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Preface 

�is book explores the mathematical foundations of real-time rendering methods 
used in modern game engines. �is vast subject includes an enormous variety of 
techniques that must balance the goals of visual quality and performance. �ese 
goals are achieved through the application of solid engineering principles, and we 
emphasize that fact by including a large amount of technical detail. Because de-
tails require a lot of space, we could not hope to cover every major topic in the 
field of computer graphics in a single volume, so we focus primarily on the most 
important fundamentals. But even those topics have become rather complex, and 
this book is filled with some lengthy expositions as a result. 
 �e six chapters in this book are numbered five through ten, and this number-
ing is a continuation of the four chapters appearing in the first volume. In this 
second volume, we assume that the reader is familiar with the subject matter cov-
ered in Chapters 1–3, which includes vectors, matrices, transforms, and basic 3D 
geometry. We do not rely on any knowledge of the advanced algebra covered in 
Chapter 4. �e first volume is not required reading for someone who is already 
proficient in mathematics, but there are occasional references in this book to spe-
cific locations in Volume 1. �ose can be identified by a first number of 1, 2, 3, or 
4 in the x.y notation used for numbering sections, equations, etc. 
 We begin the second volume with a general overview of graphics processing 
in Chapter 5. �is includes an introduction to color science, a discussion of game 
world structure, and a light review of graphics hardware capabilities. Chapter 6 is 
much more mathematical, and it contains a thorough treatment of projections. In 
Chapter 7, we move on to the topic of shading, where we describe the details of 
basic rendering concepts as well as some advanced texture mapping techniques. 
�at is followed by a rather long discussion of lighting and shadows in Chapter 8. 
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�e focus changes somewhat in Chapter 9 where we address performance on a 
large scale by visiting the topics of visibility determination and occlusion culling. 
Finally, Chapter 10 presents several advanced rendering techniques in extreme 
detail. Much of this combines the author’s own original research with existing 
methods to provide highly practical engineering advice. 
 �is book does not teach the use of any specific graphics API or shading lan-
guage, and it is not intended to be a primary source of information about how to 
use a graphics processor in general. Many excellent resources on these topics are 
available, and we prefer not to include redundant material here. However, it was 
necessary to choose certain conventions employed by graphics APIs and shading 
languages to be used throughout this book. �e choices of axes in various coordi-
nate systems generally agree with Direct3D and Vulkan. Shader code is written in 
a generic hybrid of HLSL and GLSL. �e types and built-in functions found in 
our shaders use the names defined by HLSL, but uniform constants and texture 
functions use the GLSL syntax for its succinctness. Conversion to the reader’s 
shading language of choice is expected to be a simple task. 
 �ere are many example code listings in this book, and most of them are 
much more complicated than the listings found in Volume 1. Programs that run 
on the CPU are written in C++, and programs that run on the GPU are written in 
our generic shading language. None of these examples are written in “pseudo-
code”. With the exception of minor tweaks that might be necessary to compile for 
a specific environment, all of the examples consist of production-ready code that 
works. �e code listings can be downloaded from the website given below, and a 
license for its usage is included. To save space, a lot of the code appearing in the 
book is written in a highly compact form, sometimes to the detriment of readabil-
ity. �e code on the website is more loosely formatted. In the case of the march-
ing cubes algorithm discussed at the end of Chapter 10, some data tables have 
been omitted from the code listings in the book, but they are included with the 
code on the website. 
 We assume that the reader has a solid understanding of basic trigonometry 
and the linear algebra topics covered by Chapters 1–3 of the first volume. We 
also assume a proficiency in calculus (including Newton’s method) because its 
use is necessary at many places throughout this book. On the engineering side, 
we assume that the reader has a working knowledge of the C++ language, some 
experience using a GPU shading language, and an understanding of how standard 
floating-point numbers operate. 
 Important equations and key results appearing in the text are boxed with a 
blue outline. This is intended both to highlight the most valuable information and 
to make it easier to find when using the book as a reference. 
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 Each chapter concludes with a set of exercises, and many of those exercises 
ask for a short proof of some kind. The exercises are designed to provide addi-
tional educational value, and while many of them have easy solutions, others are 
more involved. To ensure that getting stuck doesn’t deprive any reader of a valu-
able learning experience, the answers to all of the exercises are provided on the 
website cited below. 
 This book is the second volume in a series that covers a wide range of topics 
related to game engine development. The official website for the Foundations of 
Game Engine Development series can be found at the following address: 
 
 foundationsofgameenginedev.com 
 
This website contains information about all of the books in the series, including 
announcements, errata, code listings, and answers to exercises. 

Mathematical Conventions 
We continue to use the mathematical conventions and much of the same notation 
that was introduced in the first volume: 

■ A vector v representing a direction vector is written in a bold style, and a 
vector  representing a point is written in a bold script style. �ese are differ-
entiated because, when extending to 4D homogeneous coordinates, a direc-
tion v acquires a w coordinate of zero, and a point  acquires a w coordinate 
of one. 

■ The notation ( )| wp  represents a homogeneous point with ( ), ,x y z=p , the 
notation [ ]| dn  represents a plane with normal direction n and distance to 
origin d, and the notation { }|v m  represents a line with direction v and mo-
ment m. 

■ Indexes referring to rows and columns of a matrix are zero-based. For exam-
ple, the notation 00M  refers to the upper-left entry of the matrix M. 

■ �e notation [ ]jM  refers to the zero-based j-th column of the matrix M. If M 
is a 4 4×  transformation matrix having a fourth row of [ ]0 0 0 1 , then [ ]0M , 

[ ]1M , and [ ]2M  are direction vectors, and [ ]3M  is a point. 
■ Ordinary vectors are treated as column matrices. Normals and planes, which 

are antivectors, are treated as row matrices. 
■ A matrix M transforms a vector v as Mv. A normal is transformed as 1−nM . 
■ If v is a 4D vector, then the notation xyzv  refers to the 3D vector consisting of 

the x, y, and z components. 
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 In this volume, we make use of two common shader functions, saturate and 
normalize, in mathematical expressions appearing outside shader code. �ey are 
abbreviated ( )sat x  and ( )nrm v  and defined as follows. 

 
( ) ( )( )

( )

sat min max , 0 ,1

nrm

x x=

=v v v
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Chapter 5 

Graphics Processing 

�e rendering components of a game engine have the job of producing a two- 
dimensional image representing the current state of a three-dimensional world as 
seen from a given viewing position at a particular point in time. Each of these two-
dimensional images is called a frame, and the speed at which they are produced is 
called the frame rate. Most applications need to render images at a frame rate of at 
least 30 frames per second, and many need no less than 60 frames per second. �is 
allows very little time, no more than about 33 milliseconds and 16 milliseconds, 
respectively, for each frame to be drawn. �e entire process can be extremely com-
plex, and it usually involves an enormous amount of computation despite the fact 
that game engines are painstakingly designed to minimize their own workloads. 
When a frame is rendered, a sophisticated system involving large amounts of code 
for determining what parts of the world are visible under the current camera con-
figuration typically runs on the CPU. �e code that ultimately determines what 
color is assigned to each pixel on the display runs on the graphics processing unit 
(GPU) as a specialized set of relatively small programs called shaders. �is chapter 
provides an overview of the basic parts of this whole process and the general ca-
pabilities of the graphics hardware. 

5.1  Pixels 

During each frame, the visual output of a game engine is basically a large array of 
colored pixels that form a detailed image. �e term pixel, which is a shortened form 
of picture element, refers to the smallest individually addressable component of an 
image, and the dimensions of an image are usually characterized by the number of 
pixels composing its full width and height. �e term resolution is often used to 
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mean the dimensions of an image, but it can also refer to the number of pixels per 
unit distance, such as pixels per centimeter or pixels per inch. �ere are many 
standard image dimensions that correspond to the full display size of computer 
monitors and television sets, and several of the most common of these, both current 
and historical, are listed in Table 5.1. With time, the display resolutions have nat-
urally increased in overall size, and the standard aspect ratio, the ratio of the width 
to the height, has generally converged to 16:9. 

Standard Name 
Display 

Resolution Mpixels 
Aspect 
Ratio 

VGA 
Video Graphics Array 

640×480 0.307 4:3 

XGA 
Extended Graphics Array 

1024×768 0.786 4:3 

HD / 720p 
High Definition 

1280×720 0.922 16:9 

SXGA 
Super Extended Graphics Array 

1280×1024 
1.31 5:4 

FHD / 1080p 
Full High Definition 

1920×1080 
2.07 16:9 

QHD 
Quad High Definition 

2560×1440 
3.69 16:9 

4K UHD 
Ultra High Definition 

3840×2160 
8.29 16:9 

8K UHD 
Ultra High Definition 

7680×4320 

33.2 16:9 

Table 5.1. This is a list of some of the most common standard display resolutions available 
along with an illustration of their relative sizes over the time period in which hardware-
accelerated 3D game engines have existed. 
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 Each of the millions of pixels on a typical display has an independent color 
determined by a mixture of red, green, and blue light emitted by the screen in var-
ious proportions at the pixel’s location. �e brightness of the pixel corresponds to 
the overall intensity of the three colors of light as the ratio among them is main-
tained. �is system for producing color imagery is called RGB color, and it is the 
standard way in which game engines compute the color information that is ulti-
mately displayed to the user through the GPU. 
 �e RGB color data for an image is stored in a block of memory called a frame 
buffer. Depending on the format, each pixel can occupy up to 128 bits of space 
inside the frame buffer, but images meant for display typically use 32 or 64 bits 
per pixel. �e storage for each pixel is divided into four channels that are normally 
interpreted as 8-bit unsigned integers in the case of 32 bits per pixel and as 16-bit 
floating point values in the case of 64 bits per pixel. �ree of the channels contain 
the intensities of the red, green, and blue color components. �e fourth channel is 
called the alpha channel, and it can contain any extra per-pixel information that 
may be useful to the application. �e alpha channel is not displayed, and it exists 
because it’s much easier for computers to work with multiples of four than it is to 
work with multiples of three. �e term RGBA color refers to a four-channel color 
that has red, green, blue, and alpha components. 
 �e 32-bit RGBA pixel format having 8-bit unsigned integer channels is shown 
in Figure 5.1. Here, the value of each channel can be one of 256 values in the range 
0 to 255, or in hexadecimal, 0x00 to 0xFF. �is number is an encoding of a frac-
tional intensity value in the range 0.0 to 1.0, representing the minimum and maxi-
mum intensities possible. When the graphics hardware reads an 8-bit channel, it 
divides by 255 to obtain the corresponding intensity value. 

Figure 5.1. �is is a typical byte layout for a 32-bit RGBA pixel format in which one byte 
is used to store values in the range 0–255 for red, green, blue, and alpha channels. 
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5.2  Color Science 

As a first step before learning about the methods used to render the 3D images, it 
is important to understand how humans perceive color and why the RGB system 
works, so we begin with a short introduction to color science. Color science is a 
vast subject that could easily fill an entire book, but we limit our discussion to the 
material necessary to understand the theoretical basis for the RGB color standard 
and the proper ways to use it in practice. 
 �e reason that RGB color is so prevalent as a way of producing color imagery 
has to do with the anatomy of human vision. Under brightly lit conditions, the 
perception of light near the center of the eye is dominated by three types of cone 
cells in the retina that are sensitive to different ranges of electromagnetic radiation 
within the visible spectrum. �is is called photopic vision, and it differs from sco-
topic vision under dimly lit conditions in which rod cells with no color discerning 
abilities dominate. �e three types of cone cells are classified as L cones, M cones, 
and S cones for long, medium, and short wavelengths. �e relative sensitivities to 
light due to each of the three types of cones are shown in Figure 5.2 as functions 
of wavelength, where the radiant intensity of the light remains constant. �e L 
cones make the greatest contribution to the perceived brightness of light because 
roughly 63% of the cone cells in the retina are L cones, with the M cones account-
ing for about 31% and the S cones making up the remaining 6%. 
 �e total brightness perceived by human vision regardless of color is repre-
sented by the luminosity function ( )V λ , also shown in Figure 5.2, and it roughly 
approximates the sum of the contributions from the three different types of cone 
cells. �e luminosity function peaks at a wavelength of 555 nm in the green-yellow 
part of the visible spectrum, and this is therefore the approximate color that humans 
perceive as the brightest. Conversely, blues, violets, and deep reds are perceived 
as much darker colors because they lie on the tail ends of the luminosity function. 
 �e light that we see, either emitted directly from a light source or reflected 
from various surfaces, is usually composed of many different wavelengths, and the 
specific composition is called the spectral power distribution of the light. �is dis-
tribution can be expressed as a function ( )P λ  giving the power corresponding to 
each wavelength λ. �e total amount of power emitted by a light source is called 
its radiant flux EΦ , and it is equivalent to the integral 

 ( )EΦ
λ
P λ dλ= ∫ , (5.1) 

where λ ranges over all wavelengths. Radiant flux is usually measured in watts, 
and the function ( )P λ  typically has units of watts per nanometer (W nm). �e 
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subscript E stands for “energetic”, and it indicates that the radiant flux EΦ  is based 
purely on the energy emitted from a light source. Because human perception of 
brightness depends on wavelength, radiant flux concentrated near one wavelength 
may not appear to have the same brightness as an equal amount of radiant flux 
concentrated near another wavelength. A different quantity of measurement called 
the luminous flux VΦ  takes this into account by weighting the spectral power dis-
tribution ( )P λ  by the luminosity function ( )V λ  inside the integral to produce 

 ( ) ( )VΦ 683
λ
V λ P λ dλ= ∫ . (5.2) 

Luminous flux is measured in units called lumens, which have the symbol lm. �e 
subscript V stands for “visual”, and it indicates that the luminous flux VΦ  incorpo-
rates the wavelength-dependent sensitivity of human vision. �e constant factor of 
683 appearing in Equation (5.2) reflects the fact that, by definition, there are 683 
lumens per watt where the luminosity function peaks (with a weight of one) at 
555 nm. �e value 683 was chosen so that quantities based on luminous flux meas-
ured in lumens would closely match historical units such as candlepower. 
 Regardless of how many different wavelengths of light are present, the three 
types of cone cells are capable of generating only three separate signals that can 
be sent to the brain for processing, and the intensities of those three signals are 
combined to form the final perceived color. �e magnitude of each signal is deter-
mined by a weighted sum of the intensity of the light at each wavelength, where 
the weights are given by the sensitivity curves shown in Figure 5.2. In the contin-
uous sense, the signal is the integral of the product of the light’s spectral power 
distribution and the cone sensitivity function over the entire visible range of wave-
lengths. 
 Because there are infinitely many ways that the same three signal magnitudes 
could be produced by integrating different spectral power distributions, colors per-
ceived by the brain do not have unique spectral compositions. It is possible for two 
(or many) different mixtures of wavelengths to appear as identical in color even 
though they have significantly different spectral power distributions, and such 
matching compositions are called metamers. All that matters is that the L, M, and 
S cones are stimulated with the same magnitudes, called the tristimulus values, and 
the perception of color does not change. Furthermore, when two compositions of 
light are mixed together, their separate L, M, and S tristimulus values add in an 
almost exact linear way to produce the tristimulus values of the mixture, which is 
know as Grassmann’s law (named after the same Hermann Grassmann as the 
Grassmann algebra introduced in Chapter 4). 
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Figure 5.2. �e red, green, and blue curves represent the relative sensitivities to light for 
an average observer at long, medium, and short wavelengths λ due to the stimulation of L, 
M, and S cone cells. �e black curve is the luminosity function ( )V λ  corresponding to the 
perceived brightness of light with the same radiant intensity at any particular wavelength, 
and it is roughly the sum of the other three curves. 

5.2.1  The CIE RGB Color Space 
�e linearity of the additive nature of the tristimulus values means that they form 
a three-dimensional vector space. However, this vector space is a bit peculiar be-
cause its basis vectors do not correspond to tristimulus values that are physically 
possible. �ere are no wavelengths of light that stimulate only one of the three 
types of cone cells without also stimulating at least one of the other two. If we do 
want our basis vectors to have physical meaning, then we can choose a set of three 
discrete wavelengths, called primaries, that can be mixed together to produce a 
wide range of perceived colors. �is concept led to color matching experiments in 
the 1920s that employed red, green, and blue lights as a basis for L, M, and S cone 
stimulation. 
 In the color matching experiments, the wavelengths of the green and blue 
lights were defined to be 546.1 nm and 435.8 nm, respectively, because they cor-
respond to emission lines for mercury vapor lamps. �ese wavelengths could be 
easily reproduced, and they are close to the peak sensitivities of the M and S cones 
in the green and blue parts of the spectrum. For the red light, a wavelength of 
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700 nm was chosen because the L cones have a wide range of sensitivity and ac-
count for most of the perception of reddish colors even though they peak in effec-
tiveness around the yellow part of the spectrum. Light with an exact wavelength 
of 700 nm was more difficult to produce at the time, but some amount of error was 
acceptable due to the fact that very little distinction among perceived colors occurs 
in that part of the spectrum. 
 �e result of the experiments was the set of color matching functions ( )r λ , 
( )g λ , and ( )b λ  shown in Figure 5.3 providing the amounts of the red, green, and 

blue primaries needed to match monochromatic light of a given wavelength λ. 
�ese functions were standardized in 1931 by the International Commission on 
Illumination (abbreviated CIE for its French name Commission internationale de 
l’éclairage), and they became the bedrock upon which almost all of color science 
is now built by defining the CIE RGB color space. �is is not the same RGB color 
space that virtually all display devices use today, but it does constitute the basis 
from which the modern standard is derived, as discussed below. 

 
Figure 5.3. �ese are the color matching functions for the CIE RGB color space. Each of 
the functions ( )r λ , ( )g λ , and ( )b λ  is multiplied by a given spectral power distribution 
and integrated over all visible wavelengths λ to determine the amounts of the R, G, and B 
primaries that combine to reproduce the perceived color. 
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 Note that light of a single wavelength not equal to one of the primaries cannot 
be exactly reproduced by mixing the R, G, and B primaries together. �is is re-
flected in the fact that the color matching functions all have ranges in which they 
take on negative values. �is is obvious for the red function, but it also occurs 
very subtly for the green and blue functions. As an example, consider an attempt 
to match the color of light having a wavelength of 500 nm using a mixture of the 
green and blue primaries. When green light is added at its wavelength of 546.1 nm, 
it causes a much greater stimulation of the L cones than would normally occur at 
500 nm, as can be seen at these two wavelengths in Figure 5.2. Basically, too much 
red has been added, and thus the function ( )r λ  must be negative at 500 nm to 
compensate. Since a contribution from a primary cannot be negative, we think of 
a negative value in one of the color matching functions to be an addition of the 
same amount to the monochromatic light that we are attempting to match, now 
creating a mixture of two wavelengths that is as close as we can get to the pure 
spectral color. �is limitation defines the gamut of a color space, which is the set 
of all colors that can be produced by mixing together the primaries in any ratio. 
 Given an arbitrary spectral power distribution ( )P λ , the color matching func-
tions determine the corresponding amounts of the R, G, and B primaries through 
the integrals 

 

( ) ( )

( ) ( )

( ) ( ) ,

λ

λ

λ

R r λ P λ dλ

G g λ P λ dλ

B b λ P λ dλ

=

=

=

∫
∫
∫  (5.3) 

where the wavelength λ covers the full visible spectrum and is usually taken to be 
the range 380–780 nm. �e color matching functions are based on experimental 
data, and their values are tabulated at regularly spaced wavelengths, so the inte-
grals actually represent finite sums over a large number of data points. 

5.2.2  The CIE XYZ Color Space 
�e CIE RGB color space has a couple qualities that, at the time of its standardi-
zation, were seen as somewhat undesirable if it was to be used as an international 
standard upon which all color measurements would be based. First, the possible 
negative values generated by Equation (5.3) were considered unwieldy. Second, a 
light’s luminance, the perceived brightness without regard for color, was mixed 
into all three of the R, G, and B values. It was preferable to have all perceptible 
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colors expressed in terms of positive tristimulus values and to have luminance 
given directly by one of the tristimulus values. �is led to the creation of the CIE 
XYZ color space that is defined by the exact linear transformation 

 
2.768892 1.751748 1.130160

1 4.590700 0.060100
0 0.056508 5.594292

X R
Y G
Z B

     
     =     
          

 (5.4) 

with respect to the CIE RGB color space and its underlying experimental data. 
 When the transformation in Equation (5.4) is applied to the RGB color match-
ing function ( )r λ , ( )g λ , and ( )b λ  shown in Figure 5.3, it produces the XYZ color 
matching functions ( )x λ , ( )y λ , and ( )z λ  shown in Figure 5.4, which each have 
positive values over the entire visible spectrum. Furthermore, the entries in the 
second row of the matrix in Equation (5.4) were carefully chosen so that the func-
tion ( )y λ  would be as close as possible to the luminosity function ( )V λ  shown in 
Figure 5.2, and these are usually accepted as being exactly equal. �us, the Y com-
ponent of a color directly corresponds to its luminance, or apparent brightness, in 
the XYZ color space. 

 
Figure 5.4. �ese are the color matching functions for the CIE XYZ color space. Each of 
the functions ( )x λ , ( )y λ , and ( )z λ  is multiplied by a given spectral power distribution and 
integrated over all visible wavelengths λ to determine the values of the abstract X, Y, and 
Z components of the perceived color. 
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 �e X and Z components are somewhat abstract quantities that correspond to 
chromaticity, which is a measure of perceived color without regard for brightness. 
However, these components scale with the luminance Y as a color becomes lighter 
or darker. Normalized chromaticity coordinates x, y, and z that are always in the 
range [ ]0,1  and do not change with luminance are calculated by scaling a color 
( ), ,X Y Z  so that it lies on the plane 1X Y Z+ + =  using the formulas 

 Xx
X Y Z

=
+ +

,   Yy
X Y Z

=
+ +

,   and   Zz
X Y Z

=
+ +

. (5.5) 

Because these scaled values sum to one, only two of them are needed to fully de-
scribe the chromaticity of a color, and the third value is redundant. We can choose 
any two, but the standard practice is to take the x and y chromaticity coordinates 
and combine them with the original Y luminance value to form what is known as 
the xyY color space. �is is the universal standard through which any color visible 
to an average human observer, whether it be monochromatic or a mixture of many 
wavelengths, can be given a precise numerical specification, and it serves as a basis 
for defining other color spaces. Given the x, y, and Y values for a particular color, 
we can calculate the X and Z values using the inverse formulas 

 xX Y
y

=    and   1z x yZ Y Y
y y

− −
= = . (5.6) 

�ese are useful for converting among color spaces that are defined by the chro-
maticities of their primaries. 
 A two-dimensional plot of the colors corresponding to the xy chromaticity co-
ordinates is shown in Figure 5.5. �is is called the CIE xy chromaticity diagram, 
and even though it is not possible to reproduce all of them accurately in print, every 
color that can be perceived by the average human eye is included. �e curved line 
forming most of the outer boundary is the spectral locus consisting of monochro-
matic colors. �e chromaticity coordinates of a point on the spectral locus is found 
by using the ( )x λ , ( )y λ , and ( )z λ  color matching functions shown in Figure 5.4 
to determine the X, Y, and Z components for a single wavelength and then applying 
Equation (5.5) to obtain x and y. Any color not lying on the spectral locus is a 
mixture of multiple wavelengths. In particular, the shortest and longest wave-
lengths on the spectral locus are connected by the line of purples near the bottom 
of the diagram. �is line contains all of the fully saturated shades of purple that 
cannot be produced by any single wavelength of light. Any pair of xy coordinates 
falling outside the colored region of the diagram is considered to be the chroma-
ticity of an “imaginary” color because it has no physical manifestation. 
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Figure 5.5. �e CIE xy chromaticity diagram encompasses all colors visible to an average 
human observer. �e curved line is the spectral locus, and it represents the monochromatic 
colors composed of a single wavelength of light. �e dashed triangle is the sRGB color 
gamut enclosing all mixtures of the red, green, and blue primaries. �e small circle inside 
the gamut is the D65 white point corresponding to typical daylight. 

 �e ( )x λ , ( )y λ , and ( )z λ  color matching functions are normalized to have 
the same values when integrated for a flat light source having the same power at 
every visible wavelength. �is means that for such an ideal light source, ,X Y Z= =  
and thus the xy chromaticity coordinates of perfectly white light are ( )1 1

3 3,  . Of 
course, a flat spectral power distribution doesn’t actually occur in everyday set-
tings, so the CIE has defined standard illuminants that have specific relative pow-
ers given for a table of visible wavelengths. �e standard illuminant that pertains 
to computer graphics is called illuminant D65, and its spectral power distribution 
is shown in Figure 5.6. Illuminant D65 is designed to approximate average day-
light in a wide range of geographic locations throughout the year. �e number 65 
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Figure 5.6. �e solid blue line is the spectral power distribution of the standard illuminant 
D65, which is designed to approximate typical daylight. �e dashed black line is the dis-
tribution given by Planck’s black-body radiation law for a temperature of 6500 K. 

indicates that the illuminant is correlated with ideal spectral power distribution 
predicted by Planck’s black-body radiation law for a temperature of 6500 K, which 
is shown as the dashed line in the figure. 
 When we integrate the product of the ( )x λ , ( )y λ , and ( )z λ  color matching 
functions shown in Figure 5.4 and the spectral power distribution of illuminant 
D65 shown in Figure 5.6, the resulting chromaticity coordinates ( ),W Wx y  are 
given by 

 
0.3127
0.3290

W

W

x
y

=
= . (5.7) 

�ese coordinates define the white point for the illuminant, and this location is 
shown on the chromaticity diagram in Figure 5.5. �e luminances of the primaries 
in an additive color space are typically defined by requiring that a mixture of the 
primaries in equal proportions produces the given chromaticity of the white point 
at a luminance of 1WY = . 

5.2.3  The sRGB Color Space 
In the late 1990s, chromaticities of red, green, and blue primaries were chosen to 
closely match the display devices of the time, and they define what is known as the 
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standard RGB color space, or as it’s commonly called, sRGB color. (�is is differ-
ent from the CIE RGB color space, but because the sRGB primaries are defined in 
terms of chromaticities in the CIE XYZ color space, there is a concrete relationship 
between the two.) �e sRGB color space is the color space in which most computer 
graphics applications do their work by default, and it can be assumed as the correct 
color space when no other color space has been specified. 
 �e exact chromaticity coordinates ( ),R Rx y , ( ),G Gx y , and ( ),B Bx y  of the 
sRGB primaries are defined as 

 

( ) ( )
( ) ( )
( ) ( )

, 0.64, 0.33
, 0.30, 0.60
, 0.15, 0.06

R R

G G

B B

x y
x y
x y

=

=

= . (5.8) 

�ese primaries are shown as the points R, G, and B in Figure 5.5, and the triangle 
connecting them represents the color gamut of the sRGB color space. Colors out-
side of this triangle cannot be produced on a device that works only with positive 
values for each of the primaries. A large region of colors is excluded from the 
gamut in the upper-left part of the diagram, but the spectral locus is stretched out 
in that region. �us, larger distances there correspond to the same perceptible dif-
ferences in color as do smaller distances in other regions, so the gamut’s coverage 
isn’t as bad as it might seem based on area comparisons. 
 �e sRGB color space defines the color white as having the chromaticity 
coordinates given by Equation (5.7). �is allows us to calculate luminances RY , 

GY , and BY  of the red, green, and blue primaries by requiring that the colors 
( ), , ,R R Rx y Y  ( ), ,G G Gx y Y , and ( ), ,B B Bx y Y  sum to the white point ( ), ,1W Wx y . 
We cannot add colors directly with their ( ), ,x y Y  coordinates, but we can add their 
( ), ,X Y Z  coordinates, which we obtain by applying Equation (5.6). �is yields the 
equality 

 1 1 1 1
W W R R G G B B R

G

W W R R G G B B B

x y x y x y x y Y
Y

z y z y z y z y Y

     
     =     
          

, (5.9) 

from which we can solve for the luminances by inverting the 3 3×  matrix to obtain 

 

0.212639
0.715169
0.072192

R

G

B

Y
Y
Y

=
=
= . (5.10) 

�ese values tell us how much of the primaries to mix together in order to produce 
what is considered white light in the sRGB color space. 
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 In order to find a 3 3×  matrix sRGBM  that transforms any color from XYZ space 
into sRGB space, we can enforce the requirement that each primary, having the 
chromaticity given by Equation (5.8) and the luminance given by Equation (5.10), 
maps to a color ( ), ,R G B  in which the component corresponding to the primary 
is one and the other two components are zero. �is can be written as the matrix 
equation 

 sRGB

1 0 0
0 1 0
0 0 1

R G B
R G B

R G B

R G B

R G B
R G B

R G B

x x xY Y Y
y y y
Y Y Y

z z zY Y Y
y y y

 
      =        
  

M , (5.11) 

where the columns of the identity matrix on the right represent the red, green, and 
blue primaries at full brightness in sRGB space, and the columns of the matrix on 
the left are the corresponding coordinates in XYZ space. We solve for the conver-
sion matrix sRGBM  by simply inverting the matrix of primary XYZ coordinates to 
obtain 

 sRGB

3.240970 1.537383 0.498611
0.969244 1.875968 0.041555 ,
0.055630 0.203977 1.056972

− − 
 = − 

−  

M  (5.12) 

where each entry has been rounded to six decimal places. As expected, the matrix 
sRGBM  maps the D65 white point to the sRGB color ( )1,1,1 , as expressed by the 

equation 

 sRGB

1
1 1

1

W W

W W

x y

z y

   
   =   
      

M . (5.13) 

 �e inverse of sRGBM  is the matrix of XYZ primaries shown in Equation (5.11), 
and it provides the conversion in the opposite direction from the sRGB color space 
back to the XYZ color space. Its entries are given by 

 
1

sRGB

0.412391 0.357584 0.180481
0.212639 0.715169 0.072192 ,
0.019331 0.119195 0.950532

−

 
 =  
  

M  (5.14) 
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where again, each entry has been rounded to six decimal places. �e entries in the 
second row of 1

sRGB
−M  are the luminances RY , GY , and BY  given by Equation (5.10), 

and they are the coefficients by which the components of a color ( ), ,R G B  are 
multiplied to calculate that color’s luminance Y, as expressed by 

 0.212639 0.715169 0.072192Y R G B= + + . (5.15) 

�is is the formula used to convert a color image into a grayscale image containing 
only luminance information. �e three different coefficients represent the relative 
apparent brightness of each primary based on the luminosity function, and they 
sum to one because the RGB color ( )1,1,1 , which is white at full intensity, must 
have a luminance of one. 
 �e shader programs that render an image typically perform calculations in-
volving colors by treating each color as a 3D vector whose x, y, and z components 
represent intensities of the standard red, green, and blue primaries. Two colors can 
be added together componentwise just like vectors, and this is a perfectly valid 
operation due to Grassmann’s law. It is also valid to multiply a color by a scalar in 
the same way as a vector in order to increase or decrease its brightness. �ese two 
operations can be applied to full-intensity red, green, and blue colors acting as basis 
vectors with the values ( )1, 0, 0 , ( )0,1, 0 , and ( )0, 0,1  to produce the RGB color 
cube shown in Figure 5.7. In the figure, we can see the three faces where one of 
the components has a constant value of one, and the other two components vary 
from zero to one. �e cube demonstrates how red and green combine to form yel-
low, green and blue combine to form cyan, blue and red combine to form magenta, 
and all three primary colors combine to form white. On the back side of the cube, 
colors on each face have a component with a constant value of zero, and they meet 
at ( )0, 0, 0  to form black. �e diagonal connecting ( )0, 0, 0  to ( )1,1,1  contains all of 
the gray levels between black and white. 
 �ere are many situations in which two colors need to be multiplied together. 
For example, the color of a light may be expressed as one RGB color, and the color 
that a surface reflects may be expressed as another RGB color. To determine what 
color of light would reach the viewer, and thus what color the surface appears to 
have, the light color and reflection color are simply multiplied together. Such a 
product between colors is calculated by componentwise multiplication, and this 
usually produces an acceptable approximation to physical reality. Multiplying col-
ors in this way is not generally correct, but we cannot do better without additional 
information. �e proper way to multiply two colors is to calculate the product of 
their spectra at enough discrete wavelengths to yield accurate results. Continuing 
the example of reflected light, the spectral power distribution of the emitted light 
would need to be multiplied by the reflection spectrum of the surface. �at product 
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Figure 5.7. �e RGB color cube demonstrates how linear combinations of red, green, and 
blue in varying proportions form all of the colors that can be displayed. 

would then need to be multiplied by the red, green, and blue color matching curves 
for the sRGB color space and integrated to determine the intensities of each com-
ponent that should be displayed. For reasons that include computational expense 
and storage requirements, game engines do not typically go to such lengths to pro-
duce a physically correct result and simply make do with RGB color in multipli-
cative contexts. 
 The definition of a simple data structure holding the components of an RGB 
color is shown in Listing 5.1. The structure also includes an alpha component, so 
it is called ColorRGBA, and it has floating-point members named red, green, blue, 
and alpha that can be accessed directly. A constructor taking four values can be 
used to initialize the color, and the fourth value can be omitted to assign a default 
value of one to the alpha component. As done with the mathematical data structures 
presented in Volume 1, a default constructor is explicitly included here so that it’s 
possible to declare a color object without performing any initialization. Overloaded 
operators are provided for multiplying and dividing colors by scalar values and for 
adding, subtracting, and multiplying colors in a componentwise manner. 
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Listing 5.1. �is is the definition of a simple data structure holding the three components of an RGB 
color and an alpha value. Overloaded operators are provided for scalar multiplication and division 
as well as componentwise color addition, subtraction, and multiplication. 

struct ColorRGBA 
{ 
 float  red, green, blue, alpha; 
 
 ColorRGBA() = default; 
 
 ColorRGBA(float r, float g, float b, float a = 1.0F) 
 { 
  red = r; green = g; blue = b; alpha = a; 
 } 
 
 ColorRGBA& operator *=(float s) 
 { 
  red *= s; green *= s; blue *= s; alpha *= s; 
  return (*this); 
 } 
 
 ColorRGBA& operator /=(float s) 
 { 
  s = 1.0F / s; 
  red *= s; green *= s; blue *= s; alpha *= s; 
  return (*this); 
 } 
 
 ColorRGBA& operator +=(const ColorRGBA& c) 
 { 
  red += c.red; green += c.green; blue += c.blue; alpha += c.alpha; 
 } 
 
 ColorRGBA& operator −=(const ColorRGBA& c) 
 { 
  red −= c.red; green −= c.green; blue −= c.blue; alpha −= c.alpha; 
 } 
 
 ColorRGBA& operator *=(const ColorRGBA& c) 
 { 
  red *= c.red; green *= c.green; blue *= c.blue; alpha *= c.alpha; 
 } 
}; 
 
inline ColorRGBA operator *(const ColorRGBA& c, float s) 
{ 
 return (ColorRGBA(c.red * s, c.green * s, c.blue * s, c.alpha * s)); 
} 
 
inline ColorRGBA operator /(const ColorRGBA& c, float s) 
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{ 
 s = 1.0F / s; 
 return (ColorRGBA(c.red * s, c.green * s, c.blue * s, c.alpha * s)); 
} 
 
inline ColorRGBA operator +(const ColorRGBA& a, const ColorRGBA& b) 
{ 
 return (ColorRGBA(a.red + b.red, a.green + b.green, 
                   a.blue + b.blue, a.alpha + b.alpha)); 
} 
 
inline ColorRGBA operator −(const ColorRGBA& a, const ColorRGBA& b) 
{ 
 return (ColorRGBA(a.red − b.red, a.green − b.green, 
                   a.blue − b.blue, a.alpha − b.alpha)); 
} 
 
inline ColorRGBA operator *(const ColorRGBA& a, const ColorRGBA& b) 
{ 
 return (ColorRGBA(a.red * b.red, a.green * b.green, 
                   a.blue * b.blue, a.alpha * b.alpha)); 
} 

5.3  Gamma Correction 

In the days of cathode ray tube (CRT) displays, the brightness of each color channel 
belonging to a pixel was determined by a nonlinear function of the input signal due 
to the way in which the electrical circuitry behaved. �e displayed brightness displayV  
of a particular input value signalV  was given by the relationship 

 display signal
γ γV V= , (5.16) 

where the exponent γ was typically in the range 2.0 to 2.5. �is function is called a 
gamma curve after the Greek letter used for the exponent, and although not neces-
sary from an engineering standpoint, newer display technologies intentionally 
maintain this relationship for the sake of consistency. 
 �e existence of the gamma curve means that the final colors calculated when 
a world is rendered should not be directly displayed because most intensities will 
appear too dark. �is is demonstrated in Figure 5.8, where a linear ramp of gray-
scale intensities is shown as it would appear on a normal display with a gamma 
value of about 2.2. Due to Equation (5.16), the intensity value of 0.5 has an actual 
brightness of about 22% when displayed, much less than the 50% brightness that 
was intended. To compensate for this effect, gamma correction must be applied to 
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Figure 5.8. �ese two grayscale ramps illustrate the difference between linear intensity 
values and gamma corrected intensity values as they would be displayed on a monitor. 

color values before they are stored in the frame buffer. An intensity value is gamma 
corrected by raising it to the power 1 γ to perform the inverse operation of Equa-
tion (5.16). �e result is demonstrated by the second grayscale ramp in Figure 5.8, 
for which the correct brightness is displayed at all intensity values. 
 When a color is described as being encoded as sRGB, it usually implies that 
the intensity of each component has been gamma corrected and is stored as a non-
linear value, and we will use the term sRGB for that exact meaning. A color that 
has not been gamma corrected is described simply as linear. (Both types of colors 
make use of the same set of sRGB primaries.) �e sRGB standard defines conver-
sion functions between linear components and sRGB components that are a little 
different from the relationship in Equation (5.16) in order to avoid an infinite de-
rivative near zero. Each component c of a linear color is gamma corrected to con-
vert it to a component of an sRGB color using the function sRGBf  defined by 

 ( )sRGB
1 2.4

12.92 , if 0.0031308;

1.055 0.055, if 0.0031308.

c c
f c

c c

≤= 
− >

 (5.17) 

In the reverse direction, each component c of an sRGB color is converted to a 
component of a linear color using the function linearf  defined by 

 ( )linear 2.4

, if 0.04045;
12.92

0.055 , if 0.04045.
1.055

c c
f c

c c

 ≤= 
+  >  

 (5.18) 
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�ese two functions are plotted in Figure 5.9, and they are exact inverses of each 
other. Even though an exponent of 2.4 is used by these conversion functions, the 
overall shape of linearf  closely approximates Equation (5.16) with the gamma value 
of 2.2 used by most displays, and the function ( ) 2.2f c c=  is shown in the figure 
for comparison. What this means is that the function sRGBf  is very close to the in-
verse of the gamma curve applied by the display, so the gamma correction applied 
by sRGBf  causes the displayed intensities to appear linear. 
 Gamma correction has an additional benefit when images are stored in a low-
precision format such as one that uses eight bits per channel. �e human eye is able 
to detect smaller differences in brightness at low intensities than it can at high in-
tensities. �erefore, if intensities are stored in a linear manner, then too many dis-
crete values are dedicated to bright intensities that cannot be distinguished from 
each other, and too few discrete values are dedicated to dim intensities where dis-
tinguishing adjacent values is easy. Applying gamma correction redistributes the 
256 available values so that fewer of them correspond to bright intensities, and 
more of them correspond to dim intensities. �is allows greater precision at the 
intensity levels where the eye is more discerning. It applies to images that are auth-
ored directly in the gamma-corrected space or images stored at a higher bit depth 

 
Figure 5.9. �e function sRGBf , shown as the green curve, converts linear colors to sRGB 
colors by performing gamma correction. �e function linearf , shown as the blue curve, is the 
inverse function that converts sRGB colors to linear colors by removing gamma correction. 
�e dashed purple curve is the 2.2 gamma curve applied by the display, which is approxi-
mately the same as linearf , causing gamma corrected colors to appear to be linear. 
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that have gamma correction applied before they are converted to the lower preci-
sion of eight bits per channel. For this reason, gamma correction is sometimes 
called gamma compression because some of the higher precision is retained by the 
redistribution of intensity values. 
 Most digital image formats, such as JPEG and PNG, store colors with gamma-
corrected intensities in the sRGB color space by default. However, rendering 
calculations that involve lighting, reflections, and atmospheric effects all need to 
occur in a linear space. �e final colors then need to be gamma corrected before 
they can be displayed. To make all of this easier, the graphics hardware is capable 
of automatically performing the conversions given by Equations (5.17) and (5.18) 
at the appropriate times as discussed at various points in this book. 

5.4  World Structure 

It is common for a complete game world to contain many thousands or even mil-
lions of objects. �ese objects are generically referred to as nodes, and they can 
often be categorized into a diverse group of specific types based on their functions 
within the virtual environment, as described by the following examples. 

■ A geometry node, usually made up of triangle meshes, represents a solid object 
that can participate in both rendering and collision detection. 

■ A light node represents one of several different kinds of light sources. 
■ A camera node represents the point of view from which the world is rendered. 
■ An effect node represents any type of visual effect that isn’t necessarily solid 

geometry, including fire, particle systems, lightning bolt, laser beams, scorch 
marks, and light shafts. 

■ A trigger node represents a volume of space that could initiate a scripted se-
quence of events when some other object, like a character, passes through it. 

■ A shape node represents a simplified component of a rigid body controlled by 
the physics simulation. 

 Most nodes are simultaneously members of a number of independent data 
structures serving different purposes. As discussed below in this section, each node 
usually belongs to a transform hierarchy that establishes local coordinate systems. 
As discussed later in Chapter 9, geometry nodes may also belong to some kind of 
spatial organization structure used by the game engine to efficiently determine 
what subset of nodes contribute to the final rendered image. Volume 4 will discuss 
how nodes representing rigid bodies are often stored in additional data structures 
used by the physics simulation. All of these ways of organizing the world exist so 
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that it is possible for a game engine to finish the many tasks it needs to perform 
within the short time available during each frame. 

5.4.1  Coordinate Spaces 
Game engines make use of several different coordinate systems throughout the 
rendering process. In particular, each type of node has a local coordinate system 
called object space that has the same configuration for every node of that type. �e 
origin and axis directions in object space are purposely chosen to be a natural fit 
for the geometry of the object so they are easy to work with. For example, the 
object-space origin object  for every box node could be located at a specific corner 
of the box, and the coordinate axes would naturally be aligned parallel to its edges, 
as shown in Figure 5.10. In the case of a light node, the object-space origin light  
would ordinarily coincide with some central point of emission, and one of the co-
ordinate axes would be aligned to the primary direction in which light is emitted, 
if any. Similarly, the object-space origin camera  for a camera node would usually be 
located at its center of projection, and one of the coordinate axes would be aligned 
to the viewing direction, as done with the camera’s z axis in Figure 5.10. 

 
Figure 5.10. Every node has a local coordinate system called object space in which the 
origin and axes have a natural configuration. For the green box, the object-space origin 

object  coincides with one of the box’s corners, and the axes are parallel to the box’s edges. 
For the camera on the left side of the figure, the object-space origin camera  coincides with 
the center of projection, and the z axis points in the direction the camera is looking. Objects 
are positioned and oriented relative to a fixed global coordinate system called world space 
having the origin world . 
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 When talking about lights, cameras, or other specific types of nodes, we fre-
quently refer to the object space associated with those nodes using less generic 
terms such as light space or camera space instead of referring to them as the object 
space of the light or the object space of the camera. �e shorter terms concisely 
identify the pertinent nodes and remove possible ambiguities in contexts involving 
multiple object-space coordinate systems. 
 Camera space is an especially important coordinate system because it repre-
sents the orientation of the viewer. As described in Section 5.4.3 below, vertices 
are ultimately transformed into coordinate systems that are aligned to camera space 
as the objects they compose are rendered. When it comes to the coordinate axes in 
camera space, everybody seems to agree that the x axis points to the right, that the 
y axis is perpendicular to the viewing direction, and that the z axis is parallel to the 
viewing direction. However, different rendering systems use different conventions 
for whether the y axis points upward or downward and whether the z axis points 
directly into the visible scene or directly away from it. �e choice of axis configu-
ration determines whether camera space has a right-handed or left-handed coordi-
nate system. In this book, we choose to have the y axis point downward and to 
have the z axis point into the scene, as shown in Figure 5.10. �is creates a right-
handed coordinate system in which all three axes point in the directions of increas-
ing viewport coordinates. �e inherent consistency also avoids some negations that 
are easy to forget, thus lessening the difficulty of implementation. 
 �ere are countless situations in which two or more nodes must interact in 
some way. For example, whenever a camera can see an object that needs to be 
rendered, whenever a light illuminates an object, and whenever two physical ob-
jects collide, they are interacting. In order to perform meaningful calculations in-
volving more than one node, we must be able to establish the spatial relationships 
among them. �is is done by introducing a global coordinate system called world 
space and giving every node a 4 4×  transformation matrix M that represents its 
position and orientation in that space. �e matrix M transforms vectors and points 
from a node’s object-space coordinate system into the world-space coordinate sys-
tem. �e first three columns of M correspond to the world-space directions in 
which the node’s object-space coordinate axes point, and the fourth column of M 
corresponds to the world-space position of the node’s object-space origin. World 
space is fixed, and as nodes move around the world, their transformation matrices 
are updated to reflect their new positions and orientations. When an interaction 
occurs between two nodes A and B, any geometric calculations involved must be 
carried out in a common coordinate system. �is can be accomplished by trans-
forming all vector-like quantities belonging to both nodes into world space using 
their transformation matrices AM  and BM  or by transforming them from the object 
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space of one node into the object space of the other node using one of the matrix 
product 1

A B
−M M  or 1

B A
−M M . 

 One common choice for world space is shown in Figure 5.10. Here, the x and 
y axes lie in the horizontal plane, and the z axis points upward, creating a right-
handed coordinate system. �is is the definition of world space used by many game 
engines and modeling applications, and it’s the one we prefer to use in this book. 
Its configuration is a natural fit for environments in which the ground exists and 
objects such as characters and vehicles are able to move in any horizontal direction. 
(Having a z axis that points upward from a surface is also consistent with a coor-
dinate system called tangent space, which used extensively in Chapter 7.) �e x 
axis typically points to the east, and the y axis typically points to the north, just as 
they would on a 2D map of the world. Changes to the direction in which an object 
is facing, which would usually determine its direction of motion, generally occur 
in the x-y plane without involving the third dimension along the z axis, and this 
makes it easy to understand what transformations need to be made when an object 
makes a turn. 
 Another common choice for world space aligns the y axis with the up direction 
and places the x and z axes in the horizontal plane. Some game engines and mod-
eling applications use this definition of world space by default. Its configuration 
may be preferable for environments in which most movement occurs in a plane 
perpendicular to the ground, and horizontal motion is restricted to a single set of 
forward and backward directions. Where it makes sense to talk about directions on 
a map, the x axis typically points to the east just as it does in a z-up configuration. 
To form a right-handed coordinate system with the y axis pointing upward, the z 
axis must now point to the south. 
 When there is a mismatch between the world-space conventions used by two 
different applications, it can cause problems when moving geometric data between 
them. �is is particularly true when objects are created in a modeling application 
that uses one up direction, and those objects need to be imported into a game en-
gine that uses the other up direction. Fortunately, it is easy to convert from the y-up 
convention to the z-up convention or the other way around. Any 4D homogeneous 
vector can be transformed from world space with the y axis pointing upward to 
world space with the z axis pointing upward using the 4 4×  matrix 

 -up

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

z

 
 − =
 
 
 

M . (5.19) 
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When applied to a homogeneous point p, which is just a direction vector if 0,wp =  
the transformed point ′p  can be written as 

 ( )-up , , ,z x z y wp p p p′ = = −p M p . (5.20) 

�e reverse transformation from world space with the z axis pointing upward to 
world space with the y axis pointing upward is given by 

 -up

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

y

 
 
 =

− 
 
 

M , (5.21) 

which is, of course, the inverse of -upzM . Its effect on a homogeneous point p can 
be written as 
 ( )-up , , ,y x z y wp p p p′ = = −p M p . (5.22) 

 �e process of converting a 4 4×  matrix H, such as an object-space to world-
space transform, between y-up and z-up coordinate systems is slightly more in-
volved. In this case, we must use Equation (2.8) to perform the transformation, 
which states that for any 4 4×  matrix M that transforms vectors from one coordi-
nate system to another, the matrix H is transformed into the matrix 1−MHM . Since 

-upzM  and -upyM  have very simple forms, we can easily calculate this product and 
see how the entries of H are rearranged. If H is a matrix that transforms vectors 
into a world space with the y axis pointing upward, then the corresponding matrix 
′H  that transforms vectors into a world space with the z axis pointing upward is 

given by 

 

00 02 01 03

20 22 21 231
-up -up

10 12 11 13

0 0 0 1

z z

H H H H
H H H H

H H H H
−

− 
 − − − ′= =

− 
 
 

H M HM . (5.23) 

Similarly, if H is a matrix that transforms vectors into a world space with the z axis 
pointing upward, then the corresponding matrix ′H  that transforms vectors into a 
world space with the y axis pointing upward is given by 

 

00 02 01 03

20 22 21 231
-up -up

10 12 11 13

0 0 0 1

y y

H H H H
H H H H
H H H H

−

− 
 − ′= =
− − − 
 
 

H M HM . (5.24) 
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 It’s important to understand that the up directions in world space and camera 
space are completely independent, and the choice of up direction in one of the two 
coordinate systems does not determine the up direction in the other. In most games, 
the player is able to look up and down, and the associated rotation of camera space 
means that the camera’s local up direction could point in any direction, perhaps 
even parallel to the ground, when transformed into world space. Up directions for 
each space should usually be chosen in isolation to be whatever makes the most 
sense without considering other coordinate systems. However, there are sometimes 
cases in which the camera’s rotational transform is highly restricted, and using the 
same up direction (usually the y axis) in both world space and camera space is 
justified by the increased ease of remembering how the axes are oriented. 

5.4.2  Transform Hierarchy 
In a typical game engine, all of the nodes in a world are organized into a transform 
hierarchy that determines their spatial positions and orientations. �is hierarchy 
forms a tree structure in which the root node represents world space. All other 
nodes are either direct or indirect descendants of the root node and are thus posi-
tioned relative to the coordinate system established by the root node. It is often the 
case that a large number of the nodes making up the environment are attached 
directly to the root node because they are independent objects that don’t form part 
of a more complex unit. For example, if there was a set of immovable boulders 
resting on the terrain in an outdoor environment, then each boulder would be in-
dependently attached directly to the root node in the transform hierarchy. (Note 
that the boulders may be separately organized in other data structures like those 
described in Chapter 9.) �e transformation matrices associated with these nodes 
provide their final positions and orientations in world space. Because so many 
nodes are immediate children of the root node, the transform hierarchy tends to 
have a large breadth but, for most branches of the tree, very little depth. 
 More complex models, especially those that have moving parts, are usually 
organized into a hierarchy that has a deeper tree structure. Whenever one node 
should naturally follow the motion of another node but still have some freedom of 
motion locally, it is attached to the other node in the transform hierarchy and 
becomes a subnode. �is gives rise to tree structures like the skeleton shown in 
Figure 5.11. In this example, a top-level node named “Skeleton” represents the 
entire character model and would be attached to the root node. �e transform of 
the model’s top-level node represents the position and orientation of the whole 
model in world space. However, the transform of every other node in the model 
represents its position and orientation relative to its parent node in the hierarchy. 



5.4  World Structure 27 

         
Figure 5.11. �is is the node transform hierarchy for a skeleton model. Each node’s object 
transform determines its position and orientation relative to the node it is attached to. In 
this example, separate models for various weapons, shields, and helmets can be attached 
to the “Right Hand”, “Left Radius”, and “Skull” nodes, respectively, so that they track the 
movements of those parts of the skeleton model. 

 To transform from object space to world space for a particular node in the 
model, we must multiply all of the local transformation matrices belonging to that 
node and all of its ancestors in the model. For example, the transform SkullW  from 
object space to world space for the “Skull” node in the figure is given by 

 Skull Skeleton Pelvis Lower Spine Upper Spine Skull=W M M M M M , (5.25) 

where each matrix M is the local transformation matrix for the node in the sub-
script. To avoid calculating long products like this for every node, the object-to-
world transforms can be determined in a top-down order and stored for later 
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reference whenever the model moves. Assuming the “Skeleton” node is attached 
directly to the root node of the world, its object-to-world transform SkeletonW  is 
simply equal to its local transformation matrix SkeletonM . �en, the object-to-world 
transform PelvisW  for the “Pelvis” node is given by 

 Pelvis Skeleton Pelvis=W W M , (5.26) 

the object-to-world transform Lower SpineW  for the “Lower Spine” node is given by 

 Lower Spine Pelvis Lower Spine=W W M , (5.27) 

and so on until we reach the leaf nodes of the tree. 
 Transform hierarchies make it easy to attach models to various nodes belong-
ing to other models. �is is done so that separate models can track the movements 
of the parts they’re attached to. For a character like our skeleton, a weapon such as 
the sword in Figure 5.11 is attached to the right hand by making it a subnode of the 
“Right Hand” node and giving it a local transformation matrix that puts it in the 
appropriate relative position and orientation. �e sword is intentionally kept as a 
separate model that is not part of the original skeleton model so it can easily be 
replaced by different weapon models. Similarly, various shields can be attached to 
the skeleton by making them subnodes of the “Left Radius” node, and various hel-
mets can be attached by making them subnodes of the “Skull” node. �is arrange-
ment forms the basis for a system of interchangeable parts allowing each character 
model to use many different weapons and each weapon model to be used by many 
different characters. 

5.4.3  Vertex Transformations 
When a triangle mesh is rendered by the GPU, the 3D object-space position of 
each of its vertices must ultimately be transformed into a 2D position on the display 
device. �is is accomplished through a series of transformations that move vertices 
from one coordinate system to another until they reach the coordinate system of 
the viewport, the rectangular area on the display device into which the image is 
being rendered. �e node containing the triangle mesh knows only its own trans-
formation objectM  from object space to world space. Likewise, the camera through 
which the world is being viewed knows only its own transformation cameraM  from 
camera space to world space. We can combine these two matrices to form a new 
transformation 

 1
MV camera object

−=M M M  (5.28) 
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Figure 5.12. Vertices originally specified with object-space coordinates undergo a number 
of transformations that ultimately produce x and y coordinates in a rectangular viewport on 
the display device and a z coordinate corresponding to depth within the view volume. �e 
model-view-projection (MVP) matrix transforms directly from object space to clip space, 
bypassing world space and camera space. �e perspective divide converts 4D homogene-
ous coordinates in clip space into 3D coordinates in device space. Finally, the viewport 
transformation converts normalized device coordinates in device space into viewport co-
ordinates measured in pixels. 

called the model-view matrix. �e model-view matrix transforms vertices directly 
from object space into camera space, skipping over world space entirely, as illus-
trated in Figure 5.12. 
 After vertices have been transformed into camera space, they still require one 
additional transformation before the GPU can determine their final positions in the 
viewport. �is last transformation is called the projection, and it is a topic extensive 
enough that we dedicate the entirety of Chapter 6 to it. �e projection is performed 
by a 4 4×  matrix P that transforms vertices from camera space into clip space, 
where the vertices then have 4D homogeneous coordinates representing both their 
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positions in the viewport and their depths along the camera’s viewing direction. 
�e model-view matrix is often multiplied by the projection matrix to form the 
model-view-projection matrix 

 
1

MVP MV camera object ,−= =M PM PM M  (5.29) 

or just MVP matrix for short. As shown in Figure 5.12, the MVP matrix transforms 
vertices directly from object space to clip space, passing over both world space and 
camera space altogether. As described in the next section, the GPU runs a program 
for each vertex when a triangle mesh is rendered, and that program normally per-
forms the task of transforming an object-space vertex position into clip space by 
multiplying it by the MVP matrix. 
 Clip space is so named because it’s the coordinate space in which the GPU has 
enough information to determine whether each triangle extends outside the volume 
of space visible to the camera. �is could mean that a triangle extends beyond the 
edges of the viewport, or that its depth extends outside the allowed range in front 
of the camera. Such triangles need to be clipped so that only the parts inside the 
visible volume of space remain. �e projection matrix is designed so that a clip-
space vertex position ( )clip clip clip clip, , ,x y z w  is inside the visible volume of space 
when the inequalities 

 

clip clip clip

clip clip clip

clip clip0

w x w
w y w

z w

− ≤ ≤

− ≤ ≤

≤ ≤  (5.30) 

are all satisfied. (Some older graphics libraries use a clip space in which clipz  must 
lie in the range [ ]clip clip,w w−  like the x and y coordinates, but there are advantages 
to using the range [ ]clip0, w  employed by all newer graphics libraries.) �ese in-
equalities correspond to a set of six clipping planes that bound the view volume. 
Whenever a triangle has a homogeneous vertex position p satisfying all of the 
inequalities in Equation (5.30) and another homogeneous vertex position q that 
does not satisfy all of them, a new vertex location has to be calculated on the edge 
connecting p and q where it crosses the bounding plane between them. For exam-
ple, suppose that x wq q> , which means that the vertex q lies beyond the right side 
of the viewport. We can calculate a parameter t along the line segment from p to q 
telling us where the new vertex should be located by solving the equation 

 ( ) ( )x x x w w wp t q p p t q p+ − = + − . (5.31) 

�e value of t is given by 
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( ) ( )

x w

x w x w

p pt
p p q q

−
=

− − −
, (5.32) 

and the location of the new vertex is thus ( )t+ −p q p , where the interpolation is 
carried out for all four homogeneous coordinates. 
 Once clipping has been performed by the GPU, vertices are transformed from 
four-dimensional clip space into three-dimensional normalized device coordinates, 
or device space for short, by dividing each vertex position by its w coordinate. �is 
operation is called the perspective divide because it is ultimately what’s responsi-
ble for making objects far away from the camera appear to be smaller in the view-
port than objects closer to the camera, as discussed in Chapter 6. In device space, 
the coordinates ( )device device device, ,x y z  of a vertex position inside the visible volume 
of space satisfy the inequalities 

 

device

device

device

1 1
1 1

0 1

x
y
z

− ≤ ≤
− ≤ ≤
≤ ≤  (5.33) 

regardless of the dimensions of the viewport, so the view volume is normalized to 
a 2 2 1× ×  box. 
 Vertices are finally transformed into viewport space (also known as window 
coordinates or screen coordinates) on the GPU by remapping the device-space x 
and y coordinates to the ranges [ ]0, w  and [ ]0, h , where w and h are the width and 
height of the viewport, in pixels. �e device-space z coordinate is remapped to the 
range [ ]min max,d d  representing the minimum and maximum depths of the camera’s 
view volume. �e viewport transformation, shown as the final step in Figure 5.12, 
is thus given by the equations 

 

( )

( )

( )

viewport device

viewport device

viewport max min device min

1
2

1
2

.

wx x

hy y

z d d z d

= +

= +

= − +  (5.34) 

(It is ordinarily the case that min 0d =  and max 1d = , in which case viewportz  has the 
same value as devicez .) Once a triangle has been clipped and its vertices have been 
transformed into viewport space, the GPU identifies the pixels belonging to the 
interior of the triangle and runs a program for each one of them to determine the 
colors they are filled with. �is process is described in the next section. 
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5.5  The Graphics Pipeline 

When the GPU is instructed to draw an object, a complex sequence of operations 
is launched on the graphics hardware. Vertex and triangle data defining the object’s 
geometry flows through various functional units where it is transformed into the 
final colors that appear on the screen. �ese stages of transformation are collec-
tively called the graphics pipeline or rendering pipeline, and all of the major com-
ponents are laid out in Figure 5.13. 
 �e stages of the graphics pipeline can be classified into two general types, 
fixed-function stages and programmable stages. �e fixed-function stages corre-
spond to specialized hardware units that each perform a specific task. �ese stages 
are all configurable to some degree, but they generally carry out transformations 
in the same way every time they are utilized. �e programmable stages, on the 
other hand, are capable of running arbitrary programs called shaders to carry out 
their designated transformations. �e term “shader” historically referred to a small 
program that exclusively performed lighting and shading calculations as a surface 
was rendered, but the scope and usefulness of that type of program has grown well 
beyond its original purpose. Now, a “shader” can mean any program that runs on 
the GPU regardless of what kind of calculations it carries out. 
 �ere are several different kinds of shaders that each serve a particular function 
in the graphics pipeline, and most of them operate on vertex and triangle geometry 
in some way before projection and clipping occur. �e earliest programmable 
GPUs supported only vertex shaders and pixel shaders, and those two are the only 
programmable stages of the graphics pipeline that are required to be active. �e 
optional geometry shader, hull shader, and domain shader stages were added to 
later GPUs, and they are active when some kind of geometry amplification is being 
performed. �e output ultimately produced by the active geometry processing 
stages is passed to the fixed-function rasterization stage, where triangles are broken 
up into the individual pixels that they cover in the viewport. After this point, oper-
ations are performed at the per-pixel level by the pixel shader and the frame buffer 
operations. �is section reviews what happens in each of these components of the 
graphics pipeline to the extent necessary to follow the rest of the book. 

5.5.1  Geometry Processing 
At a fundamental level, the graphics hardware is able to render three types of geo-
metric primitives: points, lines, and triangles. Naturally, a point is defined by one 
vertex, a line is defined by two vertices, and a triangle is defined by three vertices. 
�e vast majority of objects rendered by a game engine are composed of triangles, 
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Figure 5.13. �e graphics pipeline consists of several programmable (green) and fixed-
function (yellow) stages. �e pipeline begins where vertex attributes are consumed by the 
vertex shader and ends where output colors, and possibly depth and stencil data, are written 
to the frame buffer. All of the stages preceding rasterization pertain to geometry processing, 
and the two stages following rasterization operate on individual pixels. 
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but points and lines appear in special cases. For example, a particle system might 
initially be submitted for drawing as a list of points, but each of those points would 
then typically be replaced by a pair of triangles in the geometry shader stage. (And 
those triangles would often be billboards, described in Section 10.2.) With the ex-
ception of some discussion of points and lines in this section, we will concentrate 
exclusively on triangles for all of our rendering needs in this book. 
 Every object the GPU renders begins its journey through the graphics pipeline 
as an array of vertices that are fed into the vertex shader stage. �e initial geometric 
structure defined by each set of vertices is specified by configuring the graphics 
hardware to render one of the topologies listed in Table 5.2. Among these topolo-
gies are lists of independent points, lines, and triangles, which are the geometric 
primitives that we have already mentioned. �e topologies also include line strips, 
triangle strips, and triangle fans that each represent a connected sequence of prim-
itives that share vertices between each pair of lines or triangles. �e final topology, 
a list of patches, is the one specified when tessellation is active. 
 As discussed in Section 3.1, each vertex in a triangle mesh is usually shared 
among several triangles. It would be possible to render a mesh containing m trian-
gles by independently storing all three vertices for each triangle in the vertex array 
and telling the hardware to draw a triangle list with 3m vertices. However, this 
would not only require a lot of vertex data to be duplicated, but it would cause 
many identical vertices to be processed by the vertex shader to obtain identical 
results. To avoid this wastefulness, GPUs allow a layer of indirection called an 
index array to be utilized during a drawing operation. �e index array is a list of 
integer values that reference vertices by their positions within the vertex array. In-
stead of rendering each triangle with three consecutive elements in the vertex array, 
we render a triangle with three consecutive elements in the index array, and those 
indices refer to three arbitrary elements in the vertex array. Furthermore, when the 
vertex at a specific index is processed, the graphics hardware is able to save the 
outputs of the vertex shader in dedicated on-chip storage called the post-transform 
cache. �is allows the outputs to be reused without running the vertex shader again 
if the same index appears in another triangle soon afterward. �e Triangle data 
structure shown in Listing 5.2 provides a convenient way to store the three vertex 
indices used by each triangle. 
 �e vertex array containing an object’s geometry is composed of one or more 
vertex attributes, and each of those attributes can have between one and four nu-
merical components. At a minimum, there is one attribute that holds the position 
of each vertex, typically as a 3D vector of object-space x, y, and z coordinates. 
Most of the time, the vertex array contains several more attributes holding addi-
tional per-vertex information. It is very common for a vertex array to contain 3D 
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Mode Example Description 

Point List A list of n independent points. Point k is given 
by vertex k. 

Line List A list of 2n  independent lines. Line k is 
composed of the vertices { }2 ,2 1k k + . 

Line Strip A strip of 1n −  connected lines. Line k is 
composed of the vertices { }, 1k k + . 

Triangle List A list of 3n  independent triangles. Triangle k 
is composed of the vertices { }3 ,3 1,3 2k k k+ + . 

Triangle Strip 

A strip of 2n −  connected triangles. Triangle k 
is composed of the vertices { }, 1, 2k k k+ +  
when k is even and the vertices { }, 2, 1k k k+ +  
when k is odd, wound in those orders. 

Triangle Fan A fan of 2n −  connected triangles. Triangle k 
is composed of the vertices { }0, 1, 2k k+ + . 

Patch List 
A list of independent patches. Each patch is 
composed of a set of control points used in the 
tessellation stages. 

Table 5.2. When a set of n vertices is passed to the graphics hardware for rendering, one 
of these topologies specifies how they are initially assembled into primitive geometries that 
the GPU is able to draw. 
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Listing 5.2. �e Triangle data structure holds the three indices that reference the vertices making 
up a single triangle, and they are stored as 16-bit unsigned integers. 

struct Triangle 
{ 

uint16 vertexIndex[3]; 
}; 

normal vectors, 3D tangent vectors, and one or more sets of 2D texture coordinates 
to facilitate the shading calculations discussed in Chapter 7. Other attributes may 
specify per-vertex colors, data needed for mesh deformation, or any kind of custom 
information needed by the shaders. As shown in Figure 5.14, all of the attributes 
are usually interleaved in memory so that the data for each individual vertex is 
stored as a contiguous structure. Organizing the data in this way is good for cache 
performance while the GPU fetches the attributes for each vertex. In this example, 
every vertex has four attributes comprising eleven 32-bit floating-point values. �e 
offset from the beginning of one vertex’s data to the beginning of the next vertex’s 
data is called the stride of the vertex array, and it is 44 bytes in this case. 
 GPUs are able to fetch values stored in many different formats and automati-
cally convert them to floating-point numbers before they are used in a shader. 
When the full range or precision of a 32-bit floating-point value is not necessary, 
attributes can be stored in a format that occupies less space. �is is often done for 
normal vectors and tangent vectors because they ordinarily have unit length and 
thus don’t require a large range. It would be perfectly reasonable to store their 
components in a 16-bit signed normalized integer format. Colors often require 
even less precision and are typically stored as four 8-bit unsigned normalized in-
teger values with gamma correction. 
 Vertex positions must be sent to the rasterization stage of the graphics pipeline 
in clip-space coordinates. �is means that the last active shader stage before that 
point is responsible for transforming the object-space vertex positions into clip 
space using the MVP matrix. �e shader code for this simple 4D matrix-vector 
multiplication is shown in Listing 5.3. In this example, we have specified the MVP 
matrix as an array of four 4D vectors representing its rows to avoid the ambiguity 
surrounding the storage order of matrix entries. If the vertex shader is the only 
enabled geometry processing stage, which is often the case, then this transfor-
mation would take place there. Otherwise, it could take place in either the geometry 
shader or the domain shader. 
 �e final geometry processing shader can also pass vertex attributes straight 
through to the rasterization stage without modification. �is is often done with tex-
ture coordinates. Other vertex attributes may undergo different transformations 
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such as a change from object-space to world-space coordinates before they are 
output by the shader. Additional information such as camera and light positions are 
commonly output in a specific coordinate space as well. All of these attributes, 
specified for each vertex, are later interpolated inside each triangle to provide 
smoothly varying values to the pixel shader. 

Figure 5.14. Vertex attributes are typically interleaved as shown. In this example, there are 
four attributes comprising a 3D position, a 3D normal vector, a 3D tangent vector, and one 
set of 2D texture coordinates. Each of the components are stored as a 32-bit floating-point 
value. �e stride from one vertex to the next is the total number of bytes occupied by the 
attribute data for each vertex, which is 44 bytes in this case. 

Listing 5.3. �is vertex shader code transforms the 3D object-space vertex coordinates given by 
position into 4D clip-space coordinates using the MVP matrix. �e positions are treated as points 
with an implicit w coordinate of one. Each entry of the mvp array holds one row of the MVP matrix. 

uniform float4    mvp[4]; 

float4 TransformVertex(float3 position) 
{ 

return (float4(dot(position, mvp[0].xyz) + mvp[0].w, 
  dot(position, mvp[1].xyz) + mvp[1].w, 
  dot(position, mvp[2].xyz) + mvp[2].w, 
 dot(position, mvp[3].xyz) + mvp[3].w)); 

} 
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5.5.2  Pixel Processing 
�e fixed-function rasterization stage performs several operations on the primitives 
defined by the transformed vertices that have been output by the geometry pro-
cessing stages. Once these operations have been completed, the result is a set of 
fragments that correspond to pixel-sized pieces of the original primitives. �e data 
associated with each fragment includes its viewport-space coordinates and the in-
formation necessary to calculate interpolated values for each vertex attribute sup-
plied with the primitive it came from. �e pixel shader is executed once for each 
fragment to calculate a final color that will be written to the frame buffer (or 
blended with the existing contents of the frame buffer). Because of the close rela-
tionship between fragments and pixels, the term fragment shader is used by some 
graphics libraries in place of the term pixel shader. 

Clipping 
�e first thing that happens in the rasterization stage is clipping. Because calculat-
ing new vertex positions and attribute values can be expensive, GPUs do not typi-
cally test the coordinates clipx  and clipy  against the exact boundary of the viewport 
by comparing them to clipw±  as in Equation (5.30). Instead, primitives are allowed 
to extend outside the viewport by a somewhat large distance, and clipping occurs 
only if either clipx  or clipy  lies outside the range given by clipbw±  for some constant 
factor b. �is extra space surrounding the viewport is called the guard band, and it 
is illustrated in Figure 5.15. Primitives lying completely beyond any one of the 
four edges of the viewport can be quickly discarded by the GPU. Otherwise, clip-
ping in the x or y direction may be necessary, but it’s uncommon due to the large 
size of the guard band. However, the GPU must still ensure that no fragments are 
generated outside the viewport, and this is accomplished through the use of what’s 
called the scissor test. �e GPU has at least one internal scissor rectangle that 
makes sure rendering stays inside the current render target, and the application is 
able to configure an externally exposed scissor rectangle to serve any purpose. 
Fragments are generated only inside the intersection of these scissor rectangles. 
Establishing a scissor rectangle can thus be used as an optimization to reduce the 
number of pixels processed inside the viewport without modifying any geometry, 
and an important case is described in Section 8.2.1. 

Face culling 
After any necessary clipping has been performed, the perspective divide and view-
port transformation are applied to the vertices of each surviving primitive. For tri-
angles, the GPU then optionally performs face culling. �is is an operation used to 
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Figure 5.15. �e viewport, shown as the blue rectangle in the center, is surrounded by a 
guard band, shown as the larger hatched region. Triangle A is completely inside the view-
port, so it is neither clipped nor scissored. Triangle B extents outside the viewport and is 
affected by scissoring, but it is not clipped because it lies entirely inside the guard band. 
Triangles C and D are both discarded because all of their vertices lie beyond the viewport’s 
right edge. Finally, triangle E is clipped because it extends outside the guard band and 
cannot be discarded based on the positions of its vertices. 

quickly eliminate any triangles that are facing away from the camera on the back 
side of an object where they can’t be visible. �e determination of whether a trian-
gle is front facing or back facing is based on the signed area of the triangle in 
viewport space. For a triangle having 2D vertex coordinates ( )0 0,x y , ( )1 1,x y , and 
( )2 2,x y  after the viewport transformation, the signed area A is given by 

( ) ( ) ( ) ( )[ ]2 0 1 0 1 0 2 0
1
2

A x x y y x x y y= − − − − − . (5.35) 

�is formula produces a positive value when the three vertices are wound in a 
counterclockwise direction in a viewport space for which the x axis points to the 
right and the y axis points downward. GPUs allow an application to choose which 
winding direction (clockwise or counterclockwise) is considered front facing, and 
either front-facing triangles, back-facing triangles, or neither may be culled during 
the rasterization stage. 

Rasterization 
Triangles that remain after the face culling operation has been performed are finally 
ready to be divided into fragments, and this is where the rasterization stage gets its 
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name. �e mathematically precise edges of each triangle are laid onto the pixel 
grid, as shown in Figure 5.16, and the triangle’s interior is converted to a raster 
image, or rasterized. A pixel is considered to be inside a triangle only if the point 
at its center is contained within the triangle’s three edges. Tie breaking rules are 
applied to pixels lying exactly on an edge so that no pixel is filled twice by adjacent 
triangles sharing two vertex positions. 
 �e black dots in Figure 5.16 indicate which pixels are rendered for the spe-
cific triangle shown. However, these are not the only pixels for which the pixel 
shader is actually executed. �e GPU generates fragments for all four pixels in 
every 2 2×  block, called a quad, having at least one pixel inside the triangle. �is 
means that the pixel shader is also run for every pixel containing a red dot in the 
figure, but the outputs of those pixel shader invocations are discarded and do not 
affect the contents of the frame buffer. �e reason fragments are generated in 2 2×  
quads has to do with texture filtering. To select an appropriate mipmap level when 
a texture map is sampled, the GPU needs to know what the derivatives of the tex-
ture coordinates are with respect to the x and y directions. �e most effective 
method of calculating them is to take the differences between the values assigned 
to the texture coordinates by the pixel shader in adjacent pixels. With the exception 
of cases involving noncoherent control flow, valid differences are guaranteed to be 
available when pixel shaders are always executed for 2 2×  quads. 

Figure 5.16. A triangle is rasterized by filling the pixels having center points inside the 
triangle’s three edges, indicated by black dots. To allow the calculation of derivatives, the 
pixel shader is executed for all four pixels belonging to each 2 2×  quad containing at least 
one black dot, illustrated by the black outline containing the full set of such quads. �e red 
dots indicate pixels for which the outputs of the pixel shader are not used. 
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 Because the fragments generated for each triangle always come in 2 2×  quads, 
the pixels belonging to any quad straddling the boundary between adjacent trian-
gles are processed twice by the pixel shader. For each pixel, the output is written 
to the frame buffer only for one of the two triangles, and the output for the other 
invocation of the pixel shader is thrown out. �e graphics hardware can sometimes 
mitigate the extra expense of running pixel shaders for these “helper” invocations, 
such as by suppressing unneeded texture fetches, but the cost associated with 2 2×  
quad rendering is generally something that we just have to live with. For simple 
pixel shaders, it doesn’t make a huge difference, but for more complex pixel 
shaders, there can be a significant impact on performance, especially when render-
ing a lot of small triangles. It is therefore considered good practice to eliminate 
edges or to minimize their lengths through the choice of triangulation where it’s 
practical to do so. (See Exercise 10.) 
 Rendering a full-screen pass is a common case in which a large edge between 
two triangles can be removed to save a little processing time. A full-screen pass 
refers to an operation that is intended to affect every pixel in the viewport, and it’s 
often used to apply some kind of computation to the entire visible scene. For ex-
ample, the ambient occlusion, atmospheric shadowing, and motion blur techniques 
described in Chapter 10 all make use of full-screen passes. �e most straightfor-
ward way to cover the whole viewport would be to place vertices at the four corners 
and render two triangles that form a screen-sized rectangle. However, this would 
mean that a small amount of time is wasted rendering pixels in the 2 2×  quads 
along the diagonal twice. A better method is to render a single triangle of larger 
size that contains the entire viewport as illustrated in Figure 5.17. �e vertex coor-
dinates in the figure are expressed directly in normalized device coordinates and 
can be passed through the vertex shader without any transformation by an MVP 
matrix. Even though two of the vertices lie far outside the viewport, they are still 
well within a typical guard band, so no clipping occurs. �e triangle is simply scis-
sored by the hardware, and every pixel in the viewport is processed exactly one 
time. 

Interpolation 
When a pixel shader runs, it has access to the values of a triangle’s vertex attributes 
after they have been interpolated at the pixel’s center. As explained in detail in 
Section 6.2, the attributes must normally be interpolated in a “perspective-correct” 
manner before they can be used in the pixel shader, and a common way to imple-
ment the pertinent calculations makes use of the pixel’s barycentric coordinates in 
viewport space. �e barycentric coordinates of a point  are a set of three weights
by which the vertex positions 0 , 1 , and 2  can be multiplied so that they sum to
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Figure 5.17. A full-screen pass can be rendered using a single triangle by placing two of 
the vertices outside the viewport. �e coordinates shown here are expressed directly in 
normalized device coordinates, where the viewport itself occupies the space between 1−  
and 1+ . 

the point . By requiring that the weights themselves sum to one, we need only
two independent values, which we call u and v. �e point  is then expressed as

( ) 0 1 21 u v u v= − − + +    . (5.36) 

As shown in Figure 5.18, the value of u corresponds to the perpendicular dis-
tance between the point  and the edge connecting the vertices 0  and 2 . �is
distance is normalized so that u is always in the range [ ]0,1  as long as the point 
is inside the triangle. If  lies on the edge connecting 0  and 2 , then 0u = , and if
 is coincident with 1 , then 1u = . Similarly, the value of v corresponds to the per-
pendicular distance between the point  and the edge connecting the vertices 0
and 1 , where a value of one is reached when 2=  .

Barycentric coordinates summing to one can be calculated as a ratio of areas. 
For example, the value of u in Figure 5.18 is equal to the area of the triangle formed 
by , 0 , and 2  divided by the area of the whole triangle. �e areas uA  and vA  of
the subtriangles corresponding to u and v can be expressed as 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]

2 0 0 2 0 0

0 1 0 0 1 0

1
2
1 .
2

u y x

v x y

A x x q y y y q x

A q x y y q y x x

= − − − − −

= − − − − −  (5.37)
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where ( )0 0 0,x y= , ( )1 1 1,x y= , and ( )2 2 2,x y= . When we divide these values
by the total area A, given by Equation (5.35), and rewrite in terms of the compo-
nents of the point , we find that the barycentric coordinates u and v are given by

0 2 2 0 0 2 2 0

1 0 0 1 1 0 0 1

2 2 2

.
2 2 2

u
x y

v
x y

A y y x x x y x yu q q
A A A A
A y y x x x y x yv q q
A A A A

− − −
= = + +

− − −
= = + +  (5.38) 

�ese formulas are often called a triangle’s plane equations because they are 
equivalent to taking dot products between the point  and planes representing two
of the edges, where all z coordinates are zero. �e three fractions appearing in each 
formula, which define the planes, are constants that can be precomputed one time 
when a triangle is rasterized. Once the planes are known, the values of u and v 
corresponding to any point  at a pixel center inside the triangle can each be cal-
culated by the GPU with nothing more than a pair of multiply-add operations. 

Figure 5.18. �e barycentric coordinates of the point   allow it to be expressed as the
weighted sum of the vertices 0 , 1 , and 2 . �e values of u, v, and 1 u v− −  correspond to
perpendicular distances between the triangle’s edges and the point  . �ese distances are
normalized so that the distance from any one vertex to the edge connecting the other two 
vertices is always one. 
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Multisampling 
In the rasterization process described earlier, every pixel is considered to be either 
fully inside a triangle or fully outside. �is leads to jagged edges because it doesn’t 
account for the extremely common occurrence that pixels are partially covered by 
multiple triangles. A simple way to overcome this problem is to use supersampling, 
a technique in which a scene is rendered at a resolution higher than that of the final 
image to be displayed. After rendering is complete, the larger image is scaled down 
to the final size, and every pixel in the displayed image is given the average color 
of several pixels that were originally rendered. It is typical for the larger image to 
have twice the resolution in both the x and y directions so that every pixel in the 
displayed image is an average of a 2 2×  block. �is method is very effective, but it 
is also very expensive. Not only are the memory requirements much greater, but 
the processing requirements are much higher because the number of pixels that 
need to be shaded has quadrupled. 
 A method called multisample antialiasing (MSAA) strikes a compromise be-
tween rendering speed and image quality, and it is widely available on modern 
graphics hardware. MSAA still uses the larger amount of storage that is required 
by supersampling, but it does not normally execute the pixel shader any more times 
than it would have originally. Instead, the pixel shader is executed one time for 
each pixel at the final display resolution, and the outputs are distributed to multiple 
samples covering that pixel in the higher-resolution storage buffer. Each sample 
corresponds to a specific location inside the pixel as shown in Figure 5.19. �e 
rasterization rules are modified so that any pixel having at least one sample point 
inside a triangle, as opposed to only the exact center, are considered part of the 
triangle. �e pixel shader is still executed as if the pixel center is covered, even if 
that is not true, and vertex attributes are normally interpolated at the pixel center. 
(However, GPUs provide a centroid interpolation mode that changes this in cases 
when the pixel center is outside the triangle.) �e outputs of the pixel shader are 

Figure 5.19. Typical sample locations for 4× rotated grid multisampling are shown as black 
dots inside the single pixel depicted by the outer box. �e vertex attributes are interpolated 
at the pixel center specified by the green dot. 
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stored in the higher-resolution frame buffer only for the samples that lie inside the 
triangle. �is allows the samples corresponding to a single pixel to hold colors 
generated by multiple triangles that covered the pixel in different ways during the 
rendering process. When the high-resolution image is scaled down for display, 
these colors are averaged together, resulting in a smooth boundary where fore-
ground triangles are drawn on top of background triangles. 

5.5.3  Frame Buffer Operations 
�ere are a number of fixed-function operations that are applied to individual pix-
els before and after the pixel shader runs, and the sequence in which they occur is 
illustrated in Figure 5.20. �e scissor test was described in the previous section, 
and it is applied first to prevent any further processing for pixels that do not lie 
inside the scissor rectangle. �e depth test, stencil test, and depth bounds test are 
also capable of removing pixels from the pipeline, and they are described below. 
�e blend operation is applied last to any pixels that make it past all of the preced-
ing tests, and it combines the output of the pixel shader with the contents of the 
frame buffer. 

Depth test 
�e depth test is the mechanism through which the GPU performs hidden surface 
removal at a per-pixel granularity (or in the case of multisampling, at a per-sample 
granularity). Higher-level methods that can remove entire occluded objects are dis-
cussed in Chapter 9. �e concept of the depth test is simple. In addition to a buffer 
that holds the color of each pixel, storage is allocated for a depth buffer, also called 
a Z buffer, that holds the depth of each pixel with respect to the direction the camera 

Figure 5.20. Various per-pixel operations are applied before and after the pixel shader runs. 
Under most circumstances, the depth test and stencil test can be applied early, before the 
pixel shader runs. 
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is pointing. When a triangle is rendered, the depth of each fragment in the triangle 
is compared to the depth already stored in the depth buffer at the fragment’s loca-
tion. If the new depth is less than the previous depth, meaning that it’s closer to the 
camera, then the depth test passes. In this case, the pixel is rendered, and the depth 
buffer is updated with the new depth value. Otherwise, the depth test fails, meaning 
that the pixel must lie behind a closer surface that was already rendered. In this 
case, the pixel is thrown out, and no change is made to either the color buffer or 
the depth buffer. 
 As long as the pixel shader doesn’t modify the depth assigned to a fragment 
during rasterization, the depth test can be performed early, before the pixel shader 
runs. If the early depth test fails for all of the non-helper pixels in a 2 2×  quad, then 
the pixel shader can be skipped for the entire quad, saving a significant amount of 
computation. Most modern hardware takes early rejection even further by using a 
hierarchical depth buffer. Extra memory is allocated to hold the current maximum 
depth over all pixels in each tile covering 4 4× , 8 8× , or larger blocks of pixels. 
When a triangle is rasterized, the GPU calculates the minimum depth of the trian-
gle for each tile that the triangle intersects. If that minimum depth is still greater 
than the maximum depth already rendered for the tile, then all of the triangle’s 
fragments within the tile are guaranteed to fail the depth test. �e GPU can then 
safely cull the entire tile at once, avoiding further per-pixel operations. 
 In order to make most effective use of a hierarchical depth buffer, it is common 
for a game engine to render a depth prepass to establish the contents of the depth 
buffer by itself without performing any other rendering calculations. Most hard-
ware is able to render exclusively to the depth buffer with extremely high perfor-
mance. A depth prepass is rendered with the intention of eliminating overdraw in 
a subsequent pass when complex shaders are executed to determine the colors that 
are ultimately stored in the frame buffer. Ideally, with the early depth test enabled 
for the entire scene, a pixel shader is run only one time for each pixel, and it’s 
never the case that pixels belonging to a foreground triangle overwrite pixels pre-
viously rendered for a background triangle. 
 Depth is a quantity that must be interpolated inside a triangle using perspec-
tive-correct methods, and the exact calculation is given in Section 6.2. On older 
graphics hardware, depths were stored as 24-bit integers, but they are now almost 
always stored as 32-bit floating-point values. For reasons having to do with the 
nonlinear nature of perspective-correct depths and the precision distribution of 
floating-point numbers, the traditional method of storing smaller values for closer 
depths is now often abandoned in favor of a reversed method in which larger values 
are actually stored for closer depths. �e details are discussed in Section 6.3.3. 
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 Because depth is stored with finite precision, triangles intended to be rendered 
in the same plane generally do not produce the same depth values for their frag-
ments unless they have exactly the same vertex positions. When two triangles lying 
in coincident planes are rendered, which happens when a “decal” is applied to a 
surface as described in Section 10.1, the result is an artifact called Z fighting. When 
the second triangle is rendered, some of its fragments will pass the depth test and 
others will not, and the pattern changes randomly as the camera moves. To elimi-
nate this problem, the hardware includes polygon offset functionality that modifies 
the depth of each fragment. �is allows the depths for one triangle to be artificially 
increased or decreased without changing the vertex positions so that it always ap-
pears in front of the other triangle. As discussed in Section 8.3.4, the use of poly-
gon offset is also an important part of shadow mapping. 

Stencil test 
�e stencil test is a mechanism through which a mask can be generated and later 
utilized to control whether rendering occurs at each pixel (or in the case of mul-
tisampling, at each sample). An additional buffer, the stencil buffer, stores an 8-bit 
unsigned integer for every pixel, and it is compared to a reference value specified 
by the application to determine whether the stencil test passes or fails. �e stencil 
test interacts with the depth test, and different operations can be performed on the 
stencil buffer depending on the outcomes of both the stencil test and the depth test. 
A nontrivial example of a stencil-based technique that takes advantage of this func-
tionality is the stencil shadow algorithm described in Section 8.4, which uses the 
stencil test is used to mask off pixels that cannot receive light. 
 Like the depth test, the stencil test can usually be performed before the pixel 
shader runs. If the stencil test fails, then the pixel shader is skipped, and no change 
is made to the color buffer, but the stencil buffer may still be modified. In fact, the 
stencil test can be configured to perform different operations in three different 
cases. One operation is performed when the stencil test fails, regardless of the out-
come of the depth test. �e other two operations are performed when the stencil 
test passes, and which one depends on whether the depth test passes or fails. �e 
specific operations that can be performed by the vast majority of GPUs are listed 
in Table 5.3. Some newer GPUs support additional operations and are also able to 
output a per-pixel reference value from the pixel shader (which would require that 
the stencil test take place after the pixel shader runs). 
 �e stencil test can be independently configured for pixels belonging to front-
facing and back-facing triangles. �at is, a triangle mesh can be rendered without 
face culling enabled, and different stencil operations can be performed depending 
on whether a fragment was generated from a front-facing or back-facing triangle. 
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Stencil Operation Description 

Keep No change is made to the stencil value. 

Zero �e stencil value is set to zero. 

Replace �e stencil value is set to the reference value. 

Invert �e stencil value is inverted bitwise. 

Increment and saturate �e stencil value is incremented by one unless its value 
is 0xFF, in which case no change is made. 

Decrement and saturate �e stencil value is decremented by one unless its value 
is 0x00, in which case no change is made. 

Increment and wrap �e stencil value is incremented by one, and a value of 
0xFF becomes the value 0x00. 

Decrement and wrap �e stencil value is decremented by one, and a value of 
0x00 becomes the value 0xFF. 

Table 5.3. Most GPUs support these eight stencil operations. Separate operations can be 
specified based on whether pixels belong to front-facing or back-facing triangles and based 
on whether they pass both the stencil test and depth test, they pass the stencil test but fail 
the depth test, or they fail the stencil test. 

�e stencil shadow algorithm requires that both front and back faces of a shadow 
volume are rendered, and the ability to specify separate operations allows an entire 
shadow volume to be rendered with a single command. Without this added config-
urability, rendering front faces and back faces with different stencil operations 
would require two commands with an intervening change to the hardware state. 

Depth bounds test 
�e depth bounds test is a special function that can be used to eliminate fragments 
before the pixel shader runs. It works by discarding fragments for which the depth 
value already stored in the depth buffer falls outside an application-specified range 
of depths in viewport space. �e depth of the fragment itself does not matter, so 
the depth bounds test can always be performed early. If it fails, then the pixel 
shader and depth test are skipped, and no stencil operations are performed. 
 �e depth bounds test is, in some ways, the analog of the scissor test along the 
z axis. �e difference is that the depth bounds test operates on the depth of geom-
etry that was previously rendered and not on the depth of any fragments currently 
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being rendered. Due to this property, it only has any practical utility after the con-
tents of the depth buffer have been established. �e depth bounds test was origi-
nally designed as an optimization for the stencil shadow algorithm, discussed in 
Section 8.4, which does indeed require a fully rendered depth buffer. A different 
application, in which the depth bounds test is used to cull pixels not affected by a 
light source, is described in Section 8.2.2. 

Blending 
After a fragment has passed all of the above tests and the pixel shader has been 
executed, the results are finally written to the frame buffer. �e color output by the 
pixel shader is called the source color S, and the existing color stored in the frame 
buffer at the pixel’s location is called the destination color D. �e source color can 
simply overwrite the destination color, or both colors can be combined through an 
operation called blending. �e blending operations supported by most GPUs are 
shown in Table 5.4. �e factors X and Y appearing in the table are weighting factors 
that can be zero, one, or a variety of values derived from four possible inputs. �e 
source and destination colors themselves constitute two of these inputs. �e third 
possible input is a secondary or “dual” source color T that can be output from the 
pixel shader for the sole purpose of participating in the blending operation. �e 
fourth possible input is an application-specified constant color C. �e ways in 
which these four colors can be used as weighting factors are listed in Table 5.5. 

Blend Operation Formula Description 

Add XS YD+  �e weighted source color is added to the weighted 
destination color. 

Subtract XS YD−  �e weighted destination color is subtracted from 
the weighted source color. 

Reverse subtract YD XS−  �e weighted source color is subtracted from the 
weighted destination color. 

Minimum ( )min ,S D  �e minimum of the source color and destination 
color is selected. 

Maximum ( )max ,S D  �e maximum of the source color and destination 
color is selected. 

Table 5.4. Most GPUs support these five operations for blending the source color S and the 
destination color D. �e formulas are applied componentwise, and the weighting factors X 
and Y can be any of the values listed in Table 5.5. 
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Blend Factor RGBA Value 

Zero ( )0,0,0,0  

One ( )1,1,1,1  

Source color 0 ( ), , ,r g b aS S S S  

Source color 1 ( ), , ,r g b aT T T T  

Destination color ( ), , ,r g b aD D D D  

Constant color ( ), , ,r g b aC C C C  

Inverse source color 0 ( )1 ,1 ,1 ,1r g b aS S S S− − − −  

Inverse source color 1 ( )1 ,1 ,1 ,1r g b aT T T T− − − −  

Inverse destination color ( )1 ,1 ,1 ,1r g b aD D D D− − − −  

Inverse constant color ( )1 ,1 ,1 ,1r g b aC C C C− − − −  

Source alpha 0 ( ), , ,a a a aS S S S  

Source alpha 1 ( ), , ,a a a aT T T T  

Destination alpha ( ), , ,a a a aD D D D  

Constant alpha ( ), , ,a a a aC C C C  

Inverse source alpha 0 ( )1 ,1 ,1 ,1a a a aS S S S− − − −  

Inverse source alpha 1 ( )1 ,1 ,1 ,1a a a aT T T T− − − −  

Inverse destination alpha ( )1 ,1 ,1 ,1a a a aD D D D− − − −  

Inverse constant alpha ( )1 ,1 ,1 ,1a a a aC C C C− − − −  

Table 5.5. Each of the weighting factors used in the blending operation can be zero, one, 
or a value derived from the primary source color S, the secondary or “dual” source color 
T, the destination color D, or a constant color C. 

One blend operation and pair of blend factors X and Y can be specified for all three 
color channels (red, green, and blue), and a separate blend operation and pair of 
blend factors X and Y can be specified for the alpha channel. �e formulas used to 
perform blending are applied componentwise. 
 To simply replace the destination color with the source color, the blend opera-
tion is set to add, the factor X is set to one, and the factor Y is set to zero. It is 
common for the alpha channel of the source color to contain a measure of opaque-
ness in which zero is completely invisible, one is completely opaque, and values 
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in between represent varying levels of transparency. In this case, the source color 
is blended with the destination color using the formula 

( )1a aS S S D+ − , (5.39) 

which corresponds to a factor X set to the source alpha and a factor Y set to the 
inverse source alpha. 
 If the red, green, and blue components of the destination color D are stored in 
the frame buffer as gamma-corrected values, then they cannot be used directly in 
the blending operation because a weighted average of nonlinear intensities does 
not yield a correct result. In this case, the graphics hardware has to first linearize 
the destination color by applying Equation (5.18). �e blending operation is then 
performed correctly in linear space, and Equation (5.17) is applied to the result to 
transform it back into gamma space. �e same conversions are not applied to the 
alpha channel because it always contains linear values. 
 Most GPUs are capable of writing colors to multiple render targets (MRT) in 
the frame buffer using two or more colors output by the pixel shader. When this 
functionality is enabled, blending operations can usually be specified separately 
for each render target, but it may not be possible to use the secondary source color 
T at the same time. (One use of multiple render targets is described in the context 
of motion blur in Section 10.7.1.) 

Exercises for Chapter 5 

1. Calculate the memory storage requirements for 32-bit and 64-bit pixel formats
for each of the display resolutions listed in Table 5.1.

2. Calculate 3 3×  matrices that transform linear colors (without gamma correc-
tion) between the sRGB and CIE RGB color spaces.

3. Calculate the xy chromaticities of the red, green, and blue primaries in the CIE
RGB color space to three significant figures.

4. �e ultra-high-definition television standard defines a wide color gamut based
on monochromatic red, green, and blue primaries that we call uRGB in this
exercise. �e white point used by uRGB is the same as that used in sRGB,
derived from illuminant D65, but the xy chromaticities of the red, green, and
blue primaries are given by ( )0.708, 0.292 , ( )0.170, 0.797 , and ( )0.131, 0.046 ,
respectively. Calculate 3 3×  matrices that transform linear colors (without
gamma correction) from sRGB to uRGB and from uRGB to sRGB.
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5. Determine the coefficients of a cubic polynomial ( )g x  approximating the
function ( )linearf c  given by Equation (5.18). �e polynomial should satisfy the
conditions ( )0 0g = , ( )0 0g′ = , ( ) ( )linear1 1g f= , and ( ) ( )linear1 1g f′ ′= .

6. Suppose we have a world space coordinate system W in which the x axis points
north, the y axis points east, and the z axis points down. Find 3 3×  matrices that
convert vectors between W and the two right-handed world-space coordinate
systems in which x points east (in both systems) and either the y axis or z axis
points up.

7. Suppose the skeleton model in Figure 5.11 can fire laser beams from its eyes
in the direction of the “Skull” node’s local x axis. Describe how to calculate
world-space direction in which the laser beams would fire.

8. Let p and q be the 4D homogeneous positions of two vertices after they have
been transformed into clip space, and suppose that 0zp ≥  and 0zq < . Find a
formula that produces the x and y coordinates of the point on the edge connect-
ing p and q has a z coordinate of zero.

9. Let 0 , 1 , and 2  be the two-dimensional vertex positions for a triangle in
viewport space. Show that Equation (5.35) is equivalent to the wedge product

( ) ( )[ ]2 0 1 0
1
2

A = − ∧ −    .

10. Consider all possible triangulations of a regular octagon whose vertices lie on
a circle of radius one. Determine which triangulation minimizes the sum of the
lengths of the five interior edges that are required.
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Chapter 6 

Projections 

Geometry inside a 3D world seen through a virtual camera is mathematically trans-
formed into geometry that can be displayed in a 2D viewport using a process called 
projection. While the basic concepts of a projection are rather simple, various 
forces of practical engineering cause the best implementation choice to be found 
at the end of a more complicated path. After an introduction to the view frustum, 
this chapter spends a lot of space describing how projection matrices work, and it 
provides a complete discussion of the intricacies that lead us to the most effective 
methods of projection. We finish with the description of an advanced technique 
that manipulates a projection matrix for special rendering purposes. 

6.1  The View Frustum 

Recall that the camera space we introduced in Chapter 5 is configured so that the 
camera lies at the origin, the x axis points to the right, the y axis points downward, 
and the z axis points in the direction that the camera is looking. �e region of space 
containing every point in the world that is visible to the camera is a six-sided vol-
ume called the view frustum. As shown in Figure 6.1, the view frustum is aligned 
to the coordinate axes in camera space, and it has the shape of a rectangular pyra-
mid with its apex at the camera’s position. �e pyramid is truncated by a near plane 
perpendicular to the viewing direction (the positive z axis) at a distance n from the 
camera, and this truncation is the reason that we use the term “frustum”. �e base 
of the pyramid, which is at the back of the volume from the camera’s perspective, 
lies in the far plane at a distance f from the camera. Points with z coordinates less 
than the near plane distance n or greater than the far plane distance f are considered 
to be invisible. 
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Figure 6.1. �is is the shape of the view frustum for a display having an aspect ratio of 

16 9s = . �e near plane (green), projection plane (blue), and far plane (gray) are each per-
pendicular to the viewing direction (the positive z axis), and they lie at the distances n, g, 
and f from the camera, respectively. 

 �e rectangular shape of the view frustum is determined by the aspect ratio of 
the viewport. �e aspect ratio s is defined as the width of the viewport divided by 
its height. �ere is a third plane perpendicular to the viewing direction at a distance 
g from the camera called the projection plane. On the projection plane, the view-
port corresponds to the rectangle extending from 1y = −  to 1y = +  in the vertical 
direction and from x s= −  to x s= +  in the horizontal direction. �ese dimensions 
and the projection plane distance g determine the angles of the four lateral planes 
of the pyramid, completing the set of six planes that bound the view frustum. 
 �e angle between the left and right frustum planes is called the horizontal 
field of view angle xφ , and the angle between the top and bottom frustum planes is 
called the vertical field of view angle yφ . �ese angles are often given the designa-
tions FOVx and FOVy. Either of these angles can be set to a desired value, and the 
distance g to the projection plane can then be calculated so that the projection plane 
intersects the side planes of the view frustum at x s= ±  and 1y = ± . As shown in 
Figure 6.2, the field of view angles satisfy the trigonometric relationships 
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 tan
2

xφ s
g

=    and   1tan
2

yφ
g

= . (6.1) 

One of these equations can be used to calculate g for a given angle xφ  or yφ . �e 
other field of view angle is then given by one of the inverse equations 

 12 tanx
sφ
g

−=    and   1 12 tanyφ
g

−= . (6.2) 

 �e distance g to the projection plane is sometimes called the focal length of 
the camera. A short focal length corresponds to a wide field of view, and a long 
focal length corresponds to a narrow field of view. By increasing or decreasing the 
distance g, the camera can be made to zoom in and zoom out, respectively. 
 It is common for a game engine to lock the vertical field of view angle yφ  to a 
constant value, such as 60 degrees, which also determines a constant value for the 
distance g. �e horizontal field of view angle xφ  is then determined by the aspect 
ratio s, which may be allowed to vary depending on the dimensions of the display. 
In the case that a fixed value for xφ  is also required, which is equivalent to assuming 

 
Figure 6.2. �e distance g to the projection plane is related to the horizontal and vertical 
field of view angles xφ  and yφ  as shown. (a) �e angle yφ  between the top and bottom planes 
of the view frustum corresponds to y coordinates in the range [ ]1, 1− +  on the projection 
plane. (b) �e angle xφ  between the left and right planes of the view frustum corresponds 
to x coordinates in the range [ ],s s− +  on the projection plane, where s is the aspect ratio of 
the viewport. 
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a specific aspect ratio such as 16 9s = , the viewport cannot possibly fill the entire 
display if its actual aspect ratio is different. If the display’s aspect ratio is less than 
s, then black bars are typically shown above and below the viewport to enforce an 
exact rectangular shape for the rendered image. If the display’s aspect ratio is 
greater than s, then black bars are shown to the left and right of the viewport. 
 �e camera-space normal directions of the near, far, left, and right planes of 
the view frustum are shown in Figure 6.3. �e near plane has the normal direction 
( )0, 0,1  aligned with the view direction along the z axis, and the far plane has the 
opposite normal direction ( )0, 0, 1− . Each normal direction of the four lateral 
planes is a 90-degree rotation of the midpoint of an edge of the viewport rectangle 
on the projection plane. For example, the midpoint of the left edge lies at the point 
( ), 0,s g− , and it is rotated 90 degrees clockwise to obtain the normal direction 
( ), 0,g s  for the left plane. �e midpoint ( ), 0,s g  of the right edge is rotated 90 
degrees counterclockwise to obtain the normal direction ( ), 0,g s−  for the right 
plane. 
 �e 4D camera-space coordinates of all six planes bounding the view frustum 
are listed in Table 6.1, and they have been scaled so that their normals have unit 
length. Each plane faces inward so that points inside the view frustum always lie 
at a positive distance from all six planes, where the distance is given by the dot 
product between the plane and the point. Any point outside the view frustum must 
be on the negative side of at least one of the planes. �e property can be used to 

 
Figure 6.3. �ese are the inward-pointing normal directions for the near, far, left, and right 
planes of the view frustum in camera space. Not shown, the normal directions for the top 
and bottom planes are ( )0, ,1g  and ( )0, ,1g− , respectively. 
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Frustum Plane Camera-Space ( ), , ,x y z w  

Near ( )0,0,1, n−  

Far ( )0,0, 1, f−  

Left ( )
2 2

1 ,0, ,0g s
g s+

 

Right ( )
2 2

1 ,0, ,0g s
g s

−
+

 

Top ( )
2

1 0, ,1,0
1

g
g +

 

Bottom ( )
2

1 0, ,1,0
1

g
g

−
+

 

Table 6.1. �ese are the 4D camera-space coordinates for the six planes bounding the view 
frustum, where n is the near plane distance, f is the far plane distance, g is the projection 
plane distance, and s is the aspect ratio of the viewport. 

perform object culling in world space, as discussed in Chapter 9. Once a camera-
space view frustum plane cameraf  has been calculated, the world-space plane worldf  is 
given by 

1
world camera camera

−=f f M , (6.3) 

where cameraM  is the transform from camera space to world space. (Equation (3.45) 
uses the adjugate to transform a plane, but in this case, we can assume the deter-
minant is one, so the inverse and adjugate are the same.) Since the axes are orthog-
onal in camera space, the upper-left 3 3×  portion of 1

camera
−M  is simply the transpose 

of the upper-left 3 3×  portion of cameraM , so the normal vectors for the world-space 
frustum planes end up being linear combinations of the columns of cameraM . For 
example, the world-space normal n of the left frustum plane is given by 

[ ] [ ]camera camera0 2g s= +n M M , (6.4) 

where we continue to use the notation [ ]iM  to refer to the zero-based column i of 
the matrix M. To form a complete plane [ ]| dn , we only need to calculate 

[ ]camera 3d = − ⋅n M , (6.5) 

where the last column of cameraM  gives the world-space position of the camera. 
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 At the projection distance g in front of the camera, a plane perpendicular to the 
view direction cuts through the lateral planes of the view frustum at a rectangle 
bounded by the camera-space coordinates x s= ±  and 1y = ± . At an arbitrary dis-
tance u from the camera, these ranges are simply scaled by a factor of u g . �ere 
are instances in which we need to know where the four points 0 , 1 , 2 , and 3  at
the corners of this rectangle are located in world space. Again using the matrix 

cameraM  that transforms camera space into world space, we identify the camera po-
sition [ ]camera 3= M  and the three axis directions [ ]camera 0=x M , [ ]camera 1=y M , and

[ ]camera 2=z M  for notational convenience. �en, for a view frustum having a projec-
tion distance g and an aspect ratio s, the points i  are given by

0 1

2 3

, ,

, .

us u us uu u
g g g g

us u us uu u
g g g g

= + + + = + − +

= − − + = − + +

x y z x y z

x y z x y z

   

   
(6.6) 

When u n=  and u f= , these points correspond to the rectangles on the boundary 
of the view frustum at the near plane and far plane. 

6.2  Perspective-Correct Interpolation 

�e main purpose of a projection matrix is to transform 3D points from camera 
space into their corresponding positions on the projection plane so that a view of a 
3D world can be displayed as a 2D image. Finding the projection of a point 
involves the rather simple task of determining where a line segment connecting the 
origin (the camera position) to  intersects the projection plane. �e x and y coor-
dinates of the projected point  are given by

x x
z

gq p
p

=    and   y y
z

gq p
p

= . (6.7) 

�e division by zp  is called the perspective divide, and it is responsible for objects 
farther away, which have larger z coordinates, appearing to be smaller on the screen 
than objects that are closer to the camera. 
 In order to incorporate the perspective divide into the linear transformation 
performed by a matrix, we work in homogeneous coordinates. By using a 4 4×  
matrix that moves zp  into the w coordinate, the perspective divide happens when 
the transformed 4D homogeneous vector  is projected back into 3D space. �is is
illustrated by the equation 
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0 0 0
0 0 0
0 0 0
0 0 1 0 1

x x

y y

z z

z

g p gp
g p gp

g p gp
p

     
     
     = =
     
     
     

 , (6.8) 

which produces the x and y coordinates given by Equation (6.7) after dividing by 
the w coordinate. Note that this transform also produces a z coordinate of g, which 
is what it must be for a point lying in the projection plane. 

�e matrix in Equation (6.8) does indeed perform the correct projection of any 
3D point  with 0zp ≠  onto the plane containing the 2D viewport, but it is not the
form of the matrix that is actually used in computer graphics. �e reason for this 
has to do with interpolation of values inside a triangle after its vertices have been 
projected, and an explanation of the correct way to perform interpolation with per-
spective division applied will allow us to derive the standard form of the projection 
matrix used in practice. 
 When a triangle is drawn by the GPU, the three vertices are projected into the 
viewport to determine what set of pixels the triangle covers. Values calculated by 
the vertex shader, such as depth, colors, and texture coordinates, are initially 
known only at the projected vertex locations, and the hardware must interpolate 
them inside the triangle in order to obtain the proper values at any particular pixel. 
Due to the perspective divide, however, the correct interpolation is not linear, and 
the GPU must use a special type of interpolation called perspective-correct inter-
polation to render triangles without producing unwanted nonlinear distortion. 

Consider two camera-space vertex positions 1  and 2  and their projections 1
and 2  onto the plane at a distance g from the camera, as shown in Figure 6.4.
When we take equally-spaced steps on the projection plane between the points 1
and 2 , it is clear that these do not correspond to equally-spaced steps between the
original vertex positions 1  and 2 . More generally, a linearly interpolated point

( ) ( )1 21t t t= − +   , (6.9) 

is not the projection of ( )1 21 t t− +   for the same value of t except at the end-
points where 0t =  or 1t = . If we wanted to interpolate per-vertex values directly, 
we would have to unproject ( )t  back onto the plane containing the triangle and
calculate a new interpolation parameter. �is would be expensive, so we instead 
look for quantities that can be linearly interpolated on the projection plane. 
 Let [ ]| dn  be the plane containing a triangle to be rendered, and assume that 

0d ≠  because otherwise, the plane would be viewed edge-on and thus not be visi-
ble to the camera. A point ( ), ,x y z=  inside the triangle must satisfy the equation
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Figure 6.4. Two camera-space vertex positions 1  and 2  are projected onto the plane at a
distance g from the camera as the points 1  and 2 . Positions interpolated at equal-sized
steps between 1  and 2  do not correspond to positions interpolated at equal-sized steps
between the original vertices 1  and 2 .

[ ]| 0x y zd n x n y n z d⋅ = + + + =n  . (6.10) 

�e projection  of the point  is given by

g
z

= , (6.11) 

and the reverse projection of  is thus

z
g

= . (6.12) 

When we substitute this expression for  in Equation (6.10), we have

0yx
x y z

nn q q n z d
g g

 + + + = 
 

. (6.13) 

Solving this equation for z would produce an expression in which the coordinates 
of  appear in the denominator, and this is not something that can be linearly in-
terpolated. However, if we instead solve for the reciprocal of z, then we get 

1 y yx x zn qn q n
z gd gd d gd

⋅
= − − − = −

n  , (6.14) 
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and the right side of this equation is a linear function of the coordinates of . �e
reciprocal of z is a quantity that can be linearly interpolated, and for a point ( )t
given by Equation (6.9), we can write 

( )
( )

( )

( )

1 2

1 2

1

1

1 11 ,

t
z t gd

t t
gd

t t
z z

⋅
= −

⋅ − + ⋅
= −

= − +

n

n n



 

(6.15) 

where iz  is the z coordinate of i , and ( )z t  represents the depth interpolated with
perspective correctness. 
 Equation (6.15) is the fundamental principle upon which depth buffering is 
based. At the same time that the vertices of a triangle are projected into the view-
port, the camera-space depths of those vertices are inverted to produce reciprocal 
z values that can be linearly interpolated across the face of the triangle. It is this 
interpolated reciprocal that actually gets used in the depth test, and not the value 
of z itself. �is allows the graphics hardware to avoid a costly reciprocal operation 
at each pixel during the rasterization process. It’s only when the depth test passes 
and the pixel shader is executed that the reciprocal operation is performed to re-
cover the actual depth value, which turns out to be necessary for calculating inter-
polated values of vertex attributes. 

Let 1a  and 2a  be the components of a particular vertex attribute associated with 
the positions ( )1 1 1 1, ,x y z=  and ( )2 2 2 2, ,x y z= . For example, these values
could each represent the red component of a vertex color or the one of the texture 
coordinates specified at each vertex. �e linearly interpolated value ( )a t  between 
the two vertices must correspond to the same fraction of the total difference 2 1a a−  
as does the interpolated depth ( )z t  with 2 1z z− . �at is, the value of ( )a t  must 
satisfy the equation 

( ) ( )1 1

2 1 2 1

a t a z t z
a a z z

− −
=

− −
. (6.16) 

Substituting the reciprocal of the right side of Equation (6.15) for ( )z t  gives us 

( )
( )

1 1

2 1 2 11
a t a z t
a a z t z t

−
=

− − +
(6.17) 

after some algebraic simplification. When we solve for ( )a t , we have 
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( ) ( )
( )

1 2 2 1

2 1

1
1

a z t a z ta t
z t z t

− +
=

− +
. (6.18) 

Multiplying the numerator and denominator by 1 21 / z z  produces 

( )
( )

( )

( )

( )

1 2 1 2

1 2 1 2

1 2

1 1

1 1 11

a a a at t t t
z z z za t

t t
z z z t

− + − +
= =

− +
, (6.19) 

and multiplying both sides by ( )1 z t  finally yields 

( )
( )

( )1 2

1 2
1a t a at t

z t z z
= − + . (6.20) 

�is tells us that the quotient of any vertex attribute and the depth at the same 
vertex can be linearly interpolated on the projection plane. 
 When the projection matrix is applied to a vertex, the camera-space depth z is 
moved to the w coordinate of the result, just as in Equation (6.8). As such, it is 
common to express the interpolation equations in terms of the projected w coordi-
nates. Furthermore, all three vertices are involved in the interpolation calculations, 
and two parameters u and v are required to form a set of barycentric coordinates. 
When generalized to a projected triangle, Equations (6.15) and (6.20) become 

( )
( )

1 2 3

1 1 1 11
,

u v u v
w u v w w w

= − − + + (6.21) 

and 

( )
( )

( )1 2 3

1 2 3

, 1 .
,

a u v a a au v u v
w u v w w w

= − − + + (6.22) 

 For each of the three vertices of a triangle, after they have been transformed 
by the projection matrix, the GPU calculates 1 iw . One method that could then be 
used to perform attribute interpolation is to multiply every component ia  of each 
vertex attribute by the result to obtain i ia w . �ese quantities, which all include 
the reciprocal of the depth stored in the coordinate iw , are linearly interpolated at 
each pixel covered by a triangle using Equations (6.21) and (6.22). In the pixel 
shader, the reciprocal of the interpolated value of ( )1 ,w u v  is calculated to obtain 
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the perspective-correct depth ( ),w u v  at the pixel location, and each interpolated 
value of ( ) ( ), ,a u v w u v  is multiplied by that depth to obtain the perspective- 
correct attribute value ( ),a u v  for the same pixel. 
 Because there are often many values ia  that would need to be multiplied by 
1 iw , most modern GPUs take a different approach in which the barycentric coor-
dinates u and v themselves are interpolated in a perspective-correct manner. Once 
their values have been determined at a point inside a triangle, they can be used to 
calculate the attribute values ( )pc pc,a u v  with ordinary linear interpolation, where 
the subscript “pc” indicates that perspective correction has been applied. In this 
case, no per-vertex multiplications by 1 iw  need to be performed. We show in detail 
how this works for the u parameter, and the same is true for the v parameter. 
 For any values 1u  and 2u  assigned to two vertices having w coordinates 1w  and 

2w , the perspective-correct interpolated value ( )pcu t  is given by 

( ) ( ) ( )1 2
pc

1 2
1u uu t w t t t

w w
 = − +  

, (6.23) 

which follows directly from Equation (6.20) after replacing z coordinates with w 
coordinates. Since ( )pcu t  is a parameter that is required to interpolate between 
known values at two vertices, we must assign 1 0u =  and 2 1u = . Doing so produces 
the simpler expression 

( ) ( )
pc

2

w tu t t
w

= . (6.24) 

Now, continuing to use w coordinates instead of z coordinates, if we reorganize 
Equation (6.15) as 

( )
1 1

2
1 w wt t

w t w
− = − (6.25) 

and plug this expression for 1 t−  into Equation (6.20), then we have 

( ) ( ) ( )
1 2

2 2
1 w t w ta t a t a t

w w
 = − + 
 

(6.26) 

after multiplying by ( )w t . �is contains two instances of ( )pcu t  given by Equation 
(6.24), so it can be rewritten as 

( ) ( )( ) ( )1 pc 2 pc1a t a u t a u t= − + , (6.27) 

which is just ordinary linear interpolation. 
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 To make use of this method, the GPU calculates barycentric coordinates u and 
v in viewport space for each pixel inside a triangle, as described in Section 5.5.2. 
�e reciprocal of the w coordinate at the pixel is then given by 

( )
( )

1 2 3

1 1 1 11
,

u v u v
w u v w w w

= − − + + . (6.28) 

�is value is inverted and used to calculate the perspective-correct barycentric co-
ordinates with the formulas 

( )
pc

2

,w u vu u
w

=   and  ( )
pc

3

,w u vv v
w

= . (6.29) 

�ese values are all that are needed to then interpolate any number of per-vertex 
attributes with the equation 

( ) ( )pc pc 1 pc pc 2 pc 3 pc, 1a u v a u v a u a v= − − + + . (6.30) 

�e perspective correction is performed entirely with Equations (6.28) and (6.29) 
at a fixed cost regardless of how many attributes are needed by a pixel shader. 

6.3  Projection Matrices 

�e purpose of the projection matrix is to transform geometry inside the view frus-
tum from camera space to clip space using homogeneous coordinates. In the case 
of a perspective projection, the projection matrix also sets up the perspective divide 
by moving the camera-space depth into the w coordinate. In the three-dimensional 
slice of clip space where 1w = , the transformed view frustum is shaped like a box 
called the canonical view volume, as shown in Figure 6.5. �e canonical view vol-
ume is a representation of the view frustum after the perspective divide occurs, and 
it is independent of the field of view angles, the aspect ratio of the viewport, and 
the distances to the near and far planes. �e x and y coordinates of any point inside 
the view frustum both fall into the range [ ]1, 1− +  in the canonical view volume, 
and the z coordinates between the near and far planes are mapped to the range [ ]0,1 . 
�ese are called normalized device coordinates, and they are later scaled to the 
dimensions of the frame buffer by the viewport transform. 
 �roughout this chapter, we will be talking about coordinates in four different 
phases of transformation between camera space and viewport space. To make it 
clear which space any particular point or coordinate values belong to, we use the 
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subscript labels shown in Figure 6.6. �e subscript “camera” means that the coor-
dinates describe a position in 3D camera space, the subscript “clip” is used for 4D 
homogeneous coordinates in clip space produced by the projection matrix, the sub-
script “device” indicates 3D normalized device coordinates after the division by 

clipw , and the subscript “viewport” refers to the final 3D coordinates after the view-
port transform has been applied. 

Figure 6.5. �e projection matrix frustumP  transforms the view frustum into the canonical 
view volume, where points inside the view frustum have normalized device coordinates in 
the range [ ]1, 1− +  along the x and y axes and in the range [ ]0,1  along the z axis after the 
perspective divide occurs. 

Figure 6.6. �e projection matrix transforms from 3D “camera” coordinates to 4D homo-
geneous “clip” coordinates. �e perspective divide then converts clip coordinates into 3D 
normalized “device” coordinates. �e viewport transform finally scales and offsets device 
coordinates so they become “viewport” coordinates. 
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6.3.1  Perspective Projection Matrices 
�e exact form of the perspective projection matrix, which we call frustumP , can be 
determined by enforcing the range requirements of the canonical view volume af-
ter the perspective divide has been applied through the division by the w coordi-
nate. We have already seen in Equation (6.7) that the x and y coordinates of a 
camera-space point ( )camera camera camera camera, ,x y z=  are projected into the viewport
by multiplying them by camerag z . If camera  is inside the view frustum, then the pro-
jected y coordinate falls in the range [ ]1, 1− + , but the projected x coordinate falls 
into the range [ ],s s− + , so we also need to divide the x coordinate by s to fit it into 
the canonical view volume. �is means that the projection matrix has the form 

frustum

0 0 0
0 0 0
0 0
0 0 1 0

g s
g

A B

 
 
 =
 
 
 

P , (6.31) 

where the entries A and B used to calculate the projected z coordinate have yet to 
be ascertained. �e homogeneous clip-space point ( )clip clip clip clip clip, , ,x y z w=
produced by this matrix is given by 

( ) camera

camera
clip frustum camera

camera

camera

g s x
gy

Az B
z

 
 
 = =

+ 
 
 

P  . (6.32) 

 �e third row of  frustumP  determines the z coordinate in clip space. It ordinarily 
does not depend on camerax  or cameray , so the first two entries in the row are zero, 
leaving two unknowns A and B in the last two entries. After division by clipw , which 
is always equal to cameraz , the projected z coordinates of points between the near and 
far planes of the view frustum must be in the range [ ]0,1 . It is this projected value 
of clip clipz w  that is ultimately used in the depth test as it is linearly interpolated 
over a triangle. Because the reciprocal of depth must be interpolated, as discussed 
in Section 6.2, it is remarkably convenient that 

clip

clip camera

z BA
w z

= + , (6.33) 

and the camera-space depth cameraz  appears as a reciprocal, just as required. All we 
need to do is calculate the values of A and B that produce the depth clip clip 0z w =  
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on the near plane where cameraz n=  and the depth clip clip 1z w =  on the far plane 
where cameraz f= , which are expressed by the equations 

0BA
n

+ =    and   1BA
f

+ = . (6.34) 

Solving these for A and B gives us 

fA
f n

=
−

   and   nfB
f n

= −
−

, (6.35) 

and the complete perspective projection matrix is thus given by 

frustum

0 0 0
0 0 0

.
0 0

0 0 1 0

g s
g

f nf
f n f n

 
 
 

=  
− − − 

  

P (6.36) 

�e fact that B is a negative value means that depths that were larger in camera 
space are still larger in clip space after the perspective divide. Taking the reciprocal 
reverses the order of depths, but the subtraction then reverses the order again. A 
function that constructs the projection matrix frustumP  and returns a Matrix4D data 
structure is shown in Listing 6.1. 

Listing 6.1. �is code creates a 4 4×  matrix that represents the perspective projection frustumP  for a 
view frustum having a vertical field of view specified by fovy and returns it in a Matrix4D data 
structure. �e aspect ratio of the viewport is given by s, and the distances to the near and far planes 
are given by n and f. 

Matrix4D MakeFrustumProjection(float fovy, float s, float n, float f) 
{ 

float g = 1.0F / tan(fovy * 0.5F); 
float k = f / (f − n); 

return (Matrix4D(g / s, 0.0F, 0.0F, 0.0F, 
  0.0F,  g,   0.0F, 0.0F, 
  0.0F, 0.0F,  k,  −n * k, 
  0.0F, 0.0F, 1.0F, 0.0F)); 

} 
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 In our version of clip space, the x, y, and z axes point in the same directions as 
they do in camera space. �is convention is followed by some rendering systems, 
but others invert the y axis so that it points upward instead of downward, creating 
a left-handed clip space. When this is the case, the second row of the projection 
matrix needs to be negated to produce the correct clip coordinates, which amounts 
to simply replacing g with g−  in Equation (6.36). Some rendering systems also 
require that z coordinates fall in the range [ ]1, 1− +  after the perspective divide in-
stead of the range [ ]0,1 . �e values of A and B are a little different in that case, as 
shown by Exercise 8. 
 Unlike the matrix shown in Equation (6.8), the perspective projection matrix 
given by Equation (6.36) is invertible, and it is has the form 

1
frustum

0 0 0
0 1 0 0
0 0 0 1

10 0

s g
g

f n
nf n

−

 
 
 

=  
 − −
  

P . (6.37) 

�e lower-right 2 2×  portion of this matrix can be used to transform a value devicez , 
taken from an existing depth buffer, back into camera space. �e vector ( )device ,1z  
is transformed into the camera-space coordinates ( )camera camera,z w , where we must 
temporarily use homogeneous coordinates, and we then divide by cameraw  to obtain 

( )
camera

camera device device1
z nf
w z n z f

=
+ −

. (6.38) 

 Figure 6.7 illustrates how the standard projection matrix frustumP  given by Equa-
tion (6.36) transforms depths from camera space to normalized device coordinates, 
both inside and outside the view frustum. Camera-space depths falling between the 
near plane where cameraz n=  and far plane where cameraz f=  are mapped precisely 
into the canonical view volume where device0 1z≤ ≤ . All camera-space depths lying 
beyond the far plane, no matter how large, are squeezed into the small space be-
tween device 1z =  and ( )devicez f f n= − , and this range becomes smaller as the far 
plane is moved farther away from the camera. Conversely, all of the depths be-
tween the camera and the near plane, in the range camera0 z n≤ < , are stretched into 
the entire range of negative values of devicez , extending all the way to −∞. �e re-
maining set of possible depths, consisting of all values lying behind the camera 
with camera 0z < , is wrapped around to the opposite side of the view frustum and 
ends up occupying the range of positive values where ( )devicez f f n> − . 
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Figure 6.7. �is diagram illustrates how depths in camera space are transformed into 
normalized device coordinates by the standard perspective projection matrix frustumP . 

6.3.2  Infinite Projection Matrices 

It is often impractical, or at least inconvenient, for the view frustum to have a far 
plane beyond which no objects can be rendered. Some game engines need to draw 
a very large world in which the camera can see many kilometers in any direction, 
and things like the sky, sun, moon, and star fields need to be rendered much farther 
away to ensure that they don’t intersect any world geometry. Fortunately, it is pos-
sible to push the far plane out to a literally infinite distance from the camera, and 
doing so has become a common practice. Game engines may still choose to cull 
objects beyond some maximum viewing distance, but the projection matrix will no 
longer cause triangles to be clipped against a far plane. 
 �e infinite perspective projection matrix infiniteP  is derived by taking the limit 
as the distance f to the far plane tends to infinity in the matrix frustumP  given by 
Equation (6.36) to arrive at 

infinite frustum

0 0 0
0 0 0

lim .
0 0 1
0 0 1 0

f

g s
g

n→∞

 
 
 = =

− 
 
 

P P (6.39) 
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A camera-space depth cameraz  is transformed by this matrix into a normalized device 
depth 

device
camera

1 nz
z

= − , (6.40) 

which is in the range [ ]0,1  as long as cameraz n≥ , and it approaches one as cameraz  
becomes arbitrarily large. For the infinite projection matrix, the space shown be-
yond the far plane in Figure 6.7 shrinks to nothing. 
 Objects can be rendered at infinity by using homogeneous vertex positions that 
have w coordinates equal to zero. �ese positions can be specified in world space 
or in object space, and they behave as direction vectors as they are transformed 
into camera space, which means that the camera’s position has no effect on them. 
When we apply the infinite projection matrix given by Equation (6.39) to a camera-
space direction vector, we get 

( )camera camera

camera camera

camera camera

camera

0 0 0
0 0 0
0 0 1
0 0 1 0 0

g s x g s x
g y gy

n z z
z

    
    
     =

−     
    

     

. (6.41) 

�e values of clipz  and clipw  in the result are equal, so the value devicez  after the per-
spective divide is exactly one. �is corresponds to a point lying on the far plane at 
an infinite distance from the camera. 
 �e realities of floating-point round-off error often make the matrix infiniteP  un-
usable in practice for rendering objects at infinity unless we make a small modifi-
cation. When the projection matrix is combined with the model-view matrix, the 
exactness of the entries of infiniteP  can be lost, and it’s possible for the calculated 
value of devicez  to be slightly larger than one, which causes random clipping to occur. 
�e solution to this problem is to modify the projection matrix so that it produces 
depths in the range [ ]0,1 ε−  for some tiny constant value ε. �is can be achieved 
by multiplying the third row of infiniteP  by 1 ε−  to obtain the new matrix 

( )infinite

0 0 0
0 0 0

.
0 0 1 1
0 0 1 0

g s
g

ε n ε
∗

 
 
 =

− − − 
 
 

P (6.42) 

�e value of ε needs to be large enough that it is still significant compared to the 
floating-point value of one from which it is subtracted. For 32-bit numbers, choos-
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ing a value around 202ε −= , which is about 610− , is usually safe and effective. A 
function that constructs the modified infinite projection matrix infinite

∗P  and returns a 
Matrix4D data structure is shown in Listing 6.2. 

Listing 6.2. �is code creates a 4 4×  matrix that represents the infinite perspective projection infinite
∗P  

for a view frustum having a vertical field of view specified by fovy and returns it in a Matrix4D 
data structure. �e aspect ratio of the viewport is given by s, the distance to the near plane is given 
by n, and the value of ε in Equation (6.42) is given by e. If 0ε = , then the returned matrix is infiniteP  
given by Equation (6.39). 

Matrix4D MakeInfiniteProjection(float fovy, float s, float n, float e) 
{ 

float g = 1.0F / tan(fovy * 0.5F); 
e = 1.0F − e; 

return (Matrix4D(g / s, 0.0F, 0.0F, 0.0F, 
  0.0F,  g,   0.0F, 0.0F, 
  0.0F, 0.0F,  e,  −n * e, 
  0.0F, 0.0F, 1.0F, 0.0F)); 

} 

6.3.3  Projected Depth Precision 
�e projection matrix and perspective divide map camera-space depths inside the 
view frustum to the range [ ]0,1 , but the mapping is nonlinear, and this leads to a 
highly uneven distribution of discrete representable values in the depth buffer. 
Consider the value 1

device 2z =  that is halfway through the full range of depths in 
normalized device coordinates. We can calculate the original value of cameraz  for 
which the projection matrix frustumP  produces this particular depth by solving the 
equation 

( ) camera

1
2

f nf
f n f n z

− =
− −

. (6.43) 

�e answer is 

camera
2nfz
f n

=
+

, (6.44) 

and this is shown above in Figure 6.7 in order to illustrate the disproportionality 
between the view frustum in camera space and the canonical view volume in clip 
space. Since f is expected to be much larger than n, this value of cameraz  is very close 
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to 2 ,n  with equality being reached as f tends to infinity. What the above calculation 
means is that entirely half of the final range of depths is dedicated to the tiny dif-
ference between n and at most 2n in camera space, and the other half must be 
assigned to the vast expanse beyond that. 
 Ironically, the design of floating-point numbers causes drastically greater pre-
cision to be available in the range [ )1

20, , which corresponds to a very small dis-
tance, compared to the relatively scant precision available in the range [ )1

2 ,1 , which 
corresponds to a very large distance. In 32-bit floating-point, there are 232  (roughly 
8.4 million) possible mantissa values for each particular exponent value. Of the 
126 possible exponent values used for numbers smaller than one, 125 of them cor-
respond to numbers less than 1

2 , and the remaining solitary exponent value corre-
sponds to all of the numbers greater than or equal to 1

2 . As shown in Figure 6.8(a), 
the result is a rather ridiculous clustering of representable depths close to the near 
plane. In this diagram, the values of devicez  produced by the projection matrix frustumP  
are graphed as a function of cameraz . �e horizontal gridlines represent individual 
values that can be written into the depth buffer, where the number of distinct man-
tissas per exponent has been limited to ten for illustrative purposes. �e vertical 
lines are drawn at each value of cameraz  where a horizontal line intersects the curve. 
�e rapidly growing distance between vertical lines as camera-space depth in-
creases demonstrates the equally rapid loss of precision as geometry lies farther 
away from the camera. 
 �e situation just described is the opposite of what we would like to have. 
However, the problem is easily remedied by redesigning the projection matrix so 
that the clip-space depths between the near and far planes still get mapped to the 
range [ ]0,1 , but in the reverse order. Enforcing this requirement produces the new 
projection matrix 

frustum

0 0 0
0 0 0

,
0 0

0 0 1 0

g s
g

n nf
n f n f

 
 
 

=  
− − − 

  

R (6.45) 

where the values n and f have simply been swapped in each of the places they 
previously appeared in the matrix frustumP  given by Equation (6.36). When the ma-
trix frustumR  is applied, the graph of devicez  is turned upside down, as shown in Fig-
ure 6.8(b), and all of the extra precision available for small values of devicez  is now 
allocated to depths far away from the camera where they are needed the most. 
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Figure 6.8. �e values of devicez  produced by the projection matrix and the perspective di-
vide are graphed as functions of cameraz . (a) �e matrix frustumP  given by Equation (6.36) 
causes depths to increase with distance from the camera, but almost all of the available 
precision is wasted close to the near plane, leaving very little farther out. (b) �e matrix 

frustumR  given by Equation (6.45) causes depths to decrease with distance from the camera, 
and the available precision is much more evenly distributed over the whole view frustum. 
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In order to take advantage of the reversing projection, a game engine must make 
one further adjustment, and that is to reverse the direction of the depth test because 
objects closer to the camera now write greater values to the depth buffer. A function 
that constructs the reverse projection matrix frustumR  and returns a Matrix4D data 
structure is shown in Listing 6.3. 
 As before, we can push the far plane to infinity for the reversing projection 
matrix. �e result is the matrix infiniteR  given by 

infinite frustum

0 0 0
0 0 0

lim ,
0 0 0
0 0 1 0

f

g s
g

n→∞

 
 
 = =
 
 
 

R R (6.46) 

which is even simpler than infiniteP  as measured by the number of nonzero entries. 
To prevent floating-point round-off error from assigning slightly negative values 
of devicez  to vertex positions at infinity, we can again make a small modification that 
causes this projection matrix to map depths into the range [ ],1ε . With this change, 
we obtain 

( )infinite

0 0 0
0 0 0

,
0 0 1
0 0 1 0

g s
g

ε n ε
∗

 
 
 =

− 
 
 

R (6.47) 

which is the reversed-depth analog of the matrix infinite
∗P  given by Equation (6.42). 

A function that constructs the modified reverse infinite projection matrix infinite
∗R  

and returns a Matrix4D data structure is shown in Listing 6.4. 
 When a 32-bit floating-point depth buffer is being used in a rendering system 
that defines the range of devicez  values in the canonical view volume to be [ ]0,1 , 
there are no disadvantages to using the projection matrix infinite

∗R  as long as having 
a far plane clipping is not a necessary feature. �is matrix can usually serve as the 
default perspective projection matrix because it provides excellent depth buffer 
precision, avoids clipping artifacts for objects rendered at infinity, and still enables 
clipping at the near plane. We only need to keep in mind that the depth test ordi-
narily passes when devicez  is greater than the value stored in the depth buffer at each 
pixel. 
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Listing 6.3. �is code creates a 4 4×  matrix that represents the reversing perspective projection 
frustumR  for a view frustum having a vertical field of view specified by fovy and returns it in a 

Matrix4D data structure. �e aspect ratio of the viewport is given by s, and the distances to the near 
and far planes are given by n and f. 

Matrix4D MakeRevFrustumProjection(float fovy, float s, float n, float f) 
{ 

float g = 1.0F / tan(fovy * 0.5F); 
float k = n / (n − f); 

return (Matrix4D(g / s, 0.0F, 0.0F, 0.0F, 
  0.0F,  g,   0.0F, 0.0F, 
  0.0F, 0.0F,  k,  −f * k, 
  0.0F, 0.0F, 1.0F, 0.0F)); 

} 

Listing 6.4. �is code creates a 4 4×  matrix that represents the reversing infinite perspective projec-
tion infinite

∗R  for a view frustum having a vertical field of view specified by fovy and returns it in a 
Matrix4D data structure. �e aspect ratio of the viewport is given by s, the distance to the near plane 
is given by n, and the value of ε in Equation (6.47) is given by e. If 0ε = , then the returned matrix 
is infiniteR  given by Equation (6.46). 

Matrix4D MakeRevInfiniteProjection(float fovy, float s, float n, float e) 
{ 

float g = 1.0F / tan(fovy * 0.5F); 

return (Matrix4D(g / s, 0.0F, 0.0F,    0.0F, 
  0.0F,  g,   0.0F,    0.0F, 
  0.0F, 0.0F,  e,   n * (1.0F − e), 
  0.0F, 0.0F, 1.0F,    0.0F)); 

} 

6.3.4  Orthographic Projections 

Up to this point, we have been discussing perspective projections in which the 
viewable volume of space is defined by horizontal and vertical angles opening at a 
single point, the camera position. In a perspective projection, vertices belonging to 
visible objects are connected to that one camera position to determine where they 
fall on the projection plane. �ere is another kind of projection called an ortho-
graphic projection in which vertices are projected not to a single point but to the 
entire plane containing the camera position. An orthographic projection is also 
known as a parallel projection because, as shown in Figure 6.9, the line segments 
connecting vertices to the projection plane are all parallel to each other. 
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Figure 6.9. In an orthographic projection, vertices 1  and 2  in the view volume are pro-
jected in the direction parallel to the camera-space z axis onto the points 1  and 2  in the
plane containing the camera. 

 �e need for an orthographic projection often arises when some point of view 
can be considered infinitely far away, like the sun. When a shadow map is rendered 
for such a light source, an orthographic projection is used because the light rays 
can be considered parallel. (See Section 8.3.) Orthographic projections are also 
used in tools like level editors to show blueprint views of world geometry. 
 Compared to perspective projections, the derivation of the matrix used to per-
form an orthographic projection is very straightforward. �ere is no perspective 
divide to consider, and thus no perspective-correct interpolation or depth buffer 
precision issues to worry about. An orthographic projection simply scales and off-
sets camera-space coordinates so that one volume of space shaped like a box is 
resized to another volume of space shaped like a box, the canonical view volume. 
We describe the boundary of the visible region of camera space by specifying min-
imum and maximum values along each of the three axes. In the x direction, coor-
dinates range from a left plane at x l=  to a right plane at x r= . In the y direction, 
coordinates range from a top plane at y t=  to a bottom plane at y b= . And in the z 
direction, coordinates range from a near plane at z n=  to a far plane at z f= . �e 
orthographic projection matrix orthoP  is determined by requiring that these ranges 
are transformed into the range [ ]1, 1− +  in the x and y directions and into the range 
[ ]0,1  in the z direction, yielding 
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ortho
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P (6.48) 

 A function that constructs the projection matrix orthoP  and returns a Matrix4D data 
structure is shown in Listing 6.5. 
 Note that there are no requirements on the boundary planes of the view volume 
in relation to the camera position. In the z direction, the camera can be in front of 
the near plane, beyond the far plane, or even in between the two planes inside the 
view volume. �e same is true in the x and y directions with respect to the side 
planes. However, it is common to place the camera at a point on the near plane that 
is halfway between the left, right, top, and bottom planes. In this case, the ortho-
graphic projection matrix simplifies to 

ortho

2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

w
h

d

 
 
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 
 

P , (6.49) 

where w, h, and d are the width, height, and depth of the view volume. 

Listing 6.5. �is code creates a 4 4×  matrix that represents the orthographic projection orthoP  and 
returns it in a Matrix4D data structure. �e left, right, top, and bottom sides of the view volume are 
given by l, r, t, and b. �e distances to the near and far planes are given by n and f. 

Matrix4D MakeOrthoProjection(float l, float r, float t, float b, float n, float f) 
{ 

float w_inv = 1.0F / (r − l), h_inv = 1.0F / (b − t), d_inv = 1.0F / (f − n); 

return (Matrix4D(2.0F * w_inv,   0.0F,   0.0F, −(r + l) * w_inv, 
  0.0F,   2.0F * h_inv, 0.0F, −(b + t) * h_inv, 
  0.0F,   0.0F,     d_inv,   −n * d_inv, 
  0.0F,   0.0F,    0.0F,    1.0F)); 

} 
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6.3.5  Frustum Plane Extraction 
In clip space, the fixed planes bounding the canonical view volume have a rather 
simple form, as shown in Figure 6.10. �is due to the fact that their normal vectors 
are all parallel to the coordinate axes and their distances to the origin are always 
either zero or one. As a consequence, for a given projection matrix P, it is particu-
larly easy to determine what the camera-space planes bounding the view volume 
must be. 
 Recall that planes are 4D antivectors and that they transform between coordi-
nate systems in the opposite sense of vectors. �e projection matrix P transforms 
vectors, regarded as matrices having a single column, from camera space to clip 
space. �e same matrix P, not its inverse, also transforms antivectors, regarded as 
matrices having a single row, the other way from clip space to camera space. �us, 
the plane clipf  in clip space is transformed into the plane cameraf  in camera space with 
the formula 

camera clip=f f P. (6.50) 

�e boundary planes of the canonical view volume each have at most two nonzero 
components, and each one is either 1+   or 1−  . �is means that the camera-space 
planes can be extracted from the matrix P by calculating the sum or difference of 

Figure 6.10. �is diagram shows four of the six planes bounding the canonical view vol-
ume in clip space. Each plane’s normal vector is aligned to one of the coordinate axes, and 
each plane’s w coordinate is either zero or one. �e top and bottom planes not shown have 
coordinates ( )0,1,0,1  and ( )0, 1,0,1− . 
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two unscaled rows of P in most cases, with the only exception being the near plane, 
which is simply equal to the third row of P by itself. 
 �e six clip-space planes bounding the canonical view volume are listed in 
Table 6.2 along with the formulas for calculating their camera-space counterparts 
with the rows of a projection matrix P. �ese formulas are valid for any projection 
matrix, perspective or orthographic, with a finite or infinite far plane, or with the 
oblique near plane described in Section 6.4 below. (However, an infinite far plane 
is extracted from the projection matrix as its dual point at the origin in camera 
space.) In the case of a reversing projection matrix R that maps the near plane to 
one and the far plane to zero, the formulas for near and far plane extraction are 
swapped, as explicitly shown by separate entries in Table 6.2. Keep in mind that 
the planes calculated with these formulas will not generally be normalized and may 
need to be rescaled depending on their intended use. 

Frustum Plane Clip-Space ( ), , ,x y z w  Camera-Space Formula 

Left ( )1,0,0,1  3 0+P P  

Right ( )1,0,0,1−  3 0−P P  

Top ( )0,1,0,1  3 1+P P  

Bottom ( )0, 1,0,1−  3 1−P P  

Conventional Projection Matrix 

Near ( )0,0,1,0  2P  

Far ( )0,0, 1,1−  3 2−P P  

Reversing Projection Matrix 

Near ( )0,0, 1,1−  3 2−R R  

Far ( )0,0,1,0  2R  

Table 6.2. Clip-space plane coordinates ( ), , ,x y z w  are listed for the six planes bounding 
the canonical view volume. �e formulas for extracting the equivalent camera-space planes 
are given in terms of the rows of the projection matrix P, where the notation iP  represents 
the zero-based i-th row of P. For a projection matrix R that reverses the direction of depth, 
the formulas for the near and far planes are swapped. 
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6.4  Oblique Clipping Planes 
In some advanced techniques utilized by various game engines, the final scene is 
a composite of images rendered from multiple camera views. For example, this 
happens when the objects visible to the primary camera include things like a mir-
ror, a reflective water surface, or a magical portal through which you can see a 
distant part of the world. When those objects are rendered, they use secondary im-
ages that must have already been generated for completely different camera posi-
tions. �ere is often a boundary plane that separates the secondary camera views 
from the primary camera view. In the case of a reflection through the world-space 
boundary plane k, the transform cameraM  from camera space to world space used by 
the primary camera is turned into the transform 

( )reflection reflect camera=M H k M  (6.51) 

to be used by the camera that first renders the reflected image, where ( )reflectH k  is 
the matrix given by Equation (3.34) that performs a reflection through a plane. 
 When rendering the secondary images, a problem arises when geometry pen-
etrates the boundary plane. �is is exemplified in Figure 6.11(a), where a reflection 
is rendered for a water surface, and partially submerged stone pillars are drawn 
into the secondary image with a camera transform that flips everything upside 
down. �e reflection should contain only those parts of the pillars that are above 
the water surface, but the submerged parts are also visible in the top image of the 
figure, which is clearly incorrect. One solution to this problem is to enable a user 
clipping plane to prevent any underwater geometry from being rendered in the re-
flection image, and this produces the correct result shown in Figure 6.11(b). While 
effective, a user clipping plane inconveniently requires additional state manage-
ment and, for each unique material, a separate vertex shader that outputs a clip 
distance, possibly with a small performance cost. Furthermore, the additional clip-
ping plane is almost always redundant with the near plane because it slices through 
the view frustum at a distance much farther from the camera. Imagine an upward 
tilted view from the underwater camera used to render a reflection. Only the ge-
ometry above the water surface, beyond the boundary plane from the camera’s 
perspective, should be rendered. Anything that would be clipped by the near plane 
would certainly also be clipped to a greater extent by the boundary plane. 
 A user clipping plane can be avoided by employing a trick that modifies the 
projection matrix in such a way that the conventional near plane is replaced by an 
arbitrary plane that faces away from the camera. �is technique exploits the exist-
ing hardware clipping functionality at no additional performance cost and achieves 
the same results shown in Figure 6.11(b). �e only downside is that the far plane 
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Figure 6.11. Partially submerged stone pillars are rendered with a reflective water surface. (a) No 
clipping is performed at the boundary plane, and underwater parts are incorrectly shown in the 
reflection image. (b) �e projection matrix is modified so that the near plane is replaced by the 
boundary plane, and ordinary frustum clipping ensures that only geometry above the water surface 
are shown in the reflection image. 

(a) 

(b)
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is adversely affected, even for infinite projection matrices, and this impacts depth 
precision, but we will be able to minimize the damage. 
 Let k be the boundary plane with camera-space coordinates ( ), , ,x y z wk k k k . 
�is would normally have been transformed into the object space for a camera used 
to render a secondary image. We assume 0wk <  so that the camera lies on the neg-
ative side of the plane. �e plane’s normal vector points inward with respect to the 
view frustum as shown in Figure 6.12. For a conventional projection matrix P, one 
that does not reverse the direction of depths in clip space, the near plane corre-
sponds directly to 2P  according to Table 6.2. (Projection matrices that do reverse 
depths are discussed below.) We easily accomplish our goal of causing the oblique 
plane k to act as the near plane by simply replacing the third row of the projection 
matrix with k. In the process, however, we also modify the far plane 3 2= −f P P  in 
an unintuitive way due to its dependence on both the third and fourth rows, and the 
change is rather destructive. 
 When the near plane is not perpendicular to the camera-space z axis, the near 
plane and far plane are no longer parallel to each other, and they intersect at a line 
contained in the x-y plane. (See Exercise 11.) As a result, replacing the third row 
of a projection matrix by the arbitrary plane k causes the far plane f to be reoriented 
as shown in Figure 6.12. Clipping no longer occurs at the original far plane, but at 
this new oddly positioned far plane. Additionally, depth in normalized device co-
ordinates is now dependent on all three of the x, y, and z coordinates in camera 

Figure 6.12. �e camera-space boundary plane k slices through the view frustum at an 
oblique angle. It must be the case that 0wk <  so that the origin  is on its negative side. �e
far plane f must intersect the boundary plane k at a line contained in the x-y plane, and this 
causes it to have an unusual orientation. 
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space, and it increases from zero at the plane k to one at the plane f. Fortunately, 
we can exert some control over the exact orientation of f by multiplying k by a 
positive scale factor m. Doing so does not change the geometric meaning of the 
near clipping plane, and it allows us to optimize our usage of the full range of 
depths under the constraint that f does not end up chopping off any part of the 
original view frustum. We assume that the original projection matrix P has the 
form 

00 02

11 12

22 23

0 0
0 0
0 0
0 0 1 0

P P
P P

P P

 
 
 =
 
 
 

P , (6.52) 

where the presence of 02P  and 12P  makes the following derivation inclusive of off-
center perspective projections. �e inverse of P is given by 

00 02 00

11 12 111

23 22 23

1 0 0
0 1 0
0 0 0 1
0 0 1

P P P
P P P

P P P

−

− 
 − =
 
 − 

P . (6.53) 

 In the modified projection matrix, the third row is replaced by the scaled clip-
ping plane mk . Since the far plane is given by the difference between the fourth 
row and third row, and we cannot change the fourth row, we must have 

3 m= −f P k. (6.54) 

What we would like to do is calculate a value of m that causes the far plane to 
include the original view frustum, but nothing more. �is can be accomplished by 
forcing f to contain the camera-space vertex camera  on the boundary of the original
view frustum that is most distant from the plane k. �is vertex is one of the four 
corners of the view frustum on the original far plane, and which one depends on 
the signs of the x and y components of k. In clip space, points on the far plane 
always have clip 1z = , so we can express the most distant vertex in clip space as 

clip
00 11

sgn , sgn ,1,1yx kk
P P

    =     
    

 . (6.55) 

Here, xk  and yk  have been transformed into clip space with the matrix 1−P . In the 
case of a projection that does not invert the x or y axes, 00P  and 11P  are both positive, 
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so the signs of the camera-space values of xk  and yk  could simply be used to cal-
culate clip , and this is what we’ll use as we continue. �e camera-space vertex

camera , in homogeneous coordinates, is then given by

( )( )
( )( )

( )

02 00

12 111
camera clip

22 23

sgn
sgn

.
1

1

x

y

k P P
k P P

P P

−

− 
 − = =
 
 − 

P  (6.56) 

If P represents an infinite projection matrix, then the resulting w coordinate is zero, 
and camera  can be interpreted as the direction to a point at infinity. �e requirement
that the far plane f contain the camera  means that the dot product between them must
be zero, from which we obtain 

camera 3 camera camera 0m⋅ = ⋅ − ⋅ =f P k   . (6.57) 

Using [ ]3 0 0 1 0=P , this is easily solved for m to arrive at 

camera

1 .m =
⋅k 

(6.58) 

 Replacing the third row of P by the scaled plane mk  produces the view volume 
shown in Figure 6.13. �e near plane has been moved to coincide with the new 
boundary plane k, and the far plane has been oriented so that it contains the most 
distant vertex camera  of the original view frustum, minimizing the angle between k
and f. �e region shaded blue corresponds to the volume of camera space that gets 
reshaped into the canonical view volume by the modified projection matrix. Noth-
ing in this region is clipped, and it often extends to infinity in some directions 
regardless of whether the original view frustum has a finite far plane. �e vector 
field shown in the figure represents the gradient of devicez  after the perspective di-
vide. �is field demonstrates how increasing depths follow circular arcs that are 
perpendicular to both the near plane k, where device 0z = , and the far plane, where 

device 1z = . 
 In the case that the original projection matrix is one that reverses the depths in 
clip space, some minor changes to the above derivation are necessary. First, points 
on the far plane have z coordinates of zero in clip space, so the value of clip  in
Equation (6.55) is modified accordingly to 

( ) ( )( )clip sgn , sgn , 0,1x yk k= . (6.59) 
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Figure 6.13. �e boundary plane k can be scaled by a factor m specifically calculated so 
that the far plane f is rotated into the optimal orientation that contains the most distant point 

camera  on the far plane of the original view frustum. �e vector field represents the gradient
of devicez , and it follows circular arcs around the line where k and f intersect in the x-y plane.

Calling the reversing projection matrix R, the value of camera  is now given by

( )( )
( )( )

02 00

12 111
camera clip

22 23

sgn
sgn

1

x

y

k R R
k R R

R R

−

− 
 − = =
 
 
 

R  , (6.60) 

which differs from the value in Equation (6.56) only in the w coordinate. As shown 
in Table 6.2, the near plane for a reversing projection matrix is equal to 3 2−R R , 
and this is the quantity must be replaced by mk , so we have the relationship 

( )2 3 , ,1 ,x y z wm mk mk mk mk= − = − − − −R R k . (6.61) 

Since 2R  is equal to the far plane, the value of m is calculated in exactly the same 
way as in Equations (6.57) and (6.58). 
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 Functions that modify a conventional projection matrix P and a reversing pro-
jection matrix R to have an oblique near clipping plane are shown in Listing 6.6. 
�e w coordinate of camera  is calculated with a slightly different formula in each
case. �e only other way in which the two functions are not identical is that the 
third row of P is replaced by mk , but the third row of R is replaced by 3 m−R k. 

Listing 6.6. �ese two functions modify the conventional projection matrix P and the reversing 
projection matrix R in place so either type has the oblique near clipping plane k and the best far 
plane orientation possible. 

void ModifyProjectionNearPlane(Matrix4D& P, const Plane& k) 
{ 

Vector4D vcamera((sgn(k.x) − P(0,2)) / P(0,0), 
 (sgn(k.y) − P(1,2)) / P(1,1), 
 1.0F, (1.0F − P(2,2)) / P(2,3)); 

float m = 1.0F / Dot(k, vcamera); 
P(2,0) = m * k.x; 
P(2,1) = m * k.y; 
P(2,2) = m * k.z; 
P(2,3) = m * k.w; 

} 

void ModifyRevProjectionNearPlane(Matrix4D& R, const Plane& k) 
{ 

Vector4D vcamera((sgn(k.x) − R(0,2)) / R(0,0), 
 (sgn(k.y) − R(1,2)) / R(1,1), 
 1.0F, R(2,2) / R(2,3)); 

float m = −1.0F / Dot(k, vcamera); 
R(2,0) = m * k.x; 
R(2,1) = m * k.y; 
R(2,2) = m * k.z + 1.0F; 
R(2,3) = m * k.w; 

} 

Exercises for Chapter 6 

1. Let cameraM  be the transform from object space to world space for a camera,
and consider a view frustum with projection plane distance g, aspect ratio s,
and distances n and f to the near and far planes. Find formulas for the six
bounding planes of the view frustum in terms of the columns of cameraM .
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2. Let l, r, t, and b be the world-space left, right, top, and bottom planes for a
view frustum. Find formulas using Plücker coordinates { }|v m  that express the
four lines at which these planes intersect in world space such that the direction
v of each line points away from the camera position. Express the same four
lines using the antiwedge product to form 4D bivectors.

3. Determine the camera-space coordinates for the eight vertices of a view frus-
tum having aspect ratio s, projection plane distance g, near plane distance n,
and far plane distance f.

4. Suppose that the view frustum having aspect ratio s and projection plane dis-
tance g is circumscribed by a right circular cone with its apex at the camera
position. (a) Given the cone’s height h (along the z axis), find a formula for the
cone’s radius r at its base. (b) Determine the sine of the angle α between the z
axis and the lateral surface of the cone.

5. Suppose that a camera is looking in the horizontal direction, parallel to the
ground, and that the view frustum has a projection plane distance g and a near
plane distance n. Calculate the minimum height above the ground that the cam-
era position must have to avoid the ground being clipped by the near plane
inside the view frustum.

6. Calculate the inverses of the projection matrices infiniteP , infinite
∗P , frustumR , infiniteR ,

and infinite
∗R .

7. Derive an off-center projection matrix similar to frustumP  but for which the view-
port extends from x l=  to x r=  and from y t=  to y b=  on the projection plane
at a distance g from the camera. �is rectangle should correspond to the range
[ ]1, 1− +  in both the x and y directions after the perspective divide.

8. Derive a projection matrix similar to frustumP  but for which the canonical view
volume extends from 1−  to 1+  in the z direction. �at is, for a near plane dis-
tance n and far plane distance f, the camera-space range [ ],n f  is transformed
into the clip-space range [ ]1, 1− +  after the perspective divide.

9. Using the result from the previous exercise, calculate a projection matrix sim-
ilar to infiniteP  but for which the camera-space range of z coordinates [ ],n ∞  is
transformed into the clip-space range [ ]1, 1− +  after the perspective divide.
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10. Suppose that the projection matrix frustumP  has been modified by replacing its
third row with the scaled plane mk , where m is given by Equation (6.58). Show
that setting ( )0, 0,1, n= −k  recovers the original matrix frustumP  because it is then 
the case that ( )m f f n= − .

11. Show that if the third row of a perspective projection matrix is not perpendic-
ular to the camera-space z axis, then the near plane and far plane must intersect
at a line { }|v m  that lies in the x-y plane.

12. For a projection matrix that has an oblique near clipping plane k, consider the
scalar field ( )devicez   in camera space defined as the z coordinate produced by
projecting the point  and performing the perspective divide. Let { }|v m  be
the line where the near and far planes intersect, and let  be the point on this
line that is closest to . Prove that the gradient of ( )devicez  , as shown for a
particular configuration in Figure 6.13, is perpendicular to both v and − .

13. Let P be a perspective projection matrix for which the camera-space range of
z coordinates [ ],n f  between the near and far planes is transformed into the
clip-space range [ ]1, 1− +  after the perspective divide. For an arbitrary clipping
plane k, determine what the third row of P should be replaced by so that the
near plane is repositioned to coincide with k and the far plane optimally in-
cludes the original view frustum.

14. Suppose that the third and fourth rows of a projection matrix have the generic
form given by

0 0 1 0
A B C D 

  
. 

If we wanted to modify this matrix so that the depths it produced were offset 
by a constant distance deviceδ  after the perspective divide, we could replace C 
by deviceC δ+ . However, this would correspond to varying offsets in camera 
space depending on the location of a point . Derive a formula for deviceδ  that
would produce a depth offset equivalent to the change in depth produced by 
transforming the point ( )camera, ,x y zp p p δ−  with the original projection matrix 
for a given camera-space offset of cameraδ  at the specific coordinates of . (We
subtract cameraδ  so that positive values corresponds to offsets toward the camera 
for points in the view frustum.) 
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Chapter 7 

Shading 

Once a camera transform and projection matrix have been established, we can cal-
culate the positions of a model’s vertices in the viewport. We know exactly where 
the triangles making up the geometric shape of the model are going to be rendered 
and what pixels they will cover on the screen. Shading is the process through which 
we decide what color is ultimately written to each of those pixels. For every pixel 
inside each triangle, a pixel shader is run to calculate the apparent brightness and 
color at the corresponding point on the surface of the model. We calculate these 
quantities by considering all of the light reaching that point and applying properties 
of the surface’s material to determine how much of the light is reflected toward the 
camera. 
 Shading calculations are performed primarily by a pixel shader, but it almost 
always receives interpolated information that was generated earlier in the graphics 
pipeline, usually by the vertex shader. A typical pixel shader can be divided into 
three components representing different parts of the path that light takes before it 
is detected by the camera. First, the pixel shader determines the color and bright-
ness of the incoming light when reaches the surface. �is accounts for the possi-
bility that the light was blocked by some intervening geometry, in which case the 
point being shaded is in shadow. �e pixel shader next performs its reflection cal-
culations to figure out how much light leaves the surface in the direction pointing 
toward the camera. Finally, the pixel shader may apply fog calculations to account 
for interactions with the medium filling the space between the surface and the cam-
era. In this chapter, we discuss only the component that handles surface reflection, 
and we save the other two components for Chapter 8. For now, we assume that the 
brightness of the light reaching the surface is already known, and we keep in mind 
that fog can later be applied to the reflection. 
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7.1  Rendering Fundamentals 

In Section 5.2, we discussed what it means for light to have a particular color, and 
we used the luminance Y to describe its brightness. In that setting, however, the 
luminance was normalized to the range [ ]0,1  of displayable intensity levels, and it 
didn’t really have any physical meaning. When we render a scene, we are mainly 
concerned with how much light is bouncing around, how it interacts with different 
surfaces, and how bright it is when it reaches the camera. Before we can implement 
a rendering system, we first need to quantify exactly what we mean when we say 
things like “how much light” and “how bright”. �en we need to understand how 
difficult it is to account for all of the light interacting with the scene and devise 
practical methods that produce acceptable approximations to physical reality. 

7.1.1  Luminance 
Suppose we are rendering a point  on a surface that is visible in the view frustum 
from a camera at the position . A vector v, called the view vector, is defined as 

 ( )nrm .= −v    (7.1) 

�is vector points toward the camera from the surface, and it appears throughout 
the mathematics used in shading. �e point  represents the tiny area on the surface 
that projects onto one pixel in the viewport. To assign a brightness to the pixel, we 
need to perform some kind of calculation producing a result that tells us how much 
light leaves the surface at  and travels specifically in the direction v toward the 
camera. 
 We measure the perceived brightness at the point  by first considering that 
some amount of luminous flux VΦ  is exiting the surface at every point in a small 
area dA surrounding the point . �is is illustrated in Figure 7.1 by the rays leaving 
the surface in many different directions from various locations. To determine how 
much of that visual power comes from a specific area, like the footprint of a single 
pixel, we must be able to express the power emitted per unit area as a function of 
position. �is quantity is called the luminous exitance VM , which is defined as 

 ( ) V
V

ΦdM
dA

= . (7.2) 

 �e luminous exitance includes all of the light that leaves the surface in every 
possible direction, but we are only interested in the light traveling in the small 
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Figure 7.1. �e luminous flux exiting a surface having normal vector n is represented by 
many rays surrounding the point . �e darker region corresponds to the area A covered by 
one pixel, and the yellow cones indicate the bundle of directions that reach the pixel on the 
view frustum’s projection plane. �e luminance in the direction v is given by the amount 
of power, in lumens, emitted per steradian within the yellow cones and per square meter 
through the projected area ( )A ⋅n v . 

bundle of directions within a solid angle dω that leads to the area on the view 
frustum’s projection plane covered by the pixel being rendered. �is is illustrated 
by the yellow cones in Figure 7.1 that are aligned to the view vector v. Light trav-
eling in other directions is not directly observed coming from the point , but it 
may bounce off other surfaces and eventually be reflected toward the camera from 
some other point in space. �e power per unit area contained in the luminous exi-
tance is distributed over a solid angle representing all of the directions in which 
light could leave the surface. �is angle is typically the 2π steradians in a hemi-
sphere aligned to the normal vector. �e luminance VL  is a function of position  
and direction v giving the amount of power emitted per unit solid angle per unit 
area, and it is defined as 

 ( )
2

V
V

Φ,
cos

dL
dω dA θ

=v . (7.3) 

�e luminance basically tells us how much power is being emitted in a single di-
rection from a single point. �e angle θ  appearing in Equation (7.3) is the angle 
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between the normal vector n and the view vector v. Assuming that n and v are 
normalized, we can also write the definition of luminance as 

 ( )
( )

2
V

V
Φ, .dL

dω dA
=

⋅
v

n v
  (7.4) 

Multiplying the area by ⋅n v has the effect of projecting it onto a plane perpendic-
ular to the direction v, as shown in Figure 7.1. �is accounts for the fact that the 
light emitted from an area A on a surface is concentrated into a smaller area from 
the perspective of the camera as the angle between n and v increases. 
 Luminance is a fundamental measurement in computer graphics, and it is the 
quantity that we will always calculate in our pixel shaders. Luminance has units of 
lumens per steradian per square meter ( 1 2lm sr m− −⋅ ⋅ ). We will discuss another unit 
called the candela in Section 8.1, and it is equivalent to lumens per steradian. It is 
common to see luminance expressed in terms of this unit as candelas per square 
meter ( 2cd m ). �e units of luminance are also called nits (nt), which are often 
used when describing the brightness of pixels on a display. In the sRGB standard, 
the luminance Y of a color is normalized so that a value of 1Y =  corresponds to an 
physical luminance VL  of 80 nt. �is means that calculated values of VL  should be 
divided by 80 before being incorporated into a displayed color. 
 We can think of luminance as either leaving a surface or arriving at a surface, 
and this allows us to quantify the amount of luminous flux that is transferred from 
one point to another along the direction between them. We are particularly inter-
ested in how much power reaches the area of a pixel on the projection plane from 
the corresponding area on the surface we are rendering for that pixel. Suppose that 
we have calculated the outgoing luminance surfaceL  at a point  in the direction v 
toward the camera, and let  be the point where the line connecting  to the camera 
position  intersects the projection plane. As shown in Figure 7.2(a), the solid angle 

surfaceω  through which light emitted from the surface strikes the pixel is the angle 
subtended by the area pixelA  of the pixel. �is angle represents the only set of direc-
tions in which light leaving the surface affects the brightness of the pixel. We must 
collect the light emitted in these directions over the area surfaceA , shown separately 
in Figure 7.2(b), consisting of all points on the surface that project onto the pixel 
when connected by lines to the camera position . Assuming that the luminance 

surfaceL  is constant over a small solid angle surfaceω  and small area surfaceA , the luminous 
flux VΦ  transmitted toward the pixel is given by 

 V surface surface surfaceΦ L ω A⊥= , (7.5) 
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Figure 7.2. (a) Light leaves a surface at the point  in the directions that strike a pixel of 
area pixelA  at the point  , and this area subtends the solid angle surfaceω . (b) Light arrives at 
the pixel in the directions coming from the area surfaceA  covered by the pixel. �e projection 

surfaceA⊥  of that area perpendicular to the view direction v subtends the solid angle pixelω . 

where ( )surface surfaceA A⊥ = ⋅n v  is the projection of the area onto a plane perpendicular 
to v. On the receiving end at the point , we can perform a similar calculation to 
determine the incoming luminance pixelL . As shown in the figure, let pixelω  be the 
solid angle subtended by the area surfaceA⊥ . �en the luminous flux received at the 
pixel is given by 
 V pixel pixel pixelΦ L ω A= , (7.6) 

which we know is equal to the luminous flux VΦ  calculated in Equation (7.5) be-
cause it was limited to the exact amount of light directed toward the pixel. In the 
limit as the angles and areas become infinitesimal quantities dω and dA, we can 
state the geometric relationships 

 2
pixel surfacedA dω r=    and   2

surface pixeldA dω r⊥ = , (7.7) 

where r is the distance from  to . For both of these equations to be true simulta-
neously, we must have 
 surface surface pixel pixeldω dA dω dA⊥ = . (7.8) 

We conclude that the luminance surfaceL  appearing in Equation (7.5) and the lumi-
nance pixelL  appearing in Equation (7.6) are equal. �is means that we can express 
the power received by a pixel as 

 V surface pixel pixelΦ L ω A= , (7.9) 
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which is independent of the distance to the surface and the area on the surface 
covered by the pixel. �e values of pixelω  and pixelA  are constant once the shape of 
the view frustum and resolution of the viewport have been established. If we have 
calculated surfaceL , then we know exactly how much power is received at the pixel, 
and that tells us how bright it should be. 
 �e result that we just derived demonstrates an intrinsic property possessed by 
every ray of light. �e luminance carried by a ray through empty space is a constant 
quantity everywhere along the ray. (If the space is not empty, then the luminance 
can be absorbed or scattered, and this is the topic of Section 8.5.) When some 
amount of light leaves a point  with luminance L and travels to some other point 
, the luminance the light has when it arrives at  is still the same value of L that 
it started with, regardless of how much distance was covered. �is is what makes 
luminance a fundamental measurement of what amount of light is traveling be-
tween two points. 

7.1.2  The Rendering Equation 
�e luminance ( )out ,L v  leaving a point  in a direction v can be a mixture of 
light coming from two sources. Some amount of light could be emitted by the sur-
face itself, and this is easy to model as a function ( )emission , ,L n v , where n is the 
surface normal. Everything else included in the luminance is due to the total sum 
of the portion of light ( )in ,L l  striking the surface from every direction l that ends 
up being reflected toward the camera. �is is expressed by the equation 

 ( ) ( ) ( ) ( ) ( )out emission in reflect
Ω

, , , , , , , satL L L f dω= + ⋅∫v n v l n v l n l    , (7.10) 

which is known as the rendering equation. �e function ( )reflect , , ,f n v l  is a gen-
eral placeholder for the calculations that describe the appearance of a surface by 
considering its material properties. �is function can be very complicated, but it 
ultimately specifies how much light reaching the point  from the direction l is 
reflected in the direction v, taking into account the normal vector n. �e meaning 
of the factor ( )sat ⋅n l  is discussed below in Section 7.2. 
 Equation (7.10) is an ideal description of the physical behavior of light in a 
scene, and it cannot be solved. Consider the reality that the luminance ( )in ,L l  
arriving from any direction l must be equal to the value of ( )out ,L u+ −l l  leaving 
the point u+ l  in the opposite direction on some other surface at a distance u 
away. �at value of outL  is itself given by Equation (7.10) based on all of the in-
coming light at the point u+ l , which may even include light coming back from 
the point ! �is recursive process becomes absurdly complex as light continues 
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bouncing around. Instead of trying to account for all of these interactions directly, 
all practical rendering systems employ simplified illumination models to generate 
an approximation of a scene’s true lighting within the time constraints imposed by 
the application. 
 Game engines typically split the task of rendering a scene into two major com-
ponents. One component accounts for direct illumination from a set of discrete 
light sources in the scene. It handles only light that is able follow a direct path from 
its source to the point  being shaded, and it does not consider interactions with 
other surfaces that could cause more light to arrive at the same point through indi-
rect paths. �e other component accounts for ambient illumination, and this en-
compasses most of the complexities in the rendering equation because it accounts 
for all of the indirect lighting. �e shaded color shadedC  generated at a point  by the 
combination of these two components can be expressed as 

 ( ) ( )shaded ambient ambient direct illum
1

, , , , .
n

k
k

k
C f C f C

=

= +∑v n v l  (7.11) 

�e output color shadedC  is an RGB color that incorporates a luminance value. To 
reduce clutter, the point  has been left out of this equation, but ambientf  and directf  
are still functions of position. 
 �e function ambientf  in Equation (7.11) represents the contribution from ambi-
ent illumination, and more generally, from any source that is not attributed to direct 
illumination. For example, emission from a glowing material is included in the 
ambient term. Because it is composed of a mixture of light that may have under-
gone many random bounces, the ambient illumination present throughout the en-
vironment tends to vary smoothly as both a function of position and direction. �e 
most basic implementation of ambient illumination makes the assumption that the 
luminance due to all indirect lighting has averaged out to a constant color ambientC  
that is present everywhere and shines with equal brightness in every direction. In 
this case, the effect of ambientC  is simply added to the final color produced by other 
parts of the shading calculation. In more sophisticated implementations, the 
amount of ambient light changes with position and direction. �e luminance due 
to indirect lighting is often precalculated for one or more directions at some set of 
sample positions distributed throughout the world. �ose precalculated values are 
then interpolated during the rendering process to reconstruct a smoothly varying 
ambient function. �is does not capture the changes in ambient light on a small 
scale, however, so ambient occlusion techniques such as the one presented in Sec-
tion 10.5 are often used to handle the fine details. 
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 �e sum in Equation (7.11) represents the contribution from direct illumination 
by n separate light sources. �e function directf  calculates how much luminance 
coming from the direction kl  pointing toward the k-th light source is reflected in 
the direction v toward the camera. Since all of the light comes from one direction, 
we can assume that the incoming luminance ( )in ,k

kL l  has already been integrated 
over the hemisphere Ω to produce the color 

 ( )illum in
Ω

,k k
kC L dω= ∫ l . (7.12) 

(Here, k is used as a superscript index and not as an exponent.) �is color has units 
of lumens per square meter, and it represents the illuminance VE  at the point  due 
to the light source. Illuminance is a measure of how brightly a surface is lit, and it 
is discussed in detail in Section 8.1. In this chapter, we assume that a light’s illu-
minance has already been calculated at any point  where it strikes a surface. 
 Using the illuminance illum

kC , the function directf  in Equation (7.11) usually has 
the form 

 ( ) ( ) ( )direct illum illum BRDF, , , , , satk k
k k kf C C f= ⋅n v l n v l n l , (7.13) 

where the function BRDFf  is called the bidirectional reflectance distribution function 
(BRDF). �e BRDF is a property of the surface material, and it turns an incoming 
illuminance from the direction kl  into an outgoing luminance in the direction v. 
�is means that a BRDF has units of inverse steradians ( 1sr − ). In general, the BRDF 
describes how incoming light is redistributed to every possible outgoing direction. 
�rough the application of texture mapping, discussed below in Section 7.4, the 
BRDF is a function of position. It has the word “bidirectional” in its name because 
any physically plausible BRDF would have to be symmetric under exchange of the 
directions v and kl . �at is, if a fraction f of the light arriving at the surface from 
the direction kl  gets reflected in the direction v, then it must also be true that the 
same fraction f of light arriving from the direction v gets reflected in the direction 

kl . �is property is known as Helmholtz reciprocity. 

7.2  Diffuse Reflection 

Many surfaces that may appear to be smooth actually have a rough geometric struc-
ture on a microscopic scale. �is tends to cause any light incident on the surface to 
be reflected in random directions from different points. On a larger scale, the in-
coming light is redistributed over the entire hemisphere of outgoing directions, and 
this is called diffuse reflection. �e simplest way to model diffuse reflection is to 
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assume that the outgoing distribution is uniform, meaning that light is reflected 
equally in all possible directions. �e BRDF describing such a perfectly matte ma-
terial is extremely easy to implement because it is just a constant value for every 
view vector v. 
 Suppose that light arrives at a surface from the direction l through a beam of 
cross-sectional area A, as shown in Figure 7.3. Given the illuminance illumC  of the 
incoming light, the power carried by the beam is equal to illumC A. If the light direc-
tion makes an angle θ  with the normal vector n, then the area on the surface struck 
by the beam is given by cosA θ . �e power contained in the beam is thus spread 
out over a larger area, so the actual illuminance VE  on the surface is equal to 

 illum
V illum cos

cos
C AE C θ
A θ

= = . (7.14) 

We never need to calculate the angle θ  directly because its cosine is given by the 
simple dot product ⋅n l, as long as these two vectors have unit length. In a pixel 
shader, we calculate the illuminance as 

 ( )V illum sat ,E C= ⋅n l  (7.15) 

where the saturation prevents a negative illuminance from being calculated for sur-
faces that face away from the light source. �e dependence on the cosine of the 

 
Figure 7.3. A surface is illuminated by a beam of light having cross-sectional area A com-
ing from the direction l. �e area receiving the light on the surface is larger by a factor of 
1 cosθ , where θ is the angle between l and the surface normal n. �e illuminance, equal to 
the power received per unit area, decreases by a factor of cosθ  because the light is spread 
out over a larger area. 
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angle θ  was introduced by Johann Heinrich Lambert (1728–1777), and Equation 
(7.14) is called Lambert’s cosine law in his honor. Our slightly modified version 
of the cosine law in Equation (7.15) is the source of the factor ( )sat ⋅n l  appearing 
in Equations (7.10) and (7.13). 
 �e light leaving the surface also obeys Lambert’s cosine law, but in reciprocal 
form. Suppose that light is leaving an area A on the surface in the direction v toward 
the camera. �en the area of the exiting beam is given by ( )A ⋅n v . However this 
area perpendicular to the direction of travel is exactly what appears in the definition 
of luminance in Equation (7.4). Since luminance is the quantity that we need meas-
ure at the camera, we never actually use the dot product ⋅n v in our shading calcu-
lations to account for the cosine law. �e illuminated area appears to have the same 
brightness from every viewing angle. 
 A surface that redistributes light uniformly under diffuse reflection is called a 
Lambertian surface. Because it has been spread out over a range of directions, the 
outgoing light is never as bright as the incoming light that originated from only a 
single direction. Furthermore, some of the incoming light is not reflected at all 
because it is absorbed by the surface. �e fraction of light that does get reflected is 
called the albedo of the surface’s material, which we denote by ρ. �is property of 
a material depends on the wavelength of light, and we specify different values of 
albedo for red, green, and blue primaries in order to assign a color diffuseC  to a 
material. We can keep this color separate from the albedo ρ by requiring diffuseC  to 
have a luminance Y of one. �en the wavelength-dependent albedo is given by the 
product diffuseρC . 
 For a material to be physically plausible, the amount of light reflected by a 
surface cannot exceed the amount of light incident upon it. Assuming for the mo-
ment that a material exhibits the maximum possible albedo 1ρ =  with a perfectly 
white color diffuseC , the total luminous exitance VM  leaving a point on the surface 
must be equal to the total illuminance VE  arriving at that point. Let L represent the 
constant luminance reflected over all directions by the surface. We can determine 
what the value of L must be by integrating it over the solid angle Ω corresponding 
to the hemisphere of directions centered on the surface normal. �is gives us the 
equation 

 V V
Ω

cosM L θ dω E= =∫ , (7.16) 

where θ  is the angle between the surface normal and the direction of the differential 
solid angle ω. �is equation expands to the double integral 

 
2 2

V
0 0

cos sin
π π

L θ θ dθ dφ E=∫ ∫ , (7.17) 
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from which we obtain 

 VEL
π

= . (7.18) 

�is result tells us that the maximum outgoing luminance in every direction is 
equal to the incoming illuminance over π steradians. �e BRDF for a Lambertian 
surface must therefore be given by the constant function 

 ( )BRDF diffuse, , ρf C
π

=n v l . (7.19) 

When we plug this into Equation (7.13), we have 

 ( ) ( )direct illum diffuse illum, , , satρf C C C
π

= ⋅n l v n l  (7.20) 

as the shading formula for diffuse reflection. It is common for the various factors 
in the constant supplied by Equation (7.19) to be rolled into a single color value 
that is simply called the diffuse color of a material. In that case, the diffuse reflec-
tion is given by the product of the incoming illuminance, the diffuse color, and 

( )sat ⋅n l . 
 Equation (7.18) tells us that to take light arriving from a single direction and 
distribute it uniformly over a hemisphere, we divide by π. �is equation also holds 
for the reverse process. If we were to collect light arriving in equal amounts from 
every direction in a hemisphere and reflect it in a single direction, then we would 
multiply by π. In the case of diffusely reflected ambient light, both of these trans-
formations take place. We multiply by π to gather the ambient light from every 
direction, but then we immediately divide by π to redistribute the ambient light 
right back to all of the same directions it came from. �e ambient term for a Lam-
bertian surface is thus given by 

 ( )ambient ambient diffuse ambient,f C ρC C=v , (7.21) 

where ambientC  is the luminance of the ambient light. If the diffuse color incorporates 
the factor ρ π, then we need to multiply by π to calculate the ambient reflection. 
To avoid having to do this, the factor of π is sometimes included in the ambient 
light color ambientC . 
 �e pixel shader code shown in Listing 7.1 implements diffuse shading for a 
single direct light source and flat ambient illumination using Equations (7.20) and 
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(7.21). An example showing a model shaded by this code is provided in Figure 7.4. 
�e object-space normal vector n and light direction l should be output by the ver-
tex shader and interpolated over a triangle for use in the pixel shader. Before we 
calculate the dot product ⋅n l in the pixel shader, we must normalize both n and l. 
�e normal vector n would ordinarily be provided as a vertex attribute that is al-
ready normalized to unit length, but it can become shorter when it is interpolated, 
so it needs to be normalized again in the pixel shader. �e light direction l is often 
calculated in the vertex shader as the difference between the light position and the 
vertex position. It’s important that this direction is not normalized in the vertex 
shader so that the correct difference in positions is interpolated over a triangle. �e 
light position must also be specified in object space. For an object having the trans-
form objectM  and a light having the transform lightM , the object-space position of the 
light is given by [ ]

1
object light 3
−M M . 

Listing 7.1. �is pixel shader function calculates the ambient and direct shading terms for diffuse 
reflection from a Lambertian surface. �e surface normal n and light direction l are the interpolated 
values output by the vertex shader, and they must be normalized before being passed to this function. 
�e uniform constant diffuseColor holds the color ( ) diffuseρ π C , the constant ambientColor holds 
the color ambientπC , and the constant lightColor holds the color illumC . 

uniform float3 diffuseColor;  // (rho / pi) * C_diffuse 
uniform float3 ambientColor;  // pi * C_ambient 
uniform float3 lightColor;  // C_illum 
 
float3 CalculateDiffuseReflection(float3 n, float3 l) 
{ 
 float3 directColor = lightColor * saturate(dot(n, l)); 
 return ((ambientColor + directColor) * diffuseColor); 
} 

7.3  Specular Reflection 

Of course, perfectly matte surfaces are not what we experience in the real world. 
Virtually all materials tend to reflect light more strongly near the direction r that 
represents the reflection of the light direction l through the surface normal n. �is 
phenomenon is called specular reflection, and the highlight that it creates on a sur-
face is called a specularity. If a material exhibited only specular reflection, then it 
would be a perfect mirror, and light coming from the direction l would be visible 
only if the reflected direction r lined up with the view vector v. �e properties of 
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Figure 7.4. On the left, a barrel is illuminated by ambient light only. On the right, the barrel 
is illuminated by ambient light and one direct light source, the direction to which increases 
by 30 degrees to the right in each image. Lambert’s cosine law causes the shading to darken 
as the angle between the surface normal and the direction to the light increases. 

most materials fall somewhere in between a perfectly matte appearance and a per-
fectly mirror-like appearance, and we model such materials by shading a surface 
with both diffuse and specular contributions. 
 �eoretical models for rendering physically accurate specular reflection exist, 
but they can be very complex. �e model we introduce here is a nonphysical ap-
proximation that has been in widespread use since the early days of computer 
graphics. �e basic idea is that we first calculate a light’s reflection direction r as 

 ( )2= ⋅ −r n l n l, (7.22) 

which follows from Equation (2.25), and then use the dot product ⋅v r to estimate 
how close the reflection comes to the view vector v. Since the specular highlight 
should be brightest when ⋅v r is maximized, this dot product provides a convenient 
way to calculate some value representing the specular reflection. In a model called 
Phong reflection, the color of the specular reflection is given by 

 ( )[ ]specular illum sat αS C C= ⋅v r , (7.23) 

where specularC  is the color of the specular highlights produced by the material. �e 
exponent α, called the specular power, is an adjustable parameter that controls how 
sharp the specularity is. Higher values of α cause sharper highlights to be rendered 
because they cause the brightness to decrease more quickly as the directions v and 
r diverge. As with diffuse reflection, the saturation prevents nonzero specular high-
lights from occurring when ⋅v r is negative. 
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 A modification to the Phong model of specular reflection replaces the dot prod-
uct in Equation (7.23) with ⋅n h, where the vector h is defined by 

 ( )nrm .= +h l v  (7.24) 

�e vector h is called the halfway vector because, as illustrated in Figure 7.5, it lies 
halfway between the light direction l and the view vector v. Using the halfway 
vector, the color of the specular reflection is now given by 

 ( )[ ]specular illum sat αS C C= ⋅n h . (7.25) 

�is produces results similar to Equation (7.23) because whenever the vectors v 
and r point in the same direction, the vectors n and h are also aligned to each other. 
However, the angle between n and h does not increase as quickly as the angle 
between v and r as the reflection direction diverges from the view vector, so a 
larger specular power α must be used to achieve roughly the same appearance. If 
the vectors n, v, and l all lie in the same plane, then the angle between n and h is 
exactly half the angle between v and r. �e shading model in which specular re-
flection is calculated with Equation (7.25) is called Blinn-Phong reflection. It is 
generally preferred over the original Phong model because the halfway vector h 
appears frequently in more advanced shading techniques. When we add the spec-
ular contribution to the diffuse reflection given by Equation (7.20), we have 

 ( ) ( ) ( )[ ]{ }direct illum diffuse specular illum, , , sat sat .αρf C C C C
π

= ⋅ + ⋅n l v n l n h  (7.26) 

�is is the shading formula for the color of the combined diffuse and specular re-
flection attributed to a single light source. 
 �e pixel shader code shown in Listing 7.2 calculates the specular shading for 
a single direct light source using the Blinn-Phong model in Equation (7.25). �e 
result should be added to the diffuse shading calculated in Listing 7.1. �e function 
in Listing 7.2 takes the halfway vector h as a parameter, and it should be calculated 
in the pixel shader with Equation (7.24) after the interpolated vectors l and v have 
been normalized. �e function also takes the value of ⋅n l as a parameter so that 
the specular reflection can be disabled in the case that the light source is behind the 
surface. If shadows are being rendered, then this parameter is not necessary be-
cause the shadow calculations will cause illumC  to be zero for surfaces facing away 
from the light source. An example showing a model shaded by this code is provided 
in Figure 7.6. 
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Figure 7.5. A point  is shaded on a surface with normal vector n. �e view vector v points 
toward the camera at position , and the light direction l points toward the light source. �e 
vector r is the reflection of the light direction across the normal vector. �e halfway vector 
h is the normalized sum of l and v lying halfway between the light direction and the view 
vector. When =v r, it is also the case that =n h. 

Listing 7.2. �is pixel shader function calculates the specular reflection produced by the Blinn-
Phong reflection model with a specular power alpha. �e interpolated surface normal n and halfway 
vector h must be normalized before being passed to this function. �e uniform constant specular-
Color holds the color specularC , and the constant lightColor holds the color illumC . 

uniform float3 specularColor; // C_specular 
uniform float3 lightColor;  // C_illum 
 
float3 CalculateSpecularReflection(float3 n, float3 h, float alpha, float nl) 
{ 
 float highlight = pow(saturate(dot(n, h)), alpha) * float(nl > 0.0); 
 return (lightColor * specularColor * highlight); 
} 

 
Figure 7.6. On the left, a sci-fi weapon is rendered with diffuse shading only. On the right, 
specular shading is added with specular powers of 10, 50, and 200 from left to right. 
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7.4  Texture Mapping 
So far, the material properties that we have described, such as the diffuse reflection 
color diffuseC  and the specular reflection color specularC , have been constants over the 
entire surface of an object. Visual detail is added to a surface, effectively allowing 
the material properties to vary as functions of position, through the application of 
texture maps. Modern GPUs support several different types of texture maps, and 
they can contain data stored in a wide variety of formats. Analogous to how one 
element of a displayed image is called a pixel, one element of a texture map is 
called a texel (a shortened form of texture element). Texture maps are usually ap-
plied to a triangle mesh by assigning predetermined texture coordinates to each 
vertex, but it is also possible to calculate texture coordinates in a shader for special 
purposes. 

7.4.1  Texture Coordinates 
�e basic types of texture maps are shown in Figure 7.7. A texture map can be one-, 
two-, or three-dimensional, and up to three texture coordinates named u, v, and w 
are used to access it. As shown in the figure, we place the origin along each axis at 
the left, top, and front of the image. 1D and 2D texture maps can also be organized 
into arrays with multiple layers, and the layer that we access is specified by an 
extra coordinate. One additional type of texture map not shown in the figure is a 
cube texture map consisting of six square 2D faces, and this type is described in 
detail below. 

 
Figure 7.7. (a) A 1D texture map is accessed with a single u coordinate. (b) A 2D texture 
map is accessed with a pair of texture coordinates ( ),u v , where the origin is at the upper-
left corner of the image. (c) A 3D texture map is accessed with a triplet of texture coordi-
nates ( ), ,u v w . �e range [ ]0,1  typically corresponds to the full size of the texture map. 
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 Texture coordinates are usually normalized so that the range [ ]0,1  along any 
axis corresponds to the full size of the texture map, as illustrated in Figure 7.7. 
When a texture map is sampled with coordinates outside this range, the behavior 
is controlled by the wrapping modes that have been specified. Most of the time, we 
want the texture image to repeat. In this case, the integer part of each texture coor-
dinate is discarded, and the fractional part in the range [ )0,1  determines what texels 
are fetched. 
 �e frame buffer itself can be treated as a 2D texture map, and additional data 
buffers matching the size of the frame buffer are often used in advanced rendering 
techniques. Methods that render special information to an offscreen frame buffer 
and later read it as a texture map appear several times in Chapter 10. In these cases, 
the texture coordinates used to fetch samples from the texture maps are not nor-
malized to the range [ ]0,1 , but instead cover the full width and height of the frame 
buffer, in pixels. It is convenient to access these kinds of texture maps with unnor-
malized texture coordinates because the coordinates of the pixel being rendered 
can be used directly as the texture coordinates in a pixel shader without any scaling. 

7.4.2  Conventional Texture Mapping 
�e most common conventional use of texture mapping is the application of an 
ordinary 2D image to a triangle mesh. Although a texture map usually contains 
colors, it could also be used to hold whatever kind of high-resolution data that we 
might want to assign to a surface. For example, a texture map is often used to apply 
different diffuse or specular colors at different locations on a model, but a texture 
map could also be used to apply a different specular power to control the shininess 
of a model at different locations. Single-component values like the specular power 
are sometimes stored in the alpha channel of a texture map that contains color data 
in its red, green, and blue channels. �is practice is also exemplified by the ambient 
occlusion values discussed later in Section 7.8.3. It may also be the case that the 
color channels do not contain colors at all. For instance, a special kind of texture 
map called a normal map contains the x, y, and z components of 3D vectors in its 
red, green, and blue channels. Normal maps and additional kinds of texture maps 
utilized in more advanced rendering methods are introduced later in this chapter. 
 �e application of an ordinary texture map containing diffuse colors is demon-
strated in Figure 7.8(a). A wireframe outline of the triangles to which the texture 
map is applied is shown in Figure 7.8(b). To aid in the visualization of how the 
texture image is mapped onto those triangles, another wireframe outline is shown 
in Figure 7.8(c), but the 3D vertex positions ( ), ,x y z  have been replaced by the 2D 
texture coordinates ( ),u v   assigned to each vertex. �is makes it possible to see 
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Figure 7.8. (a) A model of a chicken is rendered with a diffuse texture map. (b) �e trian-
gles composing the model are shown in a wireframe overlay. (c) �e same triangles are 
overlaid on the texture image by placing each vertex at its ( ),u v  texture coordinates. �is 
demonstrates how parts of the texture image are mapped to the interior of each triangle. 

what part of the texture image fills the interior of each triangle. �e colors in the 
texture image would normally be stored as gamma-corrected sRGB colors. �e 
graphics hardware is capable of transforming these colors into linear colors auto-
matically when a texture map is sampled. Shading calculations are then performed 
in linear space, and the results can be automatically converted back to sRGB color 
when written to the frame buffer. 

7.4.3  Cube Texture Mapping 
A cube texture map is a special type of texture map that consists of six 2D layers 
corresponding to the six faces of a cube. A cube texture map often contains an 
omnidirectional snapshot of an environment or some other kind of data that varies 
with direction relative to some central position. By design, a cube texture map is 
intended to be sampled with a 3D vector ( ), ,x y z  instead of ordinary 2D texture 
coordinates ( ),u v . �is vector would not typically be stored with a model’s verti-
ces, but it would instead be calculated inside a pixel shader. �is is the case for the 
technique called environment mapping described below, which is the original mo-
tivation for the functionality provided by cube texture maps. 
 When a cube texture map is sampled using a vector ( ), ,x y z , the GPU first 
selects the 2D face that it accesses by determining which component of the vector 
has the largest absolute value. For example, if x y>  and x z> , then the face 
sampled is either the x+  face or the x−  face depending on the sign of x. In the event 
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that two or more coordinates have the same absolute value, the z coordinate always 
has the highest precedence, and the y coordinate is selected over the x coordinate. 
After the face has been determined, normalized 2D coordinates ( ),u v   in the range 
[ ]0,1  are calculated for that face using the formulas shown in Table 7.1. �is allows 
each face to be sampled as an ordinary 2D texture map. �e particular formulas 
listed in the table were chosen so that all the faces would have the same u and v 
axis directions when the cube is unwrapped and flattened as shown in Figure 7.9. 
�is is how the cube looks when viewed from outside, and its configuration was 
originally designed for an external coordinate system in which the y axis is the up 
direction. 
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0 0 1
0 1 0

+ 
 + 

+  

y−
1

2
x y−

 
1

2
z y+

 
1 0 0

0 0 1
0 1 0

+ 
 − 

−  

z+
1

2
x z+

 
1

2
y z−

 
1 0 0

0 1 0
0 0 1

+ 
 − 

+  

z−
1

2
x z+

 
1

2
y z+

 
1 0 0

0 1 0
0 0 1

− 
 − 

−  

Table 7.1. For each face of a cube texture map, formulas for the values of u and v provide 
the normalized texture coordinates at which the face is sampled. �e matrix faceM  gives the 
transform from the face’s coordinate system to the camera’s coordinate system when the 
face is rendered from the center of the cube. 
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Figure 7.9. �e u and v coordinate axes for each face of a cube texture map are shown on 
a flattened cube as it would appear from the outside. �e x, y, and z axes of the cube point 
out of the page. 

 �e images stored in a cube texture map are often rendered by the game engine 
itself. �is could be done as a step taken when compiling a world, or it could hap-
pen dynamically as the environment changes. To render the image for each cube 
face with the correct orientation, we need to set up the camera transform properly, 
and this can be a little tricky. For each particular face, the x axis in camera space 
needs to be aligned with the direction that u coordinate points, and the y axis needs 
to be aligned with the v coordinate. �e camera is positioned at the center of the 
cube, and its z axis has to point out of the face that we are rendering. As an example, 
consider the x+  face shown in Figure 7.9. Its u axis points in the z−  direction, and 
its v axis points in the y−  direction. �ese must be aligned with the camera-space 

x+  and y+  directions. Also, from a camera position inside the cube, the x+  axis
pointing out of the face must be aligned with the camera-space z+  direction. We
can express the mapping from the coordinate system of the face to the coordinate
system of the camera with the matrix

face

0 0 1
0 1 0
1 0 0

+ 
 = − 
−  

M . (7.27) 

�e first two columns of this matrix are the directions in which the u and v axes 
point, and the third column is the direction pointing out of the face. Matrices de-
rived in a similar manner are listed in Table 7.1 for all six cube faces. 
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 Let the matrix cubeM  be the transformation from object space to world space 
for a node representing the location where a cube texture map is generated. �e 
camera transformation cameraM  for a single face of the cube is given by the product 

camera cube face=M M M . (7.28) 

�is is the camera transformation that should be used when rendering a cube 
face image, where faceM  is the matrix listed in Table 7.1 for the specific face. An 
important observation is that all of the cube face coordinate systems are left 
handed, and this means that each matrix faceM  has a determinant of 1− . As a result, 
the matrix cameraM  given by Equation (7.28) contains a reflection, and we must 
compensate by inverting the rendering state that specifies the front face winding 
direction. If front faces are normally wound counterclockwise, then they will ap-
pear to be wound clockwise when rendering a cube face. 
 Environment mapping is a technique in which a cube texture map, called an 
environment map in this case, is used to produce the appearance of an approximate 
mirror-like reflection on shiny surfaces. We must first render the contents of an 
environment map to capture the details of the surrounding geometry at some loca-
tion. An example environment map for an indoor area is shown in Figure 7.10(a). 
Once the environment map is available, we can sample it in a pixel shader by 
simply providing a vector r that corresponds to the reflection of the view vector v 
across the surface normal n. �is reflection vector is calculated with the formula 

( )2= ⋅ −r n v n v, (7.29) 

which can be used directly as the ( ), ,x y z  texture coordinates with which the en-
vironment map is sampled. �ere is no need to normalize this vector because the 
divisions appearing in Table 7.1 automatically take care of scaling relative to the 
largest component. 
 �e vector r given by Equation (7.29) has object-space coordinates, but we 
have to sample the environment map in its own local coordinate system. If the 
matrix objectM  transforms from object space to world space, and the matrix cubeM  
transforms from the coordinate system of the cube texture map to world space, 
then the product 

1
env cube object

−=M M M (7.30) 

can be used to transform vectors from object space directly into coordinate space 
used by the environment map. For the reflection vector r calculated with Equation 
(7.29), we would sample the environment map with the vector envM r. �is process 
is implemented in Listing 7.3, and it produces results like the reflections shown on 
the shiny surfaces in Figure 7.10(b). 
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Figure 7.10. (a) An environment map has been rendered for an indoor location. �is is how the six 
faces appear from inside the cube. �e axis shown for each face points into the page. (b) �e envi-
ronment map has been applied to a tank and some pipes to give them a highly reflective appearance. 

Listing 7.3. �is pixel shader function calculates the reflection of the view vector v across the sur-
face normal n, which are assumed to be normalized. It transforms the result into the local coordinate 
system of an environment map using the upper-left 3 3×  portion of the matrix envM  given by Equa-
tion (7.30), whose rows are stored in the uniform constant Menv. 

uniform TextureCube environmentMap; 
uniform float3 Menv[3]; 

float4 SampleEnvironmentMap(float3 n, float3 v) 
{ 

float3 r = n * (2.0 * dot(n, v)) − v; 
float3 texcoord = float3(dot(Menv[0], r), dot(Menv[1], r), dot(Menv[2], r)); 
return (texture(environmentMap, texcoord)); 

} 

7.5  Tangent Space 

Up to this point, our shading calculations have been carried out in object space. 
More advanced techniques, some of which have become standard fixtures in game 
engines, are able to make use of texture maps that store finely detailed geometric 
information instead of colors. �e most common example is the normal mapping 
technique in which a texture map contains vector data, and this is introduced in the 
next section. �e numerical values stored in this kind of texture map are expressed 
in the coordinate system of the texture map itself so that the geometric details are 
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independent of any particular model. �is allows a geometric texture map to be 
applied to any triangle mesh without having to account for the object-space coor-
dinate system used by its vertices. 
 In the coordinate system of a texture map, the x and y axes are aligned to the 
horizontal and vertical directions in the 2D image, and the z axis points upward out 
of the image plane, as shown in Figure 7.11(a). If the origin of the texture map is 
located in the upper-left corner, then this constitutes a left-handed coordinate sys-
tem. It is also possible to flip the texture upside down and put the origin in the 
lower-left corner to create a right-handed coordinate system. Either choice works 
fine because we will need to account for the handedness inherent in the mapping 
of the texture map to a surface anyway. 
 In order to perform shading calculations that use geometric information stored 
in a texture map, we need a way to transform between the coordinate system of the 
texture map and object space. �is is done by identifying the directions in object 
space that correspond to the coordinate axes of the texture map. �ese object-space 
directions are not constant, but vary from triangle to triangle. For a single triangle, 
we can think of the texture map as lying in the triangle’s plane with its x and y axes 
oriented in the directions that are aligned to the ( ),u v  texture coordinates assigned 
to the triangle’s vertices. �e z axis of the texture map points directly out of the 
plane, so it is aligned with the triangle’s normal vector in object space. �e x and 
y axes of the texture map point along directions that are tangent to the surface in 
object space, and at least one of these vectors needs to be calculated ahead of time. 

Figure 7.11. (a) In the coordinate system of a texture map, the x and y axes are aligned to 
the texel image, and the z axis points upward out of the image plane. (b) Each vertex in a 
triangle mesh has a normal vector n and a perpendicular tangent vector t, and both vectors 
form a smooth field over the entire model. �e direction that the tangent vector points 
within the tangent plane is determined by the orientation of the texture map at each vertex. 
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 As with normal vectors, we calculate an average unit-length tangent vector t 
for each vertex in a triangle mesh. �is lets us create a smooth tangent field on the 
surface of a model, as shown in Figure 7.11(b). Although it may not be strictly true 
for the specific texture mapping applied to a model, we assume that the two tangent 
directions are perpendicular to each other, so a second tangent direction b called 
the bitangent vector can be calculated with a cross product. �e three vectors t, b, 
and n form the basis of the tangent frame at each vertex, and the coordinate space 
in which the x, y, and z axes are aligned to these directions is called tangent space. 
We can transform vectors from tangent space to object space using the 3 3×  matrix 

tangentM  given by 

tangent

 ↑ ↑ ↑
 =  
 ↓ ↓ ↓ 

M t b n , (7.31) 

which has the vectors t, b, and n as its columns. Since this matrix is orthogonal, 
the reverse transformation from object space to tangent space is the transpose 

T

T T
tangent

T

← → 
 = ← → 
 ← → 

t
M b

n
, (7.32) 

where the vectors t, b, and n form the rows. �e name TBN matrix is often used to 
refer to either one of these matrices. 

Applying a little linear algebra to the vertex positions and their associated tex-
ture coordinates lets us calculate the tangent field for a triangle mesh. Let 0 , 1 ,
and 2  be the three vertices of a triangle, wound in counterclockwise order, and let
( ),i iu v  represent the texture coordinates associated with the vertex i . �e values
of u and v correspond to distances along the axes t and b that are aligned to the x 
and y directions of the texture map. �is means that we can express the difference 
between two points with known texture coordinates as 

( ) ( )i j i j i ju u v v− = − + −t b  . (7.33) 

To determine what the vectors t and b are, we can form a system of equations using 
differences between the vertices on two of the triangle’s edges. After making the 
definitions 

( ) ( )
( ) ( )

1 1 0 1 1 1 0 1 0

2 2 0 2 2 2 0 2 0

, , , ,
, , , ,

x y u u v v
x y u u v v

= − = − −

= − = − −

e
e

 
   (7.34) 
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we can write this system very compactly as 

1 1 1

2 2 2

x y
x y

= +

= +

e t b
e t b. (7.35) 

An equivalent matrix equation is 

1 2
1 2

1 2

x x
y y

   ↑ ↑ ↑ ↑     =          ↓ ↓ ↓ ↓   

e e t b , (7.36) 

where 1e , 2e , t and b are all column vectors. �is equation is readily solved by 
inverting the 2 2×  matrix of coefficients on the right side to produce 

2 2
1 2

1 11 2 2 1

1 .
y x
y xx y x y

   ↑ ↑ ↑ ↑ −    =      −−     ↓ ↓ ↓ ↓   

t b e e (7.37) 

 To calculate an average tangent vector and bitangent vector at each vertex, we 
maintain sums of the vectors produced for each triangle and later normalize them. 
When values of t and b are calculated with Equation (7.37), they are added to the 
sums for the three vertices referenced by the triangle. �e results are usually not 
exactly perpendicular, but unless the texture mapping is skewed to a significant 
degree, they should be close to perpendicular. We can nudge them the rest of the 
way by applying Gram-Schmidt orthonormalization. First, assuming the vertex 
normal vector n has unit length, we make sure the vertex tangent vector t is per-
pendicular to n by replacing it with 

( )( )nrm⊥ = − ⋅t t t n n  (7.38) 

using the rejection operation described in Section 1.6. (We use the subscript ⊥ 
simply to mean that the vector has been orthonormalized.) �e vertex bitangent 
vector b is then made perpendicular to both t and n by calculating 

( ) ( )( )nrm⊥ ⊥ ⊥= − ⋅ − ⋅b b b n n b t t . (7.39) 

�e vectors ⊥t , ⊥b , and n now form a set of unit-length orthogonal axes for the 
tangent frame at a vertex. Code that implements this entire process is provided in 
Listing 7.4. 
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 Since the vectors are orthogonal, it is not necessary to store all three of the 
vectors ⊥t , ⊥b , and n for each vertex. Just the normal vector and the tangent vector 
will always suffice, but we do need one additional bit of information. �e tangent 
frame can form either a right-handed or left-handed coordinate system, and which 
one is given by the sign of ( )tangentdet M . Calling the sign of this determinant σ , we 
can reconstitute the bitangent with the cross product 

( ) ,σ⊥ ⊥= ×b n t (7.40) 

and then only the normal and tangent need to be supplied as vertex attributes. An 
example showing the normal field and tangent field for a character model is pro-
vided in Figure 7.12. One possible way to communicate the value of σ  to the vertex 
shader is by extending the tangent to a four-component vertex attribute and storing 
σ  in the w coordinate. �is is the method used in Listing 7.4, but a more clever 
approach might encode σ  in the least significant bit of one of the x, y, or z coordi-
nates of the tangent to avoid increasing the size of the vertex data. 

Listing 7.4. �is function calculates the per-vertex tangent vectors for the triangle mesh having 
triangleCount triangles with indices specified by triangleArray and vertexCount vertices with 
positions specified by vertexArray. �e per-vertex normal vectors and texture coordinates are 
given by normalArray and texcoordArray. Tangents are written to tangentArray, which must be 
large enough to hold vertexCount elements. �e determinant of the matrix tangentM  at each vertex is 
stored in the w coordinate of each tangent vector. 

void CalculateTangents(int32 triangleCount, const Triangle *triangleArray, 
   int32 vertexCount, const Point3D *vertexArray, const Vector3D *normalArray, 
   const Point2D *texcoordArray, Vector4D *tangentArray) 

{ 
// Allocate temporary storage for tangents and bitangents and initialize to zeros. 
Vector3D *tangent = new Vector3D[vertexCount * 2]; 
Vector3D *bitangent = tangent + vertexCount; 
for (int32 i = 0; i < vertexCount; i++) 
{ 

tangent[i].Set(0.0F, 0.0F, 0.0F); 
bitangent[i].Set(0.0F, 0.0F, 0.0F); 

} 

// Calculate tangent and bitangent for each triangle and add to all three vertices. 
for (int32 k = 0; k < triangleCount; k++) 
{ 

int32 i0 = triangle[k].index[0]; 
int32 i1 = triangle[k].index[1]; 
int32 i2 = triangle[k].index[2]; 
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const Point3D& p0 = position[i0]; 
const Point3D& p1 = position[i1]; 
const Point3D& p2 = position[i2]; 
const Point2D& w0 = texcoord[i0]; 
const Point2D& w1 = texcoord[i1]; 
const Point2D& w2 = texcoord[i2]; 

Vector3D e1 = p1 − p0, e2 = p2 − p0; 
float x1 = w1.x − w0.x, x2 = w2.x − w0.x; 
float y1 = w1.y − w0.y, y2 = w2.y − w0.y; 

float r = 1.0F / (x1 * y2 − x2 * y1); 
Vector3D t = (e1 * y2 − e2 * y1) * r; 
Vector3D b = (e2 * x1 − e1 * x2) * r; 

tangent[i0] += t; 
tangent[i1] += t; 
tangent[i2] += t; 
bitangent[i0] += b; 
bitangent[i1] += b; 
bitangent[i2] += b; 

} 

// Orthonormalize each tangent and calculate the handedness. 
for (int32 i = 0; i < vertexCount; i++) 
{ 

const Vector3D& t = tangent[i]; 
const Vector3D& b = bitangent[i]; 
const Vector3D& n = normalArray[i]; 
tangentArray[i].xyz() = Normalize(Reject(t, n)); 
tangentArray[i].w = (Dot(Cross(t, b), n) > 0.0F) ? 1.0F : −1.0F; 

} 

delete[] tangent; 
} 

 It is common for there to be discontinuities in a model’s texture mapping, and 
this is in fact unavoidable for anything topologically equivalent to a sphere because 
a continuous nonvanishing tangent field is impossible. In these cases, vertices are 
duplicated along the triangle edges where the discontinuity occurs. �e additional 
vertices have the same positions, but they could have different texture coordinates. 
Because they are indexed separately, their tangent vectors are not averaged, and 
this can lead to a visible boundary where an abrupt change in shading is visible. 
To avoid this, duplicates need to be identified so that their tangents can be averaged 
and set equal to each other, but only if the tangent frames have the same handed-
ness and the tangents are pointing in similar directions. 
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Figure 7.12. (a) A character model uses texture mapping techniques that require a tangent 
frame. (b) �e normal vector corresponding to each vertex is shown as a green line starting 
at the vertex’s position. (c) �e tangent vector is shown for each vertex, and it is aligned to 
the x direction of the texture map at the vertex position. 

7.6  Bump Mapping 

Bump mapping is a technique that gives the surface of a model the appearance of 
having much greater geometric detail than is actually present in the triangle mesh. 
It works by using a special type of texture map call a normal map to assign a dif-
ferent normal vector to each point on a surface. When shading calculations account 
for these finely detailed normal vectors in addition to the smoothly interpolated 
geometric normal, it produces the illusion that the surface varies in height even 
though the triangles we render are still perfectly flat. �is happens because the 
brightness of the reflected light changes at a high frequency, causing the surface to 
appear as if it were bumpy, and this is where the term bump mapping comes from. 
Because it uses a normal map, bump mapping is often called normal mapping, and 
the two terms can be used interchangeably. Figure 7.13 shows an example in which 
a wall is rendered as a flat surface having a constant normal vector and is rendered 
again with the varying normal vectors produced by bump mapping. �e difference 
is already pretty remarkable, but we will be able to extend the concept even further 
with the addition of parallax and horizon mapping in the next two sections. 
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Figure 7.13. (a) A flat wall is rendered without bump mapping, so it has a constant normal vector 
across its surface. (b) �e same wall is rendered with bump mapping, and the normal vector is mod-
ified by the vectors stored in a normal map. In both images, the direction to the light points toward 
the upper-right corner. 

7.6.1  Normal Map Construction 
Each texel in a normal map contains a unit-length normal vector whose coordinates 
are expressed in tangent space. �e normal vector ( )0, 0,1  corresponds to a smooth 
surface because it is parallel to the direction pointing directly along the interpolated 
normal vector n in object space. Any other tangent-space normal vector represents 
a deviation from the smooth surface due to the presence of geometric detail. 
�ough it is possible to generate a normal map based on some mathematical de-
scription of a surface, most normal maps are created by calculating slopes in a 
height field. A single-channel height map is typically supplied, and the values it 
contains correspond to the heights of the detailed geometry above a flat surface. 
For example, the height map that was used to create the normal map for the wall 
in Figure 7.13 is shown as a grayscale image in Figure 7.14(a). 
 To calculate the normal vector for a single texel in the normal map, we first 
apply central differencing to calculate slopes in the x and y directions. �e values 
in the height map are usually interpreted as numbers in the range [ ]0,1 , so they 
must be scaled by some constant factor to stretch them out into the full range of 
heights that are intended to be covered. Using a scale factor of s means that the 
maximum height is s times the width of a single texel. Let the function ( ),h i j  
represent the value, in the range [ ]0,1 , stored in the height map at the coordinates 
( ),i j . �e two slopes xd  and yd  are then given by 

(a) (b) 
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( ) ( )[ ]

( ) ( )[ ]

Δ 1, 1,
Δ 2
Δ , 1 , 1
Δ 2

x

y

z sd h i j h i j
x
z sd h i j h i j
y

= = + − −

= = + − − . (7.41) 

At the edges of the height map, care must be taken to either clamp the coordinates 
or wrap them around to the opposite side of the image, depending on the intended 
wrapping mode of the resulting normal map. 
 Once the slopes have been determined, we can express directions xu  and yu  
that are tangent to the height field along the x and y axes as 

( )1, 0,x xd=u    and   ( )0,1,y yd=u . (7.42) 

Since these are independent directions in the height map’s tangent plane, the nor-
mal vector m can be calculated with the cross product 

( ) ( )
2 2

, ,1
nrm .

1
x y

x y

x y

d d

d d

− −
= × =

+ +
m u u (7.43) 

(a)  (b)  

Figure 7.14. (a) A single-channel image contains a height map for a stone wall. Brighter values 
correspond to greater heights. (b) �e corresponding normal map contains the vectors calculated by 
Equation (7.43) with a scale of 24s = . �e components have been remapped to the range [ ]0,1 . 
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�is is the value that gets stored in the normal map. We use the letter m to avoid 
confusion with the object-space normal vector n defined at each vertex. �e code 
shown in Listing 7.5 uses Equation (7.43) to construct a normal map from a height 
map that has already been scaled by the factor of s appearing in Equation (7.41). 
At the edges of the height map, this code calculates differences by wrapping around 
to the opposite side. 
 In the early days of GPU bump mapping, the three components of the normal 
vector had to be stored in a texture map whose color channels could hold values in 
the range [ ]0,1 . Since the x and y components of m can be any values in the range 
[ ]1, 1− + , they had to be remapped to the range [ ]0,1  by calculating 1 1

2 2r x= +  for 
the red channel and 1 1

2 2g y= +  for the green channel. Even though the z component 

Listing 7.5. �is function constructs a normal map corresponding to the scaled height map having 
power-of-two dimensions width × height specified by heightMap. Normal vectors are written to 
the buffer supplied by normalMap, which must be large enough to hold width × height values. 

void ConstructNormalMap(const float *heightMap, Vector3D *normalMap, 
   int32 width, int32 height) 

{ 
for (int32 y = 0; y < size.y; y++) 
{ 

int32 ym1 = (y − 1) & (height − 1), yp1 = (y + 1) & (height − 1); 

const float *centerRow = heightMap + y * width; 
const float *upperRow = heightMap + ym1 * width; 
const float *lowerRow = heightMap + yp1 * width; 

for (int32 x = 0; x < size.x; x++) 
{ 

int32 xm1 = (x − 1) & (width − 1), xp1 = (x + 1) & (width − 1); 

// Calculate slopes. 
float dx = (centerRow[xp1] − centerRow[xm1]) * 0.5F; 
float dy = (lowerRow[x] − upperRow[x]) * 0.5F; 

// Normalize and clamp. 
float nz = 1.0F / sqrt(nx * nx + ny * ny + 1.0F); 
float nx = fmin(fmax(−dx * nz, −1.0F), 1.0F); 
float ny = fmin(fmax(−dy * nz, −1.0F), 1.0F); 
normalMap[x].Set(nx, ny, nz); 

} 

normalMap += width; 
} 

} 
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of m is always positive (because normal vectors always point out of the surface), 
the same mapping was applied to it as well for the blue channel. When a normal 
vector encoded in this way is fetched from a texture map, the GPU performs the 
reverse mapping back to the range [ ]1, 1− +  by multiplying by two and subtracting 
one. Because the normal vectors are shortened a little by linear interpolation when 
they are fetched from a texture map, they should be renormalized in the pixel 
shader. �e normal map shown in Figure 7.14(b) uses this encoding scheme. �e 
fact that the blue channel always contains values in the range [ ]1

2 ,1  gives it the 
characteristic purple tint that normal maps are known for having. 
 With the widespread availability of a much larger set of texture formats, we 
have better options. A texture map can have signed channels that store values in 
the range [ ]1, 1− + , so we no longer need to remap to the range [ ]0,1 . To save space, 
we can take advantage of two-channel formats by storing only the x and y compo-
nents of a normal vector m. After these are fetched from a texture map in the pixel 
shader, we can reconstitute the z component by calculating 

2 21z x ym m m= − − (7.44) 

under the assumption that m has unit length and zm  is positive. �is method for 
storing normal vectors works well with compressed texture formats that support 
two uncorrelated channels. Equation (7.44) is implemented in Listing 7.6. 

Listing 7.6. �is pixel shader function fetches the x and y components of a normal vector from the 
2D texture map specified by normalMap at the texture coordinates given by texcoord. �e z com-
ponent of the normal vector is reconstituted with Equation (7.44). 

uniform Texture2D normalMap; 

float3 FetchNormalVector(float2 texcoord) 
{ 

float2 m = texture(normalMap, texcoord).xy; 
return (float3(m, sqrt(1.0 − m.x * m.x − m.y * m.y))); 

} 

7.6.2  Rendering with Normal Maps 

To shade a surface that has a normal map applied to it, we perform the same cal-
culations that we would perform without a normal map involving the view direc-
tion v, light direction l, and halfway vector h. �e difference is that we no longer 
take any dot products with the interpolated normal vector n because it is replaced 
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by a normal vector m fetched from a normal map. Before we can take dot products 
with m, though, we have to do something about the fact that it is not expressed in 
the same coordinate system as v and l. We need to either transform v and l into 
tangent space to match m or transform m into object space to match v and l. 
 To transform any vector u from object space to tangent space, we multiply it 
by the matrix T

tangentM  given by Equation (7.32). �e rows of this matrix are the per-
vertex tangent t, bitangent b, and normal n, so the components of u simply become 
⋅t u, ⋅b u, and ⋅n u in tangent space. �is is applied to the object-space view direc-

tion v and light direction l by the vertex shader function shown in Listing 7.7 after 
it calculates the bitangent vector with Equation (7.40). �e resulting tangent-space 
view direction tangentv  and light direction tangentl  should then be output by the vertex 
shader so their interpolated values can be used in the pixel shader. 
 Shading can also be performed in object space by fetching the vector m from 
a normal map and then multiplying it by the matrix tangentM  in the pixel shader. �e 
columns of tangentM  are the vectors t, b, and n, so the transformed normal vector 

objectm  is given by 

object x y zm m m= + +m t b n. (7.45) 

To perform this operation in the pixel shader, we need to interpolate the per-vertex 
normal and tangent vectors in addition to the view direction v and the light direc-
tion l, which now remain in object space. �e handedness σ  of the tangent frame 

Listing 7.7. �is vertex shader function calculates the tangent-space view direction tangentv  and light 
direction tangentl  for a vertex having object-space attributes position, normal, and tangent and re-
turns them in vtan and ltan. �e w coordinate of the tangent contains the handedness σ of the 
tangent frame used in the calculation of the bitangent vector. 

uniform float3 cameraPosition; // Object-space camera position. 
uniform float3 lightPosition;  // Object-space light position. 

void CalculateTangentSpaceVL(float3 position, float3 normal, float4 tangent, 
  out float3 vtan, out float3 ltan) 

{ 
float3 bitangent = cross(normal, tangent.xyz) * tangent.w; 
float3 v = cameraPosition − position; 
float3 l = lightPosition − position; 
vtan = float3(dot(tangent, v), dot(bitangent, v), dot(normal, v)); 
ltan = float3(dot(tangent, l), dot(bitangent, l), dot(normal, l)); 

} 
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also needs to be passed from the vertex shader to the pixel shader. Since handed-
ness is always constant over a triangle, it can be flat interpolated to save some 
computation. After interpolation, the normal and tangent vectors may not have unit 
length, and it’s possible that they are no longer perpendicular. To correct for this, 
we have to orthonormalize them in the pixel shader before we calculate the bi-
tangent vector with Equation (7.40). �e pixel shader function shown in Listing 7.8 
carries out these steps to construct the tangent frame. It then applies Equation 
(7.45) to transform a normal vector m fetched from a normal map into object space. 

Listing 7.8. �is pixel shader function fetches a normal vector from the 2D texture map specified 
by normalMap at the texture coordinates given by texcoord using the function in Listing 7.6. It then 
transforms it into object space by multiplying it by the matrix tangentM . �e interpolated object-space 
normal, tangent, and handedness values are given by normal, tangent, and sigma. 

uniform Texture2D normalMap; 

float3 FetchObjectNormalVector(float2 texcoord, float3 normal, float3 tangent, 
    float sigma) 

{ 
float3 m = FetchNormalVector(texcoord); 
float3 n = normalize(normal); 
float3 t = normalize(tangent − n * dot(tangent, n)); 
float3 b = cross(normal, tangent) * sigma; 
return (t * m.x + b * m.y + n * m.z); 

} 

7.6.3  Blending Normal Maps 

�ere are times when we might want to combine two or more normal maps in the 
same material. For example, a second normal map could add finer details to a base 
normal map in a high-quality version of the material. It’s also possible that texture 
coordinate animation is causing two normal maps to move in different directions, 
as commonly used to produce interacting ripples on a water surface. We might also 
want to smoothly transition between two different normal maps. In general, we 
would like to have a function ( )blend 1 2, , ,f a bm m  that calculates the weighted sum 
of two normal vectors 1m  and 2m  with the weights a and b. �e sum must behave 
as if the original height maps from which 1m  and 2m  were derived had been added 
together with the same weights a and b, allowing a new normal vector to be calcu-
lated with Equation (7.43). We cannot simply calculate 1 2a b+m m  because it does 
not satisfy this requirement. In particular, if one height map contains all zeros, then 
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it should have no effect on the sum, but blending the normal vectors directly would 
cause the results to be skewed toward the vector ( )0, 0,1 . 
 Fortunately, we can easily recover the slopes xd  and yd  to which a normal vec-
tor corresponds. All we have to do is scale a normal vector by the reciprocal of its 
z coordinate to match the unnormalized vector in the numerator of Equation (7.43), 
effectively undoing the previous normalization step. �ese slopes are nothing more 
than scaled differences of heights, so they are values that we can blend directly. 
�is leads us to the blending function 

( ) 1 2 1 2
blend 1 2

1 2 1 2
, , , nrm , ,1 ,x x y yf a b a b a b

z z z z
 = + + 
 

m m (7.46) 

where ( )1 1 1 1, ,x y z=m  and ( )2 2 2 2, ,x y z=m . 
 By setting 1a t= −  and b t= , we can smoothly transition from one normal map 
to another as the parameter t goes from zero to one. To combine two normal maps 
in such a way that they have an additive effect without diminishing the apparent 
size of the bumps encoded in either one, we apply Equation (7.46) with the weights 

1a b= = . Since the result is normalized, we can multiply all three components by 
1 2z z , in which case the additive blending function is given by 

( ) ( )add 1 2 2 1 1 2 2 1 1 2 2 1, nrm , ,f z x z x z y z y z z= + +m m . (7.47) 

�e weights a and b do not need to be positive. Using a negative weight for one 
normal map causes it to be subtracted from the other so that its bumps appear to 
be inverted. 

7.7  Parallax Mapping 

Plain bump mapping has its limitations. While it often looks good when a surface 
is viewed from a nearly perpendicular direction, the illusion of bumpiness quickly 
breaks down as the angle between the surface and the viewing direction gets 
smaller. �is is due to the fact that the same texels are still rendered at the same 
locations on the surface from all viewing directions, betraying the flatness of the 
underlying geometry. If the surface features encoded in the normal map actually 
had real height, then some parts of the color texture would be hidden from view by 
the bumps, and other parts would be more exposed, depending on the perspective. 
A technique called parallax mapping shifts the texels around a little bit to greatly 
improve the illusion that a surface has varying height. 
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 Parallax mapping works by first considering the height h and normal vector n 
mapped to each point on a surface. As shown in Figure 7.15, these values can be 
used to establish a plane [ ]| dn  that is tangent to the bumpy surface at that point. 
�is plane serves as a local approximation to the surface that can be used to calcu-
late a texture coordinate offset that accounts for the viewing direction and produces 
the appearance of parallax. Since we need only the offset, we can assume that the 
original texture coordinates are ( )0, 0  for simplicity. �e value of d is then deter-
mined by requiring that the point ( )0, 0, h  lies on the plane, from which we obtain 

zd n h= − . (7.48) 

For a particular tangent-space view direction v, the point where the ray t+ v
intersects the plane [ ]| dn  is approximately the point  that would be visible from
the direction v if the surface actually had the height h at the point sampled on the 
flat geometry. �e parameter t is calculated by solving the equation 

[ ] ( )| 0d t⋅ + =n v , (7.49) 

and the point  is thus given by

zn h
= +

⋅
v

n v
  . (7.50) 

�e x and y coordinates of  provide the offset that should be added to the original
texture coordinates. All texture maps used by the pixel shader, including the nor-
mal map, are then resampled at these new coordinates that include the parallax 
shift. 

Figure 7.15. �e height h and normal vector n sampled at the point  are used to construct
a plane that approximates the bumpy surface shown by the blue line. For a tangent-space 
view vector v, the parallax offset is given by the x and y coordinates of the point  where
the ray t+ v  intersects the plane.
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 In practice, the offset given by Equation (7.50) is problematic because the dot 
product ⋅n v can be close to zero, or it can even be negative. �is means that the 
offset can produce an arbitrarily large parallax shift toward or away from the 
viewer when n and v are nearly perpendicular. �e usual solution to this problem, 
even though it has little geometric significance, is to gradually reduce the offset as 
⋅n v becomes small by simply multiplying by ⋅n v! �is effectively drops the divi-

sion from Equation (7.50) and gives us the new offset formula 

.xy z xyn h= v (7.51) 

�is offset generally produces good results, like those shown in Figure 7.16, and it 
is very cheap to calculate. Because we are no longer dividing out their magnitudes, 
however, we must ensure that both n and v have unit length before applying this 
formula. 
 �e value of zn h in Equation (7.51) is precomputed for every texel in the nor-
mal map and stored in a separate parallax map having a single channel. To mini-
mize storage requirements, an 8-bit signed format can be used in which texel 
values fall in the range [ ]1, 1− + . Unsigned values h from the original height map 
are remapped to this range by calculating 2 1h −  before multiplying by zn  and stor-
ing the results in the parallax map. A signed format is chosen so that texture coor-
dinates are shifted both toward and away from the viewer when the full range of 
heights is well utilized. An original height of 1 2h =  corresponds to no offset, larger 
heights cause a surface to appear raised, and smaller values cause a surface to ap-
pear depressed. In the pixel shader, the sampled values of zn h are multiplied by 1 2 
to account for the doubling when they were converted to the signed format. �ey 
must also be multiplied by the same scale used when the normal map was gener-
ated so that the heights used in parallax mapping are the same as those that were 
used to calculate the per-texel normal vectors. 
 For bump maps containing steep changes in height, offsets given by Equation 
(7.51) can still be too large because the tangent plane becomes a poorer approxi-
mation as the size of the offset increases. Shifted color samples taken too far away 
from areas having a steep slope often produce visible artifacts. �is problem can 
be eliminated in most cases by using k iterations and multiplying the offset by 1 k 
each time. A new value of zn h is fetched from the parallax map for each iteration, 
allowing each incremental parallax shift to be based on a different approximating 
plane. 
 �e pixel shader code shown in Listing 7.9 implements parallax mapping with 
Equation (7.51), and it uses four iterations to mitigate the appearance of artifacts 
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Figure 7.16. Two flat surfaces are rendered with only normal mapping in the left column. A parallax 
shift has been applied to the same surfaces in the right column. Texture coordinate offsets are cal-
culated using Equation (7.51) with four iterations. 

produced by steep slopes. �e two-component scale value u passed to the function 
is given by 

,
2 2x y

s s
kr kr

 
=  
 

u , (7.52) 

and it accounts for several things that can be incorporated into a precalculated 
product. First, the it includes the height scale s that was originally used to construct 
the normal map. Second, since the heights are measured in units of texels, the par-
allax offsets must be normalized to the actual dimensions ( ),x yr r  of the height map, 
so the scale is multiplied by the reciprocals of those dimensions. (�is is the only 
reason why there are two components.) �ird, the scale includes a factor of 1 2 to 
account for the multiplication by two when the heights were converted from un-
signed to signed values. Fourth, the scale includes a factor of 1 k, where k is the 
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number of iterations, so that each iteration contributes its proper share of the final 
result. Finally, the scale may include an extra factor not shown in Equation (7.52) 
that exaggerates the parallax effect. 

Listing 7.9. �is pixel shader function applies parallax mapping to the texture coordinates given by 
texcoord using four iterations and returns the final result. �e texture specified by parallaxMap 
holds the signed values zn h belonging to the parallax map. �e vdir parameter contains the tangent-
space view direction, which must be normalized to unit length. �e value of scale is given by 
Equation (7.52), where 4k =  in this code. 

uniform Texture2D parallaxMap; 

float2 ApplyParallaxOffset(float2 texcoord, float3 vdir, float2 scale) 
{ 

float2 pdir = vdir.xy * scale; 
for (int i = 0; i < 4; i++) 
{ 

// Fetch n.z * h from the parallax map. 
float parallax = texture(parallaxMap, texcoord).x; 
texcoord += pdir * parallax; 

} 

return (texcoord); 
} 

7.8  Horizon Mapping 

While bump mapping with a parallax shift goes a long way toward making a flat 
surface look like it contains geometric detail, there is still one thing left that would 
complete the illusion and really make our materials look great. �e bumps need to 
cast shadows. As shown in Figure 7.17, adding per-pixel shadows can make a dra-
matic difference even after bump and parallax mapping have been applied, espe-
cially when the light direction makes a large angle with the surface normal. �ese 
shadows are rendered with a technique call horizon mapping, which gets its name 
from the type of information that is stored in an additional texture map. Given an 
arbitrary light direction in tangent space, a horizon map tells us whether the light 
source is high enough above the horizon to exceed the height of any nearby bumps 
and thus illuminate the point being shaded. �is allows us to cast high-quality shad-
ows for the geometric detail stored in the original height map. �e horizon mapping 
method is also fully dynamic, so the shadows reorient themselves correctly as the 
light source moves around. 
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Figure 7.17. �ree examples of horizon mapping are shown. In the left column, only bump mapping 
with a parallax shift has been applied, and the lack of shadows in the crevices produces an unrealistic 
appearance. In the right column, horizon mapping has also been applied, and the shadows contribute 
considerably more visual information about the shape of the surface, giving the bumps the appear-
ance of much greater volume. �e light source is positioned to the upper right in all three cases. 
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 For each texel, a horizon map contains eight values corresponding to eight 
different tangent directions spaced at 45-degree increments, and they are stored in 
the red, green, blue, and alpha channels in two layers of an array texture. Each 
value is the sine of the largest angle between the horizontal plane and the highest 
point in a 45-degree field centered on the direction to which the value corresponds. 
Even though the sines of horizon angles are precomputed and stored only for eight 
specific light directions, linear interpolation for arbitrary directions works very 
well in practice, and it reduces both storage space and computational expense. Fur-
thermore, horizon maps can usually be constructed at lower resolutions compared 
to normal maps based on the same height map without a significant loss of render-
ing quality, especially if shadows with soft edges are desired. It is common for 
horizon maps to be half the width and height of a normal map, requiring only one 
quarter of the storage space of the full-resolution texture. 

7.8.1  Horizon Map Construction 
A horizon map is constructed from the same scaled height map that was used to 
construct a normal map and parallax map. For a texel at the coordinates ( ),x y , we 
read the base height 0h  from the height field and then search a neighborhood of 
some fixed radius r for larger height values. Whenever a greater height h is found 
at an offset of ( ),i j  texels, we calculate 

( ) 2
02

2 2tan h hα
i j
−

=
+

, (7.53) 

where the angle α is the elevation angle between the horizontal plane at the height 
0h  and the direction toward the higher point, as illustrated in Figure 7.18. Since the 

tangent is a monotonically increasing function over the range of angles that are 
possible in this setting, larger values given by Equation (7.53) correspond to larger 
elevation angles. �e maximum values of the squared tangent are recorded for an 
array of horizontal directions holding several times the eight entries that we will 
ultimately need. After the whole neighborhood has been searched, each entry of 
this array is converted to a sine value with the trigonometric identity 

2

2

tansin
tan 1

αα
α

=
+

. (7.54) 

To obtain the eight values that we store in the horizon map, we simply average the 
entries in the array within a 45-degree span centered on the direction to which the 
value in the horizon map corresponds. 
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Figure 7.18. Each of the eight values stored in a horizon map for the texel location ( ),x y  
is the sine of the maximum angle α made between the horizontal plane at the height 0h  and 
the direction to a nearby point having the height h at an offset of ( ),i j  texels. When render-
ing, the z component of the normalized tangent-space light direction l can be directly com-
pared to sin α to determine whether light can reach the point being shaded. 

 �e code in Listing 7.10 constructs the horizon map for a given height map by 
searching the neighborhood within a 16-texel radius of each central location ( ),x y  
and keeping track of the largest value of 2tan α for an array of 32 equally spaced 
horizontal directions. If the neighborhood extends beyond the bounds of the height 
map, then it wraps around to the opposite side. When we encounter a height at the 
neighborhood location ( ),x i y j+ +  that is greater than the height at the central 
location, the squared tangent can be applied to multiple array entries based on the 
angular size of the higher texel in the horizontal plane relative to the center. For 
simplicity, we assume that each texel has a radius of 2 2, in which case half the 
angular size of the higher texel is given by 

( )
1 2tan

2 ,
δ

i j
−  

=  
 

. (7.55) 

�e squared tangent of α for this texel is applied to all array entries falling within 
an angular distance δ of the angle to the texel itself, which is equal to ( )1tan j i− . 
 �e final values written to the horizon map are calculated by taking the average 
of the five nearest array entries for each multiple of 45 degrees. �e red, green, 
blue, and alpha channels in the first layer of the horizon map contain the final 
values corresponding to directions making angles 0°, 45°, 90°, and 135° with the 
positive x axis, respectively. �e second layer contains the final values correspond-
ing to directions making angles 180°, 225°, 270°, and 315°. �ese eight channels 
of two example horizon maps are shown separately in Figure 7.19 alongside the 
corresponding diffuse texture maps and normal maps. 
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 As an added bonus, the same information that we calculate to create a horizon 
map can also be used to approximate the amount of ambient light that is occluded 
at each texel. �is is discussed in more detail below in Section 7.8.3, but the code 
that generates an ambient light factor is included in Listing 7.10. 

Listing 7.10. �is function constructs a horizon map corresponding to the scaled height map having 
power-of-two dimensions width × height specified by heightMap and writes two layers of color 
data to the buffer supplied by horizonMap, which must be large enough to hold 2 × width × height 
values. �e search neighborhood has a radius of 16 texels, and maximum squared tangent values are 
recorded for an array 32 horizontal direction angles. After the neighborhood has been searched, the 
array entries are converted to sine values using Equation (7.54), and groups of five are averaged to 
produce the final values written to the horizon map. An ambient occlusion map is also generated, 
and the results are written to the buffer specified by ambientMap, which must be large enough to 
hold width × height values. �e value of ambientPower is used to exaggerate the occlusion. 

void ConstructHorizonMap(const float *heightMap, ColorRGBA *horizonMap, 
  float *ambientMap, float ambientPower, int32 width, int32 height) 

{ 
constexpr int kAngleCount = 32; // Must be at least 16 and a power of 2. 
constexpr float kAngleIndex = float(kAngleCount) / two_pi; 
constexpr int kHorizonRadius = 16; 

for (int32 y = 0; y < height; y++) 
{ 

const float *centerRow = heightMap + y * width; 
for (int32 x = 0; x < width; x++) 
{ 

// Get central height. Initialize max squared tangent array to all zeros. 
float h0 = centerRow[x]; 
float maxTan2[kAngleCount] = {}; 

// Search neighborhood for larger heights. 
for (int32 j = −kHorizonRadius + 1; j < kHorizonRadius; j++) 
{ 

const float *row = heightMap + ((y + j) & (height − 1)) * width; 
for (int32 i = −kHorizonRadius + 1; i < kHorizonRadius; i++) 
{ 

int32 r2 = i * i + j * j; 
if ((r2 < kHorizonRadius * kHorizonRadius) && (r2 != 0)) 
{ 

float dh = row[(x + i) & (width − 1)] − h0; 
if (dh > 0.0F) 
{ 

// Larger height found. Apply to array entries. 
float direction = atan2(float(j), float(i)); 
float delta = atan(0.7071F / sqrt(float(r2))); 
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int32 minIndex = int32(floor((direction − delta) * kAngleIndex)); 
int32 maxIndex = int32(ceil((direction + delta) * kAngleIndex)); 

// Calculate squared tangent with Equation (7.53). 
float t = dh * dh / float(r2); 
for (int32 n = minIndex; n <= maxIndex; n++) 
{ 

int32 m = n & (kAngleCount − 1); 
maxTan2[m] = fmax(maxTan2[m], t); 

} 
} 

} 
} 

} 

// Generate eight channels of horizon map. 
ColorRGBA *layerData = horizonMap; 
for (int32 layer = 0; layer < 2; layer++) 
{ 

ColorRGBA color(0.0F, 0.0F, 0.0F, 0.0F); 
int32 firstIndex = kAngleCount / 16 + layer * (kAngleCount / 2); 
int32 lastIndex = firstIndex + kAngleCount / 8; 

for (int32 index = firstIndex; index <= lastIndex; index++) 
{ 

float tr = maxTan2[(index − kAngleCount / 8) & (kAngleCount − 1)]; 
float tg = maxTan2[index]; 
float tb = maxTan2[index + kAngleCount / 8]; 
float ta = maxTan2[(index + kAngleCount / 4) & (kAngleCount − 1)]; 

color.red += sqrt(tr / (tr + 1.0F)); 
color.green += sqrt(tg / (tg + 1.0F)); 
color.blue += sqrt(tb / (tb + 1.0F)); 
color.alpha += sqrt(ta / (ta + 1.0F)); 

} 

layerData[x] = color / float(kAngleCount / 8 + 1); 
layerData += width * height; 

} 

// Generate ambient light factor. 
float sum = 0.0F; 
for (int32 k = 0; k < kAngleCount; k++) sum += 1.0F / sqrt(maxTan2[k] + 1.0F); 
ambientMap[x] = pow(sum * float(kAngleCount), ambientPower); 

} 

horizonMap += width; 
ambientMap += width; 

} 
} 
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Figure 7.19. In each of these two examples, the eight channels of a horizon map are shown alongside 
the corresponding diffuse texture map and normal map. �e horizon data corresponding to horizontal 
directions making angles of 0°, 45°, 90°, and 135° with the positive x axis are stored in the red, 
green, blue, and alpha channels of layer 0, and the horizon data for angles 180°, 225°, 270°, and 
315° are stored in layer 1. 

7.8.2  Rendering with Horizon Maps 
In a pixel shader, the horizon mapping technique determines whether each pixel is 
illuminated by a light source or covered by a shadow. As described below, we 
would like a smooth transition between lit and shadowed pixels, so the horizon 
mapping calculation produces a value between zero and one specifying the fraction 
of incoming light that reaches each pixel. �e ordinary reflected light color is then 
multiplied by this fraction to obtain the final lighting contribution. 
 �e amount of computation needed to perform horizon mapping is surprisingly 
small considering the results. Most of the work involves determining the value of 
sin α shown in Figure 7.18 for an arbitrary tangent-space light direction l. For the 
sake of simplicity and speed, we linearly interpolate the values of sin α stored in 
the horizon map for the two directions nearest the projected light direction ( ),x yl l . 
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It would be expensive to decide purely through computation which two channels 
of the horizon map should participate in the interpolation and with what weights. 
However, it is possible and quite convenient to store the interpolation weights for 
all eight channels in a special cube texture map that is accessed directly with the 
vector l. We can encode weights for eight directions in a four-channel texture by 
taking advantage of the fact that if a weight is nonzero for one direction, then it 
must be zero for the opposite direction. �is allows us to use positive weights when 
referring to any of the four channels in the first layer of the horizon map and neg-
ative weights when referring to any of the four channels in the second layer. In the 
weight cube map, we use a signed format with eight bits per channel to store values 
in the range [ ]1, 1− + . For a four-component weight value w sampled with the light 
direction l, we can compute the interpolated value of sin α using the formula 

( ) ( )0 1sin max , 0 max , 0 ,α = ⋅ + − ⋅w h w h (7.56) 

where 0h  and 1h  are the four-channel sine values fetched from the two layers of the 
horizon map, and the max function is applied componentwise. �e two dot prod-
ucts essentially mean that Equation (7.56) is a weighted sum of all eight horizon 
map channels, but at most two weights end up being nonzero. 
 �e cube texture map containing the channel weights has the appearance 
shown in Figure 7.20 after remapping values to the range [ ]0,1 . A resolution of 
only 16 16×  texels per face is sufficient in practice, and it requires a mere six kilo-
bytes of storage. �is texture can be generated by the code in Listing 7.11, which 
returns floating-point colors that must still be converted to a format having signed 
8-bit components. 
 Once the interpolated value of sin α has been calculated with Equation (7.56) 
using the information fetched from the horizon map, we can compare it to the sine 
of the angle that the vector l makes with the horizontal plane, which is simply zl  
when l has been normalized to unit length. If sinzl α≥ , then the light source is far 
enough above the horizon to illuminate the pixel being shaded. Otherwise, the 
pixel is in shadow. If we were to calculate a lighting factor F as 

0, if sin ;
1, if sin ,

z

z

l α
F

l α
<=  ≥

(7.57) 

then the shadow would be correct, but its boundary would be hard and jagged as 
shown in Figure 7.21(a). We would instead like this lighting factor to smoothly 
transition from one to zero at the shadow’s edge in order to produce the soft ap-
pearance shown in Figure 7.21(b). �is can be accomplished by calculating 
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( )sin 1zF η l α= − + (7.58) 

and clamping it to the range [ ]0,1 . �e constant η is a positive number that deter-
mines how gradual the transition from light to shadow is. �e value of F is always 
one when sinzl α≥ , and it is always zero when sin 1zl α η≤ − . �e transition takes 
place over a range of size 1 η, so larger values of η produce harder shadows. �e 
effect of choosing 8η =  is demonstrated in Figure 7.21(b). 

Figure 7.20. When sampled with coordinates given by the tangent-space light direction, 
this small cube texture map returns the channel weights used to linearly interpolate the sine 
values stored in the horizon map. For each of the separately shown red, green, blue, and 
alpha channels, black corresponds to a value of 1− , and white corresponds to a value of 1+ . 

 �e code in Listing 7.12 implements the horizon mapping technique. �e tex-
ture coordinates passed to this function are the same as those used to fetch samples 
from the diffuse texture map and normal map after any parallax shift has been ap-
plied. �e code calculates the linearly interpolated value of sin α using Equation 
(7.56) and then applies Equation (7.58). For a specific tangent-space light direction 
that has already been normalized to unit length, the return value is the lighting 
factor by which the final shading contribution due to the light source should be 
multiplied. 
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Listing 7.11. �is function generates the texel values for the cube texture map shown in Figure 7.20 
as four-component floating-point colors. Each face is 16 16×  texels, so the buffer supplied by texel 
must be large enough to hold 1536 values. �e coordinates given by x and y fall in the centers of the 
256 texels belonging to each face. 

void GenerateHorizonCube(ColorRGBA *texel) 
{ 

for (int face = 0; face < 6; face++) 
{ 

for (float y = −0.9375F; y < 1.0F; y += 0.125F) 
{ 

for (float x = −0.9375F; x < 1.0F; x += 0.125F) 
{ 

Vector2D v; 

float r = 1.0F / sqrt(1.0F + x * x + y * y); 
switch (face) 
{ 

case 0: v.Set(r, −y * r);     break; 
case 1: v.Set(−r, −y * r);     break; 
case 2: v.Set(x * r, r);     break; 
case 3: v.Set(x * r, −r);     break; 
case 4: v.Set(x * r, −y * r);  break; 
case 5: v.Set(−x * r, −y * r); break; 

} 

float t = atan2(v.y, v.x) / pi_over_4; 

float red = 0.0F; 
float green = 0.0F; 
float blue = 0.0F; 
float alpha = 0.0F; 

 if (t < −3.0F) {red = t + 3.0F;   green = −4.0F − t;} 
else if (t < −2.0F) {green = t + 2.0F; blue = −3.0F − t;} 
else if (t < −1.0F) {blue = t + 1.0F;  alpha = −2.0F − t;} 
else if (t <  0.0F) {alpha = t;   red = t + 1.0F;} 
else if (t <  1.0F) {red = 1.0F − t;   green = t;} 
else if (t <  2.0F) {green = 2.0F − t; blue = t − 1.0F;} 
else if (t <  3.0F) {blue = 3.0F − t;  alpha = t − 2.0F;} 
else   {alpha = 4.0F − t; red = 3.0F − t;} 

texel−>Set(red, green, blue, alpha); 
texel++; 

} 
} 

} 
} 
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(a)  (b)  

Figure 7.21. �is close-up comparison shows the difference between a hard shadow and a soft 
shadow for a stone wall. (a) �e illumination factor F is exactly one or zero, depending on whether 

sinzl α≥ . (b) �e illumination factor F is given by Equation (7.58) with 8η = . 

Listing 7.12. �is pixel shader code implements the horizon mapping technique. �e texture speci-
fied by horizonMap is a 2D array texture map having two layers that contain the eight channels of 
the horizon map. �e texture specified by weightCube is the special cube texture map that contains 
the channel weights for every light direction l. �e texcoord parameter contains the same 2D texture 
coordinates used to sample the diffuse texture map, normal map, etc., after any parallax shift has 
been applied. �e ldir parameter contains the tangent-space light direction, which must be normal-
ized to unit length. 

uniform Texture2DArray   horizonMap; 
uniform TextureCube   weightCube; 

float ApplyHorizonMap(float2 texcoord, float3 ldir) 
{ 

const float kShadowHardness = 8.0; 

// Read horizon channel factors from cube map. 
float4 weights = texture(weightCube, ldir); 

// Extract positive and negative weights for horizon map layers 0 and 1. 
float4 w0 = saturate(weights); 
float4 w1 = saturate(−weights); 

// Sample the horizon map and multiply by the weights for each layer. 
float s0 = dot(texture(horizonMap, float3(texcoord, 0.0)), w0); 
float s1 = dot(texture(horizonMap, float3(texcoord, 1.0)), w1); 

// Return lighting factor calculated with Equation (7.58). 
return (saturate((ldir.z − (s0 + s1)) * kShadowHardness + 1.0)); 

} 
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7.8.3  Ambient Occlusion Mapping 
�e information generated during the construction of a horizon map can also tell 
us how much ambient light is blocked at every texel. �is allows us to create an 
ambient occlusion map containing a single channel of data that represents what 
fraction of incoming directions can receive ambient light. Despite having the word 
“occlusion” in its name, the values in the ambient occlusion map correspond to the 
amount of ambient light that is not blocked. Using this information to reduce the 
ambient luminance reaching a surface where it has features such as narrow pits and 
crevices makes bump mapping look much more realistic under low lighting levels. 
An example in which a stone surface is rendered with ambient light alone is shown 
Figure 7.22(a), and the surface appears very flat, even with a parallax map applied. 
�e addition of an ambient occlusion map in Figure 7.22(b) produces much more 
variation in the brightness of the shading, and it brings out a lot of the geometric 
detail that was stored in the original height map. 
 Consider the elevation angle α to the nearby horizon, as previously shown in 
Figure 7.18. If the horizon existed at the same angle for all directions in the tangent 
plane, then the fraction F of ambient light reaching the texel would be given by 

 
2

0
cos

π α

F θ dθ
−

= ∫ , (7.59) 

where θ  is the angle made with the z axis, and the cosine accounts for the Lamber-
tian effect. �e integral evaluates to cos α, and it does not need to be normalized 

  
Figure 7.22. (a) A flat surface is rendered with a diffuse texture map and parallax map for a stone 
floor using ambient light only. (b) �e same surface is rendered with an additional ambient occlusion 
map, and the geometric detail stored in the original height map is much more apparent. 

(a) (b) 
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because it has the value one when 0α = . Using the value of 2tan α that is available 
when constructing a horizon map, we can calculate cos α with the trigonometric 
identity 

 
2

1cos
tan 1

α
α

=
+

. (7.60) 

By simply averaging the values of cosF α=  corresponding to every direction in 
which 2tan α is calculated, we produce a good approximation to the overall fraction 
A of ambient light reaching the surface. In order to exaggerate the occlusion for 
artistic effect, we can calculate pA  for some power p and store the result in the 
ambient occlusion map. A value of 2p =  was used to generate the ambient occlu-
sion map applied in Figure 7.22(b). 
 �e calculation of pA  is implemented near the end of Listing 7.10, and it is 
stored as a floating-point value in the range [ ]0,1 . It is convenient to take this value, 
convert it to an integer in the range [ ]0, 255 , and store it in the alpha channel of the 
diffuse texture map. �is texture map already has to be sampled during evaluation 
of the ambient shading term, and applying the ambient occlusion map is as simple 
as multiplying the whole ambient term by the factor stored in the alpha channel. 

Exercises for Chapter 7 

1. Let n, v, and l be the unit-length surface normal, view vector, and light direc-
tion. Define the vector r to be the reflection of the light direction across the 
normal, and define the vector s to be the reflection of the view direction across 
the normal. Prove that ⋅ = ⋅r v s l. 

2. Let n, v, l, and h be the unit-length surface normal, view vector, light direction, 
and halfway vector. Show that 

 ( ) ( )
( )

22

2 1

α
α  ⋅ + ⋅

⋅ =  ⋅ + 

n l n vn h
l v

. 

3. Let 0 , 1 , and 2  be the vertices of a triangle, and let ( ),i iu v  be the texture 
coordinates associated with the vertex i . Define the differences 1e , 2e , ( )1 1,x y , 
and ( )2 2,x y  as shown in Equation (7.34), and assume that the triangle’s nor-
mal vector is given by ( )1 2nrm= ×n e e . Determine a formula for the tangent 
vector s whose projected lengths onto the edges 1e  and 2e  are 1x  and 2x , respec-
tively. �at is, find a tangent vector s satisfying 1 1x⋅ =e s  and 2 2x⋅ =e s . Show 
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that 1⋅ =s t  and 0⋅ =s b , where t and b are the tangent and bitangent vectors 
given by Equation (7.37). 

4. Define = ∨A B A B  to be the right interior product between any blades A 
and B. Since a surface normal is really a bivector, the cross product ×n t be-
tween a normal vector n and a tangent vector t does not translate into a wedge 
product in Grassmann algebra in the same way that the cross product between 
two vectors does. Show that calculating a bitangent vector b with the formula 
= ×b n t is actually performing the operation =b n t , where n is now recog-

nized as a bivector and t remains an ordinary vector. 

5. Determine a formula for a function ( )scale ,f sm  that scales a normal vector m 
fetched from a normal map in such a way that the result is what would be 
obtained by scaling the values in the height field from which m was derived 
by the factor s. 
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Chapter 8 

Lighting and Shadows 

�e previous chapter discussed how light interacts with a surface having known 
material properties to determine how much light coming from a given direction is 
reflected toward the camera. However, we have not yet considered what happens 
to the light before and after the instant in time when it hits a solid object. �is 
chapter fills in those gaps by first describing how light travels from its source to 
the surfaces it illuminates. Because light may be blocked by other objects before it 
even reaches a surface that we can see, methods for rendering shadows on a large 
scale are included here. We later visit the subject of fog and describe the changes 
that light reflected by a surface can experience on its way to the camera. 

8.1  Light Sources 

A light source can be characterized by two general properties, the color of the light 
rays it produces and the spatial distribution of those light rays in relation to the 
light’s position and orientation. �e color of a light source includes the overall 
brightness of the light, and it’s commonly specified as an RGB color. However, 
this color may be derived from an emission spectrum in more sophisticated engines 
by integrating with color matching functions like those described in Chapter 5. 
 When it comes to spatial distribution, game engines typically support a small 
variety of light types that each have a fundamentally different purpose. �e three 
most common types are point lights that radiate equally in all directions from one 
location like a light bulb, spot lights that shine predominantly in one direction like 
a flashlight, and infinite lights that model distant light sources like the sun. In this 
section, we discuss the qualities of each of these three types of lights. 
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8.1.1  Point Lights 
A point light is a light source that radiates light at the same intensity in every 
direction from a single position in space. Point lights are sometimes called omni-
directional lights, or just omni lights, to highlight their isotropic nature. True point 
lights don’t actually exist in the real world, but the idealized model of light being 
emitted from a mathematical point provides an inexpensive approximation to a 
wide range of compact light sources. 
 As first discussed in Section 5.2, the total amount of visual power emitted by 
a light source is called its luminous flux VΦ . When we apply our shading calcula-
tions in order to render a surface, we need to know how much of that total power 
is incident upon the surface per unit area, and this is a quantity called illuminance. 
Illuminance VE  is measured in lux (lx), which is a unit equivalent to lumens per 
square meter ( 2lm m ), and it generally tells us how brightly a surface is lit. 
 �e luminous intensity VI  of a light, often just called the intensity, is the amount 
of power radiated per unit solid angle. It is given its own special unit of measure-
ment, the candela (cd), which is equivalent to lumens per steradian ( )lm sr . Lumi-
nous intensity is generally a directional quantity that can be used to describe how 
the brightness of a light changes depending on the direction from the light source 
to an observer, and this is exemplified by the spot lights discussed below. However, 
for a point light radiating power equally in all directions, the luminous intensity is 
evenly distributed over the 4π steradians in a sphere, so it is always equal to the 
quantity 

 V
V

Φ
4

I
π

= , (8.1) 

which is independent of direction. In all cases, multiplying the intensity VI  by an 
arbitrary solid angle ω corresponding to a particular direction produces the amount 
of luminous flux Vφ I ω=  radiated only within that angle. 
 �e intensity of a point light can be thought of as an enormous number of rays 
emanating from the light’s position and distributed uniformly over all directions, 
as shown in Figure 8.1. Each ray represents the luminous flux φ radiating through 
a small solid angle ω, and the sum over all rays is equal to the total luminous flux 

VΦ  emitted. As distance from the light source increases, the rays spread out, so the 
luminous flux incident upon an area of fixed size, the illuminance, is diminished. 
Imagine a spherical surface of radius R surrounding the light source, and consider 
that all of the rays must pass through it. �e surface area of the sphere is 24πR , so 
the illuminance VE  upon the interior surface of the sphere is given by 

 V
V 2

Φ
4

E
πR

= . (8.2) 
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Figure 8.1. �e rays emanating from a point light at the position  represent the luminous 
intensity VI  of the light source. �e illuminance upon the interior surface of a sphere is 
inversely proportional to the square of the radius R. �e decrease in brightness as R grows 
corresponds to the less dense spacing of the rays as they pass through a larger sphere. 

�e same number of rays always pass through the surface of the sphere, but they 
are spaced less densely on larger spheres. Equation (8.2) shows that the visual 
power reaching every unit of area on the surface is proportional to the reciprocal 
of 2R . �is is known as the inverse square law, and we must account for it in our 
shading calculations. 
 When a point light is placed in a game world at a position , we specify its 
intensity VI  instead of its luminous flux VΦ  because doing so will be consistent 
with the most convenient way of specifying the brightness of a light that does not 
radiate isotropically. For each point  on a surface being shaded, we subtract the 
light’s position and calculate the distance r = −   to the light. �e physically 
correct illuminance ( )E r  at the distance r is then given by the function 

 ( ) V
2

IE r
r

= , (8.3) 

which implements the inverse square law. �e positions  and  must be expressed 
in the same coordinate system, and it’s common practice either to transform vertex 
positions, from which the shaded point  is derived, from a model’s object space 
to world space or to transform  from world space to the model’s object space. 
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 Equation (8.3) presents a problem when it comes to implementing point lights 
in a game engine. �ere is no distance r at which the illuminance ( )E r  decreases 
to zero, so the light theoretically has an effect on the entire world. Of course, we 
could calculate the distance r at which the illuminance drops to some value con-
sidered to be imperceptible, but that would be dependent on the intensity VI . It is 
desirable to have the ability to adjust a light’s brightness without affecting its reach, 
so we replace Equation (8.3) with 

 ( ) ( )VE r I f r= , (8.4) 

where ( )f r  is a generic function of our choosing that is guaranteed to be zero at a 
maximum distance maxr r= . �e function ( )f r  is commonly called a distance at-
tenuation function (or a distance falloff function), and it produces values having 
units of steradians per square meter ( 2sr m ). �is function turns intensity into illu-
minance, determining how brightly a point at a distance r from the light is illumi-
nated in relation to the light’s intensity VI . 
 �e attenuation function ( )f r  may be chosen from numerous possibilities, 
and a small variety of examples are shown in Figure 8.2. In addition to plots of the 
attenuation functions, the figure demonstrates how each one causes a surface to be 
illuminated differently. �e first example shows what happens if we stay as close 
as possible to the inverse square model. In this case, we use a function of the form 

 ( )invsq 2

Af r B
r

= + , (8.5) 

where A and B are determined by the requirements that ( )invsq max 0f r =  for the max-
imum distance maxr  and ( )invsq 0 1f r =  for some reference distance 0r  where no atten-
uation takes place. Solving for the values of A and B produces 

 ( )
2 2

0 max
invsq 2 2 2

max 0
sat 1 ,r rf r

r r r
  = −  −    (8.6) 

which is shown in Figure 8.2(a) and implemented in Listing 8.1. �e saturation 
operation applied here stops negative values from be generated at distances greater 
than maxr . It also takes care of another practical issue arising from the inverse square 
model by preventing the illuminance from becoming arbitrarily large as r ap-
proaches zero. �e illuminance simply stays at its maximum value for any dis-
tances less than or equal to the reference distance 0r , which may be regarded as the 
physical size of the light source itself. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

  
Figure 8.2. A small variety of light attenuation functions are applied to a point light illuminating a 
flat surface on the left, and their corresponding graphs are shown on the right. �e horizontal axis 
of each graph extends from zero to maxr , and the vertical axis extends from zero to one. �e specific 
functions are (a) the nearly physically correct ( )invsqf r , (b) the exponential function ( )expf r  with 

3k = , (c) the exponential function ( )expf r  with 2k = , and (d) the cubic polynomial ( )smoothf r . 
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Listing 8.1. �is pixel shader function calculates the inverse square attenuation given by Equation 
(8.6). �e uniform constant attenConst holds the values ( )2 2 2

0 max 0r r r−  and 2
maxr . 

uniform float 2 attenConst; // (r0^2 / (rmax2 − r0^2), rmax2) 
 
float CalculateInverseSquareAttenuation(float3 p, float3 l) 
{ 
 float3 ldir = l − p; 
 float r2 = dot(ldir, ldir); 
 return (saturate(attenConst.x * (attenConst.y / r2 − 1.0))); 
} 

 Since the attenuation function ( )f r  becomes zero at a specific distance maxr  
from its position, a point light has an effect on a spherical volume of space with a 
known radius. Any geometries intersecting that volume are at least partially illu-
minated by the light, and we must therefore include the light’s contribution in the 
shading calculations for those geometries. For performance reasons, we would like 
to minimize the number of geometries illuminated by each light source, and that is 
most effectively accomplished by minimizing the radius associated with each point 
light. However, the inverse square attenuation function given by Equation (8.6) 
makes this goal difficult to achieve because it decreases quickly for distances near 
the light source and takes on very small values over most of its domain. As a con-
sequence, most surfaces illuminated by a point light using an inverse square atten-
uation function are dimly lit. To provide adequate illumination in some areas of a 
game world, the radius of such a light often needs to be increased substantially 
beyond the region of influence that we care about. However, the tiny contributions 
that the light makes to the additional geometries intersecting the outer portions of 
the light’s bounding sphere cost just as much as the larger contributions made close 
to the sphere’s center. �is is an inefficient use of the computational resources 
available on the GPU, so it makes more sense from a practical engineering per-
spective to choose a nonphysical attenuation function that provides greater illumi-
nation over a large portion of the bounding sphere. 
 A class of exponential attenuation functions that decrease to zero more gradu-
ally than the inverse square function is given by 

 ( )
2 2 2 2

max

2exp sat .
1

k r r k

k

e ef r
e

− −

−

 −
=  

−   (8.7) 

�e function ( )expf r  attains a maximum value of one at 0r =  and decreases to zero 
at maxr r= , as required. It does not make use of a reference distance 0r  as the inverse 
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square function did. �e saturation operation ensures that no negative values are 
produced at distances beyond maxr , but there is no need for it to clamp values to one 
since that is already the function’s global maximum. �e constant k provides some 
control over the general brightness within a point light’s bounding sphere. Smaller 
values of k cause the illuminance to stay larger until the distance gets closer to maxr , 
as demonstrated by the examples shown in Figures 8.2(b) and 8.2(c) where 3k =  
and 2k = , respectively. As the value of k is lowered, the derivative of ( )expf r  be-
comes larger at maxr r= , and this can cause the light’s brightness to reach zero 
somewhat abruptly at the light’s boundary. Listing 8.2 shows an implementation 
of the exponential attenuation function. 

Listing 8.2. �is pixel shader function calculates the exponential attenuation given by Equation 
(8.7). �e uniform constant attenConst holds the values 2 2

maxk r− , ( )2

1 1 ke −− , and ( )2 2

1k ke e− −− . 

uniform float3 attenConst; // (−k2/rmax2, 1/(1 − exp(−k2)), exp(−k2)/(1 − exp(−k2))) 
 
float CalculateExponentialAttenuation(float3 p, float3 l) 
{ 
 float3 ldir = l − p; 
 float r2 = dot(ldir, ldir); 
 return (saturate(exp(r2 * attenConst.x) * attenConst.y − attenConst.z)); 
} 

 Another possible attenuation function is the cubic polynomial having the form 

 
3 2

smooth 3 2
max max max

( ) 1r r rf r a b c
r r r

= + + + . (8.8) 

By requiring that smooth max( ) 0f r =  and that the derivative is zero at both 0r =  and 
maxr r= , we find that 2a = , 3b = − , and 0c = . �is attenuation function can thus be 

written as 

 ( )
2

smooth 2
max max

2sat 3 1 ,r rf r
r r

  = − +      (8.9) 

where the saturation operation again prevents negative values beyond maxr r= . �e 
function ( )smoothf r  is shown in Figure 8.2(d) and implemented in Listing 8.3. It 
allows the light to remain a little brighter than ( )expf r  for many values of k while 
still easing out at a slow rate near the light’s boundary. 
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Listing 8.3. �is pixel shader function calculates the smooth attenuation given by Equation (8.9). 
�e uniform constant attenConst holds the values 2

max1 r  and max2 r . 

uniform float2 attenConst; // (1 / rmax2, 2 / rmax) 
 
float CalculateSmoothAttenuation(float3 p, float3 l) 
{ 
 float3 ldir = l − p; 
 float r2 = dot(ldir, ldir); 
 return (saturate(r2 * attenConst.x * (sqrt(r2) * attenConst.y − 3.0) + 1.0)); 
} 

 Once the illuminance ( ) ( )VE r I f r=  has been calculated in a pixel shader by 
applying an attenuation function to a light’s intensity, it scales the color of the light 

lightC  to produce the quantity 

 ( )illum light VC C I f= −   (8.10) 

representing the brightness and color of the light reaching the point  from the 
light’s position . Ordinarily, this is the end of the lighting calculation, but an ad-
ditional factor can be included to project an image on the environment using a cube 
texture map, as shown in Figure 8.3. Such a texture map holds a prerendered image 
of nearby geometry to which the point light is rigidly attached, and it can be used 
to project the shadows of opaque geometry or the colors of transparent geometry. 
To calculate the coordinates from which a sample is fetched from the cube texture 
map, the object-space position object  of the point being shaded must be transformed 
into the light space position light  using the formula 

 1
light light object object

−= M M  , (8.11) 

where objectM  and lightM  are the object-space to world-space transformations for the 
object being rendered and the light source, respectively. Since the light source is 
centered at the origin in its own local coordinate system, the value of light  is used 
directly as the 3D direction vector needed to sample the cube texture map. When 
the transformation lightM  changes because the light moves or rotates in some way, 
the projection changes along with it to match the coordinate axes of the light space. 

8.1.2  Spot Lights 
A spot light is a type of light source that emits light from a single position in space 
like a point light does, but its radiation is not equally distributed over all directions. 
Instead, there is a primary direction in which the intensity is the greatest, and the 
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Figure 8.3. (a) A cube texture map captures the nearby geometry to which a point light is 
attached. (b) �e texture is projected onto the environment by transforming shaded points 
into light space to be used directly as cube texture coordinates. 

intensity in other directions becomes lower as the angle made with the primary 
direction increases. For computational convenience, the primary direction is usu-
ally aligned with one of the object-space axes of the light source. We choose to 
align our spot lights so the greatest intensity is radiated along the positive z axis in 
the light’s local coordinate system. 
 A distance attenuation function ( )f r  is applied to a spot light in the same way 
that it is applied to a point light. However, a spot light has an additional unitless 
function ( )h θ  that controls how the intensity decreases as a function of the angle 
θ  made with the light’s positive z axis. �e function ( )h θ  is called an angular 
attenuation function (or a angular falloff function), and it is often expressed in 
terms of cos θ so that an actual angle never needs to be calculated. �e value of 
cos θ is particularly easy to obtain because, for a point  that has been transformed 
into light space where the spot light itself is located at the origin, we have 

 cos zpθ =


. (8.12) 

Using both the distance and angular attenuation functions, the color and brightness 
of illumination reaching a light-space position  is given by 

 ( )illum light V
zpC C I h f 

=  
 




, (8.13) 

where lightC  is the color of the light, and VI  is its maximum intensity. 
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 Angular attenuation functions don’t really have any physical requirements, so 
they can be chosen on a purely artistic basis to achieve some desired effect. One 
possible angular attenuation function is given by 

 ( ) ( )[ ]power max cos , 0 kh θ θ= , (8.14) 

where k is some constant power to which the cosine is raised. Higher values of k 
cause the spot light to be more tightly focused along the light’s z axis. Because the 
cosine function is clamped to zero, the value of ( )powerh θ  is zero whenever 90θ ≥ °. 
�is means that no points behind the light where 0zp ≤  receive any illumination, 
and thus any object lying entirely on the negative size of the plane 0z =  can be 
skipped altogether. 
 When using the function ( )powerh θ , the entire hemisphere of directions where 

0zp >  receives some nonzero illumination, and this volume of space is almost al-
ways larger than what actually needs to be lit. Instead, it is common to choose a 
maximum angle maxθ  at which the angular attenuation reaches zero and use some 
monotonically decreasing function ( )h θ  that fits our needs and satisfies the re-
quirements that ( )0 1h =  and ( )max 0h θ = . A minimum angle minθ  may also be cho-
sen such that ( ) 1h θ =  for all minθ θ≤ , and the pair ( )min max,θ θ  then represents the 
range of angles over which the angular attenuation takes place. Using these values, 
we can define 

 ( ) min

max min

cos cossat
cos cos

θ θt θ
θ θ

− =  − 
 (8.15) 

to provide a parameter value such that ( )min 0t θ =  and ( )max 1t θ = . �e angular at-
tenuation function can then be defined as 

 ( ) ( )( )paramh θ a t θ= , (8.16) 

where ( )a t  is any monotonically decreasing function with ( )0 1a =  and ( )1 0a = . 
A spot light using this kind of angular attenuation is said to have an outer cone 
angle maxθ , outside of which the intensity is zero, and an inner cone angle minθ , 
inside of which the intensity is the maximum value. 
 Although the exact volume of space illuminated by a spot light is bounded by 
a cone, it is more useful to approximate this space by a pyramid having four planar 
sides. �is is particularly convenient for rendering shadows for a spot light, as dis-
cussed in Section 8.3, because the pyramidal shape can be used directly as a light-
centric view frustum. �e planar boundary also allows the same view frustum cull-
ing methods described in Chapter 9 to be used for determining what set of objects 
can be lit by a spot light. 
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 Using a pyramidal shape for a spot light additionally provides a natural bound-
ary for a projected texture map. As shown in Figure 8.4, a rectangular texture map 
can be applied to a spot light to determine its color as a function of the light-space 
position light  of a point being rendered. �e coordinates at which the texture is 
sampled are determined by applying a projection matrix spotP  having the form 

 spot

2 0 1 2 0
0 2 1 2 0

,
0 0 0 0
0 0 1 0

g s
g

 
 
 =
 
 
 

P  (8.17) 

which transforms the point light  into the point 

 spot spot light
1 1, , 0,

2 2 2 2x z y z z
g gp p p p p
s

 = = + + 
 

P  . (8.18) 

Here, the meanings of the constants g and s are the same as they were in Chapter 6 
for a perspective projection. �e value of g is the projection distance given by 

 
max

1
tan

g
θ

= , (8.19) 

and the value of s is the aspect ratio of the texture map. �e coordinates of spot  are 
calculated in the vertex shader and interpolated. (Since the z coordinate is always 
zero, it is ignored.) In the pixel shader, we divide by the w coordinate to perform 
the projection and obtain the 2D texture coordinates 

 ( ) 1 1, ,
2 2 2 2

yx

z z

pg p gu v
s p p

 = ⋅ + ⋅ + 
 

. (8.20) 

�ese coordinates always fall in the range [ ]0,1  for a point light  located inside the 
spot light’s pyramidal boundary. 
 A texture map can be used not only as a projected image, but also as a way to 
store precomputed angular attenuation. By premultiplying each texel value by the 
intensity factor determined by a particular function ( )h θ , the angular attenuation 
calculation can be avoided in the pixel shader. As demonstrated in Figure 8.4, the 
texture map is simply black for any projected points that should not receive any 
illumination. �e texture map’s border color should also be set to black, and the 
wrap modes should be set to clamp to the border. �is ensures that no colors along 
the edges of the texture map are smeared onto parts of illuminated geometries that 
fall outside the spot light’s pyramidal boundary. 
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Figure 8.4. A spot light is bounded by a pyramidal shape similar to a view frustum, and a 
texture map is projected onto the environment. (a) �e texture map stores colors and angu-
lar attenuation. In this case, the intensity abruptly falls to zero at the outer cone angle maxθ . 
(b) A projection matrix is applied to light-space positions in the vertex shader, and a per-
spective divide is performed in the pixel shader, producing the final texture coordinates. 

8.1.3  Infinite Lights 

An infinite light is a light source that is extremely far away relative to the size of 
the world being rendered by the game engine. An infinite light is used to represent 
the illumination due to a light source such as the sun or moon. Even though the 
rays emitted by such a light source do spread out and become dimmer over very 
large distances, they can be considered to be parallel and of constant brightness for 
all practical purposes inside the comparatively tiny volume of space in which most 
games take place. Mathematically, we treat these lights as if they are infinitely far 
away, and this is why they are named infinite lights. �e implementation of an 
infinite light is particularly easy because the direction to the light is a constant 
vector. For this reason, infinite lights are also called directional lights. 
 It is natural to align the direction in which an infinite light radiates with one of 
its local coordinate axes. As we did with spot lights, we choose to align this direc-
tion with the positive z axis. In a shader, the vector infinitel  representing the direction 
toward the light source is equal to the opposite direction, the negative z axis. In 
world space, it is given by 

 [ ]infinite light 2= −l M , (8.21) 
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which is the negated third column of the object-space to world-space transform 
lightM  for the light node. 

 Although the luminous intensity VI , in candela, of a distant light source like 
the sun may be a known quantity, it is not generally a useful measure of brightness 
for infinite lights. When we place the light infinitely far away, the solid angle sub-
tended by any objects we see in a game world is zero, so we cannot calculate any 
meaningful illuminance from the intensity. Instead, we directly specify a constant 
illuminance VE , in lux, for an infinite light. We can consider this to be the result of 
choosing a representative distance R for the entire game world and setting 

 V
V 2

IE
R

= . (8.22) 

�is accounts for the attenuation up front, so the color and brightness of illumina-
tion reaching any point is the constant 

 illum light VC C E= , (8.23) 

where lightC  is again the color of the light. �e value of R would ordinarily have a 
very large value, such as one astronomical unit, so any differences in position on 
the relatively small scale of a game world would not change the illuminance by a 
significant amount. For the sun and earth, the value of VE  is about 100 kilolux (klx) 
on the clearest sunny days. �e moon may also be treated as an infinite light, and 
the brightest full moon illuminates the earth with about V 0.3 lxE = . 

8.2  Extent Optimization 

When rendering the contribution from a point light or spot light, there are often 
large geometries that are only partly illuminated by the light but must each still be 
drawn as a whole triangle mesh. Some examples are small lights illuminating sec-
tions of the floor and walls in a long corridor or, as shown in Figure 8.5(a), a camp-
fire in the woods illuminating the terrain and some large trees. �e brightly 
highlighted areas in Figure 8.5(b) show the geometries that are affected by the light 
source and demonstrate how they can extend far beyond the relatively small radius 
of the light’s bounding sphere. When these geometries are drawn, a lot of time can 
be wasted filling pixels for which the contribution from the light is zero, and this 
motivates us to search for techniques that reduce the number of pixels drawn by as 
much as can be done through practical means. 
 Fortunately, we can take advantage of the hardware scissor test to easily elim-
inate almost all of the pixels that can’t be illuminated by considering the x and y 
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Figure 8.5. (a) A campfire at the center of the frame contains a point light source. (b) �e bright 
white areas correspond to the full extents of the individual geometries that intersect the light’s 
bounding sphere. (c) �e scissor rectangle enclosing the projected bounds of the light limits the area 
of the viewport that is rendered. (d) �e number of pixels rendered is further reduced by applying 
the depth bounds test to limit the range of z values that could be illuminated. 

extents of the light’s bounding sphere in viewport space. Before rendering the con-
tribution from the light source, we calculate the smallest rectangle on the projec-
tion plane that encloses the projection of the bounding sphere, and we set the 
scissor rectangle to the corresponding viewport coordinates. �e result is that ren-
dering is restricted to a much smaller area, as shown in Figure 8.5(c), and the pixel 
shader is executed for far fewer pixels. 
 By the time contributions from point lights are being rendered, it is ordinarily 
safe to assume that the final contents of the depth buffer have already been estab-
lished by earlier rendering passes. �is being the case, we can also calculate the z 
extents of the light’s bounding sphere and use them as the minimum and maximum 
values for the depth bounds test. Many unilluminated pixels will already have 

(a) (b) 

(c) (d) 



8.2  Extent Optimization 155 

depth values outside that range, so the number of pixels rendered is typically fur-
ther reduced to those shown in Figure 8.5(d), which is now a considerably smaller 
number than what we began with. 

8.2.1  Scissor Rectangle 
Suppose that a point light source having a bounding sphere of radius r is located 
at a position  in camera space, where the camera is located at the origin  and is 
pointed in the z+  direction. Our goal is to calculate the rectangle on the projection 
plane shown in Figure 8.6 that minimally encloses the projection of the bounding 
sphere. We cannot simply add the positive and negative radius r to the x and y 
coordinates of the center point  and then project the results because doing so 
would cause small but significant portions of the bounding sphere to be incorrectly 
chopped off. Instead, we must find planes parallel to the camera-space x and y axes 
that contain the origin and are tangent to the bounding sphere, and this requires a 
more involved calculation. 
 We begin by assuming that zl r> −  because otherwise, the light source would 
be entirely behind the camera and excluded from the rendering process by the cull-
ing methods discussed in Chapter 9. We then have a bounding sphere that is at least 
partially in front of the x-y plane in camera space, and we’d like to know what 
ranges of x and y coordinates it covers on the projection plane, which is placed at 
a distance g from the camera. On the projection plane, the viewport covers the 
range [ ]1, 1− +  in the y direction and the range [ ],s s− +  in the x direction, where s 
is the aspect ratio. 
 �e range of x coordinates can be determined by considering the 2D problem 
shown in Figure 8.7, which lies in a plane parallel to the x-z plane. For this calcu-
lation, we translate vertically so that all the y coordinates are zero and then define 
the point  as 
 ( ), 0,x zl u l= + . (8.24) 

Our goal is to calculate the distance u that causes the line connecting the origin to 
the point  to be tangent to the sphere. �is calculation is described here only for 
the x extents of the sphere, and a similar calculation in the y-z plane can be used to 
determine the y extents. 
 To be tangent to the sphere, the distance between the center  and the paramet-
ric line t+  must be the radius r. Using the square of Equation (3.20), this re-
quirement can be expressed as 

 ( ) 2
2

2 r
p
×

=
  . (8.25) 
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Figure 8.6. �e extents of a light source’s bounding sphere, centered at the point  in cam-
era space, determine a scissor rectangle on the projection plane at z g= . To find the left 
and right sides of the rectangle, y coordinates are ignored, and two points  to the left and 
right of the center  are calculated such that lines containing the origin and  are tangent to 
the bounding sphere. �e point   represents the intersection of one of these lines with the 
projection plane. To top and bottom sides of the rectangle are determined with a similar 
approach that ignores x coordinates. 

Since  and  both lie in the x-z plane, the only nonzero component of their cross 
product is the y component given by z x x zl p l p− . Substituting the value of  from 
Equation (8.25) and simplifying the numerator gives us 

 
( )

2 2
2

2 2
z

x z

l u r
l u l

=
+ +

. (8.26) 

When we expand this and group by powers of u, we arrive at the quadratic equation 

 ( ) ( )2 2 2 2 2 2 22 0.z x x zl r u r l u r l l− − − + =  (8.27) 
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Figure 8.7. �e x extents of the light’s bounding sphere on the projection plane are deter-
mined by calculating distances 1u  and 2u  such that the lines connecting the origin to the 
points 1  and 2  are tangent to the sphere. �ese points are then projected into the viewport 
as the points 1  and 2 . 

By making the assignments 2 2
za l r= −  and 2

xb l r= , we can express the solutions 
to this equation as 

 
( )2 2 2 2

x zb b ar l l
u

a
± + +

= . (8.28) 

�is provides the values of u that we can plug back into Equation (8.24) to obtain 
points 1  and 2  that are then projected onto the viewport as the points 1  and 2  
determining the left and right extents of the optimal scissor rectangle. �e projec-
tion is performed by calculating 

 x x
z

gq p
l

= , (8.29) 

where we need only the x coordinate for each point. 
 �ere are several special cases that we must consider. First, if the value of a is 
near zero, then the bounding sphere is nearly tangent to the x-y plane, and there is 
only one solution for u given by 

 
2 2

2
x

x

l ru
l
+

= . (8.30) 
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If 0xl > , then u corresponds to the left edge of the scissor rectangle, and if 0xl < , 
then u corresponds to the right edge. In the case that xl  is very close to zero, the 
entire width of the viewport must be included in the scissor rectangle. However, 
we can still apply the depth bounds test when this happens. 
 Next, assuming that a is not near zero, the discriminant d under the radical in 
Equation (8.28), which simplifies to 

 ( )2 2 2
z xd r l a l= + , (8.31) 

must be positive. Otherwise, the camera is inside the bounding sphere (or on the 
surface of the bounding sphere in the case that 0d = ), and the entire viewport can 
be affected by the light source. As before, we can still apply the depth bounds test. 
 Now assuming that 0a ≈/  and 0d > , Equation (8.28) produces two valid solu-
tions, but we still need to detect cases in which a point of tangency lies behind the 
camera. If zl r> , which is equivalent to having 0a > , then the entire sphere lies in 
front of the x-y plane, then both solutions are valid, and we know that choosing the 
negative sign in Equation (8.28) yields the smaller value of u as well as the smaller 
value of xq . 
 In the remaining case that 0a < , one of the solutions to Equation (8.28) repre-
sents a point of tangency behind the camera, and the projection of the sphere ex-
tends to infinity in either the positive or negative x direction. If 0xl > , then the 
larger value of xq  corresponds to the left side of the scissor rectangle. If 0xl < , then 
the smaller value of xq  corresponds to the right side of the scissor rectangle. (Note 
that xl  cannot be zero in this case because that would imply that 0d < .) 
 �e code in Listing 8.4 implements the scissor rectangle calculation for both 
the x and y directions and handles all of the special cases. �e scissor rectangle is 
scaled so that the range [ ]1, 1− +  represents the full extent of the viewport in both 
directions, which requires that we divide the projected x coordinates by the aspect 
ratio s. Any scissor rectangle edges falling outside the viewport are clamped to the 
range [ ]1, 1− + , and this causes the scissor rectangle to have zero area when the 
bounding sphere lies completely outside the view frustum. 
 �e extents of the scissor rectangle given by the ranges [ ]min max,x x  and 
[ ]min max,y y  can be transformed into integer pixel-aligned edges for a viewport of 
width w and height h by the formulas 

 

( ) ( )

( ) ( )

min max

min max

1 1
2 2
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, (8.32) 

where the floor and ceiling operations ensure the proper rounding. 
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Listing 8.4. For a light source with a camera-space bounding sphere defined by the center and 
radius parameters, this function calculates the extents of the optimal scissor rectangle enclosing 
the sphere’s projection into the viewport, where the shape of the view frustum is defined by the 
projectionDistance and aspectRatio parameters. �e minimum and maximum extents of the 
rectangle are returned in the rectMin and rectMax parameters using normalized coordinates for 
which the full width and height of the viewport both correspond to the range [ ]1, 1− + . �e return 
value of the function indicates whether the rectangle is nonempty. 

bool CalculateScissorRect(const Point3D& center, float radius, float projectionDistance, 
  float aspectRatio, Point2D *rectMin, Point2D *rectMax) 
{ 
 // Initialize the rectangle to the full viewport. 
 float xmin = −1.0F, xmax = 1.0F; 
 float ymin = −1.0F, ymax = 1.0F; 
 
 // Make sure the sphere isn't behind the camera. 
 if (center.z > −radius) 
 { 
  float lx2 = center.x * center.x; 
  float ly2 = center.y * center.y; 
  float lz2 = center.z * center.z; 
  float r2 = radius * radius; 
 
  // The factors mx and my project points into the viewport. 
  float my = projectionDistance / center.z, mx = my / aspectRatio; 
 
  float a = lz2 − r2; 
  if (fabs(a) > FLT_MIN)  // Quadratic case when a != 0. 
  { 
   float f = lz2 * r2; 
   float a_inv = 1.0F / a; 
   float d = f * (a + lx2); 
   if (d > 0.0F)    // Discriminant positive for x extents. 
   { 
    d = sqrt(d); 
    float b = r2 * center.x; 
    float x1 = (center.x + (b − d) * a_inv) * mx; 
    float x2 = (center.x + (b + d) * a_inv) * mx; 
 
    if (a > 0.0F)   // Both tangencies valid. 
    { 
     xmin = fmax(xmin, x1); xmax = fmin(xmax, x2); 
    } 
    else      // One tangency valid. 
    { 
     if (center.x > 0.0F) xmin = fmax(xmin, fmax(x1, x2)); 
     else xmax = fmin(xmax, fmin(x1, x2)); 
    } 
   } 
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   d = f * (a + ly2); 
   if (d > 0.0F)    // Discriminant positive for y extents. 
   { 
    d = sqrt(d); 
    float b = r2 * center.y; 
    float y1 = (center.y + (b − d) * a_inv) * my; 
    float y2 = (center.y + (b + d) * a_inv) * my; 
 
    if (a > 0.0F)   // Both tangencies valid. 
    { 
     ymin = fmax(ymin, y1); ymax = fmin(ymax, y2); 
    } 
    else      // One tangency valid. 
    { 
     if (center.y > 0.0F) ymin = fmax(ymin, fmax(y1, y2)); 
     else ymax = fmin(ymax, fmin(y1, y2)); 
    } 
   } 
  } 
  else  // Linear case when a == 0. 
  { 
   if (fabs(center.x) > FLT_MIN)  // Tangency valid for x. 
   { 
    float x = (center.x − (lx2 + r2) * 0.5F / center.x) * mx; 
    if (center.x > 0.0F) xmin = fmax(xmin, x); 
    else xmax = fmin(xmax, x);  
   } 
 
   if (fabs(center.y) > FLT_MIN)  // Tangency valid for y. 
   { 
    float y = (center.y − (ly2 + r2) * 0.5F / center.y) * my; 
    if (center.y > 0.0F) ymin = fmax(ymin, y); 
    else ymax = fmin(ymax, y);  
   } 
  } 
 } 
 
 rectMin−>Set(xmin, ymin); rectMax−>Set(xmax, ymax); 
 return ((xmin < xmax) && (ymin < ymax)); 
} 

8.2.2  Depth Bounds 
To apply the depth bounds test to a point light, we need to calculate the minimum 
and maximum values of viewportz  for the light’s bounding sphere in viewport space. 
�e transformation from device space to viewport space usually does not alter 
depth values, so we assume for this discussion that z coordinates in the two spaces 
are equal to each other and calculate the minimum and maximum values of devicez . 
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In the case that the depth range is something other than [ ]0,1 , device-space depths 
would need to be scaled and offset before being specified as the range for the depth 
bounds test. 
 Suppose that a point light of radius r is located at the position  in camera 
space. When using a projection matrix P that does not have an oblique near plane, 
which implies 20 21 0P P= = , calculating the depth bounds is rather simple. For any 
camera-space depth cameraz , the projection matrix and perspective divide produce 
the device-space depth given by 

 
23

device 22
camera

.Pz P
z

= +  (8.33) 

All we have to do is set cameraz  to the minimum and maximum extents of the light’s 
bounding sphere in camera space, given by zl r−  and zl r+ , and the depth bounds 
are easily calculated. Functions that perform this calculation for conventional and 
reversing projection matrices are shown in Listing 8.5. �is code handles cases in 
which the bounding sphere extends outside the view frustum in the z direction by 
first clamping cameraz  to a minimum value equal to the near plane distance. �e final 
value of devicez  is then clamped to one for a conventional projection matrix and to 
zero for a reversing projection matrix in order to account for a far plane that could 
be at a finite or infinite distance. 
 In the case that the projection matrix P has an oblique near plane, calculating 
the depth bounds for a point light is vastly more complicated. �e third row of P 
is now allowed to be any plane k, and the general transformation of a point camera  
in camera space to the coordinates ( )clip clip,z w  in clip space is given by 
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After performing the perspective divide, the device-space depth devicez  is given by 

 camera camera camera
device

camera

x y z wk x k y k z k
z

z
+ + +

= , (8.35) 

and it now depends not only on the z coordinate in camera space, but on the x and 
y coordinates as well. By moving everything to one side of the equation, we can 
rewrite this as 
 ( )camera camera device camera 0x y z wk x k y k z z k+ + − + = , (8.36) 
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Listing 8.5. For a light source with a camera-space bounding sphere defined by the center and 
radius parameters, these two functions calculate the minimum and maximum depths in device 
space for the conventional projection matrix P and the reversing projection matrix R. �e depth range 
is returned in the minDepth and maxDepth parameters. �e near plane distance n must have the same 
value that was used to construct the projection matrix. �e return value of the function indicates 
whether the depth range is nonempty. 

bool CalculateDepthBounds(const Matrix4D& P, float n, const Point3D& center, 
                          float radius, float *minDepth, float *maxDepth) 
{ 
 float zmin = fmin(P(2,2) + P(2,3) / fmax(center.z − radius, n), 1.0F); 
 float zmax = fmin(P(2,2) + P(2,3) / fmax(center.z + radius, n), 1.0F); 
 *minDepth = zmin; 
 *maxDepth = zmax; 
 return (zmin < zmax); 
} 
 
bool CalculateRevDepthBounds(const Matrix4D& R, float n, const Point3D& center, 
                             float radius, float *minDepth, float *maxDepth) 
{ 
 float zmin = fmax(R(2,2) + R(2,3) / fmax(center.z + radius, n), 0.0F); 
 float zmax = fmax(R(2,2) + R(2,3) / fmax(center.z − radius, n), 0.0F); 
 *minDepth = zmin; 
 *maxDepth = zmax; 
 return (zmin < zmax); 
} 

which is the dot product between the plane 

 ( )device, , ,x y z wk k k z k= −m  (8.37) 

and the point camera . �e plane m represents the set of points in camera space for 
which devicez  has a constant value. It is our goal to find the values of devicez  such that 
the corresponding planes m are tangent to the light’s bounding sphere because 
these supply the range [ ]min max,z z  of device-space depths covered by the light. 
 �e geometry of the problem is shown in Figure 8.8, where we again have a 
point light of radius r is located at the position  in camera space. For a conven-
tional projection matrix, the plane k is identified as the oblique near plane of the 
view frustum, and all points in this plane produce a depth of device 0z = . �e plane f 
is the far plane of the view frustum where all points correspond to a depth of 

device 1z = . For a reversing projection matrix, the roles of k and f are interchanged, 
but we do not need to make a distinction between the two types of matrices because 
the derivation of the depth bounds is the same for both. 
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Figure 8.8. In a view frustum with an oblique near clipping plane k and far plane f, the depth bounds 
[ ]min max,z z  for a point light of radius r centered at the position  in camera space are determined by 
finding planes of constant depth that are tangent to the light’s bounding sphere. �e heavy gray line 
is the culling boundary inside which  is assumed to be located. �e red circle represents a cylinder 
of radius r centered on the line where k intersects the x-y plane. When  is inside this cylinder, there 
are no solutions because the discriminant d of the polynomial in Equation (8.40) is negative. When 
 is inside the green band, the polynomial’s quadratic coefficient a is negative because light’s bound-
ing sphere intersects the x-y plane. When  is inside the blue band, the polynomial’s constant term c 
is negative because the light’s bounding sphere intersects the near plane. �e plane h, used for clas-
sifying solutions, is perpendicular to k and intersects the x-y plane at the same line where k does. 

 We assume that zl r> −  so that some part of the light’s bounding sphere is in 
front of the x-y plane in camera space. We also assume that xyzr⋅ > −k k  and 

xyzr⋅ > −f f  (using the notation xyzk  to mean the 3D vector ( ), ,x y zk k k  without 
the w component) to exclude any case in which the bounding sphere is completely 
on the negative side of either the near plane or far plane. �ese conditions create a 
region bounded by three planes, drawn as a heavy gray line in Figure 8.8, inside 
which the light’s position must be located for it to have any effect on the visible 
scene. Any light having a position outside this region can be safely culled. 
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 For the plane m in Equation (8.37) to be tangent to the light’s bounding sphere, 
the squared perpendicular distance between it and the point  must be equal to 2r , 
as expressed by the equation 

 ( ) 2 2 2
xyzr m⋅ =m  . (8.38) 

Substituting the components of m gives us 

 ( ) ( )2 2 2 2
device device device2z xyz zl z r k k z z⋅ − = − +k  , (8.39) 

and collecting on powers of devicez  produces the quadratic equation 

 ( ) ( ) ( ) 22 2 2 2 2 2
device device2 0.z z z xyzl r z l r k z r k− − ⋅ − + ⋅ − =  k k   (8.40) 

�e solutions to this equation are the minimum and maximum values of devicez  that 
we need. After making the usual assignments 
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the solutions are then given by 

 device
b dz

a
±

= , (8.42) 

where 2d b ac= −  is the discriminant. �e products 2b  and ac tend to be large and 
close to each other, so calculating their difference is numerically unstable due to 
the loss of floating-point precision. Fortunately, we can avoid this problem by us-
ing the definitions of a, b, and c to expand the discriminant into a different form. 
After some algebraic simplification, it can be written as 

 ( ) ( )2 2 2 2
x x y y w x yd k l k l k a k k r = + + + +  , (8.43) 

which does not suffer from stability issues. 
 When 0a > , the light’s position is in front of the green band where cameraz r<  
in Figure 8.8, and its bounding sphere is thus entirely on the front side of the x-y 
plane. In this region, the discriminant given by Equation (8.43) is always positive, 
and it is the easiest case to handle. We simply calculate both solutions with Equa-
tion (8.42) and clamp them to the range [ ]0,1 . Since a is positive, choosing the 
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minus sign always produces the lesser value of devicez , and we can be sure that the 
minimum and maximum values are given by 
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If the light position is outside the culling boundary, then these calculations result 
in an empty depth range for which the minimum and maximum values are either 
both equal to zero or both equal to one. 
 When a is not a positive value, there are a number of special cases that require 
careful attention to detail. �ese cases all occur when the light position is within 
the distance r to the x-y plane, and the most intricate of them occur when the light 
position is also within a distance r to the near plane k. In the remainder of this 
section, we describe these special cases and how to deal with them. 
 First, if the value of a is very close to zero, then the light’s bounding sphere is 
practically tangent to the x-y plane, and its position lies on the boundary of the 
green band in Figure 8.8. We exclude the possibility that the position is on the 
lower boundary where zl r≈ −  because the light would not be visible, and we thus 
assume that the position lies on the upper boundary where zl r≈ . In this case, one 
of the solutions diverges to infinity, and the other solution is given by 

 device 2
cz
b

= . (8.45) 

If b also happens to be very close to zero, which happens when the light position 
is the point A in the figure, then there is no solution because all depths are covered 
by the light. In this case, we set the depth bounds to [ ]0,1 . Otherwise, we must 
separately handle the cases when b is positive or negative. If 0b < , which happens 
when the light position is left of the point A, then the depth range extends to −∞ in 
the negative direction, and we set 

 max min ,1
2
cz
b

 =  
 

 (8.46) 

as its limit in the positive direction. If 0b > , which happens when the light position 
is right of the point A, then the depth range extends to +∞ in the positive direction, 
and we set 

 min max , 0
2
cz
b

 =  
 

 (8.47) 
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as its limit in the negative direction. Again, if the light would have been culled, 
then these calculations produce an empty depth range. 
 When 0a < , it’s possible for the discriminant given by Equation (8.43) to be 
negative. �is happens when the light position lies inside a cylinder of radius r 
centered on the line where the near plane k intersects the x-y plane, represented by 
the red circle shown in Figure 8.8. Here, the bounding sphere intersects the line 
where all planes of constant device-space depth must intersect the x-y plane, mak-
ing it impossible for any of those planes to be tangent to the sphere. In this case, 
all depths are covered by the light, and we set the depth bounds to [ ]0,1 . 
 For the remaining cases, we can assume that 0a <  and 0d > , which means that 
the light position is inside the green band but outside the red circle. We can classify 
these cases into those for which 0c ≤  and those for which 0c > , and these corre-
spond to light positions inside and outside the blue band in the figure, respectively. 
We examine the case with 0c >  first because it is simpler, and we start by making 
the observation that 0ac <  and thus d b> . �is means that the two solutions 
given by Equation (8.42) must have different signs. We know that the bounding 
sphere is completely on the positive side of the plane k, so the negative solution 
must correspond to a point of tangency behind the x-y plane on the right side of the 
figure, which can be ignored. �e positive solution corresponds to a point of tan-
gency in front of the x-y plane and represents the minimum depth in a range that 
extends to +∞. �erefore, we set max 1z =  and only calculate 

 min max , 0b dz
a

 −
=  

 
, (8.48) 

where we clamp to zero to account for possible floating-point round-off error. 
 We now examine the more complex case with 0c ≤ , where the light position 
is inside both the green and blue bands but outside the red circle under the contin-
ued assumptions that 0a <  and 0d > . �is time, 0ac ≥  and thus d b≥ , so two 
nonzero solutions to Equation (8.42) must have the same signs. If 0b ≤ , then both 
solutions are nonnegative, and if 0b ≥ , then both solutions are nonpositive. For 
both of these possibilities, different actions need to be taken depending on whether 
the light position is on the positive or negative side of the constant-depth plane h 
that is perpendicular to the near plane k, as shown in Figure 8.8. �e plane h must 
have the same form as the plane m in Equation (8.37), and we calculate the value 
of the constant depth devicez  by requiring that the normal vectors are perpendicular 
with the equation 0xyz xyz⋅ =h k . �is yields a depth of 
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To avoid division by zero, we multiply each component of h by zk  to obtain 

 ( )2 2, , ,x z y z x y w zk k k k k k k k= − −h , (8.50) 

and this has the additional benefit that it gives h a consistent orientation such that 
0zh ≤  in all cases. Light positions are classified as being on the positive or negative 

side of h by calculating the dot product 
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 In the case that 0b ≥  (with 0a <  and 0c ≤ ), there are no positive solutions to 
Equation (8.40), so we cannot reduce the range of depths. �is happens when the 
light position falls inside the tiny striped region between the points A and B in the 
figure or inside the same-shaped region between the points C and D. (�ese regions 
can be a little larger for different near plane orientations.) We make a distinction 
between the two by looking at the value of ⋅h . If 0⋅ <h  , then the light’s bounding 
sphere covers all possible depths, so we set the depth range to [ ]0,1 . Otherwise, if 

0⋅ >h  , then the light position is inside the region between C and D, and we can 
cull the light because it cannot extend into the view frustum. If b is exactly zero, 
then the light position is exactly one of the points B or D because we must have 

0c =  to avoid a negative discriminant, and thus 0⋅ =h  . In this case, we cull the 
light when 0⋅ <k  . Note that we cannot use the plane k to classify light positions 
in all cases because the signs of ⋅k  and ⋅h  are not correlated for all possible 
orientations of the near plane. 
 In the final case that 0b <  (with 0a <  and 0c ≤ ), Equation (8.40) has at least 
one positive solution, and the other solution cannot be negative. �is happens when 
the light position falls inside the striped parallelogram shown in the figure where 
the green and blue bands intersect, but excluding the regions between the points A 
and B and between the points C and D. �e solutions have different meanings de-
pending on the value of ⋅h , which cannot be zero in this case. If 0⋅ <h  , then the 
depth range extends from zero to the smaller of the two solutions, so we calculate 

 max
b dz

a
+

= . (8.52) 

Otherwise, if 0⋅ >h  , then the depth range extends from the larger of the two so-
lutions to one, so we calculate 

 min
b dz

a
−

= . (8.53) 
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It is possible for minz  to be larger than one, and this happens when the light position 
is inside the small region between the points D and E. In this case, the light is not 
visible and should be culled. 
 �e code in Listing 8.6 implements the depth bounds calculation for a projec-
tion matrix having an oblique near plane and handles all of the special cases. If the 
resulting range of depths [ ]min max,z z  is empty, meaning that min maxz z≥ , then the 
function returns false, and this indicates that the light should be culled. �is code 
generates the correct results in all situations, including those for which the near 
plane is not oblique (where 0x yk k= = ), so there is no need to keep track of which 
kind of projection matrix is active and select one of the functions in Listing 8.5 in 
the non-oblique cases. (See Exercise 3.) 

Listing 8.6. For a light source with a camera-space bounding sphere defined by the center and 
radius parameters, this function calculates the minimum and maximum depths in device space for 
the projection matrix P, which may have an oblique near plane. �e depth range is returned in the 
minDepth and maxDepth parameters. �e return value of the function indicates whether the depth 
range is nonempty. 

void CalculateObliqueDepthBounds(const Matrix4D& P, const Point3D& center, 
                                 float radius, float *minDepth, float *maxDepth) 
{ 
 float zmin = 0.0F; 
 float zmax = 1.0F; 
 
 float kz = P(2,2); 
 float kxy2 = P(2,0) * P(2,0) + P(2,1) * P(2,1); 
 float kxyz2 = kxy2 + kz * kz; 
 float klxyw = P(2,0) * center.x + P(2,1) * center.y + P(2,3); 
 float kl = klxyw + kz * center.z;    // k dot l 
 float r2 = radius * radius; 
 
 float a = center.z * center.z − r2; 
 float b = kl * center.z − r2 * kz; 
 float c = kl * kl − r2 * kxyz2; 
 if (fabs(a) > FLT_MIN) 
 { 
  float d = (klxyw * klxyw + a * kxy2) * r2; 
  if (d > FLT_MIN) 
  { 
   // Bounding sphere does not intersect red cylinder in figure. 
   float a_inv = 1.0F / a; 
   float f = sqrt(d) * a_inv; 
   if (a > 0.0F) 
   { 
    // Bounding sphere is completely in front of x−y plane. 
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    // Both roots correspond to valid depth bounds. 
    zmin = fmin(fmax(b * a_inv − f, 0.0F), 1.0F); 
    zmax = fmin(fmax(b * a_inv + f, 0.0F), 1.0F); 
   } 
   else if (c > 0.0F) 
   { 
    // Bounding sphere is completely in front of near plane. 
    // Roots must have different signs. Positive root is zmin. 
    zmin = fmax(b * a_inv − f, 0.0F); 
   } 
   else 
   { 
    float hl = kl * kz − kxyz2 * center.z;    // h dot l 
    if (b < −FLT_MIN) 
    { 
     // Light position is inside striped parallelogram. 
     if (hl < 0.0F) zmax = b * a_inv + f; 
     else zmin = b * a_inv − f; 
    } 
    else if (b > FLT_MIN) 
    { 
     // If light position is between points C and D, it's not visible. 
     if (hl > 0.0F) zmax = 0.0F; 
    } 
    else 
    { 
     // If light position is at point C, it's not visible. 
     if (kl < 0.0F) zmax = 0.0F; 
    } 
   } 
  } 
 } 
 else if (center.z > 0.0F)  // The light position is on upper boundary of green band. 
 { 
  if (fabs(b) > FLT_MIN) 
  { 
   float zdev = c / b * 0.5F; 
   if (b < 0.0F) zmax = fmin(zdev, 1.0F); 
   else zmin = fmax(zdev, 0.0F); 
  } 
 } 
 else zmax = 0.0F; // Light position is on lower boundary of green band. 
 
 *minDepth = zmin; 
 *maxDepth = zmax; 
 return (zmin < zmax); 
} 
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8.3  Shadow Maps 
Once we have determined that a surface intersects the volume of space influenced 
by a light source, we incorporate that light source’s contribution into the shading 
calculations for the surface. In addition to any kind of attenuation that we may need 
to apply, we must account for the possibility that the incoming light is blocked by 
another surface, thus casting a shadow, before it can reach the various points on 
the surface we are rendering. �e ability to render shadows is an important com-
ponent of any game engine because it is necessary for presenting realistic visual 
cues about the positions of objects to the player. 
 �e most widely used general technique for rendering shadows is known as 
shadow mapping, and it is based on the simple principle that each ray emitted by 
a light source can strike at most one opaque surface. Whichever surface is closest 
to the light along a particular ray receives all of the illumination carried by the ray, 
and any surfaces farther away in the same direction must therefore be in shadow. 
�is concept is comparable to the similar principle upon which the depth buffer 
operates. Any ray originating from the camera position can strike only one opaque 
surface, and the depth buffer records the distance, perpendicular to the camera 
plane, to the nearest surface at each pixel as rendering progresses. �e same idea 
can be applied from the perspective of the light source, and rendering a distinct 
depth buffer for each light is fundamentally how shadow mapping works. �e de-
tails are somewhat different for spot lights, point lights, and infinite lights, so we 
discuss each type separately in this section. 

8.3.1  2D Shadow Maps 
Of the various types of light sources, a spot light present the simplest situation 
when it comes to rendering shadow maps. �is is due to the similarity between the 
volume of space illuminated by a spot light and the view frustum visible to an 
ordinary perspective camera. In both cases, all the information we need about the 
nearest surfaces is stored in a single two-dimensional depth buffer. To render a 
shadow map, we essentially add a second view frustum to the world, as shown in 
Figure 8.9. �e shadow map is simply the contents of the depth buffer that we end 
up with when we render the world using this view frustum. When generating a 
shadow map, we render only the depth buffer, and not a color buffer or any of the 
special buffers described in Chapter 10. Rendering a shadow map is quite fast be-
cause the pixel shader doesn’t normally need to do any work, with the exception 
of cases in which pixels are discarded based on the result of some calculation. 
Additionally, GPUs are designed to perform better when only the depth is being 
written to memory after the rasterization stage. 
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Figure 8.9. A 2D shadow map is generated by rendering a depth buffer from the perspective 
of the light source. For each ray starting at the light’s position , the shadow map contains 
the projected depth, parallel to the light’s z axis, corresponding to the nearest opaque sur-
face. When the world is rendered from the camera position , points on visible surfaces are 
transformed into light space and projected using the same MVP matrix that was used when 
the shadow map was generated. �e projected z coordinate of each point is compared to 
the value stored in the shadow map to determine whether it is inside a shadow. 

 �e view frustum for the shadow map is aligned with the spot light’s local 
coordinate system, pointing in the direction of the light’s positive z axis with its 
apex at the light’s position. �e model-view-projection matrix is given by 

 1
MVP light object

−=M PM M , (8.54) 

where the only difference from Equation (5.29), where the MVP matrix was first 
introduced, is that we are now transforming into light space instead of camera 
space before the projection is applied. �e matrix P is either a conventional or 
reversing projection matrix having one of the common forms given by Equation 
(6.36) or Equation (6.45), respectively, with the distance f to the far plane set to the 
light’s bounding sphere radius maxr . We must still have a near plane distance n, and 
it can be set to some small value representing the minimum distance from the light 
at which a shadow can be cast. �e projection distance g has the value given by 
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Equation (8.19), corresponding to the angular size of the spot light. Shadow maps 
are usually square, in which case the aspect ratio s is simply equal to one. 
 Once the depth information has been rendered into the shadow map, it is used 
as a special kind of texture map in any pixel shaders that later calculate the contri-
bution from the light source. �e shadow map has a single channel containing the 
depth along the z direction in light space, as illustrated in Figure 8.9. When we 
render a surface that could be illuminated by the spot light, we transform vertex 
positions using two different MVP matrices. �e first matrix is the ordinary MVP 
matrix for the camera, and it produces the output vertex positions in clip space. �e 
second matrix is the MVP matrix for the spot light given by Equation (8.54) but 
with the first two rows of the projection matrix matching the matrix spotP  given by 
Equation (8.17). As before, this modification causes the x and y coordinates to fall 
in the range [ ]0,1  inside the spot light’s frustum after the perspective divide so they 
can be used directly as shadow map texture coordinates. With this change, the con-
ventional projection matrix shadowP  is given by 

 shadow max max

max max

2 0 1 2 0
0 2 1 2 0

.
0 0

0 0 1 0

g s
g

r nr
r n r n

 
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  

P  (8.55) 

�e equivalent reversing projection matrix swaps the values of n and maxr . 
 �e 4D homogeneous coordinates resulting from the application of the light’s 
MVP matrix to the object-space vertex position is output by the vertex shader and 
interpolated over each triangle. In the pixel shader, the perspective divide is applied 
by multiplying the x, y, and z coordinates by the reciprocal of the w coordinate. At 
this time, the ( ),x y  coordinates are the texture coordinates at which we sample the 
shadow map, and the z coordinate is the projected depth of the point  on the sur-
face we are currently rendering. If, along the direction connecting it to the light’s 
position, the point  happens to be on the surface nearest to the light source, then 
the depth fetched from the shadow map will be equal to the z coordinate calculated 
in the pixel shader (ignoring precision issues for the moment). Otherwise, if the 
point  is not on the nearest surface because it is blocked by another surface, then 
the depth fetched from the shadow map will be less than the z coordinate for a 
conventional projection matrix or greater than the z coordinate for a reversing 
projection matrix. �us, comparing the two values tells us whether the point  on 
the surface being rendered is in shadow. 
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 If we were to make only one comparison per pixel against a depth stored in the 
shadow map, then the resulting shadow would have a sharp boundary with large 
jagged steps along its edges. We could mitigate this problem by increasing the res-
olution of the shadow map, but each pixel would still be either completely in 
shadow or fully illuminated with no smooth transition between those two states. A 
better solution is to take multiple samples from the shadow map, compare each of 
them to the light-space projected depth of the point  being rendered, and adjust 
the brightness of the incoming light based on what portion of the comparisons pass 
the test. �is is called percentage closer filtering (PCF) because the amount of light 
that makes it through is given by the number of samples for which the point  is 
closer to the light source divided by the total number of samples taken. 
 To help with shadow mapping, GPUs have texture sampling features that are 
specifically designed to perform depth comparisons and apply percentage closer 
filtering. When sampling a 2D shadow map, three texture coordinates are required 
instead of the usual two. �e third coordinate is the depth of the point  being 
rendered after it has been transformed into light space and projected. �e GPU 
compares the depth in the third coordinate to the depth fetched from the shadow 
map and generates a value of one if the comparison passes or a value of zero if it 
fails. More importantly, the comparison happens separately for each sample that 
participates in bilinear filtering, and the result returned by a single texture fetch is 
the weighted average of the four outcomes of those comparisons. Without this 
functionality, conventional filtering would return the weighted average four adja-
cent depth values stored in the shadow map, and this would not produce correct 
results if the pixel shader then made a comparison using that average. 
 Even with the availability of a special bilinear filtering mode, it is usually nec-
essary to fetch multiple samples from the shadow map within a small neighbor-
hood of the projected texture coordinates in order to produce acceptably smooth 
edges. �is is done in Listing 8.7, where samples are fetched from the shadow map 
at the texture coordinates initially calculated and four additional nearby locations. 
Offsets between the center sample and the surrounding samples are typically meas-
ured in texel-sized units given by the reciprocal of the shadow map’s resolution. 
�e averaged result returned by the shader code is always a value in the range [ ]0,1  
representing the amount of light that is not blocked by a shadow castor. It should 
be multiplied by the color illumC  calculated with Equation (8.13) to determine the 
final illumination reaching the surface being rendered. An example scene contain-
ing a spot light is shown in Figure 8.10(a). �e shadow map itself is shown as a 
grayscale image in Figure 8.10(b), where lighter shades of gray correspond to 
greater depths. 
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Listing 8.7. �is pixel shader function samples the 2D shadow map shadowTexture that has been 
rendered for a spot light. �e shadowCoord parameter contains the interpolated homogenous coor-
dinates produced by the projection matrix given by Equation (8.55). �e uniform constant shadow-
Offset specifies the space between shadow map samples, and it would typically be set to the recip-
rocal of the shadow map resolution in texels. 

uniform Texture2DShadow shadowTexture; 
uniform float     shadowOffset;  
 
float CalculateSpotShadow(float4 shadowCoord) 
{ 
 // Project the texture coordinates and fetch the center sample. 
 float3 p = shadowCoord.xyz / shadowCoord.w; 
 float light = texture(shadowTexture, p); 
 
 // Fetch four more samples at diagonal offsets. 
 p.xy −= shadowOffset; 
 light += texture(shadowTexture, p.xy, p.z); 
 p.x += shadowOffset * 2.0; 
 light += texture(shadowTexture, p.xy, p.z); 
 p.y += shadowOffset * 2.0; 
 light += texture(shadowTexture, p.xy, p.z); 
 p.x −= shadowOffset * 2.0; 
 light += texture(shadowTexture, p.xy, p.z); 
 
 return (light * 0.2); // Return average value. 
} 

8.3.2  Cube Shadow Maps 
A single 2D shadow map is sufficient for casting shadows from a spot light, but a 
point light requires something more. To handle omnidirectional shadows, we need 
to surround a point light with multiple shadow maps storing the depths of shadow-
casting geometries, and this is most effectively achieved by using six shadow maps 
arranged as a cube. �is is convenient because the shadow maps can be organized 
as a single cube texture map that is sampled with direct hardware support when the 
illumination from the point light is rendered. 
 Each face of a cube shadow map can be treated as a square 2D shadow map 
covering a 90-degree field of view from the perspective of the light source. �us, 
when each shadow map is rendered, the projection distance g and aspect ratio s 
used in the projection matrix are both equal to one. As with spot lights, the distance 
f to the far plane is set to the radius of the point light maxr , and the distance n to the 
near plane is chosen as some minimum shadow-casting distance. To determine the 
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Figure 8.10. (a) Shadows are rendered for a spot light using a 2048 2048×  shadow map. 
Five samples are fetched per pixel by the code shown in Listing 8.7, where shadowOffset 
has been set to 1 2048. (b) �e depths stored in the shadow map are shown as a grayscale 
image rendered from the perspective of the light source. Texels become lighter as distance 
from the camera increases. 

orientation of the view frustum, we must account for the directions in which the 
coordinate axes point for each face of a cube map, as described in Section 7.4.3. 
�e MVP matrix is given by 

 1 1
MVP face light object

− −=M PM M M , (8.56) 

where faceM  is the matrix listed in Table 7.1 corresponding to the face for which 
the shadow map is being rendered. �is MVP matrix transforms points into light 
space and then into a face-specific camera space before applying the projection 
matrix P. Because texture coordinate systems for the cube faces are left handed, 
the matrix faceM  contains a reflection, and we must be careful to invert the rendering 
state that specifies the front face winding direction. 
 After shadow maps have been rendered for all six faces, giving us a complete 
cube shadow map, we render the contribution from the light source.  �e 3D texture 
coordinates at which the cube shadow map is sampled are given by positions in 
light space, so object-space vertex positions are transformed into light space by the 
vertex shader and interpolated over each triangle. Unlike the method used for spot 
lights, the vertex shader does not perform a projection because we don’t know at 
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that point in time which face of the cube map will be sampled. �e face is deter-
mined in the pixel shader by first selecting the largest component m of the interpo-
lated light-space position , defined by 

 ( )max , ,x y zm q q q= . (8.57) 

�e projected depth z, after the perspective divide, is then given by 

 23
22

Pz P
m

= + , (8.58) 

where 22P  and 23P  are the entries in the projection matrix P used when the shadow 
maps were rendered. 
 Once the cube face has been determined, we know the GPU will access it using 
2D coordinates given by the corresponding formulas given in Table 7.1. In order 
to take samples at multiple locations within a small neighborhood, we need to ap-
ply offsets to the two coordinates of the position  that do not constitute the major 
axis. For example, if the major axis is y+ , then offsets must be added to the x and 
z coordinates. Any changes we make to the two non-major coordinates are going 
to be divided by 2m when the shadow map is sampled, so if we want the effective 
offset to be δ, we need to add or subtract 2mδ to each coordinate. We can devise a 
method for handling all six faces uniformly by making use of the fact that one of 
the non-major coordinates must be either x or y and the other non-major coordinate 
must be either y or z. �is means we can calculate a pair of two-dimensional vectors 

xyo  and yzo  representing the offsets along the two non-major axes. For the three 
possible values of m, these offsets are given by the following formulas. 
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If we define the values xyd  and xd  as 
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then every case shown in Equation (8.59) is given by 
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When these offsets are applied, we have to make sure that we don’t inadvertently 
cause one of the texture coordinates along a non-major axis to become larger than 
the value of m because this would cause a different cube face to be sampled, and 
the depth computed with Equation (8.58) would no longer be valid. �is can hap-
pen when samples are taken near the edges of the cube shadow map, and it causes 
lines of incorrectly shadowed pixels to appear. To account for this, we clamp the 
coordinates that are offset to the range [ ]2 , 2m mδε m mδε− + − , where ε is a small 
positive constant. We can’t simply clamp to [ ],m m−  because tie breaking rules can 
cause the accessed cube face to change when two or three texture coordinates are 
equal to each other. 
 Listing 8.8 demonstrates how a cube shadow map is sampled using the above 
method. �e value 2δ is passed to the shader as a uniform constant, and it is mul-
tiplied by the value of m, calculated inside the shader, to obtain the correct offset 
vectors. �e result returned by the shader code represents the amount of light not 
blocked by a shadow castor. It should be multiplied by the color illumC  calculated 
with Equation (8.10) to determine the final illumination reaching the surface being 
rendered. As with 2D shadow maps, this code takes five samples from a single face 
and averages them together. (Even though some GPUs support cube map filtering 
across face boundaries, we cannot make use of that functionality here because the 
projected depth we calculate is valid for only the face corresponding to the major 
axis.) An example scene containing a point light is shown in Figure 8.11(a), and 
its cube shadow map is shown as a grayscale image in Figure 8.11(b). 

Listing 8.8. �is pixel shader function samples the cube shadow map shadowTexture that has been 
rendered for a point light. �e lightCoord parameter contains the interpolated vertex position in 
light space. �e uniform constant shadowOffset specifies the space between shadow map samples, 
and it would typically be set to twice the reciprocal of the shadow map resolution in texels. �e 
uniform constant depthTransform contains the ( )2,2  and ( )2,3  entries of the projection matrix used 
when the shadow map was rendered. 

uniform TextureCubeShadow  shadowTexture; 
uniform float      shadowOffset;   // 2.0 * delta 
uniform float2     depthTransform;  // (m22, m23) 
 
float CalculatePointShadow(float3 lightCoord) 
{ 
 float3 absq = abs(lightCoord); 
 float mxy = max(absq.x, absq.y); 
 float m = max(mxy, absq.z);   // Value of largest component. 
 
 // Calculate offset vectors. 
 float offset = shadowOffset * m; 
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 float dxy = (mxy > absq.z) ? offset : 0.0; 
 float dx = (absq.x > absq.y) ? dxy : 0.0; 
 float2 oxy = float2(offset − dx, dx); 
 float2 oyz = float2(offset − dxy, dxy); 
 
 float3 limit = float3(m, m, m); 
 limit.xy −= oxy * (1.0 / 1024.0); // Epsilon = 1/1024. 
 limit.yz −= oyz * (1.0 / 1024.0); 
 
 // Calculate projected depth and fetch the center sample. 
 float depth = depthTransform.x + depthTransform.y / m; 
 float light = texture(shadowTexture, float4(lightCoord, depth)); 
 
 // Fetch four more samples at diagonal offsets. 
 lightCoord.xy −= oxy; 
 lightCoord.yz −= oyz; 
 light += texture(shadowTexture, clamp(lightCoord, −limit, limit), depth); 
 lightCoord.xy += oxy * 2.0; 
 light += texture(shadowTexture, clamp(lightCoord, −limit, limit), depth); 
 lightCoord.yz += oyz * 2.0; 
 light += texture(shadowTexture, clamp(lightCoord, −limit, limit), depth); 
 lightCoord.xy −= oxy * 2.0; 
 light += texture(shadowTexture, clamp(lightCoord, −limit, limit), depth); 
 
 return (light * 0.2); // Return average value. 
} 

8.3.3  Cascaded Shadow Maps 
Above, we described how shadow maps for spot lights and point lights are each 
rendered using one or more perspective projections with a camera placed at the 
light’s position. We now consider the best way to render shadow maps for infinite 
lights. An infinite light has no position, only a direction, and its parallel rays sug-
gest that we should be using an orthographic projection instead of a perspective 
projection. �ese are the first indications that the shadow mapping process is going 
to be different for infinite lights. We must also consider that infinite lights usually 
illuminate a much larger area than spot lights and point lights do in a typical game 
world because they are often shining on vast stretches of land in outdoor scenes. It 
seems natural to cover the illuminated area with one giant 2D shadow map, but 
turns out not to be the best solution because an extremely high resolution, probably 
exceeding the capabilities of the GPU, would be required in order to produce shad-
ows having acceptable levels of sharpness. Even of such a resolution were possi-
ble, most of it would be wasted on geometry far from the main camera where 
shadow details appear too small in the viewport to be discernible. 
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Figure 8.11. (a) Shadows are rendered for a point light using a cube shadow map having faces of 
size 1024 1024×  texels. Five samples are fetched per pixel by the code shown in Listing 8.8, where 
shadowOffset has been set to 2 1024. (b) �e depths stored in the shadow map are shown as six 
grayscale images rendered from the perspective of the light source. �e major axis associated with 
each face points into the page. 

 A popular and effective method for rendering shadow maps covering large ar-
eas illuminated by infinite lights is called cascaded shadow maps (CSM). �is 
method works by rendering several 2D shadow maps corresponding to volumes of 
increasing size distributed along the view direction of the main view frustum, as 
shown in Figure 8.12. Each shadow map is called a cascade, and the full set of 
cascades is organized into a single array texture map having multiple 2D layers. 
For the purposes of our discussion, we will use four cascades in total, but it is 
perfectly reasonable to have more or fewer to better fit a particular environment. 
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Figure 8.12. A cascaded shadow map is composed of several 2D shadow maps that each 
cover a range of distances inside the view frustum. �e main camera is at the position , 
and its view direction points to the right. Each cascade k is a box aligned with the coordi-
nate axes of the light source, and the position k  represents the location from which the 
cascade’s shadow map is rendered. �e actual difference in size between consecutive cas-
cades is typically much larger than shown in the limited space here. 

 �e cascade associated with the space closest to the camera is numbered with 
an index of zero, and the indices of the other cascades increase with distance. �e 
same number of texels exist in each layer, but higher-numbered cascades cover 
larger volumes of space where the view frustum is wider. �is means that the res-
olution of the more distant cascades is lower in the sense that each texel corre-
sponds to a larger physical area, which is good because we don’t want to waste 
time rendering excessively detailed shadows farther from the camera. 
 We define the cascade with index k by the range of distances [ ],k ka b  it covers 
along the view direction. �e first cascade, having index 0k = , begins at the camera 
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plane, so it’s always the case that 0 0a = . Otherwise, we can choose any increasing 
sequences of ka  and kb  that produce good results for the particular world being 
rendered. When we sample the shadow map as an array texture, we select the layer 
based on the cascade in which the point being shaded falls. So there isn’t an abrupt 
visible change in shadow resolution on the boundary between two cascades, we 
allow consecutive cascades to overlap. �e minimum distance ka  for one cascade 
is a little smaller than the maximum distance 1kb −  for the preceding cascade. For 
points that fall inside this transition range, we will sample two layers of the shadow 
map and blend the results together. So that no more than two cascades overlap at 
any point in space, we require that 2k ka b −>  for 2k ≥ . 
 In order to fit a 2D shadow map to each cascade, we look at the portion of the 
view frustum covered by the cascade from the perspective of the light source. We 
can place the infinite light at any position we choose, but it will be convenient to 
keep it at the origin. �e extents of the cascade in the light-space x and y directions 
delimit a minimal bounding box for the cascade, as illustrated in Figure 8.12. �e 
extents of the cascade in the light-space z direction tell us what range of physical 
depths need to be covered by the shadow map. �e bounding box is easily calcu-
lated by transforming the eight vertices defining each cascade’s portion of the view 
frustum from camera space to light space using the matrix 

 1
light camera
−=L M M , (8.62) 

where cameraM  and lightM  are the matrices that transform from object space to world 
space for the camera and light. As previously discussed in Section 6.1, a plane per-
pendicular to the view direction cuts through the view frustum between the cam-
era-space coordinates x us g= ±  and y u g= ±  at the distance u from the camera. 
�us, as labeled in Figure 8.13, the four camera-space vertices 0,1,2,3

k  on the bound-
ary plane closer to the camera for cascade k are given by 

 0,1,2,3 , ,k kk
k

a s a a
g g

 = ± ± 
 

 , (8.63) 

and the four camera-space vertices 4,5,6,7
k  on the boundary plane farther from the 

camera for cascade k are given by 

 4,5,6,7 , ,k kk
k

b s b b
g g

 = ± ± 
 

 . (8.64) 

(Here, k is used as a superscript index and not as an exponent.) Given these eight 
positions, the light-space bounding box for cascade k is determined by the mini-
mum and maximum values of the x, y, and z coordinates of the transformed vertices 
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Figure 8.13. �e shadow map cascade having index k is the portion of the view frustum 
bounded by the planes kz a=  and kz b= . �e eight camera-space vertex positions k

i  are 
given by Equations (8.63) and (8.64). �e diameter of the cascade must be the length of the 
line segment connecting 6

k  to either 0
k  or 4

k . 

k
iL , where i ranges from 0 to 7, which we write as follows. 
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 (8.65) 

 A cascade’s shadow map is rendered using an orthographic projection that en-
closes the cascade’s bounding box. As shown in Figure 8.12, the camera position 

k  from which we render the shadow map is the center of the bounding face for 
which min

kz z= . Its light-space coordinates are given by 

 max min max min
min, ,

2 2

k k k k
k

k
x x y y z+ + =  

 
 , (8.66) 

and the world-space camera position is therefore equal to light kM  . To avoid clip-
ping shadow-casting geometry where min

kz z< , we must configure the GPU to 
clamp depths to the near plane when a shadow map is rendered. �e orientation of 
the camera is aligned to the light source, so we can define a matrix cascade

kM  that 
transforms from the cascade-specific camera space to world space as 

 [ ] [ ] [ ][ ]cascade lightlight 0 light 1 light 2
k

k=M M M M M  . (8.67) 
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�e first three columns of cascade
kM  are simply the world-space directions in which 

the coordinate axes of the light source point, and the fourth column is the world-
space position of the camera. 
 �e cascade-specific projection matrix, which we call cascade

kP , is based on Equa-
tion (6.49). Since the shadow map is square, the width and height of the volume 
spanned by the projection need to be equal, so we define 

 ( )max min max minmax ,k k k k
kd x x y y= − − . (8.68) 

We can now write cascade
kP  as 

 ( )cascade
max min

2 0 0 0
0 2 0 0

.
0 0 1 0
0 0 0 1

k

kk
k k

d
d

z z

 
 
 =
 −
 
  

P  (8.69) 

Using the matrices cascade
kM  and cascade

kP , the complete MVP matrix used to render an 
object into the shadow map for cascade k is given by 

 ( ) 1
MVP cascade cascade object
k k k −

=M P M M . (8.70) 

 For a main camera rendering a game world from with any fixed transformation 
matrix cameraM , cascaded shadow maps are rendered correctly with the transfor-
mation matrices cascade

kM  and cascade
kP  derived from the values of k  and kd  defined by 

Equations (8.66) and (8.68). However, an enormous problem arises when the main 
camera moves in any way. �e exact set of texels that are covered by rasterization 
when an object is rendered into a cascade’s shadow map is extremely sensitive to 
the precise position of the camera and the precise physical size of the cascade’s 
bounding box. If the matrix cameraM  changes, then so does the matrix L used to 
calculate the light-space extents of the bounding box, and this ultimately affects k  
and kd . Allowing these two variables to take on arbitrary values causes the texels 
along the edges of every shadow to be unstable because the determination as to 
whether they are illuminated or in shadow is constantly changing. 
 �e first step in stabilizing the shadows is to require that the bounding box for 
each cascade has a constant physical size in the light-space x and y directions. �is 
ensures that each shadow map has a consistent resolution such that the area corre-
sponding to a single texel never changes. �e size we choose is the largest value 
that could ever be produced by Equation (8.68), which is the diameter of the cas-
cade as defined by the maximal distance between any two points on its boundary. 



184 Chapter 8   Lighting and Shadows 

�is diameter must be equal to either the length of the internal diagonal or the 
length of the diagonal on the face where kz b= . (Exercise 4 asks for a proof.) �ese 
two possibilities are illustrated by dashed lines in Figure 8.13. �us, we can define 
a new shadow map size kd  as 

 ( )0 6 4 6max , ,k k k k
kd = − −       (8.71) 

where we have rounded up to an integer value for reasons explained below. It is 
important that we carry out this calculation using the original camera-space posi-
tions k

i  and not the light-space positions k
iL  appearing in Equation (8.65). Even 

though the results should be mathematically identical, the small measure of float-
ing-point round-off error introduced through the transformation by the matrix L is 
enough to change the value of kd . As long as the view frustum parameters g and s 
remain constant, kd  could be calculated one time and saved. 
 Once we have determined kd  using Equation (8.71), we know that every texel 
in an n n×  shadow map rendered for cascade k corresponds to a physical width and 
height given by 
 kT d n= . (8.72) 

Shadow edges are stable if the x and y viewport-space coordinates of each vertex 
belonging to an object rendered into the shadow map have constant fractional parts. 
A triangle that is moved in viewport space by an integral number of texels left, 
right, up, or down is always rasterized in the same exact way in the sense that an 
identical set of texels are filled, just at different locations. Because the distance 
between adjacent texels in viewport space corresponds to the physical distance T, 
changing the camera’s x or y position by any multiple of T preserves the fractional 
positions of the vertices. �is means that we can achieve shadow stability by re-
quiring that the light-space x and y coordinates of the camera position are always 
integral multiples of T. We calculate a camera position k  satisfying this require-
ment by replacing Equation (8.66) with 

 
max min max min

min, , .
2 2

k k k k
k

k
x x y yT T z

T T
+ +     =          

  (8.73) 

For this calculation to be completely effective at eliminating stability problems, 
the value of T must be exactly representable as a floating-point number. Luckily, 
the number n would normally be a power of two, so its reciprocal is exactly repre-
sentable and so are any integer multiples of it. All we have to do is make sure that 

kd  is an integer, and that’s why we applied the ceiling operation in Equation (8.71). 



8.3  Shadow Maps 185 

 �ere remains one last source of instability, and it arises in the calculation of 
the matrix cascade

kM  defined by Equation (8.67) because the position k  is trans-
formed into world space by lightM . We only need the inverse of cascade

kM  in the MVP 
matrix given by Equation (8.70), but floating-point accuracy is lost during the cal-
culation of this inverse. �e problem is avoided by instead calculating ( ) 1

cascade
k −M  

directly using the formula 

 ( ) [ ] [ ] [ ]
1 T T T

cascade light 0 light 1 light 2
k

k
−
= −  M M M M  , (8.74) 

which follows from Equation (2.42) under the assumptions that the upper-left 3 3×  
portion of lightM  is orthogonal and the translation component of lightM  is zero. Us-
ing this definition for ( ) 1

cascade
k −M  with the new camera position k  and the definition 

of cascade
kP  given by Equation (8.69) with the new cascade diameter kd , highly stable 

results are produced in each of the shadow maps. 
 When the contribution from the light source is rendered in the main scene, the 
cascaded shadow maps are accessed as the separate 2D layers of an array texture 
map. Because the cascades can overlap, the pixel shader generally needs to fetch 
samples from two consecutive layers and blend them together. �e most difficult 
task is determining which two layers should be sampled and calculating the correct 
texture coordinates at which to sample those layers. With a total of four cascades, 
there are three possible pairs of cascades that can be blended, and the cascade in-
dexes must be 0 and 1, 1 and 2, or 2 and 3. 
 We can calculate the indices of the cascades as well as their blending weights 
in the pixel shader with the help of some planar distances calculated in the vertex 
shader. �e plane kf  at the front of cascade k, where kz a=  in camera space, has an 
inward-pointing normal vector [ ]camera 2=n M  in world space. Since this plane con-
tains the world-space point ka+ n , where [ ]camera 3= M  is the camera position, we 
can express the whole plane as 

 [ ]
1

1 |k k
k k

a
b a−

= − ⋅ −
−

f n n  . (8.75) 

�e scale factor ( )11 k kb a− −  has been applied to make the dot product k ⋅f  tran-
sition from zero to one precisely in the volume where cascades k and 1k −  overlap, 
conveniently providing linear blending weights. In the vertex shader, each vertex 
position  is available in object space, so we take dot products with the object-
space cascade plane to produce 

 objectk ku = ⋅f M . (8.76) 
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�e three scalar results for 1, 2, 3k =  are output by the vertex shader and interpo-
lated across triangles. 
 In the pixel shader, the indices i and j of the two cascades we blend together 
can be determined by examining the signs of 2u  and 3u . �ese values tell us whether 
the point being rendered lies beyond the planes 2f  and 3f  at the front of the third 
and fourth cascades. �e indices are given by 

 22, if 0;
0, otherwise,

u
i

≥= 


   and   33, if 0;
1, otherwise,

u
j

≥= 


 (8.77) 

and these correspond to the layers that will be accessed in the shadow map. Note 
that in the case that 2 0u ≥  but 3 0u < , the indices 2i =  and 1j =  are produced in 
reverse order. �e amounts of light iL  and jL  reaching the point being rendered, as 
determined by sampling layers i and j, are blended together with the simple linear 
interpolation 

 ( )1i jL wL w L= + − , (8.78) 

where w is the weight given by 

 
( ) ( )

( )
2 3 2

1

sat sat , if 0;
1 sat , otherwise.

u u u
w

u
− ≥=  −

 (8.79) 

Outside of any transition range, this weight is always zero or one, and it effectively 
selects the correct cascade to sample. Inside a transition range, this weight gives 
the interpolation parameter used in Equation (8.78) for all three possible pairs of 
the indices i and j. �e value of L should be multiplied by the color illumC  calculated 
with Equation (8.23) to determine the final illumination in a manner similar to what 
was done with the other types of shadow mapping. 
 As done with the 2D shadow maps associated with spot lights, we determine 
the texture coordinates at which the cascaded shadow maps are sampled by trans-
forming object-space vertex positions into the coordinate space of the shadow map 
inside the vertex shader. However, there are now several cascades of different sizes 
placed at different positions. Fortunately, they are all aligned to the same light-
space axes, so the distinct cascades are related by nothing more than scales and 
offsets. �e matrix ( ) 1

cascade
k −M  given by Equation (8.74) transforms from world 

space to the camera space that was used to render cascade k. �e projection matrix 
cascade
kP  given by Equation (8.69) produces x and y coordinates in the range [ ]1, 1− +  

over the cascade’s bounding box. To produce texture coordinates in the range [ ]0,1 , 
we scale and offset by 1 2 to obtain the matrix 
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 ( )shadow
max min

1 0 0 1 2
0 1 0 1 2

.
0 0 1 0
0 0 0 1

k

kk
k k

d
d

z z

 
 
 =
 −
 
  

P  (8.80) 

�e full transformation from world space to the texture coordinates specific to cas-
cade k is then 

 ( ) 1
shadow shadow cascade
k k k −

=M P M , (8.81) 

and this includes the proper scaling for the depth in the shadow map. We do not 
calculate this matrix for each cascade. Instead, we calculate only 0

shadowM  for the 
first cascade and multiply it by objectM  to construct a single transformation from 
object space to shadow map space for the object being rendered. �is matrix is 
supplied as a uniform input to the vertex shader, which uses it to transform object-
space vertex positions and interpolate the results. Given the 3D texture coordinates 
in cascade 0, the texture coordinates corresponding to the same point in space for 
a different cascade k are found by applying the transformation 

 ( ) 10
shadow shadow
k

k
−

=C M M . (8.82) 

When we insert the definitions of each of the matrices and multiply everything out, 
we end up with the matrix 
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 

 

   (8.83) 

which consists of the 3D scale and offset that were promised above. �ese six num-
bers are precalculated for each cascade other than the first and supplied as uniform 
inputs to the pixel shader. �ey allow us to easily convert the texture coordinates 
computed in the vertex shader from cascade 0 to any other cascade. 
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 A pixel shader function that samples two layers in a cascaded shadow map is 
shown in Listing 8.9. �e cascadeCoord0 parameter passed to the function con-
tains the texture coordinates given by the interpolated result of transforming ob-
ject-space vertex positions with the matrix 0

shadow objectM M  in the vertex shader. �e 
cascadeBlend parameter contains the interpolated values of 1u , 2u , and 3u  given 
by Equation (8.76) in its x, y, and z components. �e uniform constant cascade-
Scale[ 1k − ] contains the three scale entries along the diagonal of the matrix kC , 
and cascadeOffset[ 1k − ] contains the offset entries in the fourth column of kC . 
�ese are used to calculate the texture coordinates corresponding to cascades 1, 2, 
and 3. �e code then determines the layer indices i and j using Equation (8.77) and 
selects the two sets of texture coordinates that will be used to sample from those 
layers. �e depth for the last cascade is clamped to [ ]0,1  so that geometry lying 
beyond the farthest cascade plane is not darkened due to its depth being greater 
than the depth to which the shadow map is cleared. �e final calculation before 
sampling begins produces the weight w given by Equation (8.79). 
 �e example code in Listing 8.9 takes four samples from each of the two cas-
cades that could be blended together. �e locations of the samples are specified in 
relation to the base texture coordinates by the ( ),x y  and ( ),z w  components of the 
uniform constants shadowOffset[0] and shadowOffset[1]. �ese offsets would 
typically form a simple pattern in a small neighborhood of a few texels in diameter, 
and they can be chosen by experimentation to produce satisfactory results. �e four 
samples from each cascade are multiplied by 1 4 to take an average and then 
blended together using Equation (8.78). A scene rendered with this pixel shader is 
shown in Figure 8.14 along with the four shadow map cascades. �e sample offsets 
used in this image are ( ), 3δ δ− − , ( )3 ,δ δ− , ( ), 3δ δ , and ( )3 ,δ δ− , where δ has been 
set to 3 16r, and r is the reciprocal of the shadow map resolution. 

Listing 8.9. �is pixel shader function samples the cascaded shadow map shadowTexture that has 
been rendered with four layers for an infinite light. �e cascadeCoord0 parameter contains the in-
terpolated texture coordinates for cascade 0, and the cascadeBlend parameter contains the interpo-
lated values of 1u , 2u , and 3u  given by Equation (8.76). �e uniform constant shadowOffset contains 
four sets of texture coordinate offsets that determine where samples are taken. �e uniform constants 
cascadeScale and cascadeOffset contain the nontrivial entries of the matrices 1C , 2C , and 3C  
given by Equation (8.83). 

uniform Texture2DArrayShadow shadowTexture; 
uniform float4     shadowOffset[2]; 
uniform float3     cascadeScale[3]; 
uniform float3     cascadeOffset[3]; 
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float CalculateInfiniteShadow(float3 cascadeCoord0, float3 cascadeBlend) 
{ 
 float3  p1, p2; 
 
 // Apply scales and offsets to get texcoords in all four cascades. 
 float3 cascadeCoord1 = cascadeCoord0 * cascadeScale[0] + cascadeOffset[0]; 
 float3 cascadeCoord2 = cascadeCoord0 * cascadeScale[1] + cascadeOffset[1]; 
 float3 cascadeCoord3 = cascadeCoord0 * cascadeScale[2] + cascadeOffset[2]; 
  
 // Calculate layer indices i and j. 
 bool beyondCascade2 = (cascadeBlend.y >= 0.0); 
 bool beyondCascade3 = (cascadeBlend.z >= 0.0); 
 p1.z = float(beyondCascade2) * 2.0; 
 p2.z = float(beyondCascade3) * 2.0 + 1.0; 
 
 // Select texture coordinates. 
 float2 shadowCoord1 = (beyondCascade2) ? cascadeCoord2.xy : cascadeCoord0.xy; 
 float2 shadowCoord2 = (beyondCascade3) ? cascadeCoord3.xy : cascadeCoord1.xy; 
 float depth1 = (beyondCascade2) ? cascadeCoord2.z : cascadeCoord0.z; 
 float depth2 = (beyondCascade3) ? saturate(cascadeCoord3.z) : cascadeCoord1.z; 
 
 // Calculate blend weight w. 
 float3 blend = saturate(cascadeBlend); 
 float weight = (beyondCascade2) ? blend.y − blend.z : 1.0 − blend.x; 
 
 // Fetch four samples from the first cascade. 
 p1.xy = shadowCoord1 + shadowOffset[0].xy; 
 float light1 = texture(shadowTexture, p1, depth1); 
 p1.xy = shadowCoord1 + shadowOffset[0].zw; 
 light1 += texture(shadowTexture, p1, depth1); 
 p1.xy = shadowCoord1 + shadowOffset[1].xy; 
 light1 += texture(shadowTexture, p1, depth1); 
 p1.xy = shadowCoord1 + shadowOffset[1].zw; 
 light1 += texture(shadowTexture, p1, depth1); 
 
 // Fetch four samples from the second cascade. 
 p2.xy = shadowCoord2 + shadowOffset[0].xy; 
 float light2 = texture(shadowTexture, p2, depth2); 
 p2.xy = shadowCoord2 + shadowOffset[0].zw; 
 light2 += texture(shadowTexture, p2, depth2); 
 p2.xy = shadowCoord2 + shadowOffset[1].xy; 
 light2 += texture(shadowTexture, p2, depth2); 
 p2.xy = shadowCoord2 + shadowOffset[1].zw; 
 light2 += texture(shadowTexture, p2, depth2); 
 
 // Return blended average value. 
 return (lerp(light2, light1, weight) * 0.25); 
} 
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Figure 8.14. (a) Shadows are rendered with a cascaded shadow map having four layers of size 
1024 1024×  texels. Cascade 0 extends from the camera position to 15m along the view direction, 
cascade 1 extends from 10m to 50m, cascade 2 extends from 40m to 120m, and cascade 3 extends 
from 100m to 320m. (b) �e depths stored in the separate cascades are shown as grayscale images 
rendered from the perspective of the light source. �e area covered by the shadow map is consider-
ably larger as the cascade index increases. In each cascade, the main camera position is near the 
upper-right corner of the image, and the geometry rendered in the shadow map roughly approxi-
mates the shape of the cascade boundary. 

8.3.4  Shadow Depth Offset 

When a shadow map is rendered from the perspective of the light source, it records 
depths of the scene geometry at a set of positions corresponding to the centers of 
the texels in the shadow map. When the scene is later rendered from the perspective 
of the main camera, depths relative to the light source are calculated for a different 
set of positions corresponding to the centers of the pixels in the frame buffer. Con-
sequently, for a pixel belonging to any surface that does not have a shadow cast 
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upon it, the depth fetched from the shadow map and the calculated depth are very 
close to the same value, but they are not an exact match. Either of the values can 
be less or greater than the other, and this is true even in the absence of floating-
point precision limits. �e result is one of the well-known artifacts for which 
shadow maps are notorious. Surfaces tend to cast shadows on themselves in essen-
tially random patterns that move and flicker due to their highly sensitive depend-
ence on the camera transform. 
 �e specific type of self-shadowing just described is rather easy to eliminate. 
(A related but different artifact discussed below is more difficult.) All we need to 
do is add a small value to all the depths rendered into every shadow map. �is 
causes all the surfaces to be pushed away from the light source by a little bit so 
that their depths are no longer close enough to the values calculated for the main 
camera to cause a problem. A reliable way to offset the depths in a shadow map is 
to modify the projection matrix applied when the shadow map is rendered by add-
ing the offset δ to the appropriate matrix entry. 
 For the perspective projection matrix shadowP  given by Equation (8.55), which 
we use to render the shadow maps associated with spot and point lights, we add δ 
to the ( )2, 2  entry because that entry becomes the constant term in the depth cal-
culation after the perspective divide. (If the matrix is a reversing projection, then 
we instead subtract δ to increase the distance from the camera.) For the ortho-
graphic projection matrix cascade

kP  given by Equation (8.69), which we use to render 
cascaded shadow maps, we simply set the ( )2, 3  entry to δ because there is no 
perspective divide. In either case, a value of 192δ −=  produces excellent results and 
removes the random self-shadowing artifact in all practical situations. Large values 
of δ should be avoided because they can cause surfaces facing the light source to 
be pushed beyond the back side of a thin object, and this can lead to the appearance 
of detached shadows. 
 �ere is a second well-known artifact of shadow mapping called shadow acne, 
and although good methods exist for getting rid of it, it often cannot be eliminated 
completely. As illustrated in Figure 8.15, shadow acne generally arises from a sig-
nificant and ordinarily unavoidable mismatch between the resolution of the shadow 
map and the resolution of the frame buffer. On any illuminated surface, a single 
texel in the shadow map can cover an area that fills many pixels when the main 
scene is rendered. �e texel holds just one depth that represents the entire area it 
covers, but for any surface not perpendicular to the light direction, the true depth 
of the geometry isn’t actually constant over that area. As a result, the depth sampled 
from the shadow map is too small for some pixels and too large for others, demon-
strated by the stair-step pattern in the Figure 8.15. �e pixels for which the depth 
is too small are mistakenly classified as being inside a shadow, and this produces 
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a periodic darkening on the surface. When many samples are taken for percentage 
closer filtering, the effect tends to smooth out to become the repeating gradient 
pattern that can be seen in Figure 8.16(a). 
 �e maximum error δ between the depth sampled from the shadow map and 
the true depth of a flat surface depends on the angle θ  between the normal vector 
n and the direction l to the light source. As shown in Figure 8.15, we have the 
trigonometric relationship 

 1
2 tanδ θ= . (8.84) 

If the depth could be offset away from the light source by at least this amount when 
the shadow map is rendered, then we could avoid many self-shadowing artifacts. 
To account for all possible alignments of pixels and texels, we generally need to 
double the value of δ. Furthermore, a larger depth offset must be used to account 
for surfaces that curve away from the light source and thus extend to greater depths 
within the footprint of a single texel. In practice, a depth offset of around 3 tan θ 
works well in typical scenes. 

 
Figure 8.15. �e points 1 , 2 , and 3  represent the centers of texels at which the depths 1z , 

2z , and 3z  are rendered in a shadow map. A single texel of the shadow map may cover many 
pixels when the main scene is rendered, but the same depth value is not accurate over that 
entire area. �is causes self-shadowing artifacts similar to the repeating gradient shown 
below the surface, and they get worse as the angle θ between the normal vector n and the 
direction to light l increases. 
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Figure 8.16. (a) A shadow map for an outdoor scene is rendered without any slope-based depth 
offset, and severe shadow acne is visible on most surfaces. (b) �e GPU has been configured to 
apply depth offset with a slope factor of 3.0 multiplying the value of m given by Equation (8.85), 
and the shadow acne has been eliminated. (c) Without depth offset clamping, surfaces nearly par-
allel to the light direction can be pushed beyond shadow-receiving surfaces, and this allows light 
to leak through. (d) �e depth offset has been clamped to a maximum value of 1 128, and the arti-
facts have been removed. 

 Fortunately, the polygon offset functionality built into most GPUs is designed 
to perform the type of angle-dependent depth offset calculation that we need to 
remove shadow acne. As the shadow map is being rendered, the GPU can calculate 
the value 

 Δ Δmax ,
Δ Δ

z zm
x y

 =  
 

 (8.85) 

corresponding to the largest amount by which the depth z changes for a one-texel 
change in the x or y directions. �is maximum slope is precisely the value of 2δ 
that we want because m is basically equal to the larger value of tan θ  calculated in 

(a) (b) 

(c) (d) 
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horizontal and vertical planes. All we have to do is specify what multiple of tan θ  
that we would like that hardware to use, which should be positive for conventional 
projection matrices and negative for reversing projection matrices. An outdoor 
scene in which shadow acne is removed with a slope-based depth offset of 3m is 
shown in Figures 8.16(a) and 8.16(b). 
 �ere is one problem with the value of m given by Equation (8.85). As the 
angle between the normal vector n and direction to light l approaches 90 degrees, 
the tangent function becomes arbitrarily large. �is can cause the depth offset to be 
large enough that the shadow-casting surface is pushed beyond the surface that 
should receive the shadow. �is causes artifacts like those shown in Figure 8.16(c), 
where light leaks through an I-beam because it has interior surfaces that are nearly 
parallel to the light direction. �e solution to this problem is to limit the value of 
m to some maximum offset, and this functionality is also provided by most GPUs. 
In Figure 8.16(d), the maximum offset has been set to 1 128, and the artifact has 
been eliminated. 

8.4  Stencil Shadows 
�e stencil shadow algorithm is a method for rendering highly accurate shadows 
that was popular for several years beginning in the late 1990s. �e method has 
since gone out of fashion for a variety of reasons, some of which are mentioned 
below, but we nevertheless include a complete discussion of stencil shadows here 
with the purpose of illustrating a clever procedure that could be an inspiration to 
those designing new techniques in computer graphics. �e concept of a silhouette, 
introduced in this section, also has important applications in Chapter 9. 
 As its name suggests, the stencil shadow algorithm uses the stencil buffer to 
mask off areas of the scene that should not receive light. Before the contribution 
from any particular light source is rendered, the stencil buffer is cleared to zero, 
and the volumes of space blocked by shadow-casting objects are drawn in such a 
way that nonzero values are left in the stencil buffer wherever shadows fall on 
other objects in the scene. When the contribution from the light source is rendered, 
the stencil test is configured so that light is added to the frame buffer only for pixels 
still having a stencil value of zero. Since the stencil buffer can be multisampled, 
this produces a nicely antialiased shadow outline, and unlike shadow maps, its pre-
cision always matches the full resolution of the frame buffer. 

8.4.1  Rendering Algorithm 
�e stencil shadow algorithm works by constructing a triangle mesh called a 
shadow volume for each object that can cast shadows. A shadow volume is drawn 
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only into the stencil buffer, so it is never directly visible when a scene is rendered. 
�e exact shape of the shadow volume depends on the position of the light source, 
so an object simultaneously casting shadows for n different lights during the same 
frame needs to have n different shadow volumes to be available at certain times 
during that frame. �e stencil shadow algorithm is not generally amenable to com-
bining multiple lights into a single rendering pass, so the process we describe here 
has to be repeated independently for each light that affects the visible scene. Our 
discussion considers only a single light source with the understanding that addi-
tional light sources are handled in a loop. 
 A shadow volume is constructed by locating all the edges in an object’s trian-
gle mesh having the property that one of the two triangles sharing the edge faces 
toward the light source and the other triangle faces away from the light source. �e 
set of all such edges forms the silhouette of the object with respect to the light 
source, and it represents the boundary between the lit and unlit parts of the object. 
By extruding the silhouette edges away from the light position, we create a surface 
that encloses the volume of space where light is blocked by the object’s shadow. 
Shadow volumes are built a little differently for point lights and infinite lights, but 
the rendering operations are the same for both types of light source. Spot lights are 
treated exactly the same as point lights, so we make no distinction between them 
in this section. 
 An object is not required to be convex to cast a stencil shadow, and silhouettes 
can be rather complicated. �is is not a problem, however, as long as every silhou-
ette is composed of one or more closed loops. �is condition is never verified di-
rectly because it is guaranteed by requiring each object’s triangle mesh to be a 
closed orientable manifold. What this means is that every triangle is adjacent to 
exactly three other triangles across its three edges and that the two triangles in 
every pair sharing a common edge have consistent winding directions. �ere can 
be no dangling edges belonging to only one triangle because that would imply the 
mesh has a hole in it through which the interior is visible. Also, adjacent triangles 
must have normal vectors that either both point outward or both point inward. �e 
requirement of a closed orientable manifold forces every object to be solid, with 
well-defined interior and exterior spaces, and it makes the stencil shadow algo-
rithm unable to tolerate sloppy modeling. 
 Techniques for rendering stencil shadows come in two variants called Z-pass 
and Z-fail, and both of these variants make use of the two-sided stencil functional-
ity available on most GPUs. Shadow volumes are rendered with face culling disa-
bled so that different stencil operations can be applied to front faces and back faces 
in a single draw call. �e Z-pass variant of the algorithm modifies the stencil buffer 
only when the depth test passes, and the Z-fail variant of the algorithm modifies 
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the stencil buffer only when the depth test fails. �e appropriate variant to use de-
pends on the relationship among the positions of the camera, the light source, and 
the object casting a shadow. We first describe how each variant works and then 
discuss the precise conditions under which we choose one variant or the other. 
 Before we can begin rendering shadows, the contents of the depth buffer must 
already have been established. �is is usually accomplished by rendering the scene 
with shading contributions only from ambient light and other effects that are not 
dependent on any direct source of light, such as emission and environment map-
ping. Once this ambient pass has been completed, we add the contribution from 
each light source in a separate rendering pass, but only after we have constructed 
shadow masks in the stencil buffer. �ese additional passes must be rendered with 
the depth test configured so that equal depth values pass because the triangles will 
be the same as those rendered in the ambient pass. 
 �e shadow rendering process for a single light is initiated by clearing the 
stencil buffer to zero. We then render the silhouette extrusion for every object that 
could be casting a shadow for that light using the same camera and view frustum 
used for the main scene. �e stencil shadow algorithm does not render from differ-
ent camera positions as would be done in shadow mapping. While rendering sil-
houette extrusions into the stencil buffer, it is necessary to configure the depth test 
so that equal depth values fail to avoid self-shadowing. 
 �e Z-pass variant of the stencil shadow algorithm is the simpler of the two 
types, and it’s the one that we are able to use in most situations. For the Z-pass 
variant, each shadow volume is composed only of the polygons created by extrud-
ing the silhouette edges of an object away from the light source. �ese polygons 
are rendered with the stencil operation configured such that the value in the stencil 
buffer is incremented for front faces and decremented for back faces whenever the 
depth test passes, as illustrated in Figure 8.17(a). No change is made to the value 
in the stencil buffer when the depth test fails. It’s important to specify the increment 
and decrement operations that allow wrapping so that shadow volume faces can be 
rendered in any order. 
 Along any ray starting at the camera position , if both the front side and back 
side of the silhouette extrusion are visible, because neither fails the depth test, then 
the stencil value is decremented for every time it is incremented, resulting in no 
net change. �ese rays, such as the ray labeled B in Figure 8.17(a), pass completely 
through the shadow volume and ultimately hit some point on a surface farther away 
that is not in the object’s shadow. However, for rays along which the front side of 
the silhouette extrusion passes the depth test, but the back side fails the depth test, 
the stencil value is only incremented. Without a balancing decrement operation, a 
nonzero value is left in the stencil buffer. �ese are precisely the rays for which a 
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Figure 8.17. A shadow volume for an object represented by the green box is extruded away 
from the light position , and it intersects solid geometry represented by the blue region. 
�e green arrows show the normal direction for the polygons making up the shadow vol-
ume. Rays emanating from the camera position  demonstrate how stencil operations ap-
plied to the front and back faces of the shadow volume cause a mask to be rendered in the 
stencil buffer. Circles containing plus signs and minus signs indicate where the stencil value 
is incremented and decremented. No change is made to the stencil value for empty circles. 
(a) �e extruded polygons of the object’s silhouette edges are rendered with the Z-pass 
variant of the stencil shadow algorithm. �e stencil value is incremented and decremented 
when front faces and back faces of the shadow volume pass the depth test, respectively. 
(b) Light and dark caps, highlighted in yellow, are added to the shadow volume to create a 
closed surface for the Z-fail variant of the algorithm. �e stencil value is incremented and 
decremented when back faces and front faces fail the depth test, respectively. 
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shadow-receiving surface passes between the front and back sides of the silhouette 
extrusion, as exemplified by the ray labeled C in Figure 8.17(a). A similar effect 
occurs along the ray labeled A, but in this case, the increment operation is not bal-
anced by a decrement because there is no back side to the silhouette extrusion 
along that direction. In the remaining case, as shown by the ray labeled D, the 
entire shadow volume passes behind solid geometry, so the value in the stencil 
buffer is neither incremented nor decremented, and the point where the ray inter-
sects the surface is not in shadow. 
 �e Z-pass variant works extremely well as long as the camera is outside of 
every object’s silhouette extrusion. More specifically, if a shadow volume inter-
sects the near plane of the view frustum inside the viewport rectangle, then the 
correct values will not be written to the stencil buffer because, in any particular ray 
direction, there may be no front faces relative to the camera position where the 
stencil value would be incremented. �e solution to this problem is to use the Z-fail 
variant of the algorithm, which always produces the correct results regardless of 
the camera position. �e Z-fail variant is more complicated than the Z-pass variant, 
and it generally requires that we operate on more pixels in the stencil buffer, so it 
is more expensive. For these reasons, we do not use Z-fail all the time but instead 
choose to use it on a per-object basis only when we have detected that there exists 
a possible intersection between the shadow volume and the visible part of the near 
plane, as described below. 
 �ere are two differences between the Z-pass and Z-fail variants of the algo-
rithm. First, the Z-fail variant requires that each shadow volume be a closed sur-
face, which means we must do more than just extrude the silhouette edges of an 
object. We also add a light cap, which consists of all the triangles in the object that 
face toward the light source, and we add a dark cap, which consists of all the tri-
angles in the object that face away from the light source. �e light cap is rendered 
in place without any modification. �e dark cap, however, is projected away from 
the light source to the far end of the silhouette extrusion. With the addition of these 
caps, the shadow volume is now bounded by a closed surface. �e second differ-
ence is that the stencil operations are applied only when the depth test fails, and 
they are inverted with respect to which side of a shadow volume polygon is visible. 
�e stencil operations are configured such that the value in the stencil buffer is 
incremented for back faces and decremented for front faces when the depth test 
fails, as illustrated in Figure 8.17(b). In the Z-fail variant, no change is made to the 
value in the stencil buffer when the depth test passes. 
 As demonstrated by the rays labeled A, C, and D in Figure 8.17(b), the value 
in the stencil buffer is incremented whenever a back facing polygon belonging to 
the shadow volume lies beyond a solid surface in a particular ray’s direction. Such 
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a back facing polygon can be part of the silhouette extrusion, or it can belong to 
either the light cap or dark cap. In the case that the ray hits a back facing polygon 
before it intersects a solid surface, as demonstrated by the ray labeled B, the value 
in the stencil buffer is not changed. �ese operations cause the correct masks to be 
drawn in the stencil buffer when the camera position  lies inside the shadow vol-
ume. By decrementing the stencil value when a ray hits a front facing polygon 
behind solid geometry, shadows are also rendered correctly when the camera po-
sition is outside the shadow volume. 
 �e procedure for rendering stencil shadows is summarized by the following 
list. Before shadows are rendered for the first light source, an ambient pass of some 
kind must be rendered to fill the depth buffer with its final values. �en these steps 
are repeated for each light source that casts shadows. 

■ Clear the stencil buffer to zero. 
■ Disable writes to the color buffer and the depth buffer. Shadow volumes are 

rendered only into the stencil buffer. 
■ Set the depth test function to less for a conventional projection matrix or to 

greater for a reversing projection matrix. Any fragment having a depth equal 
to the value in the depth buffer should fail the depth test. 

■ Disable face culling. Front faces and back faces of each shadow volume must 
both be rendered. 

■ Enable the stencil test, and configure the stencil test so that it always passes. 
Stencil operations are based only on the outcome of the depth test. 

■ For each shadow volume, configure two-sided stencil operations as follows: 

■ For the Z-pass variant, set the stencil operations to increment with wrap 
for front faces that pass the depth test and decrement with wrap for back 
faces that pass the depth test. 

■ For the Z-fail variant, set the stencil operations to decrement with wrap for 
front faces that fail the depth test and increment with wrap for back faces 
that fail the depth test. 

■ After all shadow volumes have been rendered, enable writes to the color buffer 
so that the contribution from the light can be added to the frame buffer. 

■ Enable blending, set the blend operation to add, and set the blend factors for 
both the source and destination colors to one. 

■ Set the depth test function to less or equal for a conventional projection matrix 
or to greater or equal for a reversing projection matrix. Fragments having 
depths identical to those in the depth buffer must pass the depth test in the 
lighting pass. 
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■ Enable face culling so that back faces of solid geometry are not rendered. 
■ Set the stencil test function to equal, and set the stencil reference value to zero. 

Configure all stencil operations so that they keep the values that are stored in 
the stencil buffer. 

■ Render the lighting pass. �e stencil test will prevent changes from being made 
in shadows where the stencil value is nonzero. 

8.4.2  Variant Selection 
�e Z-fail variant of the stencil shadow algorithm always works, regardless of 
whether the camera is inside or outside each shadow volume, but it is more expen-
sive than the Z-pass variant. We now answer the question of how to decide when 
it is safe to use the Z-pass variant and when we must use the Z-fail variant to guar-
antee correct results. Let R represent any ray that starts at the light position and 
passes through the near plane inside the four sides of the view frustum. �e exact 
condition that determines which variant to use for a particular shadow-casting ob-
ject is whether there exists a ray R that intersects the object at any point. If such a 
ray exists, then we must render the shadow volume with the Z-fail variant because 
either it includes the camera position or its surface is clipped by the near plane (or 
both). Before we can use the Z-pass variant, we have to be sure that the object does 
not intersect the volume of space formed by the complete set of all rays R. �is 
volume is called the Z-fail region, and it has the shape of a thin oblique pyramid, 
as shown in Figure 8.18. 
 As illustrated in Figure 8.18(a), the Z-fail region is defined in world space by 
the light position  and the four points i  at the corners of the rectangle where the 
near plane intersects the lateral planes of the view frustum. �e points i  are given 
by Equation (6.6) with u n= . Combining them with the light position , we can 
calculate four world-space planes if  with inward-pointing normal vectors that, to-
gether with the near plane, bound the Z-fail region. �e signs of the bounding 
planes depend on the location of the light source with respect to the near plane. 
Assuming for the moment that the light position  lies beyond the near plane in the 
view direction z, the world-space near plane nearf  is given by 

 [ ]near | n= − ⋅ −f z z  . (8.86) 

For the four planes if , we first calculate a normal vector in  using the formula 

 ( )( ) ( )1 mod 4i i ii+= − × −n     , (8.87) 

and then the normalized plane if  is given by 
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Figure 8.18. �e Z-fail region has the shape of an oblique rectangular pyramid, and it is used to 
determine whether a shadow volume can be safely rendered with the Z-pass variant of the stencil 
shadow algorithm. (a) �e edges of the pyramid connect the world-space light position  to the points 

0 , 1 , 2 , and 3  where the near plane intersects the lateral planes of the view frustum. (b) Any 
object that does not intersect the Z-fail region, such as the green box, cannot cast a shadow into the 
visible part of the near plane, and thus its shadow volume can be rendered with the Z-pass variant. 
To prevent false intersection results near the sharp point at the light position, the plane lightf  is added 
to the Z-fail region. Its normal direction points to the center of the near plane at n+ z , where  is 
the world-space camera position, z is the view direction, and n is the distance to the near plane. 

 [ ]1 |i i i i
i

= − ⋅f n n
n

 . (8.88) 

If ( ) n− ⋅ <z  , then the light position  does not lie beyond the near plane. In this 
case, all five of the planes defined by Equations (8.86) and (8.88) must be negated 
so that their normal vectors point toward the interior of the Z-fail region. 
 To determine whether a shadow-casting object intersects the Z-fail region, we 
test its bounding volume against the convex region of space enclosed by the planes 

0f , 1f , 2f , 3f , and nearf  using the same methods described in Section 9.4 that we use 
for frustum culling. For example, we know that an object bounded by a sphere 
having center  and radius r does not intersect the Z-fail region if r⋅ < −f   for any 
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one of the planes. When there is no intersection, we render the object’s shadow 
volume with the Z-pass variant. Otherwise, if an intersection is likely based on the 
outcome of the test, then we render the object’s shadow volume with the Z-fail 
variant. 
 Because the distance n to the near plane is usually very small, the points i  are 
close together, and this causes the bounding planes of the Z-fail region to meet at 
a sharp point at the light position . �is shape can lead to false intersection results 
for objects that are near the light source but have a bounding volume that lies com-
pletely outside the Z-fail region. To remedy this situation, we add a sixth plane lightf  
passing through the light position, as shown in Figure 8.18(b). �e normal vector 

lightn  for this plane points toward the center of the near plane, which is the point 
n+ z . �us, lightn  is given by 

 light n= + −n z , (8.89) 

and the normalized plane lightf  is calculated as 

 [ ]light light light
light

1 |= − ⋅f n n
n

 . (8.90) 

�is plane is added to the boundary of the Z-fail region for light positions on both 
sides of the near plane. 
 When rendering shadows for an infinite light, we can consider the vector infinitel   
pointing in the direction toward the light to be a point ( ), , ,0x y zl l l  at infinity having 
a w coordinate of zero. �is allows us to incorporate infinite lights into the calcu-
lation of the Z-fail region’s bounding planes by revising Equation (8.87) to produce 
normal vectors using the formula 

 ( )( ) ( )1 mod 4 ,i i xyz w ii l+= − × −n l    (8.91) 

where l is now a generalized 4D homogeneous vector representing the position of 
the light source. For a point light, 1wl =  and nothing changes. For an infinite light, 

0wl =  and the normal vector in  is always perpendicular to l. In this case, the Z-fail 
region extends to infinity, and the plane lightf  is never included. 
 If the light position happens to be close to the near plane, then the Z-fail region 
becomes very flat, and floating-point precision issues can arise in Equation (8.91). 
We can detect this case for both point lights and infinite lights by calculating 

 ( )xyz wd l n= − ⋅ −l z  (8.92) 
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and comparing it to a small distance ε. If d ε≥ , then the light source is not too 
close to the near plane, and we proceed to calculate the bounding planes of the 
Z-fail region as previously described, remembering to negate the planes produced 
by Equations (8.86) and (8.88), but not Equation (8.90), if d is negative. Otherwise, 
if d ε< , then the light source is close to the near plane, and we define the Z-fail 
region by the two planes 
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[ ]
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f z z


 . (8.93) 

�e shadow volume for any object not intersecting the thin but infinitely wide vol-
ume of space bounded by these two planes can be safely rendered using the Z-pass 
variant. 

8.4.3  Shadow Volumes 
A shadow volume is composed of up to three distinct components: the extrusion 
of the silhouette edges, the light cap, and the dark cap. �e extrusion is the only 
part that is always rendered because the caps are not necessary in the Z-pass variant 
of the algorithm. In order to construct the silhouette extrusion for a triangle mesh, 
we need to precompute some additional information beyond the arrays of vertex 
positions and per-triangle vertex indices. We also need a list of data structures that 
tell us how triangles share their edges so we can identify the silhouette edges be-
tween triangles facing toward the light source and facing away from it. To store 
this information, we use the Edge structure shown in Listing 8.10. 
 An Edge structure is associated with each unique pair of vertices  and  that 
forms the edge of any triangle in the mesh. �e indices referring to those two ver-
tices must be stored in a consistent order with respect to the two triangles that share 
the edge so that it’s possible to create an extrusion whose polygons have a con-
sistent winding direction. �e rule we follow is that the indices of the vertices  

Listing 8.10. For each edge in a triangle mesh, the Edge structure stores the indices of the two 
vertices connected by the edge and the indices of the two faces that share the edge. �e first face is 
always the one for which the two vertex indices correspond to a counterclockwise winding direction. 

struct Edge 
{ 
 uint16  vertexIndex[2]; 
 uint16  faceIndex[2]; 
}; 
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and  are stored in whichever order is counterclockwise with respect to the front 
side of the first triangle referenced by the Edge structure. For example, consider 
the two triangles sharing a common edge in Figure 8.19. Written in counterclock-
wise order, the first triangle, shown on the right in the figure, has the vertex indices 
( )0 0 0, ,i j k , and the second triangle has the vertex indices ( )1 1 1, ,i j k . Because the 
triangles share the edge connecting  and , the indices 0i  and 1k  are equal and refer 
to the vertex . Likewise, the indices 0j  and 1j  are equal and refer to the vertex . 
Enforcing our vertex order rule, the vertex indices for the edge must be specified 
as ( )0 0,i j  because that follows the counterclockwise direction for the first triangle. 
 As demonstrated in Listing 8.11, the complete list of edges belonging to a tri-
angle mesh can be constructed by making two passes over the list of triangles. In 
the first pass, every triangle is visited, and a new Edge structure is initialized for 
each edge satisfying the condition that the first vertex index for the edge is less 
than the second index in counterclockwise order. For a triangle having indices 
( ), ,i j k , an edge is created whenever i j< , j k< , or k i< . Either one or two of these 
inequalities is true for every triangle. (See Exercise 6.) Each of these new edges is 
stored in a temporary linked list associated with the lesser of its two vertex indices 
so it can be found quickly later. When the first pass completes, an Edge structure 
exists for every edge in the triangle mesh because the vertex indices defining any 
particular edge always have increasing numerical values in counterclockwise order 
for exactly one of the two triangles sharing that edge. �e job of the second pass is 
to match the adjacent triangle to every edge that has already been created. We again 

 
Figure 8.19. Two triangles having vertex indices ( )0 0 0, ,i j k  and ( )1 1 1, ,i j k , wound in coun-
terclockwise order, share the edge connecting vertices  and . By the ordering rule for an 
edge, the vertex indices must be specified as ( )0 0,i j  or the equivalent ( )1 1,k j  so they follow 
a counterclockwise direction for the first triangle. 
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visit every triangle, but this time we look for edges for which the first vertex index  
i is greater than the second index j in counterclockwise order. When such an edge 
is encountered, we search the linked list associated with the lesser index j for the 
Edge structure having the same greater index i. For the matching edge, we fill in 
the index of the current triangle, which must be adjacent to the triangle for which 
the edge was originally created. 

Listing 8.11. �is function builds an array of Edge data structures for an arbitrary triangle mesh 
having vertexCount vertices and triangleCount triangles. �e triangleArray parameter points 
to an array of Triangle data structures each holding three vertex indices. �e edgeArray parameter 
must point to storage for the maximum number of edges that could be produced, which can never 
exceed twice the number of triangles in the mesh. �e return value is the number of Edge structures 
that were written to edgeArray. 

int32 BuildEdgeArray(int32 vertexCount, int32 triangleCount, 
                     const Triangle *triangleArray, Edge *edgeArray) 
{ 
 // Initialize all edge lists to empty. 
 uint16 *firstEdge = new uint16[vertexCount + triangleCount * 2]; 
 uint16 *nextEdge = firstEdge + vertexCount; 
 for (int32 k = 0; k < vertexCount; k++) firstEdge[k] = 0xFFFF; 
 
 int32 edgeCount = 0; 
 const Triangle *triangle = triangleArray; 
 
 // Identify all edges that have increasing vertex indices in CCW direction. 
 for (int32 k = 0; k < triangleCount; k++) 
 { 
  uint16 i1 = triangle[k].index[2]; 
  for (int32 v = 0; v < 3; v++) 
  { 
   uint16 i2 = triangle[k].index[v]; 
   if (i1 < i2) 
   { 
    Edge *edge = &edgeArray[edgeCount]; 
    edge−>vertexIndex[0] = i1; edge−>vertexIndex[1] = i2; 
    edge−>faceIndex[0] = uint16(k); edge−>faceIndex[1] = uint16(k); 
 
    // Add the edge to the front of the list for the first vertex. 
    nextEdge[edgeCount] = firstEdge[i1]; 
    firstEdge[i1] = edgeCount++; 
   } 
 
   i1 = i2; 
  } 
 } 
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 // Match all edges to the triangles for which they are wound clockwise. 
 for (int32 k = 0; k < triangleCount; k++) 
 { 
  uint16 i1 = triangle[k].index[2]; 
  for (int32 v = 0; v < 3; v++) 
  { 
   uint16 i2 = triangle[k].index[v]; 
   if (i1 > i2) 
   { 
    for (uint16 e = firstEdge[i2]; e != 0xFFFF; e = nextEdge[e]) 
    { 
     Edge *edge = &edgeArray[e]; 
     if ((edge−>vertexIndex[1] == i1) && 
         (edge−>faceIndex[0] == edge−>faceIndex[1])) 
     { 
      edge−>faceIndex[1] = uint16(k); 
      break; 
     } 
    } 
   } 
 
   i1 = i2; 
  } 
 } 
 
 delete[] firstEdge; 
 return (edgeCount); 
} 

 Given the set of all edges belonging to a triangle mesh, a shadow volume is 
constructed by determining which subset of those edges constitute the silhouette 
with respect to a specific light position. We first classify each triangle as either 
facing toward the light or away from the light, and store the results in an array of 
boolean values. For a triangle having vertex positions 0 , 1 , and 2 , we can pre-
compute the outward-pointing normal vector ( ) ( )1 0 2 0= − × −n      and store the 
plane [ ]0|= − ⋅f n n   in an array. To classify the triangles in a mesh with respect to 
a 4D homogeneous light position l (where 1wl =  for point lights, and 0wl =  for 
infinite lights) we simply calculate ⋅f l for each one. A triangle is facing toward the 
light source if 0⋅ >f l  and away from the light source otherwise. To determine the 
silhouette, we then visit each edge in the mesh and look up the classifications of 
the two triangles it references. �e edge is part of the silhouette precisely when the 
triangles have different classifications. 
 To ensure that a silhouette extrusion always extends beyond any geometry that 
could receive shadows, the silhouette edges are extruded all the way to infinity. To 
accommodate this, scenes containing stencil-based shadows are always rendered 
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with an infinite projection matrix, either the conventional matrix infinite
∗P  given by 

Equation (6.42) or the reversing matrix infinite
∗R  given by Equation (6.47). �e ex-

trusion calculation itself is performed in the vertex shader. 
 �e triangle mesh composing the silhouette extrusion is built on the CPU using 
an array of 4D vertex positions. �e x, y, and z coordinates of each position are 
always equal to the exact object-space coordinates of one of the vertices  and 
making up an edge on the silhouette. �e w coordinate is set to one for vertices that 
remain on the silhouette and zero for vertices that will be extruded away from the 
light source. �e vertex shader uses this w coordinate to decide what it’s supposed 
to do with the vertex position. 
 For a point light, each silhouette edge becomes a four-sided polygon composed 
of two triangles in the extrusion mesh. Two of the vertices stay put at the positions 
 and , and the other two are moved infinitely far away from the light position.
However, for an infinite light, the extrusion of any vertex ends up at the same point 
at infinity opposite the direction toward the light, so each silhouette edge becomes 
a single triangle. �e exact vertex positions created for both cases are shown in 
Table 8.1. All of the triangles composing the silhouette extrusion need to be con-
sistently wound counterclockwise, but the direction from  to  could follow either
winding order. If the first triangle referenced by the edge connecting  and  faces
the light source, then the vertices must occur in the opposite order in the edge’s 
extruded polygon for it to be wound counterclockwise. If the first triangle faces 
away from the light source, then the vertices stay in the same order. Table 8.1 ac-
counts for these two possibilities. 
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Table 8.1. For a silhouette edge connecting two vertices  and , the extruded polygon has
the object-space homogeneous vertex positions shown in this table. �e order of the verti-
ces depends on whether the first triangle referenced by the edge, for which the direction 
from  to  is winds counterclockwise, faces toward or away from the light source.
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 Given a homogeneous object-space light position l, the vertex shader shown 
in Listing 8.12 performs the calculation 

( )( )1xyz w w xyz xyz w xyz

w w

v l v
v v
′ = − − +
′ =

v v l v
(8.94) 

for each vertex v and transforms the result ′v  with the MVP matrix. �is calculation 
has the effect of leaving any vertex with 1wv =  where it is and extruding any vertex 
with 0wv =  away from the light source. In the case of a point light, we have 1wl = , 
and the extruded vertex position given by Equation (8.94) is ( )| 0xyz xyz′ = −v v l . In 
the case of an infinite light, we have 0wl = , and the extruded vertex position is 

( )| 0xyz′ = −v l , which is independent of the original vertex position. 

Listing 8.12. �is vertex shader code performs silhouette extrusion for both point lights and infinite 
lights. �e homogeneous object-space position of the light source is specified in the uniform constant 
lightPosition. Vertices having a w coordinate of one are not moved, and vertices having a w 
coordinate of zero are extruded to infinity in the direction away from the light. 

uniform float4 mvp[4]; 
uniform float4 lightPosition; 

float4 ExtrudeSilhouette(float4 position) 
{ 

float3 v = lerp(position.xyz * lightPosition.w − lightPosition.xyz, 
   position.xyz, position.w); 

return (float4(dot(v, mvp[0].xyz) + position.w * mvp[0].w, 
  dot(v, mvp[1].xyz) + position.w * mvp[1].w, 
  dot(v, mvp[2].xyz) + position.w * mvp[2].w, 
  dot(v, mvp[3].xyz) + position.w * mvp[3].w)); 

} 

 When rendering a shadow volume using the Z-fail variant of the algorithm, we 
draw light and dark caps in addition to the silhouette edge extrusion. For both caps, 
we render with the unmodified 3D vertex positions that belong to the shadow cas-
tor’s triangle mesh. All we need to do is build two index lists during the process of 
classifying triangles with respect to the light source. One index list references the 
vertices of all triangles facing toward the light source, and the other index list ref-
erences the vertices of all triangles facing away from the light source. Since every 
triangle in the mesh is included in one list or the other, we can allocate a single 
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buffer large enough to hold every triangle in the mesh and then build the two lists 
from opposite ends so they meet in the middle. �e light cap is rendered without 
any change being made to the vertex positions in the vertex shader. �e dark cap 
is rendered with a vertex shader that extrudes every vertex position away from the 
light source, as demonstrated in Listing 8.13. �e dark cap is rendered only for 
point lights, so we assume 1wl =  and always calculate ( )| 0xyz xyz′ = −v v l . 
 Figure 8.20(a) shows an example of a stencil shadow rendered for a character 
model illuminated by a point light source. Light is not added to the ground surface 
inside the shadow because that is where nonzero values were left in the stencil 
buffer after the shadow volume was rendered. �e shadow volume itself is visual-
ized as a wireframe in Figure 8.20(b), and it includes both the silhouette extrusion 
and the dark cap. �e extruded vertices of the silhouette edges and the vertices 
belonging to the dark cap are rendered at infinity. 

Listing 8.13. �is vertex shader code extrudes vertices belonging to the dark cap of a shadow vol-
ume away from a point light. �e object-space position of the light source is specified in the uniform 
constant lightPosition. 

uniform float4 mvp[4]; 
uniform float4 lightPosition; 

float4 ExtrudeDarkCap(float3 position) 
{ 

float3 v = position − lightPosition.xyz; 
return (float4(dot(v, mvp[0].xyz), dot(v, mvp[1].xyz), 

  dot(v, mvp[2].xyz), dot(v, mvp[3].xyz))); 
} 

8.4.4  Optimizations 
One of the well-known drawbacks of the stencil shadow algorithm is its tendency 
to consume an enormous amount of triangle filling power. Any shadow volume can 
cover a large portion of the viewport depending on the spatial relationships among 
the object casting a shadow, the camera position, and the light position. �is is 
taken to the extreme if the camera happens to be inside the shadow volume because 
in that case, the shadow volume surrounds the camera and fills the entire screen. 
Some geometrical shapes make the problem even worse because their shadow vol-
umes consist of multiple extrusions that can be stacked up along the view direction. 
For example, consider the cages shown in Figure 8.11. Each vertical bar would be 
extruded away from the torch, which is a point light, and every pixel covered by 
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Figure 8.20. A stencil shadow is drawn for a character model illuminated by a point light source. 
(a) �e shadow appears where nonzero values were left in the stencil buffer after the shadow volume
was rendered. (b) A wireframe view of the shadow volume shows the extruded silhouette edges and
the triangles belonging to the dark cap.

the shadow volume would be rendered twice per bar, once for front faces and once 
for back faces. Fortunately, very little work is being done at each pixel because no 
pixel shader is executed, the color buffer is not involved in any way, and nothing 
is written to the depth buffer. Today’s GPUs are able blast through shadow volumes 
extremely quickly, but the rendering costs can add up in complex scenes, so we 
would still like to find ways to reduce the number of pixels that we have to process. 
 For point lights, the extent optimizations discussed in Section 8.2 provide 
highly effective ways to reduce the number of pixels covered by a shadow volume. 
Consider the character model illuminated by a point light near the upper-left corner 
of the image in Figure 8.21(a). �e model’s shadow volume would normally ex-
tend to the right and bottom edges of the viewport, but as shown by the wireframe 
view in Figure 8.21(b), the area actually rendered has been reduced a little by using 
the scissor rectangle for the light source. �e size of the reduction can be very 
significant depending on the position and orientation of the camera, but the opti-
mization works only when the camera is outside the light’s radius. 
 A separate optimization makes use of the depth bounds test, which compares 
the depth already stored in the depth buffer against a given range. �e depth bounds 
test was designed to work the way it does specifically to optimize shadow volume 
rendering. When the minimum and maximum depths are set to the projected range 
covered by the light source, the depth bounds test passes only for pixels corre-
sponding to a surface that could receive shadows in that range. If, for any particular 

(a) (b) 
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Figure 8.21. Stencil shadow optimizations can reduce the area rendered for a shadow volume by a 
significant amount. (a) A character model is illuminated by a point light near the upper-right corner 
of the image. (b) �e model’s shadow volume is drawn only inside the scissor rectangle calculated 
for the light source. (c) �e depth bounds test has also been enabled, and it limits rendering to the 
range of depths covered by the light source. (d) A scissor rectangle and depth bounds that take the 
bounding volume of the shadow-casting geometry into account can reduce the filled area to a small 
fraction of its original size. 

pixel, the existing surface is too far away or too close to the camera to be illumi-
nated, then there’s no reason to draw the shadow volume at that pixel because we 
already know that the net change to the stencil buffer will be zero. As shown in 
Figure 8.21(c), enabling the depth bounds test further reduces the area rendered for 
the shadow volume. In this case, the wall in the background is too far away to fall 
inside the depth bounds, and the floor at the bottom of the image is too close. 
 �e depth bounds test provides a remarkably fast optimization because it can 
make use of a hierarchical depth buffer implemented by the GPU. Suppose that the 

(a) (b) 

(c) (d) 
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depth bounds have been set to [ ]min max,z z . If the minimum depth for an entire tile 
is greater than maxz  or the maximum depth for an entire tile is less than minz , then 
the whole tile can be rejected at once. �is allows the GPU to quickly eliminate 
large portions of a shadow volume during the rasterization stage. 
 When they are based only on the radius of the light source, the scissor rectangle 
and depth bounds are often much larger than necessary, and this limits their effec-
tiveness. �e scissor rectangle and depth bounds shown in Figure 8.22(a) corre-
spond to the extents of the light source as they would be calculated using the 
techniques described in Section 8.2, and we can always limit rendering to these 
ranges. However, as shown in Figure 8.22(b), it is frequently possible to do much 
better by also considering the bounding volume of the shadow-casting geometry. 
We can easily determine the silhouette of an object’s bounding box, which contains 
at most six edges, and extrude it away from the light source to a plane lying at the 
maximum reach of the light’s bounding sphere. �is extrusion is a bounding vol-
ume for the shadow itself. If we transform each of its vertices into device space, 

Figure 8.22. Extents for the scissor rectangle and depth bounds are calculated for the camera at the 
position  and the point light of radius maxr  at the position . Lines highlighted in blue correspond to
the planes bounding the scissor rectangle, and lines highlighted in green represent the minimum and 
maximum depth bounds. (a) �e extents are calculated based only on the bounding sphere of the 
light source. (b) �e silhouette edges of the green bounding box surrounding a shadow-casting object 
are extruded away from the light source to a boundary plane. After being transformed into device 
space, the vertices of this extrusion provide a much tighter scissor rectangle and depth bounds. 
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then minimum and maximum values of the x, y, and z coordinates provide a scissor 
rectangle and depth bounds that are much tighter than those calculated for the light 
source. �e reduced shadow volume shown in Figure 8.21(d) demonstrates that the 
results can be quite impressive, and this is a typical case. It’s possible for the co-
ordinate ranges calculated for the extruded bounding volume to extend outside the 
scissor rectangle and depth bounds calculated for the light source, so we still need 
the light-based extents so they can be used to clamp the geometry-based extents. 
 An infinite light has no scissor rectangle or depth bounds by itself, but it is still 
possible to calculate per-geometry extents for a shadow volume extruded away 
from an infinite light. Doing so requires that we have at least one plane that repre-
sents a boundary for all shadow-receiving geometry. For example, in a large out-
door world, a horizontal plane could be established at the lowest point on the 
ground. �e silhouette edges of each object’s bounding box can then be extruded 
to this plane, and the extents of the vertex coordinates in device space still provide 
an equally effective scissor rectangle and depth bounds. 

8.5  Fog 
�e bulk of this chapter has dealt with the journey that a ray of light takes between 
its source and a point on the surface we are rendering. A light’s color lightC  and its 
intensity are transformed into a combined color and illuminance illumC . �e pixel 
shader then applies a reflection model to produce the combined color and lumi-
nance shadedC  that are directed toward the camera from the surface. �is section fo-
cuses on the final transformation to a combined color and luminance cameraC  that 
takes place after the light leaves the surface and before it reaches the camera, which 
is generally known as the application of fog. We consider the effects on the light 
due to its interaction with participating media, a term that collectively refers to the 
gas, liquid, or microscopic particles floating around in the open space through 
which the light is traveling. 

8.5.1  Absorption and Scattering 
�e composition of light is affected by multiple phenomena as it travels through a 
participating medium, and these are illustrated in Figure 8.23. A beam of light is 
represented by a thin cylinder containing particles with which the light can interact. 
�e light leaving a surface enters one end, and a different composition of light 
reaches the camera at the other end. Although the interactions are shown separately 
in the figure, it should be understood that they are mixed together, and each one 
occurs continuously from one end to the other. (In unusual cases, the particles 
themselves could also be emitting light, but we do not account for that here.) 
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Figure 8.23. A long, thin cylinder represents a beam of light leaving a surface on the right 
end and reaching the camera on the left end. �e participating medium is made up of ran-
domly distributed particles illustrated as orange spheres. Some fraction of the original light, 
shown as black lines, is absorbed by the participating medium, and more of it is outscat-
tered to other directions that do not reach the camera. Extinction refers to the combined 
effect of absorption and outscattering. Some light from environmental sources, shown as 
green lines, is added to the beam by inscattering, and this changes the color composition 
of the light reaching the camera. 

 Some of the light in the beam can be absorbed by the medium and turned into 
heat, and this causes the light’s original brightness to be diminished. Some of the 
light can also be scattered when it collides with particles in the medium, and this 
allows the light to continue traveling, but in a different direction. When light no 
longer reaches the camera because it has been scattered to a different direction 
outside the beam, the effect is called outscattering, and it also causes the light’s 
original brightness to be diminished. �e decrease in brightness observed by the 
camera due to the combination of absorption and outscattering is commonly called 
extinction or attenuation. 
 Scattering by the medium can also cause light originating from environmental 
sources to be redirected into the beam toward the camera. �is phenomenon is 
called inscattering, and it causes light of a different color to be added to the beam 
that originally left the surface. For example, inscattered light accounts for the color 
of fog or haze in the atmosphere as well as the color of murky water. As explained 
below, inscattered light is subject to the same absorption and outscattering effects 
as the original light in the beam, just over a shorter distance. Inscattered light is 
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generally dependent on the angle at which external light is incident upon the beam. 
In this section, however, we make the assumption that the source of inscattered 
light is isotropic. In more advanced settings, the fog calculations made here could 
be applied only to ambient light, and the angle-dependent inscattering contribution 
from a bright directional light source can be added by using the atmospheric shad-
owing technique presented in Section 10.6. 
 Absorption has a multiplicative effect over the distance d that a beam of light 
travels. Suppose that a beam has an original luminance 0L , and consider what hap-
pens when the beam travels through one unit of distance inside a uniform medium. 
�e outgoing luminance of the beam is reduced to some fraction F of its incoming 
luminance, so after one unit of distance, the luminance has been reduced to 0L F . 
If the beam now travels through one more unit of distance, then the same fraction 
F of the light makes it through, but we started with a luminance of 0L F  this time, 
so the luminance after two units of distance has been reduced to 2

0L F . Generaliz-
ing to any distance d, the outgoing luminance L is given by 

0
dL L F= . (8.95) 

We can rewrite this equation in terms of the base of the natural logarithm e as 
ln

0
d FL L e= . (8.96) 

Because F is a fraction less than one, the logarithm appearing in the exponent is 
negative. To create a quantity that provides a measure of how much a medium 
tends to absorb light, we define 

ab lnα F= −  (8.97) 

and instead write Equation (8.96) as 

( )0 abexpL L α d= − . (8.98) 

�e constant abα  is called the absorption coefficient, and it is a positive value having 
units of inverse distance. �e minimum value of ab 0α =  means that a medium ab-
sorbs no light at all. �ere is no limit to how large the absorption coefficient can 
be, but practically speaking, the amount of light passing through a medium with a 
fairly high value of abα  will be imperceptible. 
 Outscattering has the same kind of multiplicative effect as absorption. We 
therefore define another positive constant scα  called the scattering coefficient. �is 
constant also has units of inverse distance, and it provides a measure of how much 
light traveling in any direction is scattered by a medium. Outscattering and absorp-
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tion reduce the luminance of the incoming light 0L  independently, and we can ex-
press their combined effect as 

( )( )0 ab scexpL L α α d= − + . (8.99) 

�e extinction coefficient exα  is defined as the sum 

ex ab scα α α= + , (8.100) 

and this allows us to write 

( )0 exexp .L L α d= − (8.101) 

�e extinction coefficient is often referred to as the fog density because it represents 
the number of particle interactions that are likely to take place per unit distance. 
 �e optical depth or optical thickness τ  along a path of length d through a 
medium having the extinction coefficient exα  is defined as 

exτ α d= , (8.102) 

and it has no physical units. �e optical depth provides a direct measure of how 
much the luminance is attenuated over a given path, and it allows us to further 
simplify the form of Equation (8.101) to 

( )0 exp .L L τ= − (8.103) 

When the extinction coefficient is not a constant throughout a medium, the optical 
depth becomes a function of the position on the surface being rendered. �is is 
discussed for media having a linearly varying density below. 
 Unlike absorption and outscattering, inscattering is an additive effect. For each 
unit of distance along the beam, the same amount of external light is scattered 
toward the camera, and we simply add up the contributions over the beam’s entire 
length. We express the quantity of inscattered light per unit distance as sckα , where 

scα  is the same scattering coefficient that we used for outscattering, and k represents 
the fraction of scattered light that is redirected toward the camera. �en, the amount 
of light inscattered along the full length d of the beam is simply sckα d . As men-
tioned earlier, however, the inscattered light is also absorbed and outscattered by 
the medium in the same way that the light originating from the surface is according 
to Equation (8.101). �us, to calculate the correct amount of inscattered light inL  
that reaches the camera, we integrate the attenuated contributions from every dif-
ferential length ds over the entire beam. �is yields the quantity 
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( )

( )[ ]

in ambient sc ex
0

ambient ex

exp

1 exp

d

sc

ex

L L kα α s ds

kαL α d
α

= −

= − −

∫
, (8.104) 

where ambientL  represents the luminance of the ambient light incident on the beam. 
 Taking both extinction and inscattering effects into account, the final lumi-
nance L reaching the camera is given by 

 ( ) ( )[ ]sc
0 ex ambient ex

ex
exp 1 exp .kαL L α d L α d

α
= − + − −  (8.105) 

�e constant sc exkα α  and ambient luminance ambientL  are typically combined with 
an ambient light color to create a fog color fogC , and the separate factors are never 
specified individually. �e initial luminance 0L  is part of the color shadedC  output 
from the pixel shader. We can now express the color and brightness cameraC  of the 
light reaching the camera after the application of fog as 

 ( )camera shaded fog 1 ,C C f C f= + −  (8.106) 

where f is the fog factor given by 

 ( ) ( )exexp exp ,f α d τ= − = −  (8.107) 

and d is the distance between the point  on the surface being rendered and the 
camera position . To calculate d in a pixel shader, we simply take the magnitude 
of the unnormalized view vector = −v   that is typically calculated by the vertex 
shader and interpolated. A simple implementation of Equation (8.106) is shown in 
Listing 8.14. 

8.5.2  Halfspace Fog 
�ere are many situations in which a nonconstant fog density is desirable in order 
to achieve effects such as layered fog in a mountain valley or increasing murkiness 
at greater water depths. �e simplest nonconstant density is given by a linear func-
tion of distance along a single direction, and this gives rise to a boundary plane at 
which the density becomes zero. �is is called halfspace fog because fog exists 
everywhere on one side of the plane, filling half of all space, but fog is completely 
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Listing 8.14. �is pixel shader code applies fog using Equation (8.106). �e distance d is given by 
the magnitude of the view vector v, which should be the unnormalized output of the vertex shader. 
�e uniform constant fogDensity holds the extinction coefficient exα . 

uniform float3 fogColor; 
uniform float  fogDensity; 

float3 ApplyFog(float3 shadedColor, float3 v) 
{ 

float f = exp(−fogDensity * length(v)); 
return (lerp(fogColor, shadedColor, f)); 

} 

absent from the other side where the density would be negative. An example scene 
containing halfspace fog is shown in Figure 8.24. Here, a horizontal fog plane has 
been placed near the top of a small canyon, and the fog density increases linearly 
with the vertical depth inside the canyon. 
 Let f be an arbitrary plane having a unit-length normal vector pointing out of 
the volume in which we want fog to be present. To create halfspace fog behind this 
plane, on its negative side, we define the extinction coefficient exα  no longer as a 
constant, but as the function 

( ) ( )ex 0α α= − ⋅f  , (8.108) 

for any point  in space. �e negative sign accounts for the fact that 0⋅ <f   inside
the fog. �e constant 0α  corresponds to the reference fog density at one unit of 
distance behind the boundary plane, and it controls how quickly the fog gets 
thicker. Because the density increases without bound, an object that is deep enough 
inside the halfspace fog can easily become fogged out, which means that the fog 
factor is so close to zero that light originating from the object is too dim to appear 
on the display. �is opens up culling opportunities that are discussed in Section 9.9. 

In order to formulate an optical depth ( )τ   as a function of the point  on the
surface being rendered, we must integrate ( )exα   along the path that light follows
between  and the camera position . But we have to be careful not to integrate
over any part of the path that lies on the positive side of the fog plane f. Assuming 
for the moment that ⋅f  and ⋅f  are both negative, meaning that both  and  are
inside the fog, we can express the integral for ( )τ   as

( ) ( ) ( )ex 0τ α dq α dq= = − ⋅∫ ∫ f
 

 
   . (8.109) 
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Figure 8.24. Halfspace fog is rendered with a linear density function in a canyon. (a) �e camera 
is placed at a small distance above a horizontal fog plane. �e fog becomes thicker as the depth 
of the geometry in the canyon increases. (b) �e camera is placed well beneath the fog plane 
almost directly below its previous position. �e fog appears thinner in directions that look upward 
because the density decreases in those directions, reaching zero at the fog plane. 

(a) 

(b)
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�e point  represents a position on the path connecting the points  and , which
can be expressed parametrically as 

( )t t= + v  , (8.110) 

where v is again the unnormalized view vector given by = −v  . By substituting
( )t  for  in Equation (8.109), we can rewrite the integral as

( ) ( )
1

0
0

τ α t dt= − ⋅ +∫ f v v  , (8.111) 

which also makes use of the relationship dq dt= v . �is integral is readily evalu-
ated to obtain the formula 

( ) ( )0 .
2

ατ = − ⋅ + ⋅v f f   (8.112) 

As illustrated in Figure 8.25, there are three separate cases in which fog is ap-
plied to at least part of the path connecting the points  and . Equation (8.112)
corresponds to the case shown in Figure 8.25(a), where the entire path lies inside 
the fogged halfspace. In the remaining two cases, where ⋅f  and ⋅f  have opposite
signs, we must exclude the parts of the paths that lie on the positive side of the fog 
plane. �e parameter 0t  at which the ray ( )t  intersects the fog plane is given by

0t ⋅
= −

⋅
f
f v
, (8.113) 

and this replaces one of the limits of integration in Equation (8.111). In the case 
that only ⋅f  is negative, as shown in Figure 8.25(b), we have

( ) ( )

( )

0

0
0

2
0 .

2

t

τ α t dt

α

= − ⋅ +

⋅
=

⋅

∫ f v v

fv
f v

 

 (8.114) 

In the case that only ⋅f  is negative, as shown in Figure 8.25(c), we have

( ) ( )

( )
0

1

0

2
0 .

2

t
τ α t dt

α

= − ⋅ +

 ⋅
= − ⋅ + ⋅ + ⋅ 

∫ f v v

fv f f
f v

 

   (8.115) 
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Figure 8.25. For a point  on the surface being rendered and the camera position , there
are three separate cases in which halfspace fog bounded by the plane f must be applied to 
at least part of the path connecting  and .

�e formulas for the optical depth ( )τ   in all possible cases, including a fourth
case in which neither ⋅f  nor ⋅f  is negative, are summarized in Table 8.2. �ese
formulas share enough similarities that we can devise a single calculation to handle 
all four cases without conditional code in the pixel shader. First, we note that the 
quantity ⋅ + ⋅f c f p appears only when ⋅f  is negative, so we define a constant

1, if 0;
0, otherwise.

m
⋅ <= 



f 
(8.116) 

We can also make use of the fact that ⋅f v is always positive in case B and always 
negative in case C. By taking the absolute value of ⋅f v and using the constant m, 
we can unify cases B and C into the single formula 

( ) ( ) ( ) 2
0

2
ατ m

 ⋅
= − ⋅ + ⋅ − ⋅ 

fv f f
f v
   . (8.117) 

In order to incorporate case A into this formula, we need to eliminate the last term 
inside the brackets whenever ⋅f  and ⋅f  have the same sign. �is can be accom-
plished by replacing ⋅f  with ( ) ( )( )min sgn ,0⋅ ⋅f f   in the last term to arrive at
the formula 

( ) ( ) ( ) ( )( )[ ]2
0 min sgn ,0 .

2
ατ m

ε
 ⋅ ⋅

= − ⋅ + ⋅ − ⋅ + 

f fv f f
f v
    (8.118) 
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Case ⋅f  ⋅f  Optical Depth ( )τ 

A negative negative ( )0

2
α

− ⋅ + ⋅v f f   

B negative positive ( ) 2
0

2
α ⋅

⋅
f

v
f v


C positive negative 
( ) 2

0

2
α  ⋅

− ⋅ + ⋅ + ⋅ 

f
v f f

f v
   

D positive positive 0 

Table 8.2. �e formulas for the optical depth ( )τ   are listed for all four possible combined
signs of ⋅f  and ⋅f . �e similarities among these formulas allow us to devise a single
calculation that can be implemented in a pixel shader to handle every possibility uniformly. 

�is formula also works for case D because both terms are eliminated when ⋅f 
and ⋅f  are both positive. Equation (8.118) thus provides a single unified optical
depth that is valid in all cases. We have added a small constant ε to the denominator 
of the last term to prevent a zero divided by zero operation in the event that 0⋅ =f v . 
Although it may look complicated, it is inexpensive to calculate because  and v
are the only values that are not constants. 
 �e pixel shader function shown in Listing 8.15 implements the optical depth 
calculation given by Equation (8.118) and applies halfspace fog to a shaded color. 
�e fog plane f and camera position  are supplied to the vertex shader in object
space along with the constants m, ⋅f , and ( )sgn ⋅f  . For each vertex position ,
the vertex shader calculates the vector v, the scalar ⋅f v, and the two additional 
scalars 

( )

( ) ( )
1

2 sgn

u m

u

= ⋅ + ⋅

= ⋅ ⋅

f f

f f

 

  . (8.119) 

�ese four values are interpolated and used in what amounts to a rather short cal-
culation in the pixel shader. �e negative sign at the front of Equation (8.118) and 
the negative sign in the exponent of the fog factor cancel each other out, so neither 
appears in the shader. 
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Listing 8.15. �is pixel shader code applies halfspace fog using Equation (8.118), where v is the 
unnormalized view vector, fv is the product ⋅f v, and the values u1 and u2 are given by Equation 
(8.119). �e uniform constant fogDensity holds the reference fog density 0α . 

uniform float3 fogColor; 
uniform float  fogDensity; 

float3 ApplyHalfspaceFog(float3 shadedColor, float3 v, float fv, float u1, float u2) 
{ 

const float kFogEpsilon = 0.0001; 

float x = min(u2, 0.0); 
float tau = 0.5 * fogDensity * length(v) * (u1 − x * x / (abs(fv) + kFogEpsilon)); 
return (lerp(fogColor, shadedColor, exp(tau))); 

} 

Exercises for Chapter 8 

1. Suppose the sun shines on the surface of the earth with an illuminance of ex-
actly V 100 klxE = . Assuming the sun radiates equally in all directions, calcu-
late its luminous intensity in candelas. For the distance from the earth to the
sun, use the value 111.5 10 m× , which is about one astronomical unit.

2. Suppose a point light with range r is located at the position  in camera space.
Consider the extents of its bounding sphere on the projection plane as shown
in Figure 8.7, and assume that zl g r> + . Let f be a normalized plane passing
through the origin that is parallel to the y axis and tangent to the bounding
sphere. Calculate the points  of tangency where r⋅ =f  , and show that the x
coordinates of their projections onto the plane z g=  are equal to the values of

xq  given by Equation (8.29).

3. Suppose that P is a conventional infinite projection matrix having a third row
equal to ( )0, 0,1, n− . Show that the solutions to Equation (8.40), giving the
depth bounds for a point light of radius r at the position , simplify to

device 1
z

nz
l r

= −
±

. 

4. Prove that the maximum diameter of a frustum representing a shadow cascade,
as shown in Figure 8.13, is either the interior diagonal or the diagonal on the
far plane.
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5. Show that the cascade sample weights given by Equation (8.79) produce the
correct linear blending for all possible values of 1u , 2u , and 3u .

6. Let a triangle have vertex indices ( ), ,i j k . Prove that either one or two of the
inequalities i j< , j k< , and k i<  are always true, but never zero or three.

7. Let f be the boundary plane for halfspace fog in which the extinction coeffi-
cient exα  is given by Equation (8.108). Suppose that the camera position  is
inside the fog such that 0⋅ <f  . Calculate the optical depth ( )τ d  along a path
from the camera position to infinity in the direction d. Assume that d points
out of the fog such that 0⋅ >f d .
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Chapter 9 

Visibility and Occlusion 

GPUs are able to quickly decide that rasterization can be skipped for triangles that 
lie completely outside the viewport, but this decision can be made only after the 
vertex shader has run. When all of the triangles making up an object happen to be 
off screen, a significant amount of time can be wasted processing a mesh that ends 
up not being drawn at all. If we simply rendered every object in the world during 
each frame, then we would run into limits on the amount of geometry a world could 
contain very quickly. In order to support large and complex environments, game 
engines have several layers of culling functionality designed to efficiently deter-
mine what parts of the world can be seen from the current camera position. 
 �is chapter discusses a range of techniques commonly used to perform visi-
bility and occlusion operations at various granularities on the CPU. �e overall 
performance of a game engine is often determined by the quality and depth of its 
culling code, and that makes these topics extremely important. As higher-level vis-
ibility structures are implemented, an engine generally gains the ability to handle 
much larger worlds. In addition to identifying the objects that are visible to the 
camera, these structures can be used to identify what objects are illuminated by a 
light source or need to have shadows rendered. 

9.1  Polygon Clipping 

Polygon clipping is used in such a wide variety of situations that it can be consid-
ered a fundamental operation in computer graphics. We introduce it here because 
we will need it for specific purposes later in this chapter and in Chapter 10. Given 
a flat polygon defined by three or more vertices and an arbitrary plane in 3D space, 
polygon clipping is the process of cutting off any portion of the polygon that lies 
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on the negative side of the plane. �ere are three possible outcomes to this process 
depending on the geometric relationship between the polygon and the plane. If all 
of the vertices lie on the positive side of the plane, then no change is made to the 
polygon. If all of the vertices lie on the negative side of the plane, then the polygon 
is completely clipped away, leaving nothing behind. Otherwise, the plane intersects 
the polygon, and only the portion lying on the positive side of the plane remains 
after the clipping operation. In this last case, new vertices are calculated where 
edges of the original polygon cross the clipping plane. 
 We limit our discussion to convex polygons because they are sufficient for all 
situations in which clipping is applied in this book. A convex polygon is one having 
no interior angle greater than 180 degrees. Equivalently, a convex polygon is one 
such that for any two points  and  inside the polygon, every point on the line 
segment connecting  and  is also inside the polygon. �ese definitions admit 
polygons having three or more collinear vertices, and while such polygons are best 
avoided, we don’t disallow them because the most harm they can usually do is 
create a computational redundancy. 
 Let 0 1 1, , , n−    be the vertices of an n-sided convex polygon, and let k be 
a clipping plane that is normalized with 2 1xyzk = . �e vertices must be stored in the 
proper order so that each edge has the consecutive endpoints i  and ( )1 modi n+ , 
where the modulo operation simply means that one of the edges has the endpoints 

1n−  and 0 . We use the convention that the vertices are wound in counterclockwise 
order when the polygon is viewed from the front side of its own plane, as deter-
mined by the direction of its normal vector. For each vertex i , we calculate the 
distance id  to the clipping plane with 

 i id = ⋅k  , (9.1) 

and this allows us to classify each vertex as lying on the positive side of the plane, 
on the negative side of the plane, or in the plane itself. In practice, we consider any 
vertex for which id ε≤  to be lying in the plane, where ε is a small distance such 
as 0.001. �is helps us deal with floating-point round-off error, and it prevents any 
edge in the clipped polygon from having a length less than ε. We can thus think of 
the clipping plane as having a small thickness 2ε, as shown in Figure 9.1. 
 A polygon is clipped by visiting each vertex i , in order, and examining the 
distance id  together with the distance ( )1 modi nd −  of its predecessor to determine the 
state of each edge. �ere are three possible cases that must be handled in different 
ways. First, whenever id ε≥ −  and ( )1 modi nd ε− ≥ − , indicating that neither vertex lies 
on the negative side of the clipping plane, the unmodified edge becomes part of the 
output polygon. �is is the case for the edges ( )0 1,   and ( )4 0,   in Figure 9.1. 
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Figure 9.1. A 5-sided convex polygon defined by vertices 0  through 4  is clipped by a 
plane k. �e vertices 0  and 1  lie on the positive side of the plane. �e vertices 2  and 3  
lie on the negative side of the plane. �e vertex 4  is considered to be lying in the plane 
because it falls within a distance ε of the plane. Vertices 0 , 1 , and 4 , colored green, 
become part of the clipped polygon. Vertices 2  and 3 , colored red, are discarded. A new 
vertex  , colored white, is calculated where the edge ( )1 2,   intersects the plane. �e ver-
tices composing the final clipped polygon are 0 , 1 ,  , and 4 . 

Second, whenever id ε≤  and ( )1 modi nd ε− ≤ , indicating that neither vertex lies on the 
positive side of the clipping plane, the edge is removed in its entirety. �is is the 
case for the edges ( )2 3,   and ( )3 4,   in the figure. (�is is also the case if both 
vertices lie in the plane, but a new identical edge is implicitly formed by the end-
points of the adjacent edges that are not removed.) Finally, whenever one of the 
distances is greater than ε, and the other distance is less than ε− , we calculate the 
position of a new vertex where the edge crosses the clipping plane, and the edge 
connecting the original vertex on the positive side of the plane to the new vertex 
on the plane becomes part of the output polygon. �is is the case for edge ( )1 2,   
in the figure. A polygon has at most two such edges that require a new vertex po-
sition to be calculated, one where a transition is made from the positive side of the 
plane to the negative side and another where a transition is made back to the posi-
tive side. �e maximum number of vertices that the output polygon could have is 

1n + . �is occurs when none of the original vertices lie in the clipping plane and 
exactly one of the original vertices lies on the negative side. 
 When an edge needs to be clipped, we calculate the intersection of the para-
metric line ( ) ( )pos neg post t= + −     and the plane k in the manner described 
in Section 3.4.4. �e vertex pos  refers to the endpoint that lies on the positive side 
of the plane at the distance posd , and the vertex neg  refers to the endpoint that lies 
on the negative side of the plane at the distance negd . We intentionally label the 
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endpoints this way instead of keeping them in polygon order because it’s important 
that we perform the intersection calculation using a consistent line direction with 
respect to the plane. In Section 10.1, this will be necessary when clipping adjacent 
polygons in a triangle mesh in order to avoid seams that could occur due to 
floating-point round-off error. 
 Since we have already calculated pos posd = ⋅k   and neg negd = ⋅k   during the 
classification step, the parameter t at which the line ( )t  intersects the clipping 
plane can be expressed as 

 pos

pos neg

d
t

d d
=

−
. (9.2) 

�e new vertex  on the clipping plane is then given by 

 ( ) pos neg1 .t t= − +    (9.3) 

�e vertex  is inserted into the output polygon following the vertex pos . �e ver-
tex following  in the output polygon is either an original vertex lying in the plane 
or another vertex calculated with Equation (9.3). 
 �e ClipPolygon() function shown in Listing 9.1 clips a convex polygon 
against a given plane. Because information about the maximum number of vertices 
that could compose an input polygon resides with the caller, it is the caller’s re-
sponsibility to provide storage space for the output polygon as well as an array 
used to hold the distances between the original vertices and the clipping plane. �is 
allows the function to be applied to polygons having an unbounded number of 
vertices without allocating its own temporary storage. 

Listing 9.1. �is function clips a convex polygon specified by vertexCount and the points stored 
in the vertex array against the plane given by the plane parameter. �e location array must point 
to storage for at least vertexCount distance values, and the result array must point to storage for 
at least one greater than vertexCount points. �e return value is the number of vertices in the output 
polygon that were written to the result array. 

int32 ClipPolygon(int32 vertexCount, const Point3D *vertex, 
                  const Plane& plane, float *location, Point3D *result) 
{ 
 const float kPolygonEpsilon = 0.001F; 
 int32 positiveCount = 0, negativeCount = 0; 
 
 // Calculate the signed distance to plane for all vertices. 
 for (int32 a = 0; a < vertexCount; a++) 
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 { 
  float d = Dot(plane, vertex[a]); 
  location[a] = d; 
 
  if (d > kPolygonEpsilon) positiveCount++; 
  else if (d < −kPolygonEpsilon) negativeCount++; 
 } 
 
 if (negativeCount == 0) 
 { 
  // No vertices on negative side of plane. Copy original polygon to result. 
  for (int32 a = 0; a < vertexCount; a++) result[a] = vertex[a]; 
  return (vertexCount); 
 } 
 else if (positiveCount == 0) return (0); // No vertices on positive side of plane. 
 
 // Loop through all edges, starting with edge from last vertex to first vertex. 
 int32 resultCount = 0; 
 const Point3D *p1 = &vertex[vertexCount − 1]; float d1 = location[vertexCount − 1]; 
 for (int32 index = 0; index < vertexCount; index++) 
 { 
  const Point3D *p2 = &vertex[index]; float d2 = location[index]; 
  if (d2 < −kPolygonEpsilon) 
  { 
   // Current vertex is on negative side of plane. 
   if (d1 > kPolygonEpsilon) 
   { 
    // Preceding vertex is on positive side of plane. 
    float t = d1 / (d1 − d2); 
    result[resultCount++] = *p1 * (1.0F − t) + *p2 * t; 
   } 
  } 
  else 
  { 
   // Current vertex is on positive side of plane or in plane. 
   if ((d2 > kPolygonEpsilon) && (d1 < −kPolygonEpsilon)) 
   { 
    // Current vertex on positive side, and preceding vertex on negative side. 
    float t = d2 / (d2 − d1); 
    result[resultCount++] = *p2 * (1.0F − t) + *p1 * t; 
   } 
 
   result[resultCount++] = *p2; 
  } 
 
  p1 = p2; d1 = d2; 
 } 
 
 return (resultCount); 
} 
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9.2  Polyhedron Clipping 

Later in this chapter, we will construct convex polyhedra representing regions of 
space that can be seen by the camera or directly illuminated by a light source, and 
it will be necessary to clip these polyhedra against arbitrary planes. We can think 
of a convex polyhedron as a collection of faces that all share a set of vertices and 
edges satisfying the Euler formula 2V E F− + = , where V is the number of verti-
ces, E is the number of edges, and F is the number of faces. By associating an 
inward-pointing plane with each face, we can define the interior of the polyhedron 
as the set of points lying on the positive side of every plane at once. When a clip-
ping plane intersects the polyhedron, as shown in Figure 9.2, a new face is created 
in the plane, and the clipping plane itself is added to the set of planes bounding the 
polyhedron’s volume. 
 As with polygon clipping, our method of polyhedron clipping centers around 
the identification of edges that cross the clipping plane and the calculation of new 
vertices at the points of intersection. However, we now also require a significant 

 
Figure 9.2. A 6-sided convex polyhedron having vertices 0  through 7  is clipped by a 
plane k. �e vertices 0 , 1 , 2 , and 3 , colored green, lie on the positive side of the plane 
and become part of the clipped polyhedron. �e rest of the vertices, colored red, lie on the 
negative side of the plane and are discarded. A new face is created in the clipping plane, 
and its vertices, colored white, are placed at the locations where edges such as ( )0 4,   
intersect the plane. 
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amount of bookkeeping code that maintains face connectivity information. In a 
manner very much like the stencil shadow algorithm described in Section 8.4, tech-
niques discussed later in this chapter will need to find the silhouettes of polyhedra 
with respect to the position of a light source. �us, each edge must carry infor-
mation about the two faces it joins together in addition to the two vertices at its 
endpoints. Each face is defined by the set of edges that make up its boundary. 
 �e data structures that we use to store a polyhedron are shown in Listing 9.2. 
�e Polyhedron structure contains an array of vertex positions numbered 0 to 

1V − , an array of Edge structures numbered 0 to 1E − , an array of Face structures  

Listing 9.2. All of the geometric information defining a convex polyhedron is stored in the Poly-
hedron data structure. All of the vertices, edges, and faces, up to the limits defined at the beginning 
of the code, are stored in the vertex, edge, and face arrays in any order. �e plane containing each 
face is stored at the same offset in the plane array. �e Face structure contains an array of edge 
indices, also in any order, referencing entries in the edge array of the Polyhedron structure. �e 
Edge structure contains two vertex indices referencing entries in the vertex array and two face 
indices referencing entries in the face array of the Polyhedron structure. �e face indices must be 
ordered such that the edge’s vertices are wound counterclockwise for the first face when the poly-
hedron is viewed from its exterior. 

constexpr int32 kMaxPolyhedronVertexCount   = 28; 
constexpr int32 kMaxPolyhedronFaceCount     = 16; 
constexpr int32 kMaxPolyhedronEdgeCount     = (kMaxPolyhedronFaceCount − 2) * 3; 
constexpr int32 kMaxPolyhedronFaceEdgeCount = kMaxPolyhedronFaceCount − 1; 
 
struct Edge 
{ 
 uint8   vertexIndex[2]; 
 uint8   faceIndex[2]; 
}; 
 
struct Face 
{ 
 uint8   edgeCount; 
 uint8   edgeIndex[kMaxPolyhedronFaceEdgeCount]; 
}; 
 
struct Polyhedron 
{ 
 uint8   vertexCount, edgeCount, faceCount; 
 Point3D  vertex[kMaxPolyhedronVertexCount]; 
 Edge   edge[kMaxPolyhedronEdgeCount]; 
 Face   face[kMaxPolyhedronFaceCount]; 
 Plane   plane[kMaxPolyhedronFaceCount]; 
}; 
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numbered 0 to 1F − , and an array of planes for which each entry corresponds to 
the face with the same index. Each Edge structure stores the indices of its two 
vertex positions and the indices of the two faces that share it. (Note that the indices 
in the Edge structure we use here are only 8 bits wide, where they were 16 bits 
wide in Listing 8.10.) �e index of the first face must be the one for which the 
edge’s vertices are wound counterclockwise when viewed from the exterior of the 
polyhedron, as was also the case in Section 8.4. Each Face structure stores the 
number of edges belonging to a face and an array of indices referencing that many 
specific Edge structures. �e indices of adjacent edges belonging to a face do not 
need to be stored consecutively in the Face structure. Edges for each face can be 
referenced in any order as long as the full set forms a complete convex polygon. 
 Our algorithm begins by classifying all of the vertices belonging to a polyhe-
dron with respect to the clipping plane k. As with polygon clipping, we think of 
the clipping plane as having some thickness such that any points within a small 
distance ε of the plane are considered to be lying in the plane. For each vertex i , 
we again calculate the distance id  to the clipping plane with i id = ⋅k  , but we now 
also assign an integer code ic  to the vertex that will be used to quickly classify 
edges. �e code is defined as 

 
0, if ;
1, if ;
3, if .

i

i i

i

d ε
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= − ≥ ≥
 >

 (9.4) 

�at is, any vertex on the negative side of the plane is assigned code 0, any vertex 
lying in the plane is assigned code 1, and any vertex on the positive side of the 
plane is assigned code 3. 
 �e values of the vertex codes are chosen so that the sum of any pair of codes 
is unique. �is lets us calculate a meaningful classification code for each edge in 
the polyhedron by simply adding the codes assigned to its two endpoints. �e fol-
lowing six outcomes are possible, and they are illustrated in Figure 9.3. 

■ Codes 0 and 1. �ese edges have at least one endpoint on the negative side of 
the clipping plane and no endpoint on the positive side. �ey cannot be part of 
the output polyhedron and are therefore deleted. 

■ Code 2. �ese edges lie completely in the clipping plane and become part of 
the result as long as the entire polyhedron is not clipped away. 

■ Code 3. �ese edges have endpoints on opposite sides of the clipping plane, 
and they are the only edges that need to be modified. �e original vertex on the 
positive side of the plane and the newly created vertex where the edge inter-
sects the plane define a new edge in the output polyhedron. 
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Figure 9.3. Each edge belonging to a polyhedron is classified into one of six possible types 
based on the locations of its endpoints. �e classification code assigned to each edge is the 
sum of the classification codes assigned to its two vertices. A vertex is assigned code 0 
(red) if it lies on the negative side of the clipping plane, code 1 (blue) if it lies within a 
distance ε of the clipping plane, and code 3 (green) if it lies on the positive side of the 
clipping plane. �e six possible sums of these codes are 0, 1, 2, 3, 4, and 6. 

■ Codes 4 and 6. �ese edges have at least one endpoint on the positive side of 
the clipping plane and no endpoint on the negative side. �ey are always part 
of the output polyhedron without modification. 

 �e ClipPolyhedron() function shown in Listing 9.3 performs the classifica-
tion step. After classification codes are determined for all of the vertices, a quick 
check of the minimum and maximum code values tells us whether the polyhedron 
is either unclipped or completely clipped away. If there are no vertices on the neg-
ative side of the clipping plane with code 0, then the input polyhedron is returned 
unchanged. If there are no vertices on the positive side of the clipping plane with 
code 3, then the entire polyhedron must be clipped away, and no polyhedron is 
returned. Otherwise, some kind of clipping will take place, and the function pro-
ceeds to calculate the edge classification codes. 
 �e function then examines each face of the original polyhedron to determine 
which faces have at least one vertex on the positive side of the clipping plane by 
looking for edges with a classification code of 3 or higher. Each such face becomes 
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part of the output polyhedron after possible clipping. �e surviving faces are re-
numbered so they are stored contiguously, and the mapping from the original face 
indices to the new face indices is stored in the faceRemap array. �e maximum 
8-bit value of 0xFF is used in this array to indicate that the original face is com-
pletely clipped away and thus will not be part of the result. 

Listing 9.3. �is function clips the polyhedron specified by the polyhedron parameter against the 
plane given by the plane parameter and returns a clipped polyhedron through the result parameter. 
�e return value is true if the output polyhedron is nonempty and false if it is completely clipped 
away. �e portion of the function shown in this listing classifies the vertices and edges of the poly-
hedron and then determines which faces become part of the result. (Continued in Listing 9.4.) 

bool ClipPolyhedron(const Polyhedron *polyhedron, const Plane& plane, Polyhedron *result) 
{ 
 float  vertexLocation[kMaxPolyhedronVertexCount]; 
 int8  vertexCode[kMaxPolyhedronVertexCount]; 
 int8  edgeCode[kMaxPolyhedronEdgeCount]; 
 uint8  vertexRemap[kMaxPolyhedronVertexCount]; 
 uint8  edgeRemap[kMaxPolyhedronEdgeCount]; 
 uint8  faceRemap[kMaxPolyhedronFaceCount]; 
 uint8  planeEdgeTable[kMaxPolyhedronFaceEdgeCount]; 
 
 const float kPolyhedronEpsilon = 0.001F; 
 int32 minCode = 6, maxCode = 0; 
 
 // Classify vertices. 
 uint32 vertexCount = polyhedron−>vertexCount; 
 for (uint32 a = 0; a < vertexCount; a++) 
 { 
  vertexRemap[a] = 0xFF; 
  float d = Dot(plane, polyhedron−>vertex[a]); 
  vertexLocation[a] = d; 
 
  int8 code = (d > −kPolyhedronEpsilon) + (d > kPolyhedronEpsilon) * 2; 
  minCode = min(minCode, code); maxCode = max(maxCode, code); 
  vertexCode[a] = code; 
 } 
 
 if (minCode != 0) 
 { 
  *result = *polyhedron;  // No vertices on negative side of clip plane. 
  return (true); 
 } 
 
 if (maxCode <= 1) return (false); // No vertices on positive side of clip plane. 
 
 // Classify edges. 
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 uint32 edgeCount = polyhedron−>edgeCount; 
 for (uint32 a = 0; a < edgeCount; a++) 
 { 
  edgeRemap[a] = 0xFF; 
  const Edge *edge = &polyhedron−>edge[a]; 
  edgeCode[a] = int8(vertexCode[edge−>vertexIndex[0]] 
                   + vertexCode[edge−>vertexIndex[1]]); 
 } 
 
 // Determine which faces will be in result. 
 uint32 resultFaceCount = 0; 
 uint32 faceCount = polyhedron−>faceCount; 
 for (uint32 a = 0; a < faceCount; a++) 
 { 
  faceRemap[a] = 0xFF; 
  const Face *face = &polyhedron−>face[a]; 
  uint32 faceEdgeCount = face−>edgeCount; 
  for (uint32 b = 0; b < faceEdgeCount; b++) 
  { 
   if (edgeCode[face−>edgeIndex[b]] >= 3) 
   { 
    // Face has a vertex on the positive side of the plane. 
    result−>plane[resultFaceCount] = polyhedron−>plane[a]; 
    faceRemap[a] = uint8(resultFaceCount++); 
    break; 
   } 
  } 
 } 

 �e next major step in the ClipPolyhedron() function, shown in Listing 9.4, 
determines which edges belonging to the original polyhedron become part of the 
output polyhedron and clips those edges that cross the clipping plane. Only edges 
having a classification code of 3 are clipped, and the position of the new vertex is 
calculated using Equations (9.2) and (9.3). During this process, vertices and edges 
are renumbered, and mappings from the original vertex and edge indices to the 
new vertex and edge indices are stored in the vertexRemap and edgeRemap arrays. 
As before, the value 0xFF indicates that an original vertex or edge does not become 
part of the result. At this point, the function has determined the entire set of vertices 
belonging to the output polyhedron, and this includes original vertices that do not 
lie on the negative side of the clipping plane and new vertices that were created 
where original edges intersect the clipping plane. �e function has also determined 
which of the original edges and faces will not be completely clipped away. Later, 
one new face and possibly several new edges will be created in the clipping plane 
to close the hole made by the clipping process. 
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Listing 9.4. �is piece of the ClipPolyhedron() function loops over the edges in the original pol-
yhedron and identifies those that will become part of the result. Edges having a classification code 
of 0 or 1 are eliminated. Edges having a classification code of 3 are clipped to produce new vertices 
where they intersect the clipping plane. (Continued in Listing 9.5.) 

uint32 resultVertexCount = 0, resultEdgeCount = 0; 
for (uint32 a = 0; a < edgeCount; a++) 
{ 
 if (edgeCode[a] >= 2) 
 { 
  // The edge is not completely clipped away. 
  const Edge *edge = &polyhedron−>edge[a]; 
  Edge *resultEdge = &result−>edge[resultEdgeCount]; 
  edgeRemap[a] = uint8(resultEdgeCount++); 
 
  resultEdge−>faceIndex[0] = faceRemap[edge−>faceIndex[0]]; 
  resultEdge−>faceIndex[1] = faceRemap[edge−>faceIndex[1]]; 
 
  // Loop over both vertices of edge. 
  for (machine i = 0; i < 2; i++) 
  { 
   uint8 vertexIndex = edge−>vertexIndex[i]; 
   if (vertexCode[vertexIndex] != 0) 
   { 
    // This vertex on positive side of plane or in plane. 
    uint8 remappedVertexIndex = vertexRemap[vertexIndex]; 
    if (remappedVertexIndex == 0xFF) 
    { 
     remappedVertexIndex = resultVertexCount++; 
     vertexRemap[vertexIndex] = remappedVertexIndex; 
     result−>vertex[remappedVertexIndex] = polyhedron−>vertex[vertexIndex]; 
    } 
 
    resultEdge−>vertexIndex[i] = remappedVertexIndex; 
   } 
   else 
   { 
    // This vertex on negative side, and other vertex on positive side. 
    uint8 otherVertexIndex = edge−>vertexIndex[1 − i]; 
    const Point3D& p1 = polyhedron−>vertex[vertexIndex]; 
    const Point3D& p2 = polyhedron−>vertex[otherVertexIndex]; 
    float d1 = vertexLocation[vertexIndex]; 
    float d2 = vertexLocation[otherVertexIndex]; 
    float t = d2 / (d2 − d1); 
    result−>vertex[resultVertexCount] = p2 * (1.0F − t) + p1 * t; 
    resultEdge−>vertexIndex[i] = uint8(resultVertexCount++); 
   } 
  } 
 } 
} 



9.2  Polyhedron Clipping 237 

 �e step that remains, shown in Listing 9.5, is to assign edges to every face 
and construct a new face in the clipping plane itself. �e vertices belonging to this 
new face are any original vertices that lie in the clipping plane and all new vertices 
that were created by clipping edges with a classification code of 3. �e new face 
incorporates any original edges for which both endpoints lie in the clipping plane, 
thus having a classification code of 2. Each original face having any clipped edges 
contributes one new edge to the new face, and these are created in arbitrary order 
as the code visits each of the original faces. 
 �e code in Listing 9.5 loops over all of the original faces of the polyhedron. 
For each face that is not completely clipped away, the code loops over the edges 
forming the boundary of that face. Any original edge having a classification code 
that is nonzero and even (code 2, 4, or 6) does not cross onto the negative side of 
the clipping plane at any point, so it is added to the boundary of the corresponding 
face in the output polyhedron. In the case that the classification code is 2, the edge 
is also added to the new face in the clipping plane. 
 Any original edge having a classification code that is odd (code 1 or 3) triggers 
the creation of a new edge in the clipping plane. �ere must be either zero or two 
original edges having an odd classification code. A new edge is created only when 
the first one is found, but information is added to the new edge in both instances 
when an original edge having an odd classification code is encountered. A new 
edge is always wound counterclockwise with respect to the original face, so fol-
lowing the convention we have established, the new edge’s first face index is the 
renumbered index of the original face. For each original edge, we need to deter-
mine whether the endpoint lying in the clipping plane (for code 1) or the new vertex 
where the edge crosses the clipping plane (for code 3) becomes the first or second 
vertex for the new edge. If we consider the entire boundary of the original face to 
be a counterclockwise loop as required locally for the new edge, then the first ver-
tex corresponds to the location where the boundary enters the negative side of the 
clipping plane and the second vertex corresponds to the location where the bound-
ary returns from the negative side. An original edge contributes the first vertex of 
the new edge if (a) it is wound counterclockwise for the original face and its first 
vertex is not on the negative side of the plane or (b) it is wound clockwise for the 
original face and its first vertex is on the negative side of the plane. An original 
edge contributes the second vertex of the new edge if neither of those pairs of 
conditions are satisfied. We always insert the new edge into the new face at the 
same time that the first vertex is contributed to the new edge. 
 After a polyhedron has been clipped by several planes, it is possible for float-
ing-point round-off error to have accumulated to the point that some mathemati-
cally valid assumptions are no longer true. �is can happen if the clipping plane is 
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nearly coincident with a face for which the vertices are not coplanar within an 
acceptable margin of error. �e result is often that one of the original faces has 
exactly one edge with an odd classification code, making it impossible to construct 
the new edge in the clipping plane. When this case is detected in the final lines of 
Listing 9.5, the code simply copies the original polyhedron to the result because 
doing so is the safest option for the visibility regions used later in this chapter. 
 All original edges lying in the clipping plane, as well as any new edges created 
on clipped faces, are added to the planeEdgeTable array in Listing 9.5. �e final 
piece of the ClipPolyhedron() function, shown in Listing 9.6, assembles these 
edges into a new face that lies in the clipping plane. Original edges can have either 
winding direction with respect to the new face, but new edges are always wound 
clockwise. For each edge, the code determines which face index corresponds to 
the new face by simply checking which index still has the uninitialized value 0xFF. 

Listing 9.5. �is piece of the ClipPolyhedron() function loops over the faces in the original poly-
hedron and for each face, loops over the edges forming the boundary of that face. When original 
edges having an odd classification code are encountered, it means that a new edge needs to be cre-
ated in the clipping plane to close the original face. �e new edge is always wound counterclockwise 
with respect to the original face. (Continued in Listing 9.6.) 

uint32 planeEdgeCount = 0; 
for (uint32 a = 0; a < faceCount; a++) 
{ 
 uint8 remappedFaceIndex = faceRemap[a]; 
 if (remappedFaceIndex != 0xFF) 
 { 
  // The face is not completely clipped away. 
  Edge *newEdge = nullptr; uint8 newEdgeIndex = 0xFF; 
 
  const Face *face = &polyhedron−>face[a]; 
  uint32 faceEdgeCount = face−>edgeCount; 
  Face *resultFace = &result−>face[remappedFaceIndex]; 
  uint32 resultFaceEdgeCount = 0; 
 
  for (uint32 b = 0; b < faceEdgeCount; b++)  // Loop over face's original edges. 
  { 
   uint8 edgeIndex = face−>edgeIndex[b]; 
   int32 code = edgeCode[edgeIndex]; 
   if (code & 1)  
   { 
    // One endpoint on negative side of plane, and other either 
    // on positive side (code == 3) or in plane (code == 1). 
    if (!newEdge) 
    { 
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     // At this point, we know we need a new edge. 
     newEdgeIndex = resultEdgeCount; 
     newEdge = &result−>edge[resultEdgeCount]; 
     planeEdgeTable[planeEdgeCount++] = uint8(resultEdgeCount++); 
     *newEdge = Edge{{0xFF, 0xFF}, {remappedFaceIndex, 0xFF}}; 
    } 
 
    const Edge *edge = &polyhedron−>edge[edgeIndex]; 
    bool ccw = (edge−>faceIndex[0] == a); 
    bool insertEdge = ccw ^ (vertexCode[edge−>vertexIndex[0]] == 0); 
 
    if (code == 3) // Original edge has been clipped. 
    { 
     uint8 remappedEdgeIndex = edgeRemap[edgeIndex]; 
     resultFace−>edgeIndex[resultFaceEdgeCount++] = remappedEdgeIndex; 
     const Edge *resultEdge = &result−>edge[remappedEdgeIndex]; 
     if (insertEdge) 
     { 
      newEdge−>vertexIndex[0] = resultEdge−>vertexIndex[ccw]; 
      resultFace−>edgeIndex[resultFaceEdgeCount++] = newEdgeIndex; 
     } 
     else newEdge−>vertexIndex[1] = resultEdge−>vertexIndex[!ccw]; 
    } 
    else  // Original edge has been deleted, code == 1. 
    { 
     if (insertEdge) 
     { 
      newEdge−>vertexIndex[0] = vertexRemap[edge−>vertexIndex[!ccw]]; 
      resultFace−>edgeIndex[resultFaceEdgeCount++] = newEdgeIndex; 
     } 
     else newEdge−>vertexIndex[1] = vertexRemap[edge−>vertexIndex[ccw]]; 
    } 
   } 
   else if (code != 0) 
   { 
    // Neither endpoint is on the negative side of the clipping plane. 
    uint8 remappedEdgeIndex = edgeRemap[edgeIndex]; 
    resultFace−>edgeIndex[resultFaceEdgeCount++] = remappedEdgeIndex; 
    if (code == 2) planeEdgeTable[planeEdgeCount++] = remappedEdgeIndex; 
   } 
  } 
 
  if ((newEdge) && (max(newEdge−>vertexIndex[0], newEdge−>vertexIndex[1]) == 0xFF)) 
  { 
   *result = *polyhedron; return (true); // The input polyhedron was invalid. 
  } 
 
  resultFace−>edgeCount = uint8(resultFaceEdgeCount); 
 } 
} 
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Listing 9.6. �is final piece of the ClipPolyhedron() function assembles all of the edges in the 
clipping plane to form a new face covering the clipped portion of the polyhedron. 

 if (planeEdgeCount > 2) 
 { 
  result−>plane[resultFaceCount] = plane; 
  Face *resultFace = &result−>face[resultFaceCount]; 
  resultFace−>edgeCount = uint8(planeEdgeCount); 
 
  for (uint32 a = 0; a < planeEdgeCount; a++) 
  { 
   uint8 edgeIndex = planeEdgeTable[a]; 
   resultFace−>edgeIndex[a] = edgeIndex; 
 
   Edge *resultEdge = &result−>edge[edgeIndex]; 
   uint8 k = (resultEdge−>faceIndex[1] == 0xFF); 
   resultEdge−>faceIndex[k] = uint8(resultFaceCount); 
  } 
 
  resultFaceCount++; 
 } 
 
 result−>vertexCount = uint8(resultVertexCount); 
 result−>edgeCount = uint8(resultEdgeCount); 
 result−>faceCount = uint8(resultFaceCount); 
 return (true); 
} 

9.3  Bounding Volumes 

A single object in a game world can be made up of many thousands of triangles 
sharing many thousands of vertices. It would be horribly inefficient and impractical 
to determine whether such an object is visible inside the view frustum by perform-
ing any calculation that operates directly on its triangle mesh. Instead, each object 
is given a bounding volume defined by a simple convex geometric shape that sur-
rounds the triangle mesh as tightly as possible. Calculations performed on these 
basic shapes are very fast, and they allow large numbers of objects to be tested for 
visibility at high speed. Although support for a wider variety of shapes could be 
implemented by a game engine, we focus exclusively on spheres and boxes in this 
chapter. �e rewards for supporting additional shapes are often too small to justify 
the greater complexity and impact on code cleanliness. 
 When fitting a bounding volume to a triangle mesh, it is sufficient to enclose 
all of the vertices because convexity then guarantees that every point inside a tri-
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angle is also included in the bounding volume. We measure the quality of a bound-
ing volume, relative to other bounding volumes of the same basic shape, by its 
surface area because the likelihood that a shape intersects another geometric object 
is determined by its cross section, not its volume. For every triangle mesh, there 
exist an optimal sphere and box constituting the bounding volumes with the small-
est possible surface areas, but these are surprisingly difficult to calculate in general. 
To avoid complexity that often yields a depressingly small return on investment, 
we settle for simple methods that produce acceptably good approximations to the 
best bounding volumes possible. 

9.3.1  Bounding Spheres 
Given a set of n vertices 0 1 1, , , n−   , the task of calculating a bounding sphere 
having a tight fit involves finding a satisfactory center position  and radius r. It 
may be tempting to simply use the average position of i  as the center of the sphere, 
but vertex clustering can have a negative impact on the quality of the result. �e 
best bounding sphere is not determined by the vertices in its interior, but only those 
on its surface. Considering that fact, a basic strategy that may immediately come 
to mind is to search for the two vertices a  and b  that are furthest apart and place 
the center  halfway between them. �e radius is then set to the greatest distance 
between  and any vertex i , which could be larger than half the distance between 

a  and b . �ere are two problems with this approach, however. First, finding the 
most separated vertices a  and b  is an ( )2O n  process, which can be time consum-
ing for large triangle meshes. Second, the point halfway between a  and b  isn’t 
necessarily a good choice for the center. For example, the best center position for 
a sphere surrounding a pyramid is not located on its base or any of its edges. We 
will address both of these issues by taking a slightly more sophisticated approach. 
 Instead of directly finding the two vertices a  and b  such that b a−   is max-
imized, we project the vertex positions onto a small set of m fixed directions ju  
and, for each direction, select the vertices producing the minimum and maximum 
values of the dot product j i⋅u  . As illustrated in Figure 9.4, this process identifies 
the pair of vertices a  and b  for which tangent planes perpendicular to the direction 

ju  are furthest apart. After finding the extents of the triangle mesh along every one 
of the m directions ju , we choose the direction for which the actual distance 

b a−  , not just the difference in dot products, is maximized and place the center 
of the sphere halfway between those two vertices. Since m is a constant and each 
step requires only one pass through the array of vertices, the search runs in ( )O n  
time. �is procedure calculates the approximate diameter of a triangle mesh, de-
fined as the maximal distance between any two points on its surface. �e accuracy 
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Figure 9.4. �e extents of a triangle mesh with respect to a direction ju  are determined by 
the indices i a=   and i b=  for which the dot product j i⋅u   is minimized and maximized. 

of the diameter increases with the number of directions m that are considered. �e 
implementation shown in Listing 9.7 uses a total of 13m =  directions correspond-
ing to the vertices, edge midpoints, and face centers of a cube. (It is not necessary 
that the directions be normalized to unit length.) �e code returns the indices a and 
b of the vertices a  and b  that were found to be furthest apart as well as the squared 
distance between them. �is information is used as a starting point for calculating 
a bounding sphere, and it will later be used to determine the orientation of a bound-
ing box. 
 Once the vertices a  and b  representing the diameter of a triangle mesh have 
been determined, we set the center  and radius r of the bounding sphere to 
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. (9.5) 

Even if we have found the true diameter of the triangle mesh, this sphere may not 
contain every vertex. �e simplest example is that of an equilateral triangle. In that 
case, the initial radius r is at most half the length of an edge, but it does not produce 
a sphere large enough to contain all three vertices for any center position. We need 
to make one more pass through the vertex array and adjust the center and radius of 
the sphere as necessary to guarantee inclusion. 
 During the final pass over the vertices, we maintain a current center  and ra-
dius r that are initially set to the values given by Equation (9.5). If we encounter a 
vertex  such that ( ) 2 2r− >  , then we have found a vertex outside the current 
bounding sphere. To remedy the situation, we calculate the center ′  and radius r′ 
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Listing 9.7. �is function calculates the approximate diameter of a set of vertexCount vertices with 
positions stored in the array specified by the vertex parameter. �e pair of vertices corresponding 
to the minimum and maximum extents of the mesh are calculated for 13 directions, and the indices 
of the vertices in the pair found to be furthest apart are returned in the a and b parameters. �e return 
value of the function is the squared distance between these two vertices. 

float CalculateDiameter(int32 vertexCount, const Point3D *vertex, int32 *a, int32 *b) 
{ 
 constexpr int32 kDirectionCount = 13; 
 static const float direction[kDirectionCount][3] = 
 { 
   {1.0F, 0.0F, 0.0F}, {0.0F, 1.0F, 0.0F}, {0.0F, 0.0F, 1.0F}, 
   {1.0F, 1.0F, 0.0F}, {1.0F, 0.0F, 1.0F}, {0.0F, 1.0F, 1.0F}, 
   {1.0F, −1.0F, 0.0F}, {1.0F, 0.0F, −1.0F}, {0.0F, 1.0F, −1.0F}, 
   {1.0F, 1.0F, 1.0F}, {1.0F, −1.0F, 1.0F}, {1.0F, 1.0F, −1.0F}, {1.0F, −1.0F, −1.0F} 
 }; 
 
 float  dmin[kDirectionCount], dmax[kDirectionCount]; 
 int32  imin[kDirectionCount], imax[kDirectionCount]; 
 
 // Find min and max dot products for each direction and record vertex indices. 
 for (int32 j = 0; j < kDirectionCount; j++) 
 { 
  const float *u = direction[j]; 
  dmin[j] = dmax[j] = u[0] * vertex[0].x + u[1] * vertex[0].y + u[2] * vertex[0].z; 
  imin[j] = imax[j] = 0; 
 
  for (int32 i = 1; i < vertexCount; i++) 
  { 
   float d = u[0] * vertex[i].x + u[1] * vertex[i].y + u[2] * vertex[i].z; 
   if (d < dmin[j]) {dmin[j] = d; imin[j] = i;} 
   else if (d > dmax[j]) {dmax[j] = d; imax[j] = i;} 
  } 
 } 
 
 // Find direction for which vertices at min and max extents are furthest apart. 
 float d2 = SquaredMagnitude(vertex[imax[0]] − vertex[imin[0]]); int32 k = 0; 
 for (int32 j = 1; j < kDirectionCount; j++) 
 { 
  float m2 = SquaredMagnitude(vertex[imax[j]] − vertex[imin[j]]); 
  if (m2 > d2) {d2 = m2; k = j;} 
 } 
 
 *a = imin[k]; 
 *b = imax[k]; 
 return (d2); 
} 
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of a new bounding sphere of minimal size that encloses the current bounding 
sphere and the point . As shown in Figure 9.5, the new sphere is tangent to the 
current sphere at the point  directly opposite the point  through the center . We 
can calculate the point  in terms of the direction vector −  as 

 r −
= −

−
  
 

. (9.6) 

�e new center ′  is then placed halfway between the points  and , and the new 
radius r′ is given by the distance between ′  and either  or , as expressed by 

 
2
+′ =

     and   r′ ′= −  . (9.7) 

After every vertex has been checked, we end up with a bounding sphere that ade-
quately surrounds the entire triangle mesh. During this process, the center of the 
bounding sphere tends to shift toward vertices that were not initially included. 
 �e code shown in Listing 9.8 calculates a bounding sphere for an arbitrary set 
of vertices. It first calls the CalculateDiameter() function given by Listing 9.7 
and applies Equation (9.5) to determine the initial center and radius. It then makes 
a pass through all of the vertices and adjusts the bounding sphere as necessary 
using Equation (9.7). 

 
Figure 9.5. A bounding sphere defined by the center  and radius r may not initially include 
every vertex  in a triangle mesh. By calculating the point   directly opposite  through 
the center of the sphere, we find the diameter of a larger sphere with center ′  and radius 
r′ that includes the original sphere and the point . 
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Listing 9.8. �is function calculates the bounding sphere for a set of vertexCount vertices with 
positions stored in the array specified by the vertex parameter. �e center  of the sphere is returned
in the center parameter, and the radius r is the return value of the function. 

float CalculateBoundingSphere(int32 vertexCount, const Point3D *vertex, Point3D *center) 
{ 

int32 a, b; 

// Determine initial center and radius. 
float d2 = CalculateDiameter(vertexCount, vertex, &a, &b); 
*center = (vertex[a] + vertex[b]) * 0.5F; 
float radius = sqrt(d2) * 0.5F;

// Make pass through vertices and adjust sphere as necessary. 
for (int32 i = 0; i < vertexCount; i++) 
{ 

Vector3D pv = vertex[i] − *center; 
float m2 = SquaredMagnitude(pv); 
if (m2 > radius * radius) 
{ 

Point3D q = *center − (pv * (radius / sqrt(m2))); 
*center = (q + vertex[i]) * 0.5F;
radius = Magnitude(q − *center);

} 
} 

return (radius); 
} 

9.3.2  Bounding Boxes 

A bounding box can be defined by a center  and three half-extents xh , yh , and zh .
�e half-extents are equal to the distances from  to the planes coincident with the
box’s faces along three mutually orthogonal axes. Due to the additional freedoms 
provided by having three independent dimensions, a box is usually the superior 
choice for a bounding volume compared to a sphere. Although a box and sphere 
surrounding the same triangle mesh will have similar diameters, a box can often 
be shrunk to a much tighter fit along various directions derived from the direction 
between the vertices with the greatest separation. �is allows a bounding box to 
have a smaller cross-sectional area from some perspectives, whereas the cross-
sectional area of a bounding sphere remains the same. 
 Bounding boxes come in two different varieties whose names reflect their re-
lationships to the underlying coordinate system. An axis-aligned bounding box 
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(AABB) is a box having sides that are aligned to the x, y, and z coordinate axes. An 
axis-aligned bounding box is particularly easy to calculate by simply making one 
pass through a set of vertices { }i  and recording the minimum and maximum x, y, 
and z coordinate values, as shown in Figure 9.6(a). An axis-aligned bounding box 
is frequently chosen for computational simplicity in situations where the speed of 
calculating a bounding box or the ease of placing it in some larger data structure is 
more important than whether the box has the best possible size. �e function shown 
in Listing 9.9 calculates the center and half-extents of an AABB. 
 An oriented bounding box (OBB) is a box that has been aligned to a set of 
perpendicular directions s, t, and u, as shown in Figure 9.6(b). Choosing the direc-
tions s, t, and u optimally is a difficult problem, so we will again make an approx-
imation to keep the implementation simple. Once the directions s, t, and u have 
been selected, the extents of an oriented bounding box are easy to calculate by 
recording minimum and maximum dot products i⋅s  , i⋅t  , and i⋅u   over a set of 
vertices { }i . When s, t, and u coincide with the x, y, and z axes, this reduces to 
the process of selecting the minimum and maximum coordinates described for an 
axis-aligned bounding box. 
 A triangle mesh is typically created with some care taken to align its geometric 
features to the x, y, and z axes in its local coordinate system. In this case, an AABB 

 
Figure 9.6. Bounding boxes are calculated for a set of vertices { }i  making up the triangle mesh for 
a rocket launcher. (a) �e axis-aligned bounding box (AABB) is determined by the minimum and 
maximum x, y, and z coordinates over all vertices ( ), ,i i i ix y z= . (�e z axis points out of the page.) 
(b) �e oriented bounding box (OBB) aligned to the directions s, t, and u is determined by the 
minimum and maximum values of the dot products i⋅s  , i⋅t  , and i⋅u  . (�e direction u points out 
of the page.) 
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Listing 9.9. �is function calculates the axis-aligned bounding box (AABB) for a set of vertex-
Count vertices with positions stored in the array specified by the vertex parameter. �e center  of 
the box is returned in the center parameter, and the half-extents xh , yh , and zh  are returned in the 
size parameter. 

void CalculateAxisAlignedBoundingBox(int32 vertexCount, const Point3D *vertex, 
                                     Point3D *center, Vector3D *size) 
{ 
 Point3D vmin = vertex[0], vmax = vertex[0]; 
 for (int32 i = 1; i < vertexCount; i++) 
 { 
  vmin = Min(vmin, vertex[i]); 
  vmax = Max(vmax, vertex[i]); 
 } 
 
 *center = (vmin + vmax) * 0.5F; 
 *size = (vmax − vmin) * 0.5F; 
} 

is the appropriate type of bounding box in object space, and it becomes an OBB 
when transformed into world space by a matrix objectM . In world space, the direc-
tions s, t, and u are not calculated but are given by the first three columns of objectM , 
and the half-extents acquire any scale contained in objectM . 
 In cases where there may not be an obvious natural alignment, we would like 
to be able to create an oriented bounding box that fits tightly around a triangle 
mesh. �e strategy for quickly calculating good directions s, t, and u for an OBB 
is to derive a small set of candidate directions from the vertices { }i  to serve as the 
primary axis s. For each direction s, we also derive a small set of candidate direc-
tions perpendicular to s to serve as the secondary axis t. �e third axis is always 
set to = ×u s t. �en we simply test each combination of primary and secondary 
axes by computing the extents of the bounding box in those directions, and we 
select the pair of axes that produces the box with the least surface area. 
 �e candidates for the primary axis are determined by a heuristic method that 
systematically identifies five vertices representing extremal points of the triangle 
mesh. �e first two vertices are the points a  and b  corresponding to the approxi-
mate diameter of the triangle mesh, and they are calculated using the same method 
that was used for a bounding sphere with the code in Listing 9.7. A third point c  
is then identified as the vertex having the greatest perpendicular distance to the line 
containing a  and b . As shown in Figure 9.7(a), these three points define a plane 
that cuts through the triangle mesh. �e final two points e  and f  are set to the 
vertices having the least and greatest dot products with that plane. �e vertices a , 
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Figure 9.7. An oriented bounding box (OBB) is calculated for an open treasure chest. (a) Candidates 
for the primary axis of the OBB are given by the nine possible differences between pairs of system-
atically derived extremal points a , b , c , e , and f . (b) �e direction from a  to e  was chosen as 
the best primary axis s, and a perpendicular direction in the vertical plane was chosen as the best 
secondary axis t. 

b , c , e , and f  form a pair of tetrahedra that share a common base drawn as a 
green triangle in the figure. �e nine unique edges of these tetrahedra are the can-
didates for the primary axis, and chances are that at least one of them represents a 
natural orientation for the triangle mesh. Figure 9.7(b) shows the primary axis s 
that was chosen for an example model. 
 For each possible primary axis s, we build a set of candidates for the secondary 
axis t in the plane perpendicular to s by applying a two-dimensional analog of the 
same heuristic method. First, a vector basis is established for the space orthogonal 
to s by selecting a perpendicular vector x using the code in Listing 9.10. �is func-
tion produces a vector in the plane perpendicular to any vector v by taking a cross 
product with whichever axis-aligned unit vector i, j, or k corresponds to the small-
est component of v. After the first perpendicular vector x is determined, the 2D 
basis is completed by calculating = ×y s x. 
 In the space spanned by x and y, we calculate a secondary diameter for the 
triangle mesh using a method analogous to the method used to calculate the pri-
mary diameter in Listing 9.7. As before, we search through a small set of fixed 
directions ju  and find the one for which the minimum and maximum dot products 

j i⋅u   have the largest difference. �is time, however, each direction ju  is specified 
relative to the basis { },x y , and the diameter is chosen as whichever pair of ex-
tremal vertices are separated by the greatest distance after rejecting the component 
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parallel to the primary axis s. If the minimum dot product occurs for the direction 
ju  when i a= , and the maximum dot product occurs when i b= , then the secondary 

diameter is given by the pair of vertices a  and b  for which ( )b a ⊥− s   has the 
largest value over all directions ju . �is process is implemented in Listing 9.11 for 
a set of four directions spaced 45 degrees apart. 

Listing 9.10. �is function calculates a vector that is perpendicular to the vector v. �e return value 
is not normalized to unit length. 

Vector3D MakePerpendicularVector(const Vector3D& v) 
{ 
 float x = Fabs(v.x), y = Fabs(v.y), z = Fabs(v.z); 
 if (z < Fmin(x, y)) return (Vector3D(v.y, −v.x, 0.0F)); 
 if (y < x) return (Vector3D(−v.z, 0.0F, v.x)); 
 return (Vector3D((0.0F, v.z, −v.y)); 
} 

Listing 9.11. �is function calculates the secondary diameter of a set of vertexCount vertices with 
positions stored in the array specified by the vertex parameter. �e pair of vertices corresponding 
to the minimum and maximum extents of the mesh are calculated for four directions in the 2D space 
perpendicular to the primary axis specified by axis, which must have unit length. �e indices of the 
vertices in the pair found to be furthest apart after rejecting the component parallel to the primary 
axis are returned in the a and b parameters. 

void CalculateSecondaryDiameter(int32 vertexCount, const Point3D *vertex, 
                                const Vector3D& axis, int32 *a, int32 *b) 
{ 
 constexpr int32 kDirectionCount = 4; 
 static const float direction[kDirectionCount][2] = 
  {{1.0F, 0.0F}, {0.0F, 1.0F}, {1.0F, 1.0F}, {1.0F, −1.0F}}; 
 
 float  dmin[kDirectionCount], dmax[kDirectionCount]; 
 int32  imin[kDirectionCount], imax[kDirectionCount]; 
 
 // Create vectors x and y perpendicular to the primary axis. 
 Vector3D x = MakePerpendicularVector(axis), y = Cross(axis, x); 
 
 // Find min and max dot products for each direction and record vertex indices. 
 for (int32 j = 0; j < kDirectionCount; j++) 
 { 
  Vector3D t = x * direction[j][0] + y * direction[j][1]; 
  dmin[j] = dmax[j] = Dot(t, vertex[0]); 
  imin[j] = imax[j] = 0; 
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  for (int32 i = 1; i < vertexCount; i++) 
  { 
   float d = Dot(u, vertex[i]); 
   if (d < dmin[j]) {dmin[j] = d; imin[j] = i;} 
   else if (d > dmax[j]) {dmax[j] = d; imax[j] = i;} 
  } 
 } 
 
 // Find diameter in plane perpendicular to primary axis. 
 Vector3D dv = vertex[imax[0]] − vertex[imin[0]]; int32 k = 0; 
 float d2 = SquaredMagnitude(dv − axis * Dot(dv, axis)); 
 for (int32 j = 1; j < kDirectionCount; j++) 
 { 
  dv = vertex[imax[j]] − vertex[imin[j]]; 
  float m2 = SquaredMagnitude(dv − axis * Dot(dv, axis)); 
  if (m2 > d2) {d2 = m2; k = j;} 
 } 
 
 *a = imin[k]; *b = imax[k]; 
} 

 Given the vertices a  and b  corresponding to the secondary diameter, we form 
the plane containing those two points and the direction s of the primary axis. In a 
manner similar to how two tetrahedra were created in 3D space, we create two 
triangles in 2D space by finding the vertices e  and f  having the least and greatest 
dot products with that plane. After rejecting components parallel to s, the unique 
edges of these two triangles provide five candidates for the secondary axis t. It is 
likely that one of those candidates represents a natural orientation for the bounding 
box in the space orthogonal to the primary axis s. Code that calculates all candidate 
directions for primary and secondary axes is shown in Listing 9.12. 
 �e code shown in Listing 9.13 uses all of the procedures discussed so far to 
finally calculate an oriented bounding box for a triangle mesh. It first calculates the 
diameter and establishes the set of nine candidates for the primary axis s. For each 
of these candidates, the code calculates the secondary diameter in the space per-
pendicular to s and establishes the set of five candidates for the secondary axis t. 
For every one of the 45 combinations of these axis directions, the code calculates 
the minimum and maximum dot products between each vertex position i  and the 
three axes s, t, and u, where = ×u s t, producing the values 
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Listing 9.12. �ese functions calculate the candidate directions for the primary and secondary axes 
of an oriented bounding box. �e candidates for the primary axis correspond to the edges of the two 
tetrahedra shown in Figure 9.7. For each specific primary axis s, the candidates for the secondary 
axis t correspond to the edges of an analogous pair of triangles in the space perpendicular to s. 

void FindExtremalVertices(int32 vertexCount, const Point3D *vertex, const Plane& plane, 
                          int32 *e, int32 *f) 
{ 
 *e = 0; *f = 0; 
 float dmin = Dot(plane, vertex[0]), dmax = dmin; 
 for (int32 i = 1; i < vertexCount; i++) 
 { 
  float m = Dot(plane, vertex[i]); 
  if (m < dmin) {dmin = m; *e = i;} 
  else if (m > dmax) {dmax = m; *f = i;} 
 } 
} 
 
void GetPrimaryBoxDirections(int32 vertexCount, const Point3D *vertex, 
                             int32 a, int32 b, Vector3D *direction) 
{ 
 int32 c = 0; 
 direction[0] = vertex[b] − vertex[a]; 
 float dmax = DistPointLine(vertex[0], vertex[a], direction[0]); 
 for (int32 i = 1; i < vertexCount; i++) 
 { 
  float m = DistPointLine(vertex[i], vertex[a], direction[0]); 
  if (m > dmax) {dmax = m; c = i;} 
 } 
 
 direction[1] = vertex[c] − vertex[a]; direction[2] = vertex[c] − vertex[b]; 
 Vector3D normal = Cross(direction[0], direction[1]); 
 Plane plane(normal, −Dot(normal, vertex[a])); 
 
 int32 e, f; 
 FindExtremalVertices(vertexCount, vertex, plane, &e, &f); 
 direction[3] = vertex[e] − vertex[a]; direction[4] = vertex[e] − vertex[b]; 
 direction[5] = vertex[e] − vertex[c]; direction[6] = vertex[f] − vertex[a]; 
 direction[7] = vertex[f] − vertex[b]; direction[8] = vertex[f] − vertex[c]; 
} 
 
void GetSecondaryBoxDirections(int32 vertexCount, const Point3D *vertex, 
                            const Vector3D& axis, int32 a, int32 b, Vector3D *direction) 
{ 
 direction[0] = vertex[b] − vertex[a]; 
 Vector3D normal = Cross(axis, direction[0]); 
 Plane plane(normal, −Dot(normal, vertex[a])); 
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 int32 e, f; 
 FindExtremalVertices(vertexCount, vertex, plane, &e, &f); 
 direction[1] = vertex[e] − vertex[a]; direction[2] = vertex[e] − vertex[b]; 
 direction[3] = vertex[f] − vertex[a]; direction[4] = vertex[f] − vertex[b]; 
 for (int32 j = 0; j < 5; j++) direction[j] −= axis * Dot(direction[j], axis); 
} 

Considering these values, the half-extents xh , yh , and zh  of a bounding box aligned 
to the directions s, t, and u are then given by 

 max min

2x
s sh −

= ,   max min

2y
t th −

= ,   and   max min

2z
u uh −

= . (9.9) 

Since we want the bounding box having the smallest surface area, we calculate 

 x y y z z xA h h h h h h= + + , (9.10) 

which is only one-eighth of the surface area but provides an accurate measurement 
for comparison. �e best bounding box is produced by the pair of candidate axes s 
and t for which the area A is minimized. As the code iterates through the 45 possi-
bilities, the center position is calculated and recorded along with the half-extents 
whenever a better box is found. In terms of the extents along the axes, the center 
position  is given by 

 min max min max min max

2 2 2
s s t t u u+ + +

= + +p s t u. (9.11) 

Listing 9.13. �is function calculates an oriented bounding box for a set of vertexCount vertices 
with positions stored in the array specified by the vertex parameter. �e center  is returned in the 
center parameter, and the half-extents xh , yh , and zh  are returned in the size parameter. �e axis 
parameter must provide storage for an array of three vectors to which the s, t, and u axes are written. 

void CalculateOrientedBoundingBox(int32 vertexCount, const Point3D *vertex, 
                                  Point3D *center, Vector3D *size, Vector3D *axis) 
{ 
 int32   a, b; 
 Vector3D  primaryDirection[9], secondaryDirection[5]; 
 
 CalculateDiameter(vertexCount, vertex, &a, &b); 
 GetPrimaryBoxDirections(vertexCount, vertex, a, b, primaryDirection); 
 
 float area = FLT_MAX; 
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 for (int32 k = 0; k < 9; k++)  // Loop over all candidates for primary axis. 
 { 
  Vector3D s = Normalize(primaryDirection[k]); 
  CalculateSecondaryDiameter(vertexCount, vertex, s, &a, &b); 
  GetSecondaryBoxDirections(vertexCount, vertex, s, a, b, secondaryDirection); 
 
  for (int32 j = 0; j < 5; j++)  // Loop over all candidates for secondary axis. 
  { 
   Vector3D t = Normalize(secondaryDirection[j]), u = Cross(s, t); 
   float smin = Dot(s, vertex[0]), smax = smin; 
   float tmin = Dot(t, vertex[0]), tmax = tmin; 
   float umin = Dot(u, vertex[0]), umax = umin; 
 
   for (int32 i = 1; i < vertexCount; i++) 
   { 
    float ds = Dot(s, vertex[i]), dt = Dot(t, vertex[i]), du = Dot(u, vertex[i]); 
    smin = Fmin(smin, ds); smax = Fmax(smax, ds); 
    tmin = Fmin(tmin, dt); tmax = Fmax(tmax, dt); 
    umin = Fmin(umin, du); umax = Fmax(umax, du); 
   } 
 
   float hx = (smax − smin) * 0.5F, hy = (tmax − tmin) * 0.5F, 
         hz = (umax − umin) * 0.5F; 
 
   // Calculate one-eighth surface area and see if it's better. 
   float m = hx * hy + hy * hz + hz * hx; 
   if (m < area) 
   { 
    *center = (s * (smin + smax) + t * (tmin + tmax) + u * (umin + umax)) * 0.5F; 
    size−>Set(hx, hy, hz); axis[0] = s; axis[1] = t; axis[2] = u; 
    area = m; 
   } 
  } 
 } 
} 

9.4  Frustum Culling 

Frustum culling is the process of rejecting objects that are known to lie outside the 
view frustum before they are needlessly sent to the GPU to be rendered. Frustum 
culling is applied to whole objects that would each be rendered as a single triangle 
mesh on the GPU, and this typically represents the finest granularity at which cull-
ing is performed on the CPU. In cases when an object is only partially visible, its 
entire triangle mesh is submitted to the GPU where any portions outside the view 
frustum are then rejected on a per-triangle basis. 
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 �e frustum culling process takes only an object’s bounding volume into con-
sideration. Whatever might be inside the bounding volume, whether it’s a triangle 
mesh, a light source, or some kind of special effect, is never examined directly. If 
we can prove that an object’s bounding volume lies completely outside the view 
frustum, then we know with certainty that the object itself cannot be visible, and 
we cull it. Because a bounding volume is almost always larger in some way than 
the object it surrounds, there can be instances in which frustum culling fails to 
reject an object that is actually out of view by a small distance, but these occur-
rences are rare enough that we don’t worry about them. 
 A complex model may have several bounding volumes that are organized in a 
tree structure called a bounding volume hierarchy (BVH). In such an arrangement, 
each piece of the model has its own bounding volume, but those pieces are also 
grouped together and surrounded by a larger bounding volume. �is grouping can 
happen once or continue for several levels until there is ultimately one bounding 
volume for the entire model that contains all of the smaller bounding volumes be-
neath it in the hierarchy. �e advantage to using a BVH is that once a particular 
node in the tree is found to be invisible, because it’s completely outside the view 
frustum, then its subnodes are known to be invisible as well and can therefore be 
skipped altogether. Conversely, if a node in the tree is found to lie entirely inside 
the view frustum, then there is no need to test its subnodes because we already 
know they must be visible as well. 

9.4.1  Visibility Regions 
We often need to test objects for visibility not only against the view frustum, but 
against other volumes of space that could be generated from another perspective, 
such as the position of a light source. �e geometric description of each such vol-
ume can be generalized to a convex shape bounded by a set of inward-facing planes 
that we call a visibility region. �ere are many types of visibility regions that we 
will encounter in this chapter, and they are used for a variety of purposes beyond 
determining whether an object is visible inside the view frustum. �ey can also be 
used to figure out whether an object is illuminated by a light source or whether an 
object that may itself be invisible still has a shadow that enters the view frustum. 
Another example is the Z-fail region introduced in Section 8.4.2 used to determine 
which variant of the stencil shadow algorithm should be applied. 
 �e view frustum is the visibility region defined by the six inward-facing 
planes listed in Table 6.1. To demonstrate that an object is not visible, all we have 
to do is show that its bounding volume lies completely on the negative side of at 
least one of the region’s boundary planes, as illustrated in Figure 9.8. It is often the 
case that an infinite projection matrix is being used or the far plane is so far away 
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Figure 9.8. �e view frustum for a camera at the position  pointing in the direction z, 
shaded blue, is a visibility region defined by the near plane and four lateral planes, all of 
which have inward-pointing normal vectors. (�e top and bottom lateral planes are not 
shown.) Object A can be culled because it lies completely on the negative side of one of 
the region’s boundary planes, but object B cannot be culled because part of it lies on the 
positive side of every boundary plane. Object C could lie well behind the camera without 
falling on the negative side of any one of the lateral planes, but it is easily culled against 
the near plane nearg . 

that nothing will ever lie beyond it. For this reason, we usually perform visibility 
tests only against the near plane and the four lateral planes of the view frustum. It 
may seem like the near plane is redundant because the lateral planes all meet at the 
camera position a short distance away, but it’s important to include the near plane 
because large objects behind the camera often do not fall completely on the nega-
tive side of any lateral plane. For example, the object labeled C in Figure 9.8 could 
represent a wall that lies several meters behind the camera. It is clearly not visible, 
but without the near plane to test against, it is not culled because it crosses all four 
of the lateral planes. 
 �e methods used to test a bounding sphere and bounding box for intersection 
with a visibility region are described below. In all cases, we make the assumption 
that the boundary planes of a visibility region and the bounding volume of an ob-
ject are provided in world space. �is means that the planes specified in Table 6.1 
need to be transformed from camera space to world space with Equation (6.3) be-
fore they are used for culling. 
 In Sections 9.6 and 9.7, we will perform operations on visibility regions that 
require information about the region’s vertices and edges in addition to its bound-
ary planes. All of this data can be concisely stored inside the Polyhedron structure 
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defined by Listing 9.2 earlier in this chapter. �e polyhedron corresponding to a 
view frustum (with the far plane included) has the same topology as a cube, con-
sisting of six faces, twelve edges, and eight vertices on the near and far planes 
having world-space positions provided by Equation (6.6). �is polyhedron is con-
structed by the code shown in Listing 9.14 for a given camera node transformation 
matrix cameraM , projection distance g, aspect ratio s, and distances n and f to the 
near and far planes. When rendering cascaded shadow maps, the values of n and f 
can be set to the range [ ],k ka b  covered by a single cascade in order to construct a 
smaller polyhedron useful for shadow culling. 

Listing 9.14. �is function generates a polyhedron corresponding to a view frustum having projec-
tion distance g and aspect ratio s. �e values of n and f provide the distances to the near plane and 
far plane, which could also represent a cascade range. �e Mcam parameter specifies the object-space 
to world-space transformation for the camera. �e results are stored in the Polyhedron data structure 
specified by the polyhedron parameter. 

void BuildFrustumPolyhedron(const Transform4D& Mcam, float g, float s, float n, float f, 
                            Polyhedron *polyhedron) 
{ 
 polyhedron−>vertexCount = 8; polyhedron−>edgeCount = 12; polyhedron−>faceCount = 6; 
 
 // Generate vertices for the near side. 
 float y = n / g, x = y * s; 
 polyhedron−>vertex[0] = Mcam * Point3D(x, y, n); 
 polyhedron−>vertex[1] = Mcam * Point3D(x, −y, n); 
 polyhedron−>vertex[2] = Mcam * Point3D(−x, −y, n); 
 polyhedron−>vertex[3] = Mcam * Point3D(−x, y, n); 
 
 // Generate vertices for the far side. 
 y = f / g; x = y * s; 
 polyhedron−>vertex[4] = Mcam * Point3D(x, y, f); 
 polyhedron−>vertex[5] = Mcam * Point3D(x, −y, f); 
 polyhedron−>vertex[6] = Mcam * Point3D(−x, −y, f); 
 polyhedron−>vertex[7] = Mcam * Point3D(−x, y, f); 
 
 // Generate lateral planes. 
 Transform4D inverse = Inverse(Mcam); 
 float mx = 1.0F / sqrt(g * g + s * s), my = 1.0F / sqrt(g * g + 1.0F); 
 polyhedron−>plane[0] = Plane(−g * mx, 0.0F, s * mx, 0.0F) * inverse; 
 polyhedron−>plane[1] = Plane(0.0F, g * my, my, 0.0F) * inverse; 
 polyhedron−>plane[2] = Plane(g * mx, 0.0F, s * mx, 0.0F) * inverse; 
 polyhedron−>plane[3] = Plane(0.0F, −g * my, my, 0.0F) * inverse; 
 
 // Generate near and far planes. 
 float d = Dot(Mcam[2], Mcam[3]); 
 polyhedron−>plane[4].Set(Mcam[2], −(d + n)); 
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 polyhedron−>plane[5].Set(−Mcam[2], d + f); 
 
 // Generate all edges and lateral faces. 
 Edge *edge = polyhedron−>edge; Face *face = polyhedron−>face; 
 for (int32 i = 0; i < 4; i++, edge++, face++) 
 { 
  edge[0].vertexIndex[0] = uint8(i); 
  edge[0].vertexIndex[1] = uint8(i + 4); 
  edge[0].faceIndex[0] = uint8(i); 
  edge[0].faceIndex[1] = uint8((i − 1) & 3); 
 
  edge[4].vertexIndex[0] = uint8(i); 
  edge[4].vertexIndex[1] = uint8((i + 1) & 3); 
  edge[4].faceIndex[0] = 4; 
  edge[4].faceIndex[1] = uint8(i); 
 
  edge[8].vertexIndex[0] = uint8(((i + 1) & 3) + 4); 
  edge[8].vertexIndex[1] = uint8(i + 4); 
  edge[8].faceIndex[0] = 5; 
  edge[8].faceIndex[1] = uint8(i); 
 
  face−>edgeCount = 4; 
  face−>edgeIndex[0] = uint8(i); 
  face−>edgeIndex[1] = uint8((i + 1) & 3); 
  face−>edgeIndex[2] = uint8(i + 4); 
  face−>edgeIndex[3] = uint8(i + 8); 
 } 
 
 // Generate near and far faces. 
 face[0].edgeCount = face[1].edgeCount = 4; 
 face[0].edgeIndex[0] = 4; face[0].edgeIndex[1] = 5; 
 face[0].edgeIndex[2] = 6; face[0].edgeIndex[3] = 7; 
 face[1].edgeIndex[0] = 8; face[1].edgeIndex[1] = 9; 
 face[1].edgeIndex[2] = 10; face[1].edgeIndex[3] = 11; 
} 

9.4.2  Sphere Visibility 

A bounding sphere of radius r that has a world-space center position  intersects a 
visibility region precisely when there exists a point inside the sphere that is on the 
positive side of all of the region’s boundary planes. �us, we can conclude that the 
sphere is not visible if we can show that for any one of the boundary planes g, no 
point inside the sphere could possibly be on the positive side of g. Since the bound-
ary planes face inward, the sphere must be outside the visibility region if 

 r⋅ ≤ −g  , (9.12) 
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assuming that g is normalized. When this inequality is satisfied, it means the sphere 
is far enough on the negative side of g that no point within its radius could be inside 
the visibility region, as illustrated in Figure 9.9(a). �is leads us to the short pro-
cedure implemented in Listing 9.15 for determining whether an object’s bounding 
sphere is visible. We simply loop over all boundary planes belonging to a visibility 
region and immediately cull the object as soon as we find a plane for which Equa-
tion (9.12) is true. If no such plane is found, then we conclude that the bounding 
sphere is visible. 
 Determining whether a sphere is visible by checking to see if it’s center  is 
never located at a distance of at least r on the negative side of any boundary plane 
is equivalent to moving all of the boundary planes outward by the distance r and 
checking to see if the point  is inside the expanded visibility region. �is larger 
volume is shown as the lighter blue area in Figure 9.9(a), and it is the volume in 
which the center of the sphere must lie for it to be considered visible by the method 
described above. However, if we were to construct the exact set of center positions 
representing all possible visible spheres of radius r, then the edges and corners of 
this volume would be rounded off. �ere are always small volumes of space for 
which center positions are a little further away than the radius r from the visibility 

 
Figure 9.9. (a) �e darker blue area represents the visibility region corresponding to the 
view frustum for a camera at the position . A bounding sphere of radius r is invisible if its 
center  falls on the negative side of any boundary plane by at least the distance r. �e 
lighter blue area represents the volume of space in which the sphere’s center can be located 
without causing the object it contains to be culled. (b) �e red area represents a small vol-
ume of space where false positives are generated. If the center of a bounding sphere is 
located here, then it lies completely outside the visibility region but not on the negative 
side of any boundary plane. 
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region, as exemplified by the tiny red area in Figure 9.9(b). If the center of a bound-
ing sphere happens to fall in one of these extra volumes, then it will be classified 
as visible even though it actually falls entirely outside the visibility region. �is is 
more likely to happen for spheres of larger radii, but it is generally uncommon 
enough that we accept the false positives for the sake of simplicity in our methods. 

Listing 9.15. �is function determines whether the bounding sphere specified by the center and 
radius parameters is visible in the region defined by the planeCount elements of the array specified 
by the planeArray parameter. �e function returns false if the sphere can be culled. 

bool SphereVisible(int32 planeCount, const Plane *planeArray, 
 const Point3D& center, float radius) 

{ 
float negativeRadius = −radius; 
for (int32 i = 0; i < planeCount; i++) 
{ 

if (Dot(planeArray[i], center) <= negativeRadius) return (false); 
} 

return (true); 
} 

9.4.3  Box Visibility 
�e method that tests a bounding box for visibility is based on the same idea as the 
method used for bounding spheres. For a bounding box with a world-space center 
position , we take the dot product with each boundary plane g belonging to the
visibility region and compare the result to a radius representative of the box’s size. 
�e difference is that the radius is no longer a constant, but instead depends on the 
relationship between the orientations of the box and the boundary plane. As shown 
in Figure 9.10, the effective radius rg of a bounding box with respect to the plane g 
is equal to half of the total extent of the box when it is projected onto the direction 
of the plane’s normal vector. If the box has the half-extents xh , yh , and zh  oriented 
to the axes s, t, and u, then we can project each of the vectors xh s, yh t, and zh u 
onto the normal vector xyzg  and simply add up their lengths. �e effective radius rg 
is thus given by 

.x y zr h h h= ⋅ + ⋅ + ⋅g g s g t g u (9.13) 

Once this radius has been calculated, the procedure for determining whether an 
object’s bounding box is visible is the same as that for a bounding sphere. As 
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Figure 9.10. A bounding box has the center  and half-extents xh , yh , and zh  oriented to the
axes s, t, and u. �e box’s effective radius rg with respect to the plane g is given by the sum 
of the projected lengths of its half-extents onto the normal direction of the plane. 

implemented in Listing 9.16, we loop over all the boundary planes of a visibility 
region and cull the object if r⋅ ≤ − gg   for any one of them. In the case of an axis-
aligned bounding box, the vectors s, t, and u are aligned with the coordinate axes, 
and Equation (9.13) reduces to 

x x y y z zr h g h g h g= + +g . (9.14) 

A separate function implementing this equation for testing the visibility of AABBs 
is also included in Listing 9.16. 

Listing 9.16. For a visibility region defined by the planeCount elements of the array specified by 
the planeArray parameter, these functions determine whether bounding boxes are visible and return 
false if they can be culled. In both cases, the center  of the box is specified by the center param-
eter, and the vector ( ), ,x y zh h h  of half-extents is specified by the size parameter. In the case of an 
oriented bounding box, the three unit vectors s, t, and u are passed in through the array specified by 
the axis parameter. 

bool OrientedBoxVisible(int32 planeCount, const Plane *planeArray, 
 const Point3D& center, const Vector3D& size, const Vector3D *axis) 

{ 
for (int32 i = 0; i < planeCount; i++) 
{ 

const Plane& g = planeArray[i]; 
float rg = fabs(Dot(g, axis[0]) * size.x) + fabs(Dot(g, axis[1]) * size.y) 
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           + fabs(Dot(g, axis[2]) * size.z); 
  if (Dot(g, center) <= −rg) return (false); 
 } 
 
 return (true); 
} 
 
bool AxisAlignedBoxVisible(int32 planeCount, const Plane *planeArray, 
                           const Point3D& center, const Vector3D& size) 
{ 
 for (int32 i = 0; i < planeCount; i++) 
 { 
  const Plane& g = planeArray[i]; 
  float rg = fabs(g.x * size.x) + fabs(g.y * size.y) + fabs(g.z * size.z); 
  if (Dot(g, center) <= −rg) return (false); 
 } 
 
 return (true); 
} 

9.5  Light Culling 

In addition to determining what objects are visible, a game engine must be able to 
decide which light sources penetrate the view frustum. For each light source that 
happens to be visible, the engine must also have a way of determining what subset 
of visible objects is actually illuminated. We don’t want to make unnecessary light-
ing calculations in the shaders for any objects that lie beyond a light’s maximum 
range. Furthermore, if the light source is located outside the view frustum, then 
there may be objects that are not directly visible but still cast shadows onto objects 
that are visible, and the engine must be able to determine where that happens. All 
of these tasks can be handled by using various kinds of visibility regions and in-
tersection tests. 
 Suppose we have a point light with a maximum range maxr  at the world-space 
position . Since this clearly provides us with a natural bounding sphere, we can 
test it against a visibility region without modification to easily determine whether 
the volume of space illuminated by the light is visible. It would also be possible to 
determine whether a spot light is visible using the its position  and range maxr , but 
that would not be a good test because at least half of the space inside that bounding 
sphere is not illuminated. A better test would ascertain whether the pyramidal 
boundary of a spot light, shown in Figure 8.4, intersects the view frustum. One 
method that can quickly cull a spot light in some situations is to calculate the 
world-space positions of the five vertices of the pyramid and take their dot products 
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with every plane of a visibility region. If we find a plane for which no dot product 
is positive, then the whole interior of the pyramid lies on the negative side of that 
plane, and the spot light is not visible. �is test is easy to implement, but for spot 
lights with a large range, it can produce a lot of false positives. �e most accurate 
way to test a spot light for visibility is to create a polyhedron with the five pyramid 
vertices and clip it against each of a visibility region’s boundary planes using the 
ClipPolyhedron() function developed in Section 9.2. If the polyhedron is re-
duced to nothing after clipping it against any one of the planes, then the spot light 
is not visible. 
 After it has been decided that a particular light source illuminates at least part 
of the space visible to the camera, we have the task of figuring out which objects 
do not receive a contribution from that light so they can be excluded. Everything 
is lit by an infinite light, but for a point light or spot light, it’s often the case that a 
large portion of the visible set of objects is not affected, especially if the light is far 
from the camera or has a short range. We consider spot lights first because the task 
of culling unlit objects is virtually identical to frustum culling. We then discuss 
intersection tests for point lights. 
 Since a spot light has its own frustum, we can use the same exact bounding 
volume tests already used to determine whether an object was not visible to now 
determine whether it is not illuminated. We just need to construct a visibility region 
using the five world-space boundary planes coinciding with the pyramidal bound-
ary of the spot light. As with a camera’s view frustum, these are given in object 
space by the far plane and four lateral planes listed in Table 6.1. To avoid problems 
near the apex of the pyramid, it’s a good idea to include a near plane passing 
through the spot light’s position. �is plane is simply [ ]0 0 1 0  in object space, 
so it is given by the third row of 1

light
−M  in world space, where lightM  is the light’s 

object-space to world-space transformation. 
 To determine whether an object is not illuminated by a point light at the posi-
tion , we must be able to tell whether the object’s bounding volume lies entirely 
outside the sphere of radius maxr  surrounding the light source. In the case that the 
object has a bounding sphere with center  and radius r, the test is very simple. If 
the distance between the centers is greater than or equal to the sum of the radii, 
then the object is too far away to be illuminated. To avoid taking square roots, we 
implement this test by evaluating 

 ( ) ( )2 2
maxr r− ≥ +  . (9.15) 

 Now suppose that an object has an oriented bounding box with center , half-
extents xh , yh , and zh , and unit-length axes s, t, and u. Using Equation (9.13), we 
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can calculate the effective radius rv of this box with respect to the vector = −v   
between the center of the box and the position of the light source. As shown in 
Figure 9.11(a), this allows us to make a comparison similar to the sphere-sphere 
test performed by Equation (9.15). If the magnitude of v is greater than or equal to 
the sum of the radii rv and maxr , then we know the bounding box is out of range. 
�us, one test for culling an object surrounded by a box is given by 

 ( ) ( ) 222
max max .x y zv r r h h h r≥ + = ⋅ + ⋅ + ⋅ +v v s v t v u  (9.16) 

�is test works well for objects that are small in comparison to range of the point 
light, but it can have problems culling objects when the light range is smaller in 
relative size. Figure 9.11(b) demonstrates how the effective radius rv is too large 
for the box to be culled by the test in Equation (9.16). However, we can still cull 
the box based on its distance from the sphere’s center along one of its own axes s, 
t, or u. �e effective radii of the box in these directions are simply the half-extents 

xh , yh , and zh . If the projected length of v onto s, t, or u is greater than or equal to 
the sum of maxr  and the corresponding half-extent, then we know the box is out of 
range. �is gives us three additional sphere-box tests that we can express as 

 maxxh r⋅ ≥ +v s ,   maxyh r⋅ ≥ +v t ,   and   maxzh r⋅ ≥ +v u . (9.17) 

 
Figure 9.11. An oriented bounding box with the center , half-extents xh , yh , and zh , and unit-length 
axes s, t, and u is tested against the bounding sphere surrounding a point light of range maxr  at the  
position . (a) �e magnitude of the vector v between the centers  and  is greater than the sum of 
the effective radius rv of the box and the radius maxr  of the sphere, so the box can be culled by the 
test in Equation (9.16). (b) �e effective radius is too large in this case, but the length of the projec-
tion of v onto the axis t is greater than the sum of the half-extent yh  along the direction t and the 
radius maxr  of the sphere, so the box can be culled by the test in Equation (9.18). 
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If any one of these three inequalities is true, then the box can be culled. To avoid 
performing three separate comparisons, these tests can be consolidated into a sin-
gle inequality by writing 

 ( ) maxmax , , .x y zh h h r⋅ − ⋅ − ⋅ − ≥v s v t v u  (9.18) 

Neither one of Equations (9.16) and (9.18) subsume the other, so we perform both 
tests to detect as many culling opportunities as possible, as shown in Listing 9.17. 
�ere are still instances in which both tests fail even though the bounding box is 
actually beyond the reach of a point light, but these cases are uncommon and occur 
only when an edge of the bounding box is very close to the light’s bounding sphere. 

Listing 9.17. For a point light at the position lightPosition with range rmax, this function deter-
mines whether a bounding box is illuminated and returns false if it can be culled. �e center  of 
the box is specified by the center parameter, and the vector ( ), ,x y zh h h  of half-extents is specified 
by the size parameter. �e three unit vectors s, t, and u are passed in through the array specified by 
the axis parameter. 

bool OrientedBoxIlluminated(const Point3D& lightPosition, float rmax, 
                      const Point3D& center, const Vector3D& size, const Vector3D *axis) 
{ 
 Vector3D v = center − lightPosition; 
 float vs = fabs(Dot(v, axis[0])); 
 float vt = fabs(Dot(v, axis[1])); 
 float vu = fabs(Dot(v, axis[2])); 
 
 float m = size.x * vs + size.y * vt + size.z * vu + rmax; 
 if (Dot(v, v) >= m * m) return (false); 
 
 return (fmax(fmax(vs − size.x, vt − size.y), vu − size.z) < rmax); 
} 

9.6  Shadow Culling 

Once we have determined that a visible object is illuminated by a light source, we 
know that it has to be included when shadows are rendered for that light because 
at very least, it may cast shadows on itself. If the light source lies inside the view 
frustum, then the set of illuminated objects and the set of shadow-casting objects 
are the same. However, if the light source lies outside the view frustum, then the 
full set of shadow-casting objects is generally larger than the set of illuminated 
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objects. When rendering shadows in this case, we also have to consider objects that 
are positioned between the view frustum and the light source where they are not 
directly visible, but they still cast shadows onto other objects that we can see. If 
we didn’t take this possibility into consideration, then an object’s shadow would 
disappear as soon as the object moved outside the view frustum, and this obviously 
is not correct. 
 For a point on a surface to be covered by a shadow, the line segment connecting 
that point to the light position  must intersect a shadow-casting object. �e set of 
all such line segments connecting any point inside the view frustum to the light 
position forms a convex volume of space called a shadow region. Only objects that 
intersect the shadow region can possibly cast shadows into the view frustum, so 
we test bounding volumes against it and cull any objects that are discovered to fall 
outside. As shown in Figure 9.12, a shadow region can be recognized as the vol-
ume enclosed by the convex hull formed by the view frustum and the light position. 
It will be convenient for us to generalize this concept in two ways. First, the view 
frustum can be replaced by an arbitrary visibility region. We will demonstrate be-
low how clipping the view frustum to a smaller volume can drastically reduce the 
size of the shadow region. Second, we treat the light position as a 4D homogeneous 
point l having a w coordinate of one for point lights and a w coordinate of zero for 
infinite lights. In the case of an infinite light, the shadow region extends to infinity 
in the direction toward the light infinitel  given by Equation (8.21). 

 
Figure 9.12. A shadow region is the convex volume of space containing the view frustum 
and the light position . In addition to the back faces of the view frustum, the set of planes 
bounding a shadow region are derived from the silhouette edges of the view frustum with 
respect to the light position, shown by the bold lines. 
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 A shadow region is constructed by identifying the silhouette edges of a visibil-
ity region. An edge belongs to the silhouette if the two planes intersecting at the 
edge have the property that the light source is on the positive side of one plane and 
the negative side of the other plane. �is is the same meaning of silhouette that was 
introduced for stencil shadows in Section 8.4. For each silhouette edge, we calcu-
late the plane that contains both the edge and the light position and add it to the 
shadow region. Because the planes of a visibility region have normal vectors that 
point inward, any plane g on the back side with respect to the light position l is 
actually facing toward the light and satisfies 0⋅ >g l . �ese back planes are also 
added to the shadow region to complete the convex hull. 
 To find silhouette edges, we first need the geometric information about our 
visibility region to be organized in a Polyhedron structure, which is accomplished 
by Listing 9.14. �at code generates a polyhedron for which the vertices are num-
bered as shown in Figure 9.12. When creating a shadow region for a point light or 
spot light, we generally start with a polyhedron enclosing the entire view frustum. 
Even if an infinite projection matrix is being used, we need to choose some rea-
sonable finite distance to the far plane so the polyhedron is closed. If we are ren-
dering cascaded shadow maps for an infinite light, then we can build a separate 
polyhedron for the portion of the view frustum covered by each cascade by setting 
the near and far plane distances to the cascade range [ ],k ka b . �is allows us to 
create smaller cascade-specific shadow regions that minimize the number of ob-
jects rendered in each shadow map. 
 For a given polyhedron enclosing a visibility region, the code in Listing 9.18 
constructs the set of boundary planes of the shadow region associated with a given 
4D homogeneous light position l. �is code first classifies each plane g of the vis-
ibility region as being either on the front side of the polyhedron or back side. Since 
the plane normals point inward, 0⋅ <g l  for planes on the front side. Any planes 
that are classified as belonging to the back side of the polyhedron are added to the 
output shadow region. �e code then loops over all of the polyhedron’s edges and 
looks for silhouette edges, which are identified by having the property that they are 
shared by faces having different front or back classifications. A new shadow region 
plane is created for each silhouette edge, but we have to make sure its normal di-
rection points inward. �e vertices 0  and 1  referenced by an edge follow the rule 
that the are wound in counterclockwise order with respect to the first face refer-
enced by the edge. If the first face happens to be classified as belonging to the front 
side of the polyhedron, then the plane normal n is given by 

 ( ) ( )0 1 0xyz wl= − × −n l    . (9.19) 
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Listing 9.18. �is function constructs a shadow region for the polyhedron and world-space light 
position specified by the polyhedron and lightPosition parameters. �e boundary planes of the 
shadow region are stored in the array specified by shadowPlane, which must be large enough to 
hold kMaxPolyhedronFaceCount elements. �e return value of the function is the number of planes 
that were generated. 

int32 CalculateShadowRegion(const Polyhedron *polyhedron, const Vector4D& lightPosition, 
                            Plane *shadowPlane) 
{ 
 const float kShadowRegionEpsilon = 1.0e−6F; 
 bool frontArray[kMaxPolyhedronFaceCount]; 
 
 // Classify faces of polyhedron and record back planes. 
 int32 shadowPlaneCount = 0; 
 int32 cameraPlaneCount = polyhedron−>planeCount; 
 for (int32 i = 0; i < cameraPlaneCount; i++) 
 { 
  const Plane& plane = cameraPolyhedron−>plane[i]; 
  frontArray[i] = (Dot(plane, lightPosition) < 0.0F); 
  if (!frontArray[i]) shadowPlane[shadowPlaneCount++] = plane; 
 } 
 
 // Construct planes containing silhouette edges and light position. 
 const Edge *edge = polyhedron−>edge; 
 int32 edgeCount = polyhedron−>edgeCount; 
 for (int32 i = 0; i < edgeCount; i++, edge++) 
 { 
  bool front = frontArray[edge−>faceIndex[0]]; 
  if (front ^ frontArray[edge−>faceIndex[1]]) 
  { 
   // This edge is on the silhouette. 
   const Point3D& v0 = polyhedron−>vertex[edge−>vertexIndex[0]]; 
   const Point3D& v1 = polyhedron−>vertex[edge−>vertexIndex[1]]; 
   Vector3D n = Cross(lightPosition.xyz() − v0 * lightPosition.w, v1 − v0); 
 
   // Make sure plane is not degenerate. 
   float m = SquaredMagnitude(n); 
   if (m > kShadowRegionEpsilon) 
   { 
    // Normalize and point inward. 
    n *= ((front) ? 1.0F : −1.0F) / sqrt(m); 
    shadowPlane[shadowPlaneCount].Set(n, −Dot(n, v0)); 
    if (++shadowPlaneCount == kMaxPolyhedronFaceCount) break; 
   } 
  } 
 } 
 
 return (shadowPlaneCount); 
} 
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Otherwise, if the first face is classified as belonging to the back side of the polyhe-
dron, then the normal is negated. �e plane shadowg  added to the shadow region is 
then equal to 

 [ ]shadow 0
1 |= − ⋅g n n
n

 . (9.20) 

If the magnitude of n is very small because the points 0 , 1 , and l are nearly col-
linear, then the code skips the plane. �is never causes a problem because planes 
for adjacent silhouette edges always meet near the same line. 
 When an infinite light source is behind the camera so that the view direction is 
pointing roughly the same way that the light is shining, the silhouette of the visi-
bility region is made up of the four edges of the view frustum on the far plane or 
the far side of the most distance shadow cascade. Since an infinite light usually 
represents the sun or moon, this alignment occurs when the camera is looking in a 
generally downward direction, in which case the ground is likely to fill a large 
portion of the viewport. As shown in Figure 9.13(a), the associated shadow region 
can be much larger than necessary because it is accounting for a lot of space be-
neath the ground that is not visible. �e magnitude of the problem is actually far 
greater than what can be portrayed in the limited space of the figure, and it would 
not be unexpected for the shadow region to include every shadow-casting object 
in the entire world. �is, of course, creates a performance problem if it is not ad-
dressed in some way. Fortunately, there is an easy solution that comes to the rescue 
if we happen to know what the lowest point in the visible part of the world is. �is 
lowest point can be set manually, or it can be derived from the most distant object 
found to be visible in the view frustum. If a horizontal plane k is established at the 
lowest point, then it can be used to clip the polyhedron corresponding to the view 
frustum’s visibility region, as shown in Figure 9.13(b). �e shadow region is then 
constructed from this clipped polyhedron, and it can be considerably smaller. 
When polyhedra representing separate shadow mapping cascades are clipped, 
some of them may be eliminated completely, saving us from rendering shadow 
maps that won’t actually be used in a subsequent lighting pass. If the camera is not 
looking downward, and the plane k is not visible, then the polyhedron clipping 
process quickly determines that no work needs to be done, and no change is made 
to the visibility region. 
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Figure 9.13. �e camera at position  is looking roughly in the same direction as an infinite 
light shines. (a) Because the camera is pointed in a downward direction, the ground makes 
most of the space inside view frustum invisible, but the associated shadow region still ac-
counts for all of that space. �is can make it excessively large to the point that most or all 
of the objects in the world are eligible for shadow casting. (b) By clipping the view frus-
tum’s visibility region to a plane k representing the lowest point in the visible part of the 
world, the shadow region is reduced in size by a considerable amount. 

9.7  Portal Systems 

While testing bounding volumes for visibility is a fast operation, the time spent 
culling all of the objects outside the view frustum adds up, and this becomes a 
serious performance problem in large worlds that potentially contain millions of 
objects. Organizing the world into some kind of hierarchical structure such as an 
octree can usually reduce visibility testing from an ( )O n  operation to an ( )logO n  
operation, but there are many situations in which we can do better. Whenever a 
world is naturally divided into discrete enclosed areas, it’s usually the case that 
adjacent areas are visible only through relatively small openings. �is is certainly 
true for indoor environments where individual rooms and corridors are connected 
by doorways. �e same kind of structure can often be found in outdoor environ-
ments as well on a significantly larger scale. If we supply information to our game 
engine about what objects belong to each area and how multiple areas are linked 
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together, then we can take advantage of that knowledge to avoid processing parts 
of the world that are completely extraneous for the current location of the camera. 
�is leads to the development of a visibility determination technique known as a 
portal system. 

9.7.1  Zones and Portals 
In a portal system, the world is divided into areas called zones, and zones are con-
nected to other zones through portals. �is is demonstrated in Figure 9.14 for a 
small part of an indoor environment. �e shape of each zone is allowed to be any 
convex volume, but simple boxes are usually adequate. Zones may be organized 
into a hierarchy so that a large zone can contain several smaller subzones. In this 
case, there is a root zone that encompasses the entire world, and all other zones are 
its descendants in a tree structure. An object belongs to a zone if it intersects the 
volume enclosed by the zone, and this is usually determined using the object’s 
bounding volume. 
 When rendering with a portal system, the engine first identifies the zone that 
contains the camera. �e objects belonging to that zone are tested for visibility 
using ordinary frustum culling methods. No consideration is given to objects out-
side the zone at this point, so the number of objects in the rest of the world has no 
effect whatsoever on the amount of processing that has to be done. �e engine then 
goes through a list of portals that exit the current zone and determines if any of 
them are visible. For each portal that can be seen from the camera position, the 
zone to which the portal leads becomes qualified for rendering. All of the objects 
in this new zone are also tested for visibility, but they are tested against the smaller 
region of space produced by considering the boundary of the portal. �e process 
continues recursively through additional portals exiting the connected zone until 
no more portals are visible. �rough this algorithm, a portal system provides the 
capability of rendering enormously complex worlds because the time spent pro-
cessing any parts that are not directly visible through a series of portals is zero. 
 Zones are not required to be disjoint, and it is often practical for them to over-
lap. Any object intersecting two different zones in the region where they overlap 
belongs to both zones. �is is useful for geometry such as walls and doorways that 
make up the barrier between adjacent zones. In the case that a large zone enclosing 
an outdoor area has a subzone corresponding to an indoor area, objects making up 
the exterior of the structure belong to both the outdoor zone and the indoor zone. 
In general any object not fully contained in the union of zones at one level in the 
hierarchy must also belong to the parent zone. Because objects belonging to mul-
tiple zones can be visited multiple times during the portal traversal, they need to 
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Figure 9.14. A portal system is used to determine what areas are visible in a crypt that has 
been divided into multiple zones. (a) From the perspective of the camera, two outgoing 
portals are visible, and their polygons are outlined in orange. (b) In a top view of the same 
scene, visibility regions created for the zones to which the portals lead are highlighted in 
green. �e boundary planes of these regions are extrusions of the portal’s edges from the 
camera position . �e yellow and black striped lines correspond to the edges of the zones, 
which overlap by a distance approximately equal to the thickness of the walls. 
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be tagged with some kind of index to prevent them from being rendered more than 
once. �e index can simply be a counter that is incremented for each new zone 
traversal, and any object already tagged with the current index is skipped. It is also 
possible for the camera to be located in the space where two zones overlap. When 
this happens, traversals need to be initiated for both zones, but we set a flag for 
each one that prevents us from following a portal into one of the starting zones. 
 A portal is defined by a planar convex polygon with its vertices wound in the 
counterclockwise direction from its front side. �is polygon represents the approx-
imate boundary of the opening through which another zone is visible, as shown by 
two portals surrounding doorways in Figure 9.14(a). Portals are one-way windows, 
so if one portal belonging to zone A provides a link to zone B, then there must be 
a corresponding portal belonging to zone B that links back to zone A. �is is the 
case because the two portals do not have to be in the same exact location. When 
zones overlap to contain a shared wall, for example, it’s best to place the outgoing 
portals as far as possible into the opening between the two zones. 
 For each zone visited during a traversal, we create a visibility region represent-
ing the volume of space that can be seen from the camera position. Two of these 
visibility regions are shaded green in Figure 9.14(b), and their boundary planes are 
extruded from the portals through which they are visible. As a traversal proceeds, 
the current visibility region refers to the one created for the zone that we are cur-
rently processing. For the zones containing the camera position, the current visi-
bility region is the whole view frustum. For other zones, the current visibility 
region is the smaller volume associated with the portal that led us there. 
 To determine whether a portal whose vertices lie in the world-space plane portalf  
is visible from a camera position , we first do a quick check that portal 0⋅ >f   to 
make sure the camera is on the front side of the portal. If this succeeds, then we 
can test a bounding volume for the portal, either a sphere or a box of zero thickness, 
against the current visibility region. If the portal isn’t culled by this test, then we 
clip the portal’s polygon against all of the lateral planes of the current visibility 
region using the ClipPolygon() function in Listing 9.1. It’s important that we 
exclude the near plane in this process so the clipped polygon is not too small, and 
the far plane can be omitted simply because it doesn’t matter. �is means that we 
must keep track of which planes are the near and far planes in each visibility re-
gion. �ey are always the last two planes in the visibility regions generated by code 
in this chapter. 
 If a portal is completely clipped away, then we ignore it. Otherwise, we have 
found a visible opening to another zone that needs to be processed. �e new visi-
bility region for that zone is created by extruding the clipped portal’s vertices away 
from the camera position  to a plane backf  that is either the far plane or a plane 
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placed at the most distant boundary of the zone. Suppose the portal has n vertices 
0 1 1, , , n−    after clipping, and define the vector k k= −u  . For each portal ver-

tex k , the corresponding extruded vertex k  is then given by 

 back

back
k k

k

⋅
= −

⋅
f u

f u
  , (9.21) 

which is produced by Equation (3.36) for the intersection of the line ( ) kt t= + u   
with the plane backf . Each pair of vertices k  and k  forms an edge between two of 
the n lateral planes of the new visibility region. �e negation of the plane portalf  
containing the portal defines the front side of the region, and the plane backf , ori-
ented so its normal vector is −z , defines the back side. 
 �e function shown in Listing 9.19 constructs a polyhedron for the visibility 
region by extruding a portal. �is polyhedron has 2n vertices, where half are the 
portal vertices { }k  and the other half are the extruded positions { }k . �ere are 
3n edges, where the first group of n corresponds to the set of extrusions from j  
and j , the second group of n corresponds to the set of edges from j  to ( )1 modj n+  
wound counterclockwise for the front side of the portal, and the third group of n 
corresponds to the set of edges from ( )1 modj n+  to j  wound counterclockwise for 
the back side of the region. �ere are 2n +  faces made up of n lateral faces, the 
front face, and the back face. Each lateral plane has an inward-pointing normal 
vector n given by 

 ( )( )1 modnrm k k n−= ×n u u , (9.22) 

and since the plane must contain the camera position, it is given by [ ]| − ⋅n n  . To 
avoid exceeding the maximum number of faces m allowed in a polyhedron, a 
clipped portal must be limited to 2m −  vertices. �e maximum number of edges 
defined in Listing 9.2 has been set to ( )3 2m −  so enough space exists to handle 
any portal extrusion. 
 �e reason we create a polyhedron for each zone’s visibility region, instead of 
simply using an array of planes, is to make it possible to clip it against additional 
planes of external origin. As discussed in Section 9.6, clipping a visibility region 
against a ground plane can drastically reduce the size of a shadow region, and this 
idea can be extended to indoor environments. �e part of a shadow cascade cover-
ing the range [ ],k ka b  that intersects a zone can also be determined by clipping the 
zone’s visibility region against planes perpendicular to the view direction at dis-
tances ka  and kb  from the camera. We use the clipped polyhedra for visibility test-
ing and for the construction of shadow regions, but we do not use them to clip 
portals to avoid problems caused by the arbitrary orientations of the clipping 
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planes. A portal is always clipped using the original lateral planes of the visibility 
region generated by a preceding portal or, for a zone containing the camera, the 
lateral planes of the view frustum. 

Listing 9.19. �is function generates a polyhedron corresponding to a clipped portal with vertex-
Count vertices with positions stored in the array specified by portalVertex. �e portal plane portalf  
and back plane backf  are specified by the portalPlane and backPlane parameters, and both should 
face the camera position specified by the cameraPosition parameter. �e results are stored in the 
Polyhedron data structure supplied by the polyhedron parameter. 

void BuildPortalRegion(int32 vertexCount, const Point3D *portalVertex, 
                       const Plane& portalPlane, const Plane& backPlane, 
                       const Point3D& cameraPosition, Polyhedron *polyhedron) 
{ 
 polyhedron−>vertexCount = vertexCount * 2; 
 polyhedron−>edgeCount = vertexCount * 3; 
 polyhedron−>faceCount = vertexCount + 2; 
 
 Point3D *v = polyhedron−>vertex, *w = v + vertexCount; 
 Plane *plane = polyhedron−>plane; 
 
 // Calculate lateral planes and vertex positions. 
 float bc = Dot(backPlane, cameraPosition); 
 Vector3D u0 = portalVertex[vertexCount − 1] − cameraPosition; 
 for (int32 k = 0; k < vertexCount; k++) 
 { 
  Vector3D u1 = portalVertex[k] − cameraPosition; 
  Vector3D normal = Normalize(Cross(u1, u0)); 
  plane[k].Set(normal, −Dot(normal, cameraPosition)); 
 
  v[k] = portalVertex[k]; 
  w[k] = cameraPosition − u1 * (bc / Dot(backPlane, u1)); 
  u0 = u1; 
 } 
 
 // Generate front and back planes. 
 plane[vertexCount] = −portalPlane; 
 plane[vertexCount + 1] = backPlane; 
 
 // Generate all edges and lateral faces. 
 int32 i = vertexCount − 1; 
 Edge *edge = polyhedron−>edge; Face *face = polyhedron−>face; 
 for (int32 j = 0; j < vertexCount; i = j++, edge++, face++) 
 { 
  int32 k = j + 1; k &= (k − vertexCount) >> 8;   // if j + 1 >= n, then k = 0. 
 
  edge[0].vertexIndex[0] = uint8(j); 
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  edge[0].vertexIndex[1] = uint8(j + vertexCount); 
  edge[0].faceIndex[1] = uint8(j); 
  edge[0].faceIndex[0] = uint8(k); 
 
  edge[vertexCount].vertexIndex[0] = uint8(j); 
  edge[vertexCount].vertexIndex[1] = uint8(k); 
  edge[vertexCount].faceIndex[1] = uint8(k); 
  edge[vertexCount].faceIndex[0] = uint8(vertexCount); 
 
  edge[vertexCount * 2].vertexIndex[0] = uint8(k + vertexCount); 
  edge[vertexCount * 2].vertexIndex[1] = uint8(j + vertexCount); 
  edge[vertexCount * 2].faceIndex[1] = uint8(k); 
  edge[vertexCount * 2].faceIndex[0] = uint8(vertexCount + 1); 
 
  face−>edgeCount = 4; 
  face−>edgeIndex[0] = uint8(j); 
  face−>edgeIndex[1] = uint8(i + vertexCount * 2); 
  face−>edgeIndex[2] = uint8(i); 
  face−>edgeIndex[3] = uint8(i + vertexCount); 
 } 
 
 // Generate front and back faces. 
 face[0].edgeCount = vertexCount; 
 face[1].edgeCount = vertexCount; 
 for (int32 k = 0; k < vertexCount; k++) 
 { 
  face[0].edgeIndex[k] = uint8(k + vertexCount); 
  face[1].edgeIndex[k] = uint8(k + vertexCount * 2); 
 } 
} 

9.7.2  Light Regions 
By starting in a zone containing the camera and recursively following portals to 
additional zones, we naturally create a tree structure that reflects the relationships 
among the visibility regions. Every time a portal is visible in region R, the new 
region created on the other side of the portal becomes a child node of region R in 
the tree. �e same kind of structure can be built for any position, and in particular, 
we can construct a region tree for a light source. �e resulting collection of light 
regions tells us what volumes of space are illuminated due to the fact that each 
point they contain has a direct line of sight to the light’s position through a series 
of portals. �e illumination tree can be saved for each light source and rebuilt only 
when the light actually moves. 
 An example set of light regions for a point light at the position  is shown in 
Figure 9.15, and the volume of space directly visible to the light source is shaded 
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Figure 9.15. Visibility regions and light regions interact in a world that has been divided 
into several zones. �e visibility regions corresponding to the camera at position  are 
shaded blue, and the light regions corresponding to the point light at position  are shaded 
yellow. �e light is known to have an effect on the visible scene because a visibility region 
and light region intersect in zone B. Object U is not visible, object V is visible and illumi-
nated, and object W is visible but not illuminated. �e dark gray outline is the boundary of 
the shadow region. In zone C, object X casts a shadow, but objects Y and Z do not. 

yellow. Since a point light is omnidirectional, there is no boundary to the volume 
it illuminates in zone D where it is located, and the same would be true for an 
infinite light. We can consider the root light region in this zone to be empty with 
no boundary planes. In the case of a spot light, the planes of the root light region 
are set to the pyramidal boundary of the light, as described in Section 9.5. To build 
the rest of the illumination tree, we proceed in the same way that we did for a 
visibility tree. We iterate over the portals exiting the current zone, clip them to the 
lateral planes of the current light region, and for any portals that are still visible, 
create new light regions in the connected zone by extruding the clipped polygons 
away from the light position. For point lights and spot lights, the extrusion can be 
performed by Equation (9.21) after substituting the light position  for the camera 
position . To accommodate infinite lights, we can replace this equation with 
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where ku  is now defined as 

 k w k xyzl= −u l , (9.24) 

and l is now a 4D homogeneous light position. For point and spot lights, it’s pos-
sible for a portal to be out of range, which is something that doesn’t happen when 
building a visibility tree. When considering a portal with the plane portalf , we first 
make sure that portal maxr⋅ <f  , where maxr  is the maximum range of the light source, 
because it is otherwise too far away for geometry on the other side of the portal 
receive any light. 
 Every time a new light region is created, it can be added to a list of light regions 
belonging to the zone for which it was made. �is provides instant access to the 
full set of lights that have any effect on each zone, which limits the processing 
required to determine which light sources throughout the entire world actually need 
to be considered for the visible geometry. In Figure 9.15, the camera is located at 
the point  in zone A, and its visibility regions are shaded blue. �ere is only one 
light source in this example, and we know it does not affect any objects in zone A 
because there are no light regions in that zone. However, part of zone B is visible 
to the camera, and it does contain a light region, so we have to consider the possi-
bility that visible objects in zone B are illuminated by the light. Only objects that 
intersect both the visibility region and the light region need to include a shading 
contribution from the light when they are rendered. Object V in the figure satisfies 
this condition and is therefore lit. Object W is visible to the camera, but it does not 
intersect the light region in zone B, so no lighting contribution is necessary. 
 For any visibility region that interacts with a light region, a shadow region 
should be constructed as described in Section 9.6 for the visibility region’s entire 
boundary polyhedron and not for the smaller polyhedron corresponding to the vol-
ume where the two regions intersect. Using the full extent of the visibility region 
allows any geometry making up inter-zone barriers that happen to lie between the 
light source and the visibility region to cast shadows properly. In Figure 9.15, the 
shadow region constructed for the visibility region in zone B is depicted by the 
dark gray outline. If the smaller polyhedron had been used instead, then the walls 
between zones B and C may not have been included in the shadow. �is could 
cause an object that extends outside the light region to unlit areas of the visibility 
region to receive light on surfaces that should be in shadow. 
 A zone that is not visible to the camera may still contain objects that cast shad-
ows into areas that we can see. All of these objects must belong to zones occurring 
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on the branch of the illumination tree between the zone visible to the camera and 
the zone containing the light source. To determine what objects need to cast shad-
ows, we walk up the tree until we reach the root node and consider the objects in 
each zone visited along the way. In the example of Figure 9.15, we would visit 
zones C and D during this process. In each of these zones, we look for objects that 
intersect the shadow region and any light region generated for the light source. 
(�ere could be more than one light region in the zone for the same light source if 
light can enter through multiple portals.) Objects that intersect both regions are 
added to the set of shadow castors. In the figure, object X satisfies these conditions 
and must cast a shadow. However, even though object Y intersects the shadow re-
gion, it does not need to cast a shadow because it does not intersect the light region 
in zone C. Object Z does intersect the light region, but it lies outside the shadow 
region, so it also does not need to cast a shadow. 

9.8  Occluders 

Some game worlds, especially those with wide open outdoor areas, contain many 
places with irregular shapes that are not a good fit for zones. Although it may not 
be practical to use a portal system everywhere in these worlds, it is often still the 
case that there are large geometric structures blocking the visibility of objects be-
hind them. �ese structures provide culling opportunities that we can take ad-
vantage of by placing invisible occluders inside things like buildings and terrain. 
 An occluder is generally any simple shape that can be used by the game engine 
to quickly determine whether objects are completely blocked from view. One of 
the most basic examples of an occluder is a convex polygon called an antiportal. 
An antiportal is extruded away from the camera in exactly the same way that a 
portal is to form a convex volume bounded by inward-pointing planes, but now we 
call the extrusion an occlusion region instead of a visibility region. Whereas an 
object is visible if any part of it intersects a visibility region, an object is occluded 
only if it lies completely inside an occlusion region. An antiportal can be designed 
to function as an occluder for camera positions on either side of the plane contain-
ing its vertices, and we just have to remember to account for the different winding 
directions. To avoid culling objects that are closer to the camera than the antiportal, 
the plane must also be added to the occlusion region’s boundary, after negating if 
necessary to make it point away from the camera. 
 Since an antiportal has no thickness, it is not a very effective occluder unless 
it is viewed from a direction largely perpendicular to its plane. Better results are 
usually attained by filling the volume inside view-blocking geometry to the great-
est extent possible with a box occluder. �e advantage to using a box occluder is 
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that it can often provide a sizeable cross section from any view direction. To con-
struct an occlusion region for a box occluder, we identify the edges on the box’s 
silhouette from the perspective of the camera. As shown in Figure 9.16, those 
edges are extruded away from the camera position to form the lateral bounding 
planes of the occlusion region. �e planes corresponding to any front faces of the 
box must also be added to the boundary of the occlusion region to prevent culling 
in front of the box. To test whether an object is occluded, we calculate dot products 
between each plane g belonging to the occlusion region and the center  of the 
object’s bounding volume. If r⋅ > gg   for every plane g, where rg is the effective 
radius of the bounding volume with respect to g, then the object is completely 
inside the occlusion region, and it can thus be culled. 
 Before a box occluder is used for culling, it should be tested for visibility 
against the view frustum, or if portals are in use, against the visibility regions for 
the zone containing it. If the box occluder is not visible, then any objects that it 
could occlude would be very likely to fail the visibility test themselves, so any 
work spent culling them through the occluder would be redundant. Another ad-
vantage to using box occluders is that they can be tested for visibility using the 
same methods applied to the bounding boxes of ordinary geometric objects. 
 For the purposes of rendering a stencil shadow in Section 8.4 and constructing 
a shadow region in Section 9.6, the silhouette edges of an object were identified by 
classifying each face as pointing toward or away from the camera and then collect-
ing the edges between faces having opposite classifications. Such a general method 

 
Figure 9.16. �e occlusion region, shown in gray, is generated from a box occluder, shown 
in red. �e inward-pointing planes bounding the occlusion region are derived from the front 
faces of the occluder and the extrusion of the occluder’s silhouette with respect to the cam-
era position . Object A is culled because it lies completely inside the occlusion region, but 
object B is not culled because it is only partially inside. 
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was necessary for the arbitrary triangle meshes and convex polyhedra that could 
arise in those settings, but the consistent geometry of a box occluder allows us to 
find the silhouette by faster and more clever means. As illustrated in Figure 9.17, 
there are only three possible types of silhouette for a box, and these correspond to 
one, two, or three sides of the box facing toward the camera. In the case that only 
one side faces the camera, as shown in Figure 9.17(a), the silhouette is always 
composed of the four edges belonging to that one side. In the cases that two or 
three sides face the camera, as shown in Figures 9.17(b) and 9.17(c), the silhouette 
is always composed of six edges. An exhaustive list of all possible silhouettes can 
be assembled by observing that there are exactly 6 choices for the single front-
facing side in Figure 9.17(a), exactly 12 choices for the shared edge between the 
two front-facing sides in Figure 9.17(b), and exactly 8 choices for the shared vertex 
among the three front-facing sides in Figure 9.17(c). �e actual silhouette with re-
spect to any given camera position is always one of these 26 cases. 

 
Figure 9.17. A box occluder can have one, two, or three front faces, and its silhouette can 
have either four or six sides. (a) �ere is one front face, and its edges form the four sides 
of the silhouette. (b) �ere are two front faces and six silhouette edges. (c) �ere are three 
front faces and six silhouette edges. 

 If we can efficiently determine which of the 26 cases applies, then we can 
simply fetch the corresponding silhouette from a table. Fortunately, this is easy to 
do in the object-space coordinate system of the box occluder where it is aligned to 
the axes and has one corner at the origin, as shown in Figure 9.18. We assign a size 
s to the box so that it extends in the positive directions along the x, y, and z axes to 
the maximum coordinates xs , ys , and zs . Given transformation matrices cameraM  and 

occluderM  from object space to world space for the camera and the box occluder, the 
position  of the camera in the occluder’s object space is 

 [ ]
1

occluder camera 3
−= M M . (9.25) 
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Figure 9.18. A box occluder of size s is aligned to the coordinate axes, and its vertices are 
numbered 0 to 7 as shown. A 6-bit occlusion code N used as a lookup table index is calcu-
lated by adding the one-bit constants associated with each condition satisfied by the camera 
position . 

Each of the three coordinates ic  the camera position falls into one of three distinct 
states in comparison to the extents of the box: i ic s> ,  0ic < , or neither. In combi-
nation, this gives rise to a total of 33 27=  possibilities, 26 of which correspond to 
the 26 possible silhouettes. �e remaining case corresponds to the interior of the 
box, but we do not perform any occlusion if the camera happens to be there. 
 In order to calculate an occlusion code N that serves an index for a lookup 
table, we assign the single-bit numerical codes shown in Figure 9.18 to each of the 
camera position states to first obtain 
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 (9.26) 

�e full 6-bit occlusion code is then produced by adding these values together (or 
logically ORing them together) to get 

 x y zN n n n= + + . (9.27) 
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�e number of bits set in N is equal to the number of sides that face toward the 
camera. Because the bit associated with one side of the box is mutually exclusive 
with the bit associated with the opposite side, not all 6-bit codes can occur. If we 
sum the larger of the pairs of values that could be assigned to xn , yn , and zn , then 
we see that the maximum index is 42, so our lookup table only needs to contain 43 
entries of which 26 correspond to valid cases. 
 �e lookup table provides a vertex count, which must be either four or six, and 
a list of the vertices making up the box occluder’s silhouette. Vertices are identified 
by the numbering shown in Figure 9.18, and a separate table provides normalized 
vertex coordinates for a unit cube. �ose coordinates are scaled by the size s of the 
box and transformed into camera space. From the perspective of the camera, the 
vertices making up the silhouette form a convex polygon. Even though the polygon 
is not necessarily planar, we can safely clip it against the four lateral frustum planes 
listed in Table 6.1 to remove extraneous off-screen edges. �e edges of the result-
ing polygon are extruded away from the origin in camera space and finally trans-
formed into world space. 
 As shown in Figure 9.19(a), the clipping process can introduce silhouette 
edges that make the occlusion region smaller than it would have been if no clipping 
had been performed. However, we do not need create an occlusion region boundary 
plane for any edges that lie in one of the lateral frustum planes because any part of 
an object that extends past such a plane would also extend outside the view frustum 
and thus would not be visible anyway. Eliminating boundary planes for these edges 
actually allows us to construct a much larger occlusion region, as demonstrated in 
Figure 9.19(b). �e additional volume can cause objects that are partially outside 
the view frustum to be culled even though they would not be culled if the whole 
box occluder was visible. 
 �e code in Listing 9.20 constructs the occlusion region for a box occluder of 
a given size by classifying the camera position and looking up the box’s silhouette 
in a table. As the occlusion code is being calculated, the planes corresponding to 
the front faces of the box are output in world space using the rows of the matrix 

1
occluder
−M . (See Exercise 8.) �e occlusion code is then used to look up an 8-bit value 

from a small table. �e high three bits contain a vertex count, which is always four 
or six in valid cases, and the low five bits contain the silhouette index, which is in 
the range 0 to 25. �e silhouette index is used to look up an array of vertex indices 
for the silhouette’s polygon in a separate table. �e vertex indices are assigned to 
the corners of the box as shown in Figure 9.18, and they are used to look up the 
corresponding vertex coordinates of a unit cube in yet another table. Each vertex 
is finally transformed into camera space through multiplication by the matrix 

1
camera occluder
−M M . 
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Figure 9.19. (a) A box occluder, shown in red, has a silhouette that is clipped by the right 
frustum plane. If the entire clipped polygon is extruded to form the occlusion region, then 
the green object is not culled even though the part of it inside the view frustum is occluded. 
(b) �e edge of the clipped silhouette lying in the right frustum plane is eliminated and 
does not generate a boundary plane for the occlusion region. �e occlusion region now 
includes a much larger off-screen volume, and the green object is culled. 

 �e silhouette’s polygon is clipped in camera space against the four lateral 
planes of the view frustum using the ClipPolygon() function in Listing 9.1. �e 
polygon can begin with six vertices, and it’s possible that up to four more are added 
during the clipping process, so the final clipped polygon has a maximum of ten 
vertices. For each pair of consecutive vertices 1  and 2 , we calculate an inward-
pointing normal direction 
 ( )2 1nrm= ×n   . (9.28) 

�e occlusion region bounding plane generated by the edge is then [ ]| 0n  in camera 
space. �e signed distances from both 1  and 2  to all four of the lateral frustum 
planes are calculated so we can eliminate edges that lie in any one of those planes. 
If the distances from 1  and 2  to the same frustum plane cameraf  are both less than a 
small positive constant ε, then the edge connecting those two vertices may be re-
jected. However, we must be careful to reject such an edge only when camera 0⋅ >f n  
because this ensures that the occlusion region is being extended outside the view 
frustum. If camera 0⋅ ≤f n , then only a small sliver of the silhouette polygon lies in-
side the view frustum, and removing the edge would incorrectly extend the occlu-
sion region into areas that should be visible. 
 For each edge of the clipped silhouette that is not rejected, the extruded occlu-
sion region bounding plane g is given by 

 [ ] 1
camera| 0 −=g n M  (9.29) 
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in world space. �eoretically, there should be no more than six extruded planes 
because edges introduced by clipping should be rejected. But to account for all 
possible floating-point precision shenanigans, we must be prepared to handle up to 
ten extruded planes. �ere can also be up to three front-facing planes generated for 
the sides of the box occluder, so the total number of bounding planes output can 
be as large as 13. At the opposite extreme, if the entire viewport is filled by one 
side of a box occluder, then no extruded planes are generated, and we are left with 
only one front-facing plane in the output. In the final case that the silhouette poly-
gon is completely clipped away or the camera is inside the box, zero planes are 
generated, and no occlusion should be performed. 

Listing 9.20. �is function constructs the occlusion region for the box occluder having the dimen-
sions given by the size parameter. �e frustumPlane parameter must point to an array holding the 
four camera-space lateral frustum planes listed in Table 6.1 (in any order). �e matrix Mocc trans-
forms from the object space of the occluder to world space, and the matrix Mcam transforms from 
camera space to world space. �e world-space planes bounding the occlusion region are written to 
the storage pointed to by occluderPlane, which must be large enough to hold 13 elements. �e 
return value is the number of planes that were generated. 

const uint8 occluderPolygonIndex[43] =  // 3-bit vertex count, 5-bit polygon index. 
{ 
 0x00, 0x80, 0x81, 0, 0x82, 0xC9, 0xC8, 0, 0x83, 0xC7, 0xC6, 0, 0, 0, 0, 0, 
 0x84, 0xCF, 0xCE, 0, 0xD1, 0xD9, 0xD8, 0, 0xD0, 0xD7, 0xD6, 0, 0, 0, 0, 0, 
 0x85, 0xCB, 0xCA, 0, 0xCD, 0xD5, 0xD4, 0, 0xCC, 0xD3, 0xD2 
}; 
 
const uint8 occluderVertexIndex[26][6] = // Vertex indices for all 26 polygons. 
{ 
 {1, 3, 7, 5}, {2, 0, 4, 6}, {3, 2, 6, 7}, {0, 1, 5, 4}, {4, 5, 7, 6}, {1, 0, 2, 3}, 
 {2, 0, 1, 5, 4, 6}, {0, 1, 3, 7, 5, 4}, {3, 2, 0, 4, 6, 7}, {1, 3, 2, 6, 7, 5}, 
 {1, 0, 4, 6, 2, 3}, {5, 1, 0, 2, 3, 7}, {4, 0, 2, 3, 1, 5}, {0, 2, 6, 7, 3, 1}, 
 {0, 4, 5, 7, 6, 2}, {4, 5, 1, 3, 7, 6}, {1, 5, 7, 6, 4, 0}, {5, 7, 3, 2, 6, 4}, 
 {3, 1, 5, 4, 6, 2}, {2, 3, 7, 5, 4, 0}, {1, 0, 4, 6, 7, 3}, {0, 2, 6, 7, 5, 1}, 
 {7, 6, 2, 0, 1, 5}, {6, 4, 0, 1, 3, 7}, {5, 7, 3, 2, 0, 4}, {4, 5, 1, 3, 2, 6} 
}; 
 
const float occlusionVertexPosition[8][3] = // Normalized vertex coords for unit cube. 
{ 
 {0.0F, 0.0F, 0.0F}, {1.0F, 0.0F, 0.0F}, {0.0F, 1.0F, 0.0F}, {1.0F, 1.0F, 0.0F}, 
 {0.0F, 0.0F, 1.0F}, {1.0F, 0.0F, 1.0F}, {0.0F, 1.0F, 1.0F}, {1.0F, 1.0F, 1.0F} 
}; 
 
int32 MakeOcclusionRegion(const Vector3D& size, const Plane *frustumPlane, 
                 const Transform4D& Mocc, const Transform4D& Mcam, Plane *occluderPlane) 
{ 
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 Point3D  polygonVertex[2][10]; 
 float   vertexDistance[2][4]; 
 float   vertexLocation[10]; 
 
 const float kOccluderEpsilon = 0.002F; 
 uint32 occlusionCode = 0; 
 int32 planeCount = 0; 
 
 // Transform the camera position into the occluder's object space. 
 Transform4D m = Inverse(Mocc); 
 Point3D cameraPosition = m * Mcam.GetTranslation(); 
 
 // Calculate 6-bit occlusion code and generate front planes. 
 uint32 axisCode = 0x01; 
 for (int32 i = 0; i < 3; i++, axisCode <<= 2) 
 { 
  if (cameraPosition[i] > size[i]) 
  { 
   occlusionCode |= axisCode; 
   occluderPlane[planeCount++].Set(−m(i,0), −m(i,1), −m(i,2), size[i] − m(i,3)); 
  } 
  else if (cameraPosition[i] < 0.0F) 
  { 
   occlusionCode |= axisCode << 1; 
   occluderPlane[planeCount++].Set(m(i,0), m(i,1), m(i,2), m(i,3)); 
  } 
 } 
 
 // Look up silhouette polygon with occlusion code. 
 uint32 polygonIndex = occlusionPolygonIndex[occlusionCode]; 
 const uint8 *vertexIndex = occlusionVertexIndex[polygonIndex & 0x1F]; 
 int32 vertexCount = polygonIndex >> 5; 
 
 // Generate silhouette vertices in camera space. 
 Transform4D McamInverse = Inverse(Mcam); 
 Transform4D t = McamInverse * Mocc; 
 for (int32 i = 0; i < vertexCount; i++) 
 { 
  const float *p = occlusionVertexPosition[vertexIndex[i]]; 
  polygonVertex[1][i] = t * Point3D(p[0] * size.x, p[1] * size.y, p[2] * size.z); 
 } 
 
 // Clip silhouette to lateral planes of view frustum. 
 const Point3D *vertex = polygonVertex[1]; 
 for (int32 k = 0; k < 4; k++) 
 { 
  const Plane& plane = frustumPlane[k]; 
  Point3D *result = polygonVertex[k & 1]; 
  vertexCount = ClipPolygon(vertexCount, vertex, plane, vertexLocation, result); 
  vertex = result; 
 } 
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 if (vertexCount < 3) return (0); 
 
 // Generate occlusion region planes in world space. 
 const Vector3D *v1 = &vertex[vertexCount − 1]; 
 for (int32 k = 0; k < 4; k++) 
  vertexDistance[0][k] = Dot(frustumPlane[k].GetNormal(), *v1); 
 
 for (int32 i = 0; i < vertexCount; i++) 
 { 
  bool cull = false; int32 j = i & 1; 
  const Vector3D *v2 = &vertex[i]; 
  Vector3D planeNormal = Normalize(Cross(*v2, *v1)); 
  for (int32 k = 0; k < 4; k++) 
  { 
   const Vector3D& frustumNormal = frustumPlane[k].GetNormal(); 
   float d = Dot(frustumNormal, *v2); 
   vertexDistance[j ^ 1][k] = d; 
 
   // Cull edge lying in frustum plane, but only if its extrusion points inward. 
   if ((fmax(d, vertexDistance[j][k]) < kOccluderEpsilon) && 
    (Dot(planeNormal, frustumNormal) > 0.0F)) cull = true; 
  } 
 
  if (!cull) occluderPlane[planeCount++] = Plane(planeNormal, 0.0F) * McamInverse; 
  v1 = v2; 
 } 
 
 return (planeCount); 
} 

9.9  Fog Occlusion 

When fog is applied to a scene using the methods presented in Section 8.5, the fog 
factor can become so small that the light originating from an object is no longer 
perceptible when it reaches the camera. Objects that are completely fogged out in 
this way do not need to be rendered, and it would be advantageous to cull them 
before they consume any GPU resources. First, we need to define what it is that 
we consider to be imperceptible. We can certainly say that a color shadedC  cannot be 
displayed if it is multiplied by a fog factor f that is smaller than the smallest non-
zero intensity level that could be stored in the frame buffer. For example, if each 
channel in the frame buffer uses eight bits of precision, then any fog factor less 
than min 1 256f =  will cause the product shadedC f  to become zero. If the fog color 

fogC  is bright, then we can get away with using larger values of minf  because the 
human eye cannot discern small variations in bright colors as well as it can in dark 
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colors. In any case, we simply choose a value of minf  that works well and solve 
Equation (8.107) to determine the corresponding maximum optical depth 

 max minlnτ f= − . (9.30) 

For fog having a constant density exα , we then know that any object further from 
the camera than the distance max exd τ α=  is not visible. For simplicity, we can 
place a single occlusion plane at the distance d in front of the camera and cull 
objects having a bounding volume that lies completely beyond it. 
 In the case of halfspace fog using a linear density function, the optical depth 
( )τ   inside the fog is established by Equation (8.112). After making the definitions 
0z = ⋅f  and z = ⋅f , this equation becomes 

 ( ) ( )0
02

ατ z z z= − +v , (9.31) 

and it now expresses τ  as a function of the signed distance z between the point  
being rendered and the fog plane f. Suppose that we have chosen a maximum value 

maxτ  of the optical depth and that we know the vertical position 0z  where the camera 
is located beneath the fog plane. We can determine a distance function ( )d φ  from 
the camera to a vertical position z on the occlusion boundary, where φ is the angle 
of depression relative to 0z , by first expressing z as 

 ( )0 sinz z d φ φ= − , (9.32) 

and then plugging it into Equation (9.31) to get 

 ( ) ( )( )0
max 02 sin

2
ατ d φ z d φ φ= − − . (9.33) 

Solving this for a positive value of ( )d φ  gives us 

 ( )
2

0 0 sin
sin

z z σ φd φ
φ

+ +
= , (9.34) 

where we have defined the constant 

 max

0

2τσ
α

= . (9.35) 

 Plotting the function ( )d φ  for various values of 0z  produces the blue curves 
shown in Figure 9.20, and they can be classified into three groups that we discuss 
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Figure 9.20. For a camera having a vertical position 0z  beneath the fog plane f, the blue 
curves represent the exact surfaces beyond which objects are fully occluded by fog having 
an optical depth determined by a linear density function. �e red lines represent the planes 
parallel and perpendicular to f coinciding with the maximum extents of the surfaces. 
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below. �e 2D surface at which the optical depth maxτ  is reached is represented by 
the revolution of any one of these curves about the vertical axis, and an object that 
lies completely beyond that surface is fully occluded by the fog. Culling objects 
directly against this analytical occlusion surface would be impractical, however, 
so we instead make it our goal to determine planes parallel and perpendicular to 
the fog plane that coincide with the maximum extents of the occlusion surface, as 
shown by the red lines in the figure. 
 We first consider the planes that are tangent to the occlusion surface and par-
allel to the fog plane. One of these planes always exists beneath the camera posi-
tion, as shown for all three cases in Figure 9.20, because the fog always becomes 
dense enough to occlude objects when we are looking downward. If the camera is 
sufficiently deep inside the fog volume, then there is also a tangent plane above the 
camera, as shown only for case (c). To determine the positions of these tangent 
planes for a given optical depth maxτ , we write Equation (9.31) as 

 ( )0
max 0 02

ατ z z z z= − − + , (9.36) 

where v  has been replaced by the absolute vertical distance between the camera 
position  and the point  being rendered. We assume that the camera is located 
inside the fog volume and thus 0 0z ≤ . If the camera is located above the fog plane, 
then the position of the occluding plane beneath the camera is the same as it would 
be for 0 0z =  because cameras in both positions would look downward through the 
same amount of fog. 
 For the plane below the camera, the value of 0z z−  is always positive, so we 
can remove the absolute value in Equation (9.36) and solve for z to obtain 

 
2

min 0 ,z z σ= − +  (9.37) 

where σ  is the same constant that was previously defined by Equation (9.35). We 
have labeled the result as the minimum value of z because it represents the most 
negative z coordinate at which any object could be visible. For the plane above the 
camera, the value of 0z z−  is always negative, so the right side of Equation (9.36) 
must be negated when we remove the absolute value. Solving for z in this case 
gives us 

 
2

max 0 ,z z σ= − −  (9.38) 

and this result corresponds to the maximum z coordinate at which any object could 
be visible. �is maximum value and the associated plane above the camera exist 
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only when 2
0z σ≥  because we would otherwise have a negative value inside the 

radical. Following the convention that occlusion planes have normals that point 
into the occluded region of space, the components of the planes corresponding to 

minz  and maxz  are given by 

 
( )
( )

min min

max max

, , ,
, , , .
x y z w

x y z w

f f f z f
f f f f z

= − − − −

= −

g
g  (9.39) 

�e code in Listing 9.21 calculates these planes for a given camera position , fog 
attenuation coefficient 0α , and maximum optical depth maxτ . 
 We now consider an occlusion plane perpendicular to the fog plane that repre-
sents the maximum horizontal distance beyond which any object is completely 
fogged out. We use the letter r for this distance because it actually defines a cylin-
der of radius r outside which nothing in the fog volume can be seen. �e derivation 
below is almost entirely dedicated to calculating the correct value of r, and it may 

Listing 9.21. For a world-space fog plane given by fogPlane and a world-space camera position 
given by cameraPosition, this function calculates the occlusion planes that are parallel to the fog 
plane and stores them in the array specified by occlusionPlane, which must provide storage for 
two planes. �e linear fog attenuation coefficient 0α  is given by fogDensity, and the maximum 
optical depth maxτ  is given by maxOpticalDepth. �e return value of the function is the number of 
occlusion planes and is always one or two. 

int32 CalculateParallelFogOcclusionPlanes(const Plane& fogPlane, 
                                  const Point3D& cameraPosition, float fogDensity, 
                                  float maxOpticalDepth, Plane *occlusionPlane) 
{ 
 float z0 = Dot(fogPlane, cameraPosition); 
 float z02 = z0 * z0; 
 float sigma = 2.0F * maxOpticalDepth / fogDensity; 
 
 // Calculate the plane below the camera, which always exists. 
 float zmin = −sqrt(z02 + sigma); 
 occlusionPlane[0].Set(−fogPlane.GetNormal(), zmin − fogPlane.w); 
 
 // Return if the plane above camera does not exist. 
 if (z02 < sigma) return (1); 
 
 // Calculate the plane above the camera. 
 float zmax = −sqrt(z02 − sigma); 
 occlusionPlane[1].Set(fogPlane.GetNormal(), fogPlane.w − zmax); 
 return (2); 
} 
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be practical for some applications to test for occlusion directly against the resulting 
cylinder. However, we will ultimately determine an occlusion plane that is tangent 
to the cylinder and perpendicular to the projection of the camera’s view direction 
onto the fog plane. In any case, the camera position must be beneath the fog plane 
with 0 0z <  in order for a maximum distance r to exist. 
 �e calculation of r works out best when we express z as a multiple of 0z  and 
make the substitution 

 0z uz= . (9.40) 

For a given maximum optical depth maxτ , Equation (9.31) is then written as 

 ( )0
max 01

2
ατ u z= − +v . (9.41) 

�e distance v  between the camera position  and the point  being rendered 
forms the hypotenuse of the right triangle shown in Figure 9.21, and the lengths of 
the other two sides are the distance r and the difference 0z z−  of the vertical po-
sitions relative to the fog plane. By using the relationship 

 ( ) 22 2 2
01r u z= + −v , (9.42) 

we can write the optical depth as 

 ( ) ( )0 22 2
max 0 01 1

2
ατ u z r u z= − + + − . (9.43) 

 
Figure 9.21. �e distance v  between the camera position  and the point  being rendered 
forms the hypotenuse of a right triangle in which ( ) 22 2 2

01r u z= + −v . 
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 Solving Equation (9.43) for 2r  gives us 

 ( )
( )

2
22 2

02 2
0

1 ,
1
σr u z

u z
= − −

+  (9.44) 

and this is an equation relating the distance r at which full occlusion occurs directly 
to the factor u corresponding to the value of z at the point being rendered. To find 
the maximum value of r attained over all values of u, we take a derivative of the 
right side of this equation and set it equal to zero. After some algebraic simplifica-
tion, doing so brings us to the quartic polynomial function 

 ( ) 4 32 2 1 0h u u u u m= + − + − = , (9.45) 

where the constant m is defined as 

 
2 2

max
4 2 4
0 0 0

4σ τm
z α z

= = . (9.46) 

 A typical plot of ( )h u  is shown in Figure 9.22. If it exists, the largest root of 
( )h u  corresponds to the vertical position at which 2r  reaches a local maximum. To 

determine the value of this root, we start by making some observations about the 
function ( )h u . First, the value of ( )1h  is always m, which is a positive number. 
Second, if we take a derivative of ( )h u  to get 

 ( ) 3 24 6 2h u u u′ = + − , (9.47) 

then we see that ( )1
2 0h′ =  regardless of the value of m. �is means that ( )h u  al-

ways has a local minimum at 1
2u = , and if that local minimum happens to be a 

negative value, then there must be a root in the interval ( )1
2 ,1  because ( )1h  is pos-

itive. By plugging the value 1
2  into ( )h u , we can calculate that ( )1

2 0h <  precisely 
when 27

16m < , and this condition corresponds to cases (b) and (c) in Figure 9.20. 
 It may be tempting to calculate the roots of ( )h u  using algebraic methods for 
the solution to a quartic equation, but in this case, the root in which we are inter-
ested can be found more efficiently and accurately by using Newton’s method with 
an initial value of 0 1u = . Refined approximations to the root are calculated using 
the formula 

 ( )
( )1

i
i i

i

h uu u
h u+ = −
′

. (9.48) 
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Figure 9.22. �is is a plot of the function ( ) 4 32 2 1h u u u u m= + − + −  with 1.23m ≈  (cor-
responding to the values max ln 256τ = , 0 0.1α = , and 0 10z = − ). In this example, the first 
two iterations of Newton’s method produce 1 0.846u ≈  and 2 0.791u ≈ . 

We know right at the beginning that ( )1h m=  and ( )1 8h′ = , so the first iteration of 
Newton’s method can easily be precalculated to obtain 

 1 1
8
mu = − , (9.49) 

and this is shown in Figure 9.22. One or two more iterations of Newton’s method 
are all that are needed to produce an extremely precise value of u that can be 
plugged back into Equation (9.44) to calculate the occlusion radius r. 
 If 1m > , then the exact occlusion surface intersects the fog plane, and it is pos-
sible that the largest horizontal distance to the surface occurs on the fog plane itself 
where 0u = . �is corresponds to cases (a) and (b) in Figure 9.20. When we plug 
the value zero into Equation (9.44), the radius r is given by 

 0 1,r z m= − −  (9.50) 

where the negative square root has been chosen to produce a positive distance. 
 �e code in Listing 9.22 considers all three of the cases shown in Figure 9.20 
for a given camera position , fog attenuation 0α , and maximum optical depth maxτ . 
In case (a) where 27

16m ≥ , the occlusion surface has no local maxima, and the only 
possible fog-out distance is given by Equation (9.50). In case (c) where 1m ≤ , the 
occlusion surface does not intersect the fog plane, and the fog-out distance is given 
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by Equation (9.44) for the largest root of the function ( )h u . In case (b) where 
27
161 m< < , both solutions are valid, so we calculate both fog-out distances and 

simply take whichever one is larger. Once the fog-out distance has been deter-
mined, an occlusion plane perpendicular to the horizontal component of the cam-
era’s view direction is returned. 

Listing 9.22. For a world-space fog plane given by fogPlane, a world-space camera position given 
by cameraPosition, and a world-space view direction given by viewDirection, this function cal-
culates the occlusion plane that is perpendicular to the fog plane and returns it in occlusionPlane. 
�e linear fog attenuation coefficient 0α  is given by fogDensity, and the maximum optical depth 

maxτ  is given by maxOpticalDepth. �e return value is true if the view direction has a nonzero 
horizontal component relative to the fog plane. Otherwise, the return value is false, and no occlu-
sion plane is generated. 

bool CalculatePerpendicularFogOcclusionPlane(const Plane& fogPlane, 
  const Point3D& cameraPosition, const Vector3D& viewDirection, 
  float fogDensity, float maxOpticalDepth, Plane *occlusionPlane) 
{ 
 // Project view direction onto fog plane. 
 Vector3D normal = Reject(viewDirection, fogPlane.GetNormal()); 
 float n2 = Dot(normal, normal); 
 if (n2 > FLT_MIN) 
 { 
  // View direction has nonzero horizontal component. 
  float z0 = Dot(fogPlane, cameraPosition), z02 = z0 * z0, z0_inv2 = 1.0F / z02; 
  float sigma = 2.0F * maxOpticalDepth / fogDensity, sigma2 = sigma * sigma; 
  float m = sigma2 * z0_inv2 * z0_inv2; 
  float r = 0.0F; 
 
  if (m < 1.6875F) 
  { 
   // When m < 27/16, a root of h(u) exists. 
   float u = 1.0F − m * 0.125F, u2 = u * u; 
 
   // Apply second iteration of Newton's method. 
   u −= (((u + 2.0F) * u2 − 2.0F) * u + m − 1.0F) / 
        ((u * 4.0F + 6.0F) * u2 − 2.0F); 
 
   // Plug root into Equation (9.44). 
   float up1 = u + 1.0F, um1 = u − 1.0F; 
   r = sqrt(sigma2 * z0_inv2 / (up1 * up1) − um1 * um1 * z02); 
  } 
 
  if (m > 1.0F) 
  { 
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   // Calculate occlusion distance with Equation (9.50). 
   // Take larger value of r when both solutions are valid. 
   r = fmax(−z0 * sqrt(m − 1.0F), r); 
  } 
 
  // Construct occlusion plane perpendicular to fog plane. 
  normal *= 1.0F / sqrt(n2); 
  occlusionPlane−>Set(normal, −Dot(normal, cameraPosition) − r); 
  return (true); 
 } 
 
 return (false); 
} 

Exercises for Chapter 9 

1. Given a sphere A with center 1  and radius 1r  and another sphere B with center 
2  and radius 2r , calculate the center and radius of the smallest sphere enclosing 

both A and B. Be sure to handle all cases in which the spheres intersect. 

2. Determine the optimal bounding sphere for an equilateral triangle, and calcu-
late the differences between its center and radius and the center and radius of 
the bounding sphere produced by the method described in Section 9.3.1. 

3. Write simplified versions of Equations (9.16) and (9.18) that apply specifically 
to axis-aligned bounding boxes. 

4. Suppose that an object is bounded by a circular cylinder of radius r with its 
axis aligned to the unit-length direction u. Place the center halfway between 
the bases, and let h be half of the cylinder’s height. Calculate the effective 
radius rg of this cylinder with respect to a normalized plane g. 

5. Suppose that an object is bounded by an ellipsoid with semiaxis lengths xh , yh , 
and zh  oriented to the unit-length directions s, t, and u. Calculate the effective 
radius rg of this ellipsoid with respect to a normalized plane g. 

6. Suppose a view frustum for a camera at the position  pointing in the view 
direction z has an aspect ratio s and a projection distance g. Refer to Exercise 4 
in Chapter 6, and find an expression for sin α corresponding to the cone cir-
cumscribing this view frustum. Given a normalized plane g, and assuming that 
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0⋅ <g  , determine the minimum value of ⋅g z for which the plane intersects 
the infinite extension of the cone in terms of sin α. 

7. Modify Listing 9.14 so that it constructs a five-sided polyhedron correspond-
ing to the boundary pyramid of a spot light. 

8. Let occluderM  be the matrix that transforms a box occluder of size s from object 
space to world space. Express the world-space bounding planes of the box oc-
cluder in terms of the rows of the matrix 1

occluder
−M . 

9. Suppose that a maximum optical depth maxτ  has been calculated for halfspace 
fog with a reference density 0α . Given a negative camera depth 0z , determine 
a formula for the minimum value of the angle of depression φ at which fog 
occlusion is possible relative to the camera position. Identify the condition un-
der which no minimum angle exists. 
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Chapter 10 

Advanced Rendering 

�e field of game engine development is abundant with advanced rendering tech-
niques that produce a wide range of visual effects. In this chapter, we have selected 
several graphical objectives, some of which are considered basic necessities in 
many engines, and discuss a particular solution to each of the rendering problems 
they present. While we acknowledge that for many of these objectives, there are 
multiple valid methods for achieving similar high-quality results, we avoid the in-
escapable vagueness of a survey and instead concentrate on the precise implemen-
tation details of one proven approach. 

10.1  Decals 

As interaction takes place among various entities and the environment, a game 
engine often needs to draw new objects like bullet holes, scorch marks, or foot-
prints. �is is done by creating special triangle meshes called decals and applying 
them to existing surfaces. �ese meshes are built from the triangles belonging to 
the underlying surfaces by clipping those triangles against a bounding box sur-
rounding the decal. An example is shown in Figure 10.1, where the edges of a 
bright yellow blast mark are clearly visible within the triangle mesh for the stone 
wall to which it is applied. 
 Because the triangles that make up a decal are always coincident with the tri-
angles belonging to another surface, they need to be rendered with an offset toward 
the camera to avoid Z fighting artifacts. �is can be accomplished by using the 
hardware polygon offset functionality or by modifying the projection matrix with 
the method described by Exercise 14 in Chapter 6. For decals that could be far 
away from the camera, both of these options work best with a reversing projection 
matrix because it provides much greater depth precision. 
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Figure 10.1. A blast mark is applied to a surface as a decal by clipping the polygons be-
longing to the surface against the bounding box of the decal. 

 To create a decal, we first need to construct the six planes of its bounding box. 
We assume that the center of the decal  and normal vector n at the center are 
already available. �is information is usually supplied either by a ray intersection 
function or by the physics system in response to a collision of some kind. We 
choose a tangent vector t to be perpendicular to the normal vector n, perhaps using 
Listing 9.10. �e tangent vector can be randomly rotated, or it can be aligned to a 
specific orientation such as part of a character’s skeleton in the case of footprints 
being applied to the ground. Once the tangent vector has been determined, we 
complete a right-handed coordinate system by calculating a bitangent vector with 
= ×b n t. If necessary, we normalize all three vectors to unit length. 

 Suppose we want our decal to have a radius xr  in the tangent direction and a 
radius yr  in the bitangent direction, as shown in Figure 10.2. Its overall width and 
height are then 2 xr  and 2 yr . We also choose a distance d by which the decal extends 
above and below the surface in the normal direction. �is distance generally needs 
to be large enough to account for any amount by which the height of the surface 
might change inside the decal’s boundary, but not so large that the decal is unin-
tentionally applied to other surfaces that could be in front of or behind the surface 
on which the point  lies. Using these measurements, the six inward-facing planes 
defining the bounding box of the decal are given by 
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Figure 10.2. A decal centered at the point  has a right-handed coordinate system defined 
by the normal vector n, the tangent vector t, and the bitangent vector b. �e dimensions of 
the decal are described by the radius xr  in the tangent direction, the radius yr  in the bitangent 
direction, and a maximum offset d in the normal direction. 

 To build the mesh for a decal, we search the world for other geometries that 
intersect the decal’s bounding box. For each geometry that we find, we clip its 
triangles against all six of the planes given by Equation (10.1) using the method 
described in Section 9.1. �e bounding planes must first be transformed into the 
geometry’s object-space coordinate system where its vertex positions are defined. 
During the clipping process, many of the triangles will be discarded because they 
are completely clipped away. �ose that remain form the triangle mesh for the de-
cal. As mentioned in Section 9.1, it is important that we use a consistent vertex 
ordering with respect to each plane so that any new vertices created on an edge 
shared by two triangles has exactly the same coordinates when each triangle is 
clipped, ensuring that the decal mesh is watertight. 
 We may choose to combine the clipped triangles from multiple geometries into 
a single decal mesh, or we may decide to create a separate decal mesh for each 
geometry that is clipped. �e latter option is useful when some geometries may be 
moving, and we want the decals to move with them. In this case, we can simply 
make each decal mesh a subnode of the geometry from which it was derived, and 
this will cause it to automatically inherit the geometry’s transform. 
 As a geometry is being clipped, we are likely to encounter triangles that face 
away from the normal direction n, and those triangles can be discarded without 
clipping. Suppose a triangle has the vertex positions 0 , 1 , and 2  wound in the 
counterclockwise direction, and let m be the normal vector for the plane of the 
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triangle, given by ( ) ( )1 0 2 0= − × −m     . We discard any triangles for which 
ε⋅ <n m m , where ε is a small positive constant that allows us to ignore triangles 

that are nearly perpendicular to the surface as well as those that face away from it. 
 For each vertex of a decal mesh having the position , the associated texture 
coordinates ( ),u v  are typically calculated in terms of perpendicular distances to 
the bounding planes using the formulas 

 left
1

2 x
u

r
= ⋅f    and   bottom

1
2 y

v
r

= ⋅f . (10.2) 

�is causes the texture coordinates to cover the range from zero to one across the 
full width and height of the decal. When texture coordinates are generated in this 
manner, the tangent and bitangent vectors that may be required by the decal’s ma-
terial are simply the constant values of t and b. 
 Depending on what kind of material is going to be assigned to a decal, it may 
be necessary to interpolate vertex normals in addition to positions during the clip-
ping process. �is can be done using a formula similar to Equation (9.3) for the 
normal vectors and then rescaling to unit length. Tangent vectors do not need to be 
interpolated unless the decal’s material makes use of the underlying geometry’s 
texture coordinates (which would then also need to be interpolated), perhaps using 
a sophisticated technique that incorporates the same normal map that’s applied to 
the geometry. 
 In some cases, it may be desirable for a decal to fade out in areas where its 
vertex normals get close to being perpendicular to the surface normal n at the cen-
ter. If we have interpolated the vertex normals of the underlying geometry during 
the clipping process, then we can examine the dot product ⋅n z at each clipped 
vertex, where z is the interpolated normal vector scaled to unit length. An opacity 
α could then be obtained using a formula such as 

 max , 0
1

εα
ε

⋅ − =  − 
n z , (10.3) 

where ε is the same constant used to discard triangles above. �e value of α is one 
when 1⋅ =n z  and zero when ε⋅ ≤n z . 

10.2  Billboards 

�ere are many situations in which some kind of object needs to look like it has 
volume, but rendering it in a truly volumetric manner would either be prohibitively 
expensive or would not significantly improve its appearance. In these cases, it is 
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often acceptable to render such an object on a flat rectangle called a billboard, also 
known as a sprite, that always faces toward the camera so the illusion of volume 
is created as the viewer moves around. Billboards are frequently used to draw each 
of the particles in a particle system because they are often small in size, short lived, 
and moving fast enough that their lack of true volume goes unnoticed. (Particle 
systems will be discussed in detail in Volume 3.) Various types of billboards are 
also used to render effects like fire, light halos, laser beams, and lightning bolts. A 
special type of billboard is used to render impostors, which are flat images substi-
tuted for complex models like trees when they are far from the camera. 
 Because billboards are flat objects, they do have their limits. For example, if a 
billboard intersects solid geometry, perhaps because smoke particles have drifted 
too close to a wall, then the flatness of the billboard becomes visible at the bound-
ary where part of it fails the depth test. A method for mitigating this problem is 
discussed in Section 10.3. Another limitation of billboards occurs when the camera 
and a billboard move through each other in the view direction because the billboard 
suddenly disappears as soon as it crosses the near plane. A trick often used to hide 
this problem is to gradually increase the transparency of the billboard as it gets 
close to the camera. Handling this kind of interaction correctly without tricks re-
quires a volumetric technique like those described in Section 10.4.  
 In this section, we describe two general types of billboards called spherical 
billboards and cylindrical billboards. �ese names are not meant to imply any ge-
ometrical shape beyond the flat polygon of which all billboards are made. �ey 
instead reflect the ways in which the billboards are oriented with respect to the 
camera. Figures 10.3(a) and 10.3(b) show examples in which these types of bill-
boards are used to render smoke particles and a fire effect. We also discuss poly-
boards, which consist of multiple billboards joined together to follow a path, as 
shown in Figure 10.3(c). Finally, we introduce polygon trimming as an optimiza-
tion that often applies to objects rendered as billboards when they contain large 
transparent regions, such as the tree impostors shown in Figure 10.3(d). 

10.2.1  Spherical Billboards 
A spherical billboard is defined by a center point  and two radii xr  and yr  equal to 
half its width and half its height. �e billboard can rotate about its center to any 
orientation so that its normal vector points toward the camera, and the union of all 
possible orientations fills a sphere of radius 2 2

x yr r+ . To determine the actual ori-
entation of a billboard and calculate its vertex positions, we transform information 
about the camera into the billboard’s object space. Let cameraM   be the transform 
from camera space to world space, and let objectM  be the transform from the bill- 
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Figure 10.3. In these examples, different kinds of billboards are shown in wireframe. (a) �e black 
smoke is rendered as a particle system containing many spherical billboards. (b) �e flames from 
these torches are rendered as cylindrical billboards. (c) Several bolts of electricity are rendered as 
polyboards. (d) Tree imposters are rendered as cylindrical billboards, and their corners have been 
trimmed to reduce the area that they fill. 

board’s object space to world space. �en vectors x and y in the billboard’s object 
space corresponding to the positive x and y axes of the camera are given by 

 
[ ]

[ ]

1
object camera 0

1
object camera 1 ,

−

−

=

=

x M M

y M M  (10.4) 

where [ ]camera jM  denotes column j of the matrix cameraM . If we place the vertices of 
the billboard in the plane determined by the point  and the directions x and y, 
then the resulting polygon is always parallel to the projection plane, as shown in 
Figure 10.4(a). �e four vertex positions 0 , 1 , 2 , and 3  are given by 

 
0 1

2 3

x y x y

x y x y

r r r r
r r r r

= − + = + +

= + − = − −

x y x y
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    . (10.5) 

(a) (b) 

(c) (d) 
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If the matrix objectM  contains a scale, then x and y first need to be renormalized to 
unit length. For objects made of a single billboard, it is often the case that  lies at 
the object-space origin, so the vertex positions are simply sums and differences of 

xr x and yr y. But for objects like particle systems, which contain a large number of 
independent billboards, there is a different point  representing the center of each 
particle. 
 �e vertex positions given by Equation (10.5) produce billboards that face only 
the x-y plane of the camera and not the actual position of the camera except in those 
cases when the billboard lies at the center of the viewport. However, this orienta-
tion is usually good enough from a visual standpoint, especially when billboard 
sizes are small. When we want the orientation toward the camera to be exact, a 
little more computation is required. First, we need the camera position  in the 
billboard’s object space, which is given by 

 [ ]
1

object camera 3
−= M M . (10.6) 

(Remember that [ ]camera 3M  is a point having a w coordinate of one, unlike [ ]camera 0M  
and [ ]camera 1M , which are vectors having a w coordinate of zero.) Our goal is to place 
the vertices in a plane containing the billboard’s center  that has the normal vector 

 ( )nrm= −n   . (10.7) 

 
Figure 10.4. Billboards are rendered so they face toward the camera at the position , 
which has been transformed into object space. (a) �e billboards are oriented to lie in planes 
parallel to the projection plane by directly using the camera’s right direction x and down 
direction y as the basis for their local coordinate systems. (b) Each billboard is oriented so 
it is perpendicular to the normal direction −  between the camera position and the bill-
board’s center . 
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A tangent vector a for the billboard can now be calculated as 

 ( )nrm= ×a n y . (10.8) 

Because the vector y corresponds to the direction pointing downward in camera 
space, the tangent vector a points to the right from the camera’s perspective. An-
other tangent vector b that points upward is given by = ×b n a, and this completes 
a local set of axes for the billboard. Now, the four vertex positions 0 , 1 , 2 , and 

3  are given by 

 
0 1

2 3

x y x y

x y x y

r r r r
r r r r

= − − = + −

= + + = − +

a b a b
a b a b

   
    , (10.9) 

and this produces the billboard orientations shown in Figure 10.4(b). �e vertex 0  
is the lower-left corner of the billboard, where the texture coordinates would typi-
cally be ( )0,1 , and the rest follow in the counterclockwise direction. Note that the 
vector b in Equation (10.9) has the opposite sign of the vector y in Equation (10.5). 
 Once a billboard has been oriented with its normal vector pointing toward the 
camera position, we can still rotate the billboard about that normal vector without 
breaking the alignment constraint. �is additional degree of freedom is often used 
to draw a group of billboards with random rotations so they don’t all look the same. 
�e rotation can also be animated to produce effects like swirling smoke. Suppose 
that a billboard is rotated through an angle θ  about its normal vector, where an 
angle of zero corresponds to the tangent direction a. �en rotated tangent vectors 
′a  and ′b  can be expressed as 

 
cos sin
cos sin

θ θ
θ θ

′ = +
′ = −

a a b
b b a , (10.10) 

as illustrated in Figure 10.5. When we substitute these into Equation (10.9) and 
collect terms containing the vectors a and b, we get 
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 We call the scalar values multiplying the vectors a and b in Equation (10.11) 
billboard coordinates. Disregarding signs, there are four distinct coordinate values, 
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Figure 10.5. �e vertices 0 , 1 , 2 , and 3  of a billboard are given by x yr r′ ′± ±a b , where 
′a  and ′b  are rotated versions of the tangent vectors a and b. 

and this is reduced to only two if x yr r= . �e billboard coordinates can be precal-
culated for each vertex and stored in a two-component attribute array. A billboard 
typically has a vertex attribute holding the position, which is the same center point 
 for all four vertices, another vertex attribute holding the billboard coordinates, a 
vertex attribute holding the texture coordinates, and possibly one more vertex at-
tribute holding a color. As demonstrated in Listing 10.1, the vectors a and b are 
calculated in the vertex shader using the camera position and down direction. �e 
object-space vertex position is determined by adding the vectors a and b to the 
point  after scaling them by the precalculated billboard coordinates. �e result 
would later be transformed into clip space with the MVP matrix as usual. 

10.2.2  Cylindrical Billboards 
A cylindrical billboard is defined by a point , a radius r, and a height h, as shown 
in Figure 10.6. �is type of billboard can rotate only about its object-space z axis 
to face the camera, and the union of all possible orientations thus fills a cylinder. 
Although the z axis is usually considered to be aligned with the vertical direction 
in object space, the billboard can be transformed into any arbitrary orientation in 
world space. For example, a cylindrical billboard could be used to render a laser 
beam that runs horizontally, parallel to the ground. �e fire effects and impostors 
shown in Figures 10.3(b) and 10.3(d) are rendered with cylindrical billboards. 
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Listing 10.1. �is vertex shader function calculates the object-space position of a spherical billboard 
vertex using the position  given by center and the billboard coordinates given by billboard, both 
of which are supplied by vertex attributes. �e uniform constant cameraPosition holds the object-
space camera position , and cameraDown holds the objects-space camera down direction y. 

uniform float3 cameraPosition; 
uniform float3 cameraDown; 
 
float3 CalculateSphericalBillboardVertexPosition(float3 center, float2 billboard) 
{ 
 float3 n = normalize(cameraPosition − center); 
 float3 a = normalize(cross(n, cameraDown)); 
 float3 b = cross(n, a); 
 return (center + a * billboard.x + b * billboard.y); 
} 

 We place the point  defining the position of the billboard at the center of the 
cylinder’s base. �e billboard always contains the line segment connecting the 
point  and the point ( ), ,x y zp p p h+  at the opposite end of the cylinder. �e one 
tangent direction that we are able to choose must be perpendicular to the z axis, so 
it always lies in the x-y plane. We also want the tangent direction to be perpendic-
ular to the direction to the camera given by − , where  is again the object-space 
camera position. �e tangent vector a must therefore be given by the cross product 

 ( ) ( )0, 0,1= × −a   . (10.12) 

 
Figure 10.6. A cylindrical billboard is defined by a radius r and height h. It is constrained 
to rotate only about its z axis in object space to face toward the camera at the position . 
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When we write out the components of this cross product and normalize the result 
to unit length, we get 

 ( )
( ) ( )( )22

, , 0

max ,
y y x x

x x y y

p c c p

c p c p ε

− −
=

− + −
a . (10.13) 

�is basically takes the x and y components of the vector −  and rotates them 90 
degrees counterclockwise about the z axis. �e max function in the denominator 
uses a small constant ε to ensure that division by zero doesn’t occur in the case that 
the camera position differs from the point  only in the z direction. Using the tan-
gent vector a, the billboard’s four vertex positions 0 , 1 , 2 , and 3  are given by 
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 As with spherical billboards, a cylindrical billboard is typically rendered using 
vertex attribute arrays containing positions, billboard coordinates, texture coordi-
nates, and possibly colors. �is time, however, the vertex position can be either the 
point  or the point ( ), ,x y zp p p h+ . Also, there is only one billboard coordinate 
for each vertex, and it has the value r+  or r− . �e need for a separate vertex attrib-
ute for the billboard coordinate could be eliminated by storing it in the w compo-
nent of the position. As shown in Listing 10.2, the tangent vector a is calculated in 
the vertex shader using Equation (10.13), where we have set 0.0001ε = . �e final 
object-space vertex position is then calculated as b+ a , where the position  and 
billboard coordinate b are those provided by the vertex attributes. 

10.2.3  Polyboards 
A polyboard is what we call a group of billboards connected end to end along a 
piecewise-linear path defined by a series of n points 0 1 1, , , n−   . �e electrical 
effects shown in Figure 10.3(c) are rendered with polyboards. Each component of 
a polyboard is similar to a cylindrical billboard because rotation toward the camera 
takes place along the line segment between two consecutive points. However, the 
rotation is performed independently at each end, so there is usually some twisting 
within each component. As shown in Figure 10.7, each point i  has an associated 
tangent direction it  and radius ir , and these values determine where the vertices are 
placed using a calculations similar to those used previously in this section. 
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Listing 10.2. �is vertex shader function calculates the object-space position of a cylindrical bill-
board vertex using the position  given by center and the billboard coordinate b given by bill-
board, both of which are supplied by vertex attributes. �e uniform constant cameraPosition holds 
the object-space camera position . 

uniform float3 cameraPosition; 
 
float3 CalculateCylindricalBillboardVertexPosition(float3 center, float billboard) 
{ 
 float2 a = float2(center.y − cameraPosition.y, cameraPosition.x − center.x); 
 a *= rsqrt(max(dot(a, a), 0.0001)); 
 return (float3(center.xy + a * billboard, center.z)); 
} 

 �e tangent direction it  at the point i  could be determined in a couple of ways. 
If the polyboard follows a curve defined by some parametric function, then a valid 
tangent vector is given by that function’s derivative. Otherwise, the tangent can 
simply be set to the difference of the surrounding points as 

 1 1i i i+ −= −t   . (10.15) 

In the case that i  is one of the polyboard’s endpoints, we use the differences 
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Figure 10.7. A polyboard is defined by a series of n points 0 1 1, , , n−    that each have an 
associated tangent direction it  and radius ir . 
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For the object-space camera position , the unit-length tangent vector ia  perpen-
dicular to both the tangent direction it  and the direction to the camera at the point 

i  is given by 

 ( )
( )( )( )2max ,

i i
i

i i ε

× −
=

× −
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 
 

, (10.17) 

where we again use a small constant ε to prevent division by zero. �e two vertex 
positions i  and i  associated with the point i  are then 
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 If we were to render each component of a polyboard as a single quad, then the 
diagonal edge where the two triangles making up the quad meet would tend to 
create an unsightly fold when there is a lot of twist. �e appearance of a polyboard 
is improved by adding a vertex to the center of each component and rendering four 
triangles that have a symmetric layout with respect to the line segment connecting 
adjacent points i  and 1i+ . �ese additional vertices are labelled i  in Figure 10.7, 
and they are simply the average positions given by 

 1

2
i i

i
+ +

=
  . (10.19) 

Using this configuration, the total number of vertices needed to render a polyboard 
is 3 1n − , and the total number of triangles is 4 4n − . 
 As with spherical and cylindrical billboards, the vertex attribute arrays for a 
polyboard include positions, billboard coordinates, texture coordinates, and possi-
bly colors. Polyboards have an additional vertex attribute array containing the tan-
gent directions it . Each vertex has a single billboard coordinate, and it can be stored 
in the w component of either the position or the tangent to reduce the number of 
vertex attribute arrays by one. �e billboard coordinates for each pair of vertices 

i  and i  are r−  and r+ , respectively. So that all vertices can be handled in a uniform 
manner, each vertex i  is assigned a billboard coordinate of zero and a tangent 
direction 1i i+ −  . Listing 10.3 shows the calculation of the tangent vector a in a 
vertex shader using Equation (10.17), where we have set 0.0001ε = , and the cal-
culation of the final object-space vertex position b+ a , where the position  and 
billboard coordinate b are those provided by the vertex attributes. 



310 Chapter 10   Advanced Rendering 

Listing 10.3. �is vertex shader function calculates the object-space position of a polyboard vertex 
using the position i  given by center, the vector it  given by tangent, and the billboard coordinate 
b given by billboard, all of which are supplied by vertex attributes. �e uniform constant camera-
Position holds the object-space camera position . 

uniform float3 cameraPosition; 
 
float3 CalculatePolyboardVertexPosition(float3 center, float3 tangent, float billboard) 
{ 
 float3 a = cross(tangent, cameraPosition − center); 
 a *= rsqrt(max(dot(a, a), 0.0001)); 
 return (center + a * billboard); 
} 

10.2.4  Trimming 
�e types of objects that are rendered as billboards often use alpha blending, and 
their texture maps tend to contain a lot of fully transparent texels, especially near 
the corners. When these billboards are drawn as a single quad, the pixel shader is 
executed for every pixel covered by the geometry, but for a large fraction of the 
billboard area, no change is ultimately made to the frame buffer. �is wasted com-
putation can have a significant impact on performance when the billboards are 
large in size or when many overlapping billboards are rendered with a large amount 
of overdraw. We can alleviate the problem by trimming the corners off of the quad 
and rendering a billboard as a polygon having more than four sides. �e billboards 
containing tree impostors shown in Figure 10.3(d) have been trimmed to remove 
the empty space at their corners. 
 When we trim one of a billboard’s corners, we remove a triangular piece of 
the original quad, as shown in Figure 10.8. To reduce the number of pixels ren-
dered by as much as possible, our goal is to maximize the area of the triangle that 
we cut off. �is goal is most easily accomplished by calculating the support planes 
for an array of directions in the quadrant containing the corner (excluding the hor-
izontal and vertical directions) and simply selecting the one that produces the larg-
est trimmed triangle. �e support plane in the direction n for a given set of points 
is the plane with normal vector n containing at least one of the points in the set and 
having the property that no other points lie on its positive side. In the case of a 
billboard, the set of points is composed of all the 2D positions ( ),i j  correspond-
ing to texels in the texture map that are not completely transparent. For a specific 
normal vector n, all we have to do it calculate 

 
( )

( )( )
, 0

max ,
α i j

d i j
≠

= − ⋅n  , (10.20) 



10.2  Billboards 311 

where the function ( ),α i j  represents the alpha value of the texel ( ),i j , and we 
obtain the support plane [ ]| dn . �is is illustrated in Figure 10.8. 
 In the case of a spherical billboard, the function ( ),i j  transforms texel coor-
dinates i and j into position coordinates xp  and yp  on the billboard in the ranges 
[ ],x xr r− +  and [ ],y yr r− + . If we always use integer values of i and j, then the centers 
of texels are located at the coordinates ( )1 1

2 2,i j+ + . However, the point inside a 
single texel that maximizes ( ),i j⋅n   lies at the corner whose difference with the 
texel center is closest to the direction n, so we define 

 ( ) ( ) ( )( )1 1 1 1
2 2 2 2, sgn , sgnx yi j i n j n′ ′ = + + + +  (10.21) 

as the coordinates corresponding to the texel ( ),i j  for the purposes of calculating 
the support plane. �e values of ( )sgn xn  and ( )sgn yn  are constant over each quad-
rant, so the offsets added to i and j need to be calculated only once for each corner 
of the billboard that we trim. �e coordinates ( ),i j′ ′  are mapped to billboard posi-
tions using the function 

 ( )
22, , yx

x y
rri j i r j r

w h
 ′ ′= − − 
 

 , (10.22) 

where w and h are the width and height of the texture map, in texels. To avoid the 
appearance of the trimming boundary in filtered texels when a billboard’s texture 
is minified, it’s best to use the first or second mipmap when calculating support 
planes instead of the full-resolution image. �is has the additional advantage that 
far fewer texels need to be considered. 

 
Figure 10.8. For a specific direction n, the support plane [ ]| dn  is determined by finding 
the point  that maximizes the dot product d⋅ = −n  . A small sampling of the points to be 
tested, corresponding to non-transparent texels, is shown here. �e gray triangle lying be-
yond the support plane can be trimmed away. 
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  After determining the largest value of ( ),i j⋅n  , the vertices of the triangle 
that can be trimmed away are determined by calculating the points where the orig-
inal boundary of the billboard intersect the plane [ ]| dn . In the case of the upper-
right corner being trimmed, shown in Figure 10.8, the vertex 1  on the top edge of 
the billboard is given by 

 1 ,y y
y

x

n r d
r

n
+ = − 

 
 , (10.23) 

and the vertex 2  on the right edge is given by 

 2 , x x
x

y

n r dr
n

 +
= − 
 

 . (10.24) 

�e area of this triangle is ( ) ( )1
1 0 2 02 − × −    , where 0  is the vertex at the 

corner of the billboard. As we calculate different support planes for different nor-
mal directions n, we keep track of which resulting triangle has the largest area, and 
that is the triangle that we ultimately trim away. However, we must be careful not 
to allow any of the triangle’s vertices to extend past vertices belonging to the tri-
angles trimmed away from adjacent corners. Also, if the triangle’s area is smaller 
than some threshold for one of the corners, then we don’t bother trimming that 
corner at all. 

10.3  The Structure Buffer 

Many rendering techniques involving special effects or postprocessing calculations 
require the camera-space depth of the geometry that has previously been rendered 
into the frame buffer, and it will often be needed at every pixel location in the 
viewport. �is is the z coordinate in camera space representing the actual distance 
along the viewing direction and not the nonlinear value generated by the projection 
matrix and perspective divide that is ultimately written to the depth buffer. Some 
methods are also able to make use of the per-pixel derivatives of the camera-space 
depth with respect to the x and y axes, which provide a viewport-space gradient. In 
this section, we describe how the depth values and their derivatives can be gener-
ated for later consumption, and we present a basic application that uses the depth 
of previously rendered geometry. More advanced applications are described in the 
sections that follow. 
 For the camera-space depth information to be available to the pixel shaders 
that render the main scene, it must first be written to a special frame buffer that we 
call the structure buffer. �is step can be combined with an initial rendering pass 
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that establishes the contents of the depth buffer so that the structure buffer and 
depth buffer are filled with their final values at the same time. �e structure buffer 
is a render target with four channels using the 16-bit floating-point format, which 
means that each pixel requires eight bytes of storage. As shown in Figure 10.9, the 
derivatives z x∂ ∂  and z y∂ ∂  of the camera-space depth z are stored in the x and y 
channels (red and green). We need more than 16 bits of precision for the value of 
z itself, however, so it is split between the z and w channels (blue and alpha) as 
discussed below. 

 
Figure 10.9. �e structure buffer has four channels that can be labelled x, y, z, and w or 
red, green, blue, and alpha. Each channel holds a 16-bit floating-point value, so a single 
pixel is eight bytes in size. �e camera-space depth z occupies both the z and w channels 
for high precision. �e derivatives z x∂ ∂  and z y∂ ∂  are stored in the x and y channels. 

 An example that shows the contents of the structure buffer for a typical indoor 
scene is given in Figure 10.10. �e final scene is shown in Figure 10.10(a), and it 
incorporates several uses of the structure buffer, such as an ambient occlusion tech-
nique that affects the lighting. (See Section 10.5.) �e camera-space depth for this 
scene is shown as a grayscale value at each pixel in Figure 10.10(b) after being 
reconstituted from the information stored in the z and w channels of the structure 
buffer. �e derivatives of the camera-space depth are shown in Figure 10.10(c). 
Since the change in z coordinate tends to very small compared to the change in x 
and y coordinates between adjacent pixels, the derivatives have been scaled by a 
factor of 64 to make them more pronounced. �ey have also been remapped to the 
range [ ]0,1  so that a derivative of zero in the x or y direction corresponds to a value 
of 0.5 in the red or green channel, respectively. A constant value of 0.5 has been 
assigned to the blue channel in the figure, and this causes any flat surface perpen-
dicular to the viewing direction to appear as a 50% gray color. Pixels for which the 
depth is increasing over positive changes in the x direction have large red compo-
nents, but if the depth is decreasing over the positive x direction, then the red com-
ponent is small. Similarly, pixels for which the depth is increasing over positive 
changes in the y direction have large green components, but if the depth is decreas-
ing over the positive y direction, then the green component is small. 
 Although it is sufficient for the derivatives, the 16-bit floating-point format 
does not provide as much precision as we would like for the camera-space depth. 
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(a) 

 
(b) 

 
(c) 

 
Figure 10.10. (a) Some of the lighting and effects applied when rendering the main scene 
use information stored in the structure buffer. (b) �e z and w channels of the structure 
buffer are combined to form a high-precision camera-space depth value at every pixel. 
(c) �e x and y channels of the structure buffer contain the viewport-space derivatives of 
the camera-space depth at every pixel. �e red and green color channels show the deriva-
tives after remapping from the range [ ]1 1

64 64,− +  to the range [ ]0,1 . 
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Fortunately, after the x and y channels of the structure buffer are claimed by the 
derivatives, we still have 32 bits of space available for the depth at each pixel in 
the z and w channels. We can split a depth z originally provided as a 32-bit floating-
point value into two 16-bit floating-point values in such a way that they can later 
be combined to produce a value retaining nearly the same precision that we started 
with. �is can be accomplished by first creating a depth h having only 10 bits of 
precision by masking off the 13 least significant bits of the 32-bit representation of 
z using a logical AND operation with the value 0xFFFFE000. As long as the expo-
nent is in the range [ ]15, 15− + , the value of h is preserved exactly when stored as 
a 16-bit floating-point number. If we now subtract h from the original depth z, then 
the first one bit after the 10 most significant bits in the mantissa becomes the im-
plicit leading one bit in the difference, and the 10 bits that follow compose the 
mantissa when it is stored as a 16-bit floating-point number. �is guarantees that 
the value of z h−  provides at least 11 more bits of precision, and when we later 
load the two values and add them together, we will have always retained at least 
21 bits of the original 23-bit mantissa. 
 �e pixel shader code shown in Listing 10.4 calculates the four values that are 
written to the structure buffer. �e camera-space depth z is split into the two parts 
h and z h−  by isolating the most significant 10 bits of the mantissa, and the parts 
are stored in the z and w channels of the result. �e viewport-space gradient of z is 
stored in the x and y channels. �e value of z passed to this function would nor-
mally be given by the per-pixel w coordinate because the camera-space depth is 
assigned to it by a perspective projection matrix. 
 A basic application of the information in the structure buffer eliminates depth 
testing artifacts where transparent billboards intersect solid geometry. As demon-
strated in Figure 10.11(a), large particles such as clouds of mist show unsightly 
lines where their polygons penetrate the ground geometry and fail the depth test. 
We can remove this problem by considering the difference Δz between the depth 

Listing 10.4. �is pixel shader function calculates the four values written to the structure buffer for 
a camera-space depth value z. �e logical AND operation isolates the most significant 10 bits so 
that the depth can be split into two parts stored in the z and w channels of the result. �e derivatives 
of z are stored in the x and y channels. 

float4 CalculateStructureOutput(float z) 
{ 
 float h = asfloat(asuint(z) & 0xFFFFE000U); 
 return (float4(ddx(z), ddy(z), h, z − h)); 
} 
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already written to the structure buffer and the depth of the polygon being rendered. 
When this difference is small, it can be used to increase the transparency of the 
particles by reducing the alpha value a output by the pixel shader to a new value 

 ( )sat Δa s z a′ = , (10.25) 

where s is an adjustable scale factor. �is causes the parts of each particle near the 
ground (or any other geometry) to gradually fade to full transparency at the inter-
section so that no artifacts are visible. �is modification has been applied to the 
same mist particles in Figure 10.11(b), which no longer shows the lines that were 
previously visible. �e pixel shader code shown in Listing 10.5 reads the two chan-
nels of depth information from the structure buffer, adds them together to reconsti-
tute the high-precision depth value, calculates the difference Δz, and returns the 
transparency factor given by Equation (10.25). 

Listing 10.5. �is pixel shader code samples the structure buffer at the viewport-space pixel coor-
dinates pixelCoord and adds the z and w channels together to reconstitute a high-precision depth 
value. �e camera-space depth given by the z parameter is then subtracted to calculate the value of 
Δz used by Equation (10.25), where the value of s is given by the scale parameter. 

uniform TextureRect  structureBuffer; 
 
float CalculateDepthFade(float2 pixelCoord, float z, float scale) 
{ 
 float2 depth = texture(structureBuffer, pixelCoord).zw; 
 float delta = depth.x + depth.y − z; 
 return (saturate(scale * delta)); 
} 

10.4  Volumetric Effects 

�e billboards described in Section 10.2 use several tricks to make something flat 
appear as if it had volume. In this section, we discuss some ways of rendering 
partially transparent effects having simple geometries that are truly volumetric and 
thus require no tricks to appear so. We specifically examine two types of volumet-
ric effects called halos and shafts that are demonstrated in Figure 10.12. �ese vol-
umetric effects are somewhat more expensive to draw than billboards, and we 
cannot easily apply arbitrary texture maps to them. However, they have the ad-
vantage of real volume, and that allows them to be rendered correctly from any 
camera position, including positions that are inside the volume itself. 
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Figure 10.11. (a) Mist particles are rendered as billboards, and lines are visible where they inter-
sect the ground geometry because the depth test abruptly begins to fail. (b) Each pixel belonging 
to a particle has its alpha value adjusted by Equation (10.25) so it becomes more transparent as 
the difference between its depth and the depth of the ground geometry already stored in the struc-
ture buffer decreases. �is produces a softening effect that eliminates the line artifacts. 

(a) 

(b) 
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Figure 10.12. Two examples of truly volumetric effects are rendered inside different game worlds. 
(a) A spherical halo effect illuminates the mist surrounding a light source in the woods. (b) Several 
cylindrical shaft effects give the appearance of light shining into a dark dungeon. 

10.4.1  Halos 
A halo is a spherical volume that is typically placed around a light source to pro-
duce the glow that results from some of the light being scattered toward the camera 
by the surrounding medium. A halo’s geometry is a sphere of radius R centered at 
the origin in object space, but we actually render a halo by drawing a simple bound-
ing geometry such as the box shown in Figure 10.13. For each pixel covered by 
that bounding geometry, we trace a ray through the volume to determine how bright 
the halo should be at that pixel, multiply the result by a color, and additively blend 
it into the frame buffer. �e intensity is zero for any ray that fails to intersect the 
sphere. Since we want the halo to be rendered when the camera is inside the vol-
ume, we turn the bounding geometry inside out so that the triangles on the far side 
are drawn when ordinary backface culling is enabled. Otherwise, a halo would 
disappear as soon as the camera crossed into its bounding geometry. Also, because 
a halo may intersect solid objects that may be nearby, we must render it with the 
depth test disabled so that any objects in front of the far side of the halo’s bounding 
geometry, but not necessarily in front of the near side, do not prevent closer parts 
of the volume from being shown. �e spherical shape of the halo, not its bounding 
geometry, should be tested for visibility against the view frustum (or visibility re-
gions extruded from portals) before rendering. As a possible optimization, the near 
sides of the bounding geometry could be rendered with the depth test enabled if it 
has been determined, on a frame-by-frame basis that the entire bounding geometry 
lies beyond the near plane. 
 �e appearance of a halo is largely determined by a density function ( )ρ r  that 
controls how much light is scattered as distance from the center increases. It is 

(a) (b) 



10.4  Volumetric Effects 319 

usually the case that the density is one at the center of the halo and zero at the 
radius R, but other functions are possible and produce interesting effects. For a 
physical light source, we would expect the density to be a linear function of 2r − , 
accounting for the correct attenuation, but the math does not work out well in that 
case. Instead, we use the density function 

 ( )
2

21 rρ r
R

= − , (10.26) 

which, although physically insignificant, produces nice results with a reasonable 
amount of computation in the pixel shader. 
 �e brightness of the halo at a particular pixel is given by the integral of the 
density function between the points where the ray t+ v  intersects the sphere of 
radius R, where the point  is the position on the bounding geometry, and the vec-
tor v is the unnormalized view direction −  for the object-space camera position 
. �e limiting values of the parameter t are found by solving the equation 

 ( )2 2t R+ =v , (10.27) 

which expands to 

 ( )2 2 2 22 0v t t p R+ ⋅ + − =v . (10.28) 

We make the definition 

 ( ) ( )( )2 2 2 2max , 0m v p R= ⋅ − −v , (10.29) 

 
Figure 10.13. A halo of radius R centered at the object-space origin  is rendered by tracing 
rays from the camera position  to points  on the far side of the halo’s bounding geometry, 
a box in this case. �e vector z is the object-space view direction (z axis) of the camera. 
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which is the square root of the discriminant of the polynomial in Equation (10.28). 
�e value inside the radical has been clamped to zero so we don’t have to explicitly 
check whether the ray intersects the sphere. In the case of a miss, clamping the 
discriminant causes both values of t to be equal, and that leads to an integral over 
no distance, which produces a brightness of zero. 
 Using the definition of m, the solutions to Equation (10.28) are given by 

 1,2 2

mt
v

− ⋅
=

v  , (10.30) 

where we have written the  symbol to indicate that the minus sign applies to 1t , 
and the plus sign applies to 2t . As shown in Figure 10.13, these signs ensure that 2t  
always corresponds to the point of intersection closer to the camera. A value of 

0t =  corresponds to the point  on the bounding geometry, and a value of 1t =  
corresponds to the camera position . Values of t greater than one are behind the 
camera. If the camera is inside the halo, then we only want to integrate along the 
ray between the camera position and the sphere intersection at 1t , so we will clamp 
the values of t to a maximum of one. Clamping both solutions handles the case in 
which the camera lies beyond the sphere but still in front of the far side of the 
bounding geometry because both values of t will become one. 
 In the case that the halo penetrates some other solid geometry, the depth of that 
geometry will be less than the depth of the farthest ray intersection for some pixels. 
�e parts of the halo that are inside the solid geometry do not make any contribu-
tion to the its brightness, so we should integrate along the ray only up to the point 
where it reaches the geometry’s depth. For this, we make use of the depth 0z  stored 
in the structure buffer. �is depth corresponds to the perpendicular distance from 
the camera plane, but to calculate a minimum parameter 0t , we need the distance d 
along the direction v of the ray. A little trigonometry lets us calculate this distance 
using the equation 

 0cos zφ
d

⋅
= = −

z v
v

, (10.31) 

where z is the object-space view direction of the camera given by 

 [ ]
1

object camera 2
−=z M M , (10.32) 

and φ is the angle between the vectors z and −v, as shown in Figure 10.13. �e 
difference between the parameters 0t =  at the point  and 1t =  at the camera posi-
tion  corresponds to the distance v  along the ray, so dividing the distance d by 
the length v  and subtracting it from one converts it to the parameter value 
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 0
0 1 1d zt = − = +

⋅v z v
. (10.33) 

�e values of 1t  and 2t  given by Equation (10.30) are both clamped to the minimum 
value specified by 0t . Together with the previous clamp to a maximum value of 
one, we now have the two limits of integration that represent the path through the 
halo starting no further away than any penetrating geometry and extending toward 
the camera without passing the camera position itself. 
 We are now ready to consider the integral of the density function ( )ρ r  given 
by Equation (10.26), where r t= + v , over the segment of the ray bounded by 
the parameters 1t  and 2t . �is integral is written as 

 ( ) ( )( )
2 2 2

1 1 1

2 2 2
2 2

t t t

t t t
ρ r dt dt v t t p dt

R
= − + ⋅ +∫ ∫ ∫vv v v , (10.34) 

and evaluating it yields the halo brightness B given by 

 ( ) ( ) ( )
2 2

2 2 3 3
2 1 2 1 2 12 2 21 .

3
p vB t t t t t t
R R R

⋅  = − − − − − −    

vv 
 (10.35) 

�e maximum value that B attains is 4 3R . (See Exercise 1). We divide by this 
value to normalize the brightness of the halo so it does not change when the halo 
is scaled. 
 Listing 10.6 demonstrates how a halo is rendered by a pixel shader. It reads the 
structure buffer to determine the depth of any geometry that might penetrate the 
halo, and uses Equation (10.33) to calculate the corresponding parameter value 0t . 
�e limits of integration 1t  and 2t  are then calculated with Equation (10.30) and 
clamped to the range [ ]0 ,1t . Finally, the density integral is evaluated with Equation 
(10.35) and normalized. �e brightness of the halo produced by the nonphysical 
density function tends to fall off too slowly near its center and too quickly near its 
outer boundary, so we square the resulting value of 3 4B R to give it a more realistic 
appearance. 

10.4.2  Shafts 
A shaft is an extruded volume that is often used to show light from a bright exterior 
space shining into a relatively dark interior space. Shafts are rendered in much the 
same way as halos because we find the points at which a ray intersects some surface 
and integrate a density function through the enclosed volume. In this section, we 
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Listing 10.6. �is pixel shader function renders a halo effect of radius R at the object-space position 
pobject. �e uniform constant R2 holds the value 2R  used by Equation (10.29), the constants 
recipR2 and recip3R2 hold the values 21 R  and 21 3R  used by Equation (10.35), and the constant 
normalizer holds the value 3 4R used to normalize the density integral. �e object-space camera 
position  and view direction z are given by cameraPosition and cameraView. �e pixelCoord 
parameter specifies the viewport coordinates of the pixel being processed, and it is used to read from 
the structure buffer. 

uniform TextureRect  structureBuffer; 
uniform float3   cameraPosition, cameraView; 
uniform float    R2, recipR2, recip3R2, normalizer; 
 
float CalculateHaloBrightness(float3 pobject, float2 pixelCoord) 
{ 
 float3 vdir = cameraPosition − pobject; 
 float v2 = dot(vdir, vdir); 
 float p2 = dot(pobject, pobject); 
 float pv = −dot(pobject, vdir); 
 float m = sqrt(max(pv * pv − v2 * (p2 − R2), 0.0)); 
 
 // Read z0 from the structure buffer. 
 float2 depth = texture(structureBuffer, pixelCoord).zw; 
 float t0 = 1.0 + (depth.x + depth.y) / dot(cameraView, vdir); 
 
 // Calculate clamped limits of integration. 
 float t1 = clamp((pv − m) / v2, t0, 1.0); 
 float t2 = clamp((pv + m) / v2, t0, 1.0); 
 float u1 = t1 * t1; 
 float u2 = t2 * t2; 
 
 // Evaluate density integral, normalize, and square. 
 float B = ((1.0 − p2 * recipR2) * (t2 − t1) + pv * recipR2 * (u2 − u1) 
           − v2 * recip3R2 * (t2 * u2 − t1 * u1)) * normalizer; 
 return (B * B * v2); 
} 

describe the rendering process for solitary shafts defined by the extrusion of some 
simple 2D shape along a height h in the object-space z direction. A different method 
that renders large numbers of light shafts due to complex shadowing is described 
in Section 10.6. �e specific surfaces that we examine are an elliptical cylinder and 
a box that can be thought of as the extrusions of an ellipse and a rectangle between 
the planes 0z =  and z h= . �ese surfaces are described by functions of only the x 
and y coordinates, but it is also possible to create volumes like a cone or pyramid 
by making them functions of the z coordinate as well. 
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 Inside the volume of a shaft, we use a linear density function ( )ρ z  that depends 
only on the z coordinate. It’s often convenient to specify that the density has the 
value 0ρ  at 0z =  and the value 1ρ  at z h= . Given those constants, we can write 

 ( ) 0ρ z σz ρ= + , (10.36) 

where we have made the assignment ( )1 0σ ρ ρ h= − . (Of course, the density is 
constant throughout the shaft if 1 0ρ ρ= .) As with halos, we determine the bright-
ness of a shaft by integrating this density function along the ray t+ v  between the 
parameters 1t  and 2t  where it intersects the shaft’s surface. Here,  and v have the 
same meaning as they did in Section 10.4.1. Regardless of the overall shape of the 
shaft, the integral is 

 ( ) ( )
2 2

1 1

0

t t

z z
t t

ρ z dt σv t σp ρ dt= + +∫ ∫v v , (10.37) 

and it evaluates to the shaft brightness B given by 

 ( ) ( )2 1 1 2 0 .
2 z z
σB t t v t t σp ρ = − + + +  

v  (10.38) 

 �e values of 1t  and 2t  are determined by the specific type of geometry that 
defines the shaft, as discussed below. When these parameters are calculated, it is 
practical to treat the shaft as if it has infinite extent in the z direction. With this in 
mind, we need to be careful not to integrate over any part of the ray where the 
density function ( )z zρ p tv+  becomes negative in the case that the density is not 
constant. �e parameter value limt  where the density equals zero is given by 

 0
lim

z

z

ρ σ pt
v

− −
= . (10.39) 

�is value represents either the minimum limit or maximum limit to the range over 
which we integrate, depending on the signs of σ  and zv . If they have the same sign, 
then the density is increasing as we walk along the ray toward the camera. In this 
case, the parameters 1t  and 2t  must be clamped to be no less than limt . Otherwise, if 
σ  and zv  have different signs, then the density is decreasing, and the parameters 1t  
and 2t  must be clamped to be no greater than limt . 
 Listing 10.7 shows how a shaft is rendered by a pixel shader after the intersec-
tion parameters 1t  and 2t  have been calculated. �ese parameters are first clamped 
to the range [ ]0 ,1t  just as they were for halos, where 0t  is given by Equation (10.33). 
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�ey are then clamped to either a minimum or maximum value of limt  based on the 
sign of zσv  before being plugged into Equation (10.38). (If 0σ = , meaning the den-
sity is constant, then the clamp to the zero-density limit limt  should be omitted.) As 
with halos, we apply a normalization constant N to ensure that the brightness of a 
shaft is invariant when it is scaled. �is constant would typically be given by 

 
( )0 1

1
max ,

N
D ρ ρ

= , (10.40) 

where D is some representative diameter of the shaft. Finally, we square the bright-
ness to give the shaft a softer appearance. 
 �e remaining task is to calculate the parameters 1t  and 2t  where the ray t+ v  
intersects the surface of the shaft, and we demonstrate how this can be done for the 

Listing 10.7. �is pixel shader function performs the final step of rendering a shaft effect for an 
object-space position  having z coordinate pz. A preceding step calculates values of t1 and t2 and 
passes them to this function. �e vector vdir is the difference − , where  is the object-space 
camera position. �e object-space camera view direction z is given by cameraView. �e pixelCoord 
parameter specifies the viewport coordinates of the pixel being processed, and it is used to read from 
the structure buffer. �e uniform constants shaftSigma and shaftRho0 correspond to the values of 
σ and 0ρ  in Equation (10.36), and shaftTau is the value 0τ ρ σ= − . �e value of N given by Equa-
tion (10.40) is specified by normalizer. 

uniform TextureRect  structureBuffer; 
uniform float3   cameraView; 
uniform float    shaftSigma, shaftRho0, shaftTau, normalizer; 
 
float CalculateShaftBrightness(float pz, float3 vdir, float2 pixelCoord, 
                               float t1, float t2) 
{ 
 // Read z0 from the structure buffer, calculate t0, and clamp to [t0,1]. 
 float2 depth = texture(structureBuffer, pixelCoord).zw; 
 float t0 = 1.0 + (depth.x + depth.y) / dot(cameraView, vdir); 
 t1 = clamp(t1, t0, 1.0); t2 = clamp(t2, t0, 1.0); 
 
 // Limit to range where density is not negative. 
 float tlim = (shaftTau − pz) / vdir.z; 
 if (vdir.z * shaftSigma < 0.0) {t1 = min(t1, tlim); t2 = min(t2, tlim);} 
 else {t1 = max(t1, tlim); t2 = max(t2, tlim);} 
 
 // Evaluate density integral, normalize, and square. 
 float B = (shaftSigma * (pz + vdir.z * ((t1 + t2) * 0.5)) + shaftRho0) 
           * (t2 − t1) * normalizer; 
 return (B * B * dot(vdir, vdir)); 
} 
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cylinder and box geometries shown in Figure 10.14. Each one sits on the x-y plane 
and extends through a height h in the positive z direction. We calculate ray inter-
sections only with the lateral surface of the shaft and not with the top and bottom 
end caps. Clamping the results to a minimum value of zero will prevent integration 
over any part of the ray reaching beyond the farther cap from the camera’s per-
spective. We do not bother clamping to any maximum value corresponding to the 
nearer cap, however, because doing so would make a difference only when the 
camera is in a position between the shaft effect and the light source that is presum-
ably causing it to appear in the first place. �is would happen, for instance, if a 
light shaft were used inside a building to show light shining in, but the camera is 
outside the window where the shaft would not be visible. In these kinds of cases, 
the shaft effect can simply be culled. However, if that is not an option, then the 
values of 1t  and 2t  can be clamped to the maximum value determined by the inter-
section of the ray with the plane z h= . 
 We render a cylindrical shaft by drawing a tightly-fitting box with inward-fac-
ing triangles around it in the same manner that we drew a box around the spherical 
geometry of a halo. �e cylindrical shaft itself is defined by the equation 
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Figure 10.14. Two possible shaft geometries are capped by the planes 0z =  and z h= . �e 
densities ( )ρ z  at each end are 0ρ  and 1ρ , respectively. (a) A cylinder shaft is centered on 
the origin, and it has the radii xr  and yr  along the x and y axes. (b) A box shaft has one 
corner at the origin, and it extends to the sizes xs  and ys  in the positive x and y directions. 
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which represents an infinite elliptical cylinder centered on the origin with radii xr  
and yr  along the x and y axes. When we multiply both sides by 2 2

x yr r  and substitute 
the components of the ray t+ v  for x and y, we get 

 ( ) ( )2 2 2 2 2 2
y x x x y y x yr p tv r p tv r r+ + + = , (10.42) 

and this can be rewritten as the quadratic equation 

 ( ) ( )2 2 2 2 2 2 2 2 2 2 2 2 22 0y x x y y x x x y y y x x y x yr v r v t r p v r p v t r p r p r r+ + + + + − = . (10.43) 

We define 

 ( )2max , 0m b ac= − , (10.44) 

where 2 2 2 2
y x x ya r v r v= + , 2 2

y x x x y yb r p v r p v= + , and 2 2 2 2 2 2
y x x y x yc r p r p r r= + − . We clamp 

the discriminant to zero, as we did for halos, to handle cases in which the ray misses 
the cylinder without having to write any special code for it. �e parameters 1t  and 

2t  where the ray intersects the cylinder are then given by 

 1,2
b mt

a
−

=
 , (10.45) 

where the minus sign applies to 1t , and the plus sign applies to 2t . An implementa-
tion of this formula is shown in Listing 10.8. 
 In the case of the box shaft, the inward-facing triangles that we use to render 
the effect coincide exactly with the shaft itself. �e four sides of the lateral surface 
of a box shaft are defined by the planes 
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�is encloses a volume that has one corner at the origin and extends to the sizes xs  
and ys  in the positive x and y directions. Finding the ray intersections is a simple 
matter of substituting the components of the ray t+ v  for x and y in these equa-
tions and solving for t. We need to be careful, however, to correctly associate each 
plane with the value of either 1t  or 2t  because 1t  must represent the intersection that 
is farther from the camera. If 0xv > , then the intersection with the plane 0x =  is 
associated with 1t , so we calculate 
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= . (10.47) 
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Otherwise, if 0xv < , then these two values are reversed. A similar determination 
applies to the y direction, and we calculate two additional values of  1t  and 2t  based 
on the sign of yv . �e larger value of 1t  and the smaller value of 2t  correspond to 
the path of the ray lying inside the box volume. Listing 10.9 shows how these val-
ues are calculated in a pixel shader. 

Listing 10.8. �is pixel shader function determines the ray intersection parameters for a cylindrical 
shaft at the object-space vertex position pobject and passes them to the function in Listing 10.7 to 
calculate the shaft’s brightness. �e uniform constants rx2, ry2, and rx2ry2 hold the values 2

xr , 2
yr , 

and 2 2
x yr r  for the cylinder. �e object-space camera position  is given by cameraPosition. �e 

pixelCoord parameter specifies the viewport coordinates of the pixel being processed. 

uniform float3   cameraPosition; 
uniform float    rx2, ry2, rx2ry2; 
 
float CalculateCylinderShaftBrightness(float3 pobject, float2 pixelCoord) 
{ 
 float3 vdir = cameraPosition − pobject; 
 float2 v2 = vdir.xy * vdir.xy; 
 float2 p2 = pobject.xy * pobject.xy; 
 
 // Calculate quadratic coefficients. 
 float a = ry2 * v2.x + rx2 * v2.y; 
 float b = −ry2 * pobject.x * vdir.x − rx2 * pobject.y * vdir.y; 
 float c = ry2 * p2.x + rx2 * p2.y − rx2ry2; 
 float m = sqrt(max(b * b − a * c, 0.0)); 
 
 // Calculate limits and integrate. 
 float t1 = max((b − m) / a, 0.0); 
 float t2 = max((b + m) / a, 0.0); 
 return (CalculateShaftBrightness(pobject.z, vdir, pixelCoord, t1, t2)); 
} 

Listing 10.9. �is pixel shader function determines the ray intersection parameters for a box shaft 
at the object-space vertex position pobject and passes them to the function in Listing 10.7 to cal-
culate the shaft’s brightness. �e uniform constants sx and sy hold the sizes of the box. �e object-
space camera position  is given by cameraPosition. �e pixelCoord parameter specifies the 
viewport coordinates of the pixel being processed. 

uniform float3   cameraPosition; 
uniform float    sx, sy; 
 
float CalculateBoxShaftBrightness(float3 pobject, float2 pixelCoord) 
{ 
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 float3 vdir = cameraPosition − pobject; 
 float t1 = 0.0, t2 = 1.0; 
 
 // Find intersections with planes perpendicular to x axis. 
 float a = −pobject.x / vdir.x; 
 float b = (sx − pobject.x) / vdir.x; 
 if (vdir.x > 0.0) {t1 = max(t1, a); t2 = min(t2, b);} 
 else {t1 = max(t1, b); t2 = min(t2, a);} 
 
 // Find intersections with planes perpendicular to y axis. 
 a = −pobject.y / vdir.y; 
 b = (sy − pobject.y) / vdir.y; 
 if (vdir.y > 0.0) {t1 = max(t1, a); t2 = min(t2, b);} 
 else {t1 = max(t1, b); t2 = min(t2, a);} 
 
 return (CalculateShaftBrightness(pobject.z, vdir, pixelCoord, t1, t2)); 
} 

10.5  Ambient Occlusion 

As discussed in Chapter 7, the ambient lighting at any particular point in space is 
a rough approximation of the illumination coming from every direction due to 
complex interactions between light and the environment. �e ambient light reach-
ing a point on a surface comes from all of the directions covering the hemisphere 
above the tangent plane at that point. However, the ambient light from some of 
those directions might be blocked by nearby geometry, and this has the effect of 
darkening the surface because the total amount of light reaching it is diminished. 
�e fraction of ambient light that is blocked in this way when we consider nearby 
geometry in every direction over the hemisphere is called ambient occlusion. 
 Determining the correct ambient occlusion at a given point is a very expensive 
operation that is usually impractical for real-time rendering, especially in dynamic 
environments where precomputation is not possible. Instead of spending time on a 
highly accurate simulation, it turns out that we can produce a plausible approxima-
tion of ambient occlusion by using the information in the structure buffer to esti-
mate the amount of ambient light reaching the visible geometry at each pixel. �is 
is the basis for a class of techniques generally referred to as screen-space ambient 
occlusion (SSAO), and they are considerably faster at the cost of accuracy. A wide 
variety of such techniques exist among a zoo of acronyms, and each one carries 
out calculations in its own way. In this section, we present a fast and effective 
method that incorporates elements of a concept called ambient obscurance and a 
technique known as horizon-based ambient occlusion (HBAO). 
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10.5.1  The Occlusion Buffer 
SSAO is applied to a scene by rendering a full-screen pass after the contents of the 
structure buffer have been established, calculating the fraction H of ambient light 
blocked for each pixel, and storing the value 1 σH−  in a single-channel 8-bit oc-
clusion buffer, where σ is an adjustable scale factor that controls the overall inten-
sity of the occlusion effect. Despite its name, the occlusion buffer actually stores 
the fraction of ambient light that reaches the geometry rendered at the pixel loca-
tion. When the same geometry is later rendered to the color buffer, the fraction of 
ambient light is fetched from the occlusion buffer at each pixel and used to modify 
whatever ambient light color has been inserted into the shading calculations. 
 As shown in Figure 10.15, the results produced by applying SSAO to a scene 
can be rather striking. In the top row, two scenes containing very little direct light-
ing are rendered without ambient occlusion. In the middle row, the ambient light 
level has been reduced by the amount that was determined to be occluded at each 
pixel. For the indoor scene on the left, this causes interior edges and corners to 
stand out much more, and it causes the pipes and air ducts to cast an ambient 
shadow on the walls behind them. For the outdoor scene on the right, ambient oc-
clusion causes the wall to be darkened in areas where light is largely blocked by 
the vines, and the vines themselves are also affected in such a way that much more 
geometric detail is visible. In the bottom row of the figure, the unoccluded fraction 
of ambient light stored in the occlusion buffer is shown for each scene. Ambient 
occlusion is applied by multiplying the ambient illumination in image (a) by the 
values in image (c) to produce image (b) in each column. 
 �e fraction H of occluded ambient light is calculated at each pixel by sam-
pling the structure buffer at several surrounding pixels to determine whether any 
nearby geometry blocks incoming ambient light. �e final result written to the oc-
clusion buffer is then based on a weighted average of the occlusion values calcu-
lated for all of the samples. In our implementation, we take four samples per pixel 
at 90-degree increments and at differing radii on a disc parallel to the projection 
plane. As described below, the sample locations are randomly rotated in every 4 4×  
group of pixels to effectively produce 64 distinct samples in a small screen area. 
After the ambient occlusion has been calculated for each pixel, a separate blurring 
pass smooths the results and eliminates the noise caused by the low sample count. 
 Let  be the camera-space point lying on the visible surface rendered at the 
pixel for which we are calculating the ambient occlusion. �e depth of , which 
we call 0z , is fetched from the z and w channels the structure buffer. Since we are 
interested in the hemisphere of incoming light directions above the tangent plane 
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(a) 

  
(b) 

  
(c) 

  
Figure 10.15. (a) Two scenes are rendered without ambient occlusion applied, an interior industrial 
environment on the left, and an exterior wall with thick vines on the right. (b) Screen-space ambient 
occlusion is used to scale the per-pixel ambient lighting, producing a better appearance and revealing 
greater detail. (c) �e contents of the corresponding occlusion buffers are shown after the blurring 
operation has been applied. 
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at , we need to calculate the normal vector n. �is is easily accomplished by using 
the derivatives in the structure buffer because the normal vector is given by 

 camera camera

camera camera
, , 1z z

x y
∂ ∂ = − ∂ ∂ 

n . (10.48) 

We must be careful, however, to recognize that the derivatives in the structure 
buffer correspond to changes in depth with respect to viewport-space coordinates, 
not camera-space coordinates. For a viewport of w h×  pixels and a view frustum 
having an aspect ratio s and a projection plane distance g, the scale factors relating 
distances between adjacent pixels in viewport space and corresponding distances 
in camera space at the depth 0z  are 

 camera 0

viewport

2x sz
x wg
∂

=
∂

  and  camera 0

viewport

2y z
y hg
∂

=
∂

. (10.49) 

Of course, these scale factors are equal because s w h= . When we multiply n by 
the first factor, we obtain 
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which now gives us the normal vector in terms of the exact derivatives and depth 
value stored in the structure buffer. �e scale factor 2s wg  is precomputed and 
passed to the occlusion shader as a constant. We normalize the vector n to unit 
length before using it in any calculations. 
 It is possible to calculate the derivatives needed for the normal vector by taking 
differences of adjacent depths instead of using derivatives stored in the structure 
buffer. However, doing so produces errors in the normal vector wherever the de-
rivatives change abruptly, such as edges where two surfaces meet or boundaries 
where a foreground surface occludes a background surface. �is happens because 
the differences in depths do not correspond to the correct tangent plane of either 
surface in those locations. Calculating derivatives as geometry is rendered into the 
structure buffer produces superior results, and Equation (10.50) will not be the only 
time we use them. 
 When we sample a neighborhood around a point , we do so at fixed offsets 
perpendicular to the z axis in camera space, and this means that the corresponding 
pixel offsets in the viewport vary with the depth 0z  of . To determine where we 
should sample the structure buffer for a camera-space offset cameraΔx , we use the 
inverse of the relationship given by Equation (10.49) to obtain the viewport-space 
offset 
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As 0z  becomes smaller, the viewport-space offsets become larger. �is is the main 
source of performance variation in any particular SSAO technique. Even though 
the same amount of computation is being done, the larger offsets needed when the 
camera is closer to the geometry reduces the effectiveness of the GPU texture 
cache, so more time is spent waiting for data to be fetched from the structure buffer. 
Fortunately, in cases where a large portion of the viewport contains geometry close 
to the camera, much less geometry elsewhere tends to be visible, so the increased 
time needed to render ambient occlusion is often balanced by a decrease in overall 
scene complexity. 
 Suppose that we sample the structure buffer at an offset ( )viewport viewportΔ , Δx y  
from the location of the pixel being rendered by our occlusion shader, and let z be 
the depth fetched from the structure buffer at that offset. �en define 

 ( )camera camera 0Δ , Δ ,x y z z= −v  (10.52) 

as the camera-space offset vector to a point on some nearby surface that might be 
occluding the point . Some examples of the vector v are shown in Figure 10.16. 
Our goal is to determine, in some reasonable way, how much ambient light should 
be considered occluded due to the presence of geometry at the point + v . We will 
be averaging the results from several different directions, so it’s alright to treat the 
occlusion due to a single sample as a two-dimensional problem in the plane deter-
mined by the offset vector v and the normal vector n. 
 We assume that the geometry found in the direction of v occludes ambient light 
at all angles between v and the tangent plane at the point  but does not occlude 
ambient light at any angles between v and the normal vector n. Let α v represent 
the angle between n and v. �en the fraction ( )f v  of ambient light occluded due 
to geometry in the direction of v is given by 

 ( )
2

cos 1 sin
π

α
f φ dφ α= = −∫

v

vv . (10.53) 

�is is the cosine-weighted integral of the incoming light that is blocked between 
v and the tangent plane. It requires no normalization because the total amount of 
light reaching the surface between n and v, given by integrating with 0α =v , is 
simply one. We can calculate the cosine of α v through the dot product 

 ˆcos α ⋅
= ⋅ =v

n vn v
v

, (10.54) 
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and we can then express ( )f v  as 

 ( ) ( ) 2ˆ1 1f = − − ⋅v n v . (10.55) 

 Geometry beneath the tangent plane should not occlude any ambient light, so 
we must ensure that 2

πα ≤v  by clamping ˆ⋅n v to zero. In practice, we subtract a 
small positive constant value τ  from ˆ⋅n v before clamping because it prevents un-
wanted darkening near the edges between polygons that meet at nearly 180-degree 
interior angles. Subtracting τ  creates an effective tangent plane that makes an angle 
a little smaller than 90 degrees with the normal vector n, as shown by the red line 
in Figure 10.16. With these modifications, the revised formula for ( )f v  is 

 ( ) ( ) 2ˆ1 1 max , 0 .f τ= − − ⋅ −v n v  (10.56) 

 
Figure 10.16. �e ambient occlusion is calculated at the point  by sampling the structure 
buffer to obtain the depth at several offsets perpendicular to the camera-space z axis. �is 
produces several vectors v, shown in blue, that correspond to the visible surface location 
in a neighborhood around . �e three samples to the left of  contribute to the overall 
ambient occlusion because they are in front of the red line representing the effective tangent 
plane. �e two samples to the right of  make no contribution because they are beneath the 
tangent plane and thus do not fall in the hemisphere over which ambient light is received. 
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�e incorporation of τ  causes a slight decrease in the amount of ambient occlusion 
that we end up calculating, but the effect is ultimately absorbed by the overall in-
tensity factor σ . 
 We do not want geometry that is arbitrarily far away to contribute to the am-
bient occlusion. If it did, then surfaces far in the background would be occluded 
by objects in the foreground, and the occlusion would be rather strong due to our 
assumption that the occluding geometry extends all the way to the tangent plane. 
�is would cause dark halos to appear around all foreground objects. To prevent 
this from happening, we introduce a weighting function ( )w v  that decreases the 
amount of occlusion as the magnitude of v becomes larger. (�e presence of this 
weighting function is what distinguishes techniques using the term obscurance 
from those using the term occlusion.) Some SSAO techniques use the magnitude 
of v directly in the weighting function, but we will use the dot product ⋅n v that 
will already be available in the shader to derive a weight from the perpendicular 
distance to the tangent plane. Our weighting function is the simple linear fall-off 
given by 

 ( )
max

sat 1 ,w
d
⋅ = − 

 
n vv  (10.57) 

where maxd  is an adjustable constant corresponding to the distance from the tangent 
plane at which the weight reaches zero. Note that the vector v in this formula is not 
normalized as it is in the formula for ( )f v . 
 �e final occlusion value ( )H v  for a single sample is given by the product 

 ( ) ( ) ( )H w f=v v v . (10.58) 

�e plot in Figure 10.17 illustrates the amount of occlusion produced by ( )H v  
with respect to components of v that are parallel and perpendicular to the normal 
vector n. �e angular dependence of ( )f v  causes the occlusion to fade as the tan-
gential distance from  increases, and the weighting function ( )w v  is responsible 
for fading along the normal direction. �e darkest regions near the bottom center 
of the plot are where the greatest occlusion occurs. 
 If we take n samples per pixel, then the ambient light factor A written to the 
occlusion buffer is given by 
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Figure 10.17. �is graph shows the ambient occlusion ( )H v  with respect to the distance 
along the tangent plane on the horizontal axis and the distance along the normal vector n 
on the vertical axis, where we have set max 2d = . 

where iv  is the offset vector for the i-th sample. �e constant σ  is a tunable scale 
factor controlling the overall intensity of the ambient occlusion, and it can be set 
to values greater than one to make the effect more prominent. Equation (10.59) is 
implemented in the pixel shader code shown in Listing 10.10. �is shader fetches 
four samples from the structure buffer using the offset vectors ( )1

1 4 , 0r=v , 
( )1

2 20, r=v , ( )3
3 4 , 0r= −v , and ( )4 0, r= −v , where we have chosen a maximum 

sampling radius of 0.4r = . 
 If we were to use the same four offset vectors for every pixel, then a strong 
dependence on those directions would show up in the ambient occlusion, and the 
results would be of low quality. To distribute the offset vectors more isotropically, 
we apply a rotation of 2 16πk  radians for values of k between 0 and 15 that are 
randomly assigned within each 4 4×  block of pixels. We precompute a small 4 4×  
texture map having two 16-bit floating-point channels that contain ( )cos 2 16πk  
and ( )sin 2 16πk , where all 16 possible values of k are utilized one time each in a 
random pattern. �e rotation for the current pixel is fetched from this texture map 
by dividing the pixel coordinates by four and setting the wrap mode to repeat. Even 
though the pixel shader code performs a full 2 2×  matrix multiply to rotate the 
offset vectors, the compiler will recognize that each offset contains a zero in one 
of its coordinates and optimize the calculation accordingly. 
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Listing 10.10. �is pixel shader function calculates ambient occlusion and returns the ambient light 
factor A given by Equation (10.59), where we have four samples. �e pixelCoord parameter spec-
ifies the viewport coordinates of the pixel being processed, and it is used to read from the structure 
buffer and rotation texture. �e uniform constant vectorScale holds the value 2s wg  used in Equa-
tion (10.50), and intensity holds the overall scale factor σ. �e value of τ in Equation (10.56) has 
been set to 1 32, and the value of maxd  in Equation (10.57) has been set to 2. 

uniform TextureRect  structureBuffer; 
uniform Texture2D  rotationTexture; 
uniform float    vectorScale, intensity; 
 
float CalculateAmbientOcclusion(float2 pixelCoord) 
{ 
 const float kTangentTau = 0.03125; 
 
 // These are the offset vectors used for the four samples. 
 const float dx[4] = {0.1, 0.0, −0.3, 0.0}; 
 const float dy[4] = {0.0, 0.2, 0.0, −0.4}; 
 
 // Sample the structure buffer at the central pixel. 
 float4 structure = texture(structureBuffer, pixelCoord); 
 float z0 = structure.z + structure.w; 
 
 // Calculate the normal vector. 
 float scale = vectorScale * z0; 
 float3 normal = normalize(float3(structure.xy, −scale)); 
 scale = 1.0 / scale; 
 
 // Fetch a cos/sin pair from the 4x4 rotation texture. 
 float2 rot = texture(rotationTexture, pixelCoord * 0.25).xy; 
 float occlusion = 0.0; 
 float weight = 0.0; 
 
 for (int i = 0; i < 4; i++) 
 { 
  float3  v; 
 
  // Calculate the rotated offset vector for this sample. 
  v.x = rot.x * dx[i] − rot.y * dy[i]; 
  v.y = rot.y * dx[i] + rot.x * dy[i]; 
 
  // Fetch the depth from the structure buffer at the offset location. 
  float2 depth = texture(structureBuffer, (pixelCoord + v.xy * scale)).zw; 
  v.z = depth.x + depth.y − z0; 
 
  // Calculate w(v) and f(v), and accumulate H(v) = w(v)f(v). 
  float d = dot(normal, v); 
  float w = saturate(1.0 − d * 0.5); 
  float c = saturate(d * rsqrt(dot(v, v)) − kTangentTau); 
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  occlusion += w − w * sqrt(1.0 − c * c); 
  weight += w; 
 } 
 
 // Return the ambient light factor. 
 return (1.0 − occlusion * intensity / max(weight, 0.0001)); 
} 

10.5.2  Depth-Aware Blurring 

After the ambient light factor has been rendered with the pixel shader shown in 
Listing 10.10, it has a noisy appearance due to the low number of per-pixel sam-
ples, as shown in Figure 10.18(a). Increasing the number of samples reduces the 
noise to a degree, but it comes at a high cost in terms of performance, and it doesn’t 
eliminate the noise completely. A much faster and more productive course of action 
is to blur the contents of the occlusion buffer so that the final appearance of each 
pixel is influenced by a blend of its own samples and the samples belonging to its 
neighbors. Because the offset vectors are different for every pixel in a 4 4×  block, 
we can effectively make use of 64 total samples at each pixel by averaging all 16 
rotations of the four samples originally taken per pixel. �e result is the smooth 
ambient light factor shown in Figure 10.18(b). 
 �e smoothness of the ambient occlusion can be increased by distributing 
larger numbers of rotations over larger n n×  blocks and adjusting the coordinates 

  
Figure 10.18. (a) �e contents of the occlusion buffer have a noisy appearance due to the low 
number of samples taken per pixel, and a stipple pattern is visible due to the repeating offset vectors 
every fourth pixel. (b) Every 4 4×  block of pixels has been averaged to distribute the samples for 
all 64 offset vectors to each pixel, and the noise has been eliminated. 

(a) (b) 
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used to fetch from the rotation texture accordingly. �e blurring stage must then 
average an n n×  area to produce an image derived from an effective 24n  samples. 
It is important to realize that for the to blurring work well, the sampling pattern 
used in every n n×  block has to be the same so that an n n×  blur at any pixel loca-
tion, aligned to a block boundary or not, ends up collecting samples from the same 
set of offset vectors, just in different relative positions. Otherwise, if different n n×  
blocks have different arrangements of rotation angles, then stipple patterns tend to 
persist after the blurring operation. 
 When we blur the occlusion buffer, we want to avoid including values belong-
ing to different surfaces that are separated by a significant distance in depth. If we 
did include those, then ambient occlusion from one surface could be incorrectly 
smeared onto an unrelated surface, leading to a poor appearance. In order to limit 
the blurring operation to the right range of depths, we use the gradient information 
in the structure buffer to estimate the slope of the surface at the location where we 
are gathering samples. �e absolute values of the derivatives z x∂ ∂  and z y∂ ∂  tell 
us how much the depth changes for an offset of one pixel in either the x or y direc-
tion. Since we are taking samples in many different directions, we simply use the 
larger derivative as an approximate change in depth per pixel. Multiplying by the 
maximum pixel offset Δp used by the blur gives us the formula 

 Δ Δ max ,z zz p δ
x y
∂ ∂   = +  ∂ ∂   

 (10.60) 

for the maximum difference Δz in depth for which a nearby pixel should be con-
sidered part of the same surface. �e extra term δ is an adjustable value that we 
include to account for the fact that the surface may not actually be flat within the 
distance Δp and could acquire a larger slope away from the center pixel. Calling 
the depth of the center pixel 0z , only pixels in the occlusion buffer having a depth 
z such that 0 Δz z z− <  are included in the average. 
 �e blur operation requires that we actually have two occlusion buffers with 
the same single-channel format. �e first occlusion buffer holds the original ambi-
ent light factors generated by Listing 10.10, and the second occlusion buffer re-
ceives the results of the blur operation. Later, when the color buffer is rendered, 
only the second occlusion buffer is accessed to determine how much ambient light 
reaches each pixel, and the first occlusion buffer is no longer needed. 
 �e shader code shown in Listing 10.11 implements the depth-aware blur op-
eration. It reads the structure buffer at the center pixel to determine its depth 0z  and 
the maximum change in depth Δz. It then samples the occlusion buffer and struc-
ture buffer four times using pixel offsets of 0.5−  and 1.5 in each of the x and y 
directions. �e half-pixel offsets allow the shader to take advantage of the filtering 
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hardware in order to average four values together. (Of course, this requires that 
bilinear filtering be enabled for both the occlusion and structure buffers.) In this 
way, 16 samples can be considered with only four texture fetches, but there is slight 
loss of quality due to the fact that we can use only one filtered depth z for each 
group of four samples. Any filtered samples satisfying 0 Δz z z− <  are accumu-
lated, and we divide by the number of passing samples at the end to obtain an 
average. In the case that no samples are accepted, we resort to calculating an aver-
age of all 16 samples with no regard for their depths. 

Listing 10.11. �is pixel shader function performs a depth-aware blur of a 4 4×  area of the occlusion 
buffer. �e range of valid depth values for each sample is determined by the gradient calculation, 
where 1 128δ = . 

uniform TextureRect  structureBuffer; 
uniform TextureRect  occlusionBuffer; 
 
float BlurAmbientOcclusion(float2 pixelCoord) 
{ 
 const float kDepthDelta = 0.0078125; 
 
 // Use depth and gradient to calculate a valid range for the blur samples. 
 float4 structure = texture(structureBuffer, pixelCoord); 
 float range = (max(abs(structure.x), abs(structure.y)) + kDepthDelta) * 1.5; 
 float z0 = structure.z + structure.w; 
 
 float2 sample = float2(0.0, 1.0); float3 occlusion = float3(0.0, 0.0, 0.0); 
 for (int j = 0; j < 2; j++) 
 { 
  float y = float(j * 2) − 0.5; 
  for (int i = 0; i < 2; i++) 
  { 
   float x = float(i * 2) − 0.5; 
 
   // Fetch a filtered sample and accumulate. 
   float2 sampleCoord = pixelCoord + float2(x, y); 
   sample.x = texture(occlusionBuffer, sampleCoord).x; 
   occlusion.z += sample.x; 
 
   // If depth at sample is in range, acculumate the occlusion value. 
   float2 depth = texture(structureBuffer, sampleCoord).zw; 
   if (abs(depth.x + depth.y − z0) < range) occlusion.xy += sample; 
  } 
 } 
 
 // Divide the accumulated occlusion value by the number of samples that passed. 
 return ((occlusion.y > 0.0) ? occlusion.x / occlusion.y : occlusion.z * 0.25); 
} 
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10.6  Atmospheric Shadowing 

In the presence of even a slight fog, strong illumination from a light source like the 
sun is scattered to a noticeable degree by the atmosphere filling the scene. As dis-
cussed in Section 8.5, some fraction of the light reaching every tiny volume of air 
is redirected toward the camera, and this causes the fog to have a uniform bright-
ness. What we did not previously address, however, is what happens when the light 
is blocked at some locations. Solid objects not only cast shadows on other solid 
objects but also on the molecules floating around in between. Any volume of air 
that the light doesn’t actually travel through obviously cannot scatter any of that 
light toward the camera. As a result, scenes containing prominent shadow-casting 
geometry, like the forest shown in Figure 10.19(a), realistically contain many 
shafts of lighter and darker air volumes perceived as rays emanating from the light 
source. �e visual effect goes by many names, some of the most common of which 
are sun rays, god rays, and crepuscular rays. 
 To accurately render fog that accounts for atmospheric shadowing and pro-
duces sun rays, we must be able to estimate what portion of any line of sight start-
ing at the camera position is exposed to the light source or is otherwise in shadow. 
Fortunately, if the scene has been rendered with the use of a cascaded shadow map, 
then we already have all of the information we need. However, we need to access 
a large amount of that information for each ray traced from the camera position in 
order to calculate a good approximation of the inscattered light. �rough the use 
of some clever engineering, we can achieve a high-quality result while maintaining 
surprisingly good performance. 

10.6.1  The Atmosphere Buffer 
For atmospheric shadowing, the basic idea is that we generate a ray for each pixel’s 
location on the projection plane and sample it at many points within some fixed 
range of distances [ ]min max,d d  from the camera. For each ray, we accumulate the 
inscattering contributions from samples that are not in shadow and store the sum 
in a dedicated one-channel atmosphere buffer, as shown in Figure 10.19(b). Our 
technique needs to work with bright rays when looking toward the light source and 
subtle variances when looking in other directions. Because the values calculated 
for each ray can cover a wide range of magnitudes, 16-bit floating-point is the most 
effective storage format. An 8-bit format, even with gamma compression, is not 
sufficient. 
 Naturally, taking a greater number of samples per ray produces better results, 
but doing so comes at the cost of performance. Since the rays that we render do 
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Figure 10.19. (a) Atmospheric shadowing produces accurate sun rays in a forest setting by inte-
grating light visibility along paths through the shadow map. (b) �e amount of inscattered light at 
each pixel, multiplied by three for high visibility in this image, is stored in a half-resolution frame 
buffer and later added to the main scene during postprocessing. 

not need to include sharp details, one easy step we can take to reduce the overall 
computational cost is to make the atmosphere buffer half the resolution of the main 
frame buffer so we render only one quarter the number of pixels. �is is illustrated 
by the difference in frame buffer sizes shown in Figure 10.19. 
 �e contents of the atmosphere buffer are generated by rendering a full-screen 
pass and interpolating points in a plane f lying at the distance mind  in front of the 
camera. For a view frustum have projection distance g and aspect ratio s, a vertex 

(a) 

(b) 
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position  specified in normalized device coordinates, as shown in Figure 5.17, is 
transformed into a camera-space point  in the plane f by the formula 

 min
1, ,1x y

sd v v
g g

 =  
 

 . (10.61) 

�ese points correspond to the directions of rays emanating from the camera posi-
tion at the origin. �ey are calculated by the vertex shader and linearly interpolated 
across the entire viewport. In the pixel shader, we normalize these directions to a 
length of mind  by multiplying by the factor mind   so we are working with radial 
distances from the camera position. �is ensures that the sample positions along 
any particular direction do not move when the camera is rotated. 
 In the vertex shader, we also transform the ray direction xyzq , as a 3D vector, 
from camera space to shadow space for cascade 0 to produce a vector r represent-
ing the ray direction relative to the volume of space covered by the shadow map. 
�e vector r is given by 

 0
shadow camera xyz=r M M q , (10.62) 

where cameraM  is the matrix that transforms from camera space to world space, and 
0
shadowM  is the matrix given by Equation (8.81) that transforms from world space 

into shadow space for cascade 0. �e vector r is also interpolated over the entire 
viewport and multiplied by the factor mind   in the pixel shader to obtain the 
offset from the camera position at which sampling begins. �e shadow-space cam-
era position  for cascade 0 is a constant given by 

 [ ]
0
shadow camera 3= M M . (10.63) 

Points 1  and 2  in shadow space representing the minimum and maximum dis-
tances along the ray at which we sample the shadow map are finally given by 

 min
1

d
= + r 


   and   max min

2
min

d d
d

 = +  
 

r 


. (10.64) 

 As we take steps along a ray, we must stop sampling once the camera-space 
depth exceeds the depth of the scene geometry in the ray’s direction because the 
ray has penetrated an opaque surface. �e maximum allowable depth maxz  of any 
sample is provided by the depth stored in the structure buffer. Since the dimensions 
of the atmosphere buffer are half those of the structure buffer, we must be careful 
to sample the structure buffer at double the viewport coordinates of the pixel being 
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rendered. So that we are able to determine the depth of any particular sample, we 
first calculate the depths 1z  and 2z  corresponding to the points 1  and 2  where 
sampling begins and ends. �ese depths are equal to the z coordinates of the direc-
tion xyzq  after it has been scaled to the lengths mind  and maxd . Since minzq d= , the 
formulas for 1z  and 2z  can be written as 

 
2
min

1
dz =


   and   max
2 1

min

dz z
d

= . (10.65) 

 �e depth at each sample position is also used to determine which shadow 
cascade provides visibility information at that position. We read from cascade 0 
until the sample depth exceeds the cascade’s maximum depth. We then proceed to 
the cascade 1 and read from it until we’ve exceeded its maximum depth, and so 
on. Since no visibility information exists beyond the final cascade, the value of 

maxd  should never be greater than that cascade’s maximum depth. When reading 
from cascade 0k > , we multiply the sample position by the matrix kC  given by 
Equation (8.83) that scales and offsets the shadow-space coordinates in cascade 0 
to match the bounding box of cascade k. 
 �e most straightforward way to take samples along a ray would be to divide 
the line segment between 1  and 2  into n equally sized steps. �e sample positions 
would be given by 

 ( ) ( ) 1 21t t t= − +   , (10.66) 

where t ranges from zero to one and increments by Δ 1t n=  at each step. Including 
samples at both 0t =  and 1t = , this produces 1n +  equally weighted samples that 
each represent a length of ( )max min Δd d t−  along the ray. However, because shadow 
map cascades farther from the camera store information about the visibility of the 
light source at a lower density than cascades closer to the camera, taking equally 
sized steps tends to cause oversampling in the higher numbered cascades and may 
fail to take advantage of the greater detail available closer to the camera. We would 
like to take more samples closer to the camera where shadow map texels cover 
smaller volumes of space and fewer samples farther away where shadow map tex-
els are more spread out. �is can be accomplished by remapping the parameter t to 
another parameter u in such a way that samples are redistributed over the range 
[ ]0,1  so that more of them are closer to the point 1 . �ere are many ways we could 
do this, but a simple choice is to set ( ) 2u t at bt= + . By requiring that ( )1 1u =  and 
that du dt is equal to a specific slope m at 0t = , we have 

 ( ) ( ) 21u t m t mt= − + . (10.67) 
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We still begin sampling with 0t = , and we still increment t by 1 n at each step, but 
now the sample positions are given by 

 ( ) ( )( ) ( )1 21u u t u t= − +   . (10.68) 

 �e sample positions produced by Equation (10.68) are distributed like those 
shown in Figure 10.20, where we have set 0.25m = . Using the same parameter u, 
the camera-space depth of a sample is given by ( ) ( ) 1 21z u u z uz= − + , and this is 
used both to determine when we have hit solid geometry and to select which 
shadow map cascade is sampled. Even though the cascade index is based on the 
depth ( )z u , the sample positions are based on radial distance from the camera so 
that the distribution of samples along any particular world-space direction does not 
change as the camera rotates in place. Otherwise, if sample distributions varied 
with the direction of a ray, the calculated brightness of the inscattered light could 
change with camera orientation, possibly leading to flickering artifacts. 

 
Figure 10.20. Along any ray starting at the camera position  in shadow space, sample 
positions are distributed nonlinearly between the radial camera-space distances mind  and 

maxd . �e parameter u is given by Equation (10.67), where 0.25m =  in this example. �e 
shadow-space sample position is given by ( ) 1 21 u u− +  , and the camera-space depth 
( )z u  is given by ( ) 1 21 u z uz− + . 
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 Samples having a nonlinear distribution cannot be weighted equally because 
they represent intervals of varying length along each ray. �e portion of the ray 
corresponding to a sample taken at a specific value of t can be approximated by 
evaluating the derivative 

 ( )2 1du m t m
dt

= − +  (10.69) 

and multiplying it by the length ( )max min Δd d t−  of a fixed-size step. For the i-th 
sample along the ray, we have t i n= , and the length iε  represented by the sample 
is given by 

 ( ) ( )max min
max min

2 1Δi
t i n

mdu d dε d d t i m
dt n n=

−−  = − = +  
. (10.70) 

�e sum of all the per-sample lengths, where sample 0i =  corresponds to 0t =  and 
sample i n=  corresponds to 1t = , is then 

 ( ) ( )max min
max min

0 0

2 1 1n n

i
i i

md d nε i m d d
n n n= =

−− + = + = − 
 

∑ ∑ , (10.71) 

which is independent of the starting slope m. If we assign the weight iw  given by 

 ( )2 1
i

mw i m
n
−

= +  (10.72) 

to each sample, then the sum of all weighted sample values along a ray is normal-
ized to the full length of the ray with the constant factor 

 max min

1
d d

n
−
+

. (10.73) 

As we step along a ray, we start with the weight 0w m=  for the first sample and 
simply add the constant ( )Δ 2 1w m n= −  at each step to obtain the weights for 
successive samples. 
 �e final brightness B of the inscattered light along a ray is given by the sum 

 
max min

0
,

1

n

i i
i

d dB λ w s
n =

−
=

+ ∑  (10.74) 

where is  is the light visibility value read from the shadow map at the position of 
sample i. Due to filtering applied when the shadow map is read, each is  can have a 
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value anywhere between zero and one. For any samples having positions beyond 
a solid surface, 0is = , but the normalization factor remains the same. �e constant 
λ is a density value, a configurable property of the atmosphere controlling how 
much light is scattered toward the camera per unit distance. 

10.6.2  Sample Randomization 
When Equation (10.74) is used to render atmospheric shadowing, the result is the 
unappealing pattern shown in Figure 10.21(a). Here, a maximum of 65 samples 
have been read from the shadow map over a distance of 40 meters along each ray, 
but this rather large number of samples is still inadequate for generating an image 
of acceptable quality. To overcome this problem without increasing the number of 
samples, we reach into our bag of tricks and once again pull out random noise. By 
adding a different random value in the range [ ]0,1 n  to the parameter t for each ray, 
we produce radial displacements that fill in the gaps between the concentric 
spheres on which all samples were previously positioned. �e value of t for the i-th 
sample is then given by 

 ( )t i δ n= + , (10.75) 

where [ ]0,1δ∈  is fetched from a noise texture. In a manner similar to how random 
rotations diversified the sample positions over a small neighborhood of pixels for 
ambient occlusion in Section 10.5, random displacements along each ray greatly 
increase the spatial coverage of the samples within a small neighborhood for at-
mospheric shadowing. Adding noise produces the much smoother rays shown in 
Figure 10.21(b), resulting in a obviously superior image. 
 �e fact that noise was used to generate the image in Figure 10.21(b) is easily 
detected upon close inspection. In our ambient occlusion method, the appearance 
of noise was eliminated by blurring neighborhoods with the same size as the noise 
texture. Unfortunately, we cannot employ the same strategy here because the light 
shafts are shining through open space and are not associated with a solid surface 
having a specific depth at every pixel. Using a similar blur operation, there would 
be no reliable way to prevent light shafts in the background from bleeding into 
solid objects obscuring them in the foreground. However, we can hide the noise to 
a large degree by shifting the alignment of the noise texture within the viewport by 
a random offset every frame. At typical intensity levels, this makes the noise almost 
completely unnoticeable, especially when the camera is moving. It is also still pos-
sible to apply a small amount of directional blurring when the light shafts are added 
to the final image in postprocessing, as discussed below. 
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(a) 

 
(b) 

 
Figure 10.21. Atmospheric shadowing is rendered using up to 65 samples per ray over a 
distance of 40 meters. (a) �e i-th sample along every ray is placed at the same distance 
from the camera according to the parameter value t i n= . (b) A random constant [ ]0,1δ∈  
is fetched from a 32 32×  noise texture for each ray and added to all parameter values for 
the ray so that ( )t i δ n= + . 

10.6.3  Anisotropic Scattering 

Light from a directional source like the sun is not scattered isotropically by the 
atmosphere. More of the light tends to be deflected at small angles without chang-
ing its direction by very much, and less of the light tends to be deflected at large 
angles for which the light is redirected off to the side or back toward its source. For 
this reason, sun rays can be prominent when the camera is looking mainly toward 
the light source but can be significantly less apparent when looking away. We can 
account for this anisotropy by multiplying the final brightness B calculated for a 
ray by a function of the angle between the direction of the ray and the direction to 
the light. 
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 A physically-based model for anisotropic scattering is implemented by a func-
tion ( )Φ g α  called the Henyey-Greenstein phase function, defined as 

 ( )
( )

2

3 22

1Φ
4 1 2 cos

g
gα

π g g α
−

=
+ −

. (10.76) 

�e angle α represents the angle between the direction of the incoming light and 
the direction to the camera where the scattered outgoing light is observed. When 
this angle is less than 90 degrees, the light is said to be forward scattered because 
it is still travelling away from its source. When this angle is greater than 90 degrees, 
the light is said to be backscattered. 
 �e cosine of α is conveniently calculated with the dot product 

 cos α = ⋅l 


, (10.77) 

where l is the unit-length camera-space direction to the light, and  is the camera-
space ray direction given by Equation (10.61). �e value of g is usually chosen to 
be in the range [ )0,1 , and it controls the degree of anisotropy. If 0g = , then light is 
scattered equally in all directions. If 0g > , then more light tends to be scattered in 
directions closer to that of the incoming light, generally continuing forward, and 
this happens to a greater degree as g gets larger. Polar plots illustrating the distri-
bution of scattered rays as a function of the angle α for several values of g are 
shown in Figure 10.22(a). 
 As the value of g goes up, the largest values produced by ( )Φ g α , in directions 
near 0α = , increase considerably. �e maximum intensity produced for any value 
of g is given by 

 ( )
( ) 2

1Φ 0
4 1

g
g

π g
+

=
−

. (10.78) 

�e value of g would typically be adjusted to achieve some preferred level of ani-
sotropy, but making these adjustments has a large effect on the apparent brightness 
of the sun rays, which is undesirable. We can turn the level of anisotropy and the 
overall brightness of the effect into independent parameters by normalizing ( )Φ g α  
so that the maximum intensity is always one. �is is done by dividing ( )Φ g α  by 

( )Φ 0g  to create a new function ( )Φ̂ g α  given by 

 ( ) ( )
( )

3

2

Φ 1Φ̂ .
Φ 0 1 2 cos

g
g

g

α gα
g g α

 −
= =   + −   (10.79) 
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Figure 10.22. (a) �e Henyey-Greenstein phase function ( )Φ g α  is plotted with the polar angle α for 
anisotropy values 0g =  (blue), 0.2g =  (green), 0.4g =  (orange), and 0.6g =  (red). Higher values 
of g result in greater maximum intensity at 0α = °. (b) �e normalized function ( )Φ̂ g α  is plotted for 
the same four values of g, and the maximum intensity is always one. 

Figure 10.22(b) illustrates the intensity produced by this function at all angles for 
the same values of g shown in Figure 10.22(a). 
 Instead of specifying the value of g directly, we can calculate the value of g 
that produces a chosen minimum intensity R for the function ( )Φ̂ g α . �is mini-
mum intensity occurs at the angle 180α = °, where light is backscattered directly 
toward its source. When we solve the equation ( )Φ̂ 180gR = °  for g, we get 

 

3

3

1 .
1

Rg
R

−
=

+  (10.80) 

Since the maximum forward scattered intensity of ( )Φ̂ g α  is always one, the value 
of R can be thought of as the ratio of backscattered light to forward scattered light. 
�e value of R can be greater than one, in which case 0g < . �is has the effect of 
making the backscattered light brighter than the forward scattered light. 

10.6.4  Implementation 
As mentioned earlier, the intensity of the inscattered light along each ray is stored 
in a half-resolution atmosphere buffer. �is buffer can be filled at any time after the 
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cascaded shadow map for the light source has been generated. �e contents of the 
atmosphere buffer are later combined with the main color buffer during the post-
processing stage. 
 To fill the atmosphere buffer, we render a full-screen pass using vertex posi-
tions specified directly in normalized device coordinates. �ese positions require 
no transformation in the vertex shader and are passed through unchanged. As 
demonstrated in Listing 10.12, the vertex shader calculates the camera-space point 
 given by Equation (10.61) and the shadow-space ray direction r given by Equa-
tion (10.62). �e uniform constant frustumParams provides the values derived 
from mind , 1 g, and s g  needed to calculate the ray direction in camera space. �e 
uniform constant shadowMatrix holds the upper-left 3 3×  portion of the matrix 

0
shadow cameraM M  that transforms the ray direction into shadow space as an array of 

three vectors. 
 �e camera-space point  and shadow-space ray direction r calculated by the 
vertex shader are interpolated over the entire screen and fed into the pixel shader 
shown in Listing 10.13. Only the x and y coordinates of  are interpolated because 
it is always the case that minzq d= . �is pixel shader calculates the brightness of the 
inscattered light using Equation (10.74) and multiplies it by the anisotropic inten-
sity level given by Equation (10.79). �e result is stored in the atmosphere buffer. 
 �e first thing the pixel shader does is read the structure buffer to determine 
the maximum depth at which the ray will be sampled. Because the structure buffer 
is twice the size of the atmosphere buffer, it must be accessed at coordinates that 
are double those of the pixel being rendered. As samples are taken along the ray in 
each shadow map cascade, the limiting depth is always the smaller of the depth 
fetched from the structure buffer and the farthest depth covered by the cascade. 
 �e shadow-space endpoints 1  and 2  are calculated using Equation (10.64), 
where the camera position  is supplied by the uniform constant shadowCamera-
Position, and the ratio max mind d  is given by atmosphereDepthRatio. �e depths 

1z  and 2z  at the endpoints are calculated using Equation (10.65). 
 �e normalized Henyey-Greenstein function is evaluated by calculating the 
dot product ( )⋅l    and plugging it into Equation (10.79) as cos α. �e camera-
space direction to the light l is supplied by the uniform constant cameraLight-
Direction, and various constants derived from the anisotropy parameter g are 
given by anisotropyConst. �e resulting value of Φ̂ g is multiplied by the constant 
( ) ( )max min 1λ d d n− +  appearing in Equation (10.74), which is passed in through 

atmosphereBrightness, to produce an overall intensity level. 
 �e final preparatory step before ray sampling begins consists of fetching the 
ray parameter offset δ from a 32 32×  noise texture containing a single channel of 
random values and having a wrap mode set to repeat. �e coordinates at which the 
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Listing 10.12. �is vertex shader function calculates the camera-space point  and returns its x and 
y coordinates in the cameraRay parameter. �e corresponding shadow-space ray direction r, trans-
formed by shadowMatrix constant, is returned in the shadowRay parameter. �e input parameter 
position is the vertex position  in normalized device coordinates. 

uniform float3  frustumParams;      // (dmin * s/g, dmin * 1/g, dmin) 
uniform float3  shadowMatrix[3];  
 
void CalculateAtmosphericShadowingRays(float2 position, 
                                       out float2 cameraRay, out float3 shadowRay) 
{ 
 // Calculate point on camera-space plane z = dmin. 
 float3 q = float3(position.xy * frustumParams.xy, frustumParams.z); 
 cameraRay = q.xy; 
 
 // Transform camera-space ray direction into shadow space for cascade 0. 
 shadowRay.x = dot(q, shadowMatrix[0]); 
 shadowRay.y = dot(q, shadowMatrix[1]); 
 shadowRay.z = dot(q, shadowMatrix[2]); 
} 

offset δ is fetched are determined by dividing the atmosphere buffer pixel coordi-
nates by 32 and adding a random shift between 0 and 31 texels in both the x and y 
directions. A different shift should be specified for each frame in the two-compo-
nent noiseShift constant so that the ray sampling pattern changes rapidly. 
 �e first samples are taken along the ray in shadow map cascade 0. �e sam-
pling continues in a loop until the depth of a sample exceeds either the depth that 
was fetched from the structure buffer or the farthest depth covered by the first cas-
cade. �e farthest depths covered by all four cascades are passed to the shader in 
the maxCascadeDepth array. At each step, the parameter t along the ray is incre-
mented by the fixed value of 1 n, but sample positions are based on the parameter 
( )u t  given by Equation (10.67). �e sample weight is always incremented by the 

constant ( )2 1 m n−  appearing in Equation (10.72). 
 After the sample position has exited the first cascade, samples are taken in the 
remaining three cascades inside a separate loop. If the depth fetched from the struc-
ture buffer has been exceeded, then the shader code quickly breaks out of these 
loops. Samples in higher-numbered cascades are handled in a manner similar to 
how they were handled in the first cascade. However, sample positions are calcu-
lated in the space of the first cascade, so they need to be transformed by the matrix 

kC  into the cascade currently being sampled. For cascade k, the scale is specified 
by the uniform constant cascadeScale[ 1k − ], and the translation is specified by 
cascadeOffset[ 1k − ]. 
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Listing 10.13. �is pixel shader function calculates atmospheric shadowing and returns the intensity 
of inscattered light sampled for a single ray. �e pixelCoord parameter specifies the viewport co-
ordinates of the pixel being processed, and it is used to read from the structure buffer and noise 
texture. �e cameraRay and shadowRay parameters are the interpolated outputs of the vertex shader 
function shown in Listing 10.12. �e number of steps n has been set to 64, and the initial slope m of 
( )u t  has been set to 0.25. 

uniform TextureRect    structureBuffer; 
uniform Texture2DArrayShadow shadowTexture; 
uniform Texture2D    noiseTexture; 
uniform float      minAtmosphereDepth;  // dmin 
uniform float      atmosphereDepthRatio; // dmax / dmin 
uniform float      atmosphereBrightness; // lambda * (dmax − dmin) / (n + 1) 
uniform float      maxCascadeDepth[4]; 
uniform float3     cascadeScale[3]; 
uniform float3     cascadeOffset[3]; 
uniform float3     shadowCameraPosition; 
uniform float3     cameraLightDirection; 
uniform float3     anisotropyConst;   // (1 − g, 1 + g * g, 2 * g) 
uniform float2     noiseShift; 
 
float CalculateAtmosShadowing(float2 pixelCoord, float2 cameraRay, float3 shadowRay) 
{ 
 float4  sampleCoord; 
 
 const float m = 0.25;       // Slope at first sample. 
 const float dt = 1.0 / 64.0;     // Delta t = 1 / n for n samples. 
 const float dw = 2.0 * (1.0 − m) * dt;  // Change in weight per step. 
 
 // Fetch depth of solid surface from structure buffer at pixel location. 
 float2 strc = texture(structureBuffer, pixelCoord * 2.0).zw; 
 float depth = strc.x + strc.y; 
 
 // Calculate scale making camera ray have length of dmin. 
 float dmin = minAtmosphereDepth; 
 float invlength = rsqrt(dot(cameraRay, cameraRay) + dmin * dmin); 
 float scale = dmin * invlength; 
 
 // Calculate begin and end points in shadow space. 
 float3 p1 = shadowRay * scale; 
 float3 p2 = p1 * atmosphereDepthRatio + shadowCameraPosition; 
 p1 += shadowCameraPosition; 
 
 // Calculate begin and end depths in camera space. 
 float z1 = dmin * scale; 
 float z2 = z1 * atmosphereDepthRatio; 
 
 // Calculate Henyey-Greenstein function and multiply by density. 
 float h = anisotropyConst.x * rsqrt(anisotropyConst.y − anisotropyConst.z * 
           dot(float3(cameraRay, dmin), cameraLightDirection) * invlength); 
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 float intensity = h * h * h * atmosphereBrightness; 
 
 // Fetch random offset from 32x32 noise texture. 
 float t = texture(noiseTexture, pixelCoord * 0.03125 + noiseShift).x * dt; 
 float tmax = t + 1.0; 
 float atm = 0.0;   // Atmsophere accumulator. 
 float weight = m;  // First weight is always m. 
 
 // Start with cascade 0. 
 sampleCoord.z = 0.0; 
 float zmax = min(depth, maxCascadeDepth[0]); 
 
 for (; t <= tmax; t += dt) 
 { 
  float u = (t * (1.0 − m) + m) * t; 
  float z = lerp(z1, z2, u); 
  if (z > zmax) break; 
 
  sampleCoord.xyw = lerp(p1, p2, u);       // Calculate position. 
  atm += texture(shadowTexture, sampleCoord) * weight;  // Accumulate sample. 
  weight += dw;              // Increase weight. 
 } 
 
 for (int cascade = 1; cascade < 4; cascade++) 
 { 
  // Handle remaining cascades. 
  sampleCoord.z = float(cascade); 
  zmax = min(depth, maxCascadeDepth[cascade]); 
 
  for (; t <= tmax; t += dt) 
  { 
   float u = (t * (1.0 − m) + m) * t; 
   float z = lerp(z1, z2, u); 
   if (z > zmax) break; 
 
   // Calculate position and transform into current cascade space. 
   sampleCoord.xyw = lerp(p1, p2, u) * 
           cascadeScale[cascade − 1].xyz + cascadeOffset[cascade − 1].xyz; 
 
   atm += texture(shadowTexture, sampleCoord) * weight; 
   weight += dw; 
  } 
 } 
 
 return (atm * intensity); 
} 
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 For each pixel in the postprocessing stage, we can simply read the intensity 
stored in the atmosphere buffer, multiply it by the light’s color, and add it to the 
color of the main scene. We cannot perform a depth-aware blur to completely elim-
inate the random noise inherent in our technique because the atmospheric shadow-
ing calculated for each ray is derived from information at many different depths in 
open space. Fortunately, the noise is not very prominent at typical intensities. Still, 
there is one small action we can take to make the noise a little less noticeable, and 
that is to use a directional median filter. �is filter lets us remove some noise from 
the image while preserving hard edges in the places where sun rays go behind 
foreground geometry. 
 We can calculate the projected position of the light source in the viewport by 
applying the projection matrix P, perspective divide, and viewport transformation 
to the camera-space light direction l that we are already using in the anisotropy 
calculation. �e resulting coordinates of the light source are given by 
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where w and h are the width and height of the atmosphere buffer (half the size of 
the main buffer), and we have assumed that the fourth row of the projection matrix 
is [ ]0 0 1 0 . Subtracting the pixel’s location ( )pixel pixel,x y  from these coordinates 
gives us a direction d in screen space along which we can take a few samples from 
the atmosphere buffer and calculate their median. It is possible for the direction to 
light to be perpendicular to the viewing direction, in which case 0zl = . To avoid 
division by zero, we multiply through by 2 zl , and use the formulas 
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�is scales the direction and may reverse its direction, but we will normalize its 
length and take samples symmetrically around the pixel location. 
 Some GPUs have a native instruction that can calculate the median value 

( )med , ,a b c  of a set of three inputs a, b, and c. In the absence of that feature, the 
median can be computed with standard min and max functions using the formula 

 ( ) ( )( ) ( )( )med , , min max min , , , max ,a b c a b c a b= . (10.83) 

�is formula is implemented in Listing 10.14 to find the median of three samples 
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read from the atmosphere buffer. One sample is taken at the current pixel location, 
and two more samples are taken along the direction to the screen-space light posi-
tion, one on either side of the current pixel location. 

Listing 10.14. �is pixel shader function uses Equation (10.83) to calculate the median of three 
samples taken from the atmosphere buffer along the screen-space direction to the light source. �e 
pixelCoord parameter specifies the viewport coordinates of the pixel being processed in the main 
frame buffer, and it is divided by two to give the corresponding location in the half-size atmosphere 
buffer. �e uniform constant lightPosition holds the value ( )light light2 , ,1zl x y , where the screen-
space coordinates of the light source are given by Equation (10.81). 

uniform TextureRect  atmosphereBuffer; 
uniform float3   lightPosition; 
 
float GetAtmosphereIntensity(float2 pixelCoord) 
{ 
 float2 center = pixelCoord * 0.5; 
 float2 direction = normalize(lightPosition.xy − center * lightPosition.z); 
 float a = texture(atmosphereBuffer, center).x; 
 float b = texture(atmosphereBuffer, center + direction).x; 
 float c = texture(atmosphereBuffer, center − direction).x; 
 return (min(max(min(a, b), c), max(a, b))); 
} 

10.7  Motion Blur 

Every sensor that is capable of observing an image, whether it be a camera or the 
human eye, requires a small interval of exposure time. Since no image can be cre-
ated instantaneously out of the incoming light, any objects in motion travel a short 
distance through the image over the exposure interval. �e causes a phenomenon 
called motion blur that is present in photographs, videos, and even the retina. �e 
brain expects fast-moving objects to be blurred on the retina, and it is able to com-
pensate for the effect. A rendered scene can be made to look more realistic by add-
ing motion blur because it better approximates what we see in the real world. 
 �e most straightforward method for simulating motion blur is to render many 
subframes evenly distributed in time over a fixed exposure interval and taking the 
average of the results. �is method can be made arbitrarily accurate by rendering 
greater numbers of subframes, but it is also extremely expensive and thus imprac-
tical for real-time applications. A group of considerably faster but much less accu-
rate methods create the illusion of motion blur in the postprocessing stage for a 



356 Chapter 10   Advanced Rendering 

single rendered frame. �e method we discuss here makes use of a velocity buffer 
to control the radius and direction of a one-dimensional per-pixel blurring opera-
tion. �is produces an adequate motion blur effect as long as measures are taken to 
avoid interference between foreground and background objects where appropriate. 

10.7.1  The Velocity Buffer 
Our motion blur technique requires that we calculate a velocity vector in viewport 
space at every pixel. Each particular velocity represents the motion of a point on 
the surface of whatever object happens to be rendered at the corresponding pixel 
location. �e following three sources of motion can each make a contribution to 
the velocity, and we must consider the cumulative effect of all three when they are 
present. 

■ �e motion of the camera generally affects every object in the scene. �e main 
exception is an object that is attached to the viewer in some way, such as the 
player’s weapon in a first-person shooter. �e camera’s contribution to motion 
is determined by considering the world-space to camera-space transformation 
matrices for both the current frame and preceding frame. If the projection ma-
trix is not constant, perhaps due to a zoom effect, then its difference must also 
be taken into account. 

■ Each visible object could be moving as a whole, and its motion could include 
both a linear translation, a rotation about some axis, and maybe even a change 
in scale. �e world-space velocity of a point on the surface of the object is 
determined by considering the differing effects of the object-space to world-
space transformation matrices for the current frame and preceding frame. 

■ �e vertices of a triangle mesh might have independent motion because their 
object-space positions are recalculated every frame. �is is very common for 
skinned character meshes and physically simulated objects like cloth or rope. 
In this case, vertex positions for the current frame and preceding frame must 
both be taken into account in addition to the change in the object-to-world 
transformation. For physically simulated objects, the vertex position for the 
preceding frame could be calculated using the position for the current frame 
and the vertex’s velocity, which would be known to the simulation. 

 �e velocity buffer is a render target having two channels in which the x and y 
components of the per-pixel velocity vectors are stored. �e velocities are rescaled 
and clamped so that a magnitude of one corresponds to the largest allowed blur 
radius, and this means that the component values in the velocity buffer always fall 
in the range [ ]1, 1− + . Sufficient precision for the motion blur effect is provided by 
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using 8-bit channels and remapping values to the range [ ]0,1 . A single pixel in the 
velocity buffer thus requires only two bytes of storage. 
 A scene with motion blur applied and its associated velocity buffer are shown 
in Figure 10.23. In this example, the camera is moving backward away from some 
stone objects that are falling to the ground. A vector field has been overlaid on the 
velocity buffer to show the magnitude and direction of the velocity at regularly 
spaced locations in the viewport. Values of 0.5 in the red and green channels cor-
respond to a zero velocity in the x and y directions, respectively. Values smaller 
than 0.5 correspond to negative velocities, and values larger than 0.5 correspond 
to positive velocities. Since there is no blue channel in the velocity buffer, it has 
been assigned a constant value of 0.5 in the image, and this causes pixels having 
no motion associated with them to appear as a 50% gray color. Pixels having right-
ward motion have large red components, but red is mostly absent from pixels hav-
ing leftward motion. Similarly, pixels having downward motion have large green 
components, but green is mostly absent from pixels having upward motion. 
 �ere are two regions in the image where the velocity is zero and thus appear 
as the gray color. First, the sky at the top of the image is rendered infinitely far 
away, and it has no viewport-space motion because the camera is moving directly 
backward. If the camera had been turning in any way, then the sky would be mov-
ing through the viewport, and this case is discussed below. Second, the weapon in 
the lower-right portion of the image is indirectly attached to the camera position 
and therefore has no relative motion except for a part inside that can be seen rotat-
ing as a subnode in the weapon’s transform hierarchy. �e surrounding geometry 
in the nonstationary regions of the image tends to be moving toward the center of 
the viewport due to the camera’s backward motion. �e contrasting velocities of 
the falling objects are clearly visible and they include some rotation in addition to 
their generally downward motion, especially in the piece of stone near the bottom 
center that has already hit the ground and started tumbling. �e demonstrates how 
the viewport-space velocity can vary significantly over the surface of a single rigid 
object. 
 �e contents of the velocity buffer are generated by rendering all of the visible 
geometry in a separate pass using special vertex and pixel shaders. �ese can be 
incorporated into the same shaders that write data to the structure buffer by output-
ting results to multiple render targets. As discussed below, high-quality motion blur 
will require the depth and gradient information in the structure buffer, so we will 
need the structure buffer even if it’s not being used for anything else. Combining 
the calculations for both buffers into a single pass simplifies the code and leads to 
significantly better performance. 
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Figure 10.23. (a) Motion blur is rendered as a postprocessing effect for some crumbling ruins. 
�e stone pieces are blurred primarily due to their own motion, and the ground is blurred due to 
the backward motion of the camera. (b) �e velocity buffer contains the 2D viewport-space ve-
locity at every pixel, and the corresponding vector field has been overlaid. �e color channels 
show velocity components after remapping from the range [ ]1, 1− +  to the range [ ]0,1 . 

(a) 

(b) 
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 To determine the values that are written to the velocity buffer, we calculate the 
position of each vertex in viewport space for the current frame and the preceding 
frame. Dividing the difference between the two positions by the time between the 
two frames produces the velocity of the vertex. An object-space vertex position 

object  is transformed into a 4D homogeneous viewport-space position viewportp  by 
the equation 

 
1

viewport viewport projection camera object object .−=p M M M M   (10.84) 

Here, objectM  is the matrix that transforms from object space to world space for the 
object being rendered, cameraM  is the matrix that transforms from camera space to 
world space, projectionM  is the projection matrix, and viewportM  is the viewport trans-
formation given by 
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which is the matrix equivalent of Equation (5.34) for a viewport having dimensions 
w h×  pixels and a depth range of [ ]0,1 . Since the translation in the fourth column 
of viewportM  cancels out when viewport-space positions are subtracted, we can ig-
nore it and consider the viewport transformation to be nothing more than a scale 
up to the size of the render target. We calculate viewportp  for two consecutive frames 
in the vertex shader and interpolate the results across each triangle. We do not need 
the z coordinates, so only the x, y, and w coordinates are calculated and then output 
as two 3D vectors. �e perspective divide by the w coordinate of viewportp  must be 
deferred to the pixel shader because it introduces a nonlinearity that would not be 
interpolated properly. 
  Let motionM  be the product of the four matrices in Equation (10.84). When an 
object is rendered into the velocity buffer, motionM  is precalculated for the current 
frame and the preceding frame, and the results are sent to the vertex shader as 
uniform parameters. �e viewport transformation does not change, so the same 
matrix viewportM  is used in both products. �e projection matrix normally does not 
change either, so the same matrix projectionM  is also used in both products. �e ma-
trices cameraM  and objectM , however, can change frequently and have different values 
for the current and preceding frames. �e matrices for the preceding frame need to 
be saved and stored separately whenever node transforms are updated. If no change 
is made to a node’s transform during a particular frame, then its current transfor-
mation matrix needs to be copied into the matrix for the preceding frame so that 
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its velocity does not persist. �is copy also needs to be made in cases where a 
completely new transform is assigned to a node to prevent a very high erroneous 
velocity from being calculated. For example, if a player is teleported to a new lo-
cation, then the camera’s new transform needs to be copied into its old transform 
or else the maximum blur will likely be applied to the entire viewport during the 
next frame in the direction between the previous and current camera positions. 
 �e vertex shader code in Listing 10.15 transforms the object-space vertex po-
sition object  into viewport space with the matrices motionM  corresponding to the cur-
rent frame and preceding frame. Since the z coordinates of the results will not be 
needed, the third rows of the two matrices are also not needed. �e first, second, 
and fourth rows of motionM  for the current frame and preceding frame are passed in 
through the uniform arrays newMotionMatrix and oldMotionMatrix, respec-
tively. �e transformed x, y, and w coordinates of viewportp  for the current frame and 
preceding frame are returned in the 3D vectors pnew and pold. �ese values should 
be output by the vertex shader to be interpolated over a triangle. 
 In the pixel shader, we receive the two interpolated viewport-space positions 

( )new new new new, ,x y w=p  and ( )old old old old, ,x y w=p  as homogeneous vectors with-
out their z coordinates. We perform the perspective divide by the w coordinate for 
each position and subtract the results to obtain the displacement vector 
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Dividing the displacement by the actual time Δt between the current and preceding 
frames gives us the velocity vector Δt=v d  in viewport space. �is velocity is 
unbounded, but we need to write values in the range [ ]1, 1− +  to the velocity buffer, 
so we will scale it by several factors. �e final values that we output are technically 
distances that correspond to blur radii, but we can consider them to be scaled ve-
locities that are multiplied by one unit of time. 
 To produce a uniform appearance and smooth out irregularities in the time be-
tween consecutive frames, we choose a constant time 0t  by which the velocity v is 
always multiplied to obtain the blur vector r. �is normalization time would usu-
ally be something like 1/60th of a second. We also need to apply a scale so that a 
magnitude of one in the velocity buffer corresponds to the maximum blur radius 

maxr . �e blur vector is then given by 

 0
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t
r
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Listing 10.15. �is vertex shader function transforms the object-space vertex position pobject into 
viewport space with the matrices stored in the uniform constants newMotionMatrix and oldMo-
tionMatrix corresponding to the current frame and preceding frame, respectively. Each matrix is 
represented by three 4D vectors holding the first, second, and fourth row of the matrix motionM . �e 
x, y, and w coordinates of each transformed vertex position are returned in the 3D vectors pnew and 
pold to be interpolated. �e z coordinates will not be needed by the pixel shader. 

uniform float4 newMotionMatrix[3]; 
uniform float4 oldMotionMatrix[3]; 
 
void TransformMotionBlurPositions(float3 pobject, out float3 pnew, out float3 pold) 
{ 
 pnew.x = dot(newMotionMatrix[0].xyz, pobject) + newMotionMatrix[0].w; 
 pnew.y = dot(newMotionMatrix[1].xyz, pobject) + newMotionMatrix[1].w; 
 pnew.z = dot(newMotionMatrix[2].xyz, pobject) + newMotionMatrix[2].w; 
 
 pold.x = dot(oldMotionMatrix[0].xyz, pobject) + oldMotionMatrix[0].w; 
 pold.y = dot(oldMotionMatrix[1].xyz, pobject) + oldMotionMatrix[1].w; 
 pold.z = dot(oldMotionMatrix[2].xyz, pobject) + oldMotionMatrix[2].w; 
} 

�is can further be scaled by an adjustable parameter k in the range [ ]0,1  that con-
trols the overall intensity of the motion blur effect. �e fully scaled displacement 
is then md, where the factor m is given by 

 0

maxΔ
ktm

r t
= . (10.88) 

�e value of Δt can vary from one frame to the next if a fixed frame rate is not 
maintained, but the values of k, 0t , and maxr  are global constants. Only one step 
remains, and that is to clamp the scaled displacement to a maximum magnitude of 
one. �e final value ′d  written to the velocity buffer is 

 ( )
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dd
d  (10.89) 

 �e pixel shader code shown in Listing 10.16 calculates the value of ′d  using 
the interpolated values of newp  and oldp  generated by the vertex shader code in List-
ing 10.15. �e value of m is calculated once per frame and sent to the pixel shader 
as the uniform constant velocityScale. �e components of ′d  are finally re-
mapped from the range [ ]1, 1− +  to the range [ ]0,1  so they can be written to the 
unsigned 8-bit channels of the velocity buffer. 
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Listing 10.16. �is pixel shader function calculates the scaled displacement ′d  using the interpolated 
vertex positions pnew and pold generated by the vertex shader function in Listing 10.15. �e uni-
form constant velocityScale holds the value of m in Equation (10.89). 

uniform float velocityScale; 
 
float2 CalculateMotionBlurVelocity(float3 pnew, float3 pold) 
{ 
 float2 velocity = (pnew.xy / pnew.z − pold.xy / pold.z) * velocityScale; 
 return (velocity / max(length(velocity), 1.0) * 0.5 + 0.5); 
} 

 �ere may be regions in the viewport where no geometry is drawn and the sky 
shows through. In the case that a skybox is rendered at infinity, we could fill the 
parts of the velocity buffer with the correct values where the sky is visible by ren-
dering the skybox’s faces. However, we would need to be careful to modify List-
ing 10.15 so that the translation components of the matrices are not added because 
the skybox’s vertices have implicit w coordinates of zero. An alternative that is not 
exactly correct everywhere but still provides a good approximation is to calculate 
a single representative background velocity and use it as the value to which the 
velocity buffer is initially cleared. 
 Consider the point at infinity in the camera’s view direction for the preceding 
frame. In camera space, this point is simply the homogeneous vector ( )0, 0,1, 0 , 
and in clip space, it transforms into the third column of the projection matrix, 
which we denote by [ ]projection 2M . After dividing by the w coordinate and scaling to 
the size of the render target, we have a location for the point in viewport space. If 
we calculate the location in viewport space for the same point at infinity, corre-
sponding to the preceding frame’s view direction, but now using the current 
frame’s camera transform, then we can see how far the point has moved, and this 
gives us a background velocity. 
 Let cameraL  be the camera-space to world-space transform for the preceding 
frame. �e point at infinity in the camera’s view direction is given by the third 
column of this matrix, which we denote by [ ]camera 2L . We transform this point into 
homogeneous vector q in clip space using the formula 

 [ ]
1

projection camera camera 2 ,−=q M M L  (10.90) 

where cameraM  is the camera-space to world-space transform for the current frame. 
By making the assignment [ ]projection 2=p M , the displacement vector d in viewport 
space can then be expressed as 
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For any ordinary perspective projection, 1wp = , and for any projection that is not 
off center, 0x yp p= = . �us, it is usually the case that d is simply given by 
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for a ( )w h× -pixel viewport. �is background displacement must finally be sub-
jected to the same scale and clamping operations performed by Equation (10.89). 
After remapping the resulting value ′d  from the range [ ]1, 1− +  to the range [ ]0,1 , it 
can be specified as the clear color for the velocity buffer’s red and green channels. 

10.7.2  Image Postprocessing 
In the postprocessing stage at the end of the rendering process for each frame, the 
velocity buffer is used to perform a directional blurring operation. At every pixel, 
we read many samples from the color buffer along the direction given by the ve-
locity buffer and average them together. We assume that the original color image 
represents the state of the scene in the middle of the time interval between consec-
utive frames, and we therefore read samples symmetrically around each pixel. Oth-
erwise, leading and trailing edges on a moving object would not have the same 
appearance because they would sample the background differently. 
 �e pixel shader code shown in Listing 10.17 reads eight samples from the 
color buffer in addition to the center pixel being processed. �e velocity buffer is 
read one time at the center pixel, and it is expanded from the range [ ]0,1  to the 
range [ ]1, 1− + . Four samples are read from the color buffer in the positive velocity 
direction, and four more samples are read at the same relative locations in the neg-
ative velocity direction. �e step size between samples is specified as a uniform 
constant equal to the maximum blur radius maxr  divided by the number of samples 
on one side of the center pixel. �e images shown in this section use max 7.0r =  with 
four samples read forward and backward at a step size of 1.75. �e step size is 
multiplied by the velocity vector, so it represents a distance between samples in 
pixel units when the velocity has a magnitude of one, but represents shorter dis-
tances otherwise. 
 �e blur operation shown in Listing 10.17 is simple, and it produces satisfac-
tory results in many situations. However, there are cases in which combining sam-
ples with no regard for what surfaces they come from creates undesirable artifacts. 
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Listing 10.17. �is pixel shader function applies simple motion blur in the postprocessing stage. 
�e pixelCoord parameter specifies the viewport coordinates of the pixel being processed, and it is 
used to read from the color and velocity buffers. �e uniform constant vstep holds the maximum 
blur radius maxr  divided by the number of loop iterations, four in this example, which is the number 
of samples read from the color buffer on each side of the center pixel along the direction of the 
velocity vector. �e samples are accumulated in the color variable, and their average is returned by 
dividing by nine in this case. 

uniform TextureRect  colorBuffer; 
uniform TextureRect  velocityBuffer; 
uniform float    vstep; 
 
float3 ApplySimpleMotionBlur(float2 pixelCoord) 
{ 
 // Read color buffer and velocity buffer at center pixel. 
 float3 color = texture(colorBuffer, pixelCoord).xyz; 
 float2 velocity = texture(velocityBuffer, pixelCoord).xy * 2.0 − 1.0; 
 
 // Add 8 more samples along velocity direction. 
 for (int i = 1; i <= 4; i++) 
 { 
  float dp = float(i) * vstep; 
  color += texture(colorTexture, pixelCoord + velocity * dp).xyz; 
  color += texture(colorTexture, pixelCoord − velocity * dp).xyz; 
 } 
 
 // Return average of all samples. 
 return (color * 0.1111111); 
} 

�e main example is the case in which a stationary object is rendered in front of a 
moving background, as shown in Figure 10.24(a). Here, the player’s weapon is 
connected to the camera, so its velocity is zero in viewport space, but the back-
ground has a nonzero velocity due to the camera’s motion as the player runs 
through the environment. A fuzzy halo is visible around the edges of the weapon 
due to samples being read from the foreground object when the motion blur effect 
is applied to nearby pixels belonging to the background. �is artifact can be elim-
inated by detecting the difference between the two surfaces in the pixel shader and 
rejecting samples that do not belong to the same surface as the pixel being pro-
cessed. �e result is the image shown in Figure 10.24(b), where the halo is no 
longer present, and the stationary foreground object has a nice clean boundary. 
 We detect surface discontinuities by using the depth and gradient information 
available in the structure buffer. If we consider the surface at a particular pixel to 
be a flat plane passing through the depth 0z  and having a 2D slope given by the 
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gradient z∇ , then we can determine the change in depth within the maximum blur 
radius maxr  along the direction of the velocity vector 0v  by calculating a directional 
derivative. �is leads us to the formula 

 ( )min 0 max 0z z r z δ= − ⋅ +v∇  (10.93) 

specifying the minimum depth minz  that any sample must have to be considered 
part of the same surface as the pixel being processed. �e extra term δ is an adjust-
able value that we include to account for the fact that the surface may not actually 

  

  
Figure 10.24. (a) When no distinction is made between a moving background and a stationary 
foreground, motion blur applied to background pixels near the boundary incorporates samples read 
from the foreground object, and this creates a fuzzy halo artifact. (b) Information in the structure 
buffer is used to detect surface discontinuities and reject samples that do not belong to the same 
surface as the pixel being processed, eliminating the artifact. (c) Rejecting samples based on large 
differences in depth can surfaces moving through the viewport at the same rate due to camera ro-
tation not to be blurred properly. (d) Correct blurring is restored by overriding depth-based rejection 
when sample velocities are similar. 

(a) (b) 

(c) (d) 
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be flat within the blur radius and could acquire a larger slope away from the center 
pixel. When we read samples from the color buffer in the motion blur shader, we 
also read from the structure buffer to determine the depths at the same locations. If 
a sample does not have a depth greater than minz , then we consider it to be part of 
a distinct foreground object, and we reject that sample. 
 Comparing depths effectively eliminates halo artifacts around stationary fore-
ground objects, as shown in Figure 10.24(b), but it introduces a new type of artifact 
at the same time. In Figure 10.24(c), the camera is rotating about the vertical axis, 
and both the sky and a tree are moving through the viewport at the same velocity. 
However, because the sky’s depth is much greater than the tree’s depth (possibly 
infinitely greater), the motion blur shader does not accept samples from the tree 
when it processes pixels belonging to the sky. �is causes the edges of the leaves 
to appear much less blurred than they should be in the direction of motion. To 
restore the correct blurring that would have been produced by the simple shader 
code in Listing 10.17, we do not reject samples from foreground objects when the 
velocity v at the sample location is similar to the velocity 0v  at the center pixel. We 
implement this condition by making the comparison 

 ( ) 2
0 σ− <v v , (10.94) 

where σ  is another adjustable value representing the maximum difference in veloc-
ities allowed in order for a foreground sample to be accepted. �e results produced 
by the application of Equation (10.94) are demonstrated in Figure 10.24(d). 
 �e pixel shader code in Listing 10.18 performs motion blur using the same 
sample locations as the simpler code in Listing 10.17, but it rejects samples having 
depth z and velocity v for which neither Equation (10.93) nor Equation (10.94) is 
satisfied, where the adjustable values have been set to 1 128δ =  and 1 16σ = . In 
this more complex shader, values are read from the color buffer, structure buffer, 
and velocity buffer at all sample locations. As color samples are accumulated in 
the first three components of the color variable, the w component keeps a count 
of the number of samples that have been accepted, and we divide by this value at 
the end to calculate the correct average. 
 �e added complexity of the pixel shader in Listing 10.18 makes it signifi-
cantly more expensive than the unconditional blurring operation performed by the 
pixel shader in Listing 10.17. To save time in the postprocessing stage, we can 
limit the use of the more complex motion blur code to the areas of the viewport 
where the artifacts it prevents are likely to occur. As shown in Figure 10.25, one 
way this can be done is to partition the viewport into a grid for which each cell is 
processed entirely by either the simple shader or the complex shader. A separate 
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triangle mesh can be constructed to include all of the cells of each type so that 
postprocessing the full viewport requires only two draw calls. 
 To determine which cells should be processed by the more complex motion 
blur shader, we can consider the areas inside the viewport covered by the visible 
objects that are likely to have velocities much different than the background. In 
Figure 10.25, two such objects are visible, a weapon connected to the camera and 
a moving object in the environment, and the cells they intersect are highlighted in 
red. �e group of cells covered by any one object can be quickly derived from a 
rectangle bounding the object on the projection plane. �e method described for a 
point light in Section 8.2.1 can calculate this rectangle for a bounding sphere, but 

Listing 10.18. �is pixel shader function applies motion blur in the postprocessing stage using the 
same basic technique as in Listing 10.17, but it requires that each sample satisfy either Equation 
(10.93) or Equation (10.94), where 1 128δ =  and 1 16σ = . �e uniform constant rmax holds the 
maximum blur radius maxr , and vstep holds this radius divided by the number of loop iterations. �e 
accepted samples are accumulated in the first three components of the color variable, and a count 
of the accepted samples is kept in the w component. 

uniform TextureRect  colorBuffer; 
uniform TextureRect  structureBuffer; 
uniform TextureRect  velocityBuffer; 
uniform float    rmax, vstep; 
 
float3 ApplyComplexMotionBlur(float2 pixelCoord) 
{ 
 const float kDepthDelta = 0.0078125; 
 const float kVeloSigma = 0.0625; 
 
 // Read color buffer, structure buffer, and velocity buffer at center pixel. 
 float4 color = float4(texture(colorTexture, pixelCoord).xyz, 1.0); 
 float4 structure = texture(structureTexture, pixelCoord); 
 float2 velocity = texture(velocityTexture, pixelCoord).xy * 2.0 − 1.0; 
 
 // Use gradient to calculate minimum depth for other samples. 
 float zmin = structure.z + structure.w 
              − (abs(dot(velocity, structure.xy)) + kDepthDelta) * rmax; 
 
 float4 sample = float4(0.0, 0.0, 0.0, 1.0); 
 for (int i = 1; i <= 4; i++) 
 { 
  float dp = float(i) * vstep; 
 
  // Read all three buffers at sample location, and subtract center velocity. 
  float2 sampleCoord = pixelCoord + velocity * dp; 
  sample.xyz = texture(colorTexture, sampleCoord).xyz; 
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  float2 depth = texture(structureTexture, sampleCoord).zw; 
  float2 dv = texture(velocityTexture, sampleCoord).xy * 2.0 − 1.0 − velocity; 
 
  // Add sample only if depth greater than minimum or velocities similar enough. 
  if ((depth.x + depth.y > zmin) || (dot(dv, dv) < kVeloSigma)) color += sample; 
 
  // Repeat in opposite direction. 
  sampleCoord = pixelCoord − velocity * dp; 
  sample.xyz = texture(colorTexture, sampleCoord).xyz; 
  depth = texture(structureTexture, sampleCoord).zw; 
 
  dv = texture(velocityTexture, sampleCoord).xy * 2.0 − 1.0 − velocity; 
  if ((depth.x + depth.y > zmin) || (dot(dv, dv) < kVeloSigma)) color += sample; 
 } 
 
 // Divide color sum by number of passing samples. 
 return (color.xyz / color.w); 
} 

 
Figure 10.25. �e viewport is covered by a 16 9×  grid, and motion blur is applied by the 
same shader for every pixel in each cell. �e cells highlighted in red use the complex mo-
tion blur shader in Listing 10.18, and all other cells use the simple motion blur shader in 
Listing 10.17. �e red cells are determined by considering objects that are likely to have 
velocities much different than the background and calculating a bounding rectangle for 
them in the viewport. 
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this tends to produce very conservative results for most objects. A much tighter 
rectangle can be calculated by transforming the eight vertices of a bounding box 
into clip space and finding the minimum and maximum x and y coordinates. How-
ever, care must be taken to ignore vertices in clip space that have negative z coor-
dinates and instead consider points where any of the bounding box’s edges cross 
the near plane. Edges could also be clipped against the side planes of the canonical 
view volume to reduce the area calculated for objects close to the camera. 
 �e code in Listing 10.19 calculates a rectangle in device space that encloses 
the projected vertices of a bounding box specified in object space. After transform-
ing the vertices into clip space, it loops over the 12 edges of the bounding box and 
clips each one against the near plane if necessary. �e perspective divide is applied, 
and the minimum and maximum values of the x and y coordinates of the resulting 
endpoints are kept at the end of each loop. �e rectangle that the code returns still 
needs to be transformed into viewport space, clamped to the dimensions of the 
viewport, and expanded to integral cell boundaries. 

Listing 10.19. �is function takes an object-space bounding box with minimum coordinates bmin 
and maximum coordinates bmax, transforms it into clip space using the model-view-projection ma-
trix mvp, and calculates the box’s device-space bounding rectangle. If the box is not completely 
clipped away by the near plane, then the minimum and maximum extents of the rectangle are stored 
in vmin and vmax, and the function returns true. Otherwise, the function returns false. 

bool CalculateDeviceSpaceExtents(const Point3D& bmin, const Point3D& bmax, 
                                 const Matrix4D& mvp, Point2D *vmin, Point2D *vmax) 
{ 
 static const int8 edgeVertexIndex[24] = 
  {0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7}; 
 
 // Transform bounding box vertices into clip space. 
 Vector4D vertex[8]; 
 vertex[0] = mvp * Point3D(bmin.x, bmin.y, bmin.z); 
 vertex[1] = mvp * Point3D(bmax.x, bmin.y, bmin.z); 
 vertex[2] = mvp * Point3D(bmax.x, bmax.y, bmin.z); 
 vertex[3] = mvp * Point3D(bmin.x, bmax.y, bmin.z); 
 vertex[4] = mvp * Point3D(bmin.x, bmin.y, bmax.z); 
 vertex[5] = mvp * Point3D(bmax.x, bmin.y, bmax.z); 
 vertex[6] = mvp * Point3D(bmax.x, bmax.y, bmax.z); 
 vertex[7] = mvp * Point3D(bmin.x, bmax.y, bmax.z); 
 
 // Initialize device-space rectangle. 
 float xmin = FLT_MAX, xmax = −FLT_MAX; 
 float ymin = FLT_MAX, ymax = −FLT_MAX; 
 
 const int8 *edge = edgeVertexIndex; 
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 for (int32 i = 0; i < 12; i++, edge += 2) 
 { 
  Vector4D p1 = vertex[edge[0]], p2 = vertex[edge[1]]; 
 
  // Clip edge against near plane. 
  if (p1.z < 0.0F) 
  { 
   if (p2.z < 0.0F) continue;  // Edge completely clipped away. 
   Vector4D dp = p1 − p2; 
   p1 −= dp * (p1.z / dp.z); 
  } 
  else if (p2.z < 0.0F) 
  { 
   Vector4D dp = p2 − p1; 
   p2 −= dp * (p2.z / dp.z); 
  } 
 
  // Perform perspective divide. 
  float f1 = 1.0F / p1.w; 
  float f2 = 1.0F / p2.w; 
  p1.x *= f1; p1.y *= f1; 
  p2.x *= f2; p2.y *= f2; 
 
  // Update device-space rectangle. 
  xmin = fmin(xmin, fmin(p1.x, p2.x)); xmax = fmax(xmax, fmax(p1.x, p2.x)); 
  ymin = fmin(ymin, fmin(p1.y, p2.y)); ymax = fmax(ymax, fmax(p1.y, p2.y)); 
 } 
 
 if (xmin < xmax)  // At least one edge was visible. 
 { 
  vmin−>Set(xmin, ymin); vmax−>Set(xmax, ymax); 
  return (true); 
 } 
 
 return (false); 
} 

10.8  Isosurface Extraction 

A scalar field is the name given to a region of space inside which a meaningful 
scalar quantity can be defined at every point. �ere are many situations in which a 
physical structure of some kind is represented by a three-dimensional scalar field, 
often because it allows for the practical simulation of a dynamic system or the 
easier construction of solid geometry. A couple examples of scalar fields are the 
volumetric results of rendering a system of metaball particles, as shown in Fig-
ure 10.26, and the implicit definition of an arbitrarily-shaped terrain surface, as 
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shown in Figure 10.27. It is usually the case, as is true for both of these examples, 
that the scalar quantities composing a field represent the signed perpendicular dis-
tance to some surface of interest, and thus each of these fields is described by the 
more specific term signed distance field. 

  
Figure 10.26. A particle system composed of metaballs is used to render the sludge flowing out of 
the three pipes. �e grid visible in the wireframe reveals the underlying 3D scalar field from which 
the surface of the fluid is extracted. 

  
Figure 10.27. Terrain containing caves and overhangs is generated from an underlying 3D scalar 
field. Such structures would not be possible with a simple height field. 
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 �e data composing a signed distance field consists of an n m h× ×  array of 
voxels (a shortened form of volume elements) placed on a regular three-dimen-
sional grid measuring n units in the x direction, m units in the y direction, and h 
units in the z direction. To minimize storage space, it is common for the scalar 
distances to be represented by 8-bit signed integers, thus requiring a total of nmh 
bytes of memory in uncompressed form, but higher precision integers or floating-
point numbers could be used. Each 2 2 2× ×  subset of the array delineates a cubic 
volume of space called a cell, and there are thus ( ) ( ) ( )1 1 1n m h− − −  individual 
cells in the entire field. 
 Typically, positive voxel values correspond to distances on the outside of the 
surface in empty space, and negative values correspond to distances on the inside 
of the surface in solid space. �e opposite convention could also be used, but this 
choice has the benefit that gradients in the scalar field, which can be used to calcu-
late normal vectors, point outward from the surface. 
 In order to render the surface defined by a signed distance field, we must be 
able to transform the scalar data into vertices and triangles that can be consumed 
by the graphics hardware through a process called isosurface extraction. �e 
isosurface is the two-dimensional surface where a continuous trilinear interpola-
tion of the scalar field attains a given constant value called the isovalue, which is 
simply zero when the scalar values represent signed distances. Pieces of the isosur-
face are constructed by searching the scalar field for cells that contain the isovalue 
and generating triangles where the isosurface intersects those cells. �e details of 
this process are described throughout this section. 

10.8.1  Marching Cubes 
A well-known method for constructing a triangle mesh whose vertices coincide 
with the zero-valued isosurface is the marching cubes algorithm. �is algorithm 
extracts the isosurface by examining every cell in a scalar field in isolation. For 
each cell, it determines what part of the isosurface passes through the cell, if any, 
and generates a triangulation inside the cell’s boundary based on the voxel values 
at the eight corners of the cell. �e results from all cells are combined to form the 
complete isosurface. 
 When processing a single cell, the marching cubes algorithm first classifies 
each of the eight voxel values at the corners of the cell as being either in empty 
space or in solid space, corresponding to the sign of the value being positive or 
negative, respectively. A choice must be made globally as to whether a value of 
exactly zero is considered to be in empty space or in solid space, and a consistent 
classification either way is acceptable. It is convenient to group zero with positive 
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values in empty space so that integer sign bits can be used to make classifications. 
Vertices belonging to the cell’s internal triangulation lie on the edges of the cell for 
which one endpoint has been classified as lying outside, in empty space, and the 
other endpoint has been classified as lying inside, in solid space. However, we do 
not explicitly check each of the 12 edges for this condition. Instead, the marching 
cubes algorithm exploits symmetry to reduce the problem space to a relatively 
small number of unique configurations that are then processed in a uniform manner 
with the aid of lookup tables. 
 When the eight corners of a cell are classified into a binary inside or outside 
state, it gives rise to precisely 82 256=  possible distinct cases to consider. Many 
of these cases are equivalent to another case except that the cell has simply been 
rotated into a different orientation. For example, there are eight cases in which 
exactly one corner of a cell is classified as inside, and the other seven are classified 
as outside. �ese cases can all be rotated about some axis through the cell’s center 
so that the inside corner lies at the position having the minimum x, y, and z coor-
dinates. All eight cases end up producing a single triangle and can be handled in 
the same way, so they are grouped into a single equivalence class. �e triangle is 
generated by placing vertices on the three edges containing the inside corner and 
connecting them in the order that causes the normal vector to point into empty 
space. �e actual positions of the vertices on the edges is determined by finding 
the position at which a linear interpolation of the voxel values is zero. 
 We can consider another group of eight cases having the inverse configuration 
such that exactly one corner of a cell is classified as outside and the other seven 
are classified as inside. Like before, these cases are related by the ability to rotate 
cells for any one of them so that they coincide with cells for any other case in the 
group, so they form another equivalence class. In this instance, a single triangle is 
again produced for all cases in the equivalence class, but it has the opposite wind-
ing order compared to each case’s inverse so that the normal vector still points 
outward from the surface. Although not possible for all equivalence classes and 
their inverses, as discussed below, we can combine the eight cases having one cor-
ner inside and the eight cases having seven corners inside to form a single equiva-
lence class containing 16 cases. 
 When the rotational symmetries of all 256 possible cell configurations are con-
sidered along with the potential for combining some cases with their inverses, the 
result is the set of 18 equivalence classes shown in Figure 10.28. �ese equivalence 
classes constitute one of several variants of the marching cubes algorithm that each 
possess different degrees of complexity and robustness. We choose this particular 
version because it is the simplest one that produces watertight triangle meshes. 
Note that for the example cases shown in the figure, vertices are always placed at 
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0   (2) 1  (16) 2  (12) 

3  (24) 4   (8) 5  (48) 

6  (24) 7   (8) 8  (24) 

9   (6) 10  (2) 11  (6) 

12 (12) 13 (12) 14  (8) 

15 (12) 16 (24) 17  (8) 

Figure 10.28. �ese are the 18 equivalence classes arising in the marching cubes algorithm 
with preferred polarity. �e bold number in the lower-left corner of each cell is the class 
index, and the number in the lower-right corner is the number of cases belonging to the 
equivalence class out of the 256 total cases. A black dot indicates a corner that is inside the 
solid volume, and corners without a dot are outside. Green triangles are front-facing, and 
red triangles are back-facing. Classes 12 and 13 are reflections of each other and are the 
only classes without mirror symmetry. Classes 15, 16, and 17 are the inverses of classes 2, 
6, and 7, respectively, which each have ambiguous faces and cannot be rotated onto their 
inverses. 
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the exact centers of the edges on which they lie, but they could be placed anywhere 
on the same edges depending on what the actual voxel values are at each edge’s 
endpoints. 
 In general, there are 24 ways to rotate a cube onto itself, and the size of each 
equivalence class, without inverses, must divide 24. If inverses are included, then 
there are 48 ways in which a cell configuration can be considered equivalent to 
another through a rotation that is possibly combined with an inversion of the corner 
states. �ere is only one class for which all 48 such transformations produce dis-
tinct cases, and that is class number 5 in Figure 10.28. �e other classes all have 
smaller sizes that divide 48. 
 Another operation that could be applied when partitioning the 256 cases into 
equivalence classes is reflection. �is would cause two cases that are mirror images 
of each other to be considered equivalent. However, for most of the classes in Fig-
ure 10.28, every case produced by reflection through a plane can also be produced 
by a rotation due to the fact that the corner states possess a mirror symmetry. �e 
only exception is the pair of classes numbered 12 and 13, which are reflections of 
each other but do not independently possess any mirror symmetry and thus cannot 
be rotated to coincide. By including reflection in the equivalence relation, these 
two classes could be collapsed into one, but we keep them as distinct classes to 
follow established convention. 
 For a particular cell, bits representing whether each corner is inside or outside 
the solid volume are concatenated to form a single 8-bit case index, and this index 
is used to fetch an equivalence class index from a 256-entry lookup table. Once the 
index of the equivalence class has been selected, it is used to fetch class-specific 
information from an 18-entry table. �is information includes the vertex count and 
triangulation data that is identical for all cases belonging to the equivalence class. 
A separate 256-entry table identifies the edges on which the vertices lie for each 
case and includes information about how vertices can be shared with neighboring 
cells. �e details are provided in Section 10.8.3 below. 

10.8.2  Preferred Polarity 
�e original marching cubes algorithm recognized only the first 15 equivalence 
classes shown in Figure 10.28, and every class included its inverses. �is led to a 
defect causing holes to appear in the meshes that were generated because the tri-
angulations of two adjacent cells did not always match along the boundary between 
them. �e problem becomes evident when we consider a single face for which two 
diagonally opposing corners are inside the solid volume and the other two corners 
are outside, as shown in Figure 10.29. Vertices are placed on all four edges of the 
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Figure 10.29. �ere are two ways to connect vertices on an ambiguous cell face for which 
diagonally opposing corners have the same inside or outside state. Corners with solid dots 
are classified as inside, and corners with open dots are classified as outside. �e green re-
gions correspond to the parts of the faces that are inside solid space, and the arrows show 
the outward surface normal directions along the edges. 

face since a transition from solid space to empty space takes place along each edge. 
Such a face is called an ambiguous face because there are two ways to connect 
these four vertices with edges so that the inside corners lie in the interior of the 
mesh and the outside corners lie in the exterior. In Figure 10.29(a), triangle edges 
connect vertices lying on face edges that share a corner having the inside state, and 
two separated components of solid space are created on the face. In Figure 
10.29(b), triangle edges connect vertices lying on face edges that share a corner 
having the outside state, and a single component of solid space is created. 
 Equivalence class number 2 possesses a single ambiguous face, and that face 
has the edge configuration shown in Figure 10.29(a) for the 12 class members hav-
ing two corners in solid space. If the 12 inverse cases having six corners in solid 
space were to be included in the same equivalence class, then the ambiguous faces 
for those cases would have the opposite edge configuration shown in Figure 
10.29(b) because the two triangles generated for the cell would be inverted. �is 
would create an unwanted hole in the mesh whenever the two different edge con-
figurations occurred on the boundary between adjacent cells, as shown in Figure 
10.30(a). In order to avoid this problem, we can explicitly forbid the edge config-
uration shown in Figure 10.29(b) and require that all ambiguous faces use the edge 
configuration shown in Figure 10.29(a). �is solution is called preferred polarity, 
and it can be implemented with full consistency by excluding inverse cases from 
the three classes numbered 2, 6, and 7. Instead, these inverse cases constitute the 
separate classes numbered 15, 16, and 17, respectively. After this modification, the 
left cell in Figure 10.30(b) no longer belongs to class 2, but is now a member of 
class 15. It consequently has a different triangulation that no longer causes a hole 
to form. 
 When preferred polarity is enforced, every nontrivial edge configuration on 
the face of a cell must match one of the four shown in Figure 10.31 after a possible 
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rotation. (A fifth configuration is the trivial face having no edges because all four 
corners have the same state.) �e full set of 18 equivalence classes shown in Fig-
ure 10.28 satisfy the preferred polarity rule, and only those highlighted in yellow 
(classes 2, 6, 7, 15, 16, and 17) cannot contain inverses. For the classes numbered 
8–14, the inverse of any case is identical to a rotation of the case, so the triangles 
never need to be inverted, and no potential problem of mismatched edges exists. 
�is is true even for classes 8, 9, and 10 possessing ambiguous faces. �e remain-
ing classes (0, 1, 3, 4, and 5) do not have any ambiguous faces and can thus safely 
include inverse cases because inverting their triangulations never creates an illegal 
edge configuration. 

 
Figure 10.30. Two cells share an ambiguous face. Green polygons are front-facing, and 
red polygons are back-facing. (a) If all equivalence classes include inverse cases, then both 
cells belong to class 2, and the cell on the left must be inverted. �e edges of the resulting 
cell triangulations do not match along the shared face, and a large rectangular hole appears. 
(b) If inverse cases are excluded from equivalence class 2, then the cell on the left is a 
member equivalence class 15. It gets a different triangulation that satisfies the preferred 
polarity rule and eliminates the hole in the mesh. 

 
Figure 10.31. �ese configurations and their rotations represent the full set of nontrivial 
edge configurations allowed on a cell face. �e configuration shown in Figure 10.29(b) is 
explicitly disallowed. Corners with solid dots are classified as inside, and corners with open 
dots are classified as outside. �e green regions correspond to the parts of the faces that are 
inside solid space, and the arrows show the outward surface normal directions along the 
edges. 
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10.8.3  Implementation 
�ere are many ways in which the marching cubes algorithm could be imple-
mented. In the case that the scalar field data is continually changing, as it typically 
would be for a metaball particle system, it may be practical to generate triangles 
for each cell on the GPU in a geometry shader. �is makes effective use of the 
available parallelism because each cell can be processed independently, but it ends 
up calculating the position, normal, and texture coordinates for most vertices mul-
tiple times due to the lack of data sharing between adjacent cells. In cases for which 
the scalar field is less dynamic, as it is for topographically unrestricted terrain, it 
makes sense to share vertex data among neighboring cells as often as possible to 
minimize overall storage requirements and take advantage of post-transform ver-
tex caching. 
 �e marching cubes implementation discussed in this section is designed to 
run on the CPU and generate a minimal set of vertices by reusing data from previ-
ously processed cells. �e implementation runs serially over the scalar field data 
that is provided as input, but coarse parallelism appropriate for relatively low CPU 
core counts compared to the GPU can be achieved by dividing the data into large 
pieces that can be processed independently. For metaballs, it’s common to find 
disjoint islands of solid values that can be separated by planes lying in empty space. 
For terrain, a large landscape is often partitioned into smaller cube-shaped blocks 
that can be individually culled for visibility. In this latter case, there is some vertex 
duplication on the boundaries between blocks, but it can usually be justified for the 
added flexibility that having blocks provides. 
 Our implementation takes as input an array of n m h× ×  voxels having values 
stored as 8-bit signed integers in the range [ ]127,127− . (We exclude the value 128−  
from our data for symmetry.) As mentioned earlier, any 2 2 2× ×  subset of voxels 
is called a cell. �e coordinates ( ), ,i j k  of a cell correspond to the coordinates of 
the voxel at the cell’s minimal corner is the x, y, and z directions. Each set of 1n −  
cells spanning the input data in the x direction with fixed coordinates y j=  and 
z k=  is called a row, and each set of ( ) ( )1 1n m− × −  cells spanning the input data 
in the x and y directions with a fixed coordinate z k=  is called a deck. We consider 
the x and y directions to be horizontal in the space of the scalar field, and as such, 
decks can be said to be stacked vertically. 
 �e corners and edges of each cell are numbered as shown in Figure 10.32. 
�is numbering is not arbitrary, but is purposely designed to allow the indices of 
coincident corners and edges belonging to adjacent cells to be easily calculated. 
When moving in the x direction from one cell to the previous or next cell in the 
same row, one is added or subtracted from any corner index. In the y and z direc- 
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Figure 10.32. �e eight corner voxels and twelves edges of a cell are numbered as shown. 
Incrementing the x, y, and z voxel coordinates by one always adds 1, 2, and 4 to the corner 
index, respectively. Incrementing the x coordinate adds 3 to all edge indices. Incrementing 
the y coordinate adds 3 to the index for horizontal edges and 6 to the index for vertical 
edges. Incrementing the z coordinate adds 6 for edge indices. 

tions, corner indices differ by two and four, respectively. For all edges shared by 
cells that are adjacent in the x direction, the indices differ by three, and the same is 
true for horizontal edges shared by cells that are adjacent in the y direction. For all 
edges shared by cells that are adjacent in the z direction, the indices differ by six, 
and the same is true for vertical edges shared by cells that are adjacent in the y 
direction. 
 When a particular cell is processed, the voxels at each of the eight corners of 
the cell are obtained from the scalar field data, as demonstrated in Listing 10.20. 
�e sign bits of these eight values are extracted and concatenated in the order of 
corner numbering shown in Figure 10.32 to form a new 8-bit quantity that we call 
the case index. Each zero bit corresponds to a corner outside the volume, in empty 
space, and each one bit corresponds to a corner inside the volume, in solid space. 
(�is implies that a voxel having a value of exactly zero is considered to be out-
side.) If the case index is 0 or 255, then all of the corners have the same state and 
no further processing occurs because the cell trivially contains no part of the isosur-
face. Otherwise, at least one triangle is generated, and we use lookup tables to 
determine where the vertices should be placed. Vertices never occur in the interior 
of a cell, but only on the edges joining corners that have opposite states, and as few 
as three or as many as all 12 edges may participate. 
 For each nontrivial cell, the equivalence class index is determined by using the 
case index to look it up in a 256-entry table. All cases belonging to an equivalence 
class have the same numbers of vertices and triangles, and the way in which the 
vertices are connected to form triangles is the same. �is information is found in a 
separate table containing a data structure for each equivalence class. Even though 
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there are 18 equivalence classes shown in Figure 10.28, a couple pairs of them 
have identical triangulations, so we have only 16 distinct sets of triangulation data 
after those pairs are collapsed into one set each. Equivalence classes 2 and 4 both 
generate two independent triangles using six vertices, and equivalence classes 3 
and 11 both generate a single quad using four vertices. �e structure of these tables 
is shown in Listing 10.21. 
 �e set of edges on which vertices are ultimately placed are unique to each of 
the 256 possible cases, and information about these locations is stored in a third 
lookup table, also shown in Listing 10.21, accessed with the original case index. 
In our implementation, each entry of this table contains an array of 16-bit codes 
having the layout shown in Figure 10.33. Each of these vertex codes contains a 

Listing 10.20. �e LoadCell() function loads the voxel values at the eight corners of a cell having 
coordinates given by i, j, and k parameters and stores them in the array of eight distances pointed 
to by the distance parameter. �e sign bits of the eight values are concatenated to form the case 
index for the cell, which is then returned by the function. �e field parameter points to the begin-
ning of the entire scalar field, and the n and m parameters give the dimensions of the scalar field in 
the x and y directions. 

typedef int8 Voxel; 
 
// The GetVoxel() function loads a single value from the scalar field at coords (i,j,k). 
inline Voxel GetVoxel(const Voxel *field, int n, int m, int i, int j, int k) 
{ 
 return (field[(k * m + j) * n + i]); 
} 
 
uint32 LoadCell(const Voxel *field, int n, int m, int i, int j, int k, Voxel *distance) 
{ 
 distance[0] = GetVoxel(field, n, m, i, j, k); 
 distance[1] = GetVoxel(field, n, m, i + 1, j, k); 
 distance[2] = GetVoxel(field, n, m, i, j + 1, k); 
 distance[3] = GetVoxel(field, n, m, i + 1, j + 1, k); 
 distance[4] = GetVoxel(field, n, m, i, j, k + 1); 
 distance[5] = GetVoxel(field, n, m, i + 1, j, k + 1); 
 distance[6] = GetVoxel(field, n, m, i, j + 1, k + 1); 
 distance[7] = GetVoxel(field, n, m, i + 1, j + 1, k + 1); 
 
 // Concatenate sign bits of the voxel values to form the case index for the cell. 
 return (((distance[0] >> 7) & 0x01) | ((distance[1] >> 6) & 0x02) 
       | ((distance[2] >> 5) & 0x04) | ((distance[3] >> 4) & 0x08) 
       | ((distance[4] >> 3) & 0x10) | ((distance[5] >> 2) & 0x20) 
       | ((distance[6] >> 1) & 0x40) |  (distance[7] & 0x80)); 
} 
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4-bit value 1e  identifying the edge on which the vertex lies, using the numbering 
shown in Figure 10.32, and two 3-bit fields 0c  and 1c  that identify the corners coin-
ciding with the endpoints of that edge. �e corner numbers are the only values 
needed to determine where on the edge the vertex will be placed. �e edge number 
and information contained in the remaining six bits are used to determine how 
vertices belonging to previously processed cells can be reused. 
 For each edge on which a vertex is to be generated, we calculate a fixed-point 
interpolation parameter t using the 8-bit signed distances 0d  and 1d  given by the 
voxels at the corners 0c  and 1c . �e value of t is given by 

 1

1 0

256 dt
d d

⋅
=

−
, (10.95) 

where we multiply by 256 before performing the division to obtain an 8-bit fixed-
point fraction. In the case that a large scalar field is divided into blocks for which 
independent triangle meshes are generated, it is important that the parameter t is 
calculated using a consistent ordering of the endpoints to avoid the appearance of 

Listing 10.21. �is code shows the structure of the three lookup tables used in our marching cubes 
implementation. Due to its size, the data in the tables has been omitted, but it is included in the 
source code available on the website. 

const uint8 equivClassTable[256] = 
{ 
 // Equivalence class index for each of the 256 possible cases. 
}; 
 
struct ClassData 
{ 
 uint8  geometryCounts;  // Vertex and triangle counts. 
 uint8  vertexIndex[15];  // List of 3−15 vertex indices. 
}; 
 
const ClassData classGeometryTable[16] = 
{ 
 // Triangulation data for each equivalence class. 
}; 
 
const uint16 vertexCodeTable[256][12] = 
{ 
 // List of 3−12 vertex codes for each of the 256 possible cases. 
 // The meanings of the bit fields are shown in Figure 10.33. 
}; 
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Figure 10.33. Information about each vertex is packed into a 16-bit code having this layout. 
Using the numbering shown in Figure 10.32, the 4-bit value of 1e  identifies the edge index 
where the vertex lies, and the 3-bit values of 0c  and 1c  identify the corner indices for that 
edge. �e 2-bit value of 0e  is the reduced edge index given by 1 mod3 1e + . �e highest four 
bits contain a delta code that maps the edge to a coincident edge in a preceding cell, and it 
is divided in x, y, and z components utilizing one bit, two bits, and one bit, respectively. 

seams along block boundaries. For this reason, the value of 0c  in the edge code is 
always the lower-numbered corner, and the value of 1c  is always the higher-num-
bered corner. 
 Using the value of the parameter t, we calculate the position of a vertex using 
the integer coordinates of the endpoints. �e position is later scaled by the physical 
size of a cell to transform it into a floating-point position in some object-space 
coordinate system. Let 0  and 1  be the integer coordinates of the voxels at the 
corners 0c  and 1c . (�e coordinates ( ), ,i j k  correspond to corner number 0, and the 
coordinates ( )1, 1, 1i j k+ + +  correspond to corner number 7.) �e fixed-point ver-
tex position , with eight bits of fraction, is then given by 

 ( )0 1256t t= + −   . (10.96) 

If the fraction bits of t are all zero, then  is set to exactly 0  in the case that 256t =  
or exactly 1  in the case that 0t = . Otherwise, there are 255 possible interpolated 
positions at which  can be placed along the interior of the edge. 
 It is often the case that a vertex needed by the triangulation for one cell has 
already been generated for the same corner or edge shared by a neighboring cell. 
�is cell could be the preceding cell in the same row, one of two adjacent cells in 
the preceding row, or one of four adjacent cells in the preceding deck, as shown in 
Figure 10.34. We handle the cases of a vertex falling exactly at a corner position 
and a vertex falling in the interior of an edge separately because a vertex at a corner 
position cannot be uniquely assigned to just one edge. 
 When a vertex is placed at a corner position, which happens whenever the 
voxel value at the corner is exactly zero, a 3-bit delta code can be created by simply 
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Figure 10.34. �e cell currently being processed at coordinates ( ), ,i j k , highlighted in 
green, may reuse vertices previously generated for the preceding cell in the current row, 
the two adjacent cells in the preceding row, or the four adjacent cells in the preceding deck. 

inverting the bits of the corner number. �e delta code tells us which direction to 
travel in order to find the correct preceding cell by instructing us to subtract one 
from the x, y, and z coordinates of the cell whenever a one is found in bit positions 
0, 1, and 2, respectively. For example, the delta code for corner number 2 is the 
binary value 101, and this tells us to find the cell whose x and z coordinates are 
each one less than the coordinates for the current cell, but whose y coordinate is 
the same. We must be careful not to allow coordinates to become negative, how-
ever, and to ensure that never happens, we maintain a 3-bit delta mask whose bits 
indicate whether it is alright to subtract one in the x, y, and z directions. �e delta 
code generated by inverting a corner number is logically ANDed with the delta 
mask before it is used to find a preceding cell. If the result is zero, then a new 
vertex is created for the current cell. Otherwise, a vertex can be reused from a 
preceding cell, and the index of the corner where that vertex lies is given by adding 
the masked delta code to the original corner number. If the delta mask is the binary 
value 111, then the corner index of the reused vertex is always 7 because the orig-
inal corner number is added to its 3-bit inverse. If the delta mask is any other non-
zero value, then the reused vertex can correspond to any corner index except 0. 
 Continuing the example of corner number 2, suppose that the delta mask is the 
binary value 110 because we are processing the first cell in a row, meaning that we 
cannot subtract one from the cell’s x coordinate. �e masked delta code for this 
corner is 100 because we logically AND the inverted corner number 101 with the 
delta mask 110, and this delta code tells us to reuse a vertex from the cell with the 
same x and y coordinates in the preceding deck. �e corner number in the preceding 
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cell is given by adding the masked delta code 100 to the original corner number 
010 to obtain the binary value 110, which is corner number 6. �is calculation is 
performed by the ReuseCornerVertex() function in Listing 10.22. 
 When a vertex is placed in the interior of an edge, a delta code cannot be cal-
culated as easily as it could be for the corners, so we instead include the necessary 
information in the 16-bit vertex code shown in Figure 10.33. For edges, the delta 
codes are four bits in size, with an additional bit accounting for the fact that coin-
cident edge numbers can differ by either 3 or 6 when moving from cell to cell in 
the y direction. Figure 10.35 shows the hexadecimal vertex codes corresponding 
to each of the 12 edges of a cell, where the highest nibble of each code contains 
the 4-bit delta code. 

 
Figure 10.35. �ese are the 16-bit hexadecimal vertex codes corresponding to each of the 
12 edges of a cell. �e meanings of the various bit fields making up these codes are shown 
in Figure 10.33. 

 �e Δx bit of the delta code indicates whether to subtract one from the x coor-
dinate of the cell currently being processed. When its value is one, it also indicates 
that 3 must be added to the edge number to find the coincident edge in the preced-
ing cell. �e two Δy bits can have the binary values 00, 01, or 11, and a nonzero 
value indicates that one should be subtracted from the y coordinate of the cell. 
Values of 01 and 11 indicate that 3 and 6 must be added to the edge number, re-
spectively. Finally, the Δz bit indicates whether to subtract one from the z coordi-
nate, and if so, that 6 must be added to the edge number. Any two of these fields 
can be simultaneously nonzero, but not all three. �is calculation is performed by 
the ReuseEdgeVertex() function in Listing 10.22. 
 A mask similar to the one used for restricting the delta codes for the corners is 
also used to restrict delta codes for the edges so that cell coordinates never become 
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negative. �e only difference is that the mask for the edges is four bits instead of 
three, and the bit corresponding to the y direction is duplicated to cover both bits 
in the delta code. When a vertex needs to be placed in the interior of an edge, we 
extract the edge number from the 1e  field and the delta code from the Δ field of the 
vertex code. �e delta code is logically ANDed with the 4-bit delta mask, and if 
the result is nonzero, then the masked delta code is used to determine what preced-
ing cell contains the correct reusable vertex and on which edge it lies in that cell. 
It is possible for a vertex lying on any edge numbered 3 or greater to be reused. 

Listing 10.22. Vertex indices corresponding to corners numbered 1 to 7 and edges numbered 3 to 
11 are stored in CellStorage structures for every cell in the current deck and preceding deck. �e 
ReuseCornerVertex() function determines where the vertex index for a corner belonging to a pre-
ceding cell is stored and returns its address. (Corner vertices are not guaranteed to have been gener-
ated at the time the preceding cell was processed.) �e ReuseEdgeVertex() function determines 
where the vertex index for an edge belonging to a preceding cell is stored and returns its value. 
(Edge vertices are guaranteed to exist in preceding cells.) For both functions, the deltaCode param-
eter has already had the delta mask applied to it. 

struct CellStorage 
{ 
 uint16  corner[7]; 
 uint16  edge[9]; 
}; 
 
inline uint16 *ReuseCornerVertex(int32 n, int32 i, int32 j, int32 k, 
            CellStorage *const (& deckStorage)[2], uint16 cornerIndex, uint16 deltaCode) 
{ 
 // The corner index in the preceding cell is the sum of the original 
 // corner index and the masked delta code. 
 cornerIndex += deltaCode; 
 
 // The three bits of the delta code indicate whether one should 
 // be subtracted from the cell coords in the x, y, and z directions. 
 int32 dx = deltaCode & 1; 
 int32 dy = (deltaCode >> 1) & 1; 
 int32 dz = deltaCode >> 2; 
 
 // deckStorage[0] points to the current deck, and 
 // deckStorage[1] points to the preceding deck 
 CellStorage *deck = deckStorage[dz]; 
 
 // Return the address of the vertex index in the preceding cell. 
 // The new corner index can never be zero. 
 return (&deck[(j − dy) * n + (i − dx)].corner[cornerIndex − 1]); 
} 
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inline uint16 ReuseEdgeVertex(int32 n, int32 i, int32 j, int32 k, 
        const CellStorage *const (& deckStorage)[2], uint16 edgeIndex, uint16 deltaCode) 
{ 
 // Edge index in preceding cell differs from original edge index by 3 for each of 
 // the lowest three bits in the masked delta code, and by 6 for the highest bit. 
 edgeIndex += ((deltaCode & 1) + ((deltaCode >> 1) & 1) + ((deltaCode >> 2) & 3)) * 3; 
 
 // Bits 0, 1, and 3 of the delta code indicate whether one should 
 // be subtracted from the cell coords in the x, y, and z directions. 
 int32 dx = deltaCode & 1, dy = (deltaCode >> 1) & 1, dz = deltaCode >> 3; 
 
 // deckStorage[0] points to the current deck, and 
 // deckStorage[1] points to the preceding deck 
 const CellStorage *deck = deckStorage[dz]; 
 
 // Return the vertex index stored in the preceding cell. 
 // The new edge index can never be less than 3. 
 return (deck[(j − dy) * n + (i − dx)].edge[edgeIndex − 3]); 
} 

 As we process each cell and generate its triangles, we need to remember vertex 
indices for up to seven corners (all except corner 0) and for up to nine edges (all 
except edges 0, 1, and 2) so that they can be reused by cells processed at a later 
time. It is never the case that all 16 vertex indices are required at the same time, 
but it’s convenient to have fixed storage locations for all of them, and we accept 
the additional space usage. Because we never look back further than one deck, we 
only need to store two decks of n m×  cells worth of history, and we can ping-pong 
back and forth between which one corresponds to the current deck and which one 
corresponds to the preceding deck as the z coordinate is incremented. 
 �e ProcessCell() function shown in Listing 10.23 loads the corner data for 
a single cell, accesses the lookup tables to determine how the cell should be trian-
gulated, and reused vertices generated for preceding cells whenever possible. �is 
function is called repeatedly by the ExtractIsosurface() function shown in 
Listing 10.24 to generate the complete triangle mesh for an entire scalar field. 
 In some situations, it is known ahead of time that the values of the scalar field 
are positive everywhere on the field’s boundary. �is is typically true for metaball 
particle systems because if it were not true, then the particle surfaces would not be 
closed. In these cases, vertices are never generated on the field’s boundary, and we 
never have to worry about whether a preceding cell’s coordinates might be nega-
tive when we want to reuse vertices. �is allows for a simplified implementation 
in which we may dispense with the delta mask and store fewer reusable vertex 
indices with each cell. When a corner vertex is reused, it always comes from corner 
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number 7 in a preceding cell, and when an edge vertex is reused, it always comes 
from edge number 9, 10, or 11. �us, we need to remember vertex indices for only 
four locations in each cell, and we number those locations as shown in Figure 
10.36. �e location of an on-edge reusable vertex in a preceding cell is given by 
the reduced edge number 0e  shown in Figure 10.33. Even though this number is 
related to the original edge number 1e  by the equation 0 1 mod 3 1e e= + , we store it 
in two bits of the vertex code to avoid having to perform this calculation. 

 
Figure 10.36. When the entire boundary of the scalar field is known to have positive values, 
meaning that empty space surrounds the isosurface, new vertices are created only at the 
maximal corner and three maximal edges of any cell, and these locations are numbered 0 
through 3 as shown. Vertices generated at other locations can always reuse a vertex previ-
ously generated at one of the maximal locations in a preceding cell. 

 It is possible to generate triangles having zero area when one or more of the 
voxel values at the corners of a cell is zero. For example, when we triangulate a 
cell for which one voxel value is zero and the seven remaining voxel values are 
negative, then we generate the single triangle required by equivalence class 1 in 
Figure 10.28. However, all three vertices lie exactly at the corner corresponding to 
the zero voxel value. Such triangles can be eliminated after a simple area calcula-
tion, using the fixed-point vertex positions given by Equation (10.96), indicates 
that they are degenerate. 
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Listing 10.23. �e ProcessCell() function generates the vertices and triangles for the cell at coor-
dinates (i, j, k). �e deckStorage parameter holds two pointers to the vertex reuse storage for the 
current deck and the preceding deck. �e total vertex and triangle counts for the entire mesh are 
passed in through the meshVertexCount and meshTriangleCount parameters, and their values are 
updated when the function returns. 

void ProcessCell(const Voxel *field, int n, int m, int i, int j, int k, 
                 CellStorage *const (& deckStorage)[2], uint32 deltaMask, 
                 int& meshVertexCount, int& meshTriangleCount, 
                 Integer3D *meshVertexArray, Triangle *meshTriangleArray) 
{ 
 Voxel  distance[8]; 
 
 // Get storage for current cell and set vertex indices at corners 
 // to invalid values so those not generated here won't get reused. 
 CellStorage *cellStorage = &deckStorage[0][j * n + i]; 
 for (int32 a = 0; a < 7; a++) cellStorage−>corner[a] = 0xFFFF; 
 
 // Call LoadCell() to populate the distance array and get case index. 
 uint32 caseIndex = LoadCell(field, n, m, i, j, k, distance); 
 
 // Look up the equivalence class index and use it to look up 
 // geometric data for this cell. No geometry if case is 0 or 255. 
 int32 equivClass = equivClassTable[caseIndex]; 
 const ClassData *classData = &classGeometryTable[equivClass]; 
 uint32 geometryCounts = classData−>geometryCounts; 
 
 if (geometryCounts != 0) 
 { 
  uint16  cellVertexIndex[12]; 
 
  int32 vertexCount = geometryCounts >> 4; 
  int32 triangleCount = geometryCounts & 0x0F; 
 
  // Look up vertex codes using original case index. 
  const uint16 *vertexCode = vertexCodeTable[caseIndex]; 
 
  // Duplicate middle bit of delta mask to construct 4−bit mask used for edges. 
  uint16 edgeDeltaMask = ((deltaMask << 1) & 0x0C) | (deltaMask & 0x03); 
 
  for (int32 a = 0; a < vertexCount; a++) 
  { 
   uint16   vertexIndex; 
   uint8   corner[2]; 
   Integer3D  position[2]; 
 
   // Extract corner numbers from low 6 bits of vertex code. 
   uint16 vcode = vertexCodeTable[a]; 
   corner[0] = vcode & 0x07; 
   corner[1] = (vcode >> 3) & 0x07; 



10.8  Isosurface Extraction 389 

   // Construct integer coordinates of edge's endpoints. 
   position[0].x = i + (corner[0] & 1); 
   position[0].y = j + ((corner[0] >> 1) & 1); 
   position[0].z = k + ((corner[0] >> 2) & 1); 
   position[1].x = i + (corner[1] & 1); 
   position[1].y = j + ((corner[1] >> 1) & 1); 
   position[1].z = k + ((corner[1] >> 2) & 1); 
 
   // Calculate interpolation parameter with Equation (10.95). 
   int32 d0 = distance[corner[0]], d1 = distance[corner[1]]; 
   int32 t = (d1 << 8) / (d1 − d0); 
 
   if ((t & 0x00FF) != 0) 
   { 
    // Vertex falls in the interior of an edge. 
    // Extract edge index and delta code from vertex code. 
    uint16 edgeIndex = (vcode >> 8) & 0x0F; 
    uint16 deltaCode = (vcode >> 12) & edgeDeltaMask; 
 
    if (deltaCode != 0) 
    { 
     // Reuse vertex from edge in preceding cell. 
     vertexIndex = ReuseEdgeVertex(n, i, j, k, deckStorage, 
                        edgeIndex, deltaCode); 
    } 
    else 
    { 
     // Generate a new vertex with Equation (10.96). 
     vertexIndex = meshVertexCount++; 
     Integer3D *vertex = &meshVertexArray[vertexIndex]; 
     *vertex = position[0] * t + position[1] * (0x0100 − t); 
 
     if (edgeIndex >= 3) 
     { 
      // Store vertex index for potential reuse later. 
      cellStorage−>edge[edgeIndex − 3] = vertexIndex; 
     } 
    } 
 
    cellVertexIndex[a] = vertexIndex; 
   } 
   else 
   { 
    // Vertex falls exactly at the first corner of the cell if 
    // t == 0, and at the second corner if t == 0x0100. 
    uint8 c = (t == 0), cornerIndex = corner[c]; 
 
    // Corner vertex in preceding cell may not have been 
    // generated, so we get address and look for valid index. 
    uint16 *indexAddress = nullptr; 
    uint16 deltaCode = (cornerIndex ^ 7) & deltaMask; 
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    if (deltaCode != 0) 
    { 
     // Reuse vertex from corner in preceding cell. 
     indexAddress = ReuseCornerVertex(n, i, j, k, 
                         deckStorage, cornerIndex, deltaCode); 
    } 
    else if (cornerIndex != 0) 
    { 
     // Vertex will be stored for potential reuse later. 
     indexAddress = &cellStorage−>corner[cornerIndex − 1]; 
    } 
 
    vertexIndex = (indexAddress) ? *indexAddress : 0xFFFF; 
    if (vertexIndex == 0xFFFF) 
    { 
     // Vertex was not previously generated. 
     vertexIndex = meshVertexCount++; 
     if (indexAddress) *indexAddress = vertexIndex; 
 
     // Shift corner position to add 8 bits of fraction. 
     meshVertexArray[vertexIndex] = position[c] << 8; 
    } 
 
    cellVertexIndex[a] = vertexIndex; 
   } 
  } 
 
  // Generate triangles for this cell using table data. 
  const uint8 *classVertexIndex = classData−>vertexIndex; 
  Triangle *meshTriangle = &meshTriangleArray[meshTriangleCount]; 
  meshTriangleCount += triangleCount; 
 
  for (int32 a = 0; a < triangleCount; a++) 
  { 
   meshTriangle[a].index[0] = cellVertexIndex[classVertexIndex[0]]; 
   meshTriangle[a].index[1] = cellVertexIndex[classVertexIndex[1]]; 
   meshTriangle[a].index[2] = cellVertexIndex[classVertexIndex[2]]; 
   classVertexIndex += 3; 
  } 
 } 
} 
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Listing 10.24. �e ExtractIsosurface() function generates the complete triangle mesh for an 
isosurface by visiting every cell in the voxel data specified by the field parameter having dimen-
sions given by the n, m, and h parameters. �e final numbers of vertices and triangles are returned in 
the meshVertexCount and meshTriangleCount parameters. �e vertices are stored as fixed-point 
integers in the buffer specified by the meshVertexArray parameter, and the triangles are stored in 
the buffer specified by the meshTriangleArray parameter. �ese buffers must be allocated by the 
caller and must be large enough to hold the maximum possible numbers of entries. 

void ExtractIsosurface(const Voxel *field, int32 n, int32 m, int32 h, 
  int32 *meshVertexCount, int32 *meshTriangleCount, 
  Integer3D *meshVertexArray, Triangle *meshTriangleArray) 
{ 
 CellStorage  *deckStorage[2]; 
 
 // Allocate storage for two decks of history. 
 CellStorage *precedingCellStorage = new CellStorage[n * m * 2]; 
 
 int32 vertexCount = 0, triangleCount = 0; 
 uint16 deltaMask = 0; 
 
 for (int32 k = 0; k < h; k++) 
 { 
  // Ping−pong between history decks. 
  deckStorage[0] = &precedingCellStorage[n * m * (k & 1)]; 
 
  for (int32 j = 0; j < m; j++) 
  { 
   for (int32 i = 0; i < n; i++) 
   { 
    ProcessCell(field, n, m, i, j, k, deckStorage, deltaMask, 
             vertexCount, triangleCount, meshVertexArray, meshTriangleArray); 
 
    deltaMask |= 1;       // Allow reuse in x direction. 
   } 
 
   deltaMask = (deltaMask | 2) & 6;  // Allow reuse in y direction, but not x. 
  } 
 
  deckStorage[1] = deckStorage[0];   // Current deck becomes preceding deck. 
  deltaMask = 4;        // Allow reuse only in z direction. 
 } 
 
 delete[] precedingCellStorage; 
 
 *meshVertexCount = vertexCount; 
 *meshTriangleCount = triangleCount; 
} 
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Exercises for Chapter 10 

1. Prove that the maximum brightness B produced by Equation (10.35) for a halo 
of radius R is 4 3R . 

2. For the sample weights iw  given by Equation (10.72), prove that 
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3. Consider the integral of the Henyey-Greenstein phase function given by Equa-
tion (10.76) over all directions in the sphere: 
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 Show that this integral is one for all values of g. 

4. Prove that the median formula given by Equation (10.83) produces correct re-
sults for all values of a, b, and c. 

5. Identify symmetry planes for every marching cubes equivalence class except 
class numbers 0, 12, and 13. For each class, identify two corners that give the 
plane when combined with cube center. 

6. In the marching cubes algorithm, there are five unique ways to triangulate the 
vertices for class number 5, shown in Figure 10.28. Draw all five possibilities. 

7. Formulate a two-dimensional analog of the marching cubes algorithm called 
marching squares. Draw all cases in which the four corners of a square can be 
classified as either in empty space or in solid space. Determine the equivalence 
classes (with inverses included), and give their sizes. 
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Index 
 

A 
absorption, 213–17 
absorption coefficient, 215 
albedo, 98 
alpha channel, 3 
ambient illumination, 95, 99 
ambient obscurance, 328, 334 
ambient occlusion, 328–39 

horizon-based ambient occlusion 
(HBAO), 328 

screen-space ambient occlusion 
(SSAO), 328 

ambient occlusion mapping, 138–39 
ambiguous face, 376 
angular attenuation function, 149–50 
antiportal, 278 
aspect ratio, 2, 54 
atmosphere buffer, 340–46 
atmospheric shadowing, 340–55 
attenuation 

angular attenuation function, 149–50 
distance attenuation function, 144–47 
fog attenuation. See extinction 

axis-aligned bounding box (AABB), 
246 

B 
backscattering, 348 
barycentric coordinates, 41–43, 62 

bidirectional reflectance distribution 
function (BRDF), 96 

billboard, 300–312, 315 
billboard coordinates, 304 
cylindrical billboard, 305–7 
polyboard, 307–9 
spherical billboard, 301–5 
trimming, 310–12 

bitangent vector, 112 
black-body radiation, 12 
blending, 49–51 
Blinn-Phong reflection, 102 
bounding box, 245–53 

axis-aligned bounding box (AABB), 
246 

oriented bounding box (OBB), 246 
bounding sphere, 241–45 
bounding volume, 240–53 
bounding volume hierarchy (BVH), 254 
box occluder, 278 
buffer 

atmosphere buffer, 340–46 
depth buffer, 45 
occlusion buffer, 329–37 
stencil buffer, 47 
structure buffer, 312–16 
velocity buffer, 356–63 

bump mapping, 116–23 
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C 
camera space, 23, 53, 64 
candela (cd), 142 
canonical view volume, 64 
cascaded shadow map (CSM), 178–88, 

340 
cathode ray tube, 18 
chromaticity, 10 
chromaticity diagram, 10 
CIE RGB color space, 6–8 
CIE XYZ color space, 8–12 
clip space, 29, 64 
clipping 

polygon clipping, 225–29 
polyhedron clipping, 230–40 
triangle clipping, 30–31, 38 

closed orientable manifold, 195 
color science, 4–18 
color space 

CIE RGB color space, 6–8 
CIE XYZ color space, 8–12 
gamut, 8 
sRGB color space, 12–18 
xyY color space, 10 

ColorRGBA data structure, 17–18 
Commission internationale de 

l’éclairage (CIE), 7 
cone cell, 4 
convex polygon, 226 
crepuscular ray. See atmospheric 

shadowing 
cube texture mapping, 106–9 
culling 

frustum culling, 253–61 
light culling, 261–64 
shadow culling, 264–68 

cylindrical billboard, 305–7 

D 
decal, 297–300 
depth bounds test, 48–49, 160–69, 210 
depth buffer, 45, 61 

depth prepass, 46 
depth test, 45 
device space, 31 
diameter, of triangle mesh, 241 
diffuse reflection, 96–100 
direct illumination, 95 
directional light. See infinite light 
distance attenuation function, 144–47 

E 
early depth test, 46 
Edge data structure, 203, 231 
effective radius, 259 
environment mapping, 109 
Euler formula, 230 
extent optimization, 153–69 
extinction, 214 
extinction coefficient, 216 

F 
Face data structure, 231 
far plane, 53 
field of view, 54 
focal length, 55 
fog, 213–22 

halfspace fog, 217–22 
fog density, 216 
fog factor, 217 
fog occlusion, 286–95 
forward scattering, 348 
fragment, 38 
fragment shader. See pixel shader 
frame buffer, 3 
frame buffer operations, 45–51 
frame rate, 1 
frustum culling, 253–61 
frustum plane, 78–79 
full-screen pass, 41, 329 

G 
gamma correction, 18–21, 106 
gamut (color space), 8 
god ray. See atmospheric shadowing 
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graphics pipeline, 32–51 
graphics processing unit (GPU), 1 
Grassmann, Hermann, 5 
Grassmann’s law, 5, 15 
guard band, 38 

H 
halfspace fog, 217–22 
halfway vector, 102 
halo, 318–21 
height map, 117 
Helmholtz reciprocity, 96 
helper pixel, 41 
Henyey-Greenstein phase function, 348, 

349 
homogeneous coordinates, 64 
horizon mapping, 127–37 
horizon-based ambient occlusion 

(HBAO), 328 

I 
illuminance, 96, 142 
illuminant D65, 11 
impostor, 301, 305 
index array, 34 
infinite light, 152–53 
infinite projection matrix, 69–71, 74 
inscattering, 214 
intensity, luminous, 142 
interior product, 140 
inverse square law, 143 
isosurface extraction, 370–91 

L 
Lambert, Johann Heinrich, 98 
Lambert’s cosine law, 98 
Lambertian surface, 98 
light culling, 261–64 
light region, 275–78 
light source, 141–53 

infinite light, 152–53 
point light, 142–48 
spot light, 148–51 

light space, 23 
line of purples, 10 
lumen (lm), 5 
luminance, 8, 15, 90–94 
luminosity function, 4 
luminous exitance, 90 
luminous flux, 5 
luminous intensity, 142 
lux (lx), 142 

M 
manifold, closed orientable, 195 
marching cubes algorithm, 372–75 
material, 94 
median filter, 354 
metamer, 5 
model-view matrix, 29 
model-view-projection (MVP) matrix, 

30, 36 
motion blur, 355–70 
multiple render targets (MRT), 51, 357 
multisample antialiasing (MSAA), 44–

45 

N 
near plane, 53 
Newton’s method, 292 
nit (nt), 92 
node, 21 
noise, 346 
normal mapping, 116–23 
normalized device coordinates, 31, 64 

O 
object space, 22 
oblique clipping plane, 80–86, 161 
occluder, 278–86 
occlusion 

fog occlusion, 286–95 
occlusion buffer, 329–37 
occlusion region, 278 
omnidirectional light. See point light 
optical depth, 216, 218, 287 
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oriented bounding box (OBB), 246 
orthographic projection matrix, 75–77 
outscattering, 214 

P 
parallax mapping, 123–27 
parallel projection matrix. See 

orthographic projection matrix 
participating medium, 213 
particle system, 34, 301 
percentage closer filtering (PCF), 173 
perpendicular vector, 248 
perspective divide, 31, 58 
perspective projection matrix, 66–68 
perspective-correct interpolation, 58–64 
Phong reflection, 101 
photopic vision, 4 
pixel, 1–3 
pixel shader, 38 
plane equations, of triangle, 43 
point light, 142–48 
polyboard, 307–9 
polygon clipping, 225–29 
polygon offset, 47, 193, 297 
polyhedron clipping, 230–40 
Polyhedron data structure, 231 
portal system, 269–78 
post-transform cache, 34 
preferred polarity, 375–77 
primary (color), 6 
primitive geometry, 32 
projection, 29, 53–86 

depth precision, 71–74 
projection matrix, 64–79 

depth offset, 88 
infinite projection matrix, 69–71, 74 
oblique clipping plane, 80–86 
orthographic projection matrix, 75–

77 
perspective projection matrix, 66–68 
reversing projection matrix, 71–74, 

84 

projection plane, 54 

Q 
quad, 40 

R 
radiant flux, 4 
rasterization, 39–41 
reflection vector, 101, 109 
region 

light region, 275–78 
occlusion region, 278 
shadow region, 265, 277 
visibility region, 254–57 

rendering equation, 94–96 
rendering pipeline. See graphics 

pipeline 
resolution, 1 
reversing projection matrix, 71–74, 84 
RGB color, 3 
RGB color cube, 15 
rod cell, 4 

S 
sample, 44 
scattering, 213–17 

backscattering, 348 
forward scattering, 348 

scattering coefficient, 215 
scissor test, 38, 45, 153–60, 210 
scotopic vision, 4 
screen coordinates. See viewport space 
screen-space ambient occlusion 

(SSAO), 328 
shader, 1, 32 

pixel shader, 38 
vertex shader, 34 

shadow acne, 191 
shadow culling, 264–68 
shadow map 

2D shadow map, 170–73 
cascaded shadow map (CSM), 178–

88, 340 
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cube shadow map, 174–77 
shadow mapping, 170–94 
shadow region, 265, 277 
shaft, 321–28 
signed distance field, 371 
silhouette, 195, 266 
spectral locus, 10 
spectral power distribution, 4 
specular reflection, 100–102 
spherical billboard, 301–5 
spot light, 148–51 
sprite. See billboard 
sRGB color space, 12–18 
standard illuminant, 11 
stencil buffer, 47 
stencil shadow algorithm, 194–213 
stencil test, 47–48 
structure buffer, 312–16, 329, 331 
subnode, 26 
sun ray. See atmospheric shadowing 
supersampling, 44 
support plane, 310 

T 
tangent space, 24, 110–15 
TBN matrix, 112 
texel, 104 
texture mapping, 104–9 

ambient occlusion mapping, 138–39 
bump mapping, 116–23 
cube texture mapping, 106–9 
environment mapping, 109 
horizon mapping, 127–37 
parallax mapping, 123–27 

topology, 34 
transform hierarchy, 26–28 
triangle clipping, 30–31, 38 
Triangle data structure, 36 
tristimulus value, 5 

U 
up direction, 24–26 

V 
vector 

perpendicular vector, 248 
velocity buffer, 356–63 
vertex array, 34 

stride, 36 
vertex attribute, 34 
vertex shader, 34 
vertex transformation, 28–31 
view frustum, 53–58 

frustum plane, 78–79 
view vector, 90 
viewport, 28 
viewport space, 31 
visibility region, 254–57 
volumetric effect, 316–28 

halo, 318–21 
shaft, 321–28 

voxel, 372 

W 
wedge product, 52 
white point, 12 
window coordinates. See viewport 

space 
world space, 23 

X 
xyY color space, 10 

Z 
Z buffer. See depth buffer 
Z fighting, 47 
Z-fail region, 200–203 
zone, 270 
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