

The determinant of a lxl matrix is simply the value of its single entry. The 
determinant of a 2 x 2 matrix has two terms representing the permutations { O, 1} 
and { 1, O} with zero transpositions and one transposition, respectively. U sing the 
vertical bar notation, we can write the determinant of a 2 x 2 matrix as 

1: !I = ad-be. (1.74) 

In general, we represent a particular permutation by a function a ( k) that re­
arranges the indices in the range [ O, n - l] by mapping each original index to its 
permuted index. The set of ali n ! such functions on n indices is called the symmetric 

Listing 1.9. This code calculates the determinant of a 3 x 3 matrix for the Ma trix3D data structure. 

float Determinant(const Matrix3D& M) 

1 ) 

return (M(0,0) * (M(l,1) * M(2,2) - M(l,2) * M(2,1)) 

+ M(O,l) * (M(l,2) * M(2,0) - M(l,0) * M(2,2))

+ M (O, 2) * (M ( 1, O) * M ( 2, 1) - M ( 1, 1) * M ( 2, O) ) ) ;
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group S n, and it includes one permutation called the identity permutation that maps 
each index to itself. The sign of a permutation, written sgn (a), is equal to + 1 if a 
is even and -1 if a is odd. Using these definitions, the determinant of any n x n 
matrix M can be expressed as 

det {M) =
u
�,

( sgn (a) tl Mk,u(k)} (1.75) 

This is known as the Leibniz formula for the determinant, and it highlights the fact 
that the determinant is derived from ali possible combinations of the matrix entries 
such that no row or column index is repeated in any term. 

Equation (1.75) can be implemented in a recursive manner using a method 
called expansion by minors. A minor of an n x n matrix Mis the determinant of an 
( n - l) x ( n -l )  submatrix of M that excludes one row and one column of M. We 
use the notation M "ij to represent the submatrix of M that excludes row i and col­
umn j. Whereas the notation Mij means the entry in row i and columnj, the overbar 
above the subscripts in M

"ij 
is interpreted as meaning "not" in the sense that the 

submatrix includes everything that is not in row i or columnj. The ( i, J) minor of 
a matrix Mis the determinant given by IM

"ij 
1· 

Using expansion by minors, the determinant of an n x n matrix Mis given by 

n-1 

det (M) = L M kJ (-l ) k+J IM-¡¡¡ I, (1.76) 
J=O 

where k can be chosen to be any fixed row in the matrix. If a matrix is known to 
have a row containing a lot of zeros, then it would be advantageous to select that 
row for k because doing so eliminates terms in the summation. Of course, this also 
means that if a matrix contains a row consisting entirely of zeros, then its determi­
nant must also be zero. 

Applying Equation (1.76) to a 3 x 3 matrix M, the determinant calculation for 
a row choice of k = O is 

n-1 

det ( M) = L M o,1 ( -1 ) 1 1 M o,J 1 

= M oo IMoo I-Mo1IM011 + Mo2 IMoz 1 

=Moa (M11M22 -M12M21 )-Mo1 (M10M22 -M12M20) 

+Mo2 (M10M21 -M11Mzo). (1.77) 
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This can be better visualized as 

det(M)=Moo 

(1.78) 

where the red lines have crossed out the parts ofM that are excluded from each of 
the 2 x 2 determinants involved in the calculation. After multiplying this out com­
pletely and rearranging terms, we see that this is equivalent to the determinant 
given by Equation (1.73). 

The determinant of a 4 x 4 matrix M is a sum of four terms containing deter­
minants of 3 x 3 submatrices. 4 x 4 matrices arise frequently in game engines, but 
it' s usually the case that the fourth row is simply [ O O O 1 ], so it makes sen se to 
use k = 3 in Equation (1.76) to take advantage of the zeros. This leaves only one 
3 x 3 determinant to calculate, and it corresponds to the bottom-right entry, which 
is just the number one. Whether the determinant of each submatrix must be negated 
can be illustrated by a matrix containing altemating plus and minus signs as in 

(1.79) 

There is a plus sigo in the position of the bottom-right entry, so the 3 x 3 determi­
nant IM33 1, where the last row and last column are excluded, is not negated. This 
meaos that the determinant of a 4 x 4 matrix in which the fourth row is [ O O O 1] 
is equal to the determinant of the upper-left 3 x 3 matrix. The applicability of this 
fact is discussed in Chapter 2. 

Several ofthe basic properties of the determinant are listed in Table 1.6. The 
first property, that the determinant of the identity matrix is one, is a special case of 
the more general property that the determinant of a diagonal matrix is equal to the 
product of the entries on its main diagonal. This is a rather obvious consequence 
of the fact that there is only one term in Equation (1.75) that is nonzero, and it's 
the term for which ü is the identity permutation. 
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More interestingly, the determinant of the transpose of a matrix M is equal to 
the determinant of M. This is true because for each factor appearing in Equation 
(1.75) for the matrix M T, we can write M!,a(k) =Ma(k),k and then reorder the n
factors for each permutation CJ by applying the inverse permutation CJ-1 to get 

n-1 n-1 

IT Ma(k),k = IT Mk,a-l (k)· 
k=O k=O 

(1.80) 

Since the set of permutations and the set of inverse permutations are equivalent, 
the sum in Equation (1.75) is taken over the same terms and produces the same 
result. The fact that det (M T) = det (M) means that we can expand the determi­
nant by minors along a column just as we previously did by a row. This gives us 
the altemative formula 

n-1 

det(M)= ¿M;k (-lf
+k 

IM /k l (1.81) 
i=O 

to Equation (1.76), where k can be chosen to be any fixed column in the matrix. 
The determinant can be calculated by expanding by minors over any row or any 
column of a matrix, and we can choose whatever happens to be most convenient. 

The product rule det ( AB) = det (A) det (B) listed in Table 1.6 tells us that the 
determinant of a matrix product is equal to the product of the determinants of the 
two matrices being multiplied together. lt follows that det ( A -i) = 1/ det (A) be­
cause det (A) det ( A -i) = det ( AA -i) = det (I) = l .  We'll be able to see why the 
product rule is true in the discussion of elementary matrices below. 

Property Description 

det (I
n
)= 1 Determinant ofthe identity. 

det ( A T ) = det (A) Determinant of a transpose matrix. 
det ( A -i ) = 1/ det (A) Determinant of an inverse matrix. 
det ( AB) = det (A) det ( B) Product rule for the determinant. 
det ( t A) = t n det (A) Scalar factorization for the determinant. 

Table 1.6. These are the basic properties ofthe determinant. The letters A and B represent 
n x n matrices, and the letter t represents a scalar value. 
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1.7 .3 Elementary Matrices 

The inverse of a matrix M can be found by systematically performing a sequence 
of basic operations on M until it has been transformed into the identity matrix. 
Each ofthese basic operations can be represented by an elementary matrix, and the 
product of ali the elementary matrices corresponding to ali the basic operations 
used to transform M into the identity provides us with the inverse ofM. The exact 
procedure is described below after we take a moment to discuss the types of ele­
mentary matrices and their properties. 

There are three elementary row operations, named as such because they each 
affect one or two entire rows of a matrix, and the particular types perform the fol­
lowing modifications to a matrix M. 

(a) Multiply one row ofM by a nonzero scalar value.
(b) Exchange two rows of M.
(c) Add a scalar multiple of one row ofM to another row ofM.

Each elementary row operation can be applied to an n x n matrix M by multiplying 
it on the left by an elementary matrix E that is constructed by performing the same 
operation on the identity matrix I

n
- To multiply row r by a scalar value t, the ele­

mentary matrix E has the following form, where the (r,r) entry of the identity 
matrix has been replaced by t.

1 o o 

E= O t O +-row r ( 1.82) 

o o 1 

To exchange row r and row s, the elementary matrix E has the following form, 
where the same rows have been exchanged in the identity matrix. 

1 o o o 

o o 1 o +- row r 

E= (1.83) 

o 1 o o +- row s 

o o o 1 
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To add row s multiplied by the scalar value t to row r, the elementary matrix E has 
the following forro, where the ( r, s) entry of the identity matrix has been replaced 
by t. 

colurnn s

,J, 

1 o o o 

o 1 t o �rowr 

E= (1.84) 

o o 1 o � row s

o o o 1 

When an elementary row operation is applied to a matrix M, it has a specific 
effect on the determinant of M, described as follows. 

(a) Multiplying a row of M by the scalar value t causes the determinant ofM to
be multiplied by t.

(b) Exchanging two rows ofM causes the determinant ofM to be negated.
( c) Adding a scalar multiple of one row of M to another row ofM <loes not change

the determinant ofM.

When considering the Leibniz formula for the determinant given by Equation 
(1.75), it's immediately evident that multiplying a row by a scalar value t also 
multiplies the determinant by t because each term in the summation contains ex­
actly one factor that is multiplied by t. 

The fact that exchanging two rows negates the determinant can be demon­
strated with an induction argument. First, note that the result is true for 2 x 2 ma­
trices because 

1: �l=cb-da =-(ad-bc) =

I: !I· (1.85) 

To observe the effect on an n x n matrix with n � 3, we can now assume that the 
result is true for matrices of ali sizes smaller than n x n. Let B be the matrix con­
structed by exchanging rows r and s in the n x n matrix A. W e can choose another 
row k such that k -:f. r and k -:f. s and calculate the determinant of B with Equation 
(l.76) as 
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n-1 

det (B) = ¿ B1g (-1/+1 
IB ki l·

J=O 

(1.86) 

Each submatrix B-¡;¡ appearing in the summation is an ( n -1) x ( n -1) matrix that 
has had two rows exchanged because neither row r nor row s is excluded from B. 
Therefore, it must be the case that IB ki 1 

= -IAki I by induction. Since every term is
negated, we can con elude that det ( B) = - det (A).

An important consequence of the fact that exchanging two rows of a matrix 
negates its determinant is that a matrix containing two identical rows must have a 
determinant equal to zero. This is true because exchanging those identical rows 
would negate the determinant, but the matrix doesn't change at all when those rows 
are exchanged, so the determinant must remain the same when negated and thus 
can only be zero. Because transposing a matrix <loes not change its determinant, it 
is also true that a matrix containing two identical columns must have a determinant 
equal to zero. 

To see that the determinant <loes not change when a multiple of one row is 
added to another, we again consider Equation (1.76). Suppose that the matrix B is 
constructed by taking row s from the matrix A, multiplying it by the scalar t, and 
adding the result to row r. Choosing k = r, we have 

n-1 

det (B) = ¿ BrJ (-1)'+1 IB ;:; I
J=O 

n-1 

= ¿ ( Á,j + l Ásj ) ( -1) r+ j I A
;:; 

1 
J=O 

n-1 

= det (A)+ l ¿ ÁsJ ( -1) r+ 
1

1 A;:; 1 · 
J=O 

(1.87) 

The last summation is equivalent to the determinant of the matrix A after being 
modified so that the entries in row r are the same as the entries in row s. Because 
that matrix has two identical rows, its determinant must be zero, and we are left 
with det (B) = det ( A).

For the three types of elementary row operations, the determinants of the cor­
responding elementary matrices are the values by which another matrix's determi­
nant is multiplied when the row operation is applied. This is clear when you 
consider that each elementary matrix is the result of applying an elementary row 
operation to the identity matrix. Thus, if E is an elementary matrix, then 
det (EM) = det (E) det (M) for any matrix M, and this establishes the product rule 
listed in Table 1.6 when one of the matrices is an elementary matrix. That the prod­
uct rule holds in general will be shown below. 
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1.7.4 lnverse Calculation 

If it exists, the inverse of a matrix can be found through a process called Gauss­

Jordan elimination in which elementary row operations are successively applied 
to the matrix until it is transformed into the identity matrix. This process is de­
scribed here as a general method for calculating the inverse of a square matrix of 
any size. For matrices of small size, faster methods exist, and they are presented 
later in this section. 

Let M be an n x n matrix, and !et M' represent the current transformation of M
after ali of the previous operations in the process have been applied. The Gauss­
Jordan elimination procedure for finding the matrix M-1 comprises the following 
steps for every column k of the matrix, with O ::; k < n.

A. Find the row r with r � k such that M�k has the largest absolute value, and !et
p = M�k - lf p = O, then the inverse ofM <loes not exist.

B. If r :f:. k, then exchange rows r and k using elementary row operation (b ).
C. Multiply row k of M' (after the exchange in Step B) by 1/ p using elementary

row operation (a). This sets M�k = l.
D. For each row i with O::; i < n and i :f:. k, add row k multiplied by-M;k to row i

using elementary row operation (c). This sets every entry in column k above
and below row k to zero.

Steps A and B are called pivoting, and they are sometimes necessary to ensure 
that a nonzero entry is moved to the main diagonal. Additionally, the numerical 
stability of the floating-point operations used throughout the process is increased 
by choosing the largest entry in each column because is causes the scalar factors 
used in Step D to be smallest n -1 possibilities. 

After the above steps have been applied to every column of the matrix M, we 
know that 

(1.88) 

where the matrices E1 , E2 , • • • , Em are the elementary matrices corresponding to the 
row operations performed during Gauss-Jordan elimination, the total number of 
which we are calling m. Because multiplying by M produces the identity matrix, 
the product EmE m-i · · · E2E1 is actually the inverse ofM, and we can construct the 
inverse by applying each elementary row operation to a matrix that starts out as 
the identity matrix at the same time that we apply it to M'. 

An invertible matrix M can always be written as a product of elementary ma­
trices by multiplying the right side of Equation (1.88) by the inverse of each E;. 
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(See Exercise 13 for proof that elementary matrices are always invertible.) If two 
matrices A and B are both invertible, then they can both be factored completely 
into elementary matrices. The product rule for determinants listed in Table 1.6 al­
ways holds for elementary matrices, so it must also hold for the product AB. Fur­
thermore, the determinants of all the elementary matrices are nonzero, so the 
determinant of any invertible matrix cannot be zero. 

A matrix that is not invertible is called singular, and this word is used in the 
sense that such matrices are exceedingly rare if you consider the entire set of n x n
matrices. If Step A of the Gauss-Jordan elimination process fails to find a nonzero 
entry in column k in sorne row r � k, then row k ends up being all zeros after the 
process is continued through the remaining columns. A matrix containing a row of 
zeros cannot be inverted (see Exercise 15), and it always has a determinant of zero. 
Because it can be expressed as a product of elementary matrices and a matrix hav­
ing a row of zeros, any singular matrix must have a determinant of zero. This is a 
test that can used to determine whether a matrix can be inverted without actually 
trying to calculate the inverse. 

The inverse of the matrix product AB is equal to n-
1 A -i, the product of the 

inverses of A and B in reverse order. This is easily verified by multiplying AB by 
its inverse on either side as in 

( 1.89) 

If either A or B is singular, then the product AB must also be singular. In this case, 
the product rule for determinants still holds because both sides of the equation 
det ( AB) = det ( A) det (B) are zero. 

1.7.5 lnverses of Small Matrices 

For matrices of size 4 x 4 and smaller, like those that appear in game engines most 
of the time, inverses can be calculated using an approach that is more direct than 
Gauss-Jordan elimination. This approach uses the minors with alternating signs 
that appear in the formula for the determinant given by Equation (1.76). The quan­
tity (-1r+j IMul, the minor multiplied by a positive or negative one, is called the 
cofactor ofthe (i, J) entry ofM. We define the function C

iJ 
(M) as 

( 1.90) 

The cofactor matrix C ( M) of an n x n matrix M is the matrix in which every entry 
of M has been replaced by the corresponding cofactor. Using these definitions, a 
formula for the inverse of a matrix M can be stated very simply as 



1.7 Matrix lnversion 

M-1 = C
T (M) • 

det(M) 
(1.91) 

That is, the inverse ofM is egua! to the transpose of its cofactor matrix divided by 
its determinant. 

The matrix C r ( M) is called the adjugate of the matrix M, and it is denoted 
by adj(M). The adjugate of M always exists, even ifM is singular, and it's easier 
to calculate than the inverse of M because we don't need to calculate the determi­
nant and divide by it. The adjugate will appear again in Chapter 3. 

We can verify that Eguation (1.91) is correct by directly carrying out its mul­
tiplication by M using Eguation ( 1.26), which gives us 

(M-IM)u= I C;k (M) M
kj

k=o det (M) 

l n-1 

= 

d (M)
¿Ck; (M)MkJ· et k=O 

(1.92) 

When i = j, the summation is egua! to the determinant of Mas calculated by Egua­
tion (1. 76), so division by det ( M) produces a one in the ( i, i )  entry of the result. 
When i =t:- j, the summation is egua! to the determinant of M if it were modified so 
that the entries in columnj were replaced by the entries in column i. This matrix 
has two identical columns and must therefore have a determinant of zero, so each 
( i, J) entry of the result, with i =t:- j, must be zero. This demonstrates that multiply­
ing by M produces the identity matrix, and a similar argument can be applied to 
the product MM-1

• 

Eguation (1.91) supplies us with explicit inverse formulas that can be imple­
mented without the use of any loops. For a 2 x 2 matrix A, the formula for the 
inverse is 

A -1 = 

1 [ A11
A00Á11 -A01A10 -A10 

-Áo1 ]·
Áoo

(1.93) 

This is particularly simple because the minors ali involve only 1 x 1 matrices. The 
inverse formula for a 3 x 3 matrix B is given by 

Bo2B21 -Bo1B22 
BooB22 -Bo2B20 
Bo1B20 - BooB21 

Bo1B12 - Bo2B11 
l Bo2B10 -BooB12 

BooB11 - Bo1B10 
(1.94) 
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U pon close examination, we notice that each row in this formula is actually a cross
product of two columns of the matrix B. Furthermore, the determinant of a 3 x 3
matrix, calculated with Equation (1.73), is equal to the scalar triple product of the
three columns of the matrix. These observations allow us to write the inverse of a
matrix M = [ a b e] (whose columns are the 3D vectors a, b, ande) as

r

bxc

j M-1 
= 

[a,
�

' e] 
ex a ,
axb 

( 1.95)

where the cross products are treated as row vectors. This is how the inverse for the
Matrix3D data structure is implemented in Listing 1.10. If we consider the fact
that multiplying M- 1 by M is a matter of calculating the dot product between the
rows of M-

1 and the vectors a, b, ande, it beco mes clear that Equation (1.95) must
give the correct inverse of M. This formula can be generalized to any number of
dimensions using the wedge product, as will be discussed in Section 4.3.

It would be possible to find the inverse of a 4 x 4 matrix with Equation ( 1.91 ),
but it would require calculating 16 cofactors that are the determinants of3 x 3 sub­
matrices. This includes a significant amount of redundant computation that can be

Listing 1.10. This code calculates the inverse of a 3 x 3 matrix for the Matrix3D data structure.

Matrix3D Inverse(const Matrix3D& M) 

const Vector3D& a = M[O); 

const Vector3D& b = M[l); 

const Vector3D& e =  M[2); 

Vector3D rO Cross(b, e); 

Vector3D rl Cross(c, a); 

Vector3D r2 Cross(a, b); 

float invDet = 1.0F / Dot(r2, e); 

return (Matrix3D(r0.x * invDet, rO.y * invDet, rO.z * invDet, 

rl.x * invDet, rl.y * invDet, rl.z * invDet, 

r2.x * invDet, r2.y * invDet, r2.z * invDet)); 
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avoided by exploiting sorne algebraic structure. A complete discussion of what's 
actually happening will have to wait until Chapter 4, but we can present a more 
efficient method of calculating the inverse here. 

Let M be a 4 x 4 matrix whose first three rows are filled by the four 3D column 
vectors a, b, e, and d, and whose fourth row contains the entries [ x y z w ], as 
illustrated by 

t t t t 

a b e 
M= 

,!, ,!, ,!, ,!, 
----------
X y z 

We then define the four vectors s, t, u, and v as 

s=axb 
t=cxd 
u= ya-xb 
v =wc-zd. 

w 

(1.96) 

(1.97) 

Using these definitions, the determinant ofM takes the astonishingly simple form 

det (M) =s · v + t · u, 

and the inverse of M is given by 

1 

b X V+ yt ! -b · ti 
1 1 v x a - xt I a · t 

M- ----- i -
s·v+t·u dxu+ws ¡-d·s ·

U XC-ZS I C·S 

(1.98) 

(1.99) 

Here, the first three columns of M-1 are filled by four 3D row vectors, and the 
fourth column is the 4D vector ( -b · t, a· t, -d · s, e· s ). Verifying that this is the 
correct inverse is straightforward but somewhat tedious, so Exercise 19 asks that 
only part ofthe work be done. 

Equation ( 1.99) is implemented in Listing 1.11 to cale u late the inverse of a 
4 x 4 matrix stored in a Matrix4D data structure. When 4 x 4 matrices appear in 
game engines, it is almost always the case that the fourth row is [ O O O 1 ]. In 
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this case, severa) optimizations can be made to the inverse calculation because 

x =y= z = O and w = 1 in Equation (1.96), and consequently, u= O and v = e in 

Equation (1.97). (See Section 2.6.) 

Listing 1.11. This code calculates the inverse of a 4 x 4 matrix for the Matrix4D data structure. 

Matrix4D Inverse(const Matrix4D& M) 

const Vector3D& a = reinterpret cast<const Vector3D&>(M[O]); 

const Vector3D& b reinterpret_cast<const Vector3D&>(M[l]); 

const Vector3D& e = reinterpret_cast<const Vector3D&>(M[2]); 

const Vector3D& d reinterpret_cast<const Vector3D&>(M[3]); 

const float& X = M (3, O); 

const float& y M(3, 1); 

const float& z = M(3, 2); 

const float& w M(3, 3); 

Vector3D s Cross(a, b); 

Vector3D t Cross(c, d); 

Vector3D u = a * y - b *
x; 

Vector3D V = e * w d * z;

float invDet l. OF / (Dot (s, v) + Dot (t, u));

s *= invDet;

t *= invDet;

u *= invDet;

V 
*= invDet;

Vector3D rü Cross(b, v) + t * y;

Vector3D rl Cross(v, a) - t * x; 

Vector3D r2 Cross(d, u) + s * w; 

Vector3D r3 Cross(u, e) s * z;

return (Matrix4D(r0.x, rü.y, rü.z, -Dot(b, t), 

rl.x, rl.y, rl.z, Dot(a, t), 

r2.x, r2.y, r2. z, -Dot (d, s), 

r3.x, r3.y, r3.z, Dot(c, s))); 



Exercises for Chapter 1 

Exercises for Chapter 1 

l. Let i, j, anrl k be the unit vectors alignerl to the coorrlinate axes rlefinerl by
Equation (1.59). Calculate the following.

(a) The rlot prorlucts i · j, j · k, anrl k · i.
(b) The cross prorlucts i x j, j xi, j x k, k x j, k xi, anrl i x k,

( c) The scalar triple prorluct [ i, j, k].

2. The magniturle of the vector sum a + b satisfies a property known as the trian­

gle inequality, anrl this property gets its name precisely from the fact that a+ b
forms the thirrl sirle of a triangle whose other two sirles are a anrl b. The thirrl
sirle must be no longer than the sum of the lengths of the other two sirles be­
cause if it were longer, then the other two sirles coulrln't be marle to reach the
enrl of the thirrl sirle from the same starting point even if they were lairl out in
a straight line. Mathematically, we can express this property as

lla + bll � llall + llbll-

Provirle an algebraic proof of this relationship by expanrling the squarerl mag­
niturle of a + b.

3. Prove that for two vectors a anrl b, the relationship

lilall-llblll � lla -bll 

is always true. This is callerl the reverse triangle inequality. 

4. Por 3D vectors a, b, anrl e, the Jacobi irlentity states that

ax ( b x e)+ b x (ex a)+ ex (ax b) = O. 

Use the vector triple prorluct irlentity listerl in Table 1.5 to prove this. 

5. Show that a .1b, the rejection of a from b, can be calculaterl as 
b x ª/ b 

when a
b 

anrl b are 3D vectors. 

6. Let a anrl b be 3D vectors. Finrl a 3 x 3 matrix R such that Ra = a .1b·
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7. Show that for 3D vectors a, b, and v, the projections v 11ª and ( v .L(axb) ) 11• 
are

equal, and conclude that first projecting v onto a plane containing a <loes not
change its projection onto a.

8. Prove the associative law for matrix multiplication by applying Equation
( 1.26) directly to the product ( AB) C, where A is an n x m matrix, B is an m x p
matrix, and C is a p x q matrix.

9. A lower triangular matrix M is one for which ali entries above the main diag­
onal are zero. That is, Mu = O for ali entries with i < J. Show that the determi­
nant of a lower triangular matrix is equal to the product of the entries on the
main diagonal.

10. Prove the property det ( t A) = t n det (A) listed in Table 1.6.

11. Find ali 2 x 2 singular matrices having the property that each entry in the matrix
is either O or 1.

12. Let M, L, and R be square matrices ofthe same size. Prove that ifLM = I and
MR = I, then L = R.

13. Find general formulas for the inverses of the elementary matrices given by
Equations (1.82), (1.83), and (1.84).

14. Show how applying the permutation r that exchanges the indices r and s to
each term of the Leibniz formula in Equation (1.75) demonstrates that ex­
changing the rows r and s of a matrix negates its determinant.

15. Prove that a matrix M containing a row of zeros is singular by showing that
there is no matrix by which M could be multiplied to produce the identity ma­
trix. Do not simply state that the determinant ofM is zero.

16. Prove that a matrix M T is invertible if and only ifthe matrix M is invertible,
and give a formula for (MT )-' in terms ofM-1

• 

17. Show that for any n x n matrix M, whether it's invertible or singular, the prod­
ucts M adj (M) and adj (M) M are both equal to det (M) In .
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18. For any two n-dimensional vectors a and b, verify the matrix identity

[
In º][

In +a@b ª][ In º
]=[

In a 

], 
b T 1 0 1 -b T 1 0 1 +a· b 

where @ is the outer product introduced in Section 1.6, and use it to prove that 
det (In + a @ b) = 1 + a · b.

19. Verify that the formula for M-1 given by Equation (1.99) produces ones on the
main diagonal when multiplied by M on the right by calculating the dot prod­
uct of the k-th row ofM-1 and the k-th column ofM for O� k < 4. Pick any off­
diagonal entry ofM-'M and show that it is equal to zero.

20. Prove the 3D vector identity

[ a, b, e] d = (a · d) ( b x e) + ( b · d) (ex a)+ (e· d) (ax b) 

by showing that the x component of the left side of the equation is equal to the 
x component of the right side. (Assume that the proof for the other two com­
ponents is similar.) 
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Chapter 2 

Transforms 

A dynamic object in a game may need to move from one point to another, and it 
may need to rotate itself to different orientations. A model may be composed of a 
collection of objects arranged in a tree structure, and each part may move in a 
manner that is relative to another part above it in the hierarchy. It may be necessary 
to express positions and orientations in many different local coordinate systems 
used by various components of a rendering system. Ali of these are examples of 
cases that require the application of transforms. This chapter describes how trans­
forms are used to convert the coordinate representations of geometric objects from 
one coordinate system to another. We also discuss how transforms are an important 
way of placing objects in the world, modifying the appearance of objects, and es­
tablishing relationships with other objects. 

2.1 Coordinate Spaces 

It is typical for a game engine to define a number of different coordinate systems. 
There is usually a coordinate system called world space or global space that serves 
as a fixed background relative to which other coordinate systems can be estab­
lished. Various objects in a game, which can include things like models, light 
sources, and cameras, often have their own independent coordinate systems called 
object space or local space. When an interaction occurs between two objects using 
different coordinate systems, either one object needs to be transformed into the 
coordinate system used by the other object or both objects need to be transformed 
into sorne other common coordinate system. 
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2.1.1 Transformation Matrices 

A position in a particular coordinate system is represented by a vector that gives 
the direction and distance that you would have to travel from the origin of the 
coordinate system in order to reach that point in space. The components of such a 
vector correspond to the distan ces travelled along each of the x, y, and z coordinate 
axes. When an object is transformed from one coordinate system to another, the 
components of any position vector must change to account for the new position of 
the origin and the new orientations of the coordinate axes. The transformation from 
a position p A in coordinate system A to the position p 8 in coordinate system B can 
be expressed as 

1 Ps =MpA +t, 1 (2.1) 

where Mis a 3 x 3 matrix that reorients the coordinate axes, and t is a 3D translation 
vector that moves the origin of the coordinate system. The transformation ex­
pressed in Equation (2.1) is called an affine transformation. Assuming that M is 
invertible, we can solve this equation for p A to obtain the inverse transformation 
from coordinate system B to coordinate system A as 

(2.2) 

In Section 2.6, we will see how the matrix M and the vector t can be combined 
into a single 4 x 4 transformation matrix. Until then, we will assume that ali coor­
dinate systems have the same origin so that we can ignore the translation vector 
t and just concentrate on how the 3 x 3 matrix M modifies the components of a 
vector. 

In general, the linear transformation v 8 = Mv A replaces the axes in coordinate 
system A with the columns ofthe matrix M in coordinate system B. The vector v 8 

is then a combination of the new axes in the same way that v A was a combination 
ofthe old axes. Suppose that the columns ofM are given by a, b, ande so that we 
can write M = [ a b e]. Then 

(2.3) 

and for an arbitrary vector v, 

(2.4) 
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2.1.2 Orthogonal Transforms 

There is no requirement that the vectors a, b, and e in Equation (2.4) be perpen­
dicular to each other or that they have unit length. F or the matrix M to be invertible, 
it's only necessary that its columns form a linearly independent set. However, 
many transformation matrices appearing in garue engines do have mutually per­
pendicular unit-length columns, and such matrices are called orthogonal matrices. 
Orthogonal matrices have a number of interesting properties, the first of which is 
that the inverse of an orthogonal matrix is equal its transpose. Assuming that a, b, 
and e ali have unit length and are mutually perpendicular, we can calculate the 
productMTM as 

Since a, b, and e each have unit length, the entries along the main diagonal are all 
ones. Sin ce a, b, ande are mutually perpendicular, ali of the other en tries are zero. 
We conclude that it must be true that M-1 

= MT. Equation (2.5) also demonstrates 
that the reverse implication is true. If we assume that M-1 

= MT, then the right side 
of the equation must be the identity matrix, so a, b, and e must be mutually per­
pendicular and have unit length. Additionally, if M is orthogonal, then MT must 
also be orthogonal because its inverse is equal to its transpose, which is just M. 
This implies that the columns of MT form a set of mutually perpendicular unit­
length vectors, and that is equivalent to making the same statement about the rows 
of M. Thus, the following list of statements all have the same meaning, and each 
one implies all of the others. 

• M is an orthogonal matrix.
• The inverse ofM is equal to MT.
• The columns ofM are mutually perpendicular unit-length vectors.
• The rows of M are mutually perpendicular unit-length vectors.

When an object is transformed by an orthogonal matrix, it may be reoriented
in space and/or reflected in a mirror, but it still has the exact same shape that it had 
before the transformation. Orthogonal matrices preserve the dot product between 
any two vectors a and b, and this is easily proven by considering the dot product 
of the two vectors after they are transformed by an orthogonal matrix M as in 

(Ma)·(Mb) = (Maf (Mb) = a TM TMb = a Tb = a ·b. (2.6) 
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Since a· a gives the squared magnitude of a, this also proves that the length of a 
vector is not changed by an orthogonal matrix. lt must therefore be true that the 
angle 0 between a and b is preserved as well because the dot product would oth­
erwise change due to its relationship to the cosine of 0. 

The transform performed by an orthogonal matrix is always a rotation, a re­
flection, or a combination of the two. The determinant of an orthogonal matrix is 
always ±1, positive for a pure rotation, and negative for a transform that includes a 
reflection. Transforms that include a reflection reverse the handedness of the co­
ordinate system, changing a right-handed coordinate system into a left-handed one, 
and vice versa. 

2.1.3 Transform Composition 

lt is often the case that multiple transforms need to be applied to an object to either 
change its shape in severa! steps or to express its position and orientation in a com­
mon coordinate system that might be severa! levels away in a hierarchical model. 
Whenever a vector v needs to be transformed first by a matrix M 1 and then by 
another matrix M2, we calculate the result v' as 

(2.7) 

Since matrix multiplication is associative, we can multiply the two transformation 
matrices together first to create a single combined matrix N = M 2M i, and then we 
can calculate v' with the simpler equation v' = Nv. This can be continued indefi­
nitely with n transformation matrices, and their product M

n
M

n-i · · · M2M1 can be
precomputed and stored as a single transform. 

There are times when a transform is expressed in one coordinate system but 
needs to be applied to an object using a different coordinate system. For example, 
it's convenient to express a scale transform in a coordinate system where the scale 
factors apply in directions parallel to the coordinate axes. If a particular transform 
A can be applied in coordinate system A, but we have an object using coordinate 
system B, then the equivalent transform B in coordinate system B is given by 

(2.8) 

where the matrix M transforms vectors from coordinate system A to coordinate 
system B. When the transform B is applied to a vector v in coordinate system B, 

you can think of it as first transforming v from coordinate system B to coordinate 
system A with the matrix M-1

, applying the transform A in that setting, and then
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transforming back into coordinate system B with the matrix M. Equation (2.8) is, 

in fact, how transforms themselves are transformed from one coordinate system to 
another. 

2.2 Rotations 

A rotation is one of the most common types of transform used by game engines. 

Whenever an object spins, a hinged door is opened, an elbow or knee joint is ani­
mated, or a player simply tums his character, a rotation transform is being applied, 
and the list of examples could be continued indefinitely. Rotations often occur in 

a local coordinate system in which the axis of rotation is aligned to one of the 

coordinate axes, but they can also be applied about an arbitrary axis specified by a 
direction vector. We derive matrix representations of each kind of rotation in this 

section. 

When a vector v is rotated about an axis, we can consider what happens to the 
components of v that are parallel and perpendicular to the axis. The component 

that is parallel to the axis is unaffected while the component that is perpendicular 

to the axis changes. In general, a rotation always occurs among the directions par­
allel to an oriented plane in space, leaving every direction orthogonal to the plane 

alone. In three dimensions, there is only one remaining direction, and that is what 

we call the axis of the rotation, but this concept does not extend to other numbers 
of dimensions. Although we use the term axis in this chapter, it' s best to start think­

ing of rotations as always occurring in a 2D subspace because it will give you an 

early start on the ways ofthinking required by Chapter 4. 
To follow common convention, we consider a rotation through a positive angle 

about an axis to be one that is a counterclockwise rotation when the axis points 

toward the viewer. This is a property of right-handed coordinate systems. When 
the right thumb points in the direction of the axis ofrotation, the fingers ofthe right 

hand curl in the direction of a rotation through a positive angle. Rotations through 
a negative angle go in the opposite direction. 

2.2.1 Rotation About a Coordinate Axis 

A rotation about the x, y, or z axis occurs in the plane formed by the other two axes. 
That is, a rotation about the x axis occurs in the y-z plane, a rotation about the y 

axis occurs in the x-z plane, and a rotation about the z axis occurs in the x-y plane. 
The derivation of a transformation matrix is similar in ali three cases, so we focus 
our discussion on a rotation about the z axis, where everything of interest happens 

in the x-y plane, and then show how the other two cases are related. 
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Suppose that we would like to rotate the vector v through an angle 0 about the 
z axis. Using the unit vectors i, j, and k parallel to the coordinate axes, we can write 
vas 

v=vxi+v
y
j+vzk. (2.9) 

Since k is parallel to the z axis, the component vz <loes not change during the rota­
tion. lt is only the component v .. i + v Yj that changes, and it <loes so in such a way
that the vectors i and j are both rotated through the angle 0. As shown in Figure 2.1, 
when the vector v .. i is rotated through the angle 0, the result is a new vector having 
the same length v .. that can be written as a sum of vectors parallel to i and j, forming 
a right triangle. Basic trigonometry tells us that their lengths are v x cos 0 and 
v .. sin 0, respectively, so we can write the rotated vector as 

vx cos 0 i + v x sin 0 j. (2.1 O) 

This represents the rotation only of the vector v .. i. We must also account for the 
vector v yj, and the result of its rotation is similar in a setting that' s rotated 90 de­
grees counterclockwise, so it is written in terms of j and -i instead of i and j. The 
rotation of v yj through the angle 0 is 

v y cos 0 j -v y sin 0 i. (2.11) 

When we combine Equations (2.1 O) and (2.11) and include the unaltered compo­
nent vzk, we can express the complete formula for the rotated vector v' as 

j 
v .. cos0 

0 

' 
' -<: 
: >< 
' en 

: s
·

:CJ:> 

Figure 2.1. The vector v) is rotated through an angle 0 about the z axis. The rotated vector 
still has length v.., and it can be decomposed into components parallel to the vectors i and 
j with lengths v .. cos0 and v .. sin 0, respectively. 



2.2 Rotations 

v' = (vx cos0-v
y 

sin 0)i +(vx sin0 + V
y 

cos0) j+ Vzk. (2.12) 

This can be written as the matrix-vector product 

r

v
:
1 r

cos0 -sin0 º
1r

v
x
1v; = sin 0 cos 0 O v 

Y 
• 

Vz Ü Ü 1 Vz 
(2.13) 

The 3 x 3 matrix appearing in this equation is the general transformation matrix for 
a rotation through the angle 0 about the z axis. 

The same derivation can be applied to rotations about the x and y axes to pro­
duce similar transformation matrices. The transforms Mrotx (0), Mroty 

(0), and 
M rot z ( 0) that rotate a vector through an angle 0 about the x, y, and z axes are given 
by the matrices 

M,., (0) =

r�

o 

-s�ne l cose 
sin 0 cose 

r 

oos0 o sin 0

1Mroty 
( 0) = O 1 o 

-sin0 o cose

r

cos0 -sin0 º
1 Mroiz (0) = sin0 cos0 O. 

O O 1 

(2.14) 

(2.15) 

(2.16) 

Notice that the entry containing the negated sine function appears in the lower-left 
comer for the rotation about the y axis, but it is in the upper-right position for the 
rotations about the x and z axes. The negated sine function always appears one row 
below and one column to the left, with wraparound, ofthe entry containing the one 
in the matrix. Functions that construct these transformation matrices are shown in 
Listing 2.1, and each one retums a Matrix3D data structure that can be multiplied 
by a vector to perform the rotation. 

61 



62 Chapter 2 Transforms 

Listing 2.1. These functions create 3 x 3 matrices that represent rotations through the angle t about 
the x, y, and z axes and retum them in Matrix3D data structures. 

Matrix3D MakeRotationX(float t) 

float e= cos(t); 
float s sin(t); 

return (Matrix3D(l.OF, O.OF, O.OF, 
O. OF, e, -s,
O. OF, s, e ) ) ; 

Matrix3D MakeRotationY(float t) 

float e= cos(t); 
float s = sin(t); 

return (Matrix3D( e, O. OF, s,
O.OF, l.OF, O.OF,
-s, O.OF, e ));

Matrix3D MakeRotationZ(float t) 

float e= cos(t); 
float s = sin(t); 

return (Matrix3D( e, -s, O.OF, 

l_ 

s, e, O.OF,
O. OF, O. OF, l. OF) ) ;

} -----� 

2.2.2 Rotation About an Arbitrary Axis 

Suppose that we wanted to construct a transform that rotates a vector v about an 
arbitrary axis represented by the unit vector a. When the vector v is rotated into its 
new orientation v', the component ofv parallel to the axis a remains the same, and 
only the component of v perpendicular to the axis a actually gets modified. Thus, 
it makes sense for us to consider the separate components of v with respect to the 
axis a.
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a 

V v' 

(J. 

V.1a axv 

Figure 2.2. A vector v is rotated through an angle 0 about an arbitrary axis a. This is 
achieved by decomposing v into components that are parallel and perpendicular to a and 
rotating only the perpendicular component v .La-

Let a. be the angle between the vectors a and v as shown in Figure 2.2. The 
vector v .1a (the rejection of v from a) is perpendicular to a, and it has a length equal 
to llvll sin a because it forms the side opposite the angle a. in the right triangle shown 
in the figure. It's this component that we need to rotate in the plane perpendicular 
to the axis a. As befare, we can perform this rotation by expressing the result as a 
linear combination of the original vector and another vector in the plane that is the 
90-degree counterclockwise rotation of the original vector. Fortunately, this sec­
ond vector is easily obtained as ax v, and it just happens to have the same length,
llvll sin a, as v .1a does. This means that we can express the rotated vector v' as

V'= V 11a +V .la COS 0 + ( a X V) sin 0, (2.17) 

where 0 is the angle of rotation about the axis a. The component v 
11
ª parallel to the 

axis of rotation does not change, and the component v .1a is replaced by a linear 
combination of v .1a and ax v. 

When we expand the definitions of the projection and rejection, Equation 
(2.17) takes the form 

v' = ( v ·a) a+ [ v - ( v ·a) a] cos 0 + (ax v) sin 0, (2.18) 

where we have omitted the divisions by a2 because a is a unit vector. This can be 
simplified a little bit to obtain 

63 



64 Chapter 2 Transforms 

v' = v cos 0 + (v ·a)a (1-cos 0)+ (ax v)sin 0. (2.19) 

The projection ( v ·a) a and the cross product ax v can each be expressed as a 3 x 3 
matrix multiplying the vector v. Making these replacements gives us 

v'=r� 

o 

1 
o 

+r :.
-ay

ºl r 

a

' 

O v cos 0 + a x: 
Y 

1 axa z 

-a, a,] 
o -

;x v sin 0, 
a x 

axay a,a, l 
ª 2 aya, v(l-cos0) 

y 

aya, ª 2 

z 

(2.20) 

where we have also inserted an identity matrix in front of the first term so that all 
three terms contain a 3 x 3 matrix. When we combine everything into a single ma­
trix, we get the formula 

r c+(l-c)a; 

M rot (0,a)= (1-c)a x a
y 
+sa, 

(1-c) a x a, -Say 

(1-c)axa
y 
-:a, (1-c)a xa, +sa

y 

jc+(l-c)a
y 

(1-c)aya, -sax 
(1-c)a

y
a, +sa x c+(1-c)a; 

(2.2 1) 

for the transform M rot ( 0, a) that rotates a vector through an angle 0 about the axis 
a, where we have used the abbreviations e = cos 0 and s = sin 0. A function that 
constructs this transformation matrix and retums a Matrix3D data structure is 
shown in Listing 2.2. 

Listing 2.2. This code creates a 3 x 3 matrix that represents a rotation through the angle t about an 
arbitrary axis a and returns it in a Matrix3D data structure. The vector a is assumed to have unit 
length. 
- -----

Matrix3D MakeRotation(float t, const Vector3D& a) 
1 { 

float e = cos(t); 

float s = sin(t); 

float d = l.OF - e; 

float x = a.x * d; 
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float y = a.y * d;

float z = a.z * d;

float axay = X * a.y;

float axaz X * a. z;

float ayaz = y * a. z;

return (Matrix3D(c + x * a.x, axay - s * a.z, axaz + s * a.y, 

axay + s * a.z, e +  y *  a.y, ayaz - s * a.x, 

axaz - s * a.y, ayaz + s * a.x, e +  z * a.z)); 

2.3 Reflections 

Reflection through a plane is a common transform in game engines because it ap­
plies to things like mirrors and water surfaces. For now, we consider only planes 
containing the origin that are perpendicular to a given vector. In Section 3.4, we 
will extend the transform derived here to handle planes at arbitrary locations. 

As shown in Figure 2.3, a vector v can be reflected through a plane perpendic­
ular to vector a by decomposing v into its components perpendicular to a and par­
allel to a and then sirnply negating the parallel component. The original vector can 
be written as v = v .La + v 11a, and the reflected vector v' is then given by

v' = V .La - V lla. 

When we replace each component by its matrix representation, we get 

[
1-a2 

v'= axa: 
axaz 

(2.22) 

(2.23) 

where we have assumed that a has unit length. By combining these terms into a 
single matrix, we arrive at the formula 

[ 
1- 2a2 

M,.oect (a)= -2ax� 
-2axaz 

-2axay 

1- 2a 2 

y 

-2a
y
az 

(2.24) 
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a 

V 

V .La 

v' 

Figure 2.3. Toe reflection v' ofthe vector v through the plane perpendicular to the vector 

a is obtained by decomposing v into the components v11ª 
and v .La and negating the parallel 

component so that v' = v .La - v lla· 

for the transform M,enect (a) that reflects a vector through the plane perpendicular 
to the unit vector a. A function that constructs this transformation matrix and re­
turns a Matrix3D data structure is shown in Listing 2.3. 

The transform M reflect (a) always has a determinant of -1. This can be under­
stood intuitively if you consider the fact that there exists sorne coordinate system 
in which the unit vector a is aligned to the x axis. In this case, the transform is 
simply an identity matrix with the ( O, O) entry replaced by -1. A concrete proof can 
be obtained by using the identity det ( I + a (8) b) = 1 +a· b ( see Exercise 18 in 
Chapter 1), with b = -2a because M,eflect (a)= I -2a ®a. 

The matrix M,eflect (a) reflects through a plane by negating the component of 
a vector parallel to a one-dimensional subspace represented by the direction a. We 
can also construct a transform that instead negates the perpendicular component 
and leaves the parallel component unchanged as shown in Figure 2.4. Constructing 
this transform is a simple matter of negating Equation (2.22) to get 

v' = V 11
a -V .La · (2.25) 

Since the component v .La represents everything that is perpendicular to a, we are 
actually negating a two-dimensional subspace by performing two reflections 
aligned to vectors that are both orthogonal to a and each other. The composition 
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Listing 2.3. This code creates a 3 x 3 matrix that represents a reflection through the plane perpen­
dicular to an arbitrary vector a and retums it in a Matrix3D data structure. The vector a is assumed 
to have unit length. 

Matrix3D MakeReflection(const Vector3D& a) 

{" 

float x = a.x * -2.0F; 

float y= a.y * -2.0F; 

float z = a.z * -2.0F; 

float axay = x * a.y; 

float axaz = x * a.z; 

float ayaz =y * a.z; 

return (Matrix3D(x * a.x + 1.0F, axay, axaz, 

axay, y *  a.y+ 1.0F, ayaz, 

axaz, ayaz, z * a.z + 1.0F)); 

of two reflections is a rotation, so Equation (2.25) really represents a transform 
belonging to a larger set of transforms called involutions. An involution is a matrix 
that, when multiplied by itself, produces the identity matrix. Examples include re­
flections and rotations by 180 degrees. Calling it M invoI (a), the matrix form of 
Equation (2.25) is given by 

2axa
y 

2a
2 

-1
y 

2a
y

az 

(2.26) 

which is, of course, just the negation of the matrix M reflect (a) given by Equation 
(2.24). A function that constructs this transformation matrix and retums a Ma­
trix3D data structure is shown in Listing 2.4. 

Generalizing to n dimensions, the matrix M invoI (a) represents a composition 
of n -l reflections through a set of n - l orthogonal planes containing the vector a, 
whereas the matrix Mreflect (a) represents a single reflection through one plane per­
pendicular to the vector a. Since Minvoi = -Mreflect, the determinant can be calcu­
Jated as 

det (Mmvo1) = ( -1 r det (Mreflect ). (2.27) 
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a 

-V .la v' 
-1---------•

V .la 

Figure 2.4. The involution v' ofthe vector v through the vector a is obtained by decom­

posing v into the components v 11• and v .1. and negating the perpendicular component so 

that V
1 

= V II• -V .La· 

The determinant of M ret1ect is always -1, so the determinant of M invoi is -1 when n
is even and + 1 when n is odd. lt' s straightforward to verify that in the three-dimen­
sional case, the matrix in Equation (2.26) has a determinant of + l. 

The involution matrix is not typically used by game engines to transform 
among coordinate systems or to modify the shape of an object. We introduce it 

here for completeness and because familiarity with it will be useful in the discus­

sion of rotors in Section 4.4. 

Listing 2.4. This code creates a 3 x 3 matrix that represents an involution through an arbitrary vector 

a and returns it in a Matrix3D data structure. The vector a is assumed to have unit length. 

Matrix3D Makeinvolution(const Vector3D& a) 

float X = a.x * 2. OF;

float y= a.y * 2. OF;

float z = a.z * 2. OF;

float axay X * a.y;

float axaz X * 
a. z;

float ayaz y * a. z;

return (Matrix3D(x * a.x - l.OF, axay, axaz,

axay, y * a.y - l.OF, ayaz,

axaz, ayaz, z * a.z - l.OF));
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2.4 Scales 

A sea/e transform is used to enlarge or shrink an object to a new overall size. Ifthe 
scale changes the size equally in every direction, then it is called a uniform sea/e. 

If the scale expands or compresses an object more in sorne directions than it <loes 
in other directions, then it is called a nonuniform sea/e. 

A uniform scale simply multiplies ali vectors v by a scale factor s so that the 
transformed vector v' is given by 

[s O º] V
1 

= SV = Ü S Ü V. 

o o s 

(2.28) 

A nonuniform scale aligned to the coordinate axes is similar, but the scale factors 
appearing on the main diagonal of the transformation matrix are not ali equal to 
the same value. An example of a nonuniform scale is shown in Figure 2.5. The 
transform that scales by different amounts along the x, y, and z axes is given by 

o 

o � ]· Sz 

(2.29) 

A function that returns this matrix in a Matrix3D data structure is implemented 
in Listing 2.5. 

We can scale an object along a single arbitrary direction a while preserving 
the object's size in every direction orthogonal to a by decomposing a vector v into 
its components v11• and v .1. and scaling only the parallel component, as shown in 
Figure 2.6. The scaled vector v' is then given by 

M 

Figure 2.5. In this example of a nonuniform scale by a matrix M, a cube has been stretched 
in one direction and compressed in another. 
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v' = SV 118 + V _1_a (2.30) 

for a scale factor s. When we combine the matrix representations of the compo­
nents, we obtain 

[(s-l)a; +1 M sca1e (s,a)= (s-l)ax a
y

(s-l)axaz 

(s-l) ax a
y(s-l)a; +1 

(s-l) a
y

az

(s-l) axaz 
l (s-l)a

y
az (s-l)a; +1 (2.31) 

as the transform M scaie ( s, a) that scales by a factor of s along the direction a. A
function that calculates this transform and retums a Matrix3D data structure is 
implemented in Listing 2.6. 

Listing 2.5. This code creates a 3 x 3 matrix that represents a scale by factors of sx, sy, and s z 

along the x, y, and z axes and returns it in a Matrix3D data structure. 

Matrix3D MakeScale(float sx, float sy, float sz) 

{ 
return (Matrix3D(sx, O.OF, O.OF, O.OF, sy, O.OF, O.OF, O.OF, sz)); 

v' 

a 

V 1-a 

Figure 2.6. The vector v is scaled by a factor of s in the direction a to produce a new vector 

v' by decomposing v into the components v
11• 

and v .1a and scaling only the parallel com­

ponent SO that v' = SV
11a +V .La· 
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Listing 2.6. This code creates a 3 x 3 matrix that represents a scale by a factor of s along an arbitrary 
direction a and retums it in a Matrix3D data structure. The vector a is assumed to have unit length. 

Matrix3D MakeScale(float s, const Vector3D& a) 

s -= l.OF; 

float x = a.x * s; 

float y= a.y * s; 

float z = a.z * s; 

float axay = X * a.y; 

float axaz X * a. z;

float ayaz = y * a. z;

return (Matrix3D(x * a.x + l.OF, axay, axaz, 

axay, y *  a.y+ l.OF, ayaz, 

axaz, ayaz, z * a.z + l.OF)); 

2.5 Skews 

A skew transform is used to shear an object along one direction by an angle made 
with a perpendicular direction. An example of a skew along the x axis by an angle 
0 made with the y axis is shown in Figure 2.7. 

Let the unit vector a represent the direction in which we want to skew, and let 
the unit vector b represent the direction perpendicular to a along which vectors are 
measured to determine how far to skew. As shown in Figure 2.8, a vector v is 
skewed by adding a vector parallel to a oflength (b · v) tan 0 to it, where the factor 
b · v represents the length of the projection of v onto b. The skewed vector v' is 
given by 

v' = v +a(b ·v) tan 0, (2.32) 

.. 

Figure 2.7. This box is skewed by an angle 0 in the direction to the right. 
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V v' 

(b·v)tan0 

b 

Figure 2.8. The vector v is skewed by an angle 0 along the direction a based on the pro­
jected length of v along the direction b orthogonal to a. Assuming that b has unit length, 
the size ofthe skew in the direction a is given by (b · v)tan0. 

where the factor tan 0 is the ratio of the skew distance along a to the projected 
length of v along b, which can be interpreted as the amount by which b · v needs 
to be multiplied to obtain a skew by the angle 0. In the figure, we are actually 
projecting v onto the plane spanned by a and b first, but this has no effect on the 
magnitude of the projection onto b (see Exercise 7 in Chapter 1). 

Equation (2.32) can be written as the transform v' = Mv using the matrix 

[
axbx tan 0 + 1 axb

y 
tan 0 axb, tan 0

1 M,kew (0,a,b)= a
y

bx tan0 a
y

b
y 

tan0+1 ayb, tan0 . 
a,bx tan 0 a,by tan 0 a,b, tan 0 + 1 

(2.33) 

This is the transform that skews by the angle 0 in the direction a based on the 
length of the projection onto b. A function that cale u lates this transform and retums 
a Matrix3D data structure is implemented in Listing 2.7. When a and b are 
aligned to the coordinate axes, this matrix becomes considerably simpler. For ex­
ample, for a = ( 1, O, O) and b = ( O, 1, O), the transform is 

[
1 tan0 º1 

M,kew(0,i,j)= Ü 1 Ü,
O O 1 

(2.34) 

An interesting property of skews is that they preserve volumes. That is, after 
an object is modified by a skew transform, it has the same volume as it did before 
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Listing 2. 7. This function creates a 3 x 3 matrix that represents a skew by the angle t along the 

direction a based on the projected length along the direction b and returns it in a Matrix3D data 

structure. The vectors a and b are assumed to be orthogonal and to have unit length. 

Matrix3D MakeSkew(float t, const Vector3D& a, const Vector3D& b) 

t = tan (t); 

float X = a.X * t;

float y = a.y * t;

float z = a.z * t;

return (Matrix3D(x * b.x + 1.0F, x * b.y, x * b.z, 

y *  b.x, y *  b.y + 1.0F, y *  b.z, 

z * b.x, z * b.y, z * b.z + 1.0F) ); 

the transform was applied. One way to think about this is to imagine that an object 
is composed of a large number of thin si ices parallel to the plane spanned by the 
vectors a and ax b. The skew transform causes ali of the slices to slide in the di­
rection of a, but the sum of the volumes ofthe slices <loes not change. Taking this 
approximation to the limit in which the thickness of the slices is infinitesimally 
small shows that the volume of any arbitrary shape is preserved by a skew. 

Algebraically, we can recognize that the transform matrix given by Equation 
(2.33) is equivalent to 

M skew ( 0, a, b) = I + tan 0 ( a 0 b). (2.35) 

Thus, the determinant ofM skew is equal to 1 + tan 0 (a· b ). But a and b are perpen­
dicular, so a· b = O and det (M skew ) = l. Now suppose that the vectors u, v, and w
form the edges of a parallelepiped. If we construct the matrix whose columns are 
u, v, and w, then the volume Vof the parallelepiped is given by 

V=idet([u v w])¡. (2.36) 

When the vectors are transformed by M skew , the new volume V' ofthe parallelepi­
ped is given by 

V'=idet(M skew [u V w])l=ldet(M skew )det([u V w])¡. (2.37) 

Since det (M skew ) = 1, this is the same as the original volume V.
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2.6 Homogeneous Coordinates 

Our discussion of vectors in Chapter 1 highlighted the fact that they each represent 
nothing more than a magnitude and direction. The matrices discussed so far in this 
chapter have all performed sorne kind of transformation that is centered at the 
origin. What we have lacked until now is a concrete way of handling different 
locations in space, whether it be for moving objects to new positions or transform­
ing among coordinate systems that have different origins. Game engines and other 
types of computer graphics applications integrate location into their transforms by 
using a four-dimensional projective space called homogeneous coordinates. In this 
section, we will use homogeneous coordinates to add translations to our transform 
matrices and to make a distinction between direction vectors and position vectors. 
In Chapter 3, the utility of the 4D projective space will be expanded to include 
lines and planes, and everything will be naturally unified within a single algebraic 
system in Chapter 4. 

In homogeneous coordinates, we append a fourth number called the w coordi­
nate to every vector so that an arbitrary vector v is written as ( v x, v 

Y
, v,, v w ). A 

point in 3D space is associated with each 4D vector v by considering a line of 
infinite extent that passes through the origin in 4D space and is parallel to v. The 
3D point corresponding to v is given by the x, y, and z coordinates at the unique 
location where a point on the associated line has a w coordinate equal to one. Be­
cause all scalar multiples of v correspond to offsets from the origin to points on 
the line parallel to v, we can simply divide ali of the components of v by the coor­
dinate Vw to find the location where the line intersects the subspace for which w = 1, 
as shown in Figure 2.9. Homogeneous coordinates are so named because any non­
zero scalar multiple of a 4D vector v produces the same 3D point after dividing by 
the w coordinate. This is a projection of an intrinsically one-dimensional object, a 
line, to an intrinsically zero-dimensional object, a point, accomplished by viewing 
only one 3D slice of 4D space. 

If Vw = O, we clearly cannot divide by the w coordinate of v to produce a 3D 
point. A line running in the direction of the vector ( x, y, z, O) is parallel to the sub­
space where w = 1, so there is no intersection at any finite location. Thus, the vector 
( x, y, z, O), having a w coordinate of zero, is considered to be the point at infinity 
in the direction ( x, y, z) when projected into 3D space. Such a point is often used 
in a game engine to describe the location of an object like the sun that, within all 
practical limits, is infinitely far away. In these cases, we are describing the location 
of the object not by providing its absolute position, but by providing the direction 
that points toward the object. 
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w 

V=(vx,Vy,Vz,Vw) 

w=l 

y 

X 

Figure 2.9. A homogeneous vector v is projected into 3D space by dividing by its w coor­

dinate to determine the point where it intersects the subspace for which w = l. The z axis is 

omitted from the figure due to the difficulties inherent in drawing a four-dimensional dia­

gram on a two-dimensional page, but it should be understood that the subspace for which 

w = 1 is three-dimensional and extends in the z direction as well as the x and y directions.

Generally, 4D homogeneous vectors fall into two classes determined by 
whether the w coordinate is zero or nonzero. This lets us make an important dis­
tinction between 3D vectors that are intended to represent directions and 3D vec­
tors that are intended to represent positions. It is often unnecessary to carry around 
a fourth coordinate in memory when computing with either type ofvector because 
we can design our data structures in such a way that the value of the w coordinate 
is implied. We will continue using 3D vectors for both directions and positions, 
but we will establish a rule for converting each type to a 4D homogeneous vector 
wherever it's necessary. A 3D vector vis converted to a 4D vector by appending 
a w coordinate equal to zero, and a 3D point p is converted to a 4D homogeneous 
vector by appending a w coordinate equal to one, as in the example 

V=(vx,Vy,V,,0) 

p=(px,Py,Pz,J). (2.38) 

We have written the position vector p in a bold script style to differentiate it from 
a direction vector, which we continue to write in a bold plain style. This is not a 
standard convention, but it provides a helpful clarification when the two types of 
vectors are mixed in the same context. 

One of the main advantages to using homogeneous coordinates is the ability 
to incorporate translations into our transforms by using 4 x 4 matrices. Recall that 
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a general affine transformation from coordinate system A to coordinate system B 

is given by 

Pn = MpA+t, (2.39) 

where M is a 3 x 3 transformation matrix and t is a 3D translation vector. These can 
be combined into a single 4 x 4 transformation matrix H having the form 

Moo Mo1 Mo2 : f x 
1 

H=[� :J =
M10 M11 M12 : t y 

1 (2.40) 
M20 M21 M22 : tz 
-------------,--

o o o 1 1 

When we multiply the matrix H by the 3D point PA, where we are using the script 
style now to indicate that the point has an implicit w coordinate of one, the product 
is a 3D point p8 that has been transformed in exactly the same way as in Equation 
(2.39). The result still has a w coordinate of one because the fourth row of the 
matrix H is [ O O O 1 ], which preserves the w coordinate of any 4D vector that it 
multiplies. 

When the matrix H is used to transform a direction vector v having an implicit 
w coordinate of zero, the translation in the fourth column of H has no effect be­
cause those entries are always multiplied by the fourth coordinate of v. A direction 
vector carries no position information and is not altered by a translation of the 
coordinate system. Only the upper-left 3x3 portion ofH containing the matrix M 

participates in the transformation of a direction vector. 
We can accumulate transforms by multiplying as many matrices like H to­

gether as we want, and we will still have a matrix that has a fourth row equal to 
[ O O O 1] (see Exercise 7). Matrices of the form shown in Equation (2.40) belong 
to a multiplicatively closed subset of the entire set of 4 x 4 matrices. lt is this type 
of matrix that is used by game engines to represent a general transform from one 
coordinate space to another. Each object in the world typically has such a transform 
associated with it that describes how the object's local coordinate system is em­
bedded within sorne higher space in a model hierarchy or within the global coor­
dinate system. The first three columns of the 4 x 4 transform correspond to the 
directions in which the object' s local x, y, and z axes point in the global coordinate 
system, and the fourth column of the 4 x 4 transform corresponds to the position of 
the object's local origin in the global coordinate system. 

We would expect that the matrix H could be inverted as long as the matrix M 
occupying the upper-left 3 x 3 portion of H represented sorne kind of invertible 
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transform because the translation in the fourth column of H is something that can 

always be reversed. If we calculate the determinant of H in Equation (2.40) by 

expanding minors along the fourth row (using Equation (1.76) with k = 3), then it 
becomes apparent that it's the same as the determinant ofthe matrix M. This makes 

sense because solving Equation (2.39) for p A give us 

(2.41) 

which requires only that we can invert M. Using this equation for transforming in 

the reverse direction from coordinate system B back into coordinate system A, the 

inverse ofH should be given by 

(2.42) 

and this is easily verified to be correct. 

In order to support two types of three-component vectors with different trans­

formation properties, we need to introduce a second data structure to complement 

the Vector3D data structure introduced in Chapter l .  The Vector3D structure 

continues to represent a direction vector, and it possesses an implicit w coordinate 

of zero when necessary. A new data structure called Point3D is used to represent 

a position vector, and it possesses an implicit w coordinate of one. As shown in 

Listing 2.8, we choose to make the Point3D structure a subclass of the Vector3D 

structure so that it inherits the same data members and so that a Point3D structure 

is accepted anywhere that a Vector3D structure is expected. 

The code in Listing 2.8 includes overloaded addition and subtraction operators 
that highlight a particular relationship between direction vectors and position 

vectors. When a direction vector v is added to a position vector p, it yields a new 
point in space that you would arrive at if you started at the point p and travelled 

along the direction and length of v. If we consider the result of adding p and v as 

4D vectors with w coordinates of one and zero, respectively, then the sum has a w

coordinate of one, indicating that it is a position vector. Conversely, if we subtract 
a position vector b from a position vector a, then the difference has a w coordinate 

of zero. This indicates that the result is a direction vector, and this can be 
understood as the direction and distance that you would need to travel to go from 

the point a to the point b.

We also define a data structure called Transfonn4D that represents a 4 x 4 
matrix having the form shown in Equation (2.40). We choose to make this structure 

a subclass ofthe Matrix4D data structure so that it can be used wherever a general 
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Listing 2.8. This is the definition ofthe Point3D data structure that represents a 30 position vector. 
It is a subclass ofthe Vector3D data structure so that it inherits the same data members and has the 
same properties except in cases that are explicitly overridden. 

struct Point3D : Vector3D 

Point3D() = default; 

Point3D(float a, float b, float e) Vector3D(a, b, e) {} 

} ; 

inline Point3D operator +(const Point3D& a, const Vector3D& b) 

return (Point3D(a.x + b.x, a.y + b.y, a.z + b.z)); 

inline Vector3D operator -(const Point3D& a, const Point3D& b) 

return (Vector3D(a.x - b.x, a.y - b.y, a.z - b.z)); 

4 x 4 matrix is expected, but we assume that its fourth row is always egua! to 
[ O O O 1] whenever we perform calculations with it. As shown in Listing 2.9, 
the constructors for the Transform4D structure take data only for the first three 
rows and set the fourth row to [ O O O 1]. The first three columns are treated 
as 3D direction vectors due to the fact that each column has a zero in its fourth 
entry. Likewise, the fourth column is treated as a 3D position vector due to the 
fact that it has a one in its fourth entry. This behavior is implemented by the over­
ridden bracket operators and the GetTranslation () and SetTranslation () 
functions. 

The Inverse () function in Listing 2.9 is a simplified version of the full 4 x 4 
inverse given in Listing 1.11 that accounts for the constant values in the fourth row 
of the matrix represented by the Transform4D data structure. The matrix-matrix 
multiplication operator for Transform4D data structures also takes advantage of 
the known values in the fourth row. Finally, functions that multiply a Trans­
form4D data structure by Vector3D and Point3D data structures account for the 
w coordinates implied by each type of vector. 
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Listing 2.9. This is the defmition of the Transforrn4D data structure that holds the entries of a

4 x 4 matrix for which the fourth row is always [ O O O 1 ]. It is a subclass of the general Ma t r ix 4 D

data structure so that it inherits the same data members and has the same properties except in cases 
that are explicitly overridden. Functions are provided for calculating the inverse, multiplying two 
transforms, multiplying by a direction vector, and multiplying by a position vector. 

struct Transforrn4D : Matrix4D 

Transforrn4D U = default; 

Transforrn4D(float nOO, float nül, float n02, float 

float nlO, float nll, float n12, float 

float n20, float n21, float n22, float 

n[O] [O] nOO; n[O] [1] nlO; n[O] [2] n20; 

n[l] [O] nül; n[l] [1] nll; n[l] [2] n21; 

n[2] [O] n02; n[2] [1] n12; n[2] [2] n22; 

n[3] [O] n03; n[3] [1] n13; n[3] [2] n23; 

n[O] [3] 

n[3] [3] 

n[l] [3] 

l. OF; 

n[2] [3] O. OF; 

Transforrn4D(const Vector3D& a, const Vector3D& b, 

const Vector3D& e, const Point3D& p) 

n[O] [O] a.x; n[O] [1] a.y; n[O] [2] a.z;

n[ll [O] b.x; n[l] [1] b. y; n[l] [2] b. z;

n[2] [O] c.x; n[2] [1] e.y; n[2] [2] c.z;

n[3] [O] p.x; n[3] [1] p.y; n[3] [2] p.z;

n[O] [3] n[l] [3] n[2] [3] O. OF; 

n[3] [3] l. OF; 

Vector3D& operator [] (int j) 

return (*reinterpret_cast<Vector3D *>(n[j])); 

n03, 

n13, 

n23) 
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} ; 

const Vector3D& operator [] (int j) const 

return (*reinterpret_cast<const Vector3D *>(n[j])); 

const Point3D& GetTranslation(void) const 

return (*reinterpret_cast<const Point3D *>(n[3])); 

void SetTranslation(const Point3D& p) 

n[3] [O] p.x;

n[3] [l] p.y;

n[3] [2] p.z;

Transfonn4D Inverse(const Transfonn4D& H) 

const Vector3D& a =  H[O]; 

const Vector3D& b H[l]; 

const Vector3D& e =  H[2]; 

const Vector3D& d H[3]; 

Vector3D s Cross(a, b); 

Vector3D t Cross(c, d); 

float invDet l.OF / Dot(s, e);

s *= invDet; 

t *= invDet; 

Vector3D v = e *  invDet; 

Vector3D rO 

Vector3D rl 

Cross (b, v); 

Cross(v, a); 

return (Transfonn4D(r0.x, rO.y, rO.z, -Dot(b, t), 

rl.x, rl.y, rl.z, Dot(a, t), 

s.x, s.y, s.z, -Dot(d, s)));

Chapter 2 Transforms 
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Transfonn4D operator *(const Transfonn4D& A, const Transfonn4D& B)

return (Transfonn4D ( 

A(0,0) * B (0, O) + A(O,l) * B (1, O) + A(0,2) * B(2,0),

A(0,0) * B (0, 1) + A(O,l) * B (1, 1) + A(0,2) * B (2, 1),

A(O, O) * B(0,2) + A(O, 1) * B(l,2) + A(0,2) * B(2, 2),

A(O, O) * B(0,3) + A(O, 1) * B (1, 3) + A(0,2) * B(2,3) + A(O, 3),

A(l,O) * B(O, O) + A(l, 1) * B(l,O) + A(l,2) * B(2, O),

A(l,0) * B(O,l) + A(l,l) * B(l, 1) + A(l,2) * B(2, 1),

A(l,O) * B(0,2) + A(l, 1) * B(l,2) + A(l,2) * B(2, 2),

A(l,0) * B(0,3) + A(l, 1) * B (1, 3) + A(l,2) * B(2,3) + A(l,3),

A(2, O) * B(0,0) + A(2,l) * B (1, O) + A(2,2) * B (2, O),

A(2, O) * B(O,l) + A(2,l) * B (1, 1) + A(2,2) * B(2, 1),

A(2,0) * B(0,2) + A(2,l) * B (1, 2) + A(2,2) * B(2, 2),

A(2,0) * B(O, 3) + A(2,l) * B(l,3) + A(2,2) * B(2,3) + A(2,3)));

Vector3D operator *{const Transfonn4D& H, const Vector3D& v) 

return (Vector3D(H(0,0) * v.x + H(O,l) * v.y + H(0,2) * v.z, 

H(l,0) * V.X + H(l,l) * v.y + H(l,2) * v.z, 

H(2,0) * V.X + H(2,l) * v.y + H(2,2) * v.z)); 

Point3D operator *(const Transfonn4D& H, const Point3D& p) 

return (Point3D(H(0,0) * p.x + H(O,l) * p.y + H(0,2) * p.z + H(0,3), 

H(l,0) * p.x + H(l,l) * p.y + H(l,2) * p.z + H(l,3), 

H(2,0) * p.x + H(2,l) * p.y + H(2,2) * p.z + H(2,3))); 

-- --

---------
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2.7 Quaternions 

In the mid-nineteenth century, the Irish scientist William Rowan Hamilton (1805-
1865) was studying the nature ofthe complex numbers. He thought ofthe complex 
numbers as the set of pairs ( a, b) of real numbers following a specific rule for 
multiplication. Hamilton attempted to extend the same principies to a three-dimen­
sional set whose members are triplets ofreal numbers, but failed to find a logically 
sound rule for multiplication after exerting considerable effort. So he tumed his 
attention to four-dimensional numbers, and upon having an epiphany one moming 
in 1843, Hamilton excitedly etched the multiplication rule 

·2 ·2 k2 ""k 
l l =; = =lj =- (2.43) 

into the stones of a nearby bridge. Today, Hamilton's original carving is no longer 
visible, but a stone plaque adoms the Broome bridge in Dublin to mark the location 
where his "flash of genius" took place. 

2.7.1 Quaternion Fundamentals 

The set of quaternions, denoted by the letter lHI in honor ofHamilton's discovery, 
is forrned by adjoining the three imaginary units i,j, and k, to the set of real num­
bers. A typical quatemion q has four components that can be written as 

q =xi+ y}+ zk + w, (2.44) 

where x, y, z, and w are real numbers. It doesn't matter what order these compo­
nents are written in because multiplication by i,j, and k provide ali the necessary 
identification for the imaginary terrns. Many textbooks write the real w component 
first, but we choose to write it last to be consistent with the general convention 
used throughout the field of computer graphics that places the w coordinate last in 
a 4D vector( x, y, z, w ). This is particularly useful for avoiding confusion in shader 
programs when a quatemion is stored in a variable having a vector type. 

Although quatemions are sometimes treated as if they were 4D vectors, and 
they are even written in bold to reflect their multicomponent nature, it is important 
to realize that they are not actually 4D vectors. A quatemion is more properly un­
derstood as the sum of a scalar and a 3D vector, and Hamilton himself is credited 
with coining the terrns sea/ar and vector to identify these different parts. It is often 
convenient to write a quatemion in the forro q = v + s, where v, called the vector 
part, corresponds to the imaginary triplet ( x, y, z) in Equation (2.44), and s, called 
the sea/ar part, corresponds to the real component w. Note, however, that calling 
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va vector still isn't quite correct, but this terminology will suffice until we reach 
the more precise discussion of quatemions in Section 4.4. 

As with ordinary vectors and complex numbers, quatemion addition is per­
formed componentwise. Multiplication, however, follows the rule given by Ham­
ilton in Equation (2.43), which can also be expressed in the more explicit form 

¡2 =J 2 =k2 =-1

ij =- ji= k 

jk =-kj= i 

ki = -ik = 
J. 

(2.45) 

This summarization ofthe multiplication rule is less succinct than Hamilton's, but 
it provides a more immediate guide for multiplication between any two of the im­
aginary units. Equation (2.45) also illustrates the fact that quatemions do not pos­
sess the commutative property. Reversing the order in which any two imaginary 
units are multiplied negates their product. 

By following the rules given above, we can calculate the general product of 
two quatemions q, = x1i + y,j + z,k + w, and q2 = x2i + y2j + z2k + w2 to obtain 

q 1q 2
= (x1w2 + y,z2 -z1y2 +w,x2 )i 

+(y,w2 +z,x2 +w,y2 -x,z2 )J 

+(z1w2 +w1z2 +X1Y2 -y1x2)k 

+(w1w2 -x1x2 -y,y2 -z1z2). (2.46) 

If we represent the quatemions by q 1 = v 1 + s I and q 2 = v 2 + s 2 instead, then the 
product can be written as 

(2.47) 

The first three terms form the vector part of the product, and the last two terms 
form the scalar part. The only noncommutative piece appearing in Equation (2.47) 
is the cross product, a fact from which we can quickly deduce that reversing the 
order of the factors in quatemion multiplication changes the product by twice the 
cross product between the vector parts, as stated by 

(2.48) 

This exposes the fact that two quatemions commute only if their vector parts are 
parallel because when that is the case, the cross product v 1 x v 2 is zero. 
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A quatemion q has a conjugate denoted by q • that is similar to the complex 
conjugate except that we are now negating three imaginary components instead of 
just one. That is, the conjugate of a quatemion q = v + s is given by 

q* =-v+s.

The product of a quatemion and its conjugate gives us 

• • 2 2 
qq =q q =V + S ,

(2.49) 

(2.50) 

which is a real number that we equate to the squared magnitude of the quatemion. 
We denote the magnitude of a quatemion using two vertical bars, as with ordinary 
vectors, and define it as 

(2.51) 

As with vectors, multiplying a quatemion q by a scalar value t has the effect of 
multiplying the magnitude of q by ltl. Quatemions also have the property that the 
magnitude of the product of two quatemions q, and q 2 is equal to the product of 
their individual magnitudes (see Exercise 9), which we can state as 

llq,q2 II = llq, ll llq2 II- (2.52) 

The real numbers lR form a subset of the entire set of quatemions lHI, and it 
consists of ali the quatemions having the vector part ( O, O, O). In particular, the 
number one is a quatemion, and it continues to fill the role of the multiplicative 
identity element as it <loes in the sets ofreal numbers and complex numbers. For 
any quatemion q = v + s that has a nonzero magnitude, we can divide the product 
shown in Equation (2.50) by the squared magnitude of q to obtain the identity 
element, and this means that q has a multiplicative inverse given by 

-1 q* -v+s
q

-------- qq* - v2+s2
. (2.53) 

The basic properties of quatemion addition and multiplication are listed in 
Table 2.1. They are ali easy to verify, and none of them should come as any sur­
prise. Due to the noncommutativity of quaternion multiplication, the last two prop­
erties listed in the table show that the conjugate or inverse of a product of 
quaternions is equal to the conjugate or inverse of each factor multiplied in reverse 
order. This is similar to how the transpose and inverse of matrix products work. 
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Property 

(q 1 +q2 )+q 3
= q l +(q 2+q 3 ) 

q l +q2 = q 2 +q1

(st)q = s(tq) 

tq = qt 

f ( q J + q i) = tq J + tq 2 

(s+t)q = sq+tq 

ql (q 2q 3 ) = (q 1q 2 )q 3 

q l ( q 2 +q 3 ) = q lq 2 +q 1q 3 

(q 1 +q2)q 3 
= q 1q 3 +q2q3 

(tq l )q 2 
= q l (tq 2) = t(q 1q i) 

(q 1q2 f=q;q� 

( rl -1 -1 

q lq2 = q2 q l 

Description 

Associative law for quatemion addition. 

Commutative law for quatemion addition. 

Associative law for scalar-quatemion multiplication. 

Commutative law for scalar-quatemion multiplication. 

Distributive laws for scalar-quatemion multiplication. 

Associative law for quatemion multiplication. 

Distributive laws for quatemion multiplication. 

Scalar factorization for quatemions. 

Product rule for quatemion conjugate. 

Product rule for quatemion inverse. 

Table 2.1. These are the basic properties of quatemion addition and multiplication. Each 
letter q, with or without a subscript, represents a quatemion, and the letters s and t represent 
scalar values. 

The definition of a simple data structure called Qua ternion is shown in 

Listing 2.1 O. It holds four floating-point components x, y, z, and w representing 
the vector and scalar parts of a quatemion, and they can be accessed directly. The 
data structure has a default constructor that performs no initialization and two ad­

ditional constructors that take either all four components separately or a Vector3D 

data structure and a scalar. The code includes an overloaded operator that calcu­

lates the product between two quatemions. Overloaded operators for other types 

of quatemion calculations are omitted, but it is a simple matter to implement addi­

tion, subtraction, multiplication by scalar values, etc. 
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Listing 2.10. This is the definition of a simple data structure holding the four components of a 

quatemion. Many of the basic arithmetic operations are omitted because their implementations are 

trivial. The GetRotationMatrix () and SetRotationMatrix () functions are implemented 

later in this section. 

struct Quaternion 

}; 

float x, y, z, w; 

Quaternion() = default; 

Quaternion(float a, float b, float e, float s) 

x = a; y= b; z = e; 

w s; 

Quaternion(const Vector3D& v, float s) 

x = v.x; y= v.y; z = v.z; 

w s; 

const Vector3D& GetVectorPart(void) const 

return (reinterpret_cast<const Vector3D&>(x)); 

Matrix3D GetRotationMatrix(void); 

void SetRotationMatrix(const Matrix3D& m); 

Quaternion operator *(const Quaternion& ql, const Quaternion& q2)

return (Quaternion( 

ql.w * q2.x + ql.x * q2.w + ql.y * q2.z - ql.z * q2.y,

ql.w * q2.y - ql.x * q2.z + ql.y * q2.w + ql. z * q2.x,

ql.w * q2.z + ql.x * q2.y - ql.y * q2.x + ql. z * q2.w,

ql.w * q2.w - ql.x * q2.x - ql.y * q2.y - ql. z * q2. z));

__J 
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2.7 .2 Rotations With Quaternions 

Quatemions appear in game engine development because they can be used to rep­
resent rotations in a way that has several advantages over 3 x 3 matrices. In this 
section, we present a conventional description of how a quatemion corresponding 
to a particular rotation through any angle about any axis is constructed and how 
such a quatemion transforms an ordinary vector. We'll be able to provide greater 
insight into the reasons why quatemions work the way they do in Section 4.4. The 
advantages to interpolating quatemions compared to 3 x 3 matrices will be a topic 
covered in Volume 3. 

Given a quatemion q =xi+ y}+ zk + w and a vector v = ( v x, v 
Y

, v, ), a rotation
is performed by considering the vector to be the quatemion v xi+ v yj + v ,k and 
calculating a new vector v' with the product 

v' = qvq-1
• (2.54) 

To be clear, each of the products in this equation is a quatemion multiplied by a 
quatemion. This is sometimes called the sandwich product because the quatemion
v is sandwiched between the quatemion q and its inverse. The quatemion v is
known as apure quatemion, which is any quatemion that has a zero scalar com­
ponent and is thus made up of only imaginary terms. When v is a pure quatemion,
the sandwich product qvq -i always yields another pure quatemion. Since we have
established an equivalence between vectors and pure quatemions, we can say that 
the sandwich product transforms a vector v into another vector v'. 

The magnitude of q in Equation (2.54) doesn't matter, as long as it's nonzero,
because ifllqll = m, then m can be factored out of q, and 1/m can be factored out of 
q-1

• These cancel each other out and leave quatemions with magnitudes of one
behind. A quatemion q having a magnitude of one is called a unit quaternion, and
it has the special property that its inverse is simply equal to its conjugate because
qq · = l. In the case that q is a unit quatemion, Equation (2.54) simplifies to

1 v
' = qvq

·. 1 (2.55) 

The set of unit quatemions form a multiplicatively closed subset of]H[ because the 
product of any two unit quatemions is another unit quatemion. For this reason and 
the fact that vector transforms become simpler, only unit quatemions are typically 
used to represent rotations in practice. 

To see how the sandwich product shown in Equation (2.55) performs a rota­
tion, we can write q = b + e and expand the quatemion products using Equation
(2.47), keeping in mind that the scalar part ofv is zero. The product qv is given by
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qv = ( b + e) V = b X V + CV - b . V. (2.56) 

When we multiply this by q • = -b + e, we get 

qvq. = ( b X V + CV - b . V)( -b + e) 

= ( e 
2 - b 

2 
) V + 2 ( V . b) b + 2c ( b X V) (2.57) 

after sorne simplification that includes an application of the vector triple product 
identity -b x v x b = (b · v) b-b 2v. If we set b = sa, where s = 11h11 anda is a unit
vector, then we can write qvq · as 

qvq · = ( e 
2 

- s 
2 

) v + 2s 2 
( v ·a) a + 2cs ( a x v ). (2.58) 

The right side of this equation has the same three terms that appear in the formula 
for rotation about an arbitrary axis a given by Equation (2.19) except that the scalar 
coefficients are written in a different way. In order for Equation (2.58) to perform 
a rotation through an angle 0, the values of e and s must satisfy the equalities 

c 2 -s 2 =cos0 

2s 2 = 1-cos 0 

2cs = sin 0.

Ali three of these requirements are satisfied when we choose 

0 
e =cos-

2 

. 0 
s=sm-

2 

(2.59) 

(2.60) 

because these values produce valid trigonometric identities. (This reveals why the 
letters e and s were selected for this derivation.) We conclude that the quaternion 

( . 0
) 

0q = sm
2 

a+cos
2

(2.61) 

represents a rotation through the angle 0 about the unit-length axis a that can be 
applied to a vector v using the sandwich product qvq ·. As with ali the rotations 
previously described in this chapter, a quaternion rotation through a positive angle 
is counterclockwise when the axis points toward the viewer. 
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Quatemion rotation is implemented in Listing 2.11 using the formula given by 

Equation (2.57). In terms of computational cost, this method of performing a rota­
tion on a vector v is more expensive than multiplying v by a 3 x 3 rotation matrix. 
The advantages to using quatemions exist elsewhere, and sorne of them are dis­

cussed at various points in the remainder of this section. 

One advantage to using quatemions is that multiple rotations can easily be 
composed. To first rotate a vector v using a quatemion q I and then rotate the result 

using another quatemion 4 2, we calculate the sandwich product of a sandwich 
product as in 

(2.62) 

By reassociating the factors, this can be written as 

(2.63) 

showing that the two successive rotations are equivalent to a single rotation using 
the quatemion given by 4 24 1• The product of two quatemions can be calculated 
with 16 multiplies and 12 adds using Equation (2.46), and that has a significantly 

lower cost than the 27 multiplies and 18 adds required to calculate the product of 
two 3 x 3 matrices. 

A quatemion also has the advantage that it has much lower storage require­
ments because it comprises only four floating-point components compared to the 
nine floating-point entries needed by an equivalent 3 x 3 rotation matrix. lt is often 
the case, however, that a quatemion needs to be converted to a matrix at sorne point 
in order to carry out calculations that involve transformations other than rotations. 

To make this conversion, we can examine each ofthe terms ofthe sandwich prod­
uct 4v4 • shown in Equation (2.57), where q = b + e, and express their effects on v 
as 3 x 3 matrices to obtain 

Listing 2.11. This code rotates the vector v using the quatemion q by calculating the sandwich 
product shown in Equation (2.57). It is assumed that q is a unit quatemion. 

Vector3D Transform(const Vector3D& v, const Quaternion& q) 

const Vector3D& b = q.GetVectorPart(); 

float b2 = b.x * b.x + b.y * b.y + b.z * b.z;

return (v * (q.w * q.w - b2) + b * (Dot(v, b) * 2.0F)

+ Cross(b, v) * (q.w * 2.0F));
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2b,b, 1
2b

y
b, V 

2b; 

(2.64) 

Since q is a unit quatemion, we know that c 2 + b 2 = 1, so we can rewrite c 2 -b 2 as 
1- 2b 2 • This allows us to simplify the diagonal entries a little when we combine
the three matrices because, as exemplified by the (O, O) entry, we can make the 
replacement 

c 2 - b 2 + 2b; = l-2b; -2b;. (2.65) 

F or a general unit quatemion q =xi+ y}+ zk + w, where we equate b = ( x, y, z) 
and e = w, a single 3 x 3 matrix M rot ( q) corresponding to the sandwich product 
qvq · is thus given by 

l
l-2y 2 - 2z 2 2(.xy-wz)

Mro1 (q)= 2(.xy+wz) l-2x 2 -2z 2 

2(xz-wy) 2(yz+wx) 

2(xz+wy) 
1 2(yz-wx) 

l-2x 2 - 2y 2 

(2.66) 

A function that constructs this transformation matrix for a given Qua ternion data 
structure and retums a Matrix3D data structure is shown in Listing 2.12. 

If we take a close look at Equation (2.57), we notice that negating both b and 
e has no effect on the transformation of v. There are two negations in each term 
that cancel each other out. The same property is also apparent in the formula for 
M rot ( q) ifwe were to negate all four components x,y, z, and w. This demonstrates 
that for any unit quatemion q, the quatemion -q represents exactly the same rota­
tion. Further insight can be gained by considering the number -1 itself as a quater­
nion and matching it to Equation (2.61). In this case, we must have cos ( 0/2) = -1 
and sin ( 0/2) = O, which are conditions satisfied when 0 = 211:, so the quatemion 
q = -1 corresponds to a full revolution about any axis.

The fact the q and -q represent the same rotation can be used to reduce the 
amount of storage space needed by a unit quatemion to just three floating-point 
values. Once the components of a quatemion q = b + e have been calculated for a 
particular angle and axis, we can choose whether to keep q or change it to -q based 
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Listing 2.12. This function creates a3 x 3 matrix that corresponds to the Quaternion data structure 
for which it's called. It is assumed that the quatemion has a magnitude of one. 

Matrix3D Quaternion: :GetRotationMatrix(void) 

float x2 = X * x; 

float y2 y * y; 

float z2 z * z; 

float xy = X * y; 

float xz = X * z; 

float yz = y * z;

float wx = w * x; 

float wy = w * y;

float wz = w * z; 

return (Matrix3D( 

1. OF - 2.0F * (y2 + z2), 2.0F * (xy - wz), 2.0F * (xz + wy),

2.0F * (xy + wz), 1. OF - 2.0F * (x2 + z2), 2.0F * (yz - wx),

2.0F * (xz - wy), 2. OF * (yz + wx), l.OF - 2. OF * (x2 + y2)));

on whether the scalar part e is nonnegative. If we know that e� O, then it can be 
calculated from the vector part b as 

e =
11 - b 2 

- b 2 
- b 2 

'\J X y Z (2.67) 

because the magnitude of q must be one. Thus, if storage space is important, then 
a quatemion can be negated if necessary so that the scalar part is not negative and 
stored as only the three components of the vector part. A short calculation is able 
to reconstitute the scalar part when it is needed. 

Given a 3 x 3 matrix M that represents a rotation, we can convert to a quater­
nion q =xi+ yj + zk + w by assuming that the entries of the matrix have the form 
shown in Equation (2.66) and solving for the individual components. We start by 
making an observation about the sum ofthe diagonal entries ofM, which is 

(2.68) 

By requiring q to be a unit quatemion, we can replace x 
2 

+ y 2 
+ z 

2 with 1- w
2 and 

solve for w to get 
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(2.69) 

where we are free to choose whether w is positive or negative. (The value under 
the radical is never negative because x 2 

+ y 2 
+ z2 ::s; l.) Once we have calculated 

the value of w, we can use it to find the values of x, y, and z using the relationships 

M2 , -M,2 =4wx 

Mo2 -M20 =4wy 

M10-M01 =4wz, 

each of which simply requires a division by 4w. 

(2.70) 

Unfortunately, in cases when w is very small, dividing by it can cause floating­
point precision problems, so we need altemative methods that calculate the largest 
of x, y, or z first and then sol ve for the other components. If M 00 + M, 1 + M 22 > O, 
then I wl is guaranteed to be larger than 1/2, and we can safely use Equations (2.69) 
and (2.70) to calculate q. Otherwise, we make use of three more relationships in­
volving the diagonal entries of M, given by 

Moo -M,1 -
M

22 + 1 = 4x2 

-Moo +M11 -M22 +1=4y2 

-Moo-M11 +M22 +1=4z 2
• 

(2.71) 

At first, it might seem like we can use these in conjunction with Equation (2.69) to 
calculate all four components of q, but we do not have enough information to select 
the correct signs. We are able to arbitrarily choose the sign of one component, but 
making that choice determines the signs of the other components when they are 
subsequently calculated using off-diagonal entries ofM. To determine which of x,

y, and z is largest, we can manipulate Equation (2. 70) by replacing the negated 
entries ofM with the values shown in Equation (2.66) to obtain 

2x 2 =M00 -2w 2 +l 

2y 2 =M11 -2w2 +l 

2z2 =M22 -2w2 +l, (2.72) 

where we have used the fact that w 2 
= 1-x 2 

- y 2 

-z2 . These equations show that 
the sizes of x, y, and z are directly related to the sizes of M00, M11, and M22 . Once 
the largest diagonal entry has been identified, we calculate the corresponding com­
ponent of q using one of the relationships in Equation (2. 71) and then cale u late the 
remaining two imaginary components of q using the relationships 
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M10 +Mo1 =4.xy 

Mo2 + M20 = 4xz

M21 + M12 = 4yz. (2.73) 

The w component is always calculated using one of the relationships shown in 
Equation (2.70). Making an example ofthe case in which M00 is the largest diag­
onal entry, we calculate x with the formula 

The y, z, and w components are then given by 

M10+Mo1 
y=----

4x 

Mo2 +M20 
z=----

4x 

M21 -M12 
w=----

4x 

(2.74) 

(2.75) 

The function shown in Listing 2.13 implements the complete conversion of a 3 x 3 
matrix to a quatemion. The code assumes that the input is a true rotation matrix, 
meaning that it is orthogonal and has a determinant of + l. 

Listing 2.13. This function sets the members ofthe Quaternion data structure for which it's called 
to the values corresponding to a quaternion equivalent to the 3 x 3 rotation matrix m 

void Quaternion: :SetRotationMatrix(const Matrix3D& m) 

float müü = m(0,0); 

float mll = m(l,1); 

float m22 = m(2,2); 

float sum = mOO + mll + m22; 

if (sum > O.OF) 

w = sqrt(sum + 1.0F) * O.SF; 

float f = 0.25F / w; 
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x = (m(2,l) - m(l,2)) * f; 

y= (m(0,2) - m(2,0)) * f; 

z = (m ( 1, O) - m (O, 1) ) * f; 

else if ( (mOO > mll) && (mOO > m22)) 

x = sqrt(mOO - mll - m22 + l.OF) * O.SF; 

float f = 0.25F / x; 

y= (m(l,0) + m(O,l)) * f; 

z = (m ( O, 2 ) + m ( 2 , O ) ) * f; 

w = (m(2,l) - m(l,2)) * f; 

else if (mll > m22) 

y= sqrt(mll - mOO - m22 + l.OF) * O.SF; 

float f = 0.25F / y; 

x = (m ( 1, O) + m (O, 1) ) * f; 

z = (m ( 2, 1) + m ( 1, 2) ) * f; 

w = (m(0,2) - m(2,0)) * f; 

else 

z = sqrt(m22 - mOO - mll + l.OF) * O.SF; 

float f = 0.25F / z; 

x = (m(0,2) + m(2,0)) * f; 

y = (m ( 2, 1) + m ( 1, 2) ) * f; 

w = (m ( 1, O) - m (O, 1) ) * f; 
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Exercises for Chapter 2 

Exercises for Chapter 2 

l. Show that every involution must have a determinant of either + l or -l.

2. Suppose that A and B are orthogonal matrices. Prove that AB is also an or­
thogonal matrix.

3. Prove that a symmetric matrix that is also an involution must be orthogonal,
and prove that an orthogonal matrix that is also an involution must be symmet­
nc.

4. Let M = [ a b e], where the column vectors a, b, and e are mutually perpen­
dicular but don't necessarily have unit length. Find a diagonal matrix N such
that M-1 = NMT .

5. Derive a transformation matrix that scales a vector v by a factor s in every
direction perpendicular to a direction a but <loes not scale in the direction a so
that a transformed vector v' is given by v' = v 

11ª + sv -1a. 

6. Find simplified transformation matrices for skews in the following cases:

(a) a=(l,0,0) andb=(0,0,1)
(b) a = ( O, 1, O) and b = ( O, O, 1)
(c) a=(0,1,0) andb=(l,0,0)

7. Let H and G be 4 x 4 transformation matrices that each have a fourth row equal
to [ O O O 1]. Pro ve that the product H G also has a fourth row equal to
[O O O l].

8. Derive a single 4 x 4 matrix that transforms an arbitrary point with a 3 x 3 ma­
trix M, but <loes so about a given center position c. First, apply a translation so
that the point e is moved to the origin, then apply the matrix M, and finally
apply the reverse translation that moves the origin back to the point c.

9. For any two quatemions Q1 and Q 2, prove that llq 1Q2 ll
2 = llq1 ll

2 

llq 2 ll
2

, and con­
elude that the magnitude ofthe product oftwo quatemions is equal to the prod­
uct of their magnitudes.
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10. Let q be a quatemion with q = v +s. Find functions f ( q) and g ( q) such that
f ( q) = s and g ( q) = v, which extract the scalar and vector parts of q, using
only q and q · without referring to any components of q directly.

11. Show that the quatemion q given by Equation (2.61) must be a unit quatemion
for any angle 0 as long as !!ali= l.

12. Describe the rotations performed by the quatemions q = i, q = }, and q = k
when applied to a vector v with the sandwich product qvq ·.

13. Find quatemions corresponding to counterclockwise rotations through 90º 

about each of the x, y, and z axes.

14. Let v 1 and v 2 be nonparallel 3D unit vectors, and !et 0 be the angle between
them. Find the unit quatemion q = sa + e with a= ( v 1 x v 2 )/sin 0 that rotates
the vector v 1 to the vector v 2 (that is, v 2 = qv 1 q *). Use trigonometric identities
to eliminate all sine and cosine functions.



Chapter 3 

Geometry 

Most of the computation performed by a game engine involves sorne kind of ge­

ometry. Geometry defines the world in which a game takes place, geometry de­

scribes the characters in a game and their movements, geometry tells the graphics 

hardware how to render a scene, geometry allows an engine to determine what' s 

visible to the camera, and geometry is necessary for detecting collisions between 

various objects. The list of areas in which geometry plays an essential role in game 

engine mechanics continues without end. After a short introduction to triangle 

meshes, this chapter discusses the details of severa! basic geometric topics that are 

fundamentally important in the development of more complex systems. 

3.1 Triangle Meshes 

With the exception of cases involving exotic rendering methods, objects drawn by 

a game engine are composed oftriangles. A triangle mesh is a collection oftrian­

gles that fit together to model the surface of a solid volume. At a minimum, the 

data associated with a triangle mesh includes a list of vertex positions stored as 3D 

points with floating-point coordinates. In most cases, the data also includes an in­

dex list that contains a triplet of integer indices for each triangle in the mesh spec­

ifying which three vertices define the triangle's boundary. There is typically more 

data stored with each vertex, but aside from the mention of normal vectors in the 

next section, a discussion of the details about this additional information will have 

to wait until Volume 2. 

As an example, consider the box shown in Figure 3 .1. Its triangle mesh is made 

up of 8 vertices and 12 triangles. Each of the box's six rectangular faces is divided 

into two coplanar triangles, and this is typical because the graphics hardware can-
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6 

Figure 3.1. This simple box is composed of8 vertices and 12 triangles. 

not directly process polygons having more than three sides. There are always mul­
tiple ways to break a polygon having at least four vertices into triangles. The par­
ticular choice of triangles composing an entire mesh is called its triangulation. 

The fact that there are fewer vertices than there are triangles demonstrates how 
each vertex is shared by multiple triangles. In the box shown in Figure 3.1, every 
vertex is used by either four triangles or five triangles, but it is possible to arrange 
the triangles in a different way so that sorne vertices are used by as few as three 
triangles and other vertices are used by as many as six. Sometimes, an application 
will store a list of triangle numbers with each vertex so that it's easy to determine 
which triangles make use of any particular vertex. This information would ordi­
narily be used only for editing purposes, however, and not in the course of actually 
rendering a model. 

A triangle mesh is called closed if it is the case that every edge is used by 
exactly two triangles. That is, for any pair of vertices used by one triangle, there 
must be one more triangle, and no others, that also uses the same pair of vertices 
for one of its edges but <loes not share the third vertex with the first triangle. A 
closed triangle mesh satisfies the Euler formula, which states 

V-E+F=2, (3.1) 
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where V is the number of vertices, E is the number of edges, and F is the number 
of faces. When we talk about the number of faces here, we mean the number of 
triangles in the mesh, and not the number of faces belonging to an ideal solid. 
Likewise, the number of edges is the number of boundaries existing between all 
pairs of adjacent triangles, even if the triangles are coplanar. Whereas an ideal box 
has 8 vertices, 12 edges, and 6 faces, the triangulated box in Figure 3.1 has 8 ver­
tices, 18 edges, and 12 faces. Both sets of numbers satisfy Equation (3 .1 ). 

An important property of a triangle mesh is the winding direction used by its 
triangles. When a triangle is viewed from its front side, which is the side facing the 
mesh's exterior, we have a choice as to whether the vertices referenced by the 
triangle occur in clockwise order or counterclockwise order. Either convention 
works equally well because the graphics hardware lets us specify which conven­
tion we are using, but we have to be consistent over an entire triangle mesh for a 
variety of reasons that include normal vector calculation. In this book, we choose 
the counterclockwise winding direction so that triangles satisfy a right-hand rule. 
When the fingers of the right hand are curled in the counterclockwise direction, 
the right thumb points outward from the front side of a triangle. In Figure 3.1, the 
lower-left triangle is wound in the counterclockwise direction when its vertices are 
referenced in the order (O, 1, 4), (1, 4, O), or ( 4, O, 1 ). 

3.2 Normal Vectors 

A normal vector, or just normal for short, is a vector that is perpendicular to a 
surface, and the direction in which it points is said to be normal to the surface. A 
flat plane has only one normal direction, but most surfaces aren't so simple and 
thus have normal vectors that vary from point to point. Normal vectors are used 
for a wide variety of reasons in game engine development that include surface 
shading, collision detection, and physical interaction. 

3.2.1 Calculating Normal Vectors 

There are a few ways in which normal vectors can be calculated, and the best 
method in any particular case really depends on how a surface is described from a 
mathematical standpoint. In the case that a surface is defined implicitly by a scalar 
function f ( p ), the normal vector at p = ( x, y, z) is given by the gradient V f ( p) 
because it is perpendicular to every direction tangent to the level surface off at p. 
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z 

n = V/ (p) 

y 

Figure 3.2. Toe normal vector n at a particular point p on a surface implicitly defined by 
the equation f (P) = O is given by the gradient V/ (P ). 

For example, suppose we have the ellipsoid shown in Figure 3.2, defined by the 
equation 

2 

J(p)=x2 + L +z 2 -1=0. 
4 

(3.2) 

The point 
p 

= ( Jf, 1, Jf) lies on the surface of this ellipsoid, and the normal vector 
n at that point is given by 

n=V'f( )=(ª1 aj ª1 JI =(2x Y 2z)=(J6 }_ J6)· (3.3)
p ax'ay'az 

P 
'2' 2 '2' 2 

Calculating normal vectors with the gradient is something that's usually done 
only in the process of constructing a triangle mesh to approximate an ideal surface 
described by sorne mathematical formula. The normal vectors are typically scaled 
to unit length and stored with the vertex coordinates that they're associated with. 
Most of the time, a game engine is working with a triangle mesh having an arbi­
trary shape that was created in a modeling program, and the only information avail­
able is the set of vertex coordinates and the list of indices that tell how vertices are 
grouped into triangles. 
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Figure 3.3. The normal vector o for a triangular face having vertices Po, p1 , and p2 is given 

by the cross product between vectors corresponding to two edges of the triangle. 

As illustrated in Figure 3.3, the normal vector n for a single triangular face can 

be calculated by taking the cross product between vectors aligned with two of the 
triangle's edges. Let Po, p1 , and p2 be the vertices of a triangle wound in the coun­
terclockwise direction. An outward-facing normal vector is then given by 

(3.4) 

Any permutation of the subscripts that keeps them in the same cyclic order pro­
duces the same normal vector. It doesn 't matter which vertex is ch osen to be sub­
tracted from the other two as long as the first factor in the cross product involves 
the next vertex in the counterclockwise order. If the order is reversed, then the 
calculated normal vector still lies along the same line, but it points in the opposite 
direction. 

To calculate per-vertex normal vectors for a triangle mesh, it is typical for a 
game engine's model processing pipeline to calculate ali of the per-face normal 
vectors and then take an average at each vertex over ali of the faces that use that 

vertex. The average may be weighted based on triangle area or other factors to 
create a smooth field of normal vectors over a curved surface. In cases in which a 

hard edge is desired, such as for a cube or the pyramid in Figure 3.3, vertex posi­

tions are typically duplicated, and different normal vectors corresponding to dif­
ferent faces are associated with the various copies of the vertex coordinates. 
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3.2.2 Transforming Normal Vectors 

When a model is transformed by a matrix M in order to alter its geometry, every 
point p belonging to the original model becomes a point Mp in the transformed 
model. Since a tangent vector t can be approximated by the difference of points p 

and q on a surface, or is often exactly equal to such a difference, it is transformed 

in the same way as a point to become Mt because the difference between the new 
points Mp and Mq is tangent to the new surface. Problems arise, however, if we 

try to apply the same transformation to normal vectors. 
Consider the shape shown in Figure 3.4 that has a normal vector n on its 

slanted side. Let M be a transformation matrix that scales by a factor of two in the 

horizontal direction but <loes not scale in the vertical direction. If the matrix M is 
multiplied by n, then the resulting vector Mn is stretched horizontally and, as 

clearly visible in the figure, is no longer perpendicular to the surface. This indicates 

that something is inherently different about normal vectors, and ifwe want to pre­
serve perpendicularity, then we must find another way to transform them that pro­
duces the correct results. Taking a closer look at how a matrix transforms a vector 

provides sorne insight. We restrict our discussion to 3 x 3 matrices here since nor­

mal vectors are not affected by translation, but the same conclusions will apply to 

4 x 4 matrices in the discussion of planes later in this chapter. 

n nM-
1 

Mn 

M 
b 

2a 

Figure 3.4. A shape is transformed by a matrix M that scales by a factor oftwo only in the 
horizontal direction. The normal vector n is perpendicular to the original surface, but if it 
is treated as a colurnn vector and transformed by the matrix M, then it is not perpendicular 
to the transformed surface. The normal vector is correctly transformed by treating it as a 
row vector and multiplying by M-1

• (The original normal vector is shown in light gray on 
the transformed surface.) 
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Let v 
A be a vector whose coordinates are expressed in coordinate system A as 

indicated by its superscript, and consider the fact that the components of vA meas­
ure distances along the coordinate axes. A distance L1.x

A along the x direction in 
coordinate system A is equivalent to the sum of distances L1.x 8

, �y
8

, and /ll 8 along 
the axis-aligned directions in another coordinate system B. The x component of v A 

can therefore be expressed as the vector 

(3.5) 

in coordinate system B. Similar expressions with 
�

Y
A and !ll A in the denominators

can be used to express the y and z components ofv in coordinate system B. Adding 
them up gives us a transformed vector v 

8 in coordinate system B that corresponds 
to the original vector v 

A in its entirety, and this can be written as the matrix trans­
formation 

�
X

B 

�
X

B 

�
X

B 

�
X
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�Y
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Z
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V
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�Y
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(3.6) 
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Each entry of this matrix multiplies a component of v A by a ratio of axis-aligned 
distances, and the axis appearing in the denominator of each ratio corresponds to 
the component of vA by which the ratio is multiplied. This has the effect of cancel­
ling the distances in coordinate system A and replacing them with distances in co­
ordinate system B. 

Now let us consider a normal vector that was calculated as a gradient. The key 
to understanding how such normal vectors transform is realizing that the compo­
nents of a gradient do not measure distances along the coordinate axes, but instead 
measure reciproca! distances. In the partial derivatives that compose a vector 
( 8j / 8x, 8j / 01, 8j / 8z ), distances along the X, y, and Z axes appear in the denomi­
nators. This is fundamentally different from the measurements made by the com­
ponents of an ordinary vector, and it's the source of the problem exemplified by 
the nonuniform scale shown in Figure 3.4. Whereas an ordinary vector vis treated 
as a column matrix with components ( v x, v Y, v z ), we write a normal vector n as the 
row matrix 
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(3.7) 

lt then becomes apparent that multiplying this vector on the right by the matrix in 
Equation (3.6) has the effect of cancelling reciproca! distances in coordinate sys­
tem B and replacing them with reciproca] distances in coordinate system A. Calling 
the matrix M, we can state that it is simultaneously the transform that takes ordi­
nary vectors from A to B through the product v 

8 = Mv A and the transform that
takes normal vectors, in the opposite sense, from B to A through the product 
n A = n 8M. Inverting the matrix reverses both of these transformations, so we con­
elude that the correct transformation from A to B for a normal vector, at least one 
calculated with a gradient, is given by 

(3.8) 

The correctness ofEquation (3.8) can be verified by demonstrating that a trans­
formed normal vector remains perpendicular to any transformed tangent vector. 
Suppose that n A and t A are normal and tangent to a surface at sorne point in coor­
dinate system A. By definition, they are perpendicular, and we must have 
n A • t A = O. (Since n A is a row vector and e is a column vector, the matrix product 
n Ae is actually what we're calculating here, but the dot is still included by con­
vention, even though the notation is not technically correct, to make it clear that 
we are producing a scalar quantity.) Let M be a matrix that transforms ordinary 
vectors from coordinate system A to coordinate system B. Then the transformed 
normal 0

8 is given by nAM-1
, and the transformed tangent t 8 is given by Me. 

Their product is 

(3.9) 

and this establishes the fact that they are still perpendicular in coordinate system B
after the transformation by M. 

Getting back to the example in Figure 3.4, the transformation matrix M is r2 O º] 
M= O 1 O 

O O 1 

(3.10) 

when we align the x axis with the horizontal direction and the y axis with the ver­
tical direction. We can take the normal vector before the transformation to be 
n = [ b a O]. Transforming this with Equation (3 .8) gives us a new normal vector 
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equal to [ b/2 a O], which is perpendicular to the transformed surface. The im­
portant observation to make is that the matrix M scales x values by a factor of two, 
but because normal vectors use reciproca! coordinates as shown in Equation (3.7), 
multiplying nx by two is equivalent to multiplying thex component of n by a factor 
of one half, which is exactly what M-1 does. 

In the case that a normal vector n A is calculated as the cross product s x t be­
tween two tangent vectors s and t, the transformed normal vector n 8 should be 
equal to the cross product between the transformed tangent vectors. Again, !et M

be a matrix that transforms ordinary vectors from coordinate system A to coordi­
nate system B. Then n 

8 
= Ms x Mt, but we need to be able to calculate n 

8 without 
any knowledge of the vectors s and t. Expanding the matrix-vector products by 
columns with Equation (1.28), we can write 

(3.11) 

where we are using the notation M¡i] to mean column i ofthe matrix M (matching 
the meaning of the [ J operator in our matrix data structures). After distributing the 
cross product to ali of these terms and simplifying, we arrive at 

D 8 = (s
yfz -S,fy ){M¡q xM¡21) 

+ ( s,fx -Sxf, ){M¡2] X M¡o])

+ (sxfy -Syfx ){M¡o] xM¡q). (3.12) 

The cross product n A = s x t is clearly visible here, but it may be a little less obvious 
that the cross products of the matrix columns form the rows of det (M) M-1

, which 
follows from Equation (1.95). We conclude that a normal vector calculated with a 
cross product is correctly transformed according to 

(3.13) 

Using the adjugate of M, defined in Section 1.7.5, we can also write this as 

(3.14) 

This is not only how normal vectors transform, but it's how any vector resulting 
from a cross product between ordinary vectors transforms. 

Equation (3 .13) differs from Equation (3 .8) only by the additional factor of 
det (M), showing that the two types of normal vectors are closely related. Since 
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normal vectors are almost always rescaled to unit length afier they're calculated, 
in practice, the size of det (M) is inconsequential and afien ignored, making the 
two normal vector transformation equations identical. However, there is one situ­
ation in which det ( M) may have an impact, and that is the case when the transform 
performed by M contains a reflection. When the vertices of a triangle are reflected 
in a mirror, their winding orientation is reversed, and this causes a normal vector 
calculated with the cross product of the triangle's edges to reverse direction as 
well. This is exactly the effect that a negative determinant of M would have on a 
normal vector that is transformed by Equation (3 .13 ). 

The code in Listing 3.1 multiplies a normal vector, stored in a Vector3D data 
structure and treated as a row matrix, by a Transform4D data structure on the 
right, but it ignores the fourth column ofthe transformation matrix. When positions 
and normals are being transformed by a 4 x 4 matrix H, a point p is transformed as 
Hp, but a normal n has to be transformed as nM- 1

, where M is the upper-lefi 3 x 3 
portian ofH. Being able to multiply by a Transform4D data structure is conven­
ient when both H and H-1 are already available so that the matrix M- 1 doesn't need 
to be extracted. 

In the general case, both H and M-1 are needed to transform both positions and 
normals. If M happens to be orthogonal, which is afien the case, then its inverse is 
simply equal to its transpose, so the transformed normal is just nM r, but this is 
equivalent to Mn if we treat nas a column matrix. Thus, it is common to see game 
en gines treat ordinary vectors and normal vectors as the same kind of mathematical 
element and use multiplication by the same matrix H on the lefi to transform both 
kinds among different coordinate systems. 

Listing 3.1. This multiplication operator multiplies a Vector3D data structure representing a nor­
mal vector as a row matrix on the right by a Transform.4D data structure to transform a normal 
vector from coordinate system B to coordinate system A. The transforrnation matrix is treated as a 
3 x 3 matrix, ignoring the fourth column. Note that this transforms a normal vector in the opposite 
sense in relation to how the same matrix would transforrn an ordinary vector from coordinate system 
A to coordinate system B.

Vector3D operator *(const Vector3D& n, const Transform4D& H) 

return (Vector3D(n.x * H(0,0) + n.y * H(l,0) + n.z * H(2,0), 

n.x * H(O,l) + n.y * H(l,l) + n.z * H(2,l), 

n.x * H(0,2) + n.y * H(l,2) + n.z * H(2,2)));
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3.3 Unes and Rays 

Lines and rays show up in numerous places throughout game engine development 
and are used for many purposes that include rendering, collision detection, and 
user interaction. Lines and rays are basically the same thing mathematically, with 
the only distinction being that a line extends to infinity in both directions while a 
ray starts at a point and goes to infinity in one direction. This section introduces 
the parametric form of a line and discusses sorne of the calculations that can be 
done with it. Later in this chapter, we will encounter a different mathematical for­
mulation for lines that will also appear in a different context in Section 4.2. 

3.3.1 Parametric Unes 

Given two points p, and p2, we can define the function 

.L ( t) = ( 1-t) p, + t P2 (3 .15) 

that produces points on the line passing through p, and p2 in terms of a single 
parameter t that ranges over all real numbers. When O :-;::; t :-;;; 1, the points fall inside 
the segment connecting p, and p2. Otherwise, the points fall elsewhere on the line 
extending to infinity in both directions. 

The function .L ( t) can be rewritten as 

(3.16) 

which is equivalent to Equation (3.15) but makes it clear that a line can be ex­
pressed in terms of a point and a direction. We can express both lines and rays with 
the parametric function 

l i:(t)=p+tv, 1 (3.17) 

where p is a point on the line, and v is a direction parallel to the line, as shown in 
Figure 3.5. The only difference between a line and a ray is that for a line, t can 
have any value, but for a ray, t can't be negative. It is often the case that v is nor­
malized to unit length so that the parameter t corresponds to the actual distance 
from the starting point p.
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p+tv 

V 

Figure 3.5. A parametric line is defined by a point p on the line and a direction vector v 

parallel to the line. 

3.3.2 Distance Between a Point and a Une 

Suppose that we want to find the shortest distance d between a point q and any 
point on a line given by L ( t) = p + tv. F or convenience, we define u = q - p. As 
shown in Figure 3.6, d is equal to the magnitude ofthe rejection of u from v, which 
corresponds to one side of a right triangle having a hypotenuse of length llull- The 
length ofthe remaining side is the magnitude ofthe projection of u onto v, so we 
can express d 

2 as 

(3.18) 

Simplifying the term corresponding to the projection and taking a square root gives 
us the formula 

d= u2_(u·v)
2 

v2 
(3 .19) 

Ifv is known to have unit length, then the division by v2 can be omitted because it 
is equal to one. 

If the points p and q are far apart, which doesn 't necessarily mean that q is far 
from the line, then the sizes ofllull and u· v can become very large. Squaring these 
quantities makes them even larger, and subtracting two large floating-point num­
bers, as done inside the radical in Equation (3.19), results in a loss of precision that 
can be severe. Fortunately, this problem can be mitigated to a degree by using an 
altemative method to calculate the distance. The magnitude ofu x vis equal to the 
area of the shaded parallelogram in Figure 3.6. Dividing by the magnitude of v,

which corresponds to the base ofthe parallelogram, gives us the value of d, which 



3.3 Lines and Rays 

q 

/ 

11°11 / 

d =llu_Lvll 

p V/ 
<(--- ----------------�- - --� p +tv

ll011vll 
Figure 3.6. The distance d from a point q to the line p + tv is equal to the magnitude ofthe 
rejection of u from v, where u= q- p. The shaded paraIIeiogram has an area equaf to 
llu x vil, so d is also given by this area divided by the length ofv.

corresponds to the height of the parallelogram. Thus, we can also express the dis­
tance from a point to a line as 

d=J(uxv)2 

2 ' (3.20) 

and as befo re, the division by v 2 can be avoided if we know that 11 vil = l. In the case 
that u has a large magnitude, there is still a subtraction of two large numbers hap­
pening inside the cross product, but we are not squaring them first, so they are 
much smaller in size than the numbers arising in Equation (3.19). The formula 
given by Equation (3.20) is implemented in Listing 3.2. 

Listing 3.2. This function calculates the distance between the point q and the line determined by the 
point p and the direction v. 

(const Point3D& q, const Point3D& p, const Vector3D& v) 

Vector3D a = Cross(q - p, v); 

return (sqrt(Dot(a, a) / Dot(v, v)) ); 
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3.3.3 Distance Between Two Unes 

In three-dimensional space, two lines that don't líe in the same plane are called 
skew fines. Skew lines are not parallel, and they do not intersect, but they do pos­
sess unique points at which they come closest to each other. As shown in Fig­
ure 3. 7, the shortest distan ce d between two lines is the length of the segrnent that 
is simultaneously perpendicular to both lines. Let the lines be described by the 
functions 

L1 (ti)=P1 +!¡V¡ 

L2 (t2)=P2 +!2V 2 . (3.21) 

We need to find the values of 11 and t 2 such that the difference L2 ( t 2 )- L1 
( t1 ) is

orthogonal to both v 1 and v 2• We can express this condition as the pair of dot prod­
ucts 

(P2 +!2V2 -p¡ -!1V 1 )·V ¡ =Ü 
(P2 +l2V2 -Pi -tiv 1 )·v 2 =0. 

This is a linear system that can be rewritten in matrix form as 

We solve for !1 and t2 by inverting the 2 x 2 matrix to obtain 

(3.22) 

(3.23) 

(3.24) 

When these values of !1 and !2 are plugged back into the line functions given by 
Equation (3 .21 ), they produce the points at which the lines are closest to each other. 
The shortest distance d between the two lines is equal to 

(3.25) 

which is the magnitude ofthe difference between the closest points. 
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Figure 3.7. Toe distance d between skew lines is equal to the length ofthe segment con­

necting points on the two lines that is simultaneously perpendicular to both lines. 

If the determinant (v 1 ·v2 } 2 -v1

2vJ in Equation (3.24) is zero, then the lines 
are actually parallel and not skew as presumed. In this case, we can measure the 
distance d between the two lines by simply calculating the distance between the 
point p2 and the line L1 ( t 1 ) using Equation (3 .20), which gives us 

(3.26) 

The formula used to calculate t1 and t2 in Equation (3.24) is implemented in 
Listing 3.3, which uses the parameters to calculate the distance between two lines. 
If the determinant is found to be very small, then the code assumes that the lines 
are parallel and calculates the distance between them with Equation (3 .26). 

Listing 3.3. This function calculates the distance between two lines determined by the points pl 

and p2 and the directions vl and v2. 

float DistLineLine(const Point3D& pl, const Vector3D& vl, 

const Point3D& p2, const Vector3D& v2) 

Vector3D dp = p2 - pl; 

float v12 = Dot(vl, vl); 

float v22 = Dot(v2, v2); 

float vlv2 = Dot(vl, v2); 

float det = vlv2 * vlv2 - v12 * v22; 
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if (fabs(det) > FLT_MIN) 

det = l.OF / det; 

float dpvl = Dot(dp, vl); 

float dpv2 = Dot(dp, v2); 

float tl (vlv2 * dpv2 - v22 * dpvl) * det; 

float t2 = (v12 * dpv2 - vlv2 * dpvl) * det; 

return (Magnitude(dp + v2 * t2 - vl * tl) ); 

// The lines are nearly parallel. 

Vector3D a =  Cross(dp, vl); 

return (sqrt(Dot(a, a) / v12)); 

3.4 Planes 

Chapter 3 Geometry 

Because a function of one parameter can describe the intrinsically one-dimensional 
geometry of a line, it is logical to expect that a function of two parameters can 
describe the intrinsically two-dimensional geometry of a plane. Indeed, given three 
points p,, p2, and p3 that lie in a plane and are not collinear, the function 

(3.27) 

produces ali of the points in the entire plane as the parameters s and t range over 
ali real numbers. As with lines, we can replace the differences between points with 
two direction vectors u and v, and that gives us the parametric forro of a plane 

Q(s,t)=p+su+tv. (3.28) 

However, a function ofthis type is not typically used by game engines to represent 
planes. The implicit forro described next provides a superior alternative and is the 
preferred representation in virtually ali applications. 
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3.4.1 lmplicit Planes 

Since the vectors u and v in Equation (3.28) both lie in the plane, we can calculate 
the cross product between them to obtain a normal vector n, as shown in Fig­
ure 3.8. The normal vector is perpendicular to the difference between any two 
points in the plane, so if we know a point q lying in the plane, and we know the 
plane's normal vector n, we can write the equation 

n·(p-q)=O (3.29) 

to describe the entire set of points p that lie in the plane. For any particular plane, 
the quantity -n · q is a constant value that we call d. It is the same for all points q 
lying in the plane and is thus an implicit property of the plane that allows us to 
throw away knowledge of any particular point and write 

n·p+d=O. (3.30) 

A plane is implicitly described by the four numbers nx, n y, n,, and d that con­
stitute the components of a four-dimensional row vector f = [ nx n

y 
n, d], 

which we write using the shorthand notation [ n Id]. With this, Equation (3.30) be­
comes the more compact 

f ·p=O, (3 .31) 

n 

,-.'-----� V 

u 

Figure 3.8. A plane is determined by a single point p and a normal vector n. Toe normal 

vector is perpendicular to any directions lying in the plane, such as the vectors u and v that 

could be used to describe the plane parametrically. 

113 



          114 Chapter 3 Geometry 

where we extend the point p to four dimensions by using its implicit w coordinate 
of one. All points p satisfying this equation lie in the plane f = [ n Id]. 

As with normal vectors earlier in this chapter, we defined fas a row vector. 
Since p is a column vector, the matrix product fp actually gives us the left side of 
Equation (3 .30), but the dot is still included by convention to make it clear that we 
are calculating fxPx + f

y
p

y 
+ fzPz + fw · In Section 4.2, we will replace the dot 

with a different symbol when the algebraic nature of planes is discussed more 
thoroughly. 

The definition of a simple data structure named Plane holding the four com­
ponents of a plane is shown in Listing 3 .4. lt has floating-point members named x, 
y, z, and w that can be accessed directly, and they reflect the fact that a plane can 
be treated as a generic 4D row vector. The first three components correspond to 
the normal vector n, and the w component corresponds to the value of d. The nor­
mal vector can be retrieved as a Vector3D data structure by calling the GetNor­
mal () member function. Two nonmember functions named Dot () are included, 
and they calculate the dot product between a plane and a Vector3D or Point3D 
data structure, accounting for the fact that a direction has an implicit w coordinate 
of zero, and a point has an implicit w coordinate of one. 

Listing 3.4. This is the definition of a simple data structure holding the four components of an 

implicit plane. 

struct Plane 

float x, y, z, w; 

Plane () default; 

Plane(float nx, float ny, float nz, float d) 

x = nx; 

y= ny; 

z = nz; 

w = d; 

Plane(const Vector3D& n, float d) 

x = n.x; 
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); 

Y = n.y; 

z = n.z; 

w = d; 

const Vector3D& GetNormal(void) const 

return (reinterpret_cast<const Vector3D&>(x)); 

float Dot(const Plane& f, const Vector3D& v) 

return (f.x * v.x + f.y * v.y + f.z * v.z); 

float Dot(const Plane& f, const Point3D& p) 

return (f.x * p.x + f.y * p.y + f.z * p.z + f.w); 

3.4.2 Distance Between a Point and a Plane 

Multiplying both sides of Equation (3 .31) by a nonzero scalar quantity s has no 
effect on the set of points that satisfy the equation. This implies that f = [ n Id] and 
sf = [ so I sd] both represent the same geometric plane in space, and it motivates us 
ask whether there is a value of s that gives the plane sf any appealing qualities. 
The answer is yes, and it is the value s = 1/llnll- In this case, the plane sf is said to 
be normalized because its normal vector has unit length. However, it's important 
to realize that this is not the same meaning of the word "normalized" as it would 
apply to a generic 4D vector or a quatemion because the value of d for the plane 
can still be any size. To normalize a plane, we multiply all four components by 
1/llnll, but it's only the three-component normal vector that ends up having unit 
length. 

The advantage to having a normalized plane f is that the dot product f · p is 
equal to the signed perpendicular distan ce between the plan e and the point p. When 
n has unit length, the dot product n · p is equal to the length of the projection of p 
onto n. The value of -d = n · q is equal to the length of the projection of any point 
q in the plane onto n. As illustrated in Figure 3.9, the value off· pis the difference 
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between these lengths, equal to n · p + d, corresponding to the number of times the 
normal vector can be stacked on the plane befare reaching the point p. The value 
of d is sometimes called the distance to the origin because it's what you get when 
you evaluate the dot product f · o far the origin o.

The sign of the distance given by f · p depends on which side of the plane p 
lies. If the normal vector n were to be drawn so that its arrow starts on the plane, 
then it points away from thefront side ofthe plane. This is also called the positive 

side of the plane because far any points lying on this side, f ·pis a positive value. 
Naturally, the other side of the plane is called the back side or negative side of the 
plane, and far points lying on that side, f · p is a negative value. The meaning of 
front and back can be reversed by simply negating the plane f because -f repre­
sents the same set of points, but with a reversed normal vector. 

i -d 

o• 

Figure 3.9. The signed perpendicular distance between a point p and a normalized plane 
f = [ n I d] is given by the dot product f ·p. This can be understood as the difference between 
the distance, perpendicular to the plane, from p to the origino and the distance, perpendic­
ular to the plane, from a point q in the plane to the origin. The perpendicular distances are 
calculated by projecting onto the normal vector so that the difference becomes 
n · p- n · q = n · p + d. As illustrated, the value off· p corresponds to the number ofnormal
vectors that fit between the plane and the point p, and the value of -d corresponds to the
number of normal vectors needed to reach the plane itself. 
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3.4.3 Reflection Through a Plane 

When a point p is reflected through a plane, the new point p' lies at the same 
distance from the plane but on the opposite side, and the line segment connecting 
the original point and the new point is parallel to the plane's normal vector. Let 
f = [ n Id) be a plane such that n has unit length, and let q be the point closest top

lying in the plane. As shown in Figure 3.10, the difference between p and q is 
equal to ( f · p) n because the scalar quantity f · p is the perpendicular distance be­
tween the plane f and the point p. When this vector is subtracted from p, the result 
is the point q. A second subtraction of this vector produces the reflected point p' 
that's just as far away from the plane as the original point p but on the opposite 
side. Thus, a formula for calculating p' is given by 

p' = p- 2 ( f · p) n. (3.32) 

A 4 x 4 transformation matrix corresponding to the reflection through a plane 
can be determined by regarding n as a 4D column vector with a w coordinate of 
zero (because we're using it as a direction), and rewriting Equation (3.32) as the 
matrix product 

p' = p-2nfp = (14 -2n ®f) p. (3.33) 

f = [n Id] 

p-2(f·p)n q p 
...... +----1-

(f·p)n 

Figure 3.10. A point pis reflected through a normalized plane f = [n Id] by subtracting 
the vector ( f · p) n twice. The first subtraction yields the point q closest to p in the plane.
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When we expand each entry in the matrix multiplying p, we find that the matrix 

Hreflect ( f) representing the reflection through a plane f is given by 

l- 2n; -2nxny 
-2nxnz -2nxd

Hreflect ( f) = 
-2nxny 

l-2n 2 -2n
y
nz -2n

y
d

y (3.34) 
-2nxnz -2n

y
nz l- 2n; -2nzd

o o o 1 

When d = O, the translation in the fourth column disappears, and the matrix reduces 

to the 4D equivalent of the transform given by Equation (2.24) for the reflection 
through a plane that contains the origin. A function that constructs the transfor­

mation matrix in Equation (3.34) and retums a Transform4D data structure is 
shown in Listing 3.5. 

Listing 3.5. This code creates a 4 x 4 matrix that represents a reflection through the plane f and 
returns it in a Transform4D data structure. The plane f is assumed to be normalized. 

Transfonn4D MakeReflection(const Plane& f) 

float x = f.x * -2.0F; 

float y f.y * -2.0F; 

float z = f.z * -2.0F; 

float nxny = x * f.y; 

float nxnz x * f.z; 

float nynz = y *  f.z; 

------

return (Transfonn4D(x * f.x + l.OF, nxny, nxnz, x * f.w, 

nxny, y *  f.y + l.OF, nynz, y *  f.w, 

nxnz, nynz, z * f.z + l.OF, z * f.w) ); 
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3.4.4 lntersection of a Line and a Plane 

Let f = [ n Id] be the plane shown in Figure 3.11, and !et .L (t) = p + tv be a line 
such that n · v * O, meaning that the line is not parallel to the plane. We can find 
the point q at which the line intersects the plane by solving for the value of t that 
satisfies f · .L ( t) = O. A little algebra brings us to 

f·p
t=---

f·v' 
(3.35) 

where it should be carefully noted that the numerator is calculated using a 4D dot 
product in which P

w 
is implicitly one, but the denominator is calculated using the 

equivalent of a 3D dot product because v
w 

is implicitly zero. (The Dot () functions 
in Listing 3 .4 handle these different cases automatically when the correct data 
types are used.) Plugging this value of t back into .L ( t) gives us 

1 q =

p-½v 1 (3.36) 

as the point of intersection q. Tbis formula is implemented in Listing 3 .6. 
In the case that .L ( t) is regarded as a ray, yo u could impose the condition that 

an intersection with the plane f occurs only if t 2 O. Otherwise, the intersection 
happens behind the ray's starting point. Furthermore, you may want to consider 
only intersections for which the ray starts on the front side of the plane. A quick 

f=[nld] 

L(t) = p+tv 

Figure 3.11. Toe point q at which a line L ( t) = p + t v intersects a plan e f = [ n I d] is found 
by solving for the value of t such that f · (P + tv) = O. 
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Listing 3.6. This function calculates the point q at which the line determined by p and v intersects 

the plane f and returns true if such a point exists and false if vis parallel to the plane. 

float IntersectLinePlane(const Point3D& p, const Vector3D& v, 

const Plane& f, Point3D *q} 

float fv = Dot(f, v}; 

if (fabs(fv} > FLT_MIN} 

*q = p - v * (Dot(f, p} / fv};

return (true};

return (false}; 

test off· p > O determines whether this condition is satisfied. For a ray intersection 
to occur at a positive value of t, we must also have f · v < O so that the ray is pointing 
toward the front side ofthe plane. 

3.4.5 lntersection of Three Planes 

Let [ n 1 1 d1 ], [ n2 1 d2 ], and [ n3 1 d3] be planes. As long as the normal vectors D 1 , D2, 

and n 3 are linearly independent, the planes intersect at a single point pin space, as 
illustrated in Figure 3.12. Since this point lies in all three planes, we know that 
[ n; 1 d;] · p = O for i = I, 2, 3, and this can be expressed as the linear system 

(3.37) 

in which the normal vectors compose the rows of a 3 x 3 matrix. Solving for p is a 
simple matter of multiplying both sides by the inverse of the matrix. Equation 
(1.95) gives a formula for the inverse of a 3 x 3 matrix whose columns are expressed 
as three vectors, and the same formula applies ifwe swap the meaning ofrows and 
columns. Thus, the inverse of the matrix in Equation (3.37) is 

t 

D3 X Il¡ (3.38) 
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Figure 3.12. Three planes with linearly independent normal vectors º" n2, and n 3 intersect 

at a single point p.

Multiplying by the constant vector (-d1 , -d2 , -d3 ) yields the intersection point 

d1 (03 XD2)+d2 (01 XD3)+d3 (02 XD1) 
p=-�----------�---

' [n1,D2,D3] 
' (3.39) 

where the order ofthe factors in each cross product has been reversed to cancel the 
minus signs. This formula is implemented in Listing 3.7. 

In the case that the three normal vectors D i, 0 2, and o 3 are not linearly inde­
pendent, the determinant[n 1 ,0 2 ,0 3] in Equation (3.39) is zero, and the planes do 
not intersect at a single point. As shown in Figure 3.13(a), this could mean that at 
least two of the planes are parallel to each other. There is also the possibility that 
no two planes are parallel to each other, but the intersections of each pair of planes 
occur along parallel lines, as shown in Figure 3 .13(b ). 

Listing 3.7. This function calculates the point p at which three planes fl, f2, and f3 intersect and 

returns true if such a point exists. If the normal vectors are not linearly independent, then the 

function retums false. 

bool IntersectThreePlanes(const Plane& fl, const Plane& f2, 

const Plane& f3, Point3D *p) 

const Vector3D& nl fl.GetNor:mal(); 

const Vector3D& n2 f2.GetNor:mal(); 

const Vector3D& n3 f3.GetNor:mal(); 
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Vector3D nlxn2 = Cross(nl, n2); 

float det = Dot(nlxn2, n3); 

if (fabs(det) > FLT_MIN) 

*p = (Cross(n3, n2) * fl.w + Cross(nl, n3) * f2.w

- nlxn2 * f3.w) / det;

return (true); 

return (false); 

(a) 

Chapter 3 Geometry 

Figure 3.13. When the normal vectors for three planes are not linearly independent, either 

(a) at least two ofthe planes are parallel, or (b) there is no pair ofparallel planes, but they
ali intersect at parallel lines.

3.4.6 lntersection of Two Planes 

Two nonparallel planes [ n, 1 d,] and [ n2 1 d2 ] intersect at a line that is contained in 
both planes. To express this line in the parametric form L ( t) = p + tv, we need to 
find any starting point p on the line and the direction v to which the line runs 
parallel. Fortunately, the direction vis easily calculated as 

V=D1XD2 (3.40) 

because it must be perpendicular to both normal vectors. The point p can be cal­
culated by introducing a third plane [ v I O] containing the origin o, as shown in 
Figure 3 .14, and then solving the problem of a three-plane intersection. In this case, 
Equation (3.37) becomes 
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and the solution for p is 

d1 (vxn 2 )+d2 (0 1 xv) 
p= 2 

• 

V 

(3.41) 

(3.42) 

This formula is implemented in Listing 3.8, which retums both the point p and the 
direction v.

p+tv 

Figure 3.14. Two planes with nonparallel normal vectors n 1 and n 2 intersect at a line p + tv 

for which v = n 1 x n 2• The point p is found by calculating the point where the two planes 
intersect the third plane [ v I O]. 

Listing 3.8. This function calculates the line determined by the point p and direction v at which two 
planes fl and f2 intersect and returns true if it exists. If the normal vectors are parallel, then the 
function returns false. 

bool IntersectTwoPlanes(const Plane& fl, const Plane& f2, 

Point3D *p, Vector3D *v} 

const Vector3D& nl 

const Vector3D& n2 

fl.GetNorinal(); 

f2.GetNorrnal(); 

*v = Cross(nl, n2);

float det = Dot(*v, *v}; 
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if (fabs(det) > FLT_MIN) 

*p = (Cross(*v, n2) * fl.w + Cross(nl, *v) * f2.w) / det;

return (true);

return (false); 

3.4.7 Transforming Planes 

Let f A = [D A [ d A ] be a plane that contains the point q A in coordinate system A,

and let H be a 4 x 4 matrix having the form 

(3.43) 

where M is a 3 x 3 matrix and t is a 3D translation, that performs an affine trans­
formation from coordinate system A to coordinate system B. Our goal is to find the 
correct method for transforming fA into f8 using the matrix H. We know that the 
normal vector must transform as D 8 =D A adj (M) according to Equation (3.14), so 
the only question is what to do with d A to transform it into d 8

. 

Because the original plan e contains q A, we know that d A = -D A · q 
A. F or the 

transformed plane, we must have d 8 
=-D

8 
·q

8
. We can transform each part of 

this product independently to get 

d 8 =-D A adj(M)Hq A 

=-D A adj(M)(Mq A +t) 

=-D A det(M)q A - D A adj(M)t 
=det(M)(d A - D AM-1t). (3.44) 

Except for the extra factor of det (M), this is exactly the value produced by multi­
plying the plane fA by the fourth column ofH-1

, which is given by Equation (2.42). 
Using the fact that det (H) = det (M) due to the specific form of H, we come to 
the conclusion that aplane is transformed as 

f 8 =f A det(H)H-1 =f A adj(H), (3.45) 
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and this is the four-dimensional analog of Equations (3.13) and (3.14). As with 
normal vectors, the determinant is usually ignored because planes are typically 
normalized so that(fx , f

y
, fz ) is a unit vector. Normal vectors in three dimensions 

and planes in four dimensions both transform in the above manner because they 
are each examples of a mathematical element called an antivector, which is a cen­
tral topic in Chapter 4. 

Code that implements a plane transformation by calculating the product of a 
Plane data structure and a Transfonn4D data structure is provided in List­
ing 3.9. As with the transformation of a normal vector in Listing 3.1, the input 
matrix would need to be inverted before being passed to this function in order to 
calculate the correct transformation. Unlike the case of normal vectors, we cannot 
avoid the inversion if M is an orthogonal matrix because the translation t plays a 
part in the transformation of the plane. 

Listing 3.9. This multiplication operator multiplies a Plane data structure, which corresponds to a 
4D row vector, on the right by a Transforrn4D data structure to transforrn a plane from coordinate 
system B to coordinate system A. Note that this transforms a plane in the opposite sense in relation 
to how the same matrix would transform a point from coordinate system A to coordinate system B.

Plane operator *(const Plane& f, const Transform.4D& H) 

return (Plane(f.x * H(O,O) + f.y * H(l, O) + f. z * H (2, O), 

f.x * H (O, 1) + f.y * H(l, 1) + f. z * H(2, 1),

f.x * H(0,2) + f.y * H(l,2) + f. z * H(2, 2),

f.x * H(0,3) + f.y * H(l,3) + f. z * H(2,3) + f .w));

3.5 Plücker Coordinates 

Earlier in this chapter, we discussed lines in a parametric form that required 
knowledge of a particular point on any given line. We were able to do away with 
a similar requirement for planes by finding a property that implicitly applied to all 
points in a given plane, and it turns out that we can do the same for lines. An 
implicit form for lines in three dimensions was discovered by Julius Plücker 
(1801-1868), and the components that make up these lines are hence called 
Plücker coordinates. Our discussion of Plücker coordinates in this section is some­
what abbreviated because the topic is wholly subsumed by the algebraic system 
presented in Chapter 4, where formulas that may presently appear to have been 
plucked out of thin air will be shown to arise naturally. 
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3.5.1 lmplicit Unes 

The Plücker coordinates for a line are composed of six components that can be 
grouped as two 3D vectors. Given a line that passes through the distinct points p1 
and p2, one of those 3D vectors is the difference v = p2 -p1, which is simply the
direction parallel to the line. Once v has been calculated, it no longer contains any 
information about specific points on the line. The difference between any two 
points on the line separated by the same distance produces the same value of v.

The second 3D vector is the cross product m = p1 x p2, and we use the letter m
because this is called the moment of the line. Although it may not be immediately 
obvious, the moment of a line is also the same value for any pair of points on the 
line separated by the same distance. To demonstrate this, suppose that the points 
q I and q 2 also lie on the line and satisfy q 2 -q 1 = p2 - p1, as shown in Figure 3 .15.
Let r = q1 -p1, and then we can write

q ¡ xq2 =(p1 +r)x(p2 +r)

= P1 x P2 + r x ( P2 -P1 ) + r x r 

= Pi XP2• (3.46) 

The cross product r x (p2 -p1) is zero because r is parallel to the line direction
p2 -p1• The moment m is thus an implicit property of the line that does not depend
on the particular points that were used to calculate it. 

Figure 3.15. Toe moment m of a line, which points out of the page in this figure, is equal 
to p1 x p

2 for any two points p1 and p2 on the Iine. If another pair ofpoints q1 and q2 on the
line are separated by the same distance (in the same direction), then their cross product has 
the same value m. The areas ofthe blue triangles are equal to each other because they are 
each half ofthe magnitude ofthe moment m. 
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The direction v and moment m, calculated with the same pair of points p1 and 
p2, constitute the six Plücker coordinates for a line, and we write this using the 
notation { v I m}. A line specified with Plücker coordinates is homogeneous, mean­
ing that any nonzero scalar multiple of the components, applied to both v and m,

represents the same line. Multiplying by a scalar is equivalent to moving the points 
p1 and p2 on the line closer together or farther apart. A line is considered normal­
ized when its direction v has unit length, accomplished by dividing ali six compo­
nents of the line by llvll -

The moment vector m of a line is always perpendicular to its direction vector 
v, and it's trivial to verify that v · m = O. As illustrated in Figure 3.16, the direction 
in which the moment vector points is determined by the right-hand rule. When the 
fingers of the right hand point in the direction vector v, and the palm faces the 
origin, the right thumb points in the direction of the moment vector m. For a nor­
malized line, the magnitude of m is equal to the distance between the origin and 
the closest point on the line. This means that for any line { v I m}, normalized or 
not, the perpendicular distance to the origin is llmll/llvll-

The definition of a simple data structure named Line holding the six compo­
nents of a line using Plücker coordinates is shown in Listing 3.10. The direction 
vector and moment vector are stored as Vector3D structure members that can be 
accessed directly. We do not provide any overloaded operators for performing 
operations with the Line data structure here because they wouldn 't really make 

m 

V 

V 

Figure 3.16. Toe moment vector mofa line { v I m} is perpendicular to the direction vector 
v, and the direction in which it points is determined by the right-hand rule. When the fingers 
of the right hand point in the direction vector v, and the palm faces the origin, the right 
thumb points in the direction ofthe moment vector m. The perpendicular distance between 
the origino and the line is equal to llmll/llvll-
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sense for something that we're basically interpreting as a pair of vectors at this 
point. In Section 4.2, this will change, and we will be able to define a mathemati­
cally coherent set of operations among lines, points, and planes that does not re­
quire lines to be separated into these parts. 

Listing 3.10. This is the definition of a simple data structure holding the six components of an 
implicit line using Plücker coordinates. 

struct Line 

Vector3D direction; 

Vector3D rnornent; 

Line() = default; 

·--------

Line(float vx, float vy, float vz, float rnx, float rny, float rnz) 

direction(vx, vy, vz), rnornent(rnx, rny, rnz) 

Line(const Vector3D& v, const Vector3D& rn) 

direction = v; 

rnornent = rn; 

3.5.2 Homogeneous Formulas 

Table 3 .1 contains man y formulas that can be u sed to calculate interesting quanti­
ties involving points, lines, and planes. In addition to the notation { v I m} for a line, 
we continue using the notation [ n Id] for a plane, and we introduce the similar 
notation (p I w) for a 4D vector composed of a 3D vector pand a scalar w. It's 
important to realize that all three of these representations of geometric entities are 
homogeneous. Multiplying any of them by a nonzero scalar, and in particular ne­
gating any of them, has no effect on their geometric meaning. As they appear in 
the table, the signs of the formulas have been chosen to be consistent whenever 
there is a relationship among multiple formulas. For example, the planes given by 
rows M and N are oriented so that the origin is on the positive side. 
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Formula Description 

A {vJpxv} Line through point p with direction v. 

B { P2 - P1 1 P1 X P2 } Line through two points p1 and p2. 

e {PI O} Line through point p and origin. 

D {w1P2-W2P1 1 P1 xpz } Line through two homogeneous points (p 1 1 W1 ) and (Pz I wz ). 

E {n1XD21 d1D2 -d2ni} Line where two planes [ n 1 1 d1 ] and [ n 2 1 d 2 ] intersect. 

F (mxn+dvl-n·v) Homogeneous point where line { v I m} intersects plane [ n I d]. 

G (vxmlv 2 ) Homogeneous point closest to origin on line { v I m}. 

H (-dn I n 2 ) Homogeneous point closest to origin on plane [n Id]. 

I [vxu 1-u·m] Plane containing line { v I m} and parallel to direction u. 

J [vxp+m 1-p·m] Plane containing line { v I m} and point p.

K [m I O] Plane containing line { v I m} and origin. 

L [ v x p + wm 1 -p · m] Plane containing line { v I m} and homogeneous point (p I w ). 

M [ mxvlm 2 ] Plane farthest from origin containing line { v I m}. 

N [-wp¡p z ] Plane farthest from origin containing point (p I w ). 

o 
lv 1 ·m2 +v2 ·mil

Distance between two lines { v 1 1 m 1 } and { v 2 1 m 2 } .
JJv1 xv2 IJ 

p 
IJvxp+mJI Distance from line { v I m} to point p.

llvlJ 

Q � Distance from line { v I m} to origin. IJvlJ 

R ln·p+dJ Distance from plane [ n I d] to point p.
JJnJJ 

s 
M Distance from plane [ n I d] to origin. JJnJJ 

Table 3.1. This table contains various formulas involving homogeneous points, planes, and lines 
described by Plücker coordinates. Toe notation (p I w) represents a homogeneous point with 
p = ( x, y, z ), the notation [ n I d] represents a plane with normal direction n and distance to origin d, 
and the notation { v I m} represents a line with direction v and moment m. Rows with matching 
background colors contain formulas that are dual to each other. 
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Several of the formulas in Table 3 .1 state instan ces in which specific val u es 
are plugged into more general expressions in order to explicitly highlight sorne 
common cases. Rows A and B give special formulas for a line when w = O and 
w = 1 are plugged into the general formula given by row D, and row C states the 
precise case in which (p 2 1 w2) = (O 11). Likewise, rows I, J, and K contain special 
cases of the general formula given by row L. In the distance formulas at the bottom 
of the table, rows Q and S are special cases of rows P and R when the point p is 
taken to be the origin. 

There are eight rows in Table 3.1 containing four pairs of formulas, indicated 
by a matching background colors, that are related through a concept known as du­

ality. Two lines { v 1 1 m 1} and { v 2 1 m 2} are said to be dual to each other when their 
direction vectors and moment vectors are swapped so that v 2 = m I and m 2 = v 1• A 
point (p I w) and a plane [ n Id] are dual to each other when the four components 
belonging to one are simply reinterpreted as the four components of the other so 
that p = n and w =d. These relationships are exemplified by rows D and E, where 
the line in row D passes through two points, but when we swap its direction and 
moment, the line in row E represents the intersection between two planes having 
the same components as the two points. Another example of duality is demon­
strated by the formulas in rows F and L, which both involve a line { v I m}. The 
formula in row F gives the point at which the line intersects a plane [ n Id], and the 
formula in row L gives the dual plane containing the line and a point having the 
same components as the plane in row F. The two formulas are exactly the same 
after swapping the meanings of v and m for the line. 

The geometric symmetry of the duality between points and planes is perhaps 
best exhibited by the pair of rows G and M and the pair ofrows H and N. The first 
pair shows the relationship between the point closest to the origin on a line { v I m} 
and the plane farthest from the origin containing the same line. The formulas are 
the same except for the fact that v and m are swapped. The second pair shows that 
the point closest to the origin on a plane is related to the plane farthest from the 
origin containing a point through the simple reinterpretation of the four compo­
nents making up each element. 

Keep in mind that geometric entities calculated with the formulas in Table 3.1 
are not generally normalized, and we extend this term to include homogeneous 
points, which would usually end up not having a w coordinate of one. To put each 
type of element into normalized form, which may simplify later calculations, a 
point (p I w) needs to be divided by its w coordinate, a plane [ n Id] needs to be 
divided by llnll, and a line { v I m} needs to be divided by llvll-

In the case of a degeneracy, each formula in Table 3.1 produces a geometric 
element whose components are all zeros. The simplest example is attempting to 
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construct a line from two points that are exactly the same, in which case the for­
mula in row B produces { O I O}. In the more complex case arising in row J, if the 
point p líes on the line { v I m}, then there is not enough information to construct a 
plane, and the result is [ O I O]. Similarly, the formula in row F produces the point 
( O I O) if the line { v I m} is parallel to the plan e [ n I d] because there can be no 
unique point of intersection. 

131 

The distan ce between two lines { v 1 1 m 1 } and { v 2 1 m 2 } , stated in row O of 
the table, can be derived by considering the distance between parallel planes 
constructed to contain each line and the direction v of the other line, as shown -
in Figure 3.17. Using row I in Table 3.1, these two planes are given by 
[ v 1 x v 21-v 2 · m1] and [ v 1 x v 2 1 v 1 • m2 ], where the second plane has been negated 
so that the normal vectors point in the same direction. These planes are both nor­
malized by dividing by 11 v 1 x v 211, after which their w coordinates correspond to the 
perpendicular distances between the planes and the origin. Subtracting these gives 
us 

d=lv1·m2 +V2·md
llv1 xv2II 

(3.47) 

as the distance dbetween the planes, which is also the distance between the original 
lines. If this distance is zero, then the lines are coplanar and intersect at point. 

Figure 3.17. Toe distance d between two lines { v 1 1 m 1} and { v 2 1 m 2} can be calculated 
by considering the parallel planes containing each line and the direction of the other. 
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3.5.3 Transforming Unes 

Because Plücker coordinates contain both a difference of two points and the cross
product between two points, the transforrnation of a line from one coordinate sys­
tem to another can be somewhat tricky. As in the discussion of planes in the pre­
vious section, Jet H be a 4 x 4 matrix representing an affine transforrnation from
coordinate system A to coordinate system B consisting of a 3 x 3 matrix M and a
3D translation vector t, and suppose that { vA I m 

A } is a line in coordinate systel}L
A with v A = p2 -p1 and m A = p1 x p2• Clearly, the transforrned direction vector is
simply given by v 8 = Mv

A
, but the transforrned moment vector requires a closer

look. Applying the matrix H to each of the points p1 and p2, the transforrned points
are equal to Mp1 + t and Mp2 + t. The moment of the transforrned line must be the
cross product between these, so we have

m
8 =(Mp1 +t)x(MP2 +t)

= (MP1 )x (MP2 )+ tx (MP2 )-tx (MP1 ). (3.48) 

The cross product (Mp1) x (Mp2) transforrns under a 3 x 3 matrix M according to 
Equation (3.14), and the cross products involving the translation t can be combined 
into one cross product that operates on vA. This lets us write 

(3.49) 

where we are treating m A and m 
8 as row vectors. The complete affine transfor­

mation of a line from coordinate system A to coordinate system B is thus given by 

(3.50) 

This formula is implemented in its strict forrn in Listing 3 .11. As usual, the calcu­
lation of the adjugate of M can be avoided if we know that M is orthogonal, in 
which case we can treat m A and m 

8 as column vectors and replace m A adj (M)
withMm A. 
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Listing 3.11. This function transforms a Line data structure with a Transform4D data structure. 

The first line calculates the transpose of the adjugate of the upper-left 3 x 3 portion of H because 

Matrix3D structures are stored in column-major order. Later, this matrix is multiplied on the right 

by the moment ofthe line as a column vector, which is equivalent to multiplying the nontransposed 

matrix on the left by a row vector as done in Equation (3.50). 

Line Transform(const Line& line, const Transform4D& H1 

Matrix3D adj (Cross(H[l), H[2)), Cross(H(2], H[OJ), Cross(H[OJ, H[l))); 

const Point3D& t = H.GetTranslation(); 

Vector3D v = H * line.direction; 

Vector3D m = adj * line.moment + Cross(t, v); 

return (Line(v, m)); 
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Exercises for Chapter 3 

l. In a closed triangle mesh having at least four vertices, what is the minimum
number of triangles that must make use of any particular vertex, assuming that
there are no degenerate cases in which a triangle has zero area?

_,/ 

2. Let L ( t) = p + tv be a line, and Jet q be an arbitrary point. Find a formula that
gives the point on the line L that is closest to q. 

3. Let L, ( t,) = p, + t, v I and L2 ( t 2) = p2 + t 2 v 2 be nonparallel lines, and define
the function / ( t, , t 2 ) = [ L2 ( t 2 ) - L, ( t, ) ] 2 to be the squared distan ce between
a point on L, and a point on L2• Use the partial derivatives a¡ /8t, and 8/ /812 

to find the values of t, and t 2 at which/ reaches a minimum, and show that they
are equivalent to the values calculated in Equation (3.24).

4. Show that the point p calculated with Equation (3.42) is the point closest to
the origin on the line where two planes intersect.

5. Find formulas for the new components n' and d' of a plane [ n Id] after it has
been translated by a vector t.

6. Find formulas for the new components v' and m' of a line { v I m} after it has
been translated by a vector t.

7. Show that ( v x m I v2 ) is the homogeneous point on the line { v I m} closest to
the origin by constructing a plane with normal vector v that contains the origin
and intersecting it with { v I m}.

8. Find a formula for the plane [ n Id] containing two nonparallel lines { v, 1 m,}
and { v 2 1 m 2 } that intersect.

9. Find a formula for the plane [ n Id] containing two distinct parallel lines
{ v I m 1 } and { v I m 2 } having the same direction but different moments.

1 O. Let { v I m 1 } and { v I m 2 } be para) le) lines having the same direction but differ­
ent moments. Find a formula for the distance d between these two lines by 
considering the triangle formed by the origin and the closest point to the origin 
on each line. 
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11. Let a and b be distinct points on a stationary line, and !et p ( t) and q ( t) be
functions that give points on a moving Iine as a function oftime t, defined by

p(t) = Po +tvP 

q(t)=q0 +lvq
, 

where v 
P 

and v q are constant velocities. Find a quadratic equation in t whose 
solutions are the times at which the two lines intersect. 

12. Let { v 1 1 m 1 } and { v 2 1 m 2} be nonparallel Iines, and define u = v I x v 2. Find a
formula for the homogeneous point on line 1 that is closest to line 2 by first
constructing a plane fthat contains Iine 2 and is parallel to the direction u and
then finding the intersection between f and Iine 1.
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Chapter4 

Advanced Algebra 

The previous chapters discussed vectors, points, lines, planes, matrices, and trans­

forms using the conventional mathematics that are most widely known throughout 

the field of game engine development. In severa) places, we gave an indication that 

something was a little off. The conventional mathematics didn 't tell the whole 

story, or it caused us to misinterpret subtle concepts that could provide a more 

intuitive understanding if they were explained in the right way. It is now time to 

remedy this situation by presenting a different kind of mathematics that is actually 

somewhat older but was lost to obscurity for much of its existence. This will likely 

require a few mental adjustments on the part of the reader, but the reward will be 

an understanding of a much more natural and elegant mathematical structure that 

can be used to engineer your virtual simulations. 

Most of this chapter focuses on the discoveries ofHermann Grassmann (1809-

1877), which occurred contemporaneously with Hamilton's discovery of the qua­

temions and slightly earlier than the independent development of Plücker coordi­

nates. Grassmann called his mathematical breakthrough the theory of extension, 

but it is now referred to as Grassmann algebra in his honor or as the more generic 

term exterior algebra. The remainder of this chapter will briefly introduce ge o me t­

rie algebra, which is related to Grassmann algebra by the fact that they are both 

specific instances ofthe general concept of a Clif.ford algebra. Grassmann algebra 

and geometric algebra are vast topics that we cannot cover with any kind of com­

pleteness. Our goal is to present the basics and concentrate on providing a better 

understanding of the mathematics presented throughout the earlier chapters in this 

book. During this process, we will limit ourselves to Euclidean space in order to 

avoid mathematical generalizations that would only clutter our presentation with­

out adding any significant practica! value in the context of game engines. 
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4.1 Grassmann Algebra 

In Grassmann algebra, the types of mathematical elements that arise and the oper­
ations that can be performed on them exhibit a precise symmetry. Every type of 
element is associated with another type of element that is naturally opposite. Di­
rections, areas, and volumes are built up and tom down by two opposing funda­
mental operations. A proper understanding of Grassmann algebra requires that we 
give equal importance to both sides of each symmetry, and this is emphasized 
throughout this section as we introduce the wedge product and antiwedge product. 
In the next section, we will apply Grassmann algebra to four-dimensional homo­
geneous coordinates, where these products make it particularly easy to express 
certain geometric calculations. 

4.1.1 Wedge Product 

At the heart of Grassmann algebra is an operation called the wedge product, which 
Iike the dot product and cross product, gets its name from the symbol A that we 
use to denote it, an upward-pointing wedge. The wedge product is also known as 
the exterior product, or as Grassmann originally called it, the progressive product. 

An n-dimensional Grassmann algebra is constructed by starting with ordinary sca­
lars and n-dimensional vectors and then defining how they are multiplied together 
using the wedge product. The wedge product provides a natural way to multiply 
vectors and other mathematical entities together in a geometrically meaningful 
way, and it will lead us to a deeper understanding the homogeneous representations 
of points, lines, and planes in 3D space. 

For any product involving a scalar, either scalar times scalar or scalar times 
vector, the wedge product is no different from the scalar multiplication that we are 
familiar with from conventional mathematics. Beyond that, however, things get a 
little different, but the entire algebra is derived from one simple rule: any vector 
multiplied by itself using the wedge product is zero. That is, for any vector a, we 
always have 

a Aa =0. ( 4.1) 

This rule has an important consequence that reveals itself when we consider the 
sum of two vectors a and b. The wedge product of a + b with itself gives us 

( a + b) A (a+ b) = a A a+ a A b + b A a+ b A b = O. (4.2) 
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Property Description 

a/\ b = -b/\a Anticommutativity of the wedge product. 

(a/\ b) /\C = a /\(b /\e) Associative law for the wedge product. 

a/\(b+c) =a/\b+a/\c 
Distributive laws for the wedge product. 

(a+ b )/\e= a /\C+ b /\C 

(ta)/\ b =a/\ ( tb) = t (a/\ b) Scalar factorization for the wedge product. 

s /\ t = t /\ s = st W edge product between scalars. 

s /\ a = a /\ s = sa Wedge product between a scalar and a vector. 

Table 4.1. These are the basic properties of the wedge product. Toe letters a, b, and e 
represent vectors, and the letters s and t represent scalar values. 

The products a /\ a and b /\ b must both be zero, and that leaves us with 

a /\ b + b /\ a = O, 

from which we conclude that 

a /\ b = -b /\ a.

(4.3) 

(4.4) 

This establishes the property that multiplication of vectors with the wedge product 
is anticommutative. Reversing the arder ofthe two factors negates the product. We 
should stress that we have only shown this to be true for vectors at this point, and 
it <loes not hold in general. In particular, the wedge product between scalars, being 
ordinary multiplication, is commutative. These facts and a few additional proper­
ties of the wedge product, when used to multiply scalars and vectors, are summa­
rized in Table 4.1. 

4.1.2 Bivectors 

The wedge product a /\ b between two vectors a and b cannot be expressed in terms 
of scalars and vectors. It forms a new type of mathematical element called a bivec­

tor, and this being something outside the space of scalars and vectors is the reason 
why the wedge product is also called the exterior product. Whereas a vector can 
be thought of as a combination of a direction and a magnitude, a bivector can be 
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thought of as a combination of an oriented area and a magnitude. A bivector a A b 

can be visualized as a parallelogram whose sides are parallel to the vectors a and 
b, as shown in Figure 4.1. The parallelogram has an intrinsic winding direction 
that reflects the order of the vectors a and b in the wedge product, and this direction 
can be determined by following the perimeter of the parallelogram first along the 
direction of a and then along the direction of b. If the order of the vectors is re­
versed, negating the result, then the winding direction is also reversed, exchanging 
clockwise and counterclockwise directions around the perimeter. 

In order to give sorne quantitative substance to a bivector, we can examine the 
effect the wedge product has on vectors that have been decomposed into compo­
nents over an orthonormal basis. We'II be working in three dimensions for now, 
but keep in mind that a similar analysis is valid in any number of dimensions. Let 
e,, e2, and e3 represent three mutually orthogonal unit vectors in three-dimensional 
space. These generic labels are intended to avoid being tied to any particular coor­
dinate system, but we will equate them to a typical right-handed configuration of 
the x, y, and z axes. We can write an arbitrary vector a = (ax , a Y, a,) in terms of 
the three basis vectors as 

Doing this for two vectors a and b allows us to write the bivector a A b as 

aAb=(axe l +a
y
e2 +a,e3)A(bxe 1 +b

y
e2 +b,e3) 

=axby 
(e, Ae2)+axb, (e, /\e3)+a

y
bx (e2 Ae1) 

(4.5) 

+a
y
b, (e2 Ae3)+a,bx (e3 Ae, )+a,by 

(e3 Ae2), (4.6) 

a 
b b 

Figure 4.1. The bivector a A b can be visualized as a parallelogram whose sides are parallel 

to the vectors a and b. The intrinsic winding direction follows the perimeter along the füst 

vector in the wedge product and then along the second vector. Reversing the order of the 

vectors in the product also reverses the winding direction. 
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where each term containing the wedge product of a basis vector with itself has 

been dropped because it is zero. Every term in this expression contains a wedge 

product whose factors appear in the reverse order ofthe wedge product in another 

term, so we can negate one half of the terms and collect over common bivectors to 

arrive at 

a/\b=(a
y
bz -azby

)(e2 !\e3 )+(azbx -axbz )(e3 /\e,) 

+(axb
y 

-a
y
bx )(e, /\e2). (4.7) 

Here, we have arranged terms in the order by which a basis vector does not appear 

in the wedge product, so the term missing e, comes first, the term missing e2 comes 

second, and the term missing e3 comes third. This expression can be simplified no 

further, and it demonstrates that an arbitrary bivector in 3D space has three com­

ponents over a bivector basis consisting of e2 /\ e3, e3 /\ ei, ande,/\ e2. 
The three coefficients in Equation (4.7) should have a familiar ring to them. 

They are exactly the same values that are calculated by the cross product, which is 

something we defined in Section 1.5 with no explanation of its source. Now, these 

numbers appear as a result that was derived from a fundamental property of the 

wedge product. The fact that bivectors have three components is unique to three 

dimensions, and this similarity makes a bivector look like an ordinary vector, but 

it is indeed something different, and failing to make a distinction leads to an in­

complete and inelegant picture of the mathematics. An important thing to under­

stand is that the wedge product is defined in a manner similar to Equation ( 4. 7) in 

any number of dimensions, while the cross product is confined to only three di­

mensions, limiting its usefulness. 

Once the three coefficients in Equation (4.7) have been calculated, the result­

ing bivector no longer contains any information about the two vectors multiplied 

together to create it. The only information carried by a bivector is its orientation in 

space and its area. Even though we have drawn a bivector as a parallelogram in 

Figure 4.1, it doesn 't actually possess any particular shape. In fact, there are 

infinitely many pairs of vectors that could be multiplied together to produce any 

given bivector, and they could all be drawn as different parallelograms that have 

the same area and lie in the same plane but don't have the same angles. There is 

no specific parallelogram whose shape is a fixed property ofthe bivector. 
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4.1.3 Trivectors 

We now have an algebraic system that includes scalars, vectors, and bivectors, but 
this is not the end of the road, at least not in three dimensions. Let's consider the 
wedge product among three vectors a, b, and e given by 

3/\ b/\C=(axel +aye2 +a,e3)A(bxe1 +bye2 +b,e3)

/\ ( e xe 1 + e ye 2 + e ,e 3). (4.8) 

When multiplying all of this out, remember that any term containing a repeated 
factor is zero, and the only parts that remain are the terms containing all three of 
e 1, e2, and e3 in the six possible orders in which they can be multiplied. Fully writ­
ten out, these six terms are 

3/\b/\C = axbyC, (e1 Ae2 Ae3) 

+ ayb,Cx (e2 Ae3 Ae1)

+ a,bxCy (e3 Ae1 Ae2)

+ Q zb yC x ( e 3 /\ e 2 /\ e ¡ )

+ a ybxC z ( e2 /\ e1 /\ e3)

+ axb,Cy (e1 Ae3 /\e2). (4.9) 

We can swap the order of adjacent factors one or more times in each of the triple 
wedge products to make all of them equal to e 1 A e2 /\ e3 as long as we negate the 
scalar coefficient each time we do it. For example, e 1 Ae3 Ae 2 =-(e 1 Ae2 Ae3 ) 
because it requires a single swap of the last two factors, and e3 /\ e 1 /\ e2 =
+ ( e 1 /\ e2 A e3) because it requires two swaps. After adjusting ali of the terms, we
can write the complete product as

aAb/\C= 

(axbyc, +aybzCx +a,bxCy -axb,cy -aybxc, -a,byCx )(e 1 Ae 2 Ae3 ). (4.10) 

This is yet another new mathematical element called a trivector, which is distinct 
from a scalar, vector, and bivector. Notice that in three dimensions, the trivector 
has only one component, and it is associated with the basis trivector e1 A e 2 A e3• 
A trivector combines an oriented volume and a magnitude, but the only choice we 
have about the orientation is whether the volume is positive or negative. 

You may recognize the scalar coefficient in Equation ( 4.1 O) as the determinant 
of a 3 x 3 matrix whose columns or rows are the vectors a, b, and e, or you may 
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recognize it as the scalar triple product [ a, b, e] = (ax b) · e, which has the same 
value. Just as the wedge product a/\ b of two vectors has a magnitude equal to the 
area of the parallelogram spanned by a and b, the wedge product a/\ b /\ e of three 
vectors has a magnitude equal to the volume of the parallelepiped spanned by a, 
b, and c. In contrast to the scalar triple product, however, the triple wedge product 
possesses a pleasing symmetry among its factors. In higher dimensions, this can 
be continued to hypervolumes with greater numbers of sides by simply adding 
more vectors to the product. The wedge product builds higher-dimensional geom­
etry by combining the dimensionalities ofthe elements on which it operates. 

When three vectors a, b, ande are multiplied together with the wedge product, 
the absolute value of the coefficient in Equation ( 4.1 O) is always the same, but its 
sign depends on the order in which the vectors are multiplied. If an odd number of 
swaps are made to change the order from a /\ b /\ e, then the result is negated, but 
if an even number of swaps are made, then nothing happens. The six possible or­
derings are illustrated in Figure 4.2. The three products in the top row have one 
sign, whichever is given by Equation ( 4.1 O) for any given inputs, and the three 
products in the bottom row have the opposite sign. In this figure, the vectors have 
a right-handed configuration so that the volumes in the top row are positive and 
the volumes in the bottom row are negative, but reversing any one of the vectors 
so that it points in the opposite direction would cause these signs to be flipped. In 
general, when the third vector in the product follows the right-hand rule, meaning 
that the right thumb points in the direction of the third vector when the fingers of 
the right hand curl in the winding direction of the first two vectors, the volume is 
positive, and otherwise, the volume is negative. The universe doesn't actually have 
a preference for the right-hand rule over a similar left-hand rule, however, and the 
sign of our calculation depends on the fact that we are choosing e 1 /\ e2 /\ e3 as our 
trivector basis element (as opposed to sorne other ordering of those vectors) and 
that e 1, e2, and e3 form the axes of a right-handed coordinate system. 

4. 1 .4 Algebraic Structure

In three dimensions, trivectors are the limit for new mathematical entities. We can­
not multiply by a fourth vector to create a quadrivector because the product 
a /\ b /\ e/\ d for any vectors a, b, e, and d must be zero. When we expand the 
product, we find that every term contains a repeated factor due to the fact that it' s 
impossible to have four linearly independent vectors in three-dimensional space. 
This means that the complete Grassmann algebra in three dimensions consists of 
elements that are scalars, vectors having three components, bivectors having three 
components, and trivectors having one component. 

143 



                      144 Chapter 4 Advanced Algebra 

e 

e 

bAC/\a CAaAb 

e 
e 

bAaAC aACAb 

Figure 4.2. These are the six ways in which three vectors can be multiplied together with 

the wedge product to construct a trivector. The three trivectors in the top row are equal to 

each other, and the three trivectors in the bottom row are negated relative to the top row. 

In the top row, the third vector in the product satisfies the right-hand rule by pointing out 
of an area that is wound counterclockwise due to the order of the first two vectors in the 

product. Toe trivectors in the bottom row have the opposite sign because their third vectors 

point out of areas that are instead wound clockwise. 

There is a combinatorial reason why it works out this way, and it has to do 
with how basis vectors from the set S = { e 1 ,e 2 ,e3} are used by each type of ele­
ment. Components of a vector each use one member of the set S, and there are 
three ways to choose one member, so vectors have three components. Components 
of a bivector each use two members of the set S, and there are three ways to choose 
two members, so bivectors also have three components. Finally, the component of 
a trivector uses ali three members of the set S, and because there is only one way 
to choose ali three, trivectors have only one component. Along the same line of 
reasoning, we can say that scalars use no members of the set S, and there is only 
one way to choose nothing, so scalars have one component. 

To generalize, we introduce the term k-vector to mean the type of element 
whose components ali correspond to sorne possible combination of k basis vectors. 
The number k is called the grade ofthe element. An ordinary vector is a 1-vector, 
a bivector is a 2-vector, a trivector is a 3-vector, and so on. Scalars have a grade of 
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zero. Whenever a k-vector can be expressed as the wedge product of k different 
1-vectors, we call it a k-blade. That is, a k-blade is an element A that can be written
as the product 

Á = V¡ /\ V 2 /\ • • • /\ V k, (4.11) 

where each v; is an ordinary vector. The term blade without the number k in front 
of it means an element that's equal to the wedge product of sorne arbitrary number 
of 1-vectors. (The term simple k-vector is also used to mean the same thing as a 
k-blade in sorne texts.) As a notational convention, we use uppercase bold letters 
in this book to represent k-vectors whenever k � 2 to make it easier to distinguish 
them from 1-vectors, which are still represented by lowercase bold letters. We also 
use uppercase letters to represent blades of unspecified grade, even if they could 
be 1-blades or 0-blades. 

In three dimensions or fewer, every k-vector is also a k-blade, but this is not 
true in higher dimensions. The simplest counterexample in four dimensions is the 
bivector 

(4.12) 

which cannot be written as B = v 1 A v 2 for any vectors v 1 and v 2, and thus B is a 
2-vector, but it is not a 2-blade (or equivalently, it is not a simple bivector). Ele­
ments that are not blades will have no utility in the remainder of this chapter, so it
can always be assumed that every element under discussion after this point is a 
blade and can thus be expressed as the wedge product of sorne number of vectors. 

We define the grade function gr (A) as the function that returns the grade of 
the blade A. This function lets us write things like 

1 gr(AAB)=gr(A)+gr(B), 1 (4.13) 

which states that the grade of the wedge product between two blades A and B is 
the sum of the grades of A and B. In arder to handle the special case in which 
gr (A) > O and gr ( B) > O, but A A B = O, we must either lea ve gr (O) undefined or 
wave our hands and say that zero is allowed to assume any grade. It doesn't really 
matter, though, because we'll never use the grade function as a computational de­
vice, but only as a symbolic operation on nonzero inputs. 

We mentioned earlier that anticommutativity applied to vectors under the 
wedge product, but not generally to other kinds of elements in the algebra. U sing 
the grade function, we can succinctly express the condition under which two blades 
A and B commute as 
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Á/\B={-l)gr(A)gr(B) B/\A. (4.14) 

This meaos that if either gr (A) or gr ( B) is even, then A and B commute under 
the wedge product. Otherwise, when both grades are odd, they anticommute. The 
case in which A and B commute can be understood by considering the factor with 
an even grade as th . wedge product of an even number of basis vectors. The other 
factor can be moved from one side of the product to the other by making an even 
number of transpositions and multiplying by-1 for each one, resulting in no overall 
change in sigo. 

In the n-dimensional Grassmann algebra, the number of components compos­
ing an element of grade k is given by the binomial coefficient 

(
n

J n! 
k - k!(n-k)! 

(4.15) 

because this gives the number ofways to choose k items from a set of n items. The 
binomial coefficients produce Pascal's triangle, as shown in Figure 4.3, where the 
row corresponding to three dimensions reads 1, 3, 3, l .  The complete n-dimen­
sional Grassmann algebra is constructed by choosing basis vectors from the set 
{e 1 ,e2, ••• ,e n } in every possible quantity and combining them in every possible 
way. For any given element in the algebra, a particular basis vector e; is either 
included or excluded, so we can think of the inclusion status of the entire set of 
basis vectors as an n-bit quantity for which all 2 n values are allowed. This is re­
flected in the fact that each row of Pascal' s triangle sums to the power of two 
corresponding to the number of dimensions. 

In this book, we will explore Grassmann algebras primarily in three and four 
dimensions. We will not have the need to visit any higher dirnensions, but we will 
briefly discuss sorne of the lower-dimensional algebras. For a side-by-side com­
parison, Table 4.2 lists the basis elements of each grade belonging to the Grass­
mann algebras in dimensions numbering zero through four. In the table, we have 
adopted the simplified notation eab-·· in which multiple subscripts indicate the 
wedge product among multiple basis vectors so that, for example, e 12 = e 1 /\ e2 and 
e123 =e1 /\C2 /\C3. 

The zero-dimensional Grassmann algebra is nothing more than the set of real 
numbers because it has no basis vectors. The one-dimensional Grassmann algebra 
has a single basis vector e, and every element of the entire algebra can be written 
as a+ be, where a and b are real numbers. This algebra is known as the dual 
numbers, and it is something that we will combine with quaternions in Volume 3. 
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OD 

ID 

2D 

3D 

4D 

5D 0 0 

Figure 4.3. The number of components composing an element of grade k in the n-dimen­
sional Grassmann algebra is given by the binomial coefficient (n, which produces Pascal's 
triangle. Each row corresponds to a particular number of dimensions, and the numbers in 
each row tell how many independent basis elements exist for each grade. There is always 
one scalar basis element and n vector basis elements. The number of bivector basis ele­
ments is given by the third number in each row, the number oftrivector basis elements is 
given by the fourth number, and so on. 

In the dual numbers, the wedges are typically omitted, and a product between two 
elements a+ be and e+ de looks like 

( a + be) ( e + de) = ac + ( ad + be) e,

where the term containing bd <loes not appear because e2 = O. 
The two-dimensional Grassmann algebra contains two basis vectors e, and e 2 

that correspond to the x and y axes, and it contains a single basis bivector e12 that 
corresponds to the only planar orientation possible, that of the whole 2D coordinate 
system. The wedge product between two 2D vectors a and b is 

(4.16) 

and the value of this bivector is equal to the signed area of a parallelogram whose 
sides are given by a and b. (Exercise 1 asks for a proof.) The area is positive when 
a and b are wound counterclockwise about the origin and negative otherwise. Of 
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Dimension Grade Count Basis Element Values 

OD Scalar 1 1 

10 
Scalar 1 1 

Vector 1 e 

Scalar 1 1 

20 Vector 2 e" e2 

Bivector 1 e,2 

Scalar 1 1 

30 
Vector 3 e" e2, e3 

Bivector 3 e 23, e 31, e,2 

Trivector 1 e123 

Scalar 1 1 

Vector 4 e,, e2, e3 , e 4 

4D Bivector 6 e 41, e 42, e 43, e 23, e 31, e,2 

Trivector 4 e 234, e 314, e,24, e,32 

Quadrivector 1 e1234 

Table 4.2. This table lists the basis elements of each grade in the n-dimensional Grassmann 
algebras for O ::::: n ::::: 4. The total number of basis elements is always equal to 2 ", and the 
number ofbasis elements of a particular grade k is given by(;). 

course, the area of a triangle having sides given by a and b is half the value given 

by Equation (4.16). 

The elements of the n-dimensional Grassmann algebra can be generalized so 

that the components of every grade are mixed into a single quantity called a mul­

tivector. For example, a multivector belonging to the three-dimensional Grass­

mann algebra is written as 

(4.17) 

It would be possible to design a computational system in which ali eight compo­

nents of the 3D multivector in Equation ( 4.17) were always stored in memory and 

operations were always performed between two complete multivectors. However, 

this would be rather impractical and wasteful because many of the components 

would often be zero, and it gets even worse when we move to four-dimensional 

homogeneous coordinates. Furthermore, it's largely unnecessary because there is 

no significant geometric meaning in a quantity composed of components having 
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different grades. In the context of Grassmann algebra, we will always be working 
with quantities that are purely composed of components having the same grade. 
(In the discussion of geometric algebra later in this chapter, however, we will have 
a reason to study mixed scalars and bivectors.) 

The highest-grade basis element in an n-dimensional Grassmann algebra is 
called the unit volume element, and it is given the special symbol En, defined as 

1 En=e 12 ---n=e,Ae2 /\· .. /\en.1 (4.18) 

The unit volume element corresponds to an n-dimensional volume of magnitude 
one that involves ali n basis vectors in the algebra. Because it has only one com­
ponent, any multiple of the unit volume element is often called a pseudoscalar

quantity. Many texts use the symbol In for the unit volume element, but this con­
flicts with the symbol used for the n x n identity matrix, which could appear in the 
same context, so we pre fer En in this book. 

4.1.5 Complements 

Let us consider the basis vectors e,, e2, and e 3 in the 3D Grassmann algebra. Each 
one can be multiplied on the right by the wedge product of the other two vectors 
in such an order that the wedge product of ali three yields the volume element E 3, 

as shown by 

e 1 A(e2 /\e3)=E3 
e2 A(e3 Ae,)=E3 
e 3 A(e, Ae2 )=E3. (4.19) 

The parentheses aren't really necessary here because the wedge product is associ­
ative, but they have been included to clarify the values by which the basis vectors 
are being multiplied. The bivectors e 23, e31 , and e 12 (using the shorthand notation 
now) are called the complements of the vectors e,, e2, and e3, respectively. 

If we instead multiply the basis vectors on the left, we get the same results, as 
shown by 

(e2 Ae3)Ae1 =E3 
(e3 Ae,)Ae2 =E3 
(e 1 Ae2 )Ae3 =E3. (4.20) 

This demonstrates that we can consider the vectors e1, e2, and e3 to be the comple­
ments of the bivectors e23, e31, and e12 because multiplication on the right produces 
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the value E 3• In general, the complement of any blade is whatever quantity we need
to multiply it by, on the right, to produce the volume element. The complement of
one is the whole volume element E 3 because 1 /\ E 3 = E 3, and the complement of
E3 is just one because E3 /\ 1 = E 3. The complements of ali eight basis elements in
the 3D Grassmann algebra are summarized in Table 4.3.

We specify the operation of taking a complement by placing a bar above a 
quantity so that B means the complement of B. Using this notation, the comple­
ments of the three basis vectors and three basis bivectors can be written as follows. 

(4.21) 

The term "complement" is used because B fills in whichever dimensions are 
missing from a basis element B in order to create the foil volume element E n 

of 
the n-dimensional Grassmann algebra. The binomial coefficients that make up Pas­
cal's triangle exhibit a natural symmetry because the number of ways that we can 
choose k items from a set of n items is exactly equal to the number of ways that 
we can choose ali except k items. When we take a complement, we are tuming a 
k-dimensional element into an ( n - k )-dimensional element by essentially invert­
ing the spatial dimensions that are involved.

Basis Element B Complement B 

1 e1 /\e2 /\e3 

e1 e2 /\ e3 

e2 e3 /\e1 

e3 e1 /\e2 

e2 /\ e3 e1 

e3 /\ e1 e2

e, /\e2 e3 

e1 /\e2 /\e3 1 

Table 4.3. These are the complements ofthe eight basis elements belonging to the three­
dimensional Grassmann algebra. 
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We've defined what the complement meaos for basis elements, and now to 
extend it to ali elements of the algebra, we simply require that it is a linear opera­
tion. That is, for any scalar s and k-blades A and B, we must have 

sA=sA

A+B=A+B. (4.22) 

If we apply these rules to an arbitrary 3D vector v = xe1 + ye2 + ze3, then we can 
calculate its complement as v = xe23 + ye31 + ze,2• The complement has the same 
magnitud e, and it can be thought of as a reinterpretation of the original components 
in terms ofthe complementary basis elements. Ifwe multiply v by its complement, 
then we get 

(4.23) 

and this will be an important result later in our discussion of the dot product. 
The complement operation can be used in three dimensions to explicitly con­

vert the wedge product between two vectors into the conventional cross product. 
That is, we can define the cross product between vectors a and b as 

1 axb=�., (4.24) 

Each of the bivector basis elements in the wedge product is replaced by its com­
plementary vector basis element to make the result ofthe cross product a vector. It 
is the process of taking the complement that destroys the associative property of 
the cross product because it occurs between successive multiplications. There is 
seldom any mathematical justification for preferring the artificiality of a vector 
resulting from the cross product over the more natural and intuitive bivector re­
sulting from the analogous wedge product. 

Although we have been careful to state that complements appear on the right 
side of a wedge product, it should be clear that they are commutative in three di­
mensions and could just as well appear on the left side of the wedge product in 
every case. However, this is not true for Grassmann algebras in even numbers of 
dimensions, so we need to make a distinction between complements that appear 
on the right and left sides. 

The right complement of a basis element B in the n-dimensional Grassmann 
algebra is the complement that we have been discussing so far, and it is the quantity 
B such that 

(4.25) 
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The left complement ofB is written with the bar beneath it, and it is the quantity �
such that 

( 4.26) 

The left complement is also extended to ali blades by the same linearity property
required for the right complement in Equation ( 4.22). 

When the number of dimensions n is odd, then ali right and left complements
are the same, and we can simply call both of them "the complement". When nis

even, the right and left complement of a k-blade A are related by the equation 

1 �=(-l)k(n-k) A, 1 (4.27) 

and this shows that the right and left complements are equal when k is even, and
they are negatives when k is odd. This equation gives us a way to raise or lower
the bar in order to switch between right and left complement whenever it would be
convenient. 

The blades for which the right and left complements have different signs also
have the property that they change sign when either complement is applied twice.
The relationship between a k-blade A and either of its double complements is 

A=�= ( -1 )k(n-k) A. ( 4.28) 

Taking mixed complements of a blade A, a right complement and a left comple­
ment together, always restores the original blade A, as expressed by 

A=A. (4.29) 

This is true for ali grades in ali dimensions, and it doesn't matter in which order
the two complements are applied, so the notation is intentionally ambiguous about
whether the right or left complement is taken first. 

Table 4.4 demonstrates the differences between the left and right complements
as well as the negating effects of the double complement for the 16 basis elements
belonging to the four-dimensional Grassmann algebra. Only the vectors and trivec­
tors, being the elements with odd grade, exhibit the sign-altemating behavior. The
scalar basis element, the six bivector basis elements, and the volume element have 
equal right and left complements and do not change sign when either complement
is applied twice. 
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Basis Element B Complement B Complement ª Double Complement 

1 e1 /\e2 /\e3 /\e4 e1 /\e2 /\e3 /\e4 1 

e1 e2 /\e3 /\e4 -e2 /\ e3 /\e4 -e 1 

e2 e3 /\e1 /\e4 -e3 /\e1 /\e4 -ez

e3 e1 /\e2 /\e4 -e1 /\e2 /\e4 -e3 

e4 e1 /\e3 /\e2 -e1 /\e3 /\e2 -e4 

e4 /\ e 1 -e2 /\e3 -e2 /\e3 e4 /\e1 

e4 /\ e2 -e3 /\e 1 -e3 /\e1 e4 /\ez 

e4 /\ e3 -e1 /\ e2 -e1 /\ez e4 /\ e3 

e2 /\e3 -e4 /\e1 -e4 /\e1 e2 /\e3 

e3 /\e1 -e4 /\ e2 -e4 /\ e2 e3 /\ e 1 

e1 /\ez -e4 /\e3 -e4 /\ e3 e1 /\ e2 

e2 /\e3 /\e4 -e1 e1 -e2 /\e3 /\e4 

e3 /\e 1 /\e4 -e2 e2 -e3 /\e1 /\e4 

e1 /\e2 /\e4 -e3 e3 -e1 /\e2 /\e4

e1 /\e3 /\e2 -e4 e4 -e1 /\e3 /\e2

e1 /\ez /\e3 /\e4 1 1 e1 /\ez /\e3 /\e4 

Table 4.4. These are the right and left complements ofthe 16 basis elements belonging to 

the four-dimensional Grassmann algebra. The two complements for vectors and trivectors, 

highlighted in orange, have different signs. Vectors and trivectors also change sign when 

either complement operation is applied twice. 

4.1.6 Antivectors 

In the n-dimensional Grassmann algebra, a 1-vector and its complement, which is 
an ( n - l }-vector, both have n components. We give the complement of a vector 
the special name antivector because it corresponds to al! of the directions in space 
that are perpendicular to the vector, excluding only the one direction to which the 
vector corresponds. An antivector is everything that a vector is not, and vice versa. 
They are opposites of each other and stand on equal ground with perfect symmetry. 
Since vectors and antivectors have the same numbers of components, a clear dis­
tinction is not always made between the two in much ofthe existing literature, and 
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an antivector is often called a pseudovector because its transformation properties 
are different from an ordinary vector. However, the prefix "pseudo" tends to in­
duce a characterization of lower status through its meaning of "false" without add­
ing any descriptive value to the term, whereas the prefix "anti" accurately depicts 
an antivector as something that "opposes" its complementary vector. 

Let v = v 1e1 + v2e2 + · · · + v
n
e

n 
be a vector in the n-dimensional Grassmann al­

gebra. The antivector corresponding to vis simply its right complement, which we 
can express in terms ofthe right complements of the basis vectors e; as 

(4.30) 

Then, as we saw earlier in three dimensions, the wedge product between a vector 
v and its corresponding antivector v is 

(4.31) 

Using the right complement was an arbitrary choice. We could also construct 
an antivector in terms of the left complements of the basis vectors, and then we 
would write 

(4.32) 

The wedge product that gives us a positive volume would then be 

(4.33) 

In odd dimensions, there is no difference between antivectors based on right 
complements and antivectors based on left complements, but in even dimensions, 
they are negatives of each other. The distinction only matters when we explicitly 
convert a vector to an antivector by reinterpreting the components over the com­
plements of the basis vectors. When an antivector is constructed by calculating the 
wedge product of lower-grade elements, the results are automatically interpreted 
with the correct signs matching the choice of e; or � as the antivector's basis 
elements. 

Consider the n-dimensional wedge product between a vector a and the com­
plement of a vector b. If we were to write this out completely as 

(4.34) 

and distribute the multiplication, then we would get a result that has n 2 terms. But 
only n terms are nonzero, and they are the ones for which each e; is matched with 
its complemente;. The product then becomes 
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a/\ b = a,b,e,e, + a2b2e2e2 + ... + anbnenen 

=(a,b, +a2b2 +···+anbn )E n , (4.35) 

and this demonstrates that the origin of the dot product is the wedge product be­
tween a vector and an antivector, or ( n -1 }-vector. (We could take a complement 
to eliminate the volume element E n, but the antiwedge product will provide a better 
altemative below.) As with the cross product, the defining formula for the dot 
product was given with no explanation in Section 1.5, but we have now derived it 
from fundamental principies in Grassmann algebra. Note that we arrive at the same 
result if we calculate ª /\ b instead of a/\ b, as shown by 

ª /\ b = a,b,�e, + a2b2�e2 + • • • + anbn!b,en 

=(a,b, +a2b2 +···+anbn )E n. (4.36) 

Antivectors have the property that they behave like row vectors that transform 
properly through multiplication on the right by the adjugate of a transformation 
matrix. That is, if M is an n x n matrix that transforms an ordinary n-dimensional 
vector v from one coordinate system to another through the product Mv, then an 
n-dimensional antivector a is transformed through the product a adj (M). We have
already encountered this property for normal vectors and implicit planes in
Chapter 3. A normal vector is really a three-dimensional antivector, which is 
evident when it' s calculated with the cross product of two vectors that we consider
to be a wedge product in disguise. A plane is really a four-dimensional antivector,
and we will show how it can be constructed from the wedge product of three points
in the next section.

4.1.7 Antiwedge Product 

At the beginning ofthis section, we mentioned that there are two opposing funda­
mental operations in Grassmann algebra that exhibit a natural and precise sym­
metry. The wedge product has a mirror operation that we call the antiwedge 
product and denote by the symbol v, a downward-pointing wedge. Grassmann 
called the antiwedge product the regressive product to complement his progressive 
product, but he considered them to be different manifestations of the same combi­
natoria! product, and he used the same notation for both. This made sorne sense in 
Grassmann's original work because he equated scalars with volume elements, but 
we have since leamed that it's necessary to make an explicit distinction between 
the two types of products. 
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The antiwedge product operates on antivectors in the same way that the wedge 

product operates on vectors. Whereas the wedge product A/\ B combines the basis 
elements that are present in the factors A and B, the antiwedge product Av B com­
bines the basis elements that are absent in the factors A and B. In this way, 

the wedge product and antiwedge product are analogous to the union and intersec­
tion of spatial dimensions, and this feature will be put to practical use in the next 
section. 

In a manner symmetric to the wedge product between vectors, the antiwedge 
product between antivectors is anticommutative. For any antivectors a and b, this 
meaos that 

avb=-bva, (4.37) 

and as a special case, a va= O. Note that vectors anticommute under the antiwedge 
product only in even-dimensional Grassmann algebras. This is symmetric to the 

fact that antivectors anticommute under the wedge product only in even numbers 
of dimensions because that's where antivectors have odd grade. The general rule 

for the antiwedge product between any elements A and B is 

A V B = { -1 )(n-gr(A))(n-gr(B)) B V A. (4.38) 

Comparing this to the rule for the wedge product given by Equation ( 4.14), we see 

that two elements commute under the antiwedge product precisely when their com­

plements commute under the wedge product. If either n - gr (A) or n - gr {B) is 
even, then A and B commute under the antiwedge product. 

The complements of the wedge product and antiwedge product between ele­
ments A and B obey the laws 

A/\B=AvB 

AvB=A/\B. (4.39) 

These correspond very exactly to De Morgan's laws from logic and set theory. 
(Unfortunately, the established meanings of the symbols /\ and v in Grassmann 

algebra have the opposite meanings of the same symbols when used for the AND 
and OR operations in logic or the similar symbols n and U when used for intersec­
tion and union in set theory.) We can convert right complements to left comple­
ments using Equation (4.27) to obtain the similar laws 
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AAB=AvB 

AvB=AAB. 
-- - -

(4.40) 

After taking the left complement of both sides of the laws in Equation ( 4.39) and 
the right complement ofboth sides ofthe laws in Equation (4.40), we find that we 
can write either of the wedge and antiwedge products in terms of the other as 

AAB=AvB=AvB 

AvB=AAB=AAB. (4.41) 

As a basic example of the antiwedge product, consider the three-dimensional 
antivectors a= axe] + a

y
e2 + aze3 and b = hxel + b

y
e2 + bze3. When these are mul­

tiplied with the antiwedge product, the result is expressed in terms of the comple­
ments of bivectors as 

The shorthand notation e
!! 

continues to have the same meaning e; A e 1, but we can
interpret the complemente

!! 
as either e; Ae

1 
ore; ve

1 
due to Equation (4.39). 

Evaluating the complements in the product a v b gives us 

(4.43) 

which shows that the antiwedge product between two bivectors in three dimensions 
yields an ordinary vector with the familiar cross product components. 

U sing the fact that the complement operation subtracts the grade from the num­
ber of dimensions n, it should now be apparent that the antiwedge product has a 
grade-reducing effect given by 

gr (Av B) = n-(n- gr(A) + n-gr (B)) 

= gr(A) + gr(B)-n. (4.44) 

Multiplication with the wedge product combines the number of dimensions in­

cluded by its factors, and multiplication with the antiwedge product combines the 
number of dimensions excluded by its factors. Just as the wedge product is zero 
whenever the grade given by Equation (4.13) is greater than n, the antiwedge prod­
uct is zero whenever the grade given by Equation (4.44) is less than zero. 

We saw in Equation (4.35) that the wedge product between a vector a and the 
right complement of a vector b yielded the n-dimensional volume element scaled 
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by the dot product between a and b. Replacing the wedge product with the anti­
wedge product changes the result to a scalar: 

This is actually the right complement ofEquation (4.36), as shown by 

avh=-ª.Ab=(a,b, +a2b2 +···+anbn )E n , 

and the product-ª v b is similarly the left complement of Equation ( 4.35).

(4.45) 

(4.46) 

Equation ( 4.45) would seem to provide a val id formula for the dot product a· b
in the context of Grassmann algebra, but we still need to verify that using the same
formula to calculate b · a produces the same result because the dot product is com­
mutative. Ifwe reverse the positions of a and b, then we can use Equation (4.38)
to write 

b - ( l)n-1 - b va= - av . (4.47) 

Applying Equation (4.27) to convert the right complement to the left complement, 
we can rewrite this as 

b V a = ( -1 r-l ( -1 r-l -ª. V b 
=-ª. V b, (4.48) 

which we know is equivalent to a v b. Thus, Equation ( 4.45) produces the same
result when a and b are swapped, and we are able to define the dot product a· b
with any ofthe equivalent formulas 

1 a·b=avh=-ª.Vb=bva=!!va. ¡ (4.49) 

These formulas generalize to operations called the left and right interior products

when we allow the factors to be not just vectors, but elements of any grade. We 
will not have the opportunity to discuss interior products in detail, but see Exer­
cises 6 and 7 for a little additional information. 
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     4.2 Projective Geometry 

In Section 2.6, we introduced the concept of homogeneous coordinates and ex­
plained how a 4D vector corresponds to a 3D point through projection into the 
subspace where w = l. In Chapter 3, we also discussed homogeneous representa­
tions of lines and planes, but at the time, we were not able to characterize the ge­
ometry of either of those as the outcome of any similar projection. We now have 
the tools necessary to demonstrate how homogeneous points, lines, and planes are 
ali elements of increasing grade in the 4D Grassmann algebra, and we can show 
how the geometry for each of them arises through the same projection into the 
subspace where w = l. 

4.2.1 Unes 

In the same way that a point is an object spanning zero dimensions that results 
from the projection of a vector spanning one dimension, a line is an object spanning 
one dimension that results from the projection of a bivector spanning two dimen­
sions. The wedge product between two arbitrary vectors a and b in 4D Grassmann 
algebra is given by 

a/\ b = ( a .. hx -axhw) e41 + ( a .. b
y 

-a
y
hw) e42 + ( a .. b, -a,bw) e43

+ ( a 
y
b, -a,b

y) e23 + ( a,bx -axh,) e31 + ( axhy 
-G yhx) e12 , (4.50) 

If we replace a and b with homogeneous points p and q, having implicit w coor­
dinates of one, then this becomes 

P Aq =(qx -Px )e41 +( qy - PY )e42 +(q, - Pz )e43 
+(py q, - Pzqy)e23 +(p,qx - Pxq,)e31 +(pxqy - py qx)e12 · (4.51) 

This is a bivector whose six components are precisely the Plücker coordinates that 
were introduced as the implicit form of a line in Section 3.5, but now these com­
ponents emerge from the fundamental multiplication rules of the 4D Grassmann 
algebra. As shown in Figure 4.4, this bivector corresponds to an oriented plane in 
4D space, and it intersects the 3D subspace where w = 1 at the line containing the 
points p and q. In this way, a homogeneous line is a higher-dimensional analog of 
the homogeneous point whose projection is shown in Figure 2.9. 

We can equate the notation { v I m} used in Chapter 3 to a 4D bivector L and 
label the components of a line having the direction v = q -p and the moment 
m=pxq as 
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w 

W= 1 

X 

Figure 4.4. The 4D bivector p /\ q intersects the 3D subspace where w = 1 at the line de­

termined by the homogeneous points p and q. The z axis is omitted from the figure, and it 

should be understood that the subspace for which w = 1 is not planar, but also extends in 

the z direction. 

(4.52) 

This assigns sorne meaning to the components of the bivector and allows us to 
continue regarding lines as having two three-dimensional parts. However, we can 

now interpret the direction v as a 3D vector and the moment m as a 3D bivector. 
The parts v and m, when interpreting both as vectors, are always orthogonal for 

any 4D bivector constructed through the wedge product of any two 4D vectors (see 

Exercise 8). When interpreting m as a bivector, we can say that v always lies in 
the plane spanned by m. 

4.2.2 Planes 

The four components of an implicit plane constitute a trivector in the 4D Grass­

mann algebra. Aplane f can be constructed by calculating the triple wedge product 

among three homogeneous points p, q, and r, as in 

(4.53) 

This trivector intersects the subspace w = 1 at the plane containing the three points 
that were multiplied together, continuing the progression of projective geometries 
to the next step beyond points and lines. 
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A plane can also be constructed by multiplying a point and a line together, 
which is obvious when we consider that the wedge product between any pair of 
points in Equation ( 4.53) constructs a line that ends up being contained in the 
plane. In the case that we set L = q /\ r, the components of the plane containing p, 
q, and r are given by 

p AL= (Lvy
pz - Lvzpy + Lmx) e1 + (LvzPx -L.,xP z + Lmy )e2 

+ ( Lvxpy -LvyPx + Lmz) C3 + (-LmxPx -LmyPy -LmzPz) C4. (4.54) 

Here, we have expressed the components in terms ofthe complements ofthe basis 
vectors to highlight the fact that a plane is a 4D antivector. Because L has an even 
grade, it's true that LA p = p /\ L, so it doesn't matter in which order a point and 
line are multiplied together. 

Using the notation [ n Id] from Chapter 3, we can express a plane as 

p /\ q /\ r = n x C1 + n y C2 + n z C3 + de 4, (4.55) 

where the normal n and distance to origin d can be calculated with the formulas 

n=pAq+qAr+rAp 

d=-pAQ/\r. (4.56) 

These wedge products occur in three dimensions, and the points p, q and r are 
written in the nonscript style to indicate that they are to be treated as 3D vectors. 
Both pieces of Equation (4.56) possess an elegant trinary symmetry, but neither 
they nor the formula in Equation ( 4.54) represents the most computationally effi­
cient way of constructing a plane if we are starting with three points. The conven­
tional methods of Chapter 3 are still the best, and we can rewrite them using the 
operations of Grassmann algebra as 

n=(q-p)A(r-p) 

d = -n v p = -n v q = -n v r, (4.57) 

where the wedge and antiwedge products are still occurring in three dimensions. 
Any one of the three points may be used in the calculation of the distance d.
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4.2.3 Join and Meet 

With the homogeneous representations of points, lines, and planes in 4D Grass­
mann algebra, performing union and intersection operations by means of the 
wedge and antiwedge products is exquisitely straightforward and natural. How­
ever, our use of the words "un ion" and "intersection" in this context differ slightly 
from the ordinary geometric meaning because degenerate cases have null out­
comes, as described below. For that reason, the terrnsjoin and meet are often used 
when referring to the respective operations of (a) combining the unshared direc­
tions of geometric objects to construct something with a greater number of dimen­
sions and (b) retaining the shared directions of geometric objects to construct 
something with a lesser number of dimensions. The exact meanings of join and 
meet vary significantly in the literature as attempts are made to bring them in align­
ment with the set-theoretic meanings of union and intersection, but this is both 
unnecessary and unnatural. In this book, we choose the simplest definition and 
equate the join and meet operations exactly with the geometric results produced by 
the wedge and antiwedge products, respectively. 

We have already encountered most of the join operations that can be consid­
ered in four dimensions. The join p /\ q between two points is given by Equation 
( 4.51) and produces the line containing them. If the two points happen to be coin­
cident, then no line can be determined, and the result is the line { O I O} in which ali 
six components of the bivector are zero. The join p /\ L between a point and a line 
is given by Equation (4.54) and produces the plane containing them. If the point 
happens to lie on the line, then no plane can be determined, and the result is the 
plane [ O I O] in which all four components of the trivector are zero. This degeneracy 
includes the case that a plane is constructed from three collinear points because 
one point will always lie on the line constructed with the other two. 

The meet operations are symmetric to the join operations through the recogni­
tion that points and planes are complementary geometry objects, and the wedge 
and antiwedge products are complementary operations. Whereas the wedge prod­
uct of two points yields the line joining them together, the antiwedge product of 
two planes yields the line at which they meet, or intersect. For two planes f and g, 
represented by 4D trivectors, the meet is given by 

f V g =(fyg z -fzgy )e41 +(fzgx - fxgz )e42 +(fxgy - fygx )e43 

+(f..,gx - fxg.., )e23 +(f..,gy - fyg.., )e3¡ +(f.., gz -fzg.., )e,z. (4.58) 

If the two planes happen to be coincident, then there is no unique line where they 
meet, and the result is { O I O} as in the case of joining coincident points. If the two 
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planes are parallel but not coincident, then the result is the line at infinity { O I m} 
having a zero direction vector v = ( O, O, O), but a nonzero moment bivector m that 
is parallel to the planes. (The vector in is parallel to the planes' normal vectors.) 

In a manner symmetric to the join of a point and a line, the meet of a plane f
and a line L is given by 

f V L = ( Lmyfz -Lmzfy + Lvxfw ) el + ( LmzÍx -Lmxfz + Lvyfw ) e2 

+(Lmxfy -Lmyfx + LvzÍw )e3 + (-L vxfx - Lvyfy -LvzÍz )e4. (4.59) 

This produces the homogeneous point at which the line intersects the plane. As 
with the wedge product between a point and a line, the antiwedge product between 
a plane and a line is commutative, but this time because L has an even grade, so 
L v f = f v L. It will generally not be the case that the w coordinate resulting from 
this operation is one, so it's necessary to divide by w to obtain a projected 3D point. 
In the case that the line líes in the plane, there is no unique point of intersection, 
and the result is the point ( O I O) having four zero components. If the line is parallel 
to the plane without lying in the plane, then the result is the point at infinity ( p [ O) , 
where pis parallel to the direction of the line. 

4.2.4 Line Crossing 

The wedge product between two lines gives us sorne useful information about the 
distance between them and their relative orientations in space. Suppose that 
L 1 = { v 1 1 m i } = P1 A q I and L 2 = { v 2 1 mi } = p2 A q 2• Although it' s somewhat dif­
ficult to visualize, the wedge product 

(4.60) 

can be interpreted as the signed volume of a four-dimensional parallelotope whose 
sides are given by the vectors p1 , q 1 , p2, and q2 extended to four dimensions with 
their implicit w coordinates of one. Since ali four sides have a length of one in the 
direction of the w axis, that direction can be ignored by essentially dividing it out, 
leaving behind the three-dimensional parallelepiped shown in Figure 4.5. Without 
loss of generality, we can assume that the points p1 and p2 correspond to the points 
of closest approach on the two lines because sliding the points along each line 
(keeping the distance between p and q constant) only has the effect of skewing the 
parallelepiped, which <loes not change its volume. 

The area of the base of the parallelepiped is given by 11 v I Av 2 11- If we divide 
L 1 A L 2 by this area, then the only remaining length is the distance between the 
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Figure 4.5. The distan ce between two I ines L 1 = p1 /\ q I and L 2 = p2 /\ q 2 having directions 
v 1 = q1 - p1 and v 2 = q2 - p2 is given by the complement ofthe volume L 1 /\ L 2 divided by 
the base area llv 1 /\ v 211-

two lines, corresponding to the magnitude of p1 - p2 in the figure. We are express­
ing this as a multiple of the volume element E4, however, so we take the comple­
ment ofL 1 A L 2 to tum it into a scalar. Thus, the formula for the signed distance d
between two lines is given by 

where we have used the fact that 

d= L1 vL2
11 V 1 /\ V 2 11' 

(4.61) 

(4.62) 

for bivectors in four-dimensional space. The numerator in Equation (4.61) is the 
antiwedge product between two 4D bivectors, and the denominator contains the 
wedge product between two 3D vectors. In terms ofthe directions and moments of 
the two lines, the product L 1 v L2 can be calculated as 

(4.63) 

Since each direction is a vector and each moment is a bivector, this formula basi­
cally amounts to a pair of dot products. 

The sign ofthe distance d given by Equation (4.61) corresponds to a crossing 
orientation that is mutually observed by both of the lines L 1 and L 2 • As shown in 
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Figure 4.6. The sign ofthe antiwedge product L 1 v L 2 corresponds to the crossing orien­

tation of the lines L 1 and L 2 • The sign is positive when the lines are wound clockwise 

around each other, and it is negative when they are wound counterclockwise around each

other.

Figure 4.6, if the antiwedge product L 1 v L 2 is positive, then the direction of each 
line is wound clockwise around the other. Conversely, ifL 1 v L 2 is negative, then 
the winding is counterclockwise. 

The crossing orientation can be used as a test to determine on which side one 
line passes another. As a practica) example, consider a triangle whose edges are 
wound in a counterclockwise direction, and suppose that we need to determine 
whether a ray passes through the interior of the triangle. After calculating the an­
tiwedge products between the ray and three lines corresponding to each of the tri­
angle' s edges, we know that the ray bits the triangle if all three products are 
positive and misses if any one of the products is negative. 

4.2.5 Plane Distance 

The wedge product p /\ f between a point p and a plane f = [ n Id] brings about 
another situation in which we have the signed volume of a four-dirnensional par­
allelotope. Suppose that the plane is given by the wedge product of three points 
q0, q 1 , and q2 . As in the case oftwo lines multiplied together, we can ignore the 
dimension corresponding to the w axis because the parallelotope spans a length of 
one in that direction and all of the points lie in the w = 1 subspace. The value of 
p /\ f can then be interpreted as the volume of the parallelepiped whose sides are 
q ¡ -qo, q2 -q0, and p-q0. 

The plane's normal nis a 3D bivector quantity that's given by 

(4.64) 
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and the magnitude of this bivector is the area ofthe parallelepiped's base. If we 
divide by llnll, then the remaining length corresponds to the perpendicular distance 
between the base and the point p, but it is expressed as a multiple of the volume 
element E4, so we take the complement of p /\ f. Thus, the formula for the signed 
distance d between a point and a plane is given by 

(4.65) 

where we have used the fact that 

pAf =pvf =pvf (4.66) 

when p is a vector and f is an antivector. 
The quantity p v f is equivalent to the dot product f · p discussed throughout 

Section 3.4, where the left complement has been taken to turn finto an ordinary 
vector. However, the dot product is commutative, but the antiwedge product anti­
commutes as p v f = -f v p. Since the components off are expressed in terms of 
the right complements of the basis vectors, the quantity p v f corresponds to the 
formula a v b given for the dot product in Equation ( 4.49). In order to calculate the 
same dot product with f appearing as the first factor, the components would need 
to be expressed in terms of the left complements to match the formula-ª v b. The 
technically correct formulas for calculating f · p are thus given by 

f·p=pvf=fvp. ( 4.67) 

The double complement cancels the negation due to swapping the factors. Both 
results are equal to the quantity ÍxPx + f

y
p

y 
+ f

2
p

2 
+ fw that we're already famil­

iar with from Chapter 3. 

4.2.6 Summary and lmplementation 

Table 4.5 lists the elements of grades one, two, and three in 4D Grassmann algebra 
and shows that they correspond to geometric objects having intrinsic dimensional­
ities one less than their grades. A vector of grade one has four components, and it 
corresponds to a zero-dimensional point. A bivector of grade two has six compo­
nents, and it corresponds to a one-dirnensional line. A trivector of grade three, 
which is also an antivector, has four components, and it corresponds to a two­
dimensional plane. 
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Element Geometric Meaning Projection 

Vector Point (p I w) = p,e1 + pye2 + p,e3 + we4 w=l 

Bivector Line { v I m} = v,e41 +v
y
e42 + v,e43 + m,e23 + m

y
eJ1 + m,e12 llvll=l 

Tri vector Plane [n Id]= n,e1 + n
y
e2 + n,e3 + de4 "º" = 1 

Table 4.5. Vectors, bivectors, and trivectors having grades one, two, and three, correspond 
to points, lines, and planes having dirnensionality zero, one, and two. Each type of geom­
etry is projected into 3D space when the components including the basis vector e4 collec­
tively have a magnitude of one. 

The table also lists the conditions under which each type of geometry is con­
sidered to have been projected into 3D space. Por a point (p I w ), the w coordinate 
has to be one. Por a line { v I m}, the magnitude of the direction v has to be one. 
And for a plane [ n Id], the magnitude of the normal n has to be one. In general, 
these correspond to the components of each type of geometry that contain the basis 
vector e4, which can collectively be thought of as the geometry's weight. Por the 
geometry to be projected, or for the weight to be normalized, the part that extends 
into the w direction must have a magnitude of one. Por a point, this part is simply 
the w coordinate. Por a line, this part is the set of components corresponding to the 
basis bivectors e4i, e42, ande 43• Por a plane, this part is the set of components cor­
responding to the basis antivectors e1 , e2, and e3 because these are the components 
that don't exclude the basis vector e4 • 

AII of the geometric operations discussed in this section are summarized in 
Table 4.6. The wedge product corresponds to a join operation and builds geometry 
of higher dimensionality by combining smaller objects. The antiwedge product 
corresponds to a meet operation and extracts geometry of lower dimensionality by 
intersecting larger objects. Products between two lines or between a point and a 
plane calculate signed distances between those types of geometries. 

The operations listed in Table 4.6 are implemented by the code in Listing 4.1. 
Points, lines, and planes are represented by the Point3D, Line, and Plane data 
structures introduced earlier in this book. We make use of overloaded " operators 
because this symbol conveniently resembles the wedge product. We employ the 
same symbol for the antiwedge product as well because it is never the case that we 
need both the wedge product and the antiwedge product for the same inputs. Either 
one of the operations is identically zero or the two operations produce a scalar and 
volume element having the same sign and magnitude. 
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Unfortunately, the " operator has a very low evaluation precedence among 
operators in C++, even lower than the relational operators, so it is rather ill-suited 
in this respect for the role of infix multiplication. It's necessary to surround each 
wedge or antiwedge product with parentheses to prevent operations from occurring 
in the wrong order. For example, the expression a" b <e" d would be interpreted 
by the compiler as a" (b < e) "d, so you would have to write (a" b) <(e" d) 
to get the correct result. 

Formula Description Special Cases 

pAq Line containing points p and q. { O I O} if p and q are coincident. 

pAqAr Plane containing points p, q, and r. 
[ O I O] if all three points are 
collinear. 

pAL, 
Plane containing line L and point p. [O I O] if p lies on the line L. LAp 

{O I O} iffand g are coincident. 
fvg Line where planes f and g intersect. { O I m} if f and g are parallel 

but not coincident. 

(O I O) if any two planes are 
coincident or ali three planes 

fvgvh Point where planes f, g, and h intersect. are parallel. 

(p I O) ifplanes ali intersect at 
parallel lines. 

fvL, 
(O I O) ifL lies in the plane f. 

Lvf 
Point where line L intersects plane f. (p I O) ifL is parallel to fbut 

<loes not lie in f. 

Signed distance between lines 
L, VL2 L, = { v, 1 m i} and L 2 = { v 2 1 m z} Zero ifL, and L 2 are coplanar. 

scaled by llv, Av 211-
pvf, Signed distance between point p and 

Zero if p líes in the plane f. 
-fvp plane f = [ n I d] scaled by llnll-

Table 4.6. These are the operations carried out by the wedge product and antiwedge prod­
uct when applied to vectors (points), bivectors (lines), and trivectors (planes) in the 4D 
Grassmann algebra. 
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Listing 4. l. These overloaded operators implernent the wedge and antiwedge products among 

points, lines, and planes. 

inline Line operator A(const Point3D& p, const Point3D& q) 

return (Line(q.x - p.x, q.y - p.y, q.z - p.z, 

p.y * q.z - p.z * q.y, p.z * q.x - p.x * q.z, p.x * q.y - p.y * q.x));

inline Line operator A(const Plane& f, const Plane& g) 

return (Line (f.y * g.z - f. z * g.y,

f. z * g.x - f.x * g. z,

f.x * g.y - f.y * g.x,

g.x * f.w - f.x * g.w,

g.y * f.w - f.y * g.w,

g.z * f.w - f. z * g.w));

inline Plane operator A(const Line& L, const Point3D& p) 

return (Plane(L.direction.y * p.z - L.direction.z * p.y + L.moment.x, 

L.direction.z * p.x - L.direction.x * p.z + L.moment.y,

L.direction.x * p.y - L.direction.y * p.x + L.moment.z,

-L.moment.x * p.x - L.moment.y * p.y - L.moment.z * p.z));

inline Plane operator A(const Point3D& p, const Line& L) 

return (L A p); 

inline Vector4D operator A(const Line& L, const Plane& f) 

return (Vector4D( 

L.moment.y * f.z - L.moment.z * f.y + L.direction.x * f.w,

L.moment.z * f.x - L.moment.x * f.z + L.direction.y * f.w,

L.moment.x * f.y - L.moment.y * f.x + L.direction.z * f.w,

-L.direction.x * f.x - L.direction.y * f.y - L.direction.z * f.z));
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inline Vector4D operator "(const Plane& f, const Line& L) 

return (L " f); 

inline float operator "(const Line& Ll, const Line& L2) 

return (-(Dot(Ll.direction, L2.moment) + Dot(L2.direction, Ll.moment))); 

inline float operator "(const Point3D& p, const Plane& f) 

return (p.x * f.x + p.y * f.y + p.z * f.z + f.w); 

inline float operator "(const Plane& f, const Point3D& p) 

return (-(p " f)); 

     4.3 Matrix lnverses 

Grassmann algebra is able to provide sorne insights into the calculation of matrix 

inverses. In Section 1.7, we leamed the importance of determinants and saw how 
a matrix inverse could be calculated with the cofactor matrix, which is composed 

of the determinants of smaller matrices. The wedge product of n vectors yields a 

volume element whose sign and magnitude are precisely equal to the determinant 
of an n x n matrix whose columns are those n vectors. They both represent the same 
hypervolume of an n-dimensional parallelotope. This equivalency allows us to for­
mulate the inverse of a matrix in terms of nothing other than wedge products 

among its columns. 
Let c0 , c1 , • • •  , e

n
_, be the 'n columns of an n x n matrix M. The determinant D

of M is given by 

D=co /\C¡ /\···/\C
n-1 =Co ve, V···VC

n-1, ( 4.68) 

where we have taken the complement of the wedge product to produce a scalar 
quantity. (The left complement was chosen because it will be the more convenient 
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option for the other parts of the inverse.) If we think about the way that ali of the 
components ofthe columns are multiplied together in this product, we come to the 
realization that it' s equivalent to the Leibniz formula given by Equation ( 1. 75), but 
for the transpose of M. Every term contains a product of n factors, one from each 
column, corresponding to a unique permutation of the vector components. 

The wedge product of any subset ofn-1 columns ofthe matrix M creates an 
antivector that, when multiplied by the remaining column and complemented, pro­
duces the determinant D after a possible sign flip to account for the ordering. This 
suggests that row i of DM-' should be composed of the wedge product of every 
column of M except column i. This causes the row's wedge product with the col­
umn vector e; to yield the complement ofthe determinantD, and it causes the row's 
wedge product with any other column to yield zero. 

The (i,j) entry (where indexes are zero-based) ofthe matrix product M-'M 
is given by the dot product between row i ofM-', which we assign the name r;, and 
columnj ofM, which has already been named e 1. Selecting the formula

r; · e 1 = e 1 v r; (4.69) 

in Equation ( 4.49) for the dot product makes it clear that the value of r; must be 
given by 

(4.70) 

in order to produce the entries ofthe identity matrix. The wedge product runs over 
ali columns except column i, and the factor ( -1 f accounts for an even or odd per­
mutation of the columns. (If we had chosen to use right complements, then this 
factor would depend on the dimensionality n.) 

The simplest application ofEquation (4.70) is the calculation ofthe inverse of 
a 2 x 2 matrix whose columns are the vectors a and b. The determinant is D =a/\ b, 
and the rows of the in verse are simply given by r0 = h/ D and r, =-ª/D. Writing 
this out completely, we have 

(4.71) 

and this is equivalent to the formula given by Equation (1.93). 
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The inverse of a 3 x 3 matrix whose columns are the vectors a, b, and e can 
now be written as 

(4.72) 

and this is equivalent to the formula given by Equation (1.95), but with the cross 
products and scalar triple product replaced by wedge products. 

In Equation ( 1.99), we gave an interesting formula for the in verse of a 4 x 4 
matrix, and its origin is now revealed as the four-dimensional application of Equa­
tion (4.70) given by 

r
t t t t

i
-! 

l 
a b e d =----­

i i i i 
aAbACAd 

-aACAd
(4.73) 

-aAbAC

In Chapter 1, we had to use 3D vectors a, b, e, and d because only the cross product 
provided the type of multiplication that we needed, and it is limited to three dimen­
sions. With our knowledge ofthe wedge product, which has no such limitation, we 
can use 4D vectors and avoid separate names for the entries in the fourth row. 

We can demonstrate the equivalence between Equation (4.73) and Equation 
(1.99) by first calculating a A b ande Ad as 

a A b = Uxe41 + U ye42 + U ze43 + Sxe23 + S ye3¡ + S ze12 

CAd =Vxe41 +v
y
e42 +v ze43 +fxe23 +fy

e3¡ +tze12· 

The quantities u and vare 3D vectors given by 

u =awh
.xyz -bwa

xyz 

V= Cwd x;,z -dwC xyz, 

(4.74) 

(4.75) 

where the notation a xyz meaos the 3D vector (ax , a Y, a z ) without the w component. 
The quantities s and tare 3D bivectors given by 

S=a
.xyz Ab

xyz 

t=C
xyz Ad

xyz
. (4.76) 
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The values of s, t, u, and v correspond to the coefficients given by Equation ( 4.50) 
for the wedge product of two 4D vectors. The determinant of the matrix is 

D = (a/\ b) /\ (e/\ d) = -u V t - V V s, (4.77) 

where we have applied the antiwedge product oftwo 4D bivectors given by Equa­
tion ( 4.63). Because both terms are an antiwedge product between a vector and 
antivector, the dot product formulas in Equation (4.49) apply, and the determinant 
can be written as D = -_! · v - ! · u after sorne rearrangement. The vectors u and v 
were negated in Chapter 1 to make these terms positive. Ali four rows of the in­
verse are given by the wedge product between one of the columns of the original 
matrix and one of the bivectors calculated in Equation (4.74). Using the notation 
[ n Id] for a 4D antivector, the rows can be expressed as 

r0
= (1/D)[vAb+bwtl-bvt] 

r1 =-(1/D)[vAa+awtl-avt] 

r2
= (1/D)[uAd+dwsl-dvs] 

r3 =-(1/D)[uAc+cwsl-cvs], (4.78) 

and the values inside the brackets are the same that appear inside the matrix in 
Equation (1.99) after multiplying by the negative one in the odd:.numbered rows 
and accounting for the opposite signs of u and v. 

     4.4 Geometric Algebra 

There is a more general set of algebras called Clifford algebras that are built up 
from scalars and vectors much like Grassmann algebra is. A Clifford algebra has 
bivectors, trivectors, and all of the other elements of the same grades that appear 
in Grassmann algebra for a particular number of dimensions. The difference is that 
the basis vectors e ¡ are not required to square to zero. In n-dimensional Euclidean 
space, we may choose whether e¡ = O, e¡ = 1, or e¡ = -1 for each i with 1 ::; i ::; n, 
and those choices determine the structure of the algebra. It is still true that the basis 
vectors anticommute, but that is no longer a property of all vectors in the algebra. 
Grassmann algebra is the special case in which e¡

2 = O for every i. In this section, 
we provide a short introduction to geometric algebra, which is the Clifford algebra 
in which e¡

2 = 1 for every i, and we show how the quatemions are actually part of 
the 3D geometric algebra. In Volume 3, we will discuss the dual quaternions, 
which are part ofthe 4D Clifford algebra in which ef = ei = e; = 1 ande¡= O. 
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4.4.1 Geometric Product 

The geometric product is a type of multiplication discovered by William Kingdon 
Clifford (1845-1879) in his work to unify the quatemion product discovered by 
Hamilton and the wedge product discovered by Grassmann. The geometric product 
is written as juxtaposition without any multiplication symbol so that the geometric 
product between two quantities a and h is simply denoted by ah. The wedge prod­
uct is actually included in the geometric product, but as a whole, the geometric 
product contains additional pieces that make it behave differently. Whereas the 
defining characteristic of the wedge product given by Equation ( 4.1) states that any 
vector multiplied by itself must be zero, the geometric product has the property 

j aa = a ·a j (4.79) 

for any vector a, where the product on the left is the geometric product, and the 
product on the right is the ordinary dot product. 

If we consider the geometric product of a sum of two vectors a and h, as we 
did for the wedge product, then we have the equality 

(a+ h) (a+ h) = (a+ h) · (a+ h ). 

Expanding both sides of this equation independently gives us 

aa+ah+ ha+ hh =a·a+2a· h+ h · h, 

(4.80) 

(4.81) 

where we have used the fact that the dot product is commutative. The products aa 
and hh on the left side cancel the products a· a and h · h on the right side, and we 
are left with 

ah+ ha= 2a· h (4.82) 

as a fundamental property of the geometric product. 
For a set of orthonormal basis vectors e1 , e2 , • • •  , e

n
, the dot products satisfy 

e ·e.= {
1
'

1 J o 
' 

if i = j; 

if i * J. 

Plugging distinct basis vectors into Equation (4.82) therefore gives us 

from which we deduce the same anticommutativity property, 

(4.83) 

(4.84) 
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(4.85) 

that we had for the wedge product. It's important to understand, however, that we 
have established this only for basis vectors, and the property <loes not generally 
hold for ali pairs of vectors in the algebra. 

We can now form a complete picture of what the geometric product <loes when 
two vectors are multiplied together. As an example case, we consider two arbitrary 
3D vectors a= axe 1 + a

y
e2 + a,e3 and b = hxe1 + b

y
e2 + b,e3. The geometric prod­

uct ab is given by

(axe! +a
y
e2 +a,e3)(bxe1 +b

y
e2 +b,e3)=axbxe 1e 1 +a

y
b

y
e2e2 +a,b,e3e3 

+(a
y
bz -azby

)e2e3 +(azbx-axbz)e3e ¡ +(axby -a
y
bx)e1e2 , (4.86) 

Each product of a basis vector with itself is just one, and the terms containing the 
product of two distinct basis vectors have exactly the same coefficients as those 
given by the wedge product. We come to the conclusion that the geometric product 
between two vectors can be written as 

1 ab=a·b+aAb, (4.87) 

which is a multivector containing both a scalar part having grade zero and a bivec­
tor part having grade two. 

Equation (4.87) applies only to vectors, and there are generally more parts cre­
ated through the geometric product AB between two blades A and B having arbi­
trary grades. Each ofthese parts can have a grade g within the limits set by 

lgr(A)- gr(B)I � g � gr(A) + gr(B), (4.88) 

but g must differ from either end of this range by an even number. The reason for 
this is that any piece of the geometric product that yields something of a grade 
lower than the upper limit <loes so because the a particular basis vector in one factor 
is paired with the same basis vector in the other factor, and the two eliminate each 
other when they multiply to produce one. 

If we salve Equation ( 4.82) for a· b and substitute it in Equation ( 4.87), then 
we obtain the pair of relationships 

a · b = ½ ( ab + ba) 
aAb=½(ab-ba). (4.89) 
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These equations highlight the fact that the geometric product yields both commu­
tative and anticommutative components, represented by the dot product and the 
wedge product. The geometric product is completely commutative only when the 
vectors a and b are parallel because that's when the wedge product is zero. Other­
wise, solving the second equation for ba tells us that 

ba = ab - 2 a A b. ( 4.90) 

The geometric product is completely anticommutative only when the vectors a and 
b are perpendicular because that's when the dot product is zero. When a and b are 
neither parallel nor perpendicular, their geometric product contains a mixture of 
commutative and anticommutative parts. 

4.4.2 Vector Division 

Under the geometric product, a nonzero vector v has a simple inverse given by 

(4.91) 

and this is due to the fact that the product vv is equal to the scalar quantity v 2
• The

inverse allows us to investigate what it means to divide by a vector. For two vectors
a and b, the quotient a/b, which has the same meaning as ab-1

, must be the quantity
e such that a= cb. Thus, we can write the equation

When we expand the product ab with Equation ( 4.87), we get 

_a·b
b 

aAb
ba- b2 + b2 

(4.92) 

(4.93) 

The first term is exactly the projection of a onto b given by Equation (1.62), and 
this means that the second term must be the rejection of a from b. We can therefore 
formulate the projection and rejection operations as 

a·b 
ª11b = --

b 

aAb 
a .Lb

= --. 
b 

(4.94) 
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The division of a bivector by a vector in the formula for the rejection is inter­

esting because it illustrates the difference in the information contained in the purely 
bivector result of the wedge product a/\ b and the mixed scalar and bivector result 
of the geometric product ab. We've mentioned before that a bivector contains no 

information about its shape, so given a bivector G = a A b, we cannot expect to be 
able to recover the particular vector a originally used in the wedge product when 

we compute the quotient G/b because there are infinitely many possibilities. How­
ever, in the case that G = ab, where the geometric product appears in place of the 
wedge product, the scalar part in the result carries additional information about the 
angle between a and b through the cosine associated with the dot product. This 
tums an amorphous bivector into a parallelogram having a definite restriction on 
the shapes it can assume. The magnitude and orientation ofthe vectors composing 
the sirles of the parallelogram are still undetermined by G, but as soon as we actu­
ally specify one vector b, the other vector a can always be recovered. The vector 
given by G/b is the unique vector a possessing the proper magnitude and forming 
the necessary angle with b such that G = ab. 

In the case that G = a A b, the zero scalar part, corresponding to the cosine of 
the angle between sides ofthe parallelogram, is interpreted as meaning that G rep­
resents an oriented area whose shape must have right angles. Thus, dividing G by 

b yields a vector r that is orthogonal to b such that G = rb = r A b. For r A b to 
produce the same area as a A b, r must be the rejection of a from b, as shown in 
Figure 4.7. 

r 

.. 

a 

e 

r 

, 
, 

, 

, 

, 
, 

, 

a 

b 

Figure 4. 7. The bivectors a/\ b and r /\ b have the same area when r is the rejection of a 
from b. Because its zero scalar part enforces a right angle, the wedge product a /\ b behaves 
like the geometric product rb, and thus r is produced by (a/\ b )/b. 
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4.4.3 Rotors 

Suppose that a and vare vectors, and set G = av. If we divide G by v, then we get 
a right back, and that is not interesting. However, ifwe instead divide G by a, then 
something important happens. As shown in Figure 4.8, the quantity G/a must be 
equal to sorne value v' such that v'a = G, which means that 

v'=ava-1
• (4.95) 

When we decompose v' into its scalar and bivector parts and compare it to the 
projection and rejection ofv with respect to a, we see that 

, a·v aAv 
V =--+--

a a 

v·a v Aa 
=-----

a a 

=V ¡¡3
-V _¡_8 • (4.96) 

This is precisely the formula for the reflection across the vector a that was given 
by Equation (2.25). We called it an involution in Chapter 2 because in any odd 
number of dimensions, it's really a 180-degree rotation about a. In Figure 4.8, it's 
clear that the product of the reflected vector v' with a yields a quantity having the 
same shape and size as the product of a with the original vector v. 

V 

a 
a a 

a 

a 
v' = ava-

1 

Figure 4.8. Toe vector v' is the reflection ofthe vector v across the vector a. Because v' is 
the same length as v and makes the same angle with a as v <loes, the geometric product v'a 

yields the same scalar and bivector as the geometric product av.
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(a) 

v" = bv'b-1 

v' = ava-
1 

Figure 4.9. A vector v is rotated through the angle 20 by the rotor ba, represented by the 
green parallelogram. (a) The reflection across the vector a transforms v into v', and the 
second reflection across the vector b transforms v' into v". (b) In the plane determined by 
b /\ a, the two reflections combine to form a rotation through the angle 2a + 2/3 from a to 
b, where a is the angle between a and v, and /J is the angle between b and v'. 

Let's now consider what happens when a reflection across a vector a is fol­
lowed by another reflection across a vector b. The first reflection transforms an 
arbitrary vector v into a new vector v' through the formula v' = ava -1

• The second
reflection transforrns v' into another new vector v" through the formula 

(4.97) 

These two steps are illustrated in Figure 4.9. If we set R = ba, then we can write 

(4.98) 

after recognizing that ( ba )-1 
= a -l b-1

• The bivector part ofR is oriented in the plan e
deterrnined by the vectors a and b. As shown in Figure 4.9(a), the component ofv 
perpendicular to this plane is negated by the first reflection, but is then negated 
again by the second reflection, so it <loes not change under the full transformation 
given by Equation ( 4.98). 
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The effect of the transformation on the other component ofv is shown in Fig­
ure 4.9(b). For the sake of simplicity, we assume that v lies in the plane with the 
understanding that the following explanation otherwise applies to only the compo­
nent of v that is parallel to the plan e. The first reflection moves v to a new direction 
v' making an angle 2a with v, where a is the angle between a and v. The second 
reflection then moves v' to a new direction v" making an angle 2/J with v', where 
/J is the angle between b and v'. As shown in the figure, the angle 0 between the 
vectors a and b is equal to a+ /J, and we can conclude that the two reflections 
combine to form a rotation through the angle 20. 

The quantity R = ha is called a rotor, and the sandwich product given by Equa­
tion ( 4.98) rotates vectors through an angle 20 in the direction from a to b parallel 
to the bivector b A a, where 0 is the angle between a and b. Note that the direction 
of rotation is the opposite of the winding direction associated with the bivector 
b A a. For this reason, a rotor R is typically written as 

R =a·b-aA b, (4.99) 

which also follows from Equation (4.90). Although we have only considered the 
effect of rotors on vectors, we can deduce that rotors apply the same rotations to 

ali higher-grade elements as well because for any two vectors u and v, we have 

(4,100) 

Our description of rotors so far is val id in any number of dimensions, but it is 
usually 3D space that matters to us. In three dimensions, the wedge product a A b 
can be interpreted as the complement of an axis of rotation given by ax b. If a and 
b have unit length, then Equation ( 4.99) can be written as 

R = cos 0 -sin 0 o, (4.101) 

where n is a unit vector pointing in the same direction as ax b. This rotates through 
an angle of20, so a rotor that rotates through an angle 0 is given by 

R 
0 

( 
. 0

)
_

= cos 
2

- sm 
2 

n. ( 4.102) 

Upon comparison with Equation (2.61), it's now clear that rotors in three dimen­
sions are equivalent to the set of quatemions. Due to the subtraction of the bivector 
part in Equation ( 4.102), the imaginary units i,j, and k are equated with the negated
basis elements for bivectors so that 
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(4.103) 

As we mentioned in Chapter 2, it wasn't quite correct to call a quatemion the 
sum of a scalar part and a vector part, and we now know that a quatemion is really 
the sum of a scalar part and bivector part. Whenever we calculated the sandwich 
product qvq • to rotate a vector v with a quatemion q, we were actually treating v
as a bivector, which works in three dimensions because it has the same number of 
components as a vector. The use of the quatemion conjugate arises from the fact 
that the inverse of ba is just ab when a and b have unit length, and reversing the 
order ofthe factors in the geometric product oftwo vectors has the effect of negat­
ing the bivector part of the result. (This is generalized as the concept of the reverse 
operator in Exercise 13.) 

     4.5 Conclusion 

The goal ofthis chapter has been to provide deeper insights into much ofthe math­
ematics presented in Chapters 1, 2, and 3 by demonstrating how various conven­
tional concepts with seemingly disparate origins fit neatly together in the more 
general settings ofGrassmann algebra and geometric algebra. Many ofthe specific 
mathematical tools covered earlier in this book are listed in Table 4.7 alongside 
their replacements within the topics covered throughout this final chapter. 

Conventional Concept Grassmann / Geometric Algebra Concept 

Cross product ax b of two 3D vectors. W edge product a /\ b of two 3 D vectors. 

Sea lar triple product [ a, b, e] of three 
Wedge product a/\ b /\ e of three 3D vectors. 

3D vectors. 

Dot product a · b of two vectors. 
Antiwedge product a v b or ! v b of vector 
and antivector. 

lmplicit plane [ n I d]. 
Antivector nxe, + n

y
e2 + nze3 + de4 in 4D 

projective space. 

Implicit line { v I m} in Plücker Bivectorvxe4, +v
y
e42 +vze43 +mxe23 +m

y
e3, 

coordinates. + mze,2 in 4D projective space. 

Quatemion q =xi+ yj + zk + w.

Even-grade multivector w-xe23 - ye31 - ze12 

in 3D geometric algebra. 

Table 4.7. This table summarizes the mathematical concepts covered in earlier chapters 
that have natural replacements within Grassmann algebra or geometric algebra. 
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          Exercises for Chapter 4 

l. Prove that the area of a parallelogram whose sides are given by the 2D vectors
a and b, shown in Figure 4.10, is equal to axhy 

-a
y
hx by calculating the areas

of regions A, B, and C using only the components of a and b.

b 

Figure 4.10. The parallelogram used in Exercise l. 

2. Let A and B be blades in an n-dimensional Grassmann algebra. Under what
conditions is it true that A/\ B * A /\ B?

3. Prove that all ( n - I )-vectors are ( n -1 )-blades for n � 4 by showing that the
sum of any two ( n - I )-blades must also be an ( n -1 )-blade.

4. In four dimensions or higher, prove that a 2-vector A is a 2-blade if and only
if Á/\Á =Ü.

5. Show that Equation ( 4.40) can be derived from Equation ( 4.39) and vice versa,
demonstrating that one version of the laws implies the other version.

6. Show that ali of the equalities in Equation (4.49) still hold true if a and b are
replaced by k-blades A and B having any grade k. This defines an inner prod­

uct between arbitrary blades of the same grade. Furthermore, show that

A·B=A·B=A·B. 

7. Defme A-l B = � v B to be the left interior product between any blades A and
B that don't necessarily have the same grade. Prove that

A-1(B-1C)=(AAB)-1C. 



                           Exercises for Chapter 4 

8. Consider the bivector resulting from the wedge product between two 4D vec­
tors a and b, as shown in Equation ( 4.50). Referring to this result in the form
ofEquation (4.52), show that the 3D vectors ( Lvx , L

vy
, Lvz) and (Lmx , Lmy, Lm,)

are always orthogonal.

9. For any three noncollinear points p, q, and r, prove that Equation (4.56) is
equivalent to the trivector produced by p /\ q /\ r.

10. Show that the components of p v e4 , L v e4, and f v e4 that are not identically
zero are exactly those that need to be normalized in order to project the point
p, line L, and plane finto 3D space.

11. Find a formula for the fourth row (having a row index of 3) of the in verse of a
7 x 7 matrix whose columns are given by the 7D vectors a, b, e, d, f, g, and h.

12. Show that for any unit vector v, the quantity ( 1 + v )/2 is idempotent under the
geometric product. (A quantity a is called idempotent if a 2 = a.)

13. The reverse of a k-blade A= v 1 /\ v 2 /\ • • • /\ v k is the k-blade Á produced by
multiplying ali of the factors v; in reverse order so that Á = v k /\ v k-I /\ • • • /\ v 1• 

Find a function f ( k) such that Á = ( -1 f(k) A.

14. Let L be a line having direction vector v and moment bivector m. Show that
m/v, using vector division under the geometric product, is the vector extending
from the origin to the point on L closest to the origin.

15. Show that the set of ali multivectors having only even-graded parts in an
n-dimensional geometric algebra is closed under multiplication. That is, for
any two multivectors of the form A 1 + A2 + · · ·, where each A; is a blade of
even grade, show that their geometric product has the same form. This subset
is called the even subalgebra.

16. Prove that the even subalgebra of the three-dimensional geometric algebra is
isomorphic to the two-dimensional Clifford algebra in which e� = eI = -1.

   183 



A 

adjugate, ofmatrix, 47 

affine transformation, 56 

anticommutativity 

of antiwedge product, 156 

of cross product, 28 

ofwedge product, 139 
antisymmetric matrix, 12 

antivector, 153-55 

antiwedge product, 155-58 

B 

binomial coefficient, 146, 150 

bivector, 139--41 
blade, 145 

e 

Clifford algebra, 137, 173 

Clifford, William Kingdon, 174 

column vector, 12 

column-major order, 14 

combinatorial product, 155 
complement, 149-53 

left complement, 152 

ofvector, 153 

right complement, 151 

lndex 

conjugate, of quatemion, 84, 181 

coordinate space, 55-59 

cross product, 24-30, 141, 151 

D 

De Morgan's laws, 156 
determinant, 3 7--41, 170 

diagonal matrix, 11 

distance 

between point and line, 108-9 

between point and plane, 115-16, 

166 

between two lines, 110-12, 131, 164 

dot product, 20-24, 158 

dual numbers, 146 

dual quatemions, 173 

E 

elementary matrix, 42--44 

elementary row operation, 42 
Euler formula, 98 

exterior algebra. See Grassmann algebra 

exterior product. See wedge product 

G 

Gauss-Jordan elimination, 45 
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geometric algebra, 173-81 

geometric product, 174-76 

grade, 144 
of antiwedge product, 157 

ofwedge product, 145 

grade function, 145 

gradient, 99 

Gram-Schmidt process, 35 

Grassmann algebra, 13 8-5 8 

Grassmann, Hermann, 13 7 

H 

Hamilton, William Rowan, 82 

handedness, 26 

homogeneous coordinates, 74-81 

I 

identity 

matrix, 3 6-3 7 

permutation, 39 

quatemion, 84 

index list, 97 

inner product, 182 

interior product, 158, 182 

intersection 

of line and plane, 119-20 

ofthree planes, 120-22 

oftwo planes, 122-24 

inverse 

ofmatrix, 36-50, 170-73 

of quatemion, 84 
ofvector, 176-77 

involution, 66---68 

J 

join, 162---63 

L 

Lagrange's identity, 27 

left complement, 152 

Leibniz formula, 39, 171 

line, 107-12 

crossing orientation, 163---65 

distance between point and line, 108-

9 

distan ce between two lines, 110-12, 

131, 164 

implicit, 126-28 

in Grassmann algebra, 159---60 

intersection ofline and plane, 119-20 

moment, 126 

normalization, 127, 167 

parametric, 107-8 

skew lines, 11 O 

transformation, 132-33 

Line data structure, 128 

linear independence, 35 

M 

magnitude 

of quatemion, 84 

of vector, 5-8 

matrix 

addition and subtraction, 16 

adjugate, 47 

antisymmetric matrix, 12 

determinant, 37--41, 170 

diagonal entries, 11 

diagonal matrix, 11 

elementary matrix, 42--44 

entries, 11 

fundamentals, 11-15 

identity, 36-37 

inverse, 36-50, 170-73 

minor, 39 

multiplication, 16-20 

orthogonal, 57 

scalar multiplication, 16 

singular matrix, 46 
square matrix, 11 

symmetric matrix, 12 

transpose, 12, 57 

Matrix3D data structure, 14 

meet, 162---63 
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minor, ofmatrix, 39 
moment, ofline, 126 
multivector, 148 

N 

nonuniform scale, 69 
normal vector, 99-106 

calculation, 99-1 O 1 

transformation, 102-6 
normalization 

ofline, 127, 167 

ofplane, 115, 167 
ofvector, 7 

o 

object space, 55 

orthogonal matrix, 57 

orthogonal transform, 57-58 
orthogonal vectors, 22 

orthogonalization, 34 

outer product, 33 

p 

Pascal's triangle, 146, 147, 150 
plane, 112-25 

distance between point and plane, 

115-16, 166

front and back sides, 116 
implicit, 113-15 
in Grassmann algebra, 160-61 
intersection of line and plane, 119-20 
intersection ofthree planes, 120-22 
intersection oftwo planes, 122-24 
normalization, 115, 167 
parametric, 112 
transformation, 124-25 

Plane data structure, 114-15 
Plücker coordinates, 125-33, 159 
Plücker, Julius, 125 

point 
at infinity, 74 

distance between point and line, 108-
9 

distance between point and plane, 
115-16 

in homogeneous coordinates, 74 

Point3D data structure, 78 
progressive product. See wedge product 
projection, ofvector, 33, 176 
projective geometry, 159-70 
pseudoscalar, 149 
pseudovector, 154 

pure quatemion, 87 

Q 
quadrivector, 143 

quatemion, 82-94, 180 

conjugate, 84, 181 
fundamentals, 82-86 
inverse, 84 

magnitude, 84 
multiplication, 83 

pure, 87 
rotation, 87-94 
unit quatemion, 87 

Quaternion data structure, 86 

R 

ray, 107-12 
reflection 

with matrix, 65-68, 117-18 
regressive product. See antiwedge 

product 
rejection, of vector, 33, 176 
reverse operator, 181 
right complement, 151 
right-hand rule, 26, 99, 127 
rotation 

about arbitrary axis, 62-65 
about coordinate axis, 59-62 
with matrix, 59-65 
with quatemion, 87-94 

with rotor, 178-81 
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rotor, 178-81 
row vector, 12 

row-major order, 14 

s 

sandwich product, 87, 89, 180 

scalar, 1 

scalar product. See dot product 
scalar triple product, 30-31, 143 
scale, 69-71 
singular matrix, 46 

skew, 71-73 
skew lines, 11 O 

skew-symmetric matrix. See

antisymmetric matrix 

square matrix, 11 

symmetric group, 39 
symmetric matrix, 12 

T 

theory of extension, 13 7 

transform, 55-94 

composition, 58-59 
involution, 66-68 
orthogonal, 57-58 
reflection, 65-68, 117-18 

rotation, 59-65 
scale, 69-71 

skew, 71-73 
Transform4D data structure, 79-81 
transpose, ofmatrix, 12, 57 
triangle inequality, 51 

triangle mesh, 97-99 
closed, 98 

triangulation, 98 
trivector, 142--43 

u 

uniform scale, 69 

unit quatemion, 87 
unit vector, 6 

V 
vector 

addition and subtraction, 8-1 O 
colurnn vector, 12 

components, 2 
division, 176-77 
fundamentals, 1-3 

magnitude, 5-8 

multiplication, 20-31 

normal vector, 99-106 

normalization, 7 

orthogonal vectors, 22 
projection, 31-36, 176 
rejection, 33, 176 

row vector, 12 

scalar multiplication, 5-8 

unit vector, 6 

zero vector, 5 
vector product. See cross product 
vector triple product, 28-30 

Vector3D data structure, 4 

volume element, 149 

w 

wedge product, 138-39 
winding direction, 99 
world space, 55 

z 

zero vector, 5 
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