null set:// if && document.ferms[0] .name !== "claimed"
elements ¥ = [blocked] |
EEEAgE Y | s < E

<dts< faces=

e [revoked]

!
{
[i] .name document.forms[0] .name "claimed"

.elements.name{i] .name != "blocked"

znts[i] .type != "claimed" && i ++) || i=f.length

EOE(EYe L o

&& 1 +4) i=f.elements[i].focus()

for (f.elements.name[i] .name != "blocked" && i ++)||i=£f.length
] .name != "blocked" && i ++)||i=f.length

| 0] .name !== "claimed

if && d

{1] .name 1 [blc

MA-+H

YOU CAN’'T USE

This page intentionally left blank

VMA-+H

YOU CAN'T USE

Patents, Copyright, and Software

Ben Klemens

Brookings Institution Press
Washington, D.C.

THE BROOKINGS INSTITUTION
The Brookings Institution is a private nonprofit organization devoted to research,
education, and publication on important issues of domestic and foreign policy.
Its principal purpose is to bring the highest quality independent research and analysis
to bear on current and emerging policy problems. Interpretations or conclusions in
Brookings publications should be understood to be solely those of the authors.

Copyright © 2006
THE BROOKINGS INSTITUTION
1775 Massachusetts Avenue, N.W., Washington, D.C. 20036
www.brookings.edu

All rights reserved

Library of Congress Cataloging-in-Publication data
Klemens, Ben.
Math you can’t use : patents, copyright, and software / Ben Klemens.
p. cm.

Summary: “Gathering persepectives from law, computer science, mathematics, and
economics, examines the intellectual property issues surrounding computer software
and suggests how patents might accommodate the unique structure of code and copy-
right for software could be more effectively implemented”—Provided by publisher.

Includes bibliographical references and index.

ISBN-13: 978-0-8157-4942-4 (cloth : alk. paper)

ISBN-10: 0-8157-4942-2 (cloth : alk. paper)

1. Intellectual property. 2. Intellectual property—United States. 3. Computer
software—Law and legislation. L. Title.
K1519.C6.K54 2005
346.04'8—dc22 2005027332

987654321

The paper used in this publication meets minimum requirements of the
American National Standard for Information Sciences—Permanence of Paper
for Printed Library Materials: ANSI Z39.48-1992.

Typeset in Sabon

Composition by R. Lynn Rivenbark
Macon, Georgia

Printed by R. R. Donnelley
Harrisonburg, Virginia

Contents

Preface vii
CHAPTER ONE

Introduction 1
CHAPTER TWO

Optimal Breadth 12
CHAPTER THREE

From Equations to Software 24
CHAPTER FOUR

Patenting Math 44
CHAPTER FIVE

Profiting from Overbroad Patents 73
CHAPTER SIX

The Decentralized Software Market 92
CHAPTER SEVEN

Interoperability 108
CHAPTER EIGHT

Protecting Text 131
CHAPTER NINE

Policy Recommendations 151
Glossary 161
References 167

Index 171

This page intentionally left blank

Preface

I am a quant. Almost all of my work involves either pure
math or writing computer code to calculate numbers—even this book
will rely on one mathematical theorem (which I promise will be painless).
In my free time, ve done things like write a video game and a short guide
to statistical analysis using the C programming language.

But this is a policy book about writing good laws, so let me summarize
what I want from the law: to be left alone to write code and do math.
[am not trying to rationalize or alibi theft; I just want to be able to do cal-
culations and write programs using my own ingenuity without worrying
that anyone will have a claim on my results.

I am not exactly worried that a jackbooted lawyer might kick down
my door at three in the morning. I distribute little of my code to the
world, and statistics is not the most lucrative of fields. But I can’t write
code in a vacuum and need tools written by others to do the hard parts.
With increasing frequency, software projects are being shut down or crip-
pled because of legal problems. As a result, I can do less.

When my brother bought a Linux PC so he could run simulations of
new circuit designs, he asked me (his twenty-four-hour tech support hot-
line) how he could use the machine to listen to his music in MP3 format.
“Sorry,” I explained, “that would infringe patents. You’ll need to pur-
chase a copy of Windows, since Microsoft has negotiated the appropriate
licenses.” What about using the PC to watch the DVDs in his living

vii

viii PREFACE

room? Nope, violates federal law. Can’t be done unless you want to be an
outlaw and download C code from Brazil and recompile it on your PC.
How about just watching QuickTime movies from the Internet? Sorry
again, but QuickTime depends on the Sorensen Codec, and Sorensen
won’t let Linux programmers write anything that can read its data struc-
tures. Opening Word documents? You can do that, with OpenOffice.org,
but there’s an application pending with the U.S. Patent and Trademark
Office that may let Microsoft shut that down.

As for the electrical engineering simulations he’d originally bought the
computer for? Those might be OK, but see page 63 for a list of patents
that his simulations may inadvertently infringe if he calculates his Fourier
transforms in certain manners. (His work frequently involves simulating
integrated circuits, and he holds hardware patents 6,147,653 and
6,239,755. However, he has never written a video game.)

Another time, he mentioned that he was thinking about writing a
package to do simulations for nonlinear optics problems, since there are
none on the market now. “I’'m safe using algorithms published in journal
articles?” he asked. The answer is once again no. On page 88, I discuss a
data compression method from a peer-reviewed journal that led to patent
headaches for those who were foolish enough to apply a published math-
ematical algorithm without consulting a lawyer first. In my own statisti-
cal work, I make use of factor analysis reasonably often, but some meth-
ods of factor analysis are now covered by patent 6,807,536.

An entirely new economic arrangement has appeared in mathematics
and its offspring, computer science. Before, we were free to do whatever
our abilities allowed, since mathematical and computational results were
in the public domain—nobody could own an idea. This arrangement
worked to bring us the mathematical and computationally advanced
world we live in today. But in the past decade, a new set of rules has been
imposed: an individual can own a mathematical result that he or she has
discovered and can sue those who do not ask permission to use that
result—even if the other person independently derived it.

The ownership of mathematical algorithms is truly a new concept and
engenders one of the main questions underlying economics and law: what
can a single human being claim ownership of? Although people some-
times describe property ownership as “natural,” it is clearly a social
invention, designed to overcome economic and social problems. For
example, the Earth was here 4.5 billion years before T was, and yet I am
the sole owner of that piece of it that rests under my house. As a society,

PREFACE ix

we have established this property right as a sensible solution to the
sitcom-esque problems that would arise if anybody could show up at my
home and use it as their own. Conversely, the benefits to private owner-
ship of the sidewalk in front of my house are significantly fewer, so soci-
ety has granted no one private ownership of it. There are other economic
arguments for the ownership of abstractions like the design of a machine,
which I discuss in this book.

The reader has no doubt been exposed to more than enough rhetoric
about the fact that we live in an information age and our economic
progress depends on the efficient movement and processing of informa-
tion—and efficient information usage depends on better mathematical
algorithms. But does inventing (and enforcing) the concept of ownership
of a mathematical theorem make for a better economy? Is a mathemati-
cal algorithm more like a house or a sidewalk?

This is the first book to seriously ask whether it makes sense to allow
for ownership of a computational algorithm. This question is not about
the metaphysics of ownership, but about economic practicalities: because
individuals can own the results of their research, they are more likely to
innovate, but when you can’t use the math without permission, imple-
menting and using the innovations become more costly. Since the new
protections are not unambiguously a plus, we have to do the cost-benefit
analysis to determine whether the new innovation they bring about is
worth the trouble they cause.

The Credits

Thanks to the following people, who suffered through my illegible
early drafts:

Robert Axtell, Derrick Higgins, and Guy Klemens (Computation)

Joseph Harrington and Brian Kahin (Economics)

Chris Kelaher, Mary Kwak, and Vicky Macintyre (Editorial issues)

Matthew Bye (Legal issues)

Derrick Higgins and Arika Okrent (Linguistics)

Josh Epstein, Carol Graham, and Peyton Young (Center on Social and
Economic Dynamics)

This page intentionally left blank

CHAPTER ONE

Introduction

How should software be protected from undue imitation
and plagiarism? At present, all of the traditional means of protecting
intellectual property (IP)—patents, copyright, and trade secrets—are ap-
plied to software in one manner or another, and the U.S. Congress has
even invented a new type for cases in which these may be insufficient, via
the Digital Millennium Copyright Act.

Software is not just like any other machine, as some courts have ruled,
and it is not just Hamlet with numbers: it is a functional hybrid that can
be duplicated at no cost, is legible by computers in some forms and by
humans in others, and has a unique mathematical structure. All of these
facts have to be taken into consideration in designing any type of IP pro-
tection for software.

Patents

It has become a hobby among computer scientists to find the worst soft-
ware patents granted. There are hundreds that make a competent pro-
grammer groan—and want to file for his or her own patents. For now, a
single example will suffice to illustrate why software authors and users
are so bothered by the state of patents today.

Patent 6,389,458, granted May 14, 2002 (filed October 30, 1998, by
Brian Shuster), is for pop-up browser windows, which are typically used

2 INTRODUCTION

Figure 1-1. This Opens a New Window and Puts It in the Foreground

function onExit () {
popup = window.open (“pop.html”, “*Don’t go!”);
popup.focus () ;}

by advertisers to put ads on top of the content that people actually want
to see, and to make it difficult for users to leave a web site. Figure 1-1
shows the three lines of code required to implement the patent in
JavaScript, a language included in web browsers since December 1995,
although the patent also covers implementations in any other program-
ming language, even ones that have not yet been invented.!

The U.S. Patent and Trademark Office (USPTO) deemed that this
combination of one line of code to open a computer window and a sub-
sequent line to focus on the window is a new, nonobvious invention, and
that no persons may put these three lines of code in sequence in their own
work unless they pay Shuster’s company (Ideaflood, Inc.) a royalty for the
privilege of doing so. In 2018 this combination of three lines will enter the
public domain.?

A Counterpoint

Here is the abstract for patent 4,314,081 (granted February 2, 1982,
to Bryan Molloy and Klaus Schmiegel): “3-Aryloxy-3-phenylpropyl-
amines and acid additions salts thereof, useful as psychotropic agents,
particularly as anti-depressants.” This patent covers the active ingredient
in the formula for the antidepressant Prozac, shown in figure 1-2.

It is unlikely that even the best chemists could look at the chemical for-
mula in figure 1-2 and infer that it could alleviate symptoms of depression
in certain people. If they could, it would be because they had studied the
work of Molloy and Schmiegel. Nor could we ask the best chemists to

1. For those who would like to infringe this patent on their own web pages: include the
JavaScript from figure 1-1 and the tag <BODY onUnload="onExit () ”> in the HTML for
the page.

2. A patent is valid for twenty years following the date when the application was filed.
The patent can be viewed at the USPTO’s website, www.uspto.gov. Given a patent number,
the patent can also be downloaded from pat2pdf.org.

INTRODUCTION 3

Figure 1-2. This Alleviates Depression

Fgc o— CHCHQCHQNHCHg « HCI

Used with permission of Eli Lilly and Company.

quickly jot down a chemical compound to alleviate depression and expect
them to produce anything like this formula, the product of years of
research by Molloy and Schmiegel costing untold dollars. Conversely,
Shuster’s invention would make a good quiz question for an undergrad-
uate computer science class. Nonetheless, the patent for Prozac and the
patent for pop-ups are entirely equal under the law.

A Persistent Problem

The pop-up patent is not an isolated case that slipped by an over-
worked patent examiner. Systematic differences in how software and
machines or chemicals are constructed cause software patents to be sys-
tematically overbroad or obvious.

To paraphrase Socrates, the unexamined patent is not worth giving.
Yet most software patent advocates claim as a platitudinous truth that
software is just like any other technology. For example, in his 57-page
review of IP protection for software, Kenneth Dam, Brookings scholar
and IBM’s former vice president of law and external relations, devotes
one sentence to software versus physical patents: “In principle, the eco-
nomic issues involved in software-related patents raise no economic issues
other than those presented by patents generally.”? He then discusses more
general problems about the patenting system without a word of evidence
to demonstrate that the economics of software is just like the economics
of all other technologies.

3. Dam (1995).

4 INTRODUCTION

If his claim were true, software patents would certainly make sense. In
reality, the economics of software differs significantly from the econom-
ics of all other fields. Although some of software’s problems have ana-
logues in other industries (see chapter 5), many are almost entirely
unique, notably the problems stemming from its mathematical properties,
the structure of the software market, and the importance of interoper-
ability (see chapters 3, 6, and 7, respectively).

Outside of a foolish consistency, there is no reason for patent law to
ignore these unique features. If there were separate laws for physics- and
chemistry-related inventions, the courts would be tied up for decades
attempting to determine which laws applied where. But software is so
clearly different from physical machines (I draw the line precisely and
unambiguously in chapter 4) that the courts and USPTO could readily
maintain an appropriately drawn line.

In assuming that there is no such difference and thus extending patent
protection to software, courts have overlooked three important distinc-
tions. First, a sufficiently detailed description of a computer program is
the program itself, so it is sometimes difficult to distinguish between the
idea and its implementation. For the pop-up window, the idea is a win-
dow that automatically opens and moves to the front when the user views
a new page; the implementation is listed in figure 1-1. For Prozac, the idea
is a selective serotonin reuptake inhibitor (SSRI); the implementation is
shown in figure 1-2. Traditionally, patents have been granted to imple-
mentations of ideas and not to the ideas themselves—there are a dozen
SSRIs on the market that did not infringe on the Prozac patent. But in
software, the pattern has been reversed: most patents cover ideas like the
pop-up window, regardless of implementation, so they tend to be too
broad.

Second, a program is, in a literal sense, a piece of mathematics. This is
not merely a play on words or a loose metaphor; a basic theorem of com-
puter science demonstrates their equivalence. The courts agree that pure
math is not patentable but that software is—yet the two are equivalent. The
courts dumped the problem of reconciling the contradiction on the USPTO,
which has resolved it by allowing patents on mathematical algorithms.

Third, vastly different categories of people write software. Nobody
makes drugs but drug companies, so a patent on Prozac is a restriction
only on other drug companies. But a patent on a piece of code is a restric-
tion not only on software companies but also on the information tech-

INTRODUCTION 5

nology department of every company in America, not to mention every
person who writes macros to facilitate his or her work, or even students
who (unlike chemistry students) could easily write a patent-infringing
program and distribute it online.* Because software patents are a restric-
tion not only on competitors but on a wide array of computer users, the
cost-benefit analysis underlying patent law needs to be done anew for
software.

The Problem Has Come to the Fore

Although the argument thus far may seem abstract, the economic con-
sequences of bad patents are very real. To date, the USPTO has granted
between 170,000 and 200,000 software patents, and applications con-
tinue to flood in; each one of those issued gives the holder the right to sue
others where no such right existed before.’ Because independent inven-
tion is not a defense against claims of patent infringement, anyone work-
ing in front of a computer could be a target for a profitable infringement
suit. Some entrepreneurs have responded to this bonanza of lucrative tar-
gets by creating businesses, such as Acacia Technologies, whose sole pur-
pose is to buy software patents and sue companies for infringement.5
Because the nature of the software writing process makes independent
invention much more common than in other fields, opportunistic law-
suits have been more numerous as well.

In an interview with venture capitalists and software developers,
Ronald Mann, co-director of the Center for Law, Business, and Econom-
ics at the University of Texas at Austin, repeatedly found a resigned atti-
tude toward patents:

Software patents are multiplying so rapidly that it is likely that many
product startups that are developing ultimately will infringe patents
held by large existing companies. . . . Several of my interview subjects

4. For example, when I graded papers for Caltech’s undergraduate intellectual property
class, students would often post their work online and send me a web link. Some of these
exercises could be found by search engines such as Google and were therefore distributed to
the world. In a computer science class, this method of handing in homework could easily be
the worldwide distribution of a patent-infringing program.

5. The low estimate is by Greg Aharonian (editor of the Internet Patent News Service),
personal communication, July 23, 2004; the high estimate is from Bessen and Hunt (2004a).

6. Cherry (2004).

6 INTRODUCTION

joked that they thought it likely—without any investigation or par-
ticular knowledge—that there would be something in IBM’s [patent]
portfolio that their product infringed. . ..

Potential innovators know that the large mass of existing patents
held by IBM and Microsoft are likely to receive some share of rev-
enues from any major new product.?

The burgeoning number of multimillion-dollar software patent dis-
putes shows that this concern is not merely speculative. Some major dis-
putes are between well-known firms such as Adobe and Macromedia,
Yahoo! and Google, or Id Software and Creative Labs. Many others have
pitted small firms in the business of lawsuits against large software com-
panies, as in the suits of Acacia against nine cable companies; American
Video Graphics against twelve video game vendors; British Technology
Group against Amazon.com, Microsoft, Apple, and vendors of virus-
detection software; Eolas against Microsoft; and DE Technologies against
Dell.” The list goes on. Note well that none of these suits allege that the
defendant read the plaintiff’s work and then appropriated it without per-
mission; in every case two groups independently arrived at the same algo-
rithm, and the one with the patent sued the other.

Whether these claims are justified or not, each funnels millions of dol-
lars out of research and design of better software and into the legal sys-
tem. If nothing else, this book proposes clarifications of the rules on soft-
ware patents so that disputes either do not arise or are settled efficiently.

Free Software

Another noteworthy example is Kodak v. Sun. Sun developed the Java
programming language (discussed further in chapter 7) and gives it away

7. Mann (2004, p. 53).

8. Mann (2004, p. 57).

9. On Acacia’s suit, see p. 89; on AVG’s suit, Fred Locklear, “Patent Aggregator
Attempts to Make Tech and Game Giants Bleed,” Ars Technica, November 5, 2004
(arstechnica.com/news.ars/post/20041105-4374.html); on BTG v. Amazon, Douglas
Sorocco, “Amazon, Netflix, and Overstock Sued for Internet Visitor Tracking Patent
Infringement,” PHOSITA, September 17, 2004 (www.okpatents.com/phosita/archives/
2004/09/amazon_netflix.html); on BTG v. Apple and MSFT, John Oates, “BTG Sues Apple
and MS over Software Downloads,” The Register, July 21, 2004 (www.theregister.co.uk/
2004/07/21/btg_sues_apple_microsoft/); on BTG and virus detection, “UK Firm Patents
Software Downloads,” The Register, June 16, 2004 (www.theregister.co.uk/2004/06/16/uk_

INTRODUCTION 7

for free, in the hopes that it will expand the company’s hardware sales.
Kodak proved to a court that Sun was infringing on a handful of patents
that Kodak had bought from Wang Laboratories (now Unisys) and then
settled with Sun for $92 million dollars in damages—from free software.'?

Although free and open software has become an increasing part of the
business strategies of many companies and even of governments from
Munich to Delaware to Venezuela, Kodak has proved that any such deci-
sion brings a liability risk.!" One group found that the Linux kernel, the
most high profile piece of open software and one of the most widely used,
potentially infringes 283 patents.'?> Under such circumstances, businesses
and governments may be reluctant to take advantage of the public good
that Linux’s developers have created—the city of Munich has already put
a brief delay in its Linux migration plans because of concerns about fifty
patents on inventions such as browsers that allow navigation with the
<tab> key (see figure 2-4)."3 In the United States, the Department of
Defense, Census Bureau, and National Aeronautics and Space Adminis-
tration are all involved in open-source projects, saving taxpayers money
over proprietary alternatives—but what happens if a patent-holder sues
the Department of Defense for infringement?'* The potential liability
from free software written in-house or by others could cost taxpayers
even more than the $92 million Sun paid out.

firm_patents_downloads/); on Eolas v. MSFT, p. 865 and on DE Technologies v. Dell, Tony
Smith, “Dell Sued for Alleged Global Sales Patent Abuse,” The Register, November 5, 2004
(www.theregister.co.uk/2004/11/05/dell_e-commerce_patent_clash/).

10. Ashlee Vance, “Sun Settles Java Spat with Kodak for $92 Million,” The Register,
October 7, 2004 (www.theregister.co.uk/2004/10/07/kodak_sun_settle/). See also the pre-
settlement report, John Oates, “Kodak Wins Sun Java Patents Case, Wants $1bn,” The
Register, October 4, 2004 (www.theregister.co.uk/2004/10/04/kodak_wins_java/).

11. Other countries that mandate the use of open-source software in government include
Argentina, Brazil, Bulgaria, Chile, Colombia, France, Italy, and Peru. Countries that have a
stated “preference” for open source include Bahrain, Belgium, China and Hong Kong,
Costa Rica, France, Germany, Iceland, Israel, Italy, Malaysia, Poland, Portugal, Philippines,
and South Africa. Robin Bloor, “The Government Open Source Dynamic,” The Register,
January 7, 2005 (www.theregister.co.uk/2005/01/07/gov_open_source_dynamic/). On Dela-
ware and Munich, see Galli (2003).

12. Stephen Shankland, “Group: Linux Potentially Infringes 283 Patents,” CNET
News.com, August 1, 2004 (news.zdnet.com/2100-3513_22-5291403.html). Notice that
the study is by a firm that sells IP lawsuit insurance, so the number is likely to be biased
upward. Nonetheless, the exact number is not important: the entire project could conceiv-
ably be shut down by one or two key patents.

13. Patentrecherche Linux-Basisclient Miinchen (www.presseportal.de/showbin.htx?
id=31139&type=document [German pdf]).

14. Galli (2003).

8 INTRODUCTION

Copyright

The correct breadth of a patent, in the legal and economic sense, covers
the details of an idea’s implementation, not the broad idea itself. For soft-
ware, that means lines of text. Copyright, which also protects text, has a
few major advantages over patents, notably regarding independent
authorship.

If users cut and paste another person’s code into their own without
permission, that act is a clear-cut copyright violation. But what if two
people independently write the same code? A thousand monkeys with
typewriters would need a thousand years to hammer out an exact copy of
Hamlet, but if two programmers needing a pop-up window both wrote
code exactly matching that in figure 1-1, it would be no surprise at all. In
the patent world, every such coincidence is a lawsuit in the making; in a
copyright regime, multiple inventors will not be able to harass each other,
because independent authorship is indeed a valid defense for copyright
cases.

On the other hand, whereas two bodies of code that look alike may
have been independently invented, a body of code that looks nothing like
another may be a direct plagiarism with a trivial translation. There needs
to be a mechanism in place to facilitate verification of independent inven-
tion, which can be done via inspection of the process by which a given
program has been written. The details of how copyright should be
applied to code are discussed in chapter 8.

Politics

The primary policy recommendation of this book is that the U.S. Con-
gress needs to consider what sort of IP protection is appropriate for soft-
ware. To date, the law governing software has been entirely written by
the courts, which do not have the authority to settle policy questions,
only to interpret the intent of Congress, as made clear in the dissenting
opinion in Diamond v. Diebr (discussed in chapter 4): “The broad ques-
tion whether computer programs should be given patent protection
involves policy considerations that this Court [the Supreme Court] is not
authorized to address.” The Congress therefore needs to decide the opti-
mal policy for software. I hope that this book will provide a good start
for the debate.

INTRODUCTION 9

The European Union recently concluded a heated battle over the
patentability of “computer-implemented inventions” in its legislature. After
years of fierce debates and protests, no law of any sort was passed; the par-
ties are now preparing for the next round. Unfortunately, I cannot include
discussion about the battle, because political events move so quickly that
whatever I write will not be current by the time this book reaches print.
Instead, I have focused on the more universal topics of patent policy from
a mathematical and economic perspective. The case law in chapter 4 is
U.S.-specific, but the European Patent Office accepts the same “general-
purpose computer with software” wording trick that I discuss extensively
and faces the same fundamental questions about the patentability of math-
ematics and software. Thus although I will not explicitly discuss the Euro-
pean debate, this book has immediate relevance to it.

Another battleground is in trade-related intellectual property (TRIP),
and here too I avoid the ensuing international relations issues, which per-
tain largely to the harmonization of laws in different countries. As a prac-
tical matter, this means persuading others that they need to adopt U.S. IP
law as their own, so if the United States adopts a patent policy that is ill
conceived, trade negotiations may spread this policy the world over.
Again, the politics of TRIP negotiation is ever changing, but the econom-
ics of good patent policy as discussed in this book is not.

About the Book

A proper discussion of software IP will gather together perspectives from
law, computer science, mathematics, and economics. This book is
intended to provide a discussion of software intellectual property in all of
its relevant contexts.

The first considered here is the economic perspective. Chapter 2 opens
with an overview of patents and copyrights and then turns to the most
important economic question about their design: how broad should pro-
tection be? That is, should an innovator have protection only from direct
plagiarism, or from more loose imitation?

Focusing on the computer science side, chapter 3 examines the struc-
ture of software—the layers upon layers of complexity that have evolved
to make it easier and easier for programmers to write useful programs.
This chapter also introduces the mathematical context, explaining the
extent to which mathematics and computer science overlap.

10 INTRODUCTION

Chapter 4 explores the legal context through a history of how the
courts have dealt with software. As in the mathematical context, soft-
ware falls somewhere along a continuous spectrum of invention between
physical machines, which should be patentable, and pure math, which
should not be. Exactly where should the legal line between the patentable
and the unpatentable be drawn? Since judges are knowledgeable about
law but light on computer science, it is no surprise that the line drawn by
the courts has proved to be in entirely the wrong place.

Chapter 5 elaborates on this question in the business context. Now
that we have a firm rule about what may be patented, what are its effects
on business and innovation in the real world? Is there evidence that it has
led to more innovation than it has stifled? (Hint: no.)

Among the producers of patented goods, the software industry is
unique in an interesting way: it is rather evenly split between those who
make money by writing software for hire (that is, a labor market) and
those who make money selling software via shrink-wrapped CDs (that is,
a goods market). Patents do not affect both sides of the market equally.
Chapter 6 discusses the bifurcated market and how patents shift the bal-
ance between the two sides.

The music and movie industries offer another important perspective on
software, covered in chapter 7. The debate over what constitutes fair use
of media is not one that I touch upon here, but that debate has spilled
over into important issues of software protection. If a music label invents
a special encoding for its music and distributes a program with which to
play it, do users have the right to write their own software that can
decode the music without the permission of the label? The current
answer, according to the U.S. Congress, is that users do not have such a
right. But since encryption and copy protection are so hard to define and
delimit, this rule has turned into the broadest possible form of IP protec-
tion: once a software author has claimed that his or her work implements
a copy protection scheme, that author can claim exclusive ownership of
the right to produce any of a variety of add-ons, extensions, and acces-
sories. No software is an island, entire of itself, so the ability to block
competitors from producing interoperable software is an immense power
that can be readily abused. Such abuses have already appeared in the
courts, creating still more IP headaches for anyone who writes software,
be it for music, electronic books, or garage-door openers.

Chapter 8 considers software as a literary work—Hamlet with num-
bers. As already mentioned, the process of writing a play and the process

INTRODUCTION 11

of writing a program are obviously very different, and IP rules need to
take that into account. For those who have read this far and still believe
that patents are appropriate, I offer suggestions on how patents can
accommodate inventions-in-words. The natural protection for words on
paper is copyright, but this too is not quite a perfect fit, so I also discuss
how copyright for software could be more effectively implemented.

Chapter 9 collects and summarizes the policy recommendations from
all of these perspectives.

CHAPTER TWO

Optimal
Breadth

The foremost economic question surrounding patents and
copyright is how much territory they should cover. Part of the answer lies
in the function that patents serve, which is to enable the inventor to
recoup profits from up-front investment in research. One person or com-
pany may invest the money to develop and test a new method or machine,
but once research results are made public, competitors can use them with
a significantly smaller investment. With multiple competitors providing
identical products, the unit price for the product will fall until it is near
the cost of producing that unit—meaning the immediate cost that com-
petitors must spend, excluding the research costs the original inventor
had invested.

If a company expects such a story to unfold from investing in and pro-
ducing a new invention, it will never make the initial investment in
research. By giving inventors a limited right to exclude others from copy-
ing their innovations, a patent makes it possible for them to keep prices
on their invention high enough to hopefully recoup their investment
costs.

The Basics

Generally, a patent may be awarded for any novel, useful, and nonobvi-
ous machine, process, or composition of matter. It grants the holder the

12

OPTIMAL BREADTH 13

right to exclude other people from manufacturing the patented object or
using the patented process for twenty years after the patent has been
applied for.! If another party should do so, the patent-holder may sue.
The suit will begin in the U.S. district courts, which hear a broad range of
cases involving federal law. Appeals past the district courts would be
heard by the Court of Appeals for the Federal Circuit, which hears a nar-
rower range of cases. Further appeals go to the U.S. Supreme Court, but
it is generally not interested in cases on subjects as bureaucratic as patent
law. Another option for the defendant is to have the U.S. Patent and
Trademark Office (USPTO) re-review the patent, but many restrictions
apply to such reviews, and few patents are completely overturned. If the
review is granted, some of the claims may be eliminated or narrowed.

What a Patent Covers

The main part of a patent consists of a detailed list of claims, each for
a very specific feature or piece of the mechanism. One patent usually
includes dozens or even hundreds of claims, which add up to describe the
entire invention. Typically, applicants’ claims are as broad as possible,
covering as many means of carrying out a step and as many of its appli-
cations as possible. After a search of prior works, examiners may propose
that the claim be made narrower (or eliminated entirely) if they find it is
not inventive as described. Through such negotiations, a patent is finally
assembled. The item-by-item review is time-consuming, especially since
examiners work on an innocent-until-proven-guilty basis: they may not
reject a claim unless they have positive proof that it has already been
made by another party.?

Some people believe that a patent covers a new idea, but this is not the
case: it covers only the physical machine, composition, or process imple-
menting that new idea, as described by the detailed claims. In practice the
patent covers a mix of idea and implementation, since the two are never
truly separable.

Independent invention is not a defense against claims of patent
infringement. If a new inventor’s idea and designs are along the same lines
as those of a prior patent-holder, then the new inventor is still infringing
on the patent, even if the two inventors have never communicated. Once

1. 35 US.C. §154 (a)(2).

2. Formally, there are more requirements: the enablement requirement, the utility
requirement, the nonobviousness requirement. However, over the course of the book the
reader will see that these other requirements have been weakened to the point of irrelevance.

14 OPTIMAL BREADTH

the patent is in the public record, all inventors in the relevant field are pre-
sumed to be familiar with the work.

Since the designs do not have to be identical and the idea itself is not
patented, their details must be compared to determine whether a new
implementation is an infringement of the prior one. Inventors therefore
have some leeway to “invent around” a prior invention and implement
the same idea in a new way. This is not a problem for the issue of foster-
ing innovation at the head of this chapter: if two producers are produc-
ing goods that are not identical, then unit prices will not necessarily be
driven to unit costs, and all may be able to make a reasonable profit. For
example, one design may be better suited to industrial applications and
the other to consumer use.

The Basics of Copyright

The intent of copyright is the same as for patents: authors must invest
a great deal up front and hence need some sort of protection if they are
to recoup that investment. Copyright is paperwork-free: a few words
written on the proverbial cocktail napkin are automatically copyrighted.
Copyright is far easier to obtain than a patent because it is much less
powerful in a key respect: independent authorship is a valid defense
against claims of copyright infringement. If two authors happen to write
in a style so similar that one author’s work seems to be a copy of the
other, there is no violation of copyright—unless it can be proved that the
second author had seen the first author’s work and directly imitated it.

A copyright covers only the expression of an idea, never the idea itself.
However, the expression of an idea is open to broad interpretation beyond
strict plagiarism. It includes derivative works, which may be broadly or
narrowly defined. For example, a recognizable character such as Darth
Vader or Jerry Seinfeld may have copyright protection, even if the imita-
tor is depicted in a different context and never directly quotes the original.

Topps, a chewing gum and trading card company, put out a line of
cards named the Garbage Pail Kids that made fun of the Cabbage Patch
Kids line of dolls. The names seemed similar, and the Garbage Pail Kids
had the same dimpled cheeks and cabbage-sized heads as the dolls. The
courts ruled that this passing resemblance and vaguely similar name were
enough to constitute copyright infringement.’

3. Original Appalachian Artworks, Inc. v. Topps Chewing Gum, Inc., 642 F. Supp. 1031
(N.D. Ga. 1986).

OPTIMAL BREADTH 15

Figure 2-1. Copyright Infringement Does Not Have to Be Literal

I NE.V IFCE)PLKER MQS@Y%HUDSQN

T TR

A similar case involved Saul Steinberg’s 1976 cover cartoon for the
New Yorker depicting the New Yorker’s view of the world (see figure 2-1).
It showed four Manhattan blocks in great detail, the rest of the United
States as a flat plane interrupted by a few cities and protruding rocks, the
Pacific Ocean as a narrow band, and the rest of the world as a mere strip
on the horizon. The one-sheet poster for the film Moscow on the Hudson
consisted of line drawings of the movie’s three main characters beneath a
detailed view of four Manhattan blocks, then a strip labeled “Atlantic
Ocean,” and in the distance a flat plane with a few European cities in car-
icature. This is clearly not a literal copy—at the least, one faces West and
the other East—but the court ruled that it nonetheless infringed Steinberg’s
copyright.*

Thus although the U.S. Code stipulates that copyright includes only
the expression of an idea and not the idea itself, the courts do not follow
a strictly literal interpretation when deciding where to draw the line. By
allowing a broader protection, they leave open the same question as for
patents: what is the economically optimal breadth of protection?

4. Steinberg v. Columbia Pictures Industries, Inc., 663 E. Supp. 706 (S.D.N.Y. 1987).

16 OPTIMAL BREADTH

Maximizing the Size of the Market

For both patents and copyrights, the key economic question is whether
they should cover only one implementation (as in the case of Prozac) or
a broader class (such as selective serotonin reuptake inhibitors). How dif-
ferent must a cartoon be before it is not infringing the copyright of
another?

Patent Length

This discussion concentrates on the optimal breadth of protection for
intellectual property (IP), not the optimal number of years for which pro-
tection should be valid. By contrast, the academic literature concerns
itself more with length of protection, if only because length can be easily
defined and measured, whereas there is no metric for breadth.’

Since the software market operates at famously rapid speed, the length
of a patent is effectively infinite. Some propose that patents on software
should expire more quickly than the standard 20 years, perhaps after 2 or
3 years. But even if a patent were to last for a single day after being
granted, the issue would remain because many patent protections are
retroactive to when the patent was first filed. Since a savvy applicant can
keep a patent lingering on USPTO desks for the better part of a decade
(the so-called submarine patent; see chapter 5), the only way to achieve
truly short durations would be to allow some patents to expire before
they are granted. This poses a few practical difficulties, to say the least.

Some argue that software should be covered by copyright instead of
patents, but copyright protection lasts decades longer than for patents. As
demonstrated by the many authors who write poetry in the Perl pro-
gramming language, there is no clear line between expression in code and
artistic expression, so there is no way to write a robust copyright law
that gives code brief protection and prose long protection. Hence I as-
sume that protection on code is effectively infinite and focus on the
breadth of IP protection.®

5. Many theoretical papers also discuss the trade-off between patent length and breadth,
such as Klemperer (1990) and those papers discussed therein.

6. The academic literature, such as Klemperer (1990), is generally in agreement that a
patent of (effectively) infinite duration should be infinitely narrow, proving this via dynamic
optimization for infinitely lived agents. By contrast, my argument in this chapter is based on
maximizing the size of the market. The key assumption linking my argument with the exist-
ing literature is that deadweight loss is a decreasing function of the number of providers.

OPTIMAL BREADTH 17

Balancing Breadth

One may think of the economic goal of a patent as maximizing the
number of people providing a good. (Although I use patent-oriented ter-
minology here, the same analysis holds for copyrights.) This formulation
subsumes the typical “patents foster innovation” story: if zero people
provided an item without a patent, then allowing the item to be patented
would raise the number of providers to one and would be a good thing.
But beyond this, if many people provided the item without patents, then
the patent would be an impediment, lowering the number of providers
from many to one.

Suppose that a company has just invented a new product, expending R
dollars in one-time research costs to develop it, and suppose that the cost
of implementing a production line is I,. Also assume that once the new
product is put out, all the ideas it embodies will be common knowledge.
Now let I, be the cost that a competitor would have to expend to imple-
ment a competing product, having seen how the innovative company did
it, and given that there is no patent on the invention. Let I, be the cost a
competitor would have to expend to implement its product given that the
original innovation is patented. The patent makes copying difficult (that
is, it engenders incomplete appropriability), raising the cost of produc-
tion, so I, > I,,,.7 Economists will be disappointed that the model is so
sparsely specified, but other readers will be relieved that the notation con-
tains only these four variables.

First, notice that I, is usually not infinite: since a patent is for the
implementation of an idea and not the idea itself, others may invent alter-
native implementations and offer competing products that are compara-
ble to but different from the original. If a patent is sufficiently broad,
however, any sort of competing product would be infringing. So to max-
imize the number of producers, I, should be large, but not too large.

It is often the case that R + I, > I, > I,,, meaning that the first company
must exert more time and effort than the competitors, patent or not. This
is the natural course of a market’s development: people learn from each
other, and every day things get easier. In fact, even without R it is some-
times the case that I, > I,. Every market has a first entrant, even though
the first entrant is likely to be trampled by imitators who can make a
cheaper and possibly better product. For example, the first portable MP3

7. Landes and Posner (2003, p. 299).

18 OPTIMAL BREADTH

Figure 2-2. A Good Patent Follows Two Simple Guidelines

The notation:
R: Research costs
I: The inventor’s production costs

o

I,: The imitator’s production costs with no patents

I: The imitator’s production costs with patents
The guidelines:
1. Patents are necessary only when I, is significantly smaller than

R+1,.
2. 1f I, approaches infinity, then the patent is too broad.

player was made by Saehan/Eiger Labs, which was trampled by Dia-
mond’s Rio, which was in turn trampled by Apple’s iPod. Yet all of these
companies fared well.® Patents make sense only when R + I is signifi-
cantly larger than I,,, meaning that the initial entrant expects to be tram-
pled by imitators to such an extent that it will never recoup the expendi-
ture of R. So I,,, may be smaller than R + I, but if it is 00 much smaller,
then no one will invest R without patent protection. Figure 2-2 summa-
rizes the two market-maximizing criteria discussed to this point. They are
already sufficient to evaluate a wide range of patents.

A Good Patent May Raise Competitors’Costs

Historically, as mentioned earlier, patents have been for a machine or
process that implements an idea, not the idea itself. Prozac interfaces with
serotonin receptors in the human brain. Eli Lilly did not have a patent on
that interface, so a dozen other brands have the same interface, imple-
mented with a different drug. Others have implemented competing prod-
ucts that did not violate Prozac’s patent, demonstrating that I, is low
enough that criterion 2 is not violated.

8. Diamond and Apple are better known than Eiger Labs, whose legacy persists in prod-
ucts such as Compagq’s iPaqg MP3 player.

OPTIMAL BREADTH 19

If there were no patent on Prozac’s active molecule, then imitators’
implementation costs would be vanishingly small in relation to the years
of work represented by R. As a first approximation, one may as well set
I, = 0, since Eli Lilly wrote the whole blueprint and now the imitators
have only to execute it. When I, = 0, it is obviously the case that R + I,
>> I, so Eli Lilly would never spend R. By criterion 1, there is a valid
need for a patent.

The Prozac patent is thus in harmony with both criteria and thus fos-
ters competition rather than stifles it. After the patent, competitors must
now spend large quantities on I; it is probably still the case that R + I, >
1,, but the gap is hopefully small enough so that the first entrant will sur-
vive on the market and be willing ex ante to invest R. This is the ideal of
how the patenting scheme would work.

But a Good Patent Does Not Raise Competitors’ Costs to Infinity

Now consider the counterfactual case in which the idea of an SSRI is
the exclusive property of Eli Lilly. Then no other competitor may enter
the market—in effect, the cost of implementation for a competitor has
risen to I, = . Clearly, this is overkill.

In my refrigerator, all the containers have patent numbers. New-
spring’s sealed container (patents 6,056,138 and 6,196,404) is evidently
different from Rubbermaid’s (patents pending), which is different again
from Tupperware’s (including patents 5,974,686 and 6,035,769). If Tup-
perware held a patent on the concept of an airtight container, I would not
have such a clutter in the fridge. Instead, the best it could do was patent
its own implementation of an airtight container, on the basis of its specific
materials and design. Because the USPTO selected the appropriate
breadth of patents, a dozen distinct implementations flourish.

Or imagine a world in which only one company could make portable
music players, and there is only one brand of cellular phone. If Sony or
Qualcomm had sufficiently broad patents, this would be the case; fortu-
nately, their actual patents are for specific implementations of broad
ideas, so competitors can still enter with distinct products.

The goal of the patent-seeker is to obtain as broad a patent as possible.
However, such a broad monopoly violates criterion 2 and is bad for soci-
ety. The social optimum is a patent that is just broad enough to ensure
that I, = R + I, meaning that the patent-seeker is able to successfully
compete and thus has sufficient incentive to invest R.

20 OPTIMAL BREADTH

Figure 2-3. The Banana Protective Device: The Fugitive Fermentation
of an Individual Brain

U.S. Patent Sep. 2, 2003 Sheet 1 of 2 US 6,612,440 Bl
10
20
30 28
11
21
O O
30 o o o
o]
o3 Rt Qs
e oo 14
OOO 5 5 ng
(o eNe) Q O O
22 o 0 0O 0 o 0O 0O 0
Q O C O o 0 0 O 12
O O O 0O o o O C
24 0 ocoo0 00 oo 13
o 0 O O O O 0O G
o 0 QO 0 QO a0 18
OOoO
-] Ls
Oooo
OooO
o s
o8
Q09
o 0 0 [ele)
O G O O o o O 0
30 oo o 0o Cc oo 16
o O o 0o O
29 [e] o G c o0 0 0
o O o O G
26 oo P 30
S 5%
30 o 17 S
O O (o]
ALl S
o O o O
009 000 |
o 25 0

Low Research Cost Patents (R =0)

Many patents (if not most) are what Thomas Jefferson would perhaps
call “the fugitive fermentation of an individual brain,” an example being
the Banana Protective Device, patent 6,612,440 (to David Agulnik, Sep-
tember 2, 2003), pictured in figure 2-3.° I am personally dubious that it

9. See p. 46 for the entire quotation.

OPTIMAL BREADTH 21

took years of research to devise the invention—R approaches zero here.
If free riders take the idea of a banana case and produce their own, Agul-
nik is deprived of the profits not from millions of dollars in research but
from a few minutes’ thought.

As much as the flash of an idea may deserve or merit protection, there
is no economic reason to afford it any protection at all. Since R is zero,
one may rewrite R + I, as just I, and there is every reason to expect that
I, =1,,. That is, it will cost competitors about as much as it cost Agulnik
to produce a banana case. By market-maximizing criterion 1, there is lit-
tle or no justification for a patent: Agulnik and all others can compete in
the marketplace without government intervention.

Another way to approach the patent would be to redefine the inven-
tion: Agulnik did not invent the idea of a banana protective device but the
very specific device pictured in figure 2-3. He may have made hundreds of
attempts to get the size of the air holes just right, to select the optimal cur-
vature of the case, and so on, and those hundreds of experiments may
deserve protection. By this reading, the patent meets the criteria for a
good patent, but it should only be broad enough to protect those details
of implementation that cost Agulnik time and effort.'

An Example in Software

Figure 2-4 shows the essence of patent 6,785,865, assigned to
Microsoft Corporation, for “Discoverability and navigation of hyperlinks
via tabs.” As the patent explains, it is often difficult to determine what
elements on a web page are links, since some links are hidden under pic-
tures or otherwise obscured; the patent solves this problem by allowing
the user to hit the <tab> key to go from one link to another.

Figure 2-4 shows the core of the patent: the detailed textual descrip-
tion provides minimal additional detail. Notably, there is no computer
code to explain how the list of links is maintained, how focus is allo-
cated, and so on."

The idea is that a browser lets the user move through the document
using the <tab> key. Given this idea, anyone could construct the flowchart

10. There are, in fact, competing banana protective devices on the market. The one
described here is sold as the Banana Guard. Meanwhile, the halves of the Banana Bunker
open by sliding along the length of the banana, and therefore the implementation differs
considerably from this patent. See bananaguard.com or bananabunker.com for details.

11. There is some additional detail about how the shape of the link’s outline is deter-
mined when the link is a picture; again, it is not in the form of code, but another flowchart.

22 OPTIMAL BREADTH

Figure 2-4. Tab Browsing Flowchart

U.S. Patent Aug. 31,2004 Sheet 13 of 17 US 6,785,865 B1

BEGIN }

Y

USER REQUEST | _~90
A TAB

Y

LOOK AT NEXT 92
ELEMENTIN |}
ELEMENT LIST

DETERMINE
ACTION BASED
TYPE OF
l ELEMENT

DETERMINE 96
FOCUS e

SHAPE

L

GIVE LINK FOCUS
AND DISPLAY | 98
FOCUS SHAPE

AROUND ANCHOR

Y
RETURN

at the level of detail of figure 2-4. This exercise does not compare with the
amount of labor coding, testing, debugging, and recoding that went into
the invention. The details of implementation analogous to the holes and
curvature of the banana protective device or the chemical formula for
Prozac are nowhere to be found.

If the patent is for the idea instead of the line-by-line implementation,
as in this case, any implementation of the flowchart will infringe the

OPTIMAL BREADTH 23

patent—and it would be difficult to design a browser that did not some-
how do so. Opera, Safari, Mozilla, Firefox, Lynx, Links, Camino, and
any other non-Microsoft browser are likely infringing the patent.'?
Because the wording of the patent is so vague, it fails to meet both crite-
rion 1 (since R for what is written in the patent is zero) and criterion 2
(since it needlessly blocks competitors from producing anything that fol-
lows this very broad flowchart). An appropriate heuristic for the case of
software is that the toil goes into the implementation of the idea, and
hence that the implementation deserves protection, not the broad idea.

12. As well as being a prime example of a patent that is too broad, it also shows how
the search for prior art can fail: Microsoft cited 24 patents and 1 article as prior art, and the
examiner added 4 more articles, but no mention is made of any other software. For exam-
ple, the Lynx browser allowed <tab>-based browsing through text for five years before the
patent was granted and may have served as prior art for many of the patent’s claims. See
chapter 5 for more on the problem of software prior art.

CHAPTER THREE

From Equations
to Software

There is no magic or genius to the process of programming,
just small components built upon larger structures, and then still larger
structures built upon those. Isaac Newton explained that he progressed
by standing on the shoulders of giants, but perhaps a more appropriate
metaphor for software development is that modern computing rests on
the back of a giant turtle, which rests on the back of another turtle, which
rests on another turtle. . . .!

A Summary for Non-Geeks

I have come to realize, over the course of many parties and dates, that
some people do not like hearing about the details of computer program-
ming. For them, I offer this summary of the important points that are rel-
evant to the law and the economics of software patents.

1. No mythology claims that the earth rests on an infinite pile of turtles. A few Native
American stories surmise that North America rests on the back of a giant turtle; and a Hindi
myth explains that the earth rests on an elephant, which rests on a turtle. Dr. Seuss’s Yertle
the Turtle is about a tyrannical turtle king who commands his turtles to form a tower so that
he can survey his kingdom; and there is a joke, often attributed to Stephen Hawking, about
a flat-earther who insists that the earth rests on a turtle, and when asked what the turtle is
standing on, she exclaims, “It’s turtles all the way down!”

24

FROM EQUATIONS TO SOFTWARE 25

State Machines versus Purpose-Built Circuits

When the digital processors in dollar-store calculators, digital clocks,
and microwave ovens leave the factory, they are set up to do only a few
things, which are enabled by burning circuits into the machine’s circuit
board. By contrast, the processors of modern computers are designed to
do a great variety of things if put into different states—that is, repro-
grammed—Dby the user. In computer science terminology, they are state
machines. It is possible to change their state because computers are built
to respond in given ways to sequences of coded instructions known as
programs. There is little if any gray area between the program changing
the state of a computer and the computer itself (the state machine). The
state machine is a device that is burnt into place at the factory; its states
can be reconfigured at will by the user.

A Program Consists of Nothing but Data Structures and Functions

Computer programs are constructed using formal systems of symbols
known as programming languages. The coded instructions that make up
a program break down into data structures and functions. The data struc-
tures are simply a formal means of organizing data. Functions are the
verbs of programming languages, and they translate directly into algo-
rithms. A good data structure allows a program to efficiently process
information internally and make coherent external records of data for
future use. For example, word processor documents are complex data
structures that encode all the information needed to assemble those doc-
uments and transmit them in the form of a stream of ones and zeros to a
hard drive. If another program can understand the data structure, then it
can edit or display the document encoded into the file and interoperate
with the original word processor.

Any Program Can Be Translated into Virtually Any Programming Language

Translating from one language to another is #rivial, and unlike trans-
lating from French to English, say, it can be done exactly.? That is, pro-
gramming languages are not equivalent in the colloquial sense of being
very similar but in the formal mathematical sense, just as (3 X 2) and 6
are equivalent.

2. Italicized technical terms are defined in the glossary at the back of this book.

26 FROM EQUATIONS TO SOFTWARE

A Program Such as a Word Processor or Spreadsheet Defines a Language

Under the hood, the typical word processor or spreadsheet is nothing
but a multitude of functions, each doing a specialized task like calculat-
ing the placement of words on a page or of widgets on the screen. Those
functions also define a specialized language. Although this book does not
cover the graphic design issues connected with user-oriented software,
those parts of such a program that fall under patent law can be trivially
translated into any traditional programming language.

There Is No Distinction between Code and Mathematics

Beyond the fact that most programming languages readily translate
into other such languages, they can also be translated into a method of
writing pure mathematical functions known as the lambda calculus. Run-
ning a program and evaluating its functional equivalent are identical
processes, as demonstrated in 1936 in a set of mathematical results now
known as the Church-Turing thesis.

The three points just outlined indicate a massive equivalence: any func-
tionality of a computer, be it an exotic new programming language or a
word processor, is equivalent to a mathematical expression. Where is the
line between software and mathematics? Mathematicians Alonzo Church
and Alan Turing proved that there is none—in 1936, no less.

Independent Invention Is Common on an Algorithmic Level,
but the Details of Implementation Rarely Match

There are hundreds of proofs of the Pythagorean theorem, but most of
them fall into a few categories—given the problem statement and the tools
available to prove it, even the most creative human brain will follow certain
paths in going from the problem statement to a solution. However, just as
there are hundreds of ways to express an idea in English or any other lan-
guage, there are hundreds of ways to implement an algorithm using any of
the hundreds of programming languages in which it can be expressed. Gen-
erally, if a designer can write a sufficiently detailed explanation of what a
program should do, then it is a trivial process to implement it in computer
code—but writing a good implementation is far from trivial.

Programmers Try to Keep the Interface and Its Implementation Separate

The central principle that makes it possible to write software code eas-
ily is that each component at each level of a program’s structure has an
interface and an implementation. The interface is what the component’s

FROM EQUATIONS TO SOFTWARE 27

user would see: it could be the inputs and outputs to a function, or it
could be what appears on the screen of an application. The implementa-
tion is the hidden inner workings: for a function, this consists of the steps
that turn the input into output, and for an application, it is the functions
that the program calls on at the user’s request. Here is a simple rule of
thumb: protecting the interface will prove to be economically detrimental;
therefore any protection for software should apply to an author’s imple-
mentation. The remainder of this chapter will give a more detailed
overview of the interface-implementation pairs on each level of the struc-
ture, and the legal and economic implications of their design.

The Lowest Level

At its lowest level, the software edifice rests on an electronic foundation:
the transistor, a device that is used to control the flow of electricity in
electronic equipment and that consists of a semiconductor with three
electrodes. Two of these are inputs and one an output. If (and only if)
both inputs receive an electrical charge, then the output will emit a
charge. Historically, there have been other implementations of the same
idea—notably vacuum tubes, which have the same two-in, one-out prop-
erty but require much more power and produce much more heat in the
process. Many considerations of materials science and electronics go into
the production of a good transistor: its inputs have different voltages, its
materials must be the best semiconductors, and the heat it produces can
destroy the transistor if not vented properly—especially if the designer
has found a way to cram a million of them into a square centimeter.

To the logician, the transistor is the electronic equivalent of an AND
gate: both input one and input two must be on (or “true”) in order to have
output (which is then also true), but if either input is false, the output is
false. It is also possible to construct an element in which the output is on
if either input one or input two is on, an arrangement that is naturally
called the OR gate. To illustrate, twist two wires together to form a Y, the
top of the Y being the two inputs. If a current passes along one or the
other, then current will flow out of the bottom of the Y. With enough wire
and transistors and a bit of ingenuity, the electrical equivalent of any log-
ical expression can be constructed by tying together enough transistors.>

3. The astute reader will note that it is impossible to tie together ANDs and ORs to form
a NOT, but a pair of wires and a transistor is still all one needs to make a NOT gate. First,

28 FROM EQUATIONS TO SOFTWARE

Binary notation allows all numbers to be represented by a series of
ones and zeros; for example, three becomes 011 and four becomes 100.
Adding two numbers becomes a series of logic problems: in the decimal
system, 3 + 4 = 7; in the binary system, 011 + 100 = 111; and in logic
(false, true, true) + (true, false, false) = (true, true, true). Since binary
notation turns arithmetic into a logic problem, and the appropriate tan-
gle of transistors can turn a logic problem into an electrical circuit, one
could design a circuit to execute familiar arithmetic calculations.

A few standard circuit elements, sometimes referred to as registers,
appear in every basic textbook on digital circuit design. Among the more
common ones are the INCREMENT register, which will take in a set of
signals representing a number and put out a set of signals representing
that number plus one, and the ADD register, which will take in two
streams of input and put out a stream representing their sum. Think of
these registers as black boxes with a few input wires and a few output
wires. The box could contain a tangle of transistors and resistors that
implement the logic, or it could contain vacuum tubes, but there is no
need to be concerned with such details. All an engineer needs to know in
order to use the black box is what will come out along the output wires
when any given signal is sent down the input wires.

Another standard circuit is the MEMORY register, a feedback loop of
a few transistors. If the loop is set to a true state, it will stay in that state
as long as electrical current is flowing through it. But if it is sent a signal
to switch to a false state, then the feedback loop will switch accordingly
and stay in the false state until another signal is sent to switch back to a
true state.

Electronic components such as video screens and speakers follow a
similar model. They are designed to produce an image, sound, or motion

define one input to the transistor to be the input to the NOT gate. Instead of reading the
output of the transistor, just send it to ground. Now twist together two wires: define one
arm of the Y to be the output for the NOT gate, and tie the other arm to the transistor’s sec-
ond input. Finally, run a constant current into the base of the Y. Now, if the input to the gate
(going into the transistor) is true, then the constant current from the base of the Y will flow
through the transistor to ground, so there will be no current along the gate’s output; the gate
thus outputs false when the input is true. If the gate’s input is false, then no current flows
through the transistor, so all current takes the other route down the Y, to the gate’s output;
the gate thus outputs true when the input is false. Thus, this configuration works as a NOT
gate. Given ANDs, ORs, and NOTs, one can readily construct any logical expression, all of
which can be made using enough transistors and wires.

FROM EQUATIONS TO SOFTWARE 29

when their registers are set to appropriate values.* Thus video and audio
transmission readily translates into exercises in math and logic as well,
which in essence consist of combining simple logic gates to form complex
logic circuits.

These structures can be used to build a computing machine such as the
average dollar-store calculator, which is simply a box of registers. When
the user enters a number, it is placed into a MEMORY register. Then
when the user presses the “square” button, that number is replicated to
another MEMORY register, and the two are sent to a MULTIPLY regis-
ter. Finally, a series of similar registers translates the result into signals to
the calculator’s screen so that the human user can read the output.

This is how the machines of old functioned, before general-purpose
processors became so cheap. An engineer would design a circuit for the
task at hand and then begin soldering together the appropriate physical
components to implement the logic. This is still the cheapest way to con-
struct single-use computers such as microwave ovens or digital watches,
and it is still the best way to produce optimized devices for situations in
which every nanosecond counts. It is in effect a one-step process that
inextricably binds the design of the logic to the design of the machine
itself, which will prove to have implications for the legal discussion in
chapter 4.

Turing’s Machine

The innovation that facilitated the development of the next level of the
edifice was simultaneously described in 1936 by Alonzo Church and Alan
Turing.® Church’s more abstract version is taken up later in the chapter.
Turing’s idea was based on a theoretical calculating machine. The Turing
machine comprises a line of cells of indefinite length known as a tape; an
active element called a head, which can move from cell to cell and can

4. A nice example would be Motorola or TI chip SN74LS248, which takes a binary-
coded decimal input and drives a seven-segment display of the type found on dollar-store
calculators. The data sheet, commonly available online, explicitly lists the logic necessary to
convert electrical signals into human-readable numbers.

5. For a readable account of their work, see Davis (2000). The original sources, regard-
ing the solution of the Entscheidungsproblem (how one can determine whether a statement
is true) are Turing (1936) and Church (1936a, 1936b), but the many equivalences among
their work and the computers of today were derived over subsequent decades.

30 FROM EQUATIONS TO SOFTWARE

read and change the data in the cell underneath it, and which possesses a
property called a state; and a table of states, which give instructions for
how the head should change a cell and its own state. Such instructions
may take the following form: “State one: if you read a one, let it be, go
right, and stay in state one. If you read a zero, change it to a one, go right,
and change to state two.” The innovative idea in all of this is that the data
on the tape can change the state, thereby altering the instructions the
machine will carry out. As already mentioned, machines of this kind are
sometimes called state machines.

Turing initially presented only a mathematical description of such a
machine and the theory behind it but eventually had a chance to build
one from electric parts (see page 122). Implementing it would be fairly
easy using the parts just mentioned: build a sequence of MEMORY reg-
isters, and have available one of each of the other registers (ADD,
INCREMENT, and so on). Now the rules specifying the action to take in
each state need to be written. For example, if the head reads a
PROGRAM register set to 0, then

—send the contents of register X to the INCREMENT register,

—send the incremented result back to register X,

—move the head to the next PROGRAM register.

If the head reads a PROGRAM register set to 1, then:

—send the contents of registers X and OUT to the ADD register,

—send the result back to register OUT,

—move the head to the next PROGRAM register.

In short, if the head reads 0, increment X, and if it reads 1, add X to OUT.
Building a machine to execute these specific operations may be difficult, but
it is still just a matter of assembling a tangle of AND, OR, and NOT gates.

Once the machine is set up to perform actions contingent on register
settings, then making it perform new calculations is simply a matter of
resetting the PROGRAM registers to new values. To add two to a num-
ber, begin with the number in the X register, 0 in the OUT register, and
001 in the PROGRAM registers. The head first reads 0, so the machine
increments the X register by 1; it then reads 0 again, so the machine again
increments the X register by 1; it then reads 1, so the machine adds X to
the OUT register.

Suppose the machine’s operator finds an error in her notes, and needs
2x rather than 2 + x. All she has to do is reset the PROGRAM registers
to read 11 instead of 001; the reader may verify that this switch will leave

FROM EQUATIONS TO SOFTWARE 31

the appropriate value in the OUT register. The fix required no new circuit
diagrams and no resoldering.

And so programming is born. The computer designer writes the rules
that translate from numbers in the registers to actions, such as “0 means
increment register X, while 1 means add register X to register OUT.” The
machine is a large black box whose interface is a list of commands and
whose implementation is a breadboard with a mess of vacuum tubes or
transistors, cables everywhere, and a slight smell of burning. Even a math-
ematician who knows nothing of electrical design can work the machine
by setting the memory registers appropriately, letting the machine execute
its implementation, and reading the output registers after it is done.

This setup extricates a portion of the design of the logic from the design
of the machine itself. The designer of the state machine still needs to solder
together transistors in the right sequence for the machine to read the assem-
bly language, but further operational instructions can be implemented by
others. As explained in later chapters, the difference between this two-step
process and the one-step process for implementing a purpose-specific com-
puter allows for important legal and economic distinctions.

Modern machines work exactly like this. They have a vast array of
memory registers and of specialized registers to execute certain opera-
tions. These registers are selected and built by the chip manufacturer, who
patents everything as a physical device. The implementation is a physical
assemblage of transistors, and the interface is a set of numbers (well, elec-
trical signals representing numbers) that programs send to the hardware.
This interface is known as the machine code or assembly language.5

Figure 3-1 gives some more sample translations. Although the com-
puter can understand only two commands (0 = increment and 1 = add),
it is capable of a modest amount of arithmetic. In fact, this language is
already complex enough that some expressions in traditional math nota-
tion can be expressed in multiple ways. Both the program 1001 and the
program 011 will leave 2X + 2 in the OUT register.”

6. Machine code is purely hexadecimal numbers, and assembly allows pseudo-English
mnemonics. The first program above in machine code would read 001, while in assembly it
would be INCR, INCR, ADD. There is a nearly one-to-one correspondence between
machine symbols and assembly symbols, so for the sake of the discussion here, I take them
as equivalent.

7. This is related to the fact that traditional math notation has its own multiplicity of
expressions: 2X + 2 and 2(X + 1) mean the same thing.

32 FROM EQUATIONS TO SOFTWARE

Figure 3-1. An Assembly Language and a Symbol Table

The language Some translations (a symbol table)

0 = Increment register X x+1 01
1 = Add register X to OUT x +2 001
x+3 0001

2x 11
3x 111
2x + 1 101

2x + 2 1001 011
2x + 3 10001 0101
2x + 4 100001 0011

Also notice the shift in terminology: this stream of ones and zeros
constitutes a language in the standard dictionary sense of the word.®
Children are taught the language of arithmetic in grade school just as
they are taught the more traditional languages and thus know that X + 1
should be read as “take X, increment it, and make a note of the out-
come.” But they could just as easily be taught to read 01 the same way—
the symbols have meaning even without a language-specific machine to
execute the instructions. It just so happens that this language can be
“understood” or processed by an appropriately designed machine, in
that it corresponds to electrical impulses, which correspond to a se-
quence of register operations.

This is also the point at which the art of construction slips from engi-
neering to mathematics. Building a machine with all of these registers is a
physical process requiring a knowledge of material science, electronics,
fans, solder, and logic. Using the registers requires only a knowledge of
logic. The distinction will become important later: as is fairly evident, a
machine that implements a language is patentable subject matter. But is
the language itself patentable? Are its uses?

8. Most dictionaries provide half a dozen definitions of language, one of which is typi-
cally “that which a computer can interpret,” but the computer language already fits more
conventional definitions as well. See the Oxford English Dictionary: “In generalized sense:
Words and the methods of combining them for the expression of thought”; and Merriam-
Webster: “A systematic means of communicating ideas or feelings by the use of conven-
tionalized signs, sounds, gestures, or marks having understood meanings.”

FROM EQUATIONS TO SOFTWARE 33

Languages

Writing a word processor program via ADD and INCREMENT registers
is clearly a task beyond human ability. Programmers thus developed pro-
gramming languages more akin to standard human languages. Instead of
using a human-illegible address like 0x80aa4£8 to refer to a particular
register, the programming language uses a word string such as my_
mothers_birthday. This is just a more convenient way of saying the
same thing. A symbol table is needed to identify equivalent forms, so
when the computer encounters the expression my_mothers_birthday,
it will check the symbol table to see that this symbol means register
0x80aadf8.

Programs are available to write this symbol table, known as a compiler
or an interpreter. They will also do the same translations with more com-
plex expressions; for example, they will convert

if (my_mothers_birthday == today)
printf (“*Send your mother a card!”);

into the stream of instructions that the computer will need to execute the
actions described: find the registers holding the two dates, move them to a
register for comparison, return the result and move on to the other instruc-
tions if the result is true, and so on. In the symbol table in figure 3-1, the
left column shows human-oriented symbols, and the right columns trans-
late them to machine-oriented ones.

Turing Completeness

In 1972 two programmers at Bell Labs wrote a language named C to
implement the scheme just described—that is, to create a language that
humans could work with but that would not be too difficult to translate
into a computer’s assembly language.” Now when somebody invents new
hardware whose interface is a new assembly language, all one has to do
is write instructions for the compiler to translate C’s semantics and key-
words into the new assembly language. That done, all C programs can be
run on the new computer without modification: just send the particular

9. C is so named because it is the successor to the B programming language. Alas, there
was no language named A; B was the successor to BCPL (Basic Combined Programming
Language), which was the successor to the CPL (Combined Programming Language). Even
the foundations of computing are based on other foundations.

34 FROM EQUATIONS TO SOFTWARE

C code to the new compiler, which will translate it into the right machine
code to send electrons to the right places on this new hardware.'

Today virtually everything with a microprocessor has an associated C
compiler, and C thus acts as the gateway between humans and machines.
Just as transistors were left behind once assembly code was in place, assem-
bly can now be left behind in favor of more human-readable languages.

But even C contains frequent references to memory addresses that many
humans find confusing. It would be better to invent a language based on
the specific needs and abilities of users and then find a way to get the com-
puter to parse and execute instructions written in the human-oriented lan-
guage. Doing this is a favorite pastime of the computer scientist. For exam-
ple, as of September 27, 2005, the website www.99-bottles-of-beer.net
gave a listing of 807 programs to print a certain drinking song, covering
715 programming languages. C helps with this: there is no need to write a
compiler that converts the programming language du jour to assembly
code—just write a translator to convert the new language to C, and let C’s
compiler do the lower-level conversion. No assembly required.

Some things are easier to say in some languages than others, and the
language a programmer chooses to use will have a definite effect on the
end result. The menagerie of languages subdivides into species of special-
ization, such as shells, which are languages well-suited to navigating
among files and running programs (ash, bash, csh, ksh, zsh); languages
with many features for parsing text and spitting out more text (awk, sed,
Perl); and languages with features for statistical analysis (SAS, Stata,
SPSS, S-PLUS, SST, GAUSS, GAMS, GRETL, MatLab, Minitab, Limdep,
Octave, R, RATS). Individual categories clearly offer a choice of many
languages, and it is never obvious which is best for a given task. Even
before writing a single line of code, the programmer has many paths to
choose from.

Having such an abundance of languages is liberating. Although not
many people can be chemists, since they would need a lab full of equip-
ment and years of specialized learning to carry out the work, anybody
who puts his or her mind to it can write a novel. Word processors and
typewriters are everywhere, and no specialized training is required beyond
the ability to construct complete sentences. This does not mean that just

10. This is theoretically how it should work, but in practice, not all compilers agree on
the details of the language, so porting code from a C compiler for one processor to a C com-
piler for another processor is often compared unfavorably to pulling teeth.

FROM EQUATIONS TO SOFTWARE 35

anybody can write a good novel, but the chance to try is available to all.
Computer science gives the impression of being more like chemistry, an
activity for the mathy crowd and the initiated, but since programming lan-
guages are so abundant and there is one designed for any given task and
any given level of experience with computers, programming is actually
more like novel writing: anybody who wants to give it a shot can do so.

The diversity of languages, with their specializations and idiosyn-
crasies, help a diverse range of people write programs. Mathematically
speaking, however, computer languages are not at all diverse, since
almost all are exactly equivalent to Turing’s simple tape machine.!* For-
mally, this equivalence comes from:

Theorem 1: The Church-Turing Thesis
All computable operations can be evaluated by a Turing machine.

The exact meaning of computable is a technical matter that I will not
delve into here; roughly, it means “anything a computer could possibly
do.” The Church-Turing thesis states that any computer program, written
in any language, can be rewritten as a Turing machine. Hence given two
languages like C and Perl, if (C = a Turing machine) and (Perl = a Turing
machine), then it does indeed follow that (C = Perl). That is, any program
written in one language can be translated to any other. In the terminology
of mathematicians, making the translation from one Turing complete lan-
guage to another is frivial—it may take Herculean effort, but it is an
entirely mechanical exercise. All languages that are equivalent to Turing’s
specification are said to be Turing complete.

Turing completeness is a surprisingly low bar. Many hand calculators
can understand a Turing complete language. PDF (Portable Document
Format), in which many documents on the Internet are available, is itself
a Turing complete language. Word processors such as Microsoft Word or
Sun’s StarOffice typically include their own Turing complete language.

Church’s contribution to the Church-Turing thesis was a means of
writing equations, known as the lambda calculus, which is equivalent to
Turing’s tape machine. That is, he discovered a method of pure mathe-
matical expression that has been shown to be Turing complete. Programs
in C, Perl, and the others mentioned earlier are therefore equivalent to a
system of lambda calculus equations: it may be a laborious exercise, but

11. A few specialized languages—such as the C preprocessor, sed, and most markup
languages—do not bother to be Turing complete.

36 FROM EQUATIONS TO SOFTWARE

one could construct a symbol table with Perl expressions on the left and
equations in the lambda calculus on the right.'? This point will prove to
be important in a legal context, when courts try to draw a line between
pure mathematics and software. Since any program in any Turing com-
plete programming language is identical to a system of equations in the
lambda calculus, the courts will be unable to draw such a line.

The Nouns and Verbs of a Language

To reiterate, a programming language is a means of communicating in-
structions to a computer. These instructions are formal rules that make it
possible to specify what data a computer will act upon and what actions
to take under various conditions. The data and data structures acted
upon can be considered the nouns of the language and the functions the
verbs.

Data Structures

Data structures are simply a list of small pieces of data amalgamated
to describe something complex. A standard structure for representing an
individual, for example, might contain slots for the person’s name, age,
and social security number:

struct personf{

char * name;

int age;

long int social_security_number;
struct person * next; //(See below.)

}

Designing a data structure to describe one person is easy, but doing so
for hundreds of people produces new difficulties. A few solutions to the
problem are suggested by the way a deli handles a crowd of customers.
One is to have everyone stand in line, so that the people physically repre-
sent the conceptual order in which they will be served. Alternatively, if

12. Barring some details, here is the symbol table converting the “0 = increment, 1 =
add” language to the lambda calculus:

0 (Axx+1)X
1 (AxNyx+y) XOUTL

FROM EQUATIONS TO SOFTWARE 37

Adam knows Beth comes after him, and Beth knows that Carl comes
after her, then there is no need for them to actually stand in line. Beth
could wander off to the bread aisle as long as Adam comes and taps her
when he is done.

Returning to the hard drive, the first, linear method of organizing low-
level data into high-level structures is known as an array. It is easy to
implement, although problems can arise, particularly when the space set
aside for the line is too small to hold the number of people who arrive.
The second method is a linked list. Notice the next entry in the person
structure above: this is where Adam would keep a pointer to Beth and
Beth would keep a pointer to Carl.

The data on computer memory with an array look very different from
those on a drive with a linked list. The person structure is 16 bytes long
on the typical personal computer, so an array of a million persons
would be a single 16,000,000-byte block somewhere in memory. The
linked list could have persons scattered all over the computer’s mem-
ory—maybe even on different computers entirely. Provided the pointers
are all correctly maintained, the even-numbered structures could be on a
computer in Delaware and the odd-numbered ones in Utah.

Or, one can give up on the idea of a line entirely, and have each person
point to two or three successors, producing a tree structure with one root
person, who points to two successors, next_left and next_right,
who each point to two successors of their own, and so on. There are
dozens of ways to grow and prune trees as more people come along, the
relative merits of which are the subject of many a Ph.D. dissertation in
computer science. As noted in chapter 4, some argue that since concepts
such as sorting rules are used to shunt physical objects, be they people or
magnetic pulses, they can be patented.

A word processor’s documents provide another example of a data
structure. Like the persons in the structure examined earlier, a document
is a representation in the computer’s memory of a certain aggregation of
data (in this case, a paper or a letter). The data structure of a word proces-
sor’s documents typically includes fields for the name of the author, the
date of creation, and other characteristics, along with a list of all of the
text in the document; the machine dumps this structure to the hard drive
when the document is saved. Some programs make no distinction between
the data structure saved to the hard drive and the data structure that the
program uses when editing, whereas others have a different format on
disk. The latest trend has been to use the human-readable extensible

38 FROM EQUATIONS TO SOFTWARE

markup language (XML) to format the data written to a file. Regardless of
the format, the files saved by a computer are just another data structure,
albeit one that continues to exist after the program closes, and that can be
e-mailed, archived, and carried from computer to computer.

Suppose that an especially fastidious programmer wants to write a
database program that will pull out the names of people who owe him
money and will prepare nicely formatted letters to this effect in Microsoft
Word. The programmer would have to know Word’s document data
structure precisely in order to write something that Word would under-
stand to be a set of business letters. The file format is thus a part of the
interface between the program and other software that programmers
need to interact with Word in productive ways. Microsoft, hoping to
retain some control of what programs could interface with its word
processor, kept the file format a badly guarded secret.

Indeed, every document saved provided a clue to the format, so engi-
neers working for competitors were able to work backwards to deter-
mine what Word was doing. In response, Microsoft kept changing the file
format. Patents would solve this pesky problem for Microsoft: if the com-
pany could patent the Word document structure, and a competitor
learned the format and wrote a program that interoperates with it, then
rather than tweaking the format again, Microsoft could simply sue the
competitor. Microsoft has applied for a patent for its Word document
format in the United States and the European Union.'? Figure 3-2 shows
the claimed system for reading its XML format—the text gives minimal
elaboration beyond this. Clearly, any word processor that can read
Microsoft’s claimed document format would be covered. The issue is dis-
cussed further in chapter 7.

A data structure can be nontrivial, reaching into the farthest depths of
pure computer science research. But in the end, it is a method of organiz-
ing data—a sorting scheme and nothing more. U.S. patent guidelines dis-
allow patents on data structures, unless they are written onto a computer-
readable medium.' This would encompass any data structure with an
appropriately worded patent application. Outside of patents, there are

13. U.S. patent application 20040210818, “Word-processing document stored in a sin-
gle XML file that may be manipulated by applications that understand XML”; European
patent application 03009719.0, available as EP publication EP 1 376 387 A2.

14. MPEP 2106 IV B 1 (a).

FROM EQUATIONS TO SOFTWARE 39

Figure 3-2. Microsoft’s Patent Application for Programs That Read Word Documents:
Claims 17, 18, and 19

{ START)

610
" PARSE DOCUMENT

!

615 INTERPRET
T
DOCUMENT

620 625
A\

DisPLAY DOCUMENT? DISPLAY DOCUMENT

YES

635
~"1 MOoDIFY DOCUMENT

MODIFY DOCUMENT?
Yes | ACCORDING TO XSD

No

END

40 FROM EQUATIONS TO SOFTWARE

two other means by which the author of a data structure may claim
exclusive rights to its use, also discussed in chapter 7.

Functions

The verbs, or functions, of programming languages are lists of instruc-
tions in a neat black box. Like the black boxes above, it is described by a
list of items that must be put into the box, a statement of what the box
will spit out, and a list of steps that the machine will take to go from
inputs to output. A function to find somebody in a linked list is shown in
figure 3-3.

This example shows how functions can also be broken down into an
implementation and an interface. To modify the function in figure 3-3,
one would need to have the implementation in hand, but a user who only
wanted to use the function in other matters would need only the interface,
which is summarized in the top lines:

struct person * find_person (char *name_sought) ;
/* Find the person in the list whose name matches
name_sought */

This indicates that if a programmer calls £ind_person (“Steve”), the
function will return the person structure representing Steve.

The true joy of the function system is that once a black box like
find_person is working and sealed off, it can be used to build bigger,
more complex black boxes. That is, given the interface, functions at a
higher level can call other functions at a lower level.

Suppose that a coder needs to print the weight/height ratio of everyone
on a list. Here are the ingredients required to complete this task: a func-
tion to look up the height and weight assigned to a name, a function to
calculate the ratio, and a function to print the results. Each of these func-
tions is small enough that it would be trivial to write them using any com-
mon programming language. It would also be trivial to chain them
together into a function that reads the list and prints the weight/height
ratios.

The result is not unlike a Rube Goldberg machine: the main function
calls the listing function, which calls the search function, which calls the
step-through-the-list function, which may call who-knows-what inter-
nally, and those internals will send electrons to certain registers on the
computer’s processor. At the end of that entire procedure, the ratio-
calculator function starts, calling up its own tower of subfunctions; and

FROM EQUATIONS TO SOFTWARE 41

Figure 3-3. One Doesn't Need to Understand the Internals
of a Black Box to Use It

struct person *find_person(char *name_sought) {

/* find the person in the list whose name matches name_sought */

struct person *tr=first_person; //start at the list’s head

while (strcmp (tr->name, name_sought)) //If tr’s name doesn’t match
tr = tr->next; //move on to the next name.

return tr; //If it does match, return tr.

finally the print function begins another stack of instructions. As impos-
sible as it may be to trace through the whole system, each part, on its own
scale, is easy to write and understand.

Typically, functions that are useful for a given purpose are bundled
into function libraries.”> For example, a linked list library would include
functions to initialize a list, add and delete nodes, and search for entries.
Given this bundle of functions and an interface explaining their use, the
programmer need not spend a moment thinking about how the list is
implemented, whether pointers are valid, and so on. Having pulled data
from the list, the functions in a font library will render it on the screen in
a pleasing way, without requiring the programmer to know anything
about kerning or rasterization. On the input side, a mouse pointer library
can interpret the user’s button clicks, assuming the programmer has
found a library to draw buttons on the screen.

To write a word processor or spreadsheet, the programmer now only
needs to find the right toolboxes and then chain the tools together to pro-
duce the final product. As with the lower-level tasks, the process is both
trivial to do and very difficult to do well.

Again, those who need to draw from these libraries in their own work
will have no interest in the details of implementation, so the implementa-
tion is typically hidden. The most common means of hiding it is to con-
vert the file containing the human-readable source code to object code

15. Most libraries declare a number of structures on which the functions operate. Nev-
ertheless, the common custom is to refer to these aggregates of predefined nouns and verbs
as function libraries. In some schools of programming, the functions are bound inside data
structures, in which case the bundle is called an object library.

42 FROM EQUATIONS TO SOFTWARE

(the stream of hexademical machine language that the compiler spits out)
and leave the interface in the original pseudo-English programming lan-
guage. This setup is fine for programmers who will use the function
because cognitive effort is limited, so just knowing how to interface with
the function is exactly as much as the average programmer cares to know.

From a legal perspective, this is a delicate split. The designer of the
library may not want others copying his or her functions, but the imple-
mentation has to be public and is a strong hint as to the internals of the
black box. The story of software intellectual property is filled with peo-
ple who run across a new interface to a new black box and then build a
black box to work just like the original. Whether they have a right to do
so is one of the key questions explored in this book.

What about the web browsers, word processors, and other everyday
programs? They are simply function libraries. Like the other equivalen-
cies in this chapter, this is not a metaphorical one: each program includes
a single function named main that auto-executes when the program is
started; that function calls a function to render a window on the screen,
and a function to draw toolbars, and a function to wait for user input,
and a thousand other functions to implement the interface users are
familiar with. Users then ask the program to call more functions; for
example, a Microsoft Word user may click on the File menu and then the
Save item, or may directly call Word’s ActiveDocument .Save func-
tion. Apart from the fact that a function named main will be automati-
cally called when the program starts, the word processing program’s
internals are exactly like any other function library.

By now, the programmer will be awash in equivalent means of getting
the computer to shunt its electrons. Commands can be issued in C, Perl,
FORTRAN, or Lisp, and for any one language there are infinite ways to
write a single function. Or if one is lazy, one can search for a specific
function from existing function libraries and then write a program to call
the function, by a typed command or a mouse-click or by calling it auto-
matically when the program starts. The function could use any of a vast
array (or a vast list, or a vast tree) of data structures for its internal
bookkeeping.

Alternatively, the story can be cast in terms of symbol tables defining a
language: since a function call expands to the function’s internals, one
could write a symbol table with the call on the left and the expansion on
the right. One such table already in existence contains a word processor’s
interface on the left and VisualBasic code on the right; another has

FROM EQUATIONS TO SOFTWARE 43

VisualBasic code on the left and C language on the right; yet another, C
on the left and equations in the lambda calculus on the right. By chaining
all these symbol tables together, one would be able to express the word
processor as the pure mathematical algorithm it embodies.

Given a computable task, any two competent programmers could
write a program to perform the task. The process is trivial: if the task is
too difficult, break it down into smaller parts, write those subfunctions,
and when enough subfunctions are completed, the main function will be
easy. In view of the astounding number of choices available in such an
exercise, the two programmers’ solutions could be vastly different. One
might be more appropriate for large data sets, the other for small sets; one
might have a point-and-click interface and the other a command-line
interface. The find_person function in figure 3-2 is a valid means of
writing such a function, but it will crash if the list is empty or the name is
not found; one programmer may be careful to consider these contingen-
cies and the other may miss a detail.

At the same time, the two solutions are reasonably likely to have much
in common. Run the first programmer’s FORTRAN code through an
automatic translator like £2¢, and it may wind up looking very much like
the second programmer’s C code. An appropriately abstract flowchart
representation of the two solutions may be entirely identical.

The stage is now set for the battles over intellectual property. There is
abundant room for independent creativity and solving problems in new
ways, but at the right level of abstraction, all of these unique methods
may wash into the same flowchart, which is merely another representa-
tion of an equation. The layers of a program outnumber those of even the
thickest onions. Hence the fundamental economic question about soft-
ware patents—how broad should their scope be?>—could potentially be
answered by setting intellectual property protections at any of a number
of levels, such as the flowchart level, the source code level, or the level of
the physical state machine. Chapter 4 looks at judicial opinion on this
question.

CHAPTER FOUR

Patenting
Math

Imagine a continuous line of inventions, with physical
machines built from transistors and diodes at one end and pure mathe-
matics at the other end. Any given piece of software falls somewhere
along this spectrum. The line between the patentable and unpatentable
items along this continuum should meet three basic criteria: physical
machines should be patentable subject matter, pure mathematics should
not, and whatever distinction is made between the two categories should
be clear and unambiguous.

Software may not fit the U.S. Code’s definition of patentable subject
matter for two main reasons. The first is that software is math, and it is
universally agreed that pure mathematics cannot be patented. The second
is that software has no physical manifestation beyond symbols on paper
or bits on a hard drive, whereas it is generally assumed that patents apply
to the manipulation of physical objects. In its first rulings on the sub-
ject—Gottschalk v. Benson (1972) and Parker v. Flook (1978)—the U.S.
Supreme Court endorsed both arguments, thus ruling that the patentabil-
ity line should be drawn at physical machines only.

The turning point for the physical manifestation question came in
Diamond v. Diebr (1981), a case about a rubber-curing machine with a
significant amount of software. The Supreme Court ruled that this inven-
tion was indeed patentable because of its physical manifestation—the
patentability line was moved to inventions with a physical component of

44

PATENTING MATH 45

any kind. In the wake of this decision, the number of software patent
applications to the U.S. Patent and Trademark Office (USPTO) using
some sort of physical terminology increased: instead of claiming “a
method to calculate,” applicants claimed “a general-purpose computer
on which is programmed a method to calculate.” Some of these techni-
cally physical inventions were granted patents, and some were not.

The Court of Appeals for the Federal Circuit (CAFC) convened to clar-
ify the issue and in In re Alappat (1994) ruled that these rewordings made
the invention a physical device. In fact, if the author of the patent was a
little careless and forgot to use the right wording, the patent examiner
was obliged to insert the correct terms.

Then in State Street v. Signature (1998), the CAFC drew the current
line regarding subject matter: a pure mathematical algorithm may not be
patentable, but when it has any useful application, it becomes patentable.
This means that if applicants assign real-world names to the variables in
their equations, they meet the requirement. Even this line has not held,
and many patents do not even bother to disguise their mathematical algo-
rithms with a real-world application.

Loopholes

Many patent advocates believe that mere technicalities about form should
not prevent an applicant from getting a patent. The CAFC, some say, is
stocked with pro-patent judges who wrote these rulings to simply close the
technical loopholes that kept software from the patents it deserves.' The
change of wording may look like a silly trick, but it is intended to shut
down what the judges seemed to feel was a silly objection to begin with.

However, the objection is not simply a technicality. Because it is diffi-
cult or impossible to distinguish between applied and pure math, patent
rules that allow applied math send the law down a slippery slope with the
patenting of abstract mathematical procedures at its end.

The physical manifestation rule, defined appropriately, could be an
excellent way to draw the line. The courts were unable or unwilling to
distinguish between what most would consider a clear physical manifes-
tation (like a rubber-curing machine) and a trivial physical manifestation
(like writing to a hard drive); the ambiguity of the line again led to

1. On the CAFC being stocked with pro-patent judges, see Jaffe and Lerner (2004,
p. 105).

46 PATENTING MATH

patentable math. However, the state machine and the states into which
that machine can be placed are easy to distinguish, and drawing the
patentability line between the two makes machines patentable, leaves
math unpatentable, and depends on objective standards rather than
judgment calls.

Math

All the arguments about fostering innovation still apply to mathematics.
The best theorems are those that a mathematician spends months work-
ing on, tirelessly trying possibilities and dead ends until finally reaching a
conclusion. When other mathematicians see the result properly framed
and explained, they exclaim, “That’s obvious!” and run to their offices to
apply the result as if it were their own. In a field where jobs and funding
are limited, giving mathematicians exclusive domain over the results they
toiled over would provide a valuable incentive for them to work hard.

But it has been unequivocally agreed throughout legislative and judi-
cial history that a mathematical equation is not patentable.? The strictly
economic reasons will appear below—Dbut on top of economic efficiency,
mathematics is seen as a collection of laws of nature, which no person
may have domain over.

Thomas Jefferson, in a classic letter to a colleague, reasoned that
allowing patents on pure ideas makes no sense:

It would be curious then, if an idea, the fugitive fermentation of an
individual brain, could, of natural right, be claimed in exclusive
and stable property. If nature has made any one thing less suscep-
tible than all others of exclusive property, it is the action of the
thinking power called an idea, which an individual may exclusively
possess as long as he keeps it to himself; but the moment it is
divulged, it forces itself into the possession of every one, and the
receiver cannot dispossess himself of it. Its peculiar character, too,
is that no one possesses the less, because every other possesses the
whole of it. He who receives an idea from me, receives instruction
himself without lessening mine; as he who lights his taper at mine,
receives light without darkening me. That ideas should freely
spread from one to another over the globe, for the moral and

2. All five of the major decisions discussed in this chapter cede this fact at some point.

PATENTING MATH 47

mutual instruction of man, and improvement of his condition,
seems to have been peculiarly and benevolently designed by nature,
when she made them, like fire, expansible over all space, without
lessening their density in any point, and like the air in which we
breathe, move, and have our physical being, incapable of confine-
ment or exclusive appropriation.’

Throughout U.S. history, the courts have taken mathematical equations
to be pure ideas and, following Jefferson, concluded that as such they
should not be patentable.

For the Pragmatists

Some readers may not be concerned about the metaphysics of owning
ideas and simply want to know whether letting people patent mathemat-
ical ideas would make for a better or worse economy. For those readers,
I offer a laundry list of reasons for leaving theoretical math in the public
domain. It is worth noting that if we replace “mathematical result” with
“software,” all of the arguments presented in this section would still hold.

Independent invention is very common in both mathematics and com-
puter science. The theorem central to this book is an example: Church
and Turing independently derived the components of what is now called
the Church-Turing thesis in the same year. Because independent invention
is not a defense against patent infringement claims, any such hyphenated
theorem would be a lawsuit in the making. One reason for the frequency
of simultaneous invention is that equipment requirements are almost nil,
so any mathematician in the world could be working on any given prob-
lem right now. The history of mathematics is filled with impoverished
geniuses who lived in countries such as colonial-era India or Spain in the
Middle Ages. Imagine the effect if all such people had to purchase licenses
from patent owners before embarking on a project.

Just as computer science raises an infinite tower of turtles, all mathe-
matics (save for a sliver of basic results) builds upon other mathematics.*
A new result generally consists of a series of preexisting definitions and
the application of a series of past results; an especially long proof may
draw on a dozen or more established theorems, and a complete book on
one topic could use hundreds. Obtaining permission from their many

3. Thomas Jefferson, letter to Isaac MacPherson (August 13, 1813).

4. This is no coincidence: the system of attacking a programming problem—encapsulat-

ing problems into subproblems and reducing problems to other previously solved prob-
lems—is a direct imitation of common methods of proving mathematical theorems.

43 PATENTING MATH

authors would create paralyzing levels of expense and paperwork. (This
is an application of Coase’s theorem, discussed in chapter 5.)

A patent on a good algorithm would surely make a few mathemati-
cians exceptionally wealthy—but where would the money come from?
Most of the profits made by a wealthy theorem-owner would come from
other mathematicians, so patents would not make the industry as a whole
richer or better funded. Money would simply change hands. Of course,
patents used by biologists, chemists, or other applied mathematicians
would feed money into the theoretical math industry, but since the pri-
mary consumers of mathematical theorems are other mathematicians,
this profit would likely be small in relation to the amount of money
churning about within the theoretical math industry itself.

For all of these reasons, patents on mathematical algorithms do not
make economic sense. The theoretical math industry would make some
more money from outside sources, but at the cost of drastic reductions in
efficiency within itself and new barriers to entry in a field famous for its
relatively low entry costs.

Mathematical Utility

The biggest problem with patenting a math procedure is its immense
breadth. Although it is the joy of abstraction that the same equation can
be used to describe hundreds of specific applications, in the context of
patents this becomes a pain: anyone who writes a program that follows
the steps of the algorithm involved would be infringing, regardless of the
genre of the application. The courts have tried to draw a wedge between
the abstract equation and the application, but it has not held because
mathematicians and computer scientists make no distinction.

In a seminal paper on matching sets of actors, two economists, David
Gale and Lloyd S. Shapley, describe what is called the “marriage algo-
rithm.”* The application easiest to envision matches boys to girls, but the
same algorithm can be (and in some places is) used to match students to
schools, or to carry out any other two-sided matching.

Without discussing the algorithm in detail, it is interesting to consider
how the two mathematicians view their own work: “In making the spe-
cial assumptions needed in order to analyze our problem mathematically,

5. Gale and Shapley (1962).

PATENTING MATH 49

we necessarily moved further away from the original college admission
question, and eventually in discussing the marriage problem, we aban-
doned reality altogether and entered the world of mathematical make-
believe.” Of course, Gale and Shapley’s abstract results are then applied
directly to real-world situations like employees matching to employers,
and the language of their paper alternates between abstract and real-
world descriptions.

A Combinatorial Optimization Problem

To give another example, one of the most salient questions in mathe-
matics today is this:

Let C be a set of N points in a space endowed with a metric D(-,").
What is the ordered sequence of C, {c,,c,, .. .,c,} that minimizes

2 D(C,C.,,)

This is commonly known as the traveling salesman problem: what is the
shortest route that will allow a salesman to visit a given set of cities? But
if C is a collection of networked computers and D is the time it takes for
a packet of data to travel from one computer to another, the same sym-
bols become a model of Internet traffic routing. Or if C is a list of air-
ports, this becomes a problem of designing flight schedules. Conse-
quently, giving an airline a patent on the algorithm it uses to calculate the
shortest distance for a flight route could raise the cost of research on
speeding up Internet traffic. Requiring that a patentable item have a spe-
cific purpose does not solve the problem because a creative attorney could
simply draft a patent that covers both cases—or just apply for two
patents.

Some nonmathematicians (such as certain judges) believe mathematics
research consists first of purely abstract work, then of applying the deus
ex machina results in the concrete world. The actual process is a constant
mix of the ethereal and ephemeral.

+D(C,,C))?

Algorithms

Although most of what students learn in algebra class consists simply
of equations, mathematicians normally think in algorithms. For example,
the traveling salesman problem is not really “What is the shortest route
given a set of cities C?” but “If you gave me any set of cities, what steps

50 PATENTING MATH

would I take to derive the shortest route?” The solution would be some
sort of flowchart showing the series of calculations one would need to go
from a set C to an efficient route. As Gale and Shapley point out, it is a
mistake to think mathematicians spend their days writing down systems
of equations:

Our result provides a handy counterexample to some of the stereo-
types which non-mathematicians believe mathematics to be con-
cerned with.

Most mathematicians at one time or another have probably
found themselves in the position of trying to refute the notion that
they are people with “a head for figures,” or that they “know a lot
of formulas.” At such times it may be convenient to have an illus-
tration at hand to show that mathematics need not be concerned
with figures, either numerical or geometrical. For this purpose we
recommend the statement and proof of our [marriage algorithm
results]. The argument is carried out not in mathematical symbols
but in ordinary English; there are no obscure or technical terms.
Knowledge of calculus is not presupposed. In fact, one hardly needs
to know how to count. Yet any mathematician will immediately rec-
ognize the argument as mathematical.®

The mathematics in question is not a system of equations, but a series
of steps to a conclusion—an algorithm. Of course, patents on physical
entities include their share of algorithms, such as patent 6,905,665 for a
“Method for purifying carbon monoxide,” or patent 5,484,378 for a
“Sheet-folding method.” The key difference between these algorithms
and those embodied in software lies in the Church-Turing thesis. There is
a direct, trivial translation between the algorithm in a piece of software
and an equation in the lambda calculus, or between Gale and Shapley’s
marriage algorithm and another lambda calculus equation.” So even those
who ignore Gale and Shapley’s point that mathematics is about algo-
rithms and not equations must still concede that the flowcharts of the
average software patent are merely a more human-readable translation of
a pure mathematical formula. This is true of physical processes only in a

6. Gale and Shapley (1962, p. 15).
7. Also, do not forget the Curry-Howard isomorphism, which states that there is a one-
to-one mapping between programs and deductive mathematical proofs.

PATENTING MATH 51

metaphorical sense and is why the rulings that ushered software patents
into existence do not rely on comparison to process patents.

Gale and Shapley conclude, “What, then, to raise the old question
once more, is mathematics? The answer, it appears, is that any argument
which is carried out with sufficient precision is mathematical.”® It is no
mere coincidence that Gale and Shapley’s definition of mathematics—an
argument carried out with sufficient precision—also works perfectly as a
definition of computer code.

Congress Passes the Buck

When Thomas Jefferson wrote the first Patent Act in 1793, it included a
single sentence explaining what may be patented. The patent law was
revised in 1836, 1870, 1874, and 1952, and over the course of these cen-
turies of revision, the Congress changed only one word of Jefferson’s text,
replacing “art” with “process.”” Here is the current form:

35 U.S.C. §101. — Inventions patentable

Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new and
useful improvement thereof, may obtain a patent therefor, subject to
the conditions and requirements of this title.

The code now includes a bit more detail about who can file (§102),
what is “obvious” in the biotech context (§103), and how inventions dis-
covered or used on U.S. spaceships are subject to U.S. patent law (§105).
But as far as the patentability of software is concerned, it comes under the
succinct law crafted by Jefferson. This may suggest that the law has been
entirely stagnant. In more than 200 years, after revolutionary develop-
ments in, among other things, internal combustion, electricity, and elec-
tronics, Congress managed to change only one word.

But the way the law is interpreted has been dynamically changing. The
courts have modified their interpretations of the law to suit the needs of
the times. For example, when Samuel F. B. Morse filed patent 1,647 for an
“Improvement in the mode of communicating information by signals by

8. Gale and Shapley (1962, p. 15).
9. For a good summary of the history of patent law, see Diamond v. Chakrabarty, 447
U.S. 303 (1980).

52 PATENTING MATH

the application of electro-magnetism,” he claimed not only his telegraph
and eponymous code, but any means of transmitting data via electricity:

Eighth [claim]. I do not propose to limit myself to the specific
machinery or parts of machinery described in the foregoing speci-
fication and claims; the essence of my invention being the use of the
motive power of the electric or galvanic current, which I call elec-
tro-magnetism, however developed for marking or printing intelli-
gible characters, signs, or letters, at any distances, being a new
application of that power of which I claim to be the first inventor
or discoverer.'?

Morse’s claim seems to fit what is now §101 closely enough for the
patent to have been granted, and one could make a fighting argument
that he was the inventor of the concept of telecommunications. But the

Supreme Court saw that a flood of new inventions would be forthcoming
in the field:

For aught that we now know some future inventor, in the onward
march of science, may discover a mode of writing or printing at a
distance by means of the electric or galvanic current, without using
any part of the process or combination set forth in the plaintiff’s
specification. His invention may be less complicated—Iess liable to
get out of order—Iless expensive in construction, and in its opera-
tion. But yet if it is covered by this patent the inventor could not use
it, nor the public have the benefit of it without the permission of this
patentee.!!

Congress did not have to change its law to accommodate the birth of
telecommunications, because the courts interpreted the law to maximize
the potential for progress in the new field. One could argue that court
interpretation of patent law has changed in every generation to accom-
modate changes in technology.

If modern courts maintained such a responsibility toward a fair inter-
pretation of patents in the new technology of software, then Congress
would be justified in its continued steady support of Jefferson’s words.

10. The patent was reissued twice, and the wording here, which the Supreme Court
ruled upon, is from later revisions.
11. O°Reilly v. Morse, 56 U.S. (15 How.) 62 (1853).

PATENTING MATH 53

Since the 1970s, both the Supreme Court and the CAFC have made key
rulings about whether to revisit patent law to accommodate the funda-
mental differences between state machines and states. First, the Supreme
Court, in a trilogy of rulings between 1972 and 1981, showed due cir-
cumspection in the face of a technological revolution. These rulings can
be used to characterize a consistent view that a mathematical algorithm
by itself is not patentable, but when extended via an innovative physical
device, the aggregate machine is. Subsequent rulings by the CAFC, how-
ever, vehemently rejected the conclusion that patent law should make any
distinction between software and steam engines.

The Supreme Court Draws the Line

Among the three key software patents ruled upon by the Supreme Court,
two were struck down and one was granted, indicating that the Court did
not see the inclusion of software as grounds for rejecting a patent but also
did not believe that equations, however practical or baroque, could be
treated like any other new design.

Gottschalk v. Benson

The complaint raised in Gottschalk v. Benson was that since pure math
is not patentable, software that does little beyond restating pure math
should not be patentable either. The claimed patent was for a method to
convert from one system of writing binary numbers to another.!> The
court ruled that since this was a purely mathematical exercise and the
patent would preclude any use of the mathematical formula, it was not
patentable subject matter. The 1972 decision stated:

It is conceded that one may not patent an idea. But in practical effect
that would be the result if the formula for converting BCD [binary-
coded decimal] numerals to pure binary numerals were patented in
this case. The mathematical formula involved here has no substantial
practical application except in connection with a digital computer,

12. There are a few ways to convert a number like 36 to a binary form. One (binary-
coded decimal) method would be to convert the number 3 to binary, 011, and then the num-
ber 6, which would be 110, and concatenate the two to 011110. Another (plain old binary)
method would be to convert the number 36 all at once: 100100.

54 PATENTING MATH

which means that if the judgment below is affirmed, the patent
would wholly pre-empt the mathematical formula and in practical
effect would be a patent on the algorithm itself.'?

In short, the invention was nothing but a broad mathematical idea and
therefore not patentable.

Parker v. Flook

Six years later, the Court buttressed the case against software patents
by ruling in Parker v. Flook that not only was a mathematical formula
not patentable but adding a simple physical device to a mathematical for-
mula did not justify a patent.'* The case was about the validity of a patent
claim for a device that would conduct certain measurements (mostly of
the temperature and pressure of hydrocarbons), use the measurements in
a few calculations, and ring an alarm if a certain variable passed a specific
limit. The Supreme Court ruled that adding a single bell or whistle to a
mathematical formula is not sufficient to make the entire apparatus
patentable:

The notion that post-solution activity, no matter how conventional
or obvious in itself, can transform an unpatentable principle into a
patentable process exalts form over substance. A competent drafts-
man could attach some form of post-solution activity to almost any
mathematical formula; the Pythagorean Theorem would not have
been patentable, or partially patentable, because a patent applica-
tion contained a final step indicating that the formula, when solved,
could be usefully applied to existing surveying techniques.

In Flook’s invention, the mathematical formula was applied to a spe-
cific purpose of real human utility. However, the Court reasoned that this
was not a sufficiently novel and nonobvious extension of the mathemati-
cal formula to qualify as a patentable invention in its entirety. In other
words, all of the novelty to the invention was in a piece of nonpatentable
mathematics, and the application of that piece of math to the real world
displayed no ingenuity.

13.409 U.S. 63 (1972).
14.437 U.S. 584 (1978).

PATENTING MATH 55

Diamond\v. Diehr

James Diehr and Theodore Lutton of the Federal-Mogul Corporation
held a patent on a process for controlling rubber-molding presses by com-
puter. Essentially, their system measured the temperature of rubber in a
mold and fed that information, as well as data on the elapsed time, to a
computer. From these data the computer calculated the time required for
the rubber to cure and at the end of that time signaled for the mold to be
opened. This procedure involves a great deal of software and math, but
also industrial equipment. The court ruled that the formula by itself was
not patentable, but the machine as a whole was patentable subject matter:

We view respondents’ claims as nothing more than a process for
molding rubber products and not as an attempt to patent a mathe-
matical formula. We recognize, of course, that when a claim recites
a mathematical formula (or scientific principle or phenomenon of
nature), an inquiry must be made into whether the claim is seeking
patent protection for that formula in the abstract. A mathematical
formula as such is not accorded the protection of our patent laws,
Gottschalk v. Benson, . . . and this principle cannot be circumvented
by attempting to limit the use of the formula to a particular tech-

nological environment, Parker v. Flook. . . . Similarly, insignificant
postsolution activity will not transform . . . an unpatentable princi-
ple into a patentable process. . . . To hold otherwise would allow a

competent draftsman to evade the recognized limitations on the
type of subject matter eligible for patent protection. On the other
hand, when a claim containing a mathematical formula implements
or applies that formula in a structure or process which, when con-
sidered as a whole, is performing a function which the patent laws
were designed to protect (e.g., transforming or reducing an article to
a different state or thing), then the claim satisfies the requirements
of [35 U.S. Code §] 101. Because we do not view respondents’
claims as an attempt to patent a mathematical formula, but rather
to be drawn to an industrial process . . . for the molding of rubber
products, we affirm the judgment of the Court of Customs and
Patent Appeals.
It is so ordered."

15.450 U.S. 175 (1981).

56 PATENTING MATH

This ruling respects the concept of mathematics as a law of nature.
Many physical machines make extensive use of gravity as one step in the
larger machine’s working but do not of course claim gravity as the
author’s sole property, nor does the use of gravity in one step out of many
preclude the entire machine from being patentable. Similarly, the presence
of an algorithm or mathematical equation in an invention does not inval-
idate the patent if it is one step of many, but if there is nothing to the
invention but an equation, then there is nothing to be patented.

The CAFC Closes the Loopholes and Opens the Floodgates

In Diamond v. Diebr the court concluded that some machinery is neces-
sary for patentability, but this raised another key question without pro-
viding an answer: how much additional machinery would be required to
make a new algorithm patentable? One could reconcile the above rulings
by saying that the physical component of the invention must be novel
and nonobvious, so adding a simple alarm is not sufficient, whereas an
inventive rubber-curing machine is. This would mean that a nontrivial
amount of inventiveness must be present on the physical end of the
process.

However, many have answered the question much more broadly. In
three penecontemporaneous rulings, the U.S. district courts (which heard
patent appeals during this period) established the Freeman-Walter-Abele
test, which asks of a patent application that recites an algorithm whether
the overall invention includes more than just the algorithm; if so, then the
overall device would be patentable.'® Many took this test to mean that
any physical manifestation of the algorithm was patentable if the machine
as a whole (algorithm plus parts) was inventive.!” One could argue that
using stock parts in a creative way is still inventive, whether those stock
parts are wires and transistors or a ready-built Turing machine. Thus
instead of claiming a patent on “an algorithm to...” inventors could
claim a patent on “a general-purpose computer on which is loaded an
algorithm to. . ..”

16. In re Freeman, 573 F£.2d 1237 (1978); In re Walter, 618 F.2d 758 (1980); In re Abele,
684 F.2d 902 (1982).
17. Merges, Menell, and Lemley (2000).

PATENTING MATH 57
In re Alappat

These claims came under scrutiny in 1994. At that time, the USPTO
was accepting some applications for “a general-purpose computer on
which is loaded an algorithm to...” and rejecting others. The CAFC
then convened a panel to decide whether such patents should be accepted
or rejected. The test case, In re Alappat, centered on a rasterizer for oscil-
loscope screens (a software-based system for smoothing potentially
jagged waveforms prior to display). In upholding the patent, the CAFC
panel explained: “We have held that such programming creates a new
machine, because a general purpose computer in effect becomes a special
purpose computer once it is programmed to perform particular functions
pursuant to instructions from program software.”'® They thus accepted
the new wording: the computer running the software is a physical
machine, so it is patentable subject matter in the traditional sense.

In fact, the court took Diamond v. Diebr a step further to make it
still easier for software to be patented. It applied 35 U.S.C. §112, para-
graph 6, which says that if a patent applicant describes an algorithmic
step for executing some function without explicitly stating what mate-
rials should be used, then the patent examiner should read the patent as
if the materials were explicitly listed.!” In the situation here, the court
ruled this to mean that if the draftsman forgot to prefix “a general-
purpose computer on which is loaded” to his or her claim for an algo-
rithm, then the examiner must read the claim as if that clause were in
place. To borrow the words of the Diamond v. Diebr ruling, not only
could “a competent draftsman . . . evade the recognized limitations on
the type of subject matter eligible for patent protection,” but an incom-
petent one could, too.

This rewording trick extends beyond algorithms. The successor to In
re Alappat, In re Lowry, established that a hard disk on which a data
structure is written is a substantially different hard disk from one without
a data structure; thus “a data structure to store information” is not

18. 33 E3d 1526 (1994).

19. “An element in a claim for a combination may be expressed as a means or step for
performing a specified function without the recital of structure, material, or acts in support
thereof, and such claim shall be construed to cover the corresponding structure, material, or
acts described in the specification and equivalents thereof.”

58 PATENTING MATH

patentable, but “a hard disk or computer memory on which is encoded a
data structure to store information” is patentable.?’

These rulings suggest that the court found the physical/nonphysical
distinction to be fictitious. After all, Jefferson and two centuries of
Congresses did not use the word “physical” in 35 U.S.C. §101, and there
is no reason to read that word into their code. The wording trick was the
CAFC’s means of shutting down complaints about physical versus infor-
mational technology.?!

Notice that these rulings rely heavily on the claim that a machine with
a program is a new physical device, because the process the algorithm
executes is pure math. Some modern advocates of software patents com-
pare software to other processes that operate on common objects in a cre-
ative manner, but as noted earlier, a sheet-folding algorithm has a math-
ematical equivalent only in a metaphorical sense, while all software is
literally equivalent to a pure mathematical equation. Judge Rich, the
author of the In re Alappat decision, concedes that by itself, a mathe-
matical algorithm—a process codified in software—is not patentable sub-
ject matter. But he rules that that is the incorrect perspective: instead, it is
the “new machine” created by the programming of a purely mathemati-
cal algorithm on a physical device that is patentable subject matter.

State Street Bank & Trust v. Signature Financial Group

The Alappat decision does not cover any physical encoding of infor-
mation. For example, if a song is put on a compact disc, the disc still can-
not be patented, even though it is a physical device that provides the prac-
tical benefit of producing pleasing sounds. As the Manual of Patent
Examining Procedure (MPEP) explains, “Such a result would exalt form
over substance.”??

The most commonly cited case that sets the rule as to what algorithms
may be patented when written to a hard drive is State Street Bank &
Trust v. Signature Financial Group.>® This case was about a patent for a
series of flowcharts that described the accounting necessary to maintain a

20. 32 E3d 1579 (1994).

21. Judge Giles Rich (1904-99) was the author of both the In re Alappat and State
Street rulings discussed extensively in this chapter. There is every reason to believe that he
knew Congress’s intent when writing the patent statutes, because he himself drafted the
Patent Act of 1952, upon which modern patent law is based.

22. MPEP 2106 IV B 1.

23.149 E3d 1368 (1998).

PATENTING MATH 59

complex agglomeration of mutual funds, which State Street called its Hub
and Spoke system. The CAFC compared this to a binary-coded decimal
system, stating that whereas the patent in Got#tschalk was denied because
it did not have a useful purpose, this application indeed had a useful pur-
pose, so the mutual fund system was patentable subject material:

Today, we hold that the transformation of data, representing dis-
crete dollar amounts, by a machine through a series of mathemati-
cal calculations into a final share price, constitutes a practical appli-
cation of a mathematical algorithm, formula, or calculation,
because it produces “a useful, concrete and tangible result”—a final
share price momentarily fixed for recording and reporting purposes
and even accepted and relied upon by regulatory authorities and in
subsequent trades.

The ruling cites Diamond v. Chakrabarty, the case that allowed genes
to be patented and that cited a congressional panel’s commentary describ-
ing the scope of invention as “anything under the sun that is made by
man.”?* In State Street Bank the court ruled that an algorithm used to
conduct business fits that description.

But notice that the resulting “machine” was in no way an extension of
the mathematical result: it simply applied a series of transformations to a
few numbers, just as Flook’s formula translated a few numerical measures
into a number used to set off an alarm. Applying State Street’s reason-
ing—that an algorithm plus application is patentable—to Parker v. Flook
would lead to exactly the opposite conclusion from that of the Supreme
Court and would allow Flook’s patent on an equation directly applied to
a useful purpose to stand.

The only way to reconcile the rule that a pure equation is not
patentable with the rule that the practical application of an equation is
patentable is to ignore Gale and Shapley’s comments on abstraction and
impose an artificial division of labor: mathematicians would work with
only pure numbers, and then other people would come along and apply
those pure numbers to the real world. For example, mathematicians
would only write equations like

24. Diamond v. Chakrabarty, 447 U.S. 303 (1980), cites Senate Report 1979, 82 Cong.
2 sess. (1952). Here is the original statement: “A person may have ‘invented’ a machine or
a manufacture, which may include anything under the sun that is made by man, but it is not
necessarily patentable under section 101 unless the conditions of the title are fulfilled.”

60 PATENTING MATH

P=Q - exp(t-i),
while financiers would take this equation and turn it into
(Payout) = (Quantity invested) exp(time - interest rate).

But to actual mathematicians, the two formulas are equivalent. As the
saying goes, mathematics is invariant under changes of notation.?® But
law is not invariant under changes of notation. Under the State Street rul-
ing, the first equation is a mere abstraction, whereas the second, a means
of calculating compound interest on an investment, is patentable subject
matter.

Business Methods

As an aside, the State Street ruling also allowed business methods to be
patented. The logic is very similar: there is no machine, no ephemeral
manifestation of the idea to speak of, but the idea itself is the result of cre-
ativity, effort was expended in writing it down in sufficient detail, and the
idea affects the physical world; therefore the business method should be
patentable. The State Street ruling expresses its disdain for “the judicially-
created, so-called ‘business method’ exception to statutory subject matter.
We take this opportunity to lay this ill-conceived exception to rest.”2

With the final coffin nail having been put in the presumption that an
invention must demonstrate innovation in the manipulation of physical
objects to be patentable, one may ask where the line should be drawn. If
a patent is not based in substantial innovation in the physical realm, and
if text in a programming language can be patented, then why not patent
art or plain English? This reasoning is followed to its conclusion by Aha-
ronian and Stim in Patenting Art and Entertainment: New Strategies for
Protecting Creative Ideas, which offers abundant examples of utility
patents for artistic designs, and in “A Potentially New IP: Storyline
Patents,” an article by Andrew F. Knight, the head of a Virginia firm in
the business of helping authors apply for storyline patents.?”

25. Attributed to University of Chicago math professor Paul Sally.

26. As with the rulings for software, this ruling did not ask whether patents on business
methods would pass economic analysis. That is, does a monopoly on a method of provid-
ing goods or services expand the total efficiency of the market and the total amount and
variety of goods and services available? But that is a question for another book.

27. Aharonian and Stim (2004); Knight (2004). Knight’s article details how all the argu-
ments that allowed software to be patentable subject matter apply to storylines as well.

PATENTING MATH 61

A Modern Example

As an example of how nonpatentable math becomes patentable, consider
patent 6,735,568 (granted to Eharmony.com on May 11, 2004) for a
“Method and system for identifying people who are likely to have a suc-
cessful relationship.” Despite a bit of window dressing about neural net-
works and verifying the results by running regressions on past matches,
the gist of the process as claimed is this:

1. Ask candidates to fill out a survey.

2. Enter the data into a matrix.

3. Run a singular value decomposition (SVD) of the matrix to find the
candidates’ positions in an imaginary space.

4. Match candidates who are closest in the imaginary space.

Steps 1 and 2 are trivial, and given the positions calculated in step 3,
step 4 is also easy (this is no traveling salesman problem!). All of the
magic happens in step 3 (claim 11 of the patent). The mathematician
readers will recognize the SVD (also known as principal component
analysis, or factor analysis) as a standard method used in linear algebra
to reduce data in many dimensions to fewer dimensions with a minimal
loss of information (that is, a method for low-rank approximation).
Social scientists will recognize it as a commonly used method of catego-
rizing people; for example, political scientists use it to categorize members
of Congress by their roll call votes, and anthropologists use it to deter-
mine whether people from different cultures perceive common stimuli
such as colors differently.?® Computer scientists are reminded that they
just need to find the right library: for this the author suggests the GNU
Scientific Library, whose gs1_1inalg_SV_decomp function will do the
entire SVD with one function call.

In short, Eharmony has taken a mathematical procedure from under-
graduate linear algebra textbooks and applied it to a slightly novel setting
by assigning names to the variables, calling L,, for example, sexual pas-
sion and L, spirituality. The additional mathematical window dressing in
the patent’s other claims are also a set of standard procedures. Pro-
grammers must now beware: they are free to call the gs1_linalg_
SV_decomp function only if they choose variable names sufficiently
removed from Eharmony’s.

28. On roll call votes, see Poole and Rosenthal (1985); on color recognition, Moore,
Romney, and Hsia (2002).

62 PATENTING MATH

Jefferson’s Opinion

As Jefferson made clear in the letter quoted earlier, he did not like the
idea of patenting applications either: “I assume it is a Lemma, that it is
the invention of the machine itself, which is to give a patent right, and not
the application of it to any particular purpose, of which it is susceptible.”
He continues with some examples of how bad the system would be if this
precept were not followed:

If one person invents a knife convenient for pointing our pens,
another cannot have a patent right for the same knife to point our
pencils. A compass was invented for navigating the sea; another
could not have a patent right for using it to survey land. A machine
for threshing wheat has been invented in Scotland; a second person
cannot get a patent right for the same machine to thresh oats, a
third rye, a fourth peas, a fifth clover, &c. A string of buckets is
invented and used for raising water, ore, &c., can a second have a
patent right to the same machine for raising wheat, a third oats, a
fourth rye, a fifth peas, &c?

A state machine is an informational tool that can be used for any com-
putable task. As the law stands, a physical state machine applied to pen-
cil design may have one patent, applied to pen design it may have another,
applied to the problem of optimally threshing oats still another, and so
on. According to Jefferson’s logic, Flook, State Street and the Eharmony
patents are for a mathematical process, which is a law of nature and is
thus not patentable, which is applied to a novel application, which
Jefferson believed should not be patentable either.

The State of Patents Today

As just outlined, recent rulings have put the last nail in the coffin of legal
arguments for restricting software patents on the basis of subject matter.
In re Alappat dodged the question of whether software has physical man-
ifestation, and State Street proclaimed that as long as there is some sort
of useful application, the subject is not too abstract to be patented. Since
the term useful is always interpreted in its broadest sense—anyone filing
for a patent is probably going to find the claimed invention to be useful—
one can expect almost any subject matter to be acceptable.

The USPTO has provided an abundance of evidence supporting my
claim that it is impossible to distinguish between useful applications and

PATENTING MATH 63

abstract mathematical algorithms. For example, Eharmony renamed the
variables in the singular value decomposition and patented the resulting
application, but perhaps this was unnecessary: patent 6,807,536 is for
“Methods and systems for computing singular value decompositions of
matrices and low rank approximations of matrices”—no need to restrict
such a useful mathematical process to any specific application.

Here is a sampling of other patented algorithms that mathematicians
must have their lawyers check out before using. Inspection of the patents
shows that the device or apparatus in some of the titles is a general-purpose
computer with a program loaded. Each patent is for a certain method; your
own method of calculating fast Fourier transforms (FFTs) may or may not
be covered:

—5,835,392: Method for performing complex fast Fourier transforms

—5,886,908: Method of efficient gradient computation

—6,055,556: Apparatus and method for matrix multiplication

—6,078,938: Method and system for solving linear systems

—6,356,926: Device and method for calculating FFT

—6,434,582: Cosine algorithm for relatively small angles

—6,640,237: Method and system for generating a trigonometric
function

—6,665,697: Fourier analysis method and apparatus calculating the
Fourier factor W, utilizing trigonometric relations

—6,745,215: Computer apparatus, program, and method for deter-
mining the equivalence of two algebraic functions

—6,792,569: Root solver and associated method for solving finite field
polynomial equations.

These are not anomalies or oversights by individual examiners. As
Gale and Shapley explained, there is no difference between an application
of an algorithm and the algorithm itself, and, as the Church-Turing the-
sis states, the algorithm and pure math are entirely equivalent. The courts
tried to draw a line between these entirely equivalent classes, and the
USPTO, dealing with real-world algorithms, was unable to hold that fic-
titious line. Thus the CAFC rulings mean that individuals or corporations
can own a piece of mathematics.

Drawing the Line between Hardware and Software

The courts’ patentability line between applied and pure mathematical
algorithms clearly failed to exclude mathematics from patentability.

64 PATENTING MATH

Where, then, should the line be drawn to ensure that math is not
patentable but machinery is?

The current state of law is that an equation applied to a real-world
problem is patentable if the entire entity—general-purpose computer plus
inventive algorithm—fits the requirements, but a better rule would be
that an equation extended to a real-world problem is patentable. In other
words, a machine would have to be built that may rely on mathematics
but does something innovative beyond it. The design of such a machine
would be patentable if its physical component(s) met the usual tests of
novelty and nonobviousness. Being the extension of an equation, the
machine would also be in line with the rule that it is not the idea behind
a machine that should be patentable but the design of the machine itself.
If the entire design consists of an equation, then there is nothing to be
patented; if the design consists of an equation and a trivial machine, then
there is still nothing to be patented; if the design is for a new and novel
machine informed by mathematics, then there is every reason to grant a
patent on the machine’s design.

State Machines and Their States

The extension rule makes it easy to bar pure mathematics from
patentability, but does it ensure that inventions at the physical end of the
spectrum remain patentable? Those who hope to profit from software
patents claim that there is a slippery slope between hardware and soft-
ware and no way to draw a bright line between the two. For example,
Jonathan Schwartz, president and chief executive officer of Sun Micro-
systems, explains: “Viewed simplistically, computing hardware is soft-
ware burned into and onto physical things. And over time, more and
more routine software elements end up in hardware, for acceleration or
optimization. SSL [Secure socket layer| accelerators, JVMs [Java virtual
machines| on a chip, you name it. So, where do you draw the line on
patents? Firmware? FPGA’s [field-programmable gate arrays]? Silicon?
Systems?”2°

Despite its tone and obfuscatory acronyms, this question is easy to
answer. Recall the discussion in chapter 3 distinguishing between physi-
cal state machines and the programs loaded onto them. By this distinc-
tion, an inventive physical implementation of a state machine (such as an

29. From Jonathan Schwartz’s blog, October 18, 2004 (blogs.sun.com/roller/page/
jonathan/20041018#interpreting_sun_s_kodak_settlement).

PATENTING MATH 65

FPGA, a JVM on a chip, or a rubber-curing device) should be patentable,
whereas the programs loaded onto them (firmware, a data structure)
should not.

That is, the state per se is nothing but a mathematical equation, and
applying it to a Turing machine is a Flook-like obvious extension of the
equation. By contrast, an inventive physical state machine may be heav-
ily informed by mathematics but would make a nontrivial extension of
that mathematics into the physical world.

The physical Turing machine and the states the Turing machine takes
are clearly distinct, and I suspect Jonathan Schwartz and even the CAFC
would have little trouble distinguishing between the two in any given sit-
uation. The distinction between physical state machine and informational
state comfortably achieves the goals of making machines patentable and
math unpatentable, and of being easy to recognize.

The FPGA

The FPGA lies dangerously close to the borderline between software
and hardware. As such, it is an excellent case study for how the di-
chotomy between state machine and state can be used in practice to draw
a line between the patentable and unpatentable.

When it ships from the factory, the FPGA is a grid of a few hundred
thousand identical logic blocks. To oversimplify the details, one may
think of every block as connected to all of its neighbors. Like a sculptor
carving a block of marble, an engineer can erase most of the connec-
tions to leave a functioning logic circuit. The engineer programming the
FPGA will first write an algorithm using a words-on-paper program-
ming language and then run it through a compiler to produce a
machine-code representation of a circuit diagram, which he then feeds
into a machine that will blow out the appropriate connections to leave
the desired circuit.

In other words, an FPGA lets a programmer turn his or her program
directly into a physical device, bypassing the step of using a general-
purpose state machine to interpret instructions. As such, it means that any
program can be translated directly into an object that by most reasonable
definitions is a novel device that should be patentable subject matter.

Indeed, by the In re Alappat-style physical device rule, this is wholly
patentable. There is limited physical innovation in programming an
FPGA—all of the physical processes have been patented by the manufac-
turers of the FPGA and its auxiliary tools. But physical innovation is not

66 PATENTING MATH

required so long as the whole—algorithm plus trivial physical exten-
sion—is novel. The program is also patentable by State Street’s subject
matter rule, because the physical device that is the output to the story is
a useful physical device.

Further, because the trivial final step of producing a physical state
machine or a virtual device is an afterthought, the item is patentable in
any manifestation. That is, under the current patent regime, the physical
FPGA and its blueprint in program form are identical.

It is not just in their blogs that Sun’s employees claim they cannot dis-
tinguish between a Java program and an FPGA; they also claim this in
their patents. The patent for an “Apparatus for dynamic implementation
of Java metadata interfaces” (6,918,122) boasts that this software can
run on anything more advanced than a loaf of bread:

In accordance with one embodiment of the present invention, the
components, processes and/or data structures may be implemented
using Java programs. . .. Different implementations may be used
and may include other types of operating systems, computing plat-
forms, computer programs, firmware, computer languages and/or
general-purpose machines. In addition, those of ordinary skill in the
art will readily recognize that devices of a less general purpose
nature, such as hardwired devices, devices relying on FPGA (field
programmable gate array) or ASIC (Application Specific Integrated
Circuit) technology, or the like, may also be used without departing
from the scope and spirit of the inventive concepts disclosed herein.

That is, it is the algorithm that matters, and therefore there is no need
to concern oneself with the triviality of which physical manifestation the
device will take. One could find comparable language in most—if not
all—of the patents on computer-implemented algorithms.

By the rule that state machines may be patented but states may not, the
FPGA would still be patentable, because it is a novel physical device. But
this would not extend to other implementations of the algorithm, which
do not produce a new state machine but simply execute on another state
machine. That is, being able to encode a program onto an FPGA does not
make the original program patentable—just the specific implementation
as a physical FPGA. The state to which the FPGA has been set remains
unpatented, so the scope of the patent does not cover all implementa-
tions of the algorithm in all languages on any general-purpose computing
device.

PATENTING MATH 67

Practically, it would be supremely difficult to design an FPGA using the
same program and not infringe the physical device’s patent. In other
words, the program is effectively patented in the context of FPGAs. But
if another engineer takes the algorithm burned onto the FPGA and imple-
ments it using a Java virtual machine on her PC, she has a wholly differ-
ent machine. In fact, it is probably folly to do such a thing, because all of
the optimizations inherent to the FPGA design are lost; the copycat engi-
neer could probably have done better to write Java-specific code from
scratch. That is, imitators who wish to use the detailed implementations
that the designers worked to optimize would need to license the patent
and thus reward the original designers for their efforts, while imitators
who wish to use the broad algorithm are making use of the idea but not
the detailed implementation, and since an idea cannot be patented, there
is no need to call the lawyers and negotiate rights.

Broadly, an engineer may take two paths in implementing an algo-
rithm. The first is the one that Sun took in patent 6,918,122: write a gen-
eral algorithm that any state machine can execute. The second is the
approach taken by a careful FPGA designer: write a program that is
aimed at a single physical device.

In the first approach, there may be an innovative idea, but there is no
innovative physical implementation, since applying a program to a stock
state machine is a trivial application that anyone having ordinary skill in
the art could do. The details of novel physical implementation are explic-
itly nil and therefore costless, while the patent is very broad and therefore
blocks as many other designs as possible. By the rules of chapter 2, this is
the worst case for a patent.

The second approach is indeed an innovative physical device and there-
fore does merit intellectual property protection, but only for a very specific
implementation. In this form, a patent on a physical FPGA fits both of the
rules from chapter 2: there are significant costs in designing the imple-
mentation and the costs of implementation are protected from those who
would free-ride on the engineering behind the patent-holder’s chip, but the
patent does not arbitrarily exclude others from the use of alternate designs
that the first designer had not conceived. Under the state/state machine
rule, the patent-hungry are free to patent every algorithm imaginable as an
FPGA, but because the patent covers only the specific implementation, the
world’s software programmers are still free to use the algorithm as they
wish, and even creative FPGA designers will be able to design around the
patent with sufficient ingenuity.

68 PATENTING MATH

The process of designing an FPGA and the process of writing a pro-
gram for a general-purpose computer may have much in common, but the
steps the designers undertook is only one side of the patent balance; the
other is the breadth of the resulting work.

As explained in chapter 2, it is essential that a patent have a balanced
breadth. As explained in chapter 3, a claim on a program will, as a mat-
ter of mathematical fact, have a massive breadth, covering all implemen-
tations of that program in all languages, and even in pure mathematical
forms. In practical terms of registers, relays, and resistors, there may be a
fine line between a purpose-built machine and an algorithm on a general-
purpose machine, but once the patent’s coverage nudges over that fine
line, its breadth explodes. Patent drafters have every interest in keeping
that line hazy, but fortunately, a patent examiner is not burdened with
determining which claims include only a reasonable range of innovative
physical devices and which include all equivalent algorithms in all pro-
gramming languages on all general-purpose state machines, because the
examiner can restrict the wording of the claim to make sure the patent
remains on the economically sensible side. The examiner may simply stip-
ulate that a claim may not be construed to include implementation via a
program on an uninnovative general-purpose state machine. The designer
of an innovative physical design would be entirely unconcerned by such
a clause, but it would effectively block the author of software who
drafted a patent to imply that the design was a physically innovative
device. Patents of reasonable breadth would continue to flourish, while
those of the massive breadth of a software patent would be blocked.

The Trouble with the Courts

However, the CAFC ruled that there would be no need to add restrictions
on the breadth of a patent on software. Generally, the CAFC rulings here
have rushed headlong into territory where past courts feared to tread.
The ruling in Flook demanded no change without a congressional dictate:
“We would require a clear and certain signal from Congress before
approving the position of a litigant who . . . argues that the beachhead of
privilege is wider, and the area of public use narrower, than the courts had
previously thought.”3® Conversely, the CAFC did away with the concept

30. Here, Justice Stevens is quoting from the ruling in Deepsouth Packing Co. v. Laitram
Corp. (406 U.S. 518, 531, 173 USPQ 769, 774).

PATENTING MATH 69

of restrictions on software and business methods without the slightest
signal from Congress. Whereas past courts such as the Supreme Court of
1853 have tried to strike a balance between public and private interests
and ensure that patents do not become too broad, the CAFC has shown
little or no objection to patents broad enough to cover pure math. While
the Supreme Court’s ruling in Gottschalk v. Benson barred a patent
because it “would wholly pre-empt the mathematical formula and in
practical effect would be a patent on the algorithm itself,” the CAFC
defined new rules that allowed patents on algorithms used to calculate
fast Fourier transforms and cosines. This leads to the large academic lit-
erature on the CAFC, which asks two questions: is the CAFC more pro-
patent than other courts, and given that the answer to the first question
is so obviously yes, why?

As to why, there is abundant evidence that the CAFC is interested in
expanding the scope of its jurisdiction. Also, whereas some courts are
more willing to ask whether a certain patent regime is or is not good for
the economy, the CAFC seems to be going out of its way to dodge such
issues, focusing narrowly on whether the regime is or is not consistent
with the broad wording of §101.

The CAF(’s Track Record

Before the CAFC was established in 1982, patent appeals were heard
in various district courts. Up to then, the last year in which data were
compiled on patent infringement cases was 1978, when slightly more
than 40 percent of appellate trials found the patent in question valid and
infringed. In 1982, after the CAFC was established, it found that the
patent in question was valid and infringed in upward of 80 percent of
infringement cases.?' Since then, its rate of upholding patents has come
down from this high, but on the whole the CAFC has shown itself to be
much more pro-patent than the general district courts that came before it.

The key cases that established software patents (Alappat, Lowry, State
Street, and even AT T v. Excel, which I do not discuss here) overturned
the rulings of the district courts.? Overall, the federal circuit affirmed at

31. Jaffe and Lerner (2004, p. 105).

32. Many are of the opinion that Diamond v. Diehr is the case that ushered software
patents into law, but I am entirely unconvinced that the Court decided software should be
patentable. Again, the ruling refers only to a rubber-curing machine and industrial equipment
and does not address the question of general-purpose computers, whereas the four cases that
the CAFC ruled upon directly do cover general-purpose computers.

70 PATENTING MATH

least in part 86.3 percent of lower-court decisions and denied 17.1 per-
cent at least in part. This suggests that these four cases, which vehemently
denied the lower-court ruling, are rare—and they are rare, in the sense
that they expanded the scope of the federal circuit’s jurisdiction
immensely.>?

Regulatory Capture

The federal district courts and the Supreme Court hear cases covering
all of federal law; the CAFC hears mostly customs disputes and patent
appeals and assigns a large proportion of the patent cases to a few
judges.> This is an exceptional concentration of interest: the scope of
patent law is decided by a few people who work on nothing but patents
and who deal exclusively with patent lawyers. Of course, the natural can-
didates for such a judgeship are current patent lawyers.

The goal of a bureaucracy, according to most social scientists, is to
maximize its budget.** For the USPTO, that means getting as many patent
submissions as possible. For the courts, it means interpreting the law in a
manner that puts as many fields of human endeavor under the court’s
scope as possible. After all, many judges are former patent lawyers and
still have some interest in keeping the patent law business healthy. There
is some evidence that the increase in the amount of patent litigation in
recent years coincides with the pro-patent trend in the CAFC.*¢ Fur-
thermore, there is a 97 percent correlation between log(patent suits com-
menced) and log(number of active patent lawyers and agents).*”

Swamped by the flood of software patents, the USPTO has been call-
ing for more funding: the acting head of the agency, John W. Dudas, said
that if funding is not forthcoming, the current two-year backlog among

33. Allison and Lemley (2000, p. 759); the statistics indicate that 3.4 percent of rulings
were partly affirmed and partly denied. Some readers may wonder why the pre-CAFC dis-
trict courts had generally been less pro-patent, while the CAFC affirmed most of the district
court rulings. With the establishment of the new court, what were now the lower courts fell
in line with the opinions of the CAFC and became increasingly pro-patent as well. However,
the jurisdiction of the district court is much broader than that of the CAFC. Therefore
changes in the scope of patent law have a proportionately smaller effect on the jurisdiction
of the district courts.

34. Allison and Lemley (2000, esp. fn. 30).

35. Generally attributed to Niskanen (1971).

36. Landes and Posner (2003).

37. Landes and Posner (2003, p. 348).

PATENTING MATH 71

all patents could quickly stretch to a five-year backlog.’® This again indi-
cates that the best party to make decisions about economically efficient
patent laws is the legislative branch, whose jurisdiction and budget are
not directly affected by the scope of patents. Much more evidence of reg-
ulatory capture has been provided by Adam Jaffe and Josh Lerner in their
2004 study on the U.S. patent system and the effects of the formation of
the CAFC.»

Worldview

In a less cynical vein, one could argue that working on patents all day
might distort the worldview of even the most well-meaning judge. In the
debate about establishing the CAFC, some feared that judges who
worked on nothing but patents might put them at the center of the
world.* Such judges would be inclined to allow more patents to stand
than the general public would allow. The data support this story. Also, on
broader questions of subject matter, specialized patent judges might
believe that “everything invented by man under the sun” should be
patentable. Indeed, CAFC rulings indicate that its judges are reluctant to
invalidate patents based on the mathematical exception or a no-physical-
manifestation heuristic.

In view of this overspecialization, the nonpartisan National Academy
of Sciences recommends changing the method of selecting judges to
bring some fresh economic thinking into patent rulings, arguing that
the few appointments to the federal circuit intended to support the
court’s expertise in patent law “should not be confined to intellectual
property practitioners and academics. Rather, the court’s perspective
should be broadened by appointing judges familiar with innovation
more generally, including men and women with backgrounds in
antitrust or finance law or, in addition to their legal training, in eco-
nomics or economic history.”#!

38. John W. Schoen, “U.S. Patent Office Swamped by Backlog,” MSNBC News, April
27,2004 (www.msnbc.msn.com/id/4788834); FTC (2003).

39. Jaffe and Lerner (2004) mention regulatory capture by name on page 160, but the
entire book is about how the courts and USPTO have been expanding their jurisdiction con-
sistent with the regulatory capture hypothesis.

40. Landes and Posner (2003).

41. Merrill, Levin, and Meyers (2004, p. 87).

72 PATENTING MATH

According to Arti Kaur Rai of the Duke University School of Law, the
CAFC’s pro-patent rulings reflect an underlying philosophy that patents
should be treated like any other physical property:

These statistical and doctrinal shifts, coupled with scattered com-
mentary from particular Federal Circuit judges, suggests that at
least some members of the Federal Circuit view patent rights as . . .
comparable to rights in tangible property. While conventional eco-
nomic analysis of patents is concerned with the deadweight loss and
impediments to future innovation that patents may create ..., an
“ordinary property” view dismisses the possibility that patents cre-
ate monopoly-like difficulties. Thus there is no reason to object to
patents issuing for virtually all invention that is novel.*?

This view is the source of endless frustration for economists and pro-
grammers. Economists write books and journal articles on the economic
effects of patents, and programmers fill the Internet with commentary
about how patents make their jobs harder, yet the courts ignore all of it.
“Indeed, nothing in the court’s [State Street] opinion even recognized the
giant step it was taking in holding that all mathematical algorithms with
any plausible ‘usefulness’ are patentable subject matter.”*

As an economist who has written a book on the matter, I propose that
we take the question out of the hands of the courts. The courts only inter-
pret the laws passed by Congress. They do not ask the truly important
policy question: do software patents do more economic good than harm?
It is up to the Congress to ask this question directly, and to write a clear
law of software patents based upon the answer.

In the words of the National Academy of Sciences: “The effects of this
substantial de facto broadening of patent subject matter to cover infor-
mation inventions are as yet unclear. Because this expansion has occurred
without any oversight from the legislative branch and takes patent law
into uncharted territories, it would be worthwhile to study this phenom-
enon to ensure that the patent expansion is promoting the progress of sci-
ence and the useful arts, as Congress intended.”** The following chapters
will do exactly this.

42. Rai (2002, p. 67).
43. Rai (2002, p. 63).
44. National Academy of Sciences (2002), p. 195.

CHAPTER FIVE

Profiting from
Overbroad
Patents

What’s wrong with the system of software patents that the
courts have put in place? One set of problems stems from weaknesses in
the patenting process that could be remedied by revised policies or more
resources at the U.S. Patent and Trademark Office (USPTO), while other
fundamental issues are rooted in the nature of software and software
patents.

First, software patents are too broad, and unavoidably so. Since soft-
ware patents typically apply to the broad description of an idea—the
interface instead of the implementation—they can block competitors
from developing and marketing hundreds of alternative implementations.
Second, as explained in chapter 3, all software is a compound invention,
so patents are much more likely to hold up innovation in software than
in fields where inventors are less dependent on the work of others. These
problems bedevil all industries to some degree, but software is always hit
hardest. Moreover, the rapid pace of software development magnifies the
negative impact.

Do Software Patents Promote Innovation?

These problems are of particular concern because there is little evidence
that software patents promote innovation—the usual justification for

73

74 PROFITING FROM OVERBROAD PATENTS

granting patents at all. Few scholars have addressed this question, pri-
marily because of the difficulty of coming up with an appropriate meas-
ure of innovation. Most studies of how external economic factors affect
innovation use a count of patents as the proxy for innovativeness, but
some other measure is clearly required in this case.!

Using investment in research and development as a proxy for innova-
tion, James Bessen of Research on Innovation and Robert M. Hunt of the
Federal Reserve Bank of Philadelphia found that companies heavy in soft-
ware patents do less research than expected.? A lively debate followed the
release of these results, with two scholars at the American Enterprise
Institute-Brookings Joint Center for Regulatory Studies, Robert Hahn
and Scott Wallsten, arguing that the numbers actually showed the
expected positive correlation.® Bessen and Hunt have posted a rebuttal to
the rebuttal online.*

But even if Hahn and Wallsten are correct, and patents do shift re-
search funds toward those fields of applied mathematics that are
patentable, such gains need to be weighed against the means by which
patents can also stifle technological progress. A small gain in the rate of
innovation, visible if one looks at the data one way but not another, may
not be enough to offset the negative effects patents have on the imple-
mentation of new software.

Trouble at the USPTO

Software is the canary in the USPTO’s coal mine. Although problems
with the overall system have touched every industry, they plague software
more than other fields because of its unique aspects.

Novelty

Because claims are innocent until proven guilty and so many inven-
tions are obvious to people who have already seen the patent, patent
examiners are encouraged not to use their ex post intuition about
whether a patent is obvious. Instead, they are expected to go through a
patent claim by claim to find proof that each should be invalidated or

1. Trajtenberg (1990).

2. Bessen and Hunt (2004a).

3. Hahn and Wallsten (2003). This paper was partly funded by Microsoft.
4. Bessen and Hunt (2004b).

PROFITING FROM OVERBROAD PATENTS 75

restricted. Being inundated by applications, however, USPTO examiners
must forgo a full search to invalidate all claims and must let them pass
with minimal examination. Examiners have between fifteen and thirty
hours to process a patent, which may contain up to hundreds of claims;
those claims for which specific existing literature (prior art) cannot be
located in that time frame must be left to stand as given.’

The Manual of Patent Examining Procedure (MPEP) includes a single
paragraph on the subject of searching prior art for computer-related lit-
erature.® Here is the key sentence: “Generally, a thorough search involves
reviewing both U.S. and foreign patents and non-patent literature.”” In
practice, this often becomes a search heavily biased toward U.S. patents.

As an aid to the search, the applicant is obligated to list all relevant
prior publications or patents in the application. According to one indus-
try observer, 58 percent of software patents granted in 2003 referred only
to prior patents and made no mention of prior art in existing software or
in computer science journals.® This would not be a problem in most other
fields, where patent records go back either to the birth of the field or the
birth of the United States, but since most software patents were applied
for after the 1998 State Street ruling, the prior art embodied in existing
patents is not entirely in line with the prior art pertaining to what com-
puter scientists are doing.” It is still much easier to invent a process of
computing that has not been patented than to invent a process of com-
puting that has not been used by practitioners.

As Adam Jaffe and Josh Lerner explain, the USPTO’s system gives
examiners an incentive to approve easily:

Patents examiners are given one point when they complete an initial
review of a patent and another point when the application is ulti-
mately allowed or rejected. . .. But applicants can modify and
appeal patents that are initially rejected, thereby postponing the
earning of the second productivity point. Thus, a rejected patent
will typically consume much more of an examiner’s time than one

5. Merrill, Levin, and Meyers (2004).

6. USPTO (2001).

7. MPEP §2106, section III (p. 2106-10).

8. Estimate from Greg Aharonian, editor of the Internet Patent News Service, personal
communication, July 22, 2004. He indicates that prior years had been worse: 1980, 91 per-
cent; 1985, 80 percent; 1990, 73 percent; 1995, 64 percent; 2000, 65 percent.

9. Ibid.

76 PROFITING FROM OVERBROAD PATENTS

that is allowed after the initial application. This scheme creates an
obvious incentive for examiners to “go easy” on applicants and
allow their patents to be granted.!’

Because patents must pass unless proven not novel and examiners do
not have the time to find proof, the tendency in the review process is to
let patents slide through for all types of invention. This is bad policy. On
the margin, between the almost obvious cases in which patents should be
granted and the actually obvious ones in which they should not, an exam-
iner could make two types of errors, whose costs need to be balanced:

—Type I: A patent is granted when it should have been denied. The
applicant probably got the patent so that it could be enforced, in which
case what is effectively a monopoly is granted where it should not have
been, and the market becomes less efficient. If the patent goes to litiga-
tion, the parties will likely spend between thousands and millions of dol-
lars on overturning the erroneous granting.

—Type II: A patent is denied when it should have been granted. Some
inventors will respond to the news by redoubling their efforts on new
patents, to make sure that their future applications are several steps
beyond the borderline for obvious ideas. Those unable to pass this bor-
derline would be discouraged from continuing to claim nearly obvious
ideas as their own and might instead take up accounting. Whether this
would be a loss or not is debatable.

In short, the cost of a Type II error for a borderline-obvious patent
may be very low, whereas the cost of a Type I error may be astronomical.
So why does the USPTO bias its system to favor Type I errors over Type II
errors, for physical inventions as well as software?

The Review Process

All this would not be a problem if the review process made it easy to
discern what examiners had missed during post-patent review. But the
USPTO rarely permits a second review, and the only alternative is the
court system, which can cost millions of dollars. Recommendation 1 in
the Federal Trade Commission’s (FTC’s) report on improving the patent
system is to implement a new post-patent review process.'!

10. Jaffe and Lerner (2004, p. 136).
11. FTC (2003).

PROFITING FROM OVERBROAD PATENTS 77

Under the existing regime, requests for reexamination face heavy
restrictions. A plaintiff may file a request with the USPTO only to ques-
tion novelty or nonobviousness and after filing may provide no further
input or commentary on the USPTO’s process or decisions. Until Novem-
ber 2002, the plaintiff could not even dispute the findings in federal
court.'?

There is no way to dispute a patent on the grounds of inappropriate
breadth or subject matter.'* For example, one cannot argue, in the words
of the Gottschalk v. Benson ruling, that the mathematical patents on page
63 “would wholly pre-empt the mathematical formula and in practical
effect would be a patent on the algorithm itself.” Reversing these patents
would require either a huge amount of litigation or an act of Congress to
change the rules of reexamination.

These heavy restrictions make it difficult for a company to harass a
patent-holder via the USPTO—or to have truly bad patents reversed. Even
the review process leans heavily toward Type I errors. After the plaintiff
provides the limited information prescribed, the reexamination proceeds
along approximately the same lines as the initial review; in some cases, the
same examiner who granted the patent performs the reexamination.'* The
chance of repeating the same mistakes is thus higher than it needs to be.

Without an easy way for the USPTO to reverse its errors, the only
alternative is to rely on the court system, which is the most expensive and
inefficient means of overturning a patent that one could imagine. Accord-
ing to one FTC panelist, it can cost $5 million to $7 million to litigate a
biotechnology patent case.' Douglas Brotz, principal scientist at Adobe
Systems, expressed his and Adobe’s frustration with patents and their
associated legal expenses at a public hearing in January 1994:

The emergence in recent years of patents on software has hurt
Adobe and the industry. A “patent litigation tax” is one impedi-
ment to our financial health that our industry can ill-afford. . ..
Revenues are being sunk into legal costs instead of into research

12. Plaintiffs may request an inter partes review, in which the plaintiff is more involved
in the process, but from 1999 to 2003 the USPTO granted only four such requests. FTC
(2003, sec. 5, p. 16).

13. FTC (2003).

14. Jaffe and Lerner (2004, pp. 153-54).

15. FTC (2003, chap. 3, p. 22).

78 PROFITING FROM OVERBROAD PATENTS

and development. It is clear to me that the Constitutional mandate
to promote progress in the useful arts is not served by the issuance
of patents on software.

Let me illustrate this burden with some figures. The case Infor-
mation International Incorporated v. Adobe, et al., was filed five
years ago. Last year the trial court ruled for Adobe, finding no
infringement. In December the Appeals Court for the Federal Cir-
cuit unanimously affirmed that judgment. Yet, in that time, it has
cost Adobe over four and a half million dollars in legal fees and
expenses. I myself have spent over three thousand five hundred
hours of my time—that’s equivalent to almost two years of working
time—and at least another thousand hours was spent by others at
Adobe. The Chairman of the Board spent a month at the trial. This
type of company behavior would not be high on anyone’s list of
ways to promote progress.'®

Breadth

A patent on an interface is, almost by definition, a much broader
patent than a comparable patent on an implementation. Notice that most
of the software patents and applications discussed to this point, such as
those in figures 2-4 and 3-2 (the tabbed browsing and the XML-reading
patents), are for a flowchart, which describes only what the functions will
do—they cover the interface but not the implementation. As discussed in
the section on gaming on page 80, these patents apply to all implementa-
tions and block all competitors from entering a broad market.

To give another example, here is the abstract for patent 5,132,992 (to
Yurt and Browne, July 1992), for an “Audio and video transmission and
receiving system” that covers every sound or moving picture on the Inter-
net: “A system of distributing video and/or audio information employs
digital signal processing to achieve high rates of data compression. The
compressed and encoded audio and/or video information is sent over
standard telephone, cable or satellite broadcast channels to a receiver
specified by a subscriber of the service, preferably in less than real time,
for later playback and optional recording on standard audio and/or video
tape.”

16. Public Hearing on Use of the Patent System to Protect Software Related Inventions:
Transcript of Proceedings, Wednesday, January 26, 1994, San Jose Convention Center
(http://Ipf.ai.mit.edu/Patents/testimony/statements/adobe.testimony.html).

PROFITING FROM OVERBROAD PATENTS 79

The patent fails to give the details of “digital signal processing,” the
method of compression, the method of encoding, or the method of play-
back. To summarize the fifty-eight claims of the patent: the sender takes
a video or audio clip, cuts it into packets, compresses them, and sends
them down the wire to a receiver, which decompresses the packets and
plays them. The patent is even agnostic about the type of wire. It does not
mention the Internet, so TV cable or anything else that uses a digital sig-
nal is covered by this patent as well. Because it is so general, practition-
ers would have trouble finding this patent. It never uses the word “Inter-
net,” the term “streaming media” had not yet been coined, and it fails to
mention any of the protocols that are commonly used on the Internet
today.

The modular implementation/interface structure of computer science is
wonderful because any black box in a program can be replaced with any
of a dozen black boxes with a similar interface. The transmission and
receiving system could just as easily use the MPEG 1 or MPEG 4 format,
the RealMedia format, the QuickTime format, the AVI format, or a dozen
others—so the patent covers all of these. Again, if the USPTO had
granted a patent on only a single implementation, the hassles engendered
by such breadth would not have arisen. Nonetheless, it is content to grant
patents on interfaces.

Search

Software’s patent problems are compounded by the tribulations of
search. Summing these up for an FTC panel, patent lawyer R. Lewis
Gable observed that it is impossible to reliably search existing software
patents:

You’re trying to advise a client who’s coming in and saying “Can I
enter this field and are there third-party patents out there that I will
infringe?” . .. There’s no way to find out whether your client will
just be walking into an infringement problem. And the thing that
often happens, and it’s sort of tragic for the individual small
investor: they put a lot of money and a lot of effort into this process
and two or three years down the line. .. they found out another
patent has issued that covers their invention and they’re barred
from using it.'”

17. FTC (2002, pp. 118-19).

80 PROFITING FROM OVERBROAD PATENTS

Software patents are uniquely difficult to search because there are so
many levels at which a program can violate a patent: the line, the func-
tion, the library, the program that ties the library’s elements together—
any of these could be infringing. Some patents cover single functions,
such as the pop-up window of figure 1-1. Others are for components of
larger programs, such as the functions that enable browsing with the
<tab> key. Still others have broad coverage: the streaming media patent,
for example, has a wealth of applications, thanks to the abstract nature
of mathematics-in-code.

Imagine designing a machine, say, an oat thresher, and having to do a
patent search—first on the overall concept just implemented, then on
every method of connecting two parts, then on every bolt in the
machine—only to find that the machine is a special case of a pure math-
ematical algorithm that makes no reference to oats, threshing, or bolts. In
view of the modular structure of software and the fact that new methods
are continuously devised on every level, the search problem is orders of
magnitude more complex in software than in traditional fields. As a
result, many just save themselves the trouble and assume that they are
infringing something.

Gaming with Broad Patents

The process allows too many undeserving patents to get easy approval
and makes overturning them supremely difficult. The subject matter
along with the court rulings (see chapter 4) have made software patents
especially broad and far-reaching. Nobody knows for certain if every
function in a program is patent-free. This sets the stage for a wide array
of dirty tricks by any business armed with a patent arsenal. Such abuses
can befall any patentable endeavor, but software is usually hit hardest
because of the breadth of its patents, the building-block structure of soft-
ware programs, and the great uncertainty as to what a given software
patent covers and what patents cover a given product.

Blocking Patents and Compound Inventions

A blocking patent is one that applies or improves another.'® For exam-
ple, Emily Rose may invent a skin patch that administers Prozac in a steady,

18. This type of patent is often more optimistically referred to as an “improving
patent.” Some reserve the name “blocking patent” for those patents that are applied for

PROFITING FROM OVERBROAD PATENTS 81

perpetual stream. Eli Lilly cannot administer Prozac in this way unless it
licenses Emily’s patch, but Emily’s patch is useless unless she licenses Prozac
from Eli Lilly. They are mutually blocked and have a strong incentive to
work together to create a common product and share the profits.

Eli Lilly is reasonably likely to allow a cross-licensing agreement. More
generally, whenever someone needs an invention as an ingredient in a
more complex recipe, there is a good chance that they will be able to get
access to the invention for a modest licensing fee. The arts and sciences
make progress, and the original inventor makes a living.

Allocating rights to the components of an invention via blocking
patents is sensible for goods relying on a small number of inventions, but
as discussed in chapter 3, all software stands on the shoulders of dozens of
libraries that came before it. If Emily Rose wants to write an electronic
address book and needs to contact one company for permission to use its
sorting algorithm, and another company for permission to describe people
using a certain data structure, still another for permission to implement
navigation with the <tab> key, and so on, she will spend so much more
time with lawyers than with coders that she may just give up the project.
As Ronald Mann’s University of Texas study points out, actual producers
faced with this situation typically do not throw up their hands but instead
write the software and resign themselves to the fact that if it sells well they
will eventually hear from the appropriate patent lawyers.

This is in line with Coase’s theorem, which can loosely be taken to say
that the allocation of property rights does not matter for achieving
(Pareto) optimality, but that transaction costs do. Therefore property
rights should be allocated so as to minimize transaction costs.!” By this
logic, giving dozens of individuals the rights needed to implement a sin-
gle program would be suboptimal.

Complex Industries

Wesley Cohen, Richard Nelson, and John Walsh (of Carnegie Mellon,
Columbia University, and the University of Illinois at Chicago, respectively)
interviewed employees working for a wide range of firms in which patents

solely to make life difficult for competitors, but improvement-type patents are much more
common.

19. Coase (1960). Although Coase’s 1960 paper is primarily about the equivalence of
different allocations in a frictionless market, the bulk of his research was about the means
and costs of bargaining—the transaction costs.

82 PROFITING FROM OVERBROAD PATENTS

are relevant.? They distinguished between industries with simple products
consisting of only one or a few patentable components and industries with
complex products involving hundreds of patents. Complex products
include computers, electrical equipment, electronic components, and
instruments. Since all software is built on an infinite tower of prior soft-
ware, it is the perfect example of a complex industry. Cohen and his col-
leagues found both anecdotally and statistically that firms in complex
industries are more likely to patent for the purpose of cross-licensing:

Because no one firm can move ahead on developing and commer-
cializing new technology without access to rival technology, incum-
bents can use their patents as bargaining chips either to compel their
inclusion in cross-licensing or at least secure the freedom to move
ahead on similar technological efforts without being sued. We call
this use of patents “block to play” because by compelling either
access to rival technology or at least protecting against suits by
incumbents, it facilitates a firm’s participation in a broad domain of
technological activity.?!

One executive of a firm manufacturing communications equipment
stated: “Mostly, your patents are used in horse trading. You come to-
gether and say, ‘Here’s our portfolio.” In our industry, things all build on
each other. We all overlap on each other’s patents. Eventually we come to
some agreement: ‘You can use ours and we can use yours.’”??

This sort of dealing is rent seeking: the process of allocating the spoils
of productive work already completed. Rent seeking is inevitable and
often a small part of a larger productive activity. On the other hand, a sys-
tem used only for rent seeking to the point of crowding out productive
activity is destructive. If Company A could extract $2 million from Com-
pany B by burning a million dollars’ worth of goods, it would do so with-
out hesitation, but the society as a whole is a million dollars poorer.

When Cohen and his colleagues asked manufacturers directly why
they patent their processes, they found the computer industry more inter-
ested in rent-seeking uses than productive uses. Table 5-1 presents the
responses for all industries, with special attention to the computer indus-
try (which includes both hardware and software), semiconductors, and

20. Cohen, Nelson, and Walsh (2000).
21. Cohen, Nelson, and Walsh (2000, p. 22).
22. Cohen, Nelson, and Walsh (2000, p. 19).

PROFITING FROM OVERBROAD PATENTS 83

Table 5-1. Motives for Patenting: The Computer Industry versus Other Industries
Percent of respondents

Percent difference

Electronic Al computers vs.
Why patent? Computers ~ Semiconductors components industries all industries
Prevent suits 88.2 58.3 417 46.5 +41.7
For use in negotiations 70.6 50.0 417 37.0 +33.6
Prevent copying 70.6 91.7 88.3 71.6 -7.0
Blocking 58.8 583 58.3 63.6 4.8
Licensing revenue 35.3 417 25.0 233 +12.04
Enhance reputation 235 25.0 333 34.0 -10.5
Measure performance 0.0 0.0 0.0 5.0 -5.0

related electronic components.?? In other industries, the most common
use of patents is to protect an innovation from being copied as per their
intended purpose discussed in chapter 2. But in the computer industry, the
most common reason for patenting is to gain a defense against lawsuits;
protecting the innovation comes second, along with use in rent-seeking
negotiations. Furthermore, the difference in responses between the com-
puter industry and the overall industries surveyed indicate that its rent-
seeking motivations are more common in relation to the norm.

This is not to say that defense and rent seeking are as prevalent in all
complex industries. The survey results from the semiconductor and the
electronic component industries (which build the parts for physical state
machines) match the general pattern: their most likely motive by far is to
maintain a distinct product, and blocking and defense are distant run-
ners-up in both industries.

Patent Thickets

For the most part, the horse trading that goes on among those who
already hold enough patents is an unproductive waste of time, but with
one significant side effect: it locks new entrants out of the market. Larger
firms have patent thickets of hundreds or even thousands of related
patents. Firms with dense thickets frequently exchange the rights to other

23. Cohen, Nelson, and Walsh (2000). The survey elicited 17 responses from firms in the
computer industry, 12 in semiconductors, 12 in electronics, and a total of 674. Another sur-
vey, on product patents, showed similar results.

84 PROFITING FROM OVERBROAD PATENTS

thickets. Here is Bill Gates, chief executive officer of Microsoft, describ-
ing the patent relationship between Microsoft and its competitors:

It was probably 14 years or so ago when IBM, as part of their rela-
tionship with us, came and visited me and said they’d be willing to
license their patents to us. And we said, oh, patents, wow, you want
to license your patents to us. In fact, we did enter into an agreement
with IBM, which IBM has done with many others, Microsoft has
done with many others, where we had a certain type of cross-
license. And I’d say year after year, certainly subsequent to that, it’s
something we’ve put a lot of energy into. . .. Just in the last year,
examples of this are our cross-license with SAP; an IP [intellectual
property] license with Sun as part of our new relationship with
them. . .. So a lot of activity, a lot of visibility.?*

What about those outside the club of large thicket-holders, whose one
or two patents will never match IBM’s thousands of patents? Can they
produce software and also make money from cross-licensing? Legal
scholar Ronald Mann interviewed developers and found that small firms
do actually survive in the patent thicket—but only by treading lightly.
One developer at a small software company who was asked about the
possibility of suing IBM over a patent held by his firm told Mann: “IBM
probably could sue us on 20 patents if they looked hard at what we do.
But we don’t want to have that relationship with them. Legal fees aside,
we could lose everything.”?s Although these patent thickets clearly exist,
it seems that IBM, for one, has so far failed to drop its sword of Damo-
cles on the heads of start-ups. Yet as firms grow larger, Mann observes,
this potential typically becomes a reality, and then having patents as bar-
gaining chips becomes important: “Nevertheless, a patent to offset IBM’s
potential claim is of little value until the day when IBM demands royal-
ties. IBM typically does not ask for royalties until the firm is earning suf-
ficient revenues to justify the inquiry.”2

Gary L. Reback, a Silicon Valley attorney, tells the story of how the
company spun off from the Stanford University network (Sun) appeared
on IBM’s radar:

24. Financial analyst meeting, July 29, 2004 (www.microsoft.com/msft/speech/FY04/
GatesFAM2004.mspx).

25. Mann (2004, p. 35).

26. Mann (2004, p. 44).

PROFITING FROM OVERBROAD PATENTS 85

A team of IBM patent lawyers went to Sun Microsystems Inc. in the
1980s and claimed that the then start-up was infringing on seven of
its patents. After Sun engineers explained why they were not
infringing, the IBM lawyers responded that with 10,000 patents,
they would be sure to find some infringement somewhere. . . . IBM
said Sun could “make this easy and pay us $20 million.” After some
negotiation on the amount, Sun cut a check.?”

These stories entirely corroborate the fact that IBM owns a patent
thicket, and that it uses that patent thicket to gain revenue. Indeed, the
22,357 patents granted to IBM between 1993 and 2002 have earned it
$10 billion in licensing fees.?®

The extreme characterization would be that IBM sues all competitors
out of existence, or that people cannot navigate the endless maze of
paperwork needed to secure a dozen or a hundred patents before sitting
down and writing code, but such a characterization is a myth. People will
write the software they intended to write, and IBM, being a reasonable
company, will allow them to do so. It is in IBM’s best interest to have a
wide range of software providers who all work on expanding the soft-
ware market in productive and profitable ways—and who all pay IBM a
percentage while doing so.

So patents are commonly used as bargaining chips between firms that
want to hammer out license exchange agreements, and depending on the
patents held, money changes hands from the small firm to IBM, or per-
haps between IBM and Microsoft. Incumbents can guarantee that they
will profit from future innovations by trading and enforcing their existing
stable of patents. But there is little if any evidence that this expensive
licensing game has anything to do with the process of new innovation or
producing valuable software.

The Hold-Up Problem

Even a large firm that holds most of the relevant patents in an indus-
try may still have infringement problems. If one subroutine out of 10,000
lines of code involves a patented work, then the entire program is infring-
ing. If the firm is notified of this before it distributes the program, it can
simply replace the existing subroutine with an unpatented one. But the

27. As told by Krim (2003).
28. Krim (2003). An indeterminate number of these are hardware patents.

86 PROFITING FROM OVERBROAD PATENTS

patent may be so broad that whatever the firm does would still tread on
the patent. In such a case, where the entire program is held up by a small
subelement, the person with the patent on that subelement can prevent
the program from being used until quite large royalties are paid.

Better still, the patent-holder can wait until the program is on the mar-
ket, and profits have been counted. Then the holder can sue for damages
up to or above the full profits from the product—recall that Kodak
extracted $92 million from Sun over patent infringement in free software.
Although Sun’s years of development of a new language that runs on
dozens of platforms clearly dwarfed the work behind Kodak’s patents on
tables mapping object types to applications, there is no rule that damages
should be proportional to the importance of the patent, however one
would measure such a thing. Infringement either exists or does not.

Another notable example of the problem arises in Eolas v. Microsoft.
Eolas is a company with no products of any sort, but it has a small
patent portfolio. It claimed that it had a patent over a certain facet of
Internet Explorer (IE) code that made use of the HTML-standard
embed and object tags. Since IE had been distributed by Microsoft
for years before the complaint was brought, the courts granted Eolas
$521 million in ex post damages.?® Like Java, IE has lived most of its life
as free software.

The embed and object tags are only two of dozens of tags in the
HTML standard. For example, the frame tag is notoriously difficult to
use without violating Southwestern Bell Corporation’s patents 5,933,841
and 6,442,574—and then there are the menus, the toolbars, the registry
database, and tens of thousands of lines of supporting code gluing it all
together. The $521 million Microsoft owes to Eolas did nothing to pro-
tect Microsoft from litigation over any other potential patents.

To summarize the game so far, one can basically assume (as Ronald
Mann’s interviewees did) that all software infringes on an IBM patent. A
software author’s main concern is to minimize the probability that IBM
will pursue action, and if it does, to minimize the licensing fees. Holding
one’s own patents lowers the likelihood, as does staying small and under
the radar. If a company’s patent holdings grow in proportion to revenues,
it will likely stay on level ground with IBM—Dbut then none of this is nec-

29. Microsoft eventually influenced the USPTO to invalidate Eolas’s patent, but Eolas
has found ways to keep the lawsuit afloat. For the intricacies of the suit to date, see Crouch
(2004).

PROFITING FROM OVERBROAD PATENTS 87

essarily protection from firms like Eolas, which have no products and
therefore no interest in cross-licensing.

Edward J. Black, president and CEO of the Computer and Communi-
cations Industry Association, summarized the situation in testimony to
the FTC: “In too many different places [software patenting] has lost its
fundamental engine, which is that it’s supposed to be the dynamo and the
legal structure that really promotes innovation. . .. [T]hat’s not its core
function[;] . . . the core function is business strategy, gaming, squeezing
players out, preventing people from wanting to take risks.”3°

Submarine Patents

Inventors are sometimes ahead of their time, and when other
researchers catch up, they are surprised to see that their brilliant new
ideas are actually old news, and even patented. Although this happens in
every industry, it is more of a problem for the software industry because
the product cycles are short, the database of software patents is impossi-
ble to search, and software lives and dies on its interoperability with other
software. Mark Webbink, senior vice president and general counsel of
Red Hat, Inc., explains: “It may be years beyond the time that a particu-
lar piece of technology has hit the marketplace before it is evident that it,
in fact, is covered by a form of patent protection.”3!

Since searching the patent literature to determine whether an idea is
someone’s property is so difficult, the optimal strategy for many inventors
is to hide their work in plain sight, losing it in the sea of patents. If they
are lucky, one of their ideas will be patented and become an industry
standard (via a contract, imitation, or independent derivation), and then
they can wait for the standard to take off. This requires patience, but
there is enough time. Since the computer industry changes so rapidly, a
software interface can rise from obscurity to a universal standard well
within the twenty-year life of a patent. When enough software is built
around the standard, the patent-holder can surface. Vendors will acqui-
esce to paying licensing fees rather than suddenly find their product
incompatible with every other piece of software.*

30. FTC (2002, p. 138).

31. FTC (2002, pp. 99-100).

32. The term “submarine patent” is usually used more restrictively to refer to patents that
are deliberately held up in USPTO review. While under review, an invention is kept secret, so
that if the patent application is rejected the applicant may still protect the invention as a trade
secret. But others who are ignorant of the patent’s progress may have implemented it by the

88 PROFITING FROM OVERBROAD PATENTS

This strategy twists the social contract, relying on ignorance and over-
sight rather than producing a product of higher quality. Instead of adver-
tising an innovation and providing clear and fair licensing terms, a sub-
marine patent-holder keeps potential buyers in the dark until they make
decisions that they will regret after learning the patent-holder’s terms.
Examples of such innovations abound, including GIFs (files in the Graph-
ics Interchange Format), MP3s, and streaming media.

GIfs. Most of the small drawings on the typical web page, such as
arrows, logos, and cartoons, are in the Graphics Interchange Format. Part
of the format’s appeal is that it includes a compression scheme, the LZW
algorithm (by Abraham Lempel, Jacob Ziv, and Terry Welch), which
allows the picture to be sent down the wire quickly. Welch described the
mathematical algorithm in a journal article—and in June 1983, just
before it was published, he also applied for a patent on the scheme, with
the company now known as Unisys as the assignee.’> Meanwhile, the
designers of the GIF standard used the LZW algorithm in a form they had
seen in a peer-reviewed journal and made their results public. GIF took
off and is now a well-supported standard.

Unisys, the owner of patent 4,558,302, subsequently sent letters assert-
ing its ownership to everyone who writes software that can save images
in GIF. Most just paid the GIF tax Unisys demanded (0.45 percent of unit
sale price, minimum 10¢ per unit, maximum $10 per unit).>* Authors of
free software paid a different price: they had to cripple their software so
as not to handle GIFs.*

MP3s. The International Standards Organization formed a committee,
the Motion Picture Experts Group, to design a standard for the trans-
mission of media by digital means. The first phase of the project focused
on media that move data at a relatively slow speed, with layer III of that
phase concentrating on audio. The reader is probably familiar with the

time the application emerges from the USPTO. Because of this, patent applications are now
published 18 months after they arrive at the USPTO. Software patents are difficult to search
even when published, so a patent is still effectively hidden even after it enters the public
record. Hence in the context of software it is reasonable to expand the term to any invention
that practitioners do not know about until informed via a royalty demand.

33. Welch (1984).

34. Amusingly enough, IBM has a patent on LZW encoding as well (patent 4,814,746);
even USPTO patent examiners have trouble determining whether a software algorithm is
already patented. See Battilana (2004).

35. Unisys’s patent expired on June 20, 2003, and so programs involving it have since
been uncrippled.

PROFITING FROM OVERBROAD PATENTS 89

ISO MPEG-1 layer III standard by its colloquial name: MP3. Data had to
move over a relatively narrow bandwidth, and it so happened that the
Fraunhofer Institute for Integrated Circuits, a German research contrac-
tor, had done extensive prior work designing a standard for compressing
audio data—and had patented the results (U.S. patents 5,579,430 and
5,742,735, among many others). After the MP3 format flourished and
became an accepted standard that almost all audio software supports, the
Fraunhofer Institute wrote to as many makers of MP3-creating and play-
ing software and hardware as it could find to point out that its work is
patented.

This is the perfect example of the submarine patent. Most people as-
sumed that a standard may be freely used, and the fact that nobody
thought it would cost anything certainly accounts in part for the popu-
larity of MP3. Fraunhofer made no effort to dispel this belief until it
started sending out royalty demands.

The damage has now been done, however, and people are much more
wary of standards. Even when a standards body claims that its standards
are patent-free, it simply cannot guarantee that it is not treading on any of
the 170,000 existing software patents, or any of the pending applications
at the USPTO that will be made public after the standard is published.

Streaming Media. Acacia Technologies is in the business of bringing sub-
marine patents to the surface: it buys patents that match implementations
by practitioners and then sues the practitioners. As of this writing, its
prized possession is patent 5,132,992, the vaguely worded “Audio and
video transmission and receiving system” from page 78.3¢ According to
an Acacia press release from June 15, 2004, Acacia is suing nine cable
and satellite companies; anyone receiving digital cable might be a con-
tributory infringer of this patent.

This is a case where everything discussed in this book went wrong. To
begin with, as applied to most media, like the Internet, this patent is obvi-
ous. Since all data on the Internet are in packets, and since audio is com-
pressed using a format such as MP3 (and video is compressed using
another part of the MPEG-1 standard), the patent’s new contribution to
Internet media is that one side sends a media clip and the other side
receives it.

There was nothing like this in the patent literature in 1992 because it
had just never occurred to anybody to file a patent on this sort of thing

36. A lengthy discussion of Acacia’s history and methods can be found in Cherry (2004).

90 PROFITING FROM OVERBROAD PATENTS

before. However, the lack of prior patent art does not mean that a prac-
titioner could not have come up with the process patented. The fact that
nine cable and satellite companies and countless streaming media com-
panies online all implemented this patent without knowing of its exis-
tence is a strong indication of its obviousness as written.

The Instability of Existing Patents

Being so obvious and so broad, the streaming media patent may well be
overturned eventually. In the meantime, nine companies are forced to
occupy their legal teams in defending against the patent in court. Perhaps
the patent will be reexamined by the USPTO and invalidated before the tri-
als end; perhaps the defendants will have to pay Acacia. Because the patent
is highly questionable, the defendants and the media industry at large are
unsure of the outcome, and the world becomes a more uncertain place.

The economically optimal lawsuit is one that never happens. At best,
the engineers know the rules of what they may or may not use; without
involving lawyers, the education is cheap. If company B needs to use com-
pany A’s patented technology, then B arranges clear licensing terms with
A to use its technology, which is modestly expensive. Failing this, com-
pany A writes a cease-and-desist letter to company B, threatening to sue
if company B continues to use its patented technology. Company B con-
sults with its lawyers, who determine that the chance of having the patent
struck down is minuscule, so the lawsuit would be a waste of effort, and
the two companies arrive at some sort of settlement without going to
trial; this is more expensive. Failing this, companies A and B go to trial,
spending millions on legal fees.

How far companies A and B move along this chain of wasted expense
depends heavily on the clarity of patent law and the patents themselves.
The best laws are understood by all, the next best require occasional clar-
ification in specific situations, and the worst are never clarified unless par-
ties engage in full-blown litigation.

The software field is filled with patents that could be struck down.
To make matters worse, the law is extremely complex: In contrast to the
single paragraph on searching prior art, the MPEP includes eight pages
of hairsplitting case law that attempts to establish what a patentable
computer-related invention is.>” The threat inherent in the cease-and-

37. MPEP 2100-10-2100-18.

PROFITING FROM OVERBROAD PATENTS 91

desist letter (“We will take you to court and we will certainly win”) is
simply not credible.?®

The social benefit from granting patents lies not in handing monopo-
lies to those who have done good work in the past, but in motivating the
researchers of today to continue to invent new technologies. If every con-
ceivable technology is already patented, the patent system is directly frus-
trating its own goal. Submarine patents such as those mentioned earlier
and the long list of related lawsuits in chapter 1 all serve as deterrents to
new inventors, warning them that the software industry is a well-seeded
minefield that they had best stay out of. In every industry, inventors are
aware that they must be careful to search existing patents before embark-
ing on any major projects, but chemists and engineers are not in the habit
of assuming that anything they invent will infringe on some unknown
party’s patents. The patent mines in the physical fields are much less dense
and much more clearly marked than in the software field.

If all software patents were fully valid and enforceable, and all pro-
grammers knew that they had to have a license from IBM, Novell, and
Microsoft before sitting down to write any code, the world might still be
better off than it is at present. Programmers would not inadvertently
break the law, meaning that no lawsuits would be filed. They would not
write code thinking that it was their own work only to later discover that
they were implementing somebody else’s patent. In equilibrium, few peo-
ple would write code, but those who did would know exactly where they
stood and would expend resources producing good products instead of
playing legal games.

But this is as remote from the current state of affairs as can be. As chap-
ter 6 makes clear, today’s software market is crowded with a massively
decentralized network of programmers, all of whom make some contri-
bution to the world’s code base but feel the constant threat of patent liti-
gation at their backs.

38. This does not mean that company B will certainly go to trial, since the cost may not
be worth the effort. Because the benefits to striking down a bad patent are distributed
among many users whereas the cost is borne entirely by the company that tries to strike it
down, there is a collective action problem in defeating bad patents, so the patent-holder may
persist in extracting rents indefinitely.

CHAPTER SIX

The
Decentralized
Software Market

The world of software engineering is in no way restricted
to software companies. Beyond Microsoft or thousands of smaller soft-
ware vendors, almost every corporation in the world keeps a stable of
programmers in the basement to write little scripts that move the com-
pany’s e-mail and make the “add to cart” button do what it should. T am
a programmer because I write simulations and statistical analyses. Even
you are a software programmer if you use the Record Macro feature of
your spreadsheet or word processor.

The variety in types of software producers engenders two distinct
methods of pricing software. One, shrink-wrap pricing, derives from
more ephemeral markets: software is sold by the unit (packaged in
shrink-wrapped boxes, for example) at a per unit cost. The other, labor-
oriented pricing, follows from an hourly wage or an annual salary paid to
people in the basement who write code. To give a music analogy: a band
may record an album in the studio and then charge for each copy of the
recording, or it can be paid for playing a live gig, and then audience mem-
bers can bootleg the concert and listen at home for free. Both are viable
means of making recordings for the public and money for the band.

The latest accounting from the Bureau of Economic Analysis divides
the software market into three parts: retail, consultants, and in-house,
which are evenly split in the U.S. economy. Of the $232.5 billion spent on
software in 2002, 32.6 percent bought prepackaged programs, 36.4 per-

92

THE DECENTRALIZED SOFTWARE MARKET 93

cent custom-built ones, and 31.0 percent software written in-house.’
Since patent law is built around traditional products that are much more
homogeneous, it is worth considering what will happen when the law for
primarily product-oriented markets (such as drugs, machinery, and mate-
rials) is applied to a market that is one-third product oriented, one-third
service oriented, and one-third a mix of the two.

Comparative Advantage and the Programmers in the Basement

A good company, according to the management self-help books, stays
focused on its core functions. If a company is good at making orange
juice, it does not digress into selling autos, even if the owner knows an
awful lot about cars. But any business of more than a few people, regard-
less of its actual purpose, will need word processors, an accounting and
inventory system attached to a database, a website, e-mail, and some-
where from one person to an entire department to take care of all that
software.

By contrast, no companies have a drug manufacturer in the basement
to make sure that the accounting department has all the Prozac it needs
to function smoothly, and if the accountants find that off-the-shelf Prozac
does not quite work, they cannot hire a chemist to hack, patch, or cus-
tomize Prozac for the company’s specialized needs. Yet no matter how
much work is shifted to Microsoft, SAP, or other contractors, it will
always come down to the in-house information technology (IT) depart-
ment to make sure the company’s software is installed and working
properly. Although they are often invisible (until something breaks), the
people in the basement are an integral part of the software industry.

The Communists Are Coming!

What happens to the software in the basement after it is written? Most
software is so entirely location and task specific that it is used once and
forgotten. Sometimes, however, it is so useful and new that the program-
mers in the basement form a company and start selling CDs—in fact, this
is how a number of shrink-wrapped software products started out: for

1. By revenue; U.S. Department of Commerce, Bureau of Economic Analysis, “Recog-
nition of Business and Government Expenditure for Software as Investment: Methodology
and Quantitative Impacts, 1959-98” (www.bea.gov/bea/papers/software.pdf). Updated
with 2002 data at www.bea.gov/bea/papers/table11.xls.

94 THE DECENTRALIZED SOFTWARE MARKET

example, the SABRE flight reservation system (originally written at Amer-
ican Airlines, now owned by SABRE Holdings), the CADAM design pro-
gram (originally from Lockheed, now owned by CADAM, Inc.), the
Eudora e-mail client (written at and used by the University of Illinois,
now owned by Qualcomm), or GAMS mathematical modeling software
(written at the World Bank, now owned by GAMS Development).

With increasing frequency, software is also being given away to anyone
who asks. Locking down a piece of software to license and sell it is just
not worth the effort in the vast majority of cases—if a company has a
comparative advantage in selling insurance or sofas, what business does
it have in software consulting? It may have some great programmers in
the basement, but hiring a sales team, getting the legal department up to
speed on software licensing, and finding new ways to distribute software
instead of sofas is a stretch far beyond the company’s primary compara-
tive advantage.

If a company is not hoping to make big profits from a piece of soft-
ware, its best bet is to go to the other extreme and open the code base
entirely, allowing for free and open collaboration. There are program-
mers in hundreds of basements who need a good database client. One
writes the core of a database client and puts all the code out for inspec-
tion. Then another programmer, ensconced in another basement, finds
that the code does what her company needs but has a few bugs, which
she fixes. In another basement, another wage slave finds that the code
works well, except it is missing support for BLOBs (binary large objects),
so she adds that. The process continues, as everybody contributes the
feature that makes the code perfect in their eyes, until—for the time
needed to write a few functions—everyone has a full-featured and well-
tested database.

Such collaboration in software dates back to when there were a hand-
ful of computers in the United States and a small community of pro-
grammers who knew how to work them. Since then collaboration has
become infinitely easier thanks to the Internet.? Although some would
claim that the collaborative system is the latest trend, shrink-wrapped
software sold at unit cost is the new business model in this field.

It may sound like wishful thinking, but the collaborative method has
produced some very heavy-duty software. As of October 2005,

2. A personal account of this history is given in the biography of Richard Stallman
(Williams 2002), a vocal advocate of the collaborative method.

THE DECENTRALIZED SOFTWARE MARKET 95

69.89 percent of websites use Apache, a free program developed in about
the same manner as just described.’ As well as web pages, one’s e-mail
probably arrives via collaborative software (either Sendmail or IBM-
sponsored Postfix), and all the computers involved found each other via
the Internet addressing program that most servers use, Berkeley Internet
Name Daemon (BIND), which is also free software. Such software goes
by a variety of names, including free software, libre software, open-
source software, or the catch-all FLOSS.*

A report assessing the popularity of FLOSS in three European coun-
tries has found some variation in its use: only 18 percent of establish-
ments in Sweden use some sort of open-source software; 31 percent do so
in the United Kingdom; and 44 percent do in Germany.® Sectors also vary
greatly in this regard, with public sector organizations using more open-
source software than those in the private sector.

Thirty-six percent of the companies surveyed agreed with the state-
ment, “Our software developers are free to work on Open Source proj-
ects within their time at work,” while 46 percent disagreed.® In other
words, the plurality of companies insist that their employees’ work
remain the company’s property, but a large percentage of for-profit enter-
prises allow some of their employees’ work to be given away for free.

Open-source programmers are often characterized as hobbyists who
are learning computer science or just having fun with pet projects of no

3. Netcraft 2005 Web Server Survey (news.netcraft.com/archives/web_server_survey.
html). Microsoft’s IIS comes in second, with a 20.55 percent share. A website is defined as
one host name.

4. The naming of this type of software hints at some massive infighting among FLOSS
advocates, even though they agree on virtually everything else. In a recent interview (“Thus
Spake Stallman,” Slashdot, May 1, 2000 [slashdot.org/interviews/00/05/01/1052216.
shtml]), Richard Stallman, founder of the Free Software Foundation, takes pains to point
out that “I am not affiliated with the Open Source Movement. I founded the Free Software
Movement.” He reserves especial vitriol for the writing of leading open-source advocate
Eric S. Raymond, perhaps because Raymond has said of Stallman: “As an evangelist to the
mainstream, he’s been one fifteen-year long continuous disaster” (www.catb.org/~esr/
writings/shut-up-and-show-them.html). The naming fight underscores the idea that the soft-
ware should be free of licensing restrictions (“free as in speech”) rather than simply free of
cost (“free as in beer”). The term FLOSS is a pleasing compromise because it forms a com-
mon, albeit irrelevant, word from all of the options. Here, I refer to FLOSS as “open-
source” software because I think it sounds nicer and also use the term “collaborative soft-
ware” to refer to the means of producing software in a decentralized manner even when the
output is not free or open.

S. International Institute of Infonomics (2004).

6. International Institute of Infonomics (2004, pt. I, sec. 4.1).

96 THE DECENTRALIZED SOFTWARE MARKET

real significance. Although some of them would certainly meet that
description, a reported 29 percent of Europe’s open-source programmers
are paid for developing free software at work, and 24 percent are not paid
for doing so but do it on company time anyway.” Add to this the 17 per-
cent of developers who are students, and only a few remain who are devel-
oping open-source software in their spare time.® The European Commis-
sion study states that “the development of Open Source/Free Software is
not at all a matter of leisure ‘work’ at home. Ninety-five percent of the
sample claim that they use OS/FS at work, school, or university.”’

Making Money on Free Software

A number of little companies use free software to make money. For
example, IBM sells mainframes, but if it can throw in free software that
makes its mainframes powerful web and e-mail servers, then it can move
more metal. In a similar vein, Sun gives away Java. Another name on the
list of success stories is Red Hat, which provides consulting services for
corporations and creates neat packages of free software for consumers.
Hans Reiser, designer of the best UNIX file system (the reiserfs), sells fea-
tures: he has a to-do list of a dozen features that he wants to implement
in his file system, but when the president of MP3.com offered him tens of
thousands of dollars to implement a feature necessary for MP3.com busi-
ness, he quickly obliged. MP3.com saved millions of dollars by switching
to free software using Reiser’s free file system, and Reiser profited from
what he would have done anyway.'"

Collaborative software is clearly a threat to the shrink-wrapped soft-
ware market, because, as the saying goes, it has to compete with free. But
for the labor-oriented side of the market, the wealth of ready-to-download
software merely creates new opportunities.

Free Software and Optimal Pricing

What does economic theory say about free software written by profit-
maximizing firms? It says that this behavior is efficient. In a free and open
market with many competitors, each unit of a good should be priced at
the cost of producing that very unit (that is, the marginal cost). The first

7. Ghosh and others (2002).

8. International Institute of Infonomics (2004, pt. IV, sec. 2.3).

9. International Institute of Infonomics (2004, pt. IV, sec. 3.1).

10. Hans Reiser, speech at California Institute of Technology, November 14, 2002.

THE DECENTRALIZED SOFTWARE MARKET 97

unit of software requires some amount of labor, and that needs to be
compensated in full by paying the programmer a salary or wage. The sec-
ond unit can be produced at basically no cost, since it only needs to be
copied, so a zero price for the second unit and beyond is what the theory
predicts and can be shown to be efficient.

Meanwhile, shrink-wrapped software is not priced by marginal cost,
but closer to average cost—spend a million dollars making the first CD,
then make ten thousand copies and charge $100 for each of them. Since
vendors have a copyright on their work, their software will differ in
enough ways from that of their competitors to allow them to charge well
above marginal cost for their products.

In practice, of course, products are seldom priced at marginal cost.
Few goods in this world are truly standardized, and even among those
that are (corn of a certain grade, or government bond futures, for exam-
ple), some units still sell at well above marginal cost. The amazing thing
about open-source software, from the perspective of the theoretical econ-
omist, is that it actually fits the theory. Most markets experience prob-
lems that theory must ignore or explain away: inventories, shipping costs,
transaction costs, massive up-front investments, and the risks those
imply. Given such imperfections, it makes sense to correct them by impos-
ing laws that would otherwise be suboptimal—a primary example being
patent law, which solves the up-front investment problem. But collabora-
tive software actually fits the models: transaction costs are nil, investment
problems are solved without patents, and one can actually apply the the-
ories that predict optimality without apology. For open-source software,
patents solve an economic problem that had not existed to begin with.

Open Source and Patents

Not only do patents have no value or relevance to open-source soft-
ware, but they have the potential to be a significant hindrance. By defini-
tion, open-source software lacks a centralized body through which to
obtain patents, not to mention lawyers to defend against patent threats
(although both IBM and Sun made limited pledges to support open-
source authors in some patent-related issues, and even Lloyd’s of London
intends to sell liability insurance for servers running open-source soft-
ware).!" Adobe can sue Macromedia and vice versa, and both can afford

11. Other companies that have made patent pledges include Computer Associates,
Nokia, Novell, and Red Hat. Robin Cover, ed., “Open Source Development Labs (OSDL)

98 THE DECENTRALIZED SOFTWARE MARKET

to hire lawyers to keep them in business, but if anyone were to sue a col-
laborative project that does not have a patron backing it, the project
would have no choice but to shut down.

The collaborative system depends on the source being open to all and
making sure that everyone is free to modify the code. People who intend
the code to be collaborative have an ingenious method of making it so:
they copyright the code and claim complete control over its use. Then, in
licensing out the code, they explicitly specify that users are free to redis-
tribute or modify the code as they see fit, provided they do not impose
their own restrictions. Although there are dozens of such contracts to
choose from, the standard one delineating these rules is the GNU General
Public License (GPL), where GNU stands for GNU’s Not Unix.

Here is the key message from the GPL:'? “This program is free soft-
ware; you can redistribute it and/or modify it under the terms of the GNU
General Public License.” How would this work if some portion of the
code were patented? If the patent-holder charges a licensing fee, the soft-
ware cannot be costless any more. If the software can be freely redistrib-
uted, the patent-holder must give up his or her right to limit distribution.
Since the software can be reworked into other applications, the patent-
holder even gives up the right to redistribution in a potentially wide range
of applications. Clearly, any patent-holder who wants to retain any ves-
tige of control would not consent to a patent being used in GPLed code.

The GPL explicitly acknowledges that if a claim is asserted for patented
code in a project, the project must shut down as a public endeavor: “If a
patent license would not permit royalty-free redistributon of the Program
by all those who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.” In short, patents and collabo-
rative software cannot coexist, and if the two collide, patents win.

Collaborative software does have one advantage over patents. If a
patent-holder threatens to shut down a collaborative project, the entire

Announces Patent Commons Project,” Cover Pages, August 10, 2005 (http://xml.cover-
pages.org/ni2005-08-10-a.html). Gavin Clarke, “Lloyd’s Taking on Open Source IP
Risk,” The Register, August 12, 2005 (www.theregister.co.uk/2005/08/12/opensource_
indemnification); “IBM Statement of Non-Assertion of Named Patents against OSS”
(www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf); Stephen Shankland, “Sun:
Patent Use OK beyond Solaris Project,” Cnet News, January 31, 2005 (news.com.com/
Sun+Patent+use+OK+beyond+Solaris+project/2100-7344_3-5557658. html).
12. Version 2 (1991).

THE DECENTRALIZED SOFTWARE MARKET 99

project may shift to finding prior art that would invalidate the patent.
With hundreds of people from diverse parts of the computer science world
all focusing on searching for prior art, the odds are very high that some-
thing will turn up. The Electronic Frontier Foundation has used this strat-
egy to locate prior art about items in its list of the worst software patents.'?

This approach still relies on a great deal of publicity, so if a specialized
project receives a cease-and-desist letter or there is a flood of patent
claims throughout the open-source community, the required critical mass
of eyeballs required to find good prior art may not be reached. Every web
designer in the world could probably contribute something to a prior art
search pertaining to Amazon’s infamous patent 5,960,411, on one-click
purchasing. But if the GNU Scientific Library gets a takedown notice for
violating one of the fast Fourier transform patents (see page 63), a far
smaller population could come to the GSLs support.'*

Even if a community of users find prior art immediately, it still needs
to be ruled upon by the courts or the U.S. Patent and Trade Office
(USPTO), which would take months (in Internet Time, several centuries)
and may still fail on the details. Many users would be too risk-averse to
wait for the ruling and would stop using the technology until clarity is
restored.

Much has been made of security risks to the Internet and the potential
havoc a terrorist could cause by a well-placed worm, virus, or technical
glitch that might bring down large parts of the network. But here is the
surest and simplest way to shut down the Internet: find a function or data
structure in BIND or Apache that is under the scope of a patent, hire a
lawyer, and start suing as many people as possible. For BIND especially,
there are few alternatives, and switching is technically difficult—and who
knows whether the alternatives are patent-free?

Microsoft has even thrown out a few warnings that such lawsuits are
inevitable for users of open source software.!* Fortunately, the company

13. The Electronic Frontier Foundation’s Patent Busting Project, at eff.org/patent/.

14. This is not to say that the FFT patents are a special interest issue: not many people
may know how to calculate FFTs, but most cell phones, DVD players, and cable boxes do.
A disclaimer: when I wrote this sentence, I had in mind the maintainers of the GSL. But the
description of how open-source software can benefit all involved earlier in this chapter was
so persuasive that I have since initiated an open-source project based on the statistical func-
tions I use in my own work (see apophenia.info). Therefore, the problem of patent exposure
now applies to me directly.

15. John Lettice, “Use Linux and You Will Be Sued, Ballmer Tells Government,” The
Register, November 2004 (www.theregister.co.uk/2004/11/18/ballmer_linux_lawsuits/).

100 THE DECENTRALIZED SOFTWARE MARKET

provides its own operating system and server software (IIS on Windows),
which risk-averse companies can use to replace Apache on Linux, and
provides indemnification protection by (and from) Microsoft’s legal
department.'® Indeed, at least one case (J2 Global Communications v.
Mijanda, Inc.) has cropped up over alleged patent infringement by open-
source software used by the defendant.!”

Even a single function could lead to a patent suit, so lawsuit-averse
programmers had best purchase function libraries from vendors instead
of writing their own and glue them together using a purchased copy of
Microsoft’s Visual Studio instead of a freely downloaded copy of the
GNU Compiler Collection. Perhaps the best bet is to simply stop writing
programs entirely and purchase all software from those centralized ven-
dors who own the patent thickets that can provide indemnification.

At one time, the labor market and the shrink-wrap market were in a
balanced relationship: software companies sold their goods to the labor-
oriented side, which applied them to their projects, and everybody made
money. But now that there is a well-established and tested mechanism to
allow the labor-oriented side to incrementally build the operating system
and desktop-level software that is the specialty of the shrink-wrap vendor,
the goods-oriented side of the couple has been spurned. It is only natural
that the goods-oriented side would use all of the weapons available to
ensure that the labor side remains bound to the union.

Decentralization

Another way to cast the difference between the goods-oriented and labor-
oriented market is to say that the labor-oriented market is massively
decentralized. On one hand, there are only a few tractor companies,
which maintain a full-time staff of the best and brightest. If those central
repositories of mechanical knowledge are not well supported, the tractor
arts cannot advance. There may be some inventive tinkerers cobbling

16. Ina Fried, “Microsoft to Back Customers in Infringement Cases,” ZDNet, Novem-
ber 10, 2004 (http:/news.zdnet.com/2100-3513_22-5445868.html).

17. Pamela Jones, “Patent Lawsuits That Involve FOSS,” Groklaw, August 10, 2005
(www.groklaw.net/article.php?story=2005080914234645). Normally, using a patented
device is contributory infringement, which can be prosecuted in a manner similar to direct
infringement. But recall Judge Rich’s opinion in I re Alappat (chapter 3): to load a program
onto a computer is to build a new machine, meaning that Mijada is directly infringing the
patent, even though its employees may not have written a single line of the open-source pro-
gram that is the core of the infringement claims.

THE DECENTRALIZED SOFTWARE MARKET 101

together contraptions outside of these companies, but the vast majority of
tractor technology is developed and supported by tractor vendors. On
the other hand, every basement of every corporation has its program-
mers, and they are producing fully operable software. If [want a program
to do any given function, say, convert document formats or implement a
database, dozens or even hundreds of viable options are at my disposal,
only a fraction of which were written by people at software companies.

The abundance of languages and libraries helps: for any given task,
there are so many tools already in existence that a designer can have a
basic running program rather quickly. A wealth of database engines are
lying around just for the taking, waiting to be built into larger devices; the
same certainly could not be said of tractor engines.

The structure of software also makes decentralized programming
easy. So long as he does not change the function’s interface, a program-
mer can tweak, debug, and optimize the function implementation all he
wants without affecting the other parts of the project that use the func-
tion. This means that after the overall high-level design is done, there is
little or no benefit to having all of the programmers in one place. Of
course, the fact that the product can be e-mailed instantaneously at zero
cost helps as well.

I stress this decentralization because some pro-patent authors believe
patent difficulties can be attributed entirely to the relationship between
patents and open-source software. Since open-source advocates are mere
hobbyists on the fringe, they reason, one can safely ignore them and focus
policy on the vendors of software. As already mentioned, open-source
software is neither written primarily by hobbyists nor produced on the
fringe. Even so, the central problem is not about open source, but about
centralized versus decentralized production. The best examples of decen-
tralized production are indeed open source—the Linux kernel was writ-
ten by 418 programmers from 35 countries, on every continent but
Antarctica—but even the companies with a no-open-source policy have
programmers in the basement working full time on code and software.'

If a technology needs a centralized group to help it advance, then it
makes sense to design a mechanism to support those few specialized
experts who push forward the frontiers. In such a field, the patent-thicket

18. Ilkka Tuomi, “Evolution of the Linux Credits File: Methodological Challenges and
Reference Data for Open Source Research,” June 2004 (www.firstmonday.dk/issues/
issue9_6/tuomi/). Data based on kernel 2.4.25, released July 2002.

102 THE DECENTRALIZED SOFTWARE MARKET

problem is not a problem because there are only a few actors in the busi-
ness, so the transaction costs of negotiating exchanges are low.

But this story is entirely removed from the reality of software. A third
of the industry consists of centralized organizations that only write soft-
ware while the rest is largely a decentralized body of workers supporting
themselves and their innovations through immediate, direct application
rather than waiting to put out a product in the near future. As far as
Coasian arguments about transaction costs are concerned, this is ab-
solutely the worst case, since buyers and sellers are distributed across the
planet. Because every patent is unique, there is no easy way to create a
simple market to make patent trading cheap.

The rule that independent invention is not a defense in infringement
claims makes sense in a centralized industry. Patents are public record,
and it is reasonable to assume that every tractor manufacturer is exerting
some effort to watch every other such manufacturer. In the decentralized
software industry, this does not make any sense at all: should the sofa
company spend time and effort on monitoring Microsoft and Novell’s
patent portfolio? Add in the software patent search problems from chap-
ter 5, and the assumption that everyone has full knowledge of the patent
playing field becomes still more tenuous.

In short, patents in a decentralized market are Coase’s worst nightmare:
every player needs to expend vast quantities searching for the owner of
every part of every program, meaning transaction costs piled upon trans-
action costs. These costs will always exist in every field, but they are mag-
nified in a dense, decentralized network of actors.

Centralizing the patent search process (by hiring centralized full-time
patent search firms to support the decentralized programmers) will not
help much: searchers will still have to check every computational nut and
bolt, and owing to the joys of mathematical abstraction, hundreds of
patents like the singular value decomposition patent apply to hundreds of
different fields. Because any Turing machine can be applied to any effec-
tively computable problem, computer science itself is a dense network of
concepts, each one a step or two away from virtually every other. To do
a proper search, then, one would have to check almost every prior use of
a Turing machine: in all, 170,000 patents and counting.

As an aside, the political landscape of software is a manifestation of
the collective action problem: a centralized group that stands to gain sig-
nificantly from a policy will lobby more vehemently than a decentralized
group of many people who all stand to lose from the policy, and so inef-

THE DECENTRALIZED SOFTWARE MARKET 103

ficient political decisions are often made to please the most concentrated
and vocal interests.'”” At the height of the European debate, centralized
producers with large patent portfolios such as Adobe, Cisco Systems,
IBM, and Microsoft spent a great many resources on lobbying the EU’s
decisionmakers.

The patent problems discussed in this chapter are not about open
source; they are about decentralization. Software design was decentral-
ized before open source became mainstream, and at least a third of the
market, including a large subportion that does not open its source,
remains decentralized. Patents were not designed to cover goods pro-
duced by thousands of companies that do not even work in the industry
in question. There are many reasons to believe that they are not as good
a fit for a massively decentralized system as for traditional centralized
systems of production.

How Patents Affect the Bifurcated Market

Patents primarily benefit the authors of shrink-wrapped software. Return-
ing to the music metaphor, the band that makes its money playing gigs
needs no IP protection. If fans do not pay at the door, they will not hear
the music. The band that focuses on CD sales depends heavily on IP pro-
tection, since copies of its CDs are near-perfect substitutes for the origi-
nals. Similarly, the provider of a software product needs to differentiate his
from that of others in order to charge a unit price greater than the near-
zero unit cost. Copyright is sufficient for this, but as discussed in chapter
5, patents as they exist today are so broad that a patent-owner can carve
out sole ownership of a much larger part of the market than a copyright-
owner could. Meanwhile, a strictly labor-oriented employee is more indif-
ferent to IP protection: if the company does not pay at the door, then the
programmer will withhold his or her labor—no IP required.

As already mentioned, patents make the most sense and provide the
most economic benefit in a system built around a few centralized vendors
of goods. Conversely, they make no sense at all in the context of a decen-
tralized network of laborers—especially if everyone has already found
incentive to innovate in the need to do his or her own job better.

In real life, of course, the class of programmers does not bifurcate into
those who provide only shrink-wrapped software and those who provide

19. For the classic description of the problem, see Olson (1971).

104 THE DECENTRALIZED SOFTWARE MARKET

only day-to-day labor, but includes people whose work falls all along the
range. In the middle are a variety of consultants, who typically offer both
software (either off the shelf or custom made) and implementation ser-
vices. To the extent that they differentiate themselves through their
unique software, patents may help; to the extent that they differentiate
through high-quality labor, patents are irrelevant.

Just as some bar bands prefer to strictly control bootleg recordings
and profit from their sale, labor-oriented providers may be able to profit
from controlling the software they produce. In the context here, there is
potential for a labor-oriented programmer to turn into a product-oriented
programmer. However, recall the matter of comparative advantage: the
sofa company is not oriented toward software sales or software patent
licensing, and reorienting the business would be costly. Meanwhile, ven-
dors of shrink-wrapped software know the software market and need to
make little or no extension to the main business to apply for and license
software patents. In short, software patents are designed for and can help
shrink-wrap vendors but do nothing for the labor-oriented sector—except
to the extent that labor-oriented workers are or could become shrink-
wrap vendors as well.

The Future of Software

Allow me to make my predictions for the future of the software market.
Computer services overall will continue to expand, while the market for
shrink-wrapped software will become a smaller part of the equation, and
the market for programming labor will expand. Of course, well-written
shrink-wrapped software will always have a place in retail. Apple has
shown that there is much to be said for having a professional design team
working on the look and feel of a product, while authors of open-source
and task-specific software are famous for poor graphic design. The open-
source code base is constantly expanding, but that is no help here:
although programs written in the mid-1980s often work perfectly today,
goods that have not had a design overhaul since then look terrible to
modern eyes.?’ Retail firms that put their effort into a good user interface
will always have a market.

20. The open-source Athena widget set comes to mind.

THE DECENTRALIZED SOFTWARE MARKET 105

Since consumers care much more about how their software looks and
feels than database maintainers do, much of the demand is on the con-
sumer side rather than the enterprise side. If nothing else, there is the
games market: gamers have an insatiable desire for the faster, flashier,
and newer items. However, games have no corporate clientele (at least
not while the boss is watching), so they will never garner the hourly
wage programmers, and open-source hobbyists have never been able to
develop the critical mass of people necessary to put together the art,
storyline, game play, and rendering needed to make a top-notch game.?!
Even so, gaming software is not just small change: sales in 2004 totaled
$7.3 billion.?

There is more money yet in business software that nonprogrammers
use (such as word processors and spreadsheets), which falls somewhere
between the two extremes of beautiful games and ugly-but-efficient back
ends. On the one hand, efficiency matters, but on the other, office work-
ers are still human beings, and if they are going to spend a third of every
twenty-four hours staring at a computer screen, it may as well look nice.
In this range, things could go either way. To date, shrink-wrapped soft-
ware has won out, because of aesthetic considerations and a strong focus
on ease of initial use. But it does not have to be this way: the Department
of Defense could hire programmers to add eye candy to OpenOffice.org
(a collaboratively written office suite), and may still save money over
licensing Microsoft Word.

Collaborative software is only getting better. OpenOffice.org is already
more than sufficient for writing letters and balancing a home user’s check-
book in a spreadsheet, and for all but the most demanding business uses.
Even the French national police force uses this software on its 80,000
PCs.?? The code base for OpenOffice.org will not disappear. If anything,
the percentage of people who download free software that meets their

21. Sorry, Linux fans, but Tux Racer does not cut it.

22. Entertainment Software Association, “Computer and Video Game Software Sales
Reach Record $7.3 Billion in 2004,” Yahoo! Finance, January 26, 2005 (biz.yahoo.
com/bw/050126/265772_1.html). For comparison, Microsoft’s 2004 annual report lists
$36.8 billion in sales.

23. “Le Gendarme et OpenOffice,” Toolinux, January 16, 2004 (www.toolinux.com/
news/logiciels/le_gendarme_et_openoffice_ar5768.html). “French Police to Switch to
OpenOffice,” Heise Online, January 18, 2004 (www.heise.de/english/newsticker/news/
55253).

106 THE DECENTRALIZED SOFTWARE MARKET

needs is likely to expand in comparison with the percentage who spend a
few hundred dollars on an office suite that does a little more and comes
with animated characters. People prefer familiar, tested software, which
currently means proprietary products, but companies such as Google and
municipalities such as the State of Massachusetts are using open-source
software, so the getting-acquainted phase has already begun. I expect that
five years from now, collaborative software will be as familiar as the com-
mon brand names of today. This is a looming threat for the shrink-wrap
market, but neither a plus nor a minus for the labor market.

On the consumer side, there is only so much that users need a word
processor to do. Unless users can be persuaded to upgrade on a regular
basis, software may be a one-time investment. For example, I have many
friends who use Windows 95. They admit it with shame, since the name
clearly indicates that the software is a decade old. Yet it still meets their
needs and they see no value in the expense of upgrading. At the same
time, things always break, so individuals and companies will need IT
professionals on hand long after the software licenses have been paid
for. T still get calls from my friends with Windows 95, since problems
continue to crop up at a regular pace. By contrast, business computing
needs are complex. Corporations are no longer satisfied with a straight-
forward personnel database—they want one that automatically makes
hiring decisions the way the vice president would make them, that inte-
grates seamlessly with the accounting database, and that has an interface
on the company’s website. None of these things can be pulled out of a
box; a programmer who knows the company will have to be hired to
implement them.

Authors of retail software can be located in Seattle, India, or anywhere
in between. As noted earlier, any competent programmer can implement
any sufficiently detailed interface design, although a consultant hired to
design the interface for a company is very likely to be on site, getting the
lay of the company’s virtual land. With increasing outsourcing and off-
shoring (today’s software market buzzwords), the number of domestic
programmers writing shrink-wrapped software will decrease, but there
will be less effect on the domestic programmers writing customized soft-
ware. For all of these reasons, I foresee slower growth or even some con-
traction for shrink-wrapped software in the near future, whereas the mar-
ket for custom programming labor will expand in close proportion to the
increasing ubiquity and complexity of computing.

THE DECENTRALIZED SOFTWARE MARKET 107

Back to Patents

Patents favor the shrink-wrap market, which is the segment of the
market likely to experience a decline. In this context, software patent
laws are among those that economists despise most: namely, laws that
artificially prop up an industry in decline. Like a spurned lover, the cen-
tralized vendors will fight to keep their portion of the market. Stronger
patent laws to bear down on decentralized labor are a primary weapon in
the fight.

If the market does not stay as it is today but shifts further from the per
unit model toward the labor model, it is hard to predict whether the total
number of programmers will rise or fall. Certainly, the information tech-
nology sector as a whole is not likely to suffer. On a more abstract level,
free software or task-specific software can be expected to add as much or
more value than shrink-wrapped software, and authors in the software
labor market are likely to match or outdo software vendors when it
comes to innovativeness.

From the perspective of society, and even the software industry as a
whole, there is no need to protect the shrink-wrap segment of the market,
or to change the rules to favor it over the labor-oriented segment. Yet
that is exactly what software patents do, at the cost of hundreds of mil-
lions of dollars wasted in litigation.

CHAPTER SEVEN

Interoperability

Interoperability refers to the ability of one vendor’s prod-
ucts to work with the data or interface from another vendor’s products.
Suppose that DBA Corp. writes a suite of programs to create databases,
with a back end to do the bookkeeping and a front end to enter data.
Then DBB Corp. writes a new front end that can read, write, and modify
DBA-formatted files—and that has animated characters and thus sells
much better than DBA Corp.’s front end. DBA Corp. had intended to sell
both front and back ends and perhaps had priced its back end cheaply in
the hopes of making money selling thousands of front ends. Now that
people can buy a DBA back end but have the choice of a DBB front end,
DBA has lost its revenues from front ends, while DBB has profited from
DBA’s engineering effort in designing its database format.

In a sense, protecting interoperability is a variant of the breadth ques-
tion (see chapter 2). If DBA Corp.’s back end is sufficiently innovative to
merit intellectual property (IP) protection, should that protection be
broad enough to cover its front end as well? Three types of IP law relate
to interoperability: the regulations covering patents, copyright, and an
entirely new type of IP derived from the Digital Millennium Copyright
Act (DMCA). One must ask whether these IP laws strike the correct
balance between the economic benefits of having an abundance of inter-
operable software and the incentives needed to keep standard writers
working.

108

INTEROPERABILITY 109

Interoperability is an issue in any of a number of fields, but more so for
software, all of which must interoperate with comparable products like
DBA’s back end or the operating system or assembly language whose
back the program rests on. For many physical goods, interoperability
simply means that tab A must be the right width to fit into slot B, but soft-
ware interoperability depends on implementing interfaces that often take
hundreds of pages to specify; hence the owner of the interface has abun-
dant opportunity to claim copyright or patent infringement by the
designer of the interoperating software. Further, the concept of encryp-
tion makes sense only in the context of data, so the encryption-oriented
DMCA applies only to software.

Leveraging the Dominant Library

One class of standards includes the de facto standard established by a
piece of software having the lion’s share of the market, such as Micro-
soft’s desktop operating systems. Indeed, many of Microsoft’s actions are
perfect examples of a dominant player leveraging its dominance into
greater profits by breaking interoperability between its products and
those of others.

Consider the system that programmers have developed to collect sets of
useful functions in function libraries to facilitate the writing of advanced
code (see chapter 3). Anyone who wants to run the high-level program
needs both the program itself and all the function libraries supporting it.
Outside of the most basic, ANSI-regulated libraries, there are few stan-
dard libraries in the world. Most large software companies have written
their own from scratch. Microsoft and Apple both have a library of func-
tions to do the accounting required to draw windows on the user’s screen:
the Microsoft library has a CreateWindow function while the MacOS
library has a CreateNewWindow function. A programmer wanting to
write for both systems would have to have a version of the program that
used CreateWindow and another that used CreateNewWindow. By
itself, this one renaming is a minor annoyance, but factor in the thou-
sands of additional changes that need to be made—some fundamental to
the structure of the typical program—and the cost of writing a program
for both libraries can approach double the cost of writing the program for
just one.

It so happens that Microsoft Windows is installed on about 94 percent
of the world’s desktop computers, meaning that Microsoft’s preferred

110 INTEROPERABILITY

function libraries are preinstalled on 94 percent of the world’s desktop
PCs.! Since writing a program for Windows and MacOS can be almost
like writing the same program twice, a company with limited resources
must choose between the two—and since MacOS has about a 3 percent
desktop market share, it is easy to decide which libraries to write around
first.?

Sun Microsystems had an idea for producing a new set of libraries
that could run on Microsoft’s, Apple’s, and its own system without mod-
ification. Its programmers would write implementations for all the oper-
ating systems and guarantee that the interface is the same in all cases.
Coders could write once for Sun’s interface, and users could run the pro-
gram anywhere.

This marked the genesis of the Java language. It was implemented
through a virtual machine, which could understand programs written
using Sun’s standard Java header files. Sun then persuaded Netscape, Inc.
to include a Java virtual machine in the Netscape Navigator web browser.
The hope was that people would be able to use the browser to download
programs written in Java and run those programs regardless of the oper-
ating system their computer was running.

Sun’s agenda here is clear: with more programs written around Java
libraries instead of Windows libraries, people would be more likely to
buy Sun hardware. If programmers do not have to choose whether to
write only for Windows or expend great effort rewriting for both Win-
dows and Mac, then the dominance of Windows would not be so relevant
any more, and Microsoft’s operating system, with its proprietary libraries
and 94 percent market share, would become a much less valuable prop-
erty. Microsoft did not like this prospect and so gave away Internet
Explorer in an effort to prevent people from downloading Netscape and
its Java virtual machine. This attempt to halt Java was one of the key
points of contention in the antitrust action the Department of Justice
brought against Microsoft.?

As well as trying to keep users from downloading Netscape, Microsoft
had a second solution that was a bit more insidious: it invented its own
version of Java, which it included with Internet Explorer. This version was

1. As of late 2002. IDC survey, cited in Laura Rohde, “Microsoft Dominance of OS
Market Grows, IDC Study Says,” MacCentral, October 8, 2003 (maccentral.macworld.
com/news/2003/10/08/osmarket/).

2. Rohde (2003).

3. Gilbert and Katz (2002).

INTEROPERABILITY 111

almost like Sun’s Java, but the interface was different enough that it cre-
ated the same old dilemma: whether to write around the Sun libraries or
the Microsoft libraries. Now that the “write once, run everywhere” appeal
of Java was lost, the language never gained the hoped-for popularity.

Novell, owner of the once-dominant WordPerfect word processor, had
a similar complaint in Nowvell v. Microsoft:*

74. In an email dated October 3, 1994, ... Bill Gates ordered his
top executives to retract the documentation of the browsing [inter-
face for Windows 95], but only until Microsoft’s own developers of
the Office suite of applications had sufficient time to work with the
hidden extensions to build an insurmountable advantage over com-
petitors such as WordPerfect. . . .

76. . .. Novell had no choice but to spend more than a year recre-
ating the functionality of Windows’ integrated browsing functions.
As Gates knew and intended, withdrawing the documentation of the
browsing APIs caused Novell, in Microsoft’s own words, to re-
invent the wheel and divert resources from innovations on behalf of
consumers. Microsoft’s applications developers, by contrast, had
unfettered access to the integrated browsing extensions all along.

As these examples show, the power to break interoperability is not to be
taken lightly. The question of whether Microsoft’s refusal to cooperate
with Java and WordPerfect was a violation of antitrust law is beyond the
scope of this book.’ The central concern here is the extent to which gov-
ernment should provide IP protection for the interfaces needed for inter-
operability. Since interoperability disputes like these are so common, it is
worth considering the balance between fostering innovation and the inef-
ficiency of monopolies in their context.

4. Novell complaint in Novell v. Microsoft (www.novell.com/news/press/archive/
2004/11/complaint.pdf).

5. Even if an organization has the exclusive rights granted by a patent, it still cannot use
them to engage in activities that transgress antitrust law. In an eminently quotable ruling
from United States v. Microsoft, the appellate court scolded Microsoft for making such a
claim: “The company claims an absolute and unfettered right to use its intellectual property
as it wishes: ‘if intellectual property rights have been lawfully acquired,’ it says, then ‘their
subsequent exercise cannot give rise to antitrust liability.” Appellant’s Opening Br. at 105.
That is no more correct than the proposition that use of one’s personal property, such as a
baseball bat, cannot give rise to tort liability. As the Federal Circuit succinctly stated: ‘Intel-
lectual property rights do not confer a privilege to violate the antitrust laws.”” United States
v. Microsoft Corp., 253 E3d 34, 63 (D.C. Cir. 2001).

112 INTEROPERABILITY
Value versus Price

A competing interoperable product has the interesting effect of both
making the original product more valuable (because it now interoperates
with a wider range of other goods) and forcing its price—and possibly its
profits—downward. In such a situation, one cannot resort to the stan-
dard economic theories stating that the market will find the optimum for
the society: the dominant player’s most profitable strategy may be to
destroy value by breaking interoperability between its goods and those
of competitors.

As the literature documents, when a monopolist decides to bundle
goods together rather than price them independently, bundling is gener-
ally great for the monopolist but bad for everyone else.® Tom Palfrey, cur-
rently at Princeton University, has pointed out: “Because the seller earns
greatest profit by bundling all goods, a profit maximizing seller will pick
the worst bundling decision both from the point of view of buyers and in
welfare terms.”” In the case of interoperating software, the originator of
the system has no natural monopoly because competitors can enter and
force the originator to unbundle its product. However, patents on the
interface between the two would grant the originator the right to not
unbundle.

Noninteroperability creates the famous lock-in problem: if everyone
wants to imitate those who came before, the first to appear on the market
has a strong advantage, and once one product or another is dominant,
new buyers can be expected to simply stop evaluating the options and go
with the most popular. Because new buyers add no new information, and
because it is difficult for the society as a whole to switch to another option,
the market may become locked in an inefficient equilibrium.® But if the
two options become interoperable, people will feel a correspondingly
weaker need to imitate others. Given such a shift, the probability that the
society will find itself in the inefficient equilibrium will correspondingly
decrease.” So what good is lock-in? It allows for creative price lists.

Recall the discussion from chapter 2, which concluded that good IP
protection is sufficient to allow the original researcher to recoup the costs

6. See, for example, Bakos and Brynjolfsson (1999) and Chen (1997).
7. Palfrey (1983, p. 473).

8. Bikhchandani, Hirshleifer, and Welch (1992).

9. Brock and Durlauf (2001); Klemens (2003).

INTEROPERABILITY 113

of research but does not go significantly beyond that point. In the case
here, DBA Corp. had invested R dollars in research for its system, which
it needs to recover via higher prices to its products. It could split the costs,
adding half of R to the price of the front end and half to the back end, or
it could add R entirely to the cost of the back end. If there are lock-in
effects to be taken advantage of, DBA Corp. may choose to price its back
end cheaply, and then distribute the research costs R—and then some—
among the cost of additional front ends.

As for DBB, its improvement was on the front end, while DBA Corp.
had a back end that was unique or of sufficient quality to sell at a pre-
mium and use the profits to recoup some of its research costs. Given such
a setup, there is simply no reason to give DBA Corp. protection on its
front end. If competition from DBB Corp. forces DBA to price its front
end exactly at cost, DBA can still make its money by pricing its back end
to include research costs. However, DBA has lost out on its ability to
invent new business models—of the three mentioned in the preceding
paragraph, only one will work if DBA must price its front end at cost.

Note well that the existence of DBB’s front end makes DBA’s back end
more valuable, and since there is no competition to push down prices,
DBA will be able to price it higher. What if DBB Corp. also produces a
competing back end? If the back end is of sufficient quality to surpass
DBA’s back end, then the entire interoperability issue is a moot point,
since consumers can buy DBB’s entire system. In every case, if DBA pro-
vides a back end of sufficient quality, it will be able to charge a premium
for it—and a higher one because DBB’s front end is on the market.

Business models abound that price the base of a system below cost or
even give it away for free and then charge a premium for add-ons, such as
the expensive ink for underpriced printers and the premium service con-
tracts for free cellular phones. But it is difficult to argue that the only way in
which the printer or cell phone business could possibly operate is if it could
use a business model in which everything is priced either above or below its
cost of production. The simple and direct method of pricing goods at their
cost plus some premium if the item is unique or of superior quality works
for most fields and is considered optimal by most economists.

Therefore protection of DBA’ front end is not necessary for DBA
Corp. to design good back ends—if it has a good back end, then people
will pay a premium for it. The only benefit to giving DBA Corp. legal pro-
tection from interoperable competitors is that such protection facilitates
creative price lists.

114 INTEROPERABILITY

The first moral to the story is that distinct products should be evalu-
ated separately. Even if the back end has no value unless it is used in com-
bination with a front end (and vice versa), both back and front ends will
sell for a positive price. The second moral is the same rule of thumb from
prior chapters: there is no economic benefit to protecting the interface.

The Standard Bearers

In contrast to the preceding examples, where one company produced a
product that gained dominance and thus defined a de facto standard,
there are countless efforts to create standards effectively from scratch,
such as CORBA, SQL, CGI, MPI, BLAS, and a multitude of other
acronyms that every programmer must deal with every day.!® These stan-
dards are entirely lacking in IP protection.

A useful and tangible example is the Universal Serial Bus (USB) stan-
dard. Versions of most of the devices one would plug into a computer
(mice, keyboards, cameras, scanners, and so on) plug into a USB port and
therefore must have software that complies with USB standards. The
standard is maintained by the USB Implementer’s Forum, Inc. (USB-IF),
and the standard itself is available as a free download from the forum’s
website (usb.org). The forum’s financial support comes from a number of
sources, one being a group of companies that recognize the value of con-
sistent standards. These companies can also individually benefit by bias-
ing the standards toward their engineers’ comparative advantages, or by
simply knowing the standards better than everyone else.

Revenue also derives from the use of the USB logo, which is a trade-
mark of the forum and cannot be used without paying a licensing fee, cur-
rently $1,500. Before putting the logo on a product, vendors must also
pay to have their devices tested for compliance with the standard by an
approved testing lab.

There are such great benefits to designing and giving away good stan-
dards that different standards bodies often compete for dominance in a

10. For those who need their acronyms unfurled: the Common Object Request Broker
Architecture is used for moving data between applications, Structured Query Language is
for extracting information from databases, the Common Gateway Interface is for running
applications on a web server, the Message Passing Interface is for running programs on
multiple processors (also known as cluster or grid computing), and the Basic Linear Alge-
bra Subprograms are a common interface for libraries of matrix algebra functions.

INTEROPERABILITY 115

single field. The 1394 Trade Association, administrators of the IEEE 1394
standard (Firewire), competes closely with the USB-IF.

Apart from the trademarked logos, the entire business exists outside
the realm of intellectual property protection. Since everyone is encouraged
to use the standards, any patents on Firewire or USB that are controlled by
the 1394 Trade Association or USB-IF are not enforced. The official doc-
uments themselves are copyrighted, but an author who wishes to write a
USB for Idiots guide that covers the same information is free to do so.

As for what society needs to do to get an innovator to write good stan-
dards, it does not take much: there are abundant ways to profit from a
good standard without government intervention of any sort. Of course,
granting the innovator patents, copyrights, and other means of suing
competitors out of business would motivate the standard-bearer to pro-
duce, but at an unnecessary cost to the rest of society and the economy,
in relation to free-market means of producing standards.

The discussion now turns to the specific means of blocking interoper-
ability. Patents would invoke the fact that (a hard drive on which is writ-
ten) a data structure is patentable. Copyrights would follow the example
of copyrights on a language and would rely on the words used in a data
structure or standard. Using a more direct approach, the DMCA is clearly
oriented toward breaking interoperability, regardless of its form.

Patenting an Interface

The most common standards among patents are file formats: music is typi-
cally stored on a computer in WAV or MP3 format; plain text is usually in
the ASCII format or one of many ISO formats; word processor documents
are often stored in Microsoft Word’s DOC format. As the reader will recall,
a file format is a data structure written down outside the program (chapter
3), and the Court of Appeals for the Federal Circuit (CAFC) has ruled in
In re Lowry that a hard drive having a novel data structure written on it is
a patentable device (chapter 4). As a practical matter of current law, then, a
dominant player may use patents to break interoperability.

Also, if Microsoft succeeds in patenting the DOC data structure used
by its word processor, nobody will be able to write software compatible
with Word without permission from Microsoft. Although Microsoft’s
patent application is primarily for the DOC format itself, some of the
claims (see figure 3-2) are for a very broadly described program used to

116 INTEROPERABILITY

read files in such a format.!"" In accordance with the preceding discussion,
if the format is not Microsoft’s private property, then competing products
and Word itself both become more valuable. However, Word would then
have more competition, which might force Microsoft to lower its price.

But users do not pay for a nice file format; they pay for a good imple-
mentation that makes use of the format. If Word’s file interface was dis-
played in skywriting over Silicon Valley, competitors would still have to
expend the cost and effort to implement their word processors without
additional information about Word’s implementation. That is, the dis-
cussion from chapter 2 applies directly: it is the implementation, not the
interface, where the lion’s share of the effort and expense lies, so any pro-
tection granted should focus on the implementation.

Yet what if a program’s primary innovation lies in its file format? This
is clearly not the case for a word processor, as made evident by the fact
that WordPerfect, StarOffice, and OpenOffice.org all know each other’s
formats and yet felt the need to reinvest in inventing their own format
anyway. If, on the other hand, a program’s primary innovation was its file
format, then that program would be treading dangerously close to an
innovative mathematical algorithm. Again, there are many reasons why
allowing a patent on such a work is both aesthetically inappropriate and
economically detrimental.

Copyrighting an Interface

As described in chapter 3, programmers have invented hundreds of lan-
guages to facilitate their work. Function libraries have their own list of
commands that one could execute, and those are verbs in a language.
Even the mouse gestures and typed inputs to a user-level application are
the semiotics of a highly specialized language.

Should a language be copyrightable subject material? This is not as
salient an issue as the question of patents, because patents are currently
in favor with the courts and USPTO and allow broader protections. But
since many have proposed that code be protected by copyright instead of

11. Microsoft has stated that it will offer its XML formats via a royalty-free license to
all takers; see Ken Fisher “Microsoft Patenting New Office XML Format,” Ars Technica,
January 26, 2004 (arstechnica.com/news.ars/post/20040126-3336.html). However, its past
royalty-free licenses excluded open-source providers from using their technology. For exam-
ple, the Apache Software Foundation said of Microsoft’s royalty-free sender ID license: “We
believe the current license is generally incompatible with open source, contrary to the prac-

INTEROPERABILITY 117

patents, it is important to consider exactly how far the protection of an
author’s words should extend.

According to 17 U.S.C. §102 (b), “In no case does copyright protec-
tion for an original work of authorship extend to any idea, procedure,
process, system, method of operation, concept, principle, or discovery,
regardless of the form in which it is described, explained, illustrated, or
embodied in such work.” That is, the dictionary and the grammar text-
book may readily be copyrighted, but the ideas expressed therein may not
be. This is similar to the previous description of a good patent law: it cov-
ers the implementation of the idea, but not the idea itself.

However, even without reference to ideas, procedures, or the other
conceptual ideas in §102, perhaps an interface can still be protected via
its details of expression. If I invent words such as mscorlib, stdio, and out-
grabe, may others use those words without my permission? If a program
demands that anything it deals with use the word outgrabe, then copy-
righting that word is an effective block on any sort of interoperation with
the program.

A Proliferation of Languages

For comparison, consider the cases in which people have invented a
human-oriented language and claimed a copyright over the words in the
language. Loglan, invented by James Cooke Brown from basic logical
principles, was such a language. Brown claimed the language as his own,
which induced legal squabbling with some of Loglan’s supporters. Be-
cause of these difficulties, not to mention the logical errors found in the
language, it branched into a variant version, Lojban, which now com-
petes with the original language.'?

Another such language is Klingon, spoken by a race of aliens on the Star
Trek series and an ever-expanding group of devoted fans. The language
has the support of the nonprofit Klingon Language Institute, and Pocket
Books has published a paperback translation of Hamlet.'* However, the

tice of open Internet standards, and specifically incompatible with the Apache License 2.0”
(www. apache.org/foundation/docs/sender-id-position.html). Whether the details of its
licensing of its XML format will exclude major competitors is yet to be seen.

12. The Logical Language Group, Inc., “Loglan and Lojban,” 1991 (www.lojban.org/
files/brochures/loglan.txt).

13. Information about the KLI is available at KLI.org. See also Shoen and the KLI
(2000).

118 INTEROPERABILITY

language itself is claimed (without challenge to date) as the property of
Paramount Pictures, and Paramount claims that no works may be written
in the language without its permission.

But Loglan and Klingon differ from the language described by a com-
puting interface because they have little purpose but expression—they are
purely creative. It is unclear whether the courts would support Para-
mount if a Klingon challenger were to appear; Paramount would likely
argue that if the language were not the property of a single entity, the
originators of the language might not have put so much effort into its
improvement.

In contrast, the language of a computing interface has a specific pur-
pose. For example, John Chambers of Bell Labs wrote the S programming
language to provide a better way to describe statistical models. If he had
not invested his effort into writing the grammar, nouns, and verbs of S, he
would have had to use some less appropriate language for his statistical
analyses. He wrote the language not expecting a profit, but as a new
means of expression that would make his work easier.

When Donald Knuth of Stanford University became frustrated by the
typesetting of his Art of Programming, he did what any reasonable pro-
grammer would do in such a situation: he wrote a typesetting language
from scratch (named TEX). If he had not done so, he would have had to
settle for a less appealing book.

Larry Wall, two-time winner of the International Obfuscated C Code
Contest, was sick of UNIX system administration work: “Unix is like a
toll road on which you have to stop every 50 feet to pay another nickel.
But hey! You only feel 5 cents poorer each time.”'* Being such an excel-
lent programmer, he wrote a new language named Perl to simplify the
tasks he had to deal with every day. If he had not done so, he would still
be paying out his metaphoric nickels.

Virtually every programming language has such a history, as do hun-
dreds of libraries that also implement a specialized language. Necessity,
not copyright, was the mother of these invented languages.

Having developed the language, the inventor will find the easiest way
to protect it is never to share it. If a company develops a language well
suited for writing a word processor (probably in the form of a library of
functions), then it is under no obligation to make that language public, so

14. “The Timeline of Perl and Its Culture,” version 3.0_0505 (history.perl.org/
PerlTimeline.html).

INTEROPERABILITY 119

other developers of word processors would not be able to free-ride on the
original company’s efforts.

Instead, at issue here are those languages that are entirely public. In the
case of Microsoft’s Word document format, the company has no choice
but to make it public. To give a more salient example, Microsoft’s NET
platform is an extensive set of standards, document-type definitions, and
libraries. In the inclusive terminology I use here, it is a set of languages. It
is intended to help programmers write portable programs quickly.
Microsoft can include .NET libraries in its products so that users can run
.NET-based programs without downloading new libraries for every new
program. Since programmers need to know how to call the functions,
how to structure their documents, and so on, the product must by defini-
tion be public.

Mono is an open-source implementation of the languages and specifi-
cations of the .NET platform. The authors’ intent is to match Microsoft’s
interface exactly but implement the tools and libraries using entirely new
code. Users could run programs written using Mono tools if they have
.NET libraries on their computer.

As it is, Microsoft has made no complaints of copyright infringement
against Mono’s developers.'* Moreover, it is unclear whether such a claim
would hold up in court—but is this optimal? Should Microsoft be able to
claim infringement of its copyright?

The Options

If the courts allow these languages to be copyrighted, programmers can
still look at the language, learn from the ideas embodied therein, and write
a new language similar enough to embody the same concepts but also dif-
ferent enough to avoid copyright infringement. Those who were enamored
of Loglan did this when they designed Lojban. An author who is enam-
ored of Microsoft’s window library may replace its CreateWindow func-
tion with a CreateNewWindow function. A few dozen such changes may
be enough to eliminate the copyright threat.

The immediate outcome is a tower of Babel. Every dialect is almost
close enough to match, but not quite, and therefore translators are re-
quired to massage one language until it looks like another. Inefficiency
abounds. The problem is that copyright can only restrict the literal

15. There is some gossip about the potential for future patent issues, which is beyond the
scope of this section. See www.mono-project.com/about/licensing.html.

120 INTEROPERABILITY

implementation of the language, not the ideas embodied therein.'s Here
are the alternatives:

1. Allow broad copyrights on a language, covering every conceivable
dialect.

2. Allow strict copyright on languages, covering only languages with
exactly the same vocabulary and grammar.

3. Disallow copyrights on languages entirely.

Option 1 is in effect a patent on the underlying ideas that the language
implements, which would violate §102 and suffers the same problems of
overbreadth discussed in the context of patents. Further, it is impossible
to enforce: is Catalan a dialect of Spanish or a separate language? Is
Scheme a LISP dialect? Is Apple’s CreateNewlindow function too much
like Microsoft’s CreateWindow function? Linguists and computer sci-
entists have debated such questions for decades; I do not expect the courts
to do much better.?”

Option 2 is the most inefficient of all, since it does not prevent approx-
imate imitation (as option 1 would) and it forces language writers to
make themselves unnecessarily incompatible with each other (as option 3
would not). It does not protect the creator’s work from imitation, only
from compatible imitation.

Option 3 is by far the least of the three evils. Some will argue that it
eliminates some incentives to write new languages, but as shown by the
standard writers and the language authors, many others remain. The
NET platform consists of an interface of languages and specifications, but
it is supported by an implementation consisting of copyrighted tools and
libraries that programmers can use to write code compliant to .NET, and
by copyrighted Microsoft documentation that defines its languages. The
developers of Mono have had to start from scratch, writing new tools,
new libraries, and new documentation. They face an immense task: writ-
ing a CreateWindow function is easy, but writing a CreateWindow
function that works 100 percent like Microsoft’s is much more difficult. To
date, Mono’s implementation of the .NET languages still does not quite
work exactly like Microsoft’s, so a developer who is concerned with strict
adherence to Microsoft’s standards will need to purchase Microsoft tools.

16. A reminder: patents protect only implementation, not ideas as well. Therefore, the
same three options could hold for an economic discussion of the patenting of languages with
little or no modification.

17. Some linguists define a language as a dialect with an army. Let us hope that this def-
inition never applies to a programming language.

INTEROPERABILITY 121

Even with no protection on the interface, Microsoft still has a market in
selling implementations.

Before .NET, words like P/Invoke and mscorlib did not exist, just as
before Lewis Carroll’s “Jabberwocky,” brillig and bandersnatch had not
existed. But practically, economically, and even ethically, giving Carroll
control over brillig and giving Microsoft control over mscorlib are very
different. The creative force behind “Jabberwocky” lies in the words
themselves, so if an imitator were to rewrite the poem replacing brillig
with midafternoon and bandersnatch with alligator, the imitation would
have no value. The creative force behind .NET is not the words at all: it
is the structures and the ideas that inspired the language. Replacing
mscorlib with monocorlib would have no effect on the underlying ideas
and would produce a new imitation with exactly the same force, produc-
tivity, and salability as the original—except that it would be incompatible
with .NET. Thus copyright protection on the programming language
itself (in the form of a language proper, a library, or a standard) does not
protect the fruits of the original creator’s mind as copyright does in other
contexts; instead it serves only to stifle those who hope to build upon the
original work. The economically optimal breadth of copyright does not
prevent interoperability.

Copyrighting the expression of new concepts is a tricky subject, be-
cause the idea is not copyrightable but the expression is. Chapter 8 goes
into further detail on how one could make the distinction.

Encryption and DMCAing an Interface

Patents and copyrights can be used to block interoperability, but neither
is a 100 percent reliable, court-tested means of doing so. Congress
invented a new type of law designed from the ground up to allow soft-
ware authors to sue competitors who write interoperable programs. The
reasoning behind the law is based on the protection of encryption.

Bernstein v. U.S. Department of State

The ideal encryption scheme is one that takes coherent data and turns
it into what seems like white noise but does so in such a way that the data
can be perfectly extracted if looked at in exactly the right manner. As cur-
rently practiced, encryption is closely related to traditional math problems
such as factoring numbers into primes and is in the same class of problems
as the traveling salesman problem mentioned earlier. Encryption has been

122 INTEROPERABILITY

an important government tool for decades. During World War II, Alan
Turing, the mathematician whose genius was mentioned in chapter 3, was
instrumental in the United Kingdom’s efforts to encrypt its communica-
tions and to decrypt those of the enemy; one could argue that the cracking
of Germany’s Enigma code was the key to winning the war in Europe. Tur-
ing’s wartime work was an application of the imaginary tape computer he
had described in 1936, but this time he used real electronic devices.'®

Since then encryption has become increasingly important to civilians as
well. Depending on the network, cell phone calls may be encrypted.
When one makes an online purchase with a credit card (a process pro-
tected by patent 6,289,319), the card number is thankfully encrypted. On
the other hand, encryption is as useful to terrorists and mobsters today as
it was to the Nazis in the 1940s. U.S. export laws therefore regulate the
dissemination of encryption devices of a certain strength.

Most software authors considered these laws to be just an annoyance.
Programs such as Netscape needed to have a U.S.-only version with 128-
bit encryption and an international version with weaker 64-bit encryp-
tion. Users would have to click an “I promise I'm in the U.S.A.” button to
get the fully functional version. Software on CDs would require either two
printings or a cumbersome online upgrade for U.S. users. But for Daniel
Bernstein, a graduate student in mathematics at the University of Cali-
fornia at Berkeley whose work focused on encryption methods, it was
more than a nuisance: under the letter of the law, he could not publish his
papers, teach, or present his work at academic conferences.

In February 19935, Bernstein sued for clarification of the law. Subse-
quently, the court ruled that “the Export Administration Regulations,
... insofar as they apply to or require licensing for encryption and
decryption software and related devices and technology are in violation
of the First Amendment.”!” Thanks to this ruling, the bureaucratic
restrictions on encryption software have been weakened but not entirely
removed. However, regulators have shifted their focus to the opposite
end: decryption software.

18. Unfortunately, Turing was unable to further contribute to the development of com-
puter science. His work was cut short in March 1952, when he was arrested for homosexual
activity. Since sensitive government secrets could not be entrusted to a homosexual and the
court-ordered estrogen treatment failed to cure him of the condition, he was fired from his
position at government communication headquarters. He committed suicide in June 1954.

19. Daniel Bernstein v. U.S. Department of State, et al., U.S. District Court, Northern
District of California, No. C-95-0582 MHP 1996.

INTEROPERABILITY 123
Motion Picture Association of America (MPAA) v. 2600 Magazine

The Digital Millennium Copyright Act makes it illegal to distribute a
device designed to circumvent a copy protection scheme, which is usually
some method of encryption.?’ The intent is to prevent people from copy-
ing copyrighted materials such as movies or music. However, it is as easy
to copy music or movies under the DMCA as before; companies actually
use the law to sue authors of code when neither patents, copyrights, nor
trade secrets would apply.

For example, movies on DVD are encrypted using the Content Scram-
bling Scheme (CSS), so when Jon Lech Johansen wrote the decryption com-
ponent for a DVD player for Linux (deCSS), he violated the DMCA and
thus committed a felony under U.S. law.2! Most encryption depends on a
key, which is an exceptionally long number that is kept secret. If T have the
key, I can mash the message and the key together to produce gibberish to
send to associates, and if they have the key, they can use it to restore the
message to its original form. Most systems are much more complex, but the
basic idea is the same: those with the key and some idea of how the scram-
bling works can read the message. Every DVD player has several CSS keys
built in. Manufacturers must sign nondisclosure agreements with the Digi-
tal Versatile Disc Copy Control Association (DVD CCA) to the effect that
they will keep these keys a closely guarded secret, and if they let the keys
slip they will be liable for damages under traditional contract law.

But Johansen’s group did not need to lift the keys from a DVD player.
Every DVD movie in their living rooms contained a stream of encrypted
information, and running the viewer on a laptop would yield the stream of
unencrypted information. By comparing the two, the team could find clues
to the key. Through such gathering of clues and computational brute
force, the team successfully learned how CSS works. Of course, CSS was
easy enough to crack because it had to comply with the still-extant U.S.
export restrictions mandating a maximum strength to the encryption.??

20.17 U.S.C. 1201(a)(2).

21. Jon is the most publicized member of the group but does not get credit for working
out the CSS. In fact, three groups independently derived the system. For a history, see “CSS
and deCSS” (www.lemuria.org/DeCSS/decss.html).

22. The preferred method circumvents the keys entirely. See Frank A. Stevenson, “Crypt-
analysis of Contents Scrambling System,” November 8, 1999 (www.lemuria.org/DeCSS/
crypto.gq.nu/).

124 INTEROPERABILITY

According to DVD CCA’s frequently asked questions, “Despite legal
‘trade secret’ protection for CSS, the code for its algorithms and master
keys—the main elements of its security—were stolen and posted on the
Internet.”?? But trade secret protection applies only to parties who will-
ingly enter into a contract containing a nondisclosure clause, and
Johansen and his associates had never signed any such agreement with
the DVD CCA. Despite the claims, no trade secret agreements had been
violated.

The website continues, “Much like a copyrighted book cannot legally
be scanned and posted on the Internet, protected software and encryption
code cannot either.” However, recall that independent authorship is a
valid defense in copyright claims. The deCSS code was not scanned and
posted but derived and posted, so Johansen’s team violated no copyright
laws either.

All of the traditional protections did not apply: the encryption method
was too common to merit a patent; Johansen never agreed to keep the
DVD CCA’s trade secrets for it; he did not violate copyrights since he
never saw the protected code and therefore could not have plagiarized.
Fortunately for the DVD CCA, the DMCA provided a fourth type of IP
protection with which it could prosecute those who disseminated the
deCSS code.

The colorful world of phone phreaking—using and abusing the tele-
phone grid for one’s own amusement—has given rise to a publication
called 2600 Magazine: The Hacker Quarterly. Some of its readers per-
haps committed felonies with the information therein, but most just
enjoyed the ingenuity required to get around in a complex technical sys-
tem. Either way, their magazine was protected by the First Amendment.
The detective work behind the deCSS code fit right in to 2600’s range of
topics, so it published the code.

Although the code was now common knowledge, not much more
could be done than before: to copy a DVD, one could make a verbatim
copy of every last encrypted byte on the disk—no decryption required—
and the new identical disk would work just as well. The difference was
that DVDs could now be viewed (not just blindly copied) using software
that had paid no fees to the DVD CCA. Furthermore, DVDs encrypted
for the Asian or European region could be easily viewed in the United

23. DVD Copy Control Association, “Frequently Asked Questions” (www.dvdcca.
org/faq.html).

INTEROPERABILITY 125

States, and users could bypass the advertisements at the beginning of
some DVDs. The MPAA sued 2600 Magazine, basing its complaint in the
DMCA.

The court, in its November 2001 ruling, acknowledged that code is both
speech and a functional entity at once. “This reality obliges courts consid-
ering First Amendment claims in the context of the pending case to choose
between two unattractive alternatives: either tolerate some impairment of
communication in order to permit Congress to prohibit decryption that
may lawfully be prevented, or tolerate some decryption in order to avoid
some impairment of communication.”?* It chose to impair communication.

And so, when I wrote figure 7-1 into this manuscript and thus traf-
ficked in a circumvention device, I infringed on the DVD CCA’s new-
found right to disallow the printing of anything equivalent to its decryp-
tion code. As a bonus, this is not only grounds for a civil suit but a felony
under federal law, punishable by a $500,000 fine or five years in prison,
or both.?’ Conversely, figure 7-2, describing how to build a small low-tech
fertilizer bomb comparable to the large one used to destroy the Federal
Building in Oklahoma City, is protected speech and may be printed with-
out fear of prosecution.?®

Encryption has come a long way. Initially a field in which mathemati-
cians and computer scientists aggressively worked to out-technology each
other, it has become flooded by an endless stream of legal battles—thanks
to one act of Congress that outlawed improved encryption and another
that outlawed decryption.

Impact of the DMCA

Because IP protection on decryption programs has the broadest scope
of all, the DMCA has had an impact on the interoperability of a wide

24.273 E3d 429 (2001).

25. Perhaps it is not a felony, since it takes one more item to do an actual decryption.
The code here will decrypt a DVD title by title, whereas on a typical movie each chapter is
a separate title. One still needs to derive the title key for each chapter before using this. For
a program to derive the title keys, and many versions of the deCSS algorithm (including this
one), see www.cs.cmu.edu/~dst/DeCSS/Gallery/.

26. The mess in Figure 7-1 may not seem to communicate anything at all but in its own
way is a form of speech, stating an equation that transforms an integer into another integer.
The courts agree that “free speech” means not only political speech but also arts and sci-
ences. See, for example, Miller v. California (1973): “The First Amendment protects works
which, taken as a whole, have serious literary, artistic, political, or scientific value.” For one
well versed in bit-shifting operations, figure 7-1 certainly has serious scientific value.

126 INTEROPERABILITY

Figure 7-1. The deCSS Code: Printing This Figure Is a Felony

/* efdtt.c Author: Charles M. Hannum
<root@ihack.net> */

/* Thanks to Phil Carmody <fatphil@asdf.org>
for additional tweaks. */

/* Usage is: cat title-key scrambled.vob |
efdtt >clear.vob */

#define m(i) (x[1]"s[1+484])<<

unsigned char x[5],y,s[2048]; main(n) {

for(read(0,x,5); read(0,s,n=2048); write(l,s,n))

1f(s[y=s[131%8+20]1/16%4==1) {int i=m(1)17"256+

m(0)8,k=m(2)0,j=m(4)17"m(3)9"k*2-k%8"8,a=0,

c=26;for(slyl-=16;--c;j*=2)a=a*2"1&l,

1=1/273&1<<24; for (j=127;++j<n ;c=c>y)

c+=y=1"1/8"1>>4"i>>12,i=1>>8"y<<17,a”=a>>14,

yv=a®a*8"a<<6,a=a>>8"y<<9,k=s[j],

k="TWo~"G_\216" [k&7]+2""cr3sfwbv; *k+>/n."” [k>>4]

*27k*257/8,s[jl=k" (k&k*2&34) *6"c+~y; }}

variety of software. Once a company claims that it has a copy protection
program, any other program that functions like it is in violation of the
original program’s DMCA protection. It is much the same as an over-
broad patent, but without any of the hassle of filing for a patent and
proving originality. On top of the immense breadth of protection granted

Figure 7-2. How to Make a Fertilizer Bomb:
This Figure Is Protected by the First Amendment

Fill a paper bag with fertilizer. Use fertilizer with high nitrogen
content.

Top the bag with a layer of cotton.

Douse the cotton with diesel fuel.

Light the fuel; run as fast as you can.

INTEROPERABILITY 127

the decryption program, Congress threw in felony charges as an added
deterrent.

The claimed intent of the added protection is to prevent the copying of
copyrighted music and movies, but the end result has been far removed
from this original intent and is much closer to the potential misuses of
patents discussed earlier, as a means of suing legitimate competitors out
of the marketplace. In a similar manner, the DMCA has been bullying out
of the market the producers of electronic book readers, printer cartridges,
and even garage door openers.

The key provision of the DMCA is that no one may produce a device
to circumvent a manufacturer’s copy protection. The reader may still be
unclear on what a copy protection scheme and a circumvention device
are, but then so are the courts. The suits discussed next indicate that any
attempt by Company A to make it difficult for Company B to make
products that interoperate with A’s is a copy-protection scheme. If B suc-
ceeds despite A’s best efforts, then its product must be using a circumven-
tion device, so A can sue under the DMCA.

The first of these suits was brought by Adobe, the steward of the
Portable Document Format (PDF), which has a variant for electronic
books. The eBook format has certain restrictions built in: users who open
an eBook with Adobe Acrobat and click the print button will be warned
that they are not allowed to print eBooks. Less ubiquitous document
readers, such as ghostview, do not even understand the special eBook
codes and will print the document like any other PDFE.

Dmitri Sklyarov is a programmer for a Russian company that sells a
program that can print eBooks. Adobe filed a complaint under the
DMCA arguing that this was a circumvention of its copy protection.
When Sklyarov attended a computer science conference in the United
States, a team of federal agents greeted him with handcuffs and kept him
in a U.S. prison for a month. Mathematicians and programmers, a nor-
mally apolitical bunch, were horrified.?”

The next case involves Lexmark, which makes printers and their atten-
dant printer cartridges, and Static Control, which makes printer car-
tridges that are compatible with Lexmark’s printers. In order to be com-
patible, the cartridge must include a chip programmed with a short piece
of code that can be used to verify whether the cartridge is authentic or

27. A year and a half after the arrest, a jury acquitted Sklyarov, finding that his violation
of the DMCA was not “willful.” See www.freesklyarov.org.

128 INTEROPERABILITY

not. Making two pieces of hardware compatible now becomes a software
issue. Lexmark claims that the code is a copy protection scheme, so if
Static Control’s cartridges work in Lexmark’s printers, Static Control
must have circumvented its copy protection. As of this writing, the Dis-
trict Court of the Eastern District of Kentucky ruled that Static Control
is in violation of the DMCA and therefore must halt its production.?®
However, the District Court of the Sixth Circuit chose to use a narrow
interpretation of the DMCA that excluded Lexmark’s code.?” As a result,
Static Control was allowed to resume production. The Supreme Court
chose not to hear this portion of the case, thus failing to reject the narrow
interpretation.’® The case continues in the district court.

Another DMCA complaint was filed by Chamberlain, maker of garage
door openers and their attendant remote controls. Since one remote should
not open every door on the block, users can set a key on their remote and
on the opener itself so that only one garage door will respond to one
remote. On top of this, Chamberlain garage door openers and remotes
keep track of how often the button is pressed, and the opener sends that fig-
ure and the key to the garage door, which verifies that the information is
correct. Notice the resemblance to encryption: the sender uses a key to
transmit a signal that only a receiver with the same key will accept.’!

Skylink makes replacement remote controls for all the poor souls who
lost their original remote. Skylink’s engineers learned which signals are
sent by a Chamberlain remote and then made a control that imitates the
same signals. Chamberlain sued, claiming its signals were a copy protec-
tion scheme that Skylink had circumvented, thereby violating the DMCA.

The CAFC ruled in summary judgment against Chamberlain.?? But the
case, on top of Dmitiri’s story, Lexmark’s suit, and other seeming abuses

28. No. 02-571-KSF (ED Kentucky, February 27, 2003).

29. No. 03-5400, 2004 U.S. Dist. (6th Cir. Oct. 26, 2004).

30. The Supreme Court has refused to hear Lexmark’s request for a hearing to overturn
the district court’s ruling striking down the preliminary injunction, meaning that Static Con-
trol is free to produce allegedly infringing cartridges during the trial. However, the trial
itself has not yet been held. See Ken Fisher, “Supreme Court Denies Lexmark’s Hearing Re-
quest,” Ars Technica, June 6, 20035, arstechnica.com/news.ars/post/20050606-4973.html.

31. The mechanism matches keyed encryption but is significantly weaker: the remote
sends the key and then the number of button presses the remote control knows, without
mashing the two together in any way. But ours is not to dictate when a claimed copy pro-
tection scheme is trivial or not.

32. Chamberlain Group, Inc. v. Skylink Techs. Inc., No. 04-1118, 2004 WL 1932660
(Fed. Cir. Aug. 31, 2004).

INTEROPERABILITY 129

of the DMCA, made it obvious that the letter of the DMCA law stifled
competition and interoperability. As of this writing, revisions to the
DMCA are in committee in Congress.>

If the DMCA is rewritten but not eliminated, one can expect this new
and supremely broad form of IP protection to continue to cause problems
for a more restricted but still potentially large set of software program-
mers. If Microsoft claims that its Windows Media Audio (WMA) format
includes an encryption scheme, then Microsoft will be the only company
in the world with the right to sell programs that can read the WMA data
structure. Compare this with the DOC format, which Microsoft has been
trying to maintain exclusive control of for years: under the DMCA it could
simply sue anyone who writes WMA-compatible audio players right now.

Some may think that the DMCA has a valid intent: DOC files are
probably written by the file’s owner, while WMA files are probably music
written and copyrighted by someone else. However, there is no way to
write a law that covers the WMA data structure but not the DOC struc-
ture. Despite the intent of the format’s authors, users will not necessarily
fall in line with Microsoft’s intended use of its formats: authors can pub-
lish copyrighted novels in DOC format, and garage bands can give away
their work in WMA format.

Furthermore, many data structures are merely containers. For exam-
ple, the Binary Large Object (BLOB) records in a database could hold
audio or text files, and some misguided uses of XML encode music, while
XML is also used for Word’s DOC format. Protecting the copyrighted
works of artists is a valid goal, but doing it by outlawing certain uses of
certain data structures is a fundamentally flawed means of doing so. As
honest as its intent may have been, the DMCA has become a patent
replacement with far-reaching impact on fields that have nothing to do
with music or movies.

Inefficacy of Code Restrictions

Another problem is that the DMCA is wholly ineffective in preventing
the copying of any sort of data. The Internet battle cry of old was “Infor-
mation wants to be free,” and although many people interpreted this to
mean “I don’t want to pay for things online,” it actually meant “restrict-
ing information is an impossible task.”

33. See the Digital Media Consumers’ Rights Act of 2005, H.R. 1201, 109 Cong.
(2005).

130 INTEROPERABILITY

Linux users who wish to watch their DVDs on their computers must
search for “xine DSD” and then download the code from Brazil. But the
standard Linux DVD copying software (cdrecord) blindly copies bits
from one disc to another, making absolutely no effort to decrypt the data
it is copying and is therefore entirely legal.

In terms of preventing the copying of copyrighted works, there is
absolutely nothing that a person cannot do under the DMCA that could
have been done without it. However, as demonstrated earlier, this new IP
protection has made it possible for businesses to harass competitors in
court in situations where this was not possible using any other form of IP
protection.

On the encryption side, when export restrictions were at their height,
users who could not click the “I promise 'm in the U.S.A.” button to
download the strong-encryption version could download it from Aus-
tralia. The sysadmins of terrorist organizations had to download code
for 64-bit encryption and then change a handful of parameters to get
128-bit encryption. Or they could download it from Australia.

Simply put, once a person has published an algorithm, it is available to
the whole world. It may be possible to effectively control enriched ura-
nium, but controlling the dissemination of large prime numbers is a lost
cause.

Restricting research in encryption or decryption is equally misguided.
The first step in improving anything—physical or conceptual—is to
understand its weaknesses. Making it illegal to search for loopholes in
encryption and computer security basically makes it illegal to learn from
existing schemes and guarantees that encryption techniques will never
improve.

The DMCA allows the authors of certain types of software to declare
themselves to be owners of a patent-like right to exclude, so the same
cost-benefit analysis needs to be done for the DMCA as for patents: does
the economic benefit to granting such a monopoly right outweigh the
deadweight loss monopolists cause in the marketplace? Although I do not
discuss the benefits of an appropriately narrow version of the DMCA
here, the cost side of the equation is especially large, because an author
may simply declare himself to be the owner of a copy protection scheme,
just as copyright is paperwork-free, but as in the case of a patent, the
author may sue independent inventors.

CHAPTER EIGHT

Protecting
Text

Two of the most common and sensible solutions to the
problems with software patents rest on the basic principle that protection
should be granted for an implementation, not an idea. For a program,
that means protecting the text of the source code.

The first, relatively moderate solution is to patent the source code
instead of vague descriptions or flowcharts. The second is to eliminate
software patents entirely and protect the text of software only by copy-
right. However, because copyright is designed around fields such as liter-
ature, the visual arts, and music, it needs some modification in order to
apply to code.

Having resolved to protect only the implementation, how can it be
separated from the idea it represents? The courts have a means, known as
the abstraction-filtration-comparison test, which is famously vague and
difficult to implement—but this does not mean that copyright is impossi-
ble to apply. By looking at both the final code and the process by which
the code is written, the courts give themselves more ground to look for
more clearly defined types of infringement.

Both patents on source code and copyright protect the text that imple-
ments the invention from imitation. The key difference between the two is
that independent invention cannot be used as a defense against claims of
patent infringement, meaning that a coincidental match between two
patented algorithms would be grounds for a lawsuit. In a world where

131

132 PROTECTING TEXT

code is protected by copyright, there would be no grounds unless the sec-
ond inventor had plagiarized the work of the first.

The Social Contract and Filing Source Code

To entice people to divulge their innovations instead of keeping them a
guarded secret, the government offers them 20 years of legal protection if
they file a patent. In return, the world at large gets a detailed description
of how the magic was done. Other inventors or scientists can learn from
this information, even if they cannot directly profit from it. The ideal
from an economic perspective would be that others learn from the patent
and implement the ideas embodied therein in new and unique ways,
which they may then patent. The resulting market would be filled with
clearly differentiated implementations, and all could profit.

Before this can happen, the implementation of the algorithm needs to
be made public. Currently, few software patents discuss implementation,
and only a very small sample includes actual source code. This arrange-
ment breaks the implicit social contract, since the interface is public to
begin with, while the implementation remains hidden. In exchange for
granting a 20-year monopoly, the public gets nothing.

For most patent applications, the law demands that precise details be
disclosed: “The specification shall contain a written description of the
invention, and of the manner and process of making and using it, in such
full, clear, concise, and exact terms as to enable any person skilled in the
art to which it pertains, or with which it is most nearly connected, to make
and use the same.”" This stipulation is very sensible: it would be prohibi-
tively expensive for every inventor of a new tractor or airplane engine to
deliver a working model to the U.S. Patent and Trademark Office
(USPTO). Step-by-step manufacturing instructions are the next best thing.
Because a patent must enable the reader to do something that could not be
done without the document, this rule is known as the enablement require-
ment. For biotech patents, however, step-by-step instructions for creating
a new life form are beyond human abilities, so the USPTO requires inven-
tors in this field to deposit an actual sample in certain cases.?

In the case of computer-related inventions, the examination guide
merely states: “An applicant’s specification must reasonably convey to

1.35 US.C. §112.
2.37 C.ER. §1.802.

PROTECTING TEXT 133

those skilled in the art that the applicant was in possession of the claimed
invention as of the date of invention.”® No step-by-step manufacturing
instructions are required, and the patent need not inform another person
skilled in the art of computing anything about the implementation. What
seems like a weaker standard for software stems from the fact that
patents never need to declare obvious and trivial steps. In Northern Tele-
com v. Datapoint, one of the key cases asking what is adequate disclosure
in a patent, the court concluded that the entire process of implementing a
software concept is obvious to any programmer: “The conversion of a
complete thought (as expressed in English and Mathematics . . .) into a
language a machine understands is necessarily a mere clerical function to
a skilled programmer.”*

As legal scholar Dan Burk points out in his journal articles and testi-
mony to the Federal Trade Commission (FTC), the Court of Appeals for
the Federal Circuit (CAFC) has upheld this weaker standard for soft-
ware.’ “The Federal Circuit tells us that essentially there is no disclosure
requirement for software. In cases that have come before that court where
there has been a question about disclosing code or even a flowchart or
some other indications of how software works, the Federal Circuit tells us
that’s not necessary.”® “Tell us,” he continues, “that it’s a compiler; tell us
that it’s a spreadsheet. . . . You don’t need to tell us what the code is. You
don’t need to give us a flowchart, don’t need to give us any indication of
how you do it, just tell us its function.””

Such low standards not only fail to uphold the social contract but do
so in the area where it can best be upheld. Data storage and Internet
bandwidth are cheap. If the USPTO can cover the expense of safely stor-
ing samples of genetic material and living organisms, it can certainly
cover the expense of storing computer code.

How to Obfuscate an Obvious Idea

The structure of software makes it very easy to write code quickly and
relatively intuitively; the structure of a patent application makes it very
easy to hide the fact that so little work was required. To turn three lines
of code into a nonobvious and novel invention, describe it in language

3. USPTO Examination Guidelines for Computer-Related Inventions, sec. V, B(2).
4.908 F2d 931, 940-41, 15 USPQd 1321, 1328 (Fed. Cir. 1990).

5. Burk and Lemley (2002).

6. FTC (2002, p. 108).

7. FTC (2002, p. 134).

134 PROTECTING TEXT

below the level at which a sane programmer would work. For example,
to patent a procedure for doing a few arithmetical calculations using a
programming language such as C or S, describe a set of registers that
manipulate numbers represented in memory. To patent a form for enter-
ing numbers into a database, write a patent for a program to paint but-
tons and text boxes on a screen and then execute low-level functions to
process the various operations users would perform. Of course, libraries
abound that would allow such forms to be written with a few lines of
code, but a patent claim mentioning just a handful of preexisting pack-
ages would have a slimmer chance of passing examination. Using this
method, Brian Shuster turned the three lines of JavaScript code in fig-
ure 1-1 into 42 claims. At the extreme, nothing looks obvious in assem-
bly language; similarly, nothing looks obvious when it is described in the
meticulous step-by-step detail of typical claim language.

Of course, the same obfuscation could be achieved with source code:
an applicant could send pages of C code instead of a few lines of
JavaScript. It is the examiner’s job to be sufficiently familiar with existing
languages and function libraries to know that C is not the best mode for
implementing pop-up windows.

At the other extreme, requiring source code forces applicants to pare
overbroad claims down to the appropriate scale. Just as two designers
who patent machines that do the same thing in substantially different
ways are not infringing each other’s patents, a claim on source code
should not be a claim on any equivalent implementation that anyone ever
dreams up. A patent for software on a general-purpose computer remains
a patent on pure mathematical equations, but it can at least be a patent
on a more limited range of equations.

Authors who claim a mathematical idea as their property should have
to provide specific details about how their implementation differs from
the theoretical algorithm—in the words of the Gotischalk v. Benson rul-
ing (chapter 4), they would have to explain why it is not the case that “the
patent would wholly pre-empt the mathematical formula and in practical
effect would be a patent on the algorithm itself.” Such a requirement can
be satisfied only by a detailed specification of the algorithm and its imple-
mentation—source code.

What Sort of Code Would Be Filed?

First, most of the code that goes into a program is simply not novel,
being merely dull, boilerplate checks to make sure that memory is avail-

PROTECTING TEXT 135

able, data are in the right format, and so forth. For retail software, a mul-
titude of other considerations are also necessary but cannot be claimed as
novel or nonobvious, such as support for foreign languages, an auto-
mated installation procedure, and animated characters. The actual imple-
mentation of an idea is clearest to the reader of the source code when all
of these are omitted. As a further incentive against obfuscation and over-
generalization, it is in the interest of the patent applicant to implement
code that is close to what competitors are expected to do: code at its least
obfuscated will allow the most effective future claims.

The greatest embarrassment for a coder is to learn that a few pages of
her best code could all have been done in a line or two. This carries over
to formal patent procedure, via the best-mode rule: an inventor must file
those techniques that he or she believes to be the best implementation of
the invention.® Computer scientists exalt simplicity and clarity, so an
application obfuscated with extraneous code or written at the wrong level
may not be in compliance with the best-mode rule.

Claim language, though necessary, is not the most efficient means of
describing software and therefore should be a descriptive supplement to
the code itself. Applicants have every incentive to make hundreds of
claims and leave it to the examiner to choose which are valid, but with
code, such a verbose strategy may not be optimal.

Source Code in the Public Domain

Because the description in code of a software invention is the invention
itself, asking inventors to file source raises the possibility that users would
download the program from the USPTO, saving the expense of purchas-
ing it from the author. Since any patent (but a software patent) must
describe the item with “such full, clear, concise, and exact terms as to
enable any person skilled in the art . .. to make and use the same,” this
complaint is not new to software. A competent mechanic could download
the patent for a tractor that satisfies the requirements and then build the
tractor from scratch.

The considerations that keep people from seriously doing this are the
same ones that would keep people from seriously downloading code from
the USPTO web site and using it directly. Beyond having a good idea, a
vendor adds value in the sense of knowing how to implement the idea in
an efficient manner, how to have the invention interoperate with its sur-

8. This is explicitly applied to software in MPEP §2106, sec. V.

136 PROTECTING TEXT

roundings, and what to do when things go wrong. All of this still holds
for software: there is value to be added by the implementer on top of the
bare-bones source code.

Recall that a good patent application would be one that is brief to the
point of lacking the boilerplate memory-checking, error-handling, and
animated characters. A user who insisted on downloading the software
from the USPTO instead of purchasing a license would get code that
clearly describes the implementation but that is somewhere between lack-
ing bells and whistles and being entirely unusable in the real world. This
is an ideal situation in that the inventor still has a market for the product,
and others such as students and potential competitors can learn from the
inventor. Both sides of the social contract are fulfilled.

However, if the software is so simple that a patent sketch embodies the
entire innovation, such as a single function or data structure, then it is
probably too close to pure mathematics to merit a patent. As for software
authors who worry that it would be impossible to control the code even
with the power afforded by a patent, they might want to keep the code a
trade secret. The Coca-Cola Company has kept the details of its recipe a
secret for a century, but since the life cycle of a version of a software
release is only a few years, keeping the code a secret is not so Herculean
a task. From the perspective of the social contract, inventors who do not
want to entrust the public with details of their inventions have nothing to
offer in exchange for the granting of a monopoly; the public has no obli-
gations toward such persons.

Why a Source Code Requirement May Not Work

The breadth of a patent could be narrower with source code than with-
out, since some creative mathematician may be able to convince the court
that another algorithm that achieves the same goal is sufficiently removed
from the patented code. Filing source code with each patent application
would thus provide a start to addressing the massive breadth of existing
patents, which may solve some of the problems mentioned in chapter 3,
where patent-holders with absurdly broad patents can run legally amok.

But whether the breadth of a patent is actually narrowed by listing
more detail is not a settled question. The doctrine of equivalents states
that a device that does not literally infringe a patent but that effectively
implements the same device in the same manner is still infringing. Since
all representations of a mathematical equation are equivalent, regardless

PROTECTING TEXT 137

of the language used or the details of coding, efforts to restrict the breadth
of a software patent to only a few representations may be entirely futile,
because judges may apply the doctrine of equivalents to state that any and
all implementations of the patented algorithm continue to violate the
patent. That is, the equivalence of all implementations of the same algo-
rithm is a tough bundle to break up, and more precise wording of claims
may not be sufficient to do so.

Nor would requiring source code address the problem of applying
patents to a massively decentralized industry. The only way for coders to
guarantee that their work is patent-free is to search the database of all
existing patents in the software field and compare them with the work at
hand. Even with all source code in plain text and indexed by the best
search engines imaginable, this is still an absurdly onerous requirement to
ask of all the coders in all the basements of the world’s organizations.

Copyrighting Code

Like a correctly implemented patent law, copyright law protects imple-
mentations instead of general algorithms and protects the source code
from being parroted. It does so with much less paperwork and also
resolves the absurdity of requiring constant patent searches by every
coder in the world, because independent derivation would not constitute
infringement. While patent-oriented intellectual property (IP) focuses on
whether two programs seem to work in the same manner, copyright-
oriented IP is concerned with whether one party plagiarized the work of
another. Furthermore, any words put to paper or computer screen are
automatically copyrighted, whereas patents must be explicitly applied for.
So the easiest way to protect code from imitation is simply not to publish
it; if the source code is leaked out, then the authors can fall back on copy-
right to halt further plagiarism.

Trade Secrets and Reverse Engineering

The traditional method of keeping competitors from copying code is to
keep it a secret. This is generally an effective strategy for code of reason-
able complexity. As discussed in chapter 3, human-readable source code
can be compiled into computer-readable object code. If a user were to
print the object code, it would be gibberish. However, all is not lost: the
user could run the program under a debugger.

138 PROTECTING TEXT

A debugger runs the program step by step so that the programmer can
search for errors in logic. The debugger executes a single line of code and
displays it on the screen in more or less human-readable form.

Recall that a program may include a symbol table translating between
human-readable and machine-readable forms, for example, between reg-
ister 0x80aa4f8 and the variable my_mothers_birthday, or the
command print_date (my_mothers_birthday) and the set of
machine instructions that would make the computer do such a thing.
Given a symbol table, the debugger could display these human-readable
symbols while it runs the program, and the user could thus get a good
idea of how the program works. But the programmer could easily strip
the symbols from the code before making the program public. Then the
debugger would have no idea of what 0x80aa4f8 means, and a user
who ran the program under a debugger would have to read the raw
assembly code.

This can be done for a short routine: the user can make careful notes
about what low-level steps the computer is executing and get a good idea
of what high-level code had caused these steps. But for anything longer
than a few functions, the procedure is maddening. Disassemblers exist to
automate the process, but they cannot recover certain pieces of data lost
in compilation, such as variable names, macros, or comments. The broad
overview of implementation may be discernible, but it was probably dis-
cernible from reading the manual; the more detailed questions about
implementation are the most difficult ones to reverse-engineer. Code that
has been run through any sort of optimization routines during compila-
tion is especially difficult for humans to understand after decompilation—
and there are even code obfuscators for the especially paranoid.

Is Reverse Engineering Legal? When a user downloads a program from some
distant server, the server sends a copy to the closest router, which sends a
copy to the next router, and so on down a long chain until it arrives at the
user’s computer, where a copy is saved on the hard drive. Then the program
can be run, meaning that the computer makes a copy from the hard drive
to memory, where some of the instructions will be copied to the processor.

A copyright-holder can expressly permit or deny any copying of his or
her work. Because copying data is an inherent action of almost every step
in a computing process, the copyright-holder can theoretically dictate
exactly what the user may or may not do with the program.

Under the principle of fair use, however, copyright-holders may not
restrict certain behaviors, such as including a passage from a novel in a

PROTECTING TEXT 139

critical analysis, presenting a low-resolution version of a drawing when
discussing the work (see figure 2-1), or making a backup copy of a CD in
case the original should become a coaster. U.S. copyright law also classi-
fies as fair use any copying as a transient step in using a program for its
intended purpose.

But loading the program into the debugger for reverse engineering is
also a copying process, as is displaying the symbol table or printing lines of
assembly code to the screen. In almost all cases, this is not the author’s
intended use of the program. Because the primary uses of reverse engineer-
ing (creating interoperable products and learning) are activities that bene-
fit users, U.S. courts have favored its legality: as explained in the ruling in
Sega Enterprises, Ltd. v. Accolade, Inc.: “Disassembly is a fair use of the
copyrighted work, as a matter of law.”” The primary exception is, of
course, when the subject of the reverse engineering is a copy protection
scheme, in which case the DMCA states that the reverse engineering is no
longer fair use but a felony. Courts in other jurisdictions have drawn dif-
ferent rules: those in the European Union, for example, consider it illegal to
reverse-engineer a program if the intent is to create a competing product.'®

If a coding team should disassemble a competitor’s product and then
implement its own version, however, the original manufacturer could
readily accuse it of cutting and pasting low-level code and thus violating a
copyright. The typical solution is for one team to do the disassembly and
write a high-level flowchart of the lessons learned, and then for another
team, cordoned into a clean room, to write new code using only the flow-
chart. Since the group in the clean room can document that it never saw
the original code, it cannot be accused of copyright infringement.

A final twist to the reverse-engineering question is the end-user license
agreement (EULA). The EULA is the several pages of legal fine print that
wraps a software CD, or the text users must sift through in their web
browsers before being able to download the software. It typically includes
a statement that the user may not reverse-engineer the program about to
be used. The CAFC ruled in Bowers v. Baystate Technologies that such a
license is valid, in the sense that it is not preempted by the general default
right to reverse-engineer.!’ In a similar manner, employees of a company

9.977 E2d 1510 (9th Cir. 1992).

10. Cifuentes and Fitzgerald (1999).

11. 320 E3d 1317 (CAFC 2003). Controlling software via EULA requires eternal vigi-
lance because if a competitor should ever have means of obtaining the code without first

140 PROTECTING TEXT

typically sign an agreement that they will not use code written on the job
in other locations. Companies with a proprietary code base can therefore
keep even the ideas and concepts from plagiarism by setting aside copy-
right law and resorting to a direct contract with users.

Is Reverse Engineering Worth It? Suppose that a competitor wants to produce a
knockoff program as quickly as possible. To this end, the competitor plans
to reverse-engineer the original program and copy the low-level implemen-
tation into the knockoff. Even with a complete symbol table, this is no way
to produce one’s own working, bug-free code, because the existing code
needs to be understood and fit into the copier’s existing code base.

Programmers generally agree that the most painful activity imaginable
is to read someone else’s code. Personally, I have found that other coders
always come up with exotic methods and structures that are not nearly as
obvious in function as the exotic methods and structures I use in my own
work and never place the explicatory comments where I need them. The
cognitive effort required to understand someone else’s writing and make
it work seamlessly with my own is often more than required to just pro-
gram from scratch. The task is even harder if I cannot ignore the imple-
mentation and use the interface alone but am forced to go into the func-
tions and structures themselves to make the necessary tweaks.

Programming teams overcome problems with reading each other’s
code by copiously documenting every function (needless to say, there are
programs to autogenerate documentation, such as doxygen), and by lec-
turing each other about the need to put more comments in the code itself.
An outsider would have no access to the external documentation and
would have access to the comments in the source code itself only at the
discretion of the authors (who can easily strip them from any public ver-
sions of the source or object code). Recall Ronald Mann’s interviews with
venture capitalists regarding IP; they, too, felt that even if reverse engi-
neering were easy, these practical considerations would make it a terrible
way to write code:

Indeed, a number of my interview subjects . .. argued that [code
protection] efforts are wasteful, because access to the actual code is

signing on to the terms of an EULA, then the default right of reverse engineering remains.
For example, in Atari Games Corp. v. Nintendo of America, Inc. (975 E2d 832, 24 USPQ
1015 [Fed. Cir. 1992]), Atari obtained Nintendo’s code from Nintendo’s copyright regis-
tration with the Library of Congress.

PROTECTING TEXT 141

not useful for most types of reverse engineering. Those executives
argued that the need to integrate the reverse-engineered software
into the operating environment of the competitor would make it
counterproductive to start from the code of the originating innova-
tor. It normally would be easier, they say, to start from scratch writ-
ing code to implement the observed functionality, than it would be
to start from the existing code and alter that code to match the
reverse engineer’s existing environment. From that perspective, the
emphasis on the code that is at the foundation of the copyright pro-
tection renders it entirely irrelevant to the protection of the startup
firm’s work in progress.'?

So why enforce copyrights on source code when that code can be effec-
tively kept secret, and even if it is not, it would be “counterproductive”
for competitors to use? Copyright protection guards against the sort of
shady dealing all businesses wish to avoid: disgruntled employees copying
the code and reusing it at the next firm that hires them, partners in a lim-
ited enterprise reusing code in other off-contract projects, or counterfeit-
ers with CD burners mass-producing identical copies. The only behavior
it would not address would be independent derivation by competitors.

The Breadth of Copyright Protection

As with patents, the key economic question for copyright is how broad
the protection should be. Protection in both cases should be broad
enough to ensure that the original author will invest in creative work but
should not be so broad as to stifle further innovation.

In the case of copyright, the focus is not whether two pieces of code
function in the same manner but whether one is a plagiarism of the other.
This can be difficult to determine, since code is much more terse than
prose and is constrained by many standards.

Say that a company produces software for the administration of den-
tal software and a hacker at a dental lab writes a new administration pro-
gram by copying the screen layouts and workflow of the original soft-
ware. Would there be grounds for copyright infringement? According to
the broad interpretation of “expression of an idea,” the imitator would
likely be infringing. The imitator had likely seen the original program in

12. Mann (2004, p. 24).

142 PROTECTING TEXT

operation, and even the most distant imitation would bear more similar-
ity than Garbage Pail Kids do to Cabbage Patch Kids. This situation is
fairly typical of any two programs that share a similar interface.'

If copyright is interpreted this broadly, it becomes equivalent to a
patent on an interface, and, as discussed in chapter 2, such breadth is
economically detrimental. However, such broad copyright would differ
from a comparably broad patent in two ways. First, as already men-
tioned, independent invention is a defense against claims of copyright
infringement, but this is not likely to help much for a public interface,
since a defendant would have to prove that he or she had never seen the
competitor’s product. Second, a copyright lasts not twenty years, but the
better part of a century.'* By the time the copyright on a work of software
expired, computers would look nothing like they do today.

To broadly interpret copyright on code is to allow copyright on the
code’s function. As chapters 5 and 7 showed, such property rights are too
broad, and §102 of the Copyright Act expressly forbids copyright on the
concept behind the code. Because it is the functional embodiment of
mathematical ideas, copyright needs to be interpreted more narrowly for
software than for cartoons.

The other option is to interpret copyright strictly—that is, to bar
only plagiarism, whereby one coder looks at another coder’s work and,
rather than independently writing code to function in a similar manner,
directly copies the code. The correct breadth recalls the rule of thumb
that protecting the interface is detrimental but protecting the imple-
mentation from theft is essential, but using that rule in the copyright
realm requires new considerations: copyright can be interpreted too
narrowly, since a program with the variable names changed is still the
same program.

13. This is not a hypothetical situation. In Whelan v. Jaslow, 797 E2d 1222, 230 USPQ
481 (1986), the Supreme Court ruled that copyright applies to the broad structures of two
programs; this part of the ruling has since been limited (some would say reversed) via the
abstraction-filtration-comparison test discussed in the next section. The ruling also relied on
the fact that the author of the imitating program, Rand Jaslow, was an associate of Whelan
Associates and had access to the source code of the original program. Therefore there was
a good likelihood that Jaslow had made a line-by-line copy and translation of the original.
Using the process-oriented method discussed in the next section, Jaslow would likely have
been found to be infringing without resort to any “look and feel” similarities.

14. For a human author, copyright lasts seventy years after his or her death; for a cor-
porate author, ninety-five years from publication.

PROTECTING TEXT 143
Copyrighting the Implementation

If someone cuts and pastes code from one program into another with-
out permission, it is an undisputed violation of copyright. Identifying the
violation in practice is another matter. First, two pieces of code that are
identical may not be copies of each other; and second, one piece of code
that looks nothing like another may actually be a plagiarism.

Can a Single Line of Code Be Copyrighted? Suppose that a homework assign-
ment in a creative writing class is to “describe visiting Mr. Usher on a
cloudy day,” and a student hands in the following sentence: “During the
whole of a dull, dark, and soundless day in the autumn of the year, when
the clouds hung oppressively low in the heavens, I had been passing
alone, on horseback, through a singularly dreary tract of country, and at
length found myself, as the shades of evening drew on, within view of the
melancholy House of Usher.” There would be absolutely no doubt that
the student had copied the opening of Edgar Allan Poe’s “Fall of the
House of Usher.” The probability that some clever individual would
independently write this sentence, without ever having read Poe, is sim-
ply nil.

Copyright provides exactly the right protection: the original author is
protected from people who effortlessly copy the author’s work. At the
same time, other authors are in no way stifled, because there is no chance
that they will accidentally write a near-verbatim version of “Fall of the
House of Usher.”

In contrast, code can easily be written independently. Suppose that a
homework assignment in a computer science class is to “write a function
to find a person with a given name in a linked list.” It would be no sur-
prise at all if a student handed in a function that matched the find_
person function in figure 3-3 down to the punctuation.

The Santa Cruz Operation (SCO) and International Business Machines
(IBM) have spent a few million dollars in legal fees battling over IBM’s
alleged infringement of SCO’s copyright on UNIX’s source code. Written
by Dennis Ritchie and Brian Kernighan at Bell Labs in the 1970s, UNIX’s
source code followed a long path: AT&T initially owned UNIX, but even-
tually spun off the UNIX development group as UNIX Systems Lab (USL),
which sold UNIX’s rights to Novell, which granted rights to SCO, which
contracted the code to IBM. IBM eventually changed its mind about work-
ing with SCO and decided to put its efforts into Linux. Playing the part of

144 PROTECTING TEXT

the spurned goods vendor abandoned by the labor-oriented side of the
market, SCO sued IBM, claiming that IBM had cut and pasted code from
UNIX into Linux.

In the court papers, SCO listed a series of file names common to both
UNIX and Linux, charging that “persons as yet unknown copied these
files into Linux, erasing the USL copyright attribution in the process.”!
Two such files with the same name, signal.h, do indeed share some lines
of code. Here is a sample of the first six signals:

#define SIGHUP 1
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
#define SIGABRT 6

Are there lines in the UNIX version of signal.h that exactly match?
Absolutely—in fact, this is just a sample of the verbatim matches. But
line-by-line implementation is not the level at which two works should be
compared.

Both files have these lines in compliance with an Institute of Electrical
and Electronics Engineers (IEEE) standard named POSIX (Portable
Operating System Interface). UNIX, Linux, and a dozen other operating
systems ending in the letter X all follow that standard—which specifies
that STGHUP must equal one, SIGINT must equal two, and so on. The
standard is open, in the sense that anyone may implement it. However,
SCO’s claim is not about conceptual similarities between UNIX and
Linux but about plagiarism, in which someone had cut and pasted from
UNIX’s source code, “erasing the USL copyright attribution in the
process.”

C coding standards provide only two ways to define the constant
SIGQUIT as three, and this is the more sensible of the two. If 100 under-
graduates were instructed to “write a header to define the first six signals
in the POSIX standard,” about 90 of their papers would match the code
verbatim, and the remaining would lose points. The fact that six lines
match says nothing about whether the author of the Linux version (Linus

15. Plaintiff’s Revised Supplemental Response to Defendant’s First and Second Set of
Interrogatories, section “Supplemental Response to Interrogatory no. 12,” reprinted at
www.groklaw.net/article.php?story=20040215015800694.

PROTECTING TEXT 145

Torvalds) had seen and copied the AT&T UNIX version. In fact, Warren
Toomey of the UNIX Heritage Society did a painfully detailed analysis of
the minor differences in the early versions of signal.h and gave a great
deal of evidence that Linus did not crib from AT&T.'¢

The Opinion of the Courts. The copyright equivalent to a patent’s obvious
inventions is the scéne a faire, which the legal literature translates as “a
scene that must be done.” For example, in a movie in which the hero
must defuse a bomb, the bomb absolutely must have a clock attached,
and the hero must then defuse the bomb with mere seconds to spare.
Characters, locations, and circumstances may vary, but the nick-of-time
format is constant and requisite for this genre of film. Therefore the
maker of one bomb-defusing action movie cannot sue a competitor for
copyright infringement just because the other movie also had a bomb
with a clock attached that was defused just in time.

In the POSIX standard, SIGQUIT must be three; in C, the only rea-
sonable way to implement this is via the preprocessor directive above.
The preceding code is thus a perfect example of a scene a faire. A more
elaborate example is provided by Lexmark International v. Static Control
Components. Recall that Lexmark’s printer cartridges had a short pro-
gram, 55 characters long, which Static Control copied verbatim onto its
cartridges. Beyond claims under the Digital Millennium Copyright Act
(DMCA), Lexmark charged that Static Control had violated the copy-
right on Lexmark’s little program. The circuit court ruled that the code is
a scene a faire: since there is no way to comply with the standard implic-
itly established by the printer except by the verbatim repetition of Lex-
mark’s code, Static Control was not guilty of copyright infringement for
making such a copy.

As discussed in chapter 7, it would be economically detrimental to
allow the copyright of languages. The scene a faire rule indicates that a
copyright on a language would not pass legal muster either: if the only
way to interoperate with a program is via a sequence of magic words,
those words may become a scéne a faire no matter how much creativity
originally went into authoring those words.

Admittedly, the line between a scéne a faire and a creative work is
blurred. POSIX implementations are like love poems: all express approx-
imately the same idea, although some do so in an innovative manner. The

16. Warren Toomey, “Signal.h,” Groklaw, March 1, 2004 (www.groklaw.net/article.
php?story=2004022923000172).

146 PROTECTING TEXT

problem for authors of software is that conceptual similarity opens the
door to unnecessary litigation and harassment over claims of plagiarism.

Porting and Translating. There are three types of derivative work in the pro-
gramming world. The first is functional work that interoperates with the
original, such as a specialized spreadsheet for Microsoft Excel. As men-
tioned in chapter 7 and as indicated by the scéne a faire rule, copyrights
should not apply to the standards necessary for communication between
interoperating programs.

The other two derivative types are porting and translating. Porting
consists of taking code written for one set of libraries (such as those for
Windows) and modifying it to work with another set (such as those for
MacOS). Translating consists of taking code written in one language
(such as C) and rewriting it in another (such as FORTRAN). Both of
these types are tedious, frustrating, and basically mechanical processes.

In FORTRAN, the definition for SIGQUIT would look like this:

integer SIGQUIT
parameter (SIGQUIT = 3).

But if a FORTRAN programmer had looked at AT&T code and trans-
lated it to FORTRAN, he or she would be plagiarizing the code. That is,
it is possible to interpret copyright too narrowly: a good copyright law
should cover not simply the specific letters an author has written down
but also undue imitation even after basic translations or modifications.

Can a Single Function Be Copyrighted? Copyright law as it stands today has
much greater respect for the idea of a mathematical exception than cur-
rent patent law. Recall from page 117 that the list of allowable subjects
for copyright in 17 U.S. Code §102 is followed by an equally long listing
of the subjects to which copyright may not apply, including “any idea,
procedure, process, system, method of operation, concept, principle, or
discovery.” Conversely, Jefferson’s patent law has no such pessimistic list
of exclusions. Instead, one must look to judicial interpretation to find the
statement of the mathematical exception. Such judicial support is easy to
find; to give yet another example, the ruling in Mackay Radio & Tele-
graph Co. v. Radio Corp. of America stated that “a scientific truth, or the
mathematical expression of it, is not a patentable invention.”'”

Because the mathematical exception is so clearly codified in copyright
law, while the scientific and mathematical exceptions to patents are a

17.306 U.S. 86, 94 (1939).

PROTECTING TEXT 147

matter of common law, much more care is taken to exclude ideas and
facts from copyright than from patents. Feist Publications basically
copied the telephone listings compiled by Rural Telephone Service verba-
tim, but because telephone numbers are facts and not an original work,
the Supreme Court ruled that Feist had done no wrong.'® Meredith Cor-
poration published a book of yogurt recipes that matched the recipes in
a Publications International recipe book, although the order and presen-
tation differed in details such as the “pictorial representations of the final
products upon which the yogurt devotee may longingly fixate.”!” The
court found no copyright infringement. “Although the inventions of
‘Swiss 'n’ Cheddar Cheeseballs” and ‘Mediterranean Meatball Salad’ were
at some time original, there can be no monopoly in the copyright sense in
the ideas for producing certain foodstuffs.” Publications International
could copyright “only the manner and order in which [the recipes] are
presented.”

Applied to software, the culmination of such rulings is the abstraction-
filtration-comparison (AFC) test, first proposed in Computer Associates
International v. Altai.*® A court that hopes to determine whether a pro-
gram is infringing the copyright of another must first abstract out the
root algorithm the program expresses, then filter that algorithm from
both programs, and then compare the remaining bits of expression. This
would be comparable to replacing all of the yogurt recipes with markers,
leaving only their order and accompanying photos.

The AFC test is difficult (some argue, impossible) for a court to apply
objectively. However, the ideal law is one that never sees a courtroom
because parties know exactly how to comply, and in this respect the AFC
test may work rather well. A new program that included a nontrivial
amount of code cut and pasted from a competitor’s would clearly fail to
pass the AFC test, while an imitator who learned from a competitor’s
code and then wrote new code based upon the lessons learned therefrom
could easily ensure that the resulting code would pass AFC muster.

What if an imitator copied the original code and then made incremen-
tal and irrelevant modifications, such as renaming variables or shuffling
the order of the functions? Then, at some point in development, the

18. Feist Publications v. Rural Telephone Corp., 499 U.S. 340 (1991).

19. Publications International, Ltd. v. Meredith Corporation, 88 F.3d 473 (7th Cir.
1996).

20. 982 F.2d 693, 23 USPQ2d 1241 (2d Cir. 1992).

148 PROTECTING TEXT

copier would have still cut and pasted the code and violated copyright,
even if the final product looked dissimilar to the original. Conversely, if a
competitor can produce a series of incremental steps toward a program
that will in the end be dissimilar to the program the competitor is copy-
ing, then the competitor has just gone through a process much closer to
the legal act of rederivation than to illegal plagiarism.

In short, the process matters, and it may give a clearer approach to
determining infringement than the AFC test. Every algebra textbook on
high school shelves today includes the quadratic equation, the algorithm
for completing the square, and a dozen other standard ideas and facts.
If the author of a new textbook were to open an existing text and begin
copying, such behavior would be considered plagiarism, even if the new
author should switch variable names or make other modifications. If the
new author read one or many existing texts, took notes on their con-
tent, and began writing, effectively rederiving high school algebra anew,
the resulting book would be an original work. The author may have
depended on notes cribbed from others, but the derivation is his. For a
textbook, there may or may not be evidence of the process of author-
ship. But the process is transparent for the typical program, even after
the fact.

Version Control. Few if any programs spring whole from the program-
mer’s mind. If they do, they are probably too trivial to fall within the
scope of a good copy-protection law. Instead, programmers start with a
simple skeleton, and perhaps notes written in complete sentences, and
then build up new features with each step. Unlike the romantic play-
wright who burns his old manuscripts to keep warm, coders care deeply
about keeping good records—and the law can take advantage of that.

Since programmers do nothing better than write programs to facilitate
programming, there are dozens of recordkeeping systems, such as the
concurrent versioning system (CVS) and its successor, subversion. As
both names indicate, the programs focus on managing the dozens of ver-
sions and subversions of any single program. These systems have their
flaws, so some users prefer Aegis, Arch, BitKeeper, Codeville, ClearCase,
Katie, Monotone, Perforce, Razor, Stellation, or Vesta—some software
companies have even written their own in-house version control from
scratch. At the very least, any good programmer keeps backup copies of
his or her work. A programmer—or a lawyer—may easily query these
systems for a copy of the program as it looked six months or a year

PROTECTING TEXT 149

ago.?' Under a good copyright regime, programmers would want to keep
full records of past versions of the program. Fortunately, this require-
ment comports with good programming style and usual custom, so is no
more onerous than the habits a good programmer has to begin with.

Given all of this information, it should be easy to determine whether a
new program is parroting an old one or has evolved naturally. It is the
process that determines whether the new author is plagiarizing or rederiv-
ing, and the process of coding is clearly recorded and archived. Could
someone fake the records after the fact? Yes, but the task would entail more
than just developing the program. One would have to rewrite a skeleton
that bore distant similarity to the copyrighted work and then invent steps
by which it would evolve into the final state. In other words, the copy-
righted work would save a potential copier neither time nor effort.

The difficult-to-apply abstraction-filtration-comparison test can be
substantially replaced by the simpler criterion of whether new authors
developed their code base by copying and pasting it from elsewhere or by
rederiving it. Focusing on the process brings in a wealth of new informa-
tion, and an arbitrator can search for a smoking gun of plagiarism
throughout the project. If parts were directly copied at any point, this
would likely be sufficient to find infringement even after the AFC test (at
least at the point in the revision history that the copy was made); if no
parts were directly copied, there would likely be no similarity after one
applied abstraction and filtration.

Is searching for direct plagiarism throughout the version history iden-
tical to applying the AFC test to the end product? They differ in one star
case, Computer Associates v. Altai, which introduced the AFC test itself.
The court applied the test to the two parties’ final products and found
sufficient differences to proclaim no infringement. However, one designer
of Altai’s program, who had once worked for Computer Associates (CA),
had used CA source code in Altai’s program; during the trial it was found
that 30 percent of an earlier draft of Altai’s program was copied directly
from CA. The court applied its new AFC test to the final version of Altai’s
program and found no infringement, but if it had applied the test to the

21. Of course, slips still happen. In the copyright-infringement case of Compuware v.
IBM, IBM was unable to produce early versions of the code Compuware claimed IBM had
stolen until the last minute—when the code was found in a closet in Sydney, Australia. Nick
Bunkley, “IBM Must Pay Compuware,” Detroit News, September 28, 2004 (www.
detnews.com/2004/technology/0409/29/b01-286633.htm).

150 PROTECTING TEXT

earlier draft, it is almost certain that it would have found some expressive
elements copied.?? Applying the AFC test to every step of a program’s cre-
tion clearly provides more opportunities to find infringement, but in cases
where it is present, applying the test is significantly easier.

The economically ideal law allows competition by diligent competitors
but does not allow blind imitation. Everything an arbitrator needs to dis-
tinguish the diligent from the lazy exists in the records.

22. Some fear that even substantial direct plagiarism may still not count as infringement
after abstraction and filtration. There is little if any evidence that the courts have inter-
preted or would interpret the AFC so zealously. But if they did, we could borrow a new type
of intellectual property protection from database authors, who have had no protection since
Feist. Often referred to as “sweat of the brow protection,” it matches copyright in that it
bars plagiarism and derivative works in a similar manner; its sole difference is that it does
not demand that the work involve creativity. Sweat of the brow protection for databases
exists in the EU; as of this writing, attempts to establish it in the United States have failed.
Applying such protection to software would moot the AFC test, but it would create its own
problems in determining when two programs or databases match because they document
the same concepts or facts and when they match because of plagiarism. That is, the AFC test
applied to the entire version history and sweat of the brow protection would ask an identi-
cal question: was there substantial plagiarism at some point in the version history?

CHAPTER NINE

Policy
Recommendations

The Federal Trade Commission (FTC) is in the business
of preventing overbroad monopolies. Of late, the U.S. Patent and Trade-
mark Office (USPTO) has been granting overbroad monopolies. In Octo-
ber 2003, in the spirit of its mandate, the FTC published a report stating
recommendations to reform the patent system.! Here are two that reflect
the FTC’s desire to have the patent system focus more on maximizing
total economic benefit:

Recommendation 6: Consider possible harm to competition—along
with other possible benefits and costs—before extending the scope
of patentable subject matter.

Recommendation 10: Expand consideration of economic learning
and competition policy concerns in patent law decision making.

These recommendations were actually somewhat contentious. In reply
to the FTC’s report, the Intellectual Property Owners Association (IPO)
commented:

1. FTC (2003).

151

152 POLICY RECOMMENDATIONS

IPO does not . . . believe that the courts or USPTO should actively
attempt to balance patent law with economic policy through strate-
gies such as limiting the scope of patentable subject matter or deny-
ing the grant or limiting enforcement of a patent. IPO believes that
such an attempt would profoundly undercut the foundation of the
patent system. . .. The greater good is best served when the courts
and USPTO grant and enforce patents without consideration to the
net economic good or net economic harm caused by a single patent.?

IPO’s statement acknowledges that a balance could be struck where
limits on patents could be informed by economic policy. At the same
time, it says that the economic good of individual patents should not be
a consideration for approval. I agree: guessing at such microlevel eco-
nomic effects is a crapshoot.? But one can make valid predictions about
the overall benefit or loss on the basis of large genres of patents, as the
FTC recommends.

Not only do I (and the FTC) agree that we should make such evalua-
tions, but some argue that it is Congress’s obligation to do so, as indicated
in Article I, section 8, clause 8 of the U.S. Constitution: “The Congress
shall have power to . .. promote the progress of science and useful arts,
by securing for limited times to authors and inventors the exclusive right
to their respective writings and discoveries.” According to Lawrence
Lessig, Stanford and University of Chicago law professor, this clause “sets
forth the precise reason for the power—to promote the progress of sci-
ence and useful arts. It is for those reasons, and those reasons only, that
Congress may grant an exclusive right—otherwise known as a monop-
oly.”* Not only does it make sense for patent law to be in harmony with
economic reality, but, as Lessig emphasizes, it is Congress’s obligation to
ensure that patent law promotes rather than hinders progress, and to the
extent that patent law does not promote progress, it is unconstitutional.
It is in this context that this book was written, and on which this chapter
focuses.

2. Press release, July 8, 2004, replying to the FTC report discussed in this chapter. IPO’s
release is available in its archive of legislative and international issues position statements at
http://www.ipo.org/.

3. For some good reasons why this is so, see FTC (2003, chap. 4, p. 7), which concurs with
IPO that individual patents should not be conditional on a full economic cost-benefit analysis.

4. Lessig (1999, p. 133).

POLICY RECOMMENDATIONS 153

An Act of Congress

Although Congress is supposed to allow patent protection only under
certain conditions, it has been somewhat lax in this regard when it
comes to software patents. By leaving the law governing what may be
patented as a single sentence, it has left the decision of what is or is not
patentable to a long string of judges and hundreds of individual patent
officers. But it is not the judge’s job to ask whether software should be
patentable, only whether software fits the vague definition of patentable
subject matter codified by Congress. Nor is it the job of the patent offi-
cers, who simply try their best to conform to the ever-changing opinions
of the court.

Thus this book’s primary policy recommendation is that Congress
actually consider and debate whether software is indeed patentable sub-
ject matter. Because there is a bright line between a state machine and the
states to which it has been set, physical inventions and software can eas-
ily follow different laws.

Some would argue that to consider each industry or technology sepa-
rately would open a can of worms since every industry would then battle
for stronger or weaker protections. The fact is, these battles are already
being fought in the courts, which is an inappropriate venue for such
debate. Moreover, some precedent has been set for having different patent
laws for different types of invention: the U.S. Code already contains spe-
cific rules about the patenting of genetic material.

It would be counterproductive to have different laws covering different
physical fields because of the ease of reclassifying a patent from one cat-
egory to another. Different laws would simply induce reshuffling and
reclassification instead of real change. But software has no physical man-
ifestation except in the state of a state machine. If the physical state
machine is patentable and the state is not, there would be no loss of clar-
ity, and no way to shuffle code into physical machines (except via further
innovation in the design of new machines).

A moderate but complex alternative would be to continue to allow
software patents, but to make significant changes to the existing rules. A
much simpler and potentially more effective suggestion would be to stop
providing patent protection to software altogether, and instead provide
much more limited facilities to ensure that copyright is appropriately
applied.

154 POLICY RECOMMENDATIONS

Restricted Patent Regimes

If software patents are to remain in use, major reforms must be made in
how those patents are evaluated. Although it is easy to confuse the two,
it is the implementation, not the idea, that is patentable.’

The structure of software, as discussed in chapter 3, is such that any
large problem can be broken down by a competent practitioner into
smaller problems that can be surmounted and then aggregated to solve
the larger problem—meaning that, given the idea, the implementation
approaches obviousness. Any small problem that is not obvious is likely
to be a purely mathematical algorithm (in the style of Gottschalk v. Ben-
son)—which is not patentable either.

There may be a narrow class of programs for which the implementa-
tion itself is neither obvious nor an innovative mathematical algorithm. If
such a class exists, then it alone deserves patent protection. Here are some
suggestions for how to find this class of patents, help block or invalidate
patents outside this class, and provide the appropriate breadth of protec-
tion for those within it.

Enforce Nonobviousness

The USPTO’s corporate plan used to state that “the Patent Business is
one of the PTO’s three core businesses. The primary mission of the Patent
Business is to help customers get patents.”® The goal should not be to
help customers get patents, however, but to evaluate which patents are
worth granting. It may be better to turn away a marginal patent than
allow it to haunt the legal system for 20 years. Furthermore, the review
process depends too heavily on prior patent filings and not enough on the
experience of programmers in the field. Many complain that such a
process sometimes causes plain old common sense to disappear.

As discussed in chapter 3, it has been estimated that 58 percent of soft-
ware patent applications cite no nonpatent prior art. Indeed, many if not
most ideas in the journals and hard drives of practitioners appear
nowhere in the USPTO?s archives. Yet to omit such details is to deny the

5. T am in complete agreement with the courts on this. See the ruling in Diamond v.
Diebr in chapter 4, or the decision regarding Rubber-Tip Pencil Co. v. Howard (87 US 498,
1874): “An idea of itself is not patentable.”

6. USPTO FY2001 Corporate Plan, at www.uspto.gov/web/offices/com/corpplan/
pt04.pdf. This language has since been deleted from the corporate plan owing to embar-
rassing press.

POLICY RECOMMENDATIONS 155

reality of the software industry. Any patent application that fails to
acknowledge the world outside the USPTO’s doorstep should be rejected.

In the words of a National Research Council (NRC) report: “The
requirement that to qualify for a patent an invention cannot be obvious
to a person of ordinary skill in the art should be assiduously observed. In
an area . .. where the common general knowledge is not fully described
in published literature that is likely to be consulted by patent examiners,
another method of determining the state of general knowledge needs to
be employed.”” The NRC recommends an open post-grant review process
to help bring in the necessary information.

Simplify the Process of Overturning Patents

The restrictions on post-grant review need to be significantly reduced. In
line with NRC’s report, recommendation 1 of the FTC’s report suggests that
legislation should be enacted “to create a new administrative procedure to
allow post-grant review of and opposition to patents.” Without such a sys-
tem in place, the only way to dispute a patent is through the legal system,
which is the most expensive and inefficient option that one could imagine.

Again, it may be worth having separate rules for reevaluating software
and physical patents, since a preponderance of patents in the software
field are neither obvious nor novel. Patents cannot be disputed on the
basis of breadth or subject matter: if in the words of the Gottschalk v.
Benson ruling, a “patent would wholly pre-empt the mathematical for-
mula and in practical effect would be a patent on the algorithm itself,”
there would be grounds for overturning the patent—yet there currently
exists no administrative procedure to do so.

Extension versus Application

Mathematical equations rewritten with real-world variable names
should not be patentable. This is what Thomas Jefferson seems to have
believed, and what the Supreme Court seems to have decided in its trilogy
of rulings. But the ruling has been entirely forgotten in favor of the In re
Alappat and State Street conclusions, which broadly apply patents to
“anything made by man under the sun.” The courts should be much more
careful in making sure that patent applicants seek to protect an invention
that incorporates the math into a larger physically innovative device, thus
substantially extending the math beyond a direct application. Patent

7. Merrill, Levin, and Meyers (2004, p. 81).

156 POLICY RECOMMENDATIONS

applications whose sole novelty is in the assignment of real-world names
to variables should not be granted. Applicants typically make every effort
to imply a novel extension into the physical world in the wording of their
patents. Examiners do not need to exclude any claims that seem to be on
the borderline between having an inventive physical step or not, but may
simply add a caveat to the claims that they do not apply when imple-
mented via a program on an uninventive general-purpose computer.

Interface versus Implementation

Patents should be about the engineering of machines, not about con-
cepts. It is the money, time, and work that went into the design of the
machine that may not be economically feasible on the unprotected free
market. It only takes a single squashed banana to conceive of a banana
protective device, but to select the right materials, design the correct
shape, and test and revise and retest the prototypes takes much longer.
This distinction between idea and engineering has been forgotten in the
case of code, where the detailed description of an idea and the imple-
mentation of an idea are the same thing. As Brian Kahin explains, “To
design it is to build it.”® The distinction needs to be rediscovered: the
code should be patented, not the idea.

If the idea itself were patented, then the first to invent it could claim a
monopoly on an entire market, and no one could produce a program that
could compete with the monopolist. This is far too broad a monopoly
compared with what would be required to entice a company to hire cre-
ative programmers. Thanks to the rule that implementations and not
ideas are patented, the markets for physical goods are filled with products
that are distinct and competitive; the same should hold for software.

File the Source Code

Prozac was not patented on a claim along the lines of “I have come up
with a chemical that alleviates depression”—it was a complete descrip-
tion of the molecule itself that was patented. Meanwhile, programs are
patented on the claim that the applicant is in possession of a program that
does certain things. The bar should not be lowered in the examination
guidelines for software.

For biotech patents, the requirements are still more stringent: in many
cases, inventors must deposit a sample. The justification is that no paper

8. Kahin (1991).

POLICY RECOMMENDATIONS 157

description of a living organism is sufficient to allow anyone to make and
use the organism, but the precedent is there for the USPTO to take the
invention itself instead of its description.

There is an easy, concise way to deliver a program to the USPTO: pro-
vide the source code. Disk space is cheap—certainly cheaper than the
storage of biomatter—so there is no logistic reason why source code can-
not be filed with every software patent. The only problem is that the
software companies want to reveal as little as possible to obtain a patent.
If they could file the online manual as their claims, they would. But a
patent is a contract between the public and the patent-holder: the public
gives an individual a monopoly, and in return the individual provides the
public with information that otherwise would have been kept secret. The
courts and USPTO should ensure that software authors uphold their end
of the bargain by revealing their innovative code.

Make the Source Code Searchable

It is currently impossible for a programmer to know if the function he or
she just wrote is patented. First, users must find just the right search term,
which is an ordeal in itself—recall, for example, that Acacia’s patent on
streaming media over the Internet uses neither the terms “streaming media”
nor “Internet.” Programmers then need to read through pages of legalese
to determine exactly what the patent covers. Then, they must repeat the
process for every level of code: functions, data structures, libraries, on up
to the user-level program.

If software is to remain covered by patents, programmers must be able to
easily determine which routines are patented for which applications, and the
process must be as quick as looking up a function’s interface. The only alter-
native, which is current practice, is for programmers to forgo the patent
search entirely, on the assumption that if they are in violation of anything sig-
nificant a lawyer will contact them. This is clearly a suboptimal solution: in
the economic sense, it creates risk and inefficiency, and in the technological
sense, it does not permit practitioners to learn from relevant prior patents.

Independent invention is not a defense against infringement claims, and
the software industry is massively decentralized. For true compliance, every
computer user in the United States must legally clear every function or
chain of operations that he or she writes down; this can only happen if
searching the patent database is incredibly fast and cheap. Readers who
find such a requirement onerous to the point of absurdity may prefer the
alternative described in the next section.

158 POLICY RECOMMENDATIONS

Eliminating Software Patents Altogether

In chapter 4, I proposed that an innovative state machine (a physical
device) should have every right to a patent, while the states to which that
machine are set (pure information) should not be patentable. This dis-
tinction meets the three criteria set out earlier, of allowing physical
machines to be patented, ensuring that mathematics is not patented, and
being clear and easy to apply. It also seems to be in line with the centuries
of legal opinion prior to the rulings of the Court of Appeals for the Fed-
eral Circuit (CAFC). Drawing this line between the patentable and the
unpatentable means eliminating patents on software.

Patents fail to recognize the unique, fundamental traits of software:

—Software is math, which is a natural part of the public domain.
Algorithms for calculating cosines or multiplying matrices have been
removed from the public domain via software patents. Restrictions on
subject matter that impose variable names on mathematical algorithms
are no solution to this fundamental problem.

—Software production is massively decentralized: people in the base-
ment of almost every corporation in America write code. The informa-
tional assumptions underlying patents—that all patents are common
knowledge and gaining that knowledge incurs moderate costs on only a
few parties—are clearly false for software.

—A given program is equivalent to any other that executes the same
mathematical algorithm. Hence a properly written software patent will be
of immense breadth, which makes it almost certain that all new software
will infringe existing patents. Because software is based on abstraction
and generalization, the risk of overlapping with existing patented tech-
niques will always exist regardless of the details of patenting rules.

—Independent invention is incredibly common in mathematics and in
computer science. A patent on the implementation of a program protects
the source code, just as a copyright would, but it would grant the first to
patent the right to sue those who independently derive the algorithm,
meaning that patent-holders need only wait and somebody prosecutable
for damages will appear. Conversely, anyone who writes code is likely to
independently derive a patented algorithm. Copyright protects the same
text that a good patent would but without allowing the copyright-holder
to sue independent inventors.

As well as fixing these fundamental problems, eliminating software
patents would have a number of practical benefits:

POLICY RECOMMENDATIONS 159

—It would relieve the pressures on the USPTO, which is buried under
a mountain of tens of thousands of software patent applications a year.
As a result, software patents are underevaluated and funds diverted from
the physical patent applications that the USPTO has shown success with
in the past. Simply denying patents that are pure information would help
defuse an impending funding disaster at the USPTO and provide a better
quality of evaluation to physical patents.

—Legal ambiguities about whether any given mathematical algorithm
is patented disappear, meaning fewer lawsuits and legal fees.

—Collaborative software can continue to exist without fear of being
litigated out of existence.

—Consultants and information technology departments would be free
to implement the best solution they know instead of being forced to pur-
chase shrink-wrapped software with the appropriate legal coverage.

—Because writing software would be a less risky activity, more people
would engage in it. Everyone who works in front of a computer—not
just firms with research labs and a legal department—would be able to
write innovative code.

—Anyone would be free to extend the value of a program by invent-
ing interoperable products.

—Students of computer science would be free to learn from existing
practitioners.

For all of these reasons, eliminating software patents may encourage
innovation.

There is also abundant evidence that the software market would not
collapse or stagnate without software patents. Before the decisive In re
Alappat ruling in 1994, software patents were in legal limbo: nobody
knew whether they would survive judicial scrutiny. Yet innovation and
investment was closer to overheated than stagnant. Almost all of the tools
of modern computing in common use—word processors, spreadsheets,
databases, World Wide Web, e-mail—were all substantially in place in
1994. It is anyone’s guess where drug manufacturing would be without
patents, but not so for software: a software industry without software
patents was alive and well from the 1950s up to a decade ago, and by any
measure of innovation it was a resounding success.

The fundamental goal of patents is to ensure that innovators can suf-
ficiently differentiate themselves from imitators. As discussed throughout
this book, two pieces of software that implement the same basic algo-
rithm can differ in many other ways. Two nontrivial programs will truly

160 POLICY RECOMMENDATIONS

match only if one cut and pasted code from the other at some point in the
development of the imitating program.

A patent on specific lines of code could protect against cutting and
pasting, but such a regime is identical to a copyright—except that it
allows patent-holders to sue anyone who independently implements the
patented invention. This is an incredibly broad power that has been
widely abused yet is unnecessary to protect the work an inventor has put
into implementing a good program.

Enforcing Copyright for Code

The only legal machinery needed to ensure such protection is a mechanism
designed to evaluate the claim, “You copied my code.” As SCO v. IBM
shows, systematic rules for evaluating this claim are clearly inadequate at
present, even though such assessment can be relatively easy, thanks to the
reams of backups and version information that support a project.

If two programs look uncannily similar, the resemblance is not yet evi-
dence that one plagiarized the other; conversely, if a programmer plagia-
rized a C program and implemented it in Perl, the two equivalent programs
would not look at all alike. The existing abstraction-filtration-comparison
test is hard to administer and is open to judicial interpretation. A process-
oriented scheme, in which an arbitrator would ask whether the alleged
infringer had copied code or rederived code, is easier to implement and
interpret, given the reality of coding standards.

If people are to produce innovative or creative works, they need some
assurance that competitors will not market photocopies of their work. In
other words, to remain healthy, the software market needs an easy way to
evaluate accusations of plagiarism. But authors do not need a lock on the
market or a monopoly on an idea to viably design new code. Obviously,
inventors will constantly clamor for such a gift from society, which they
will claim to need and deserve, but experience has shown that this is too
dear a cost. Although it is essential to protect the investment put into imple-
menting an idea, society is better off when the idea itself is free to flourish
in the minds and works of everyone.

Glossary

Assignee The patent applicant must be a human being or a group of
humans. However, the inventors can assign the rights conferred by the
patent to a company, usually the inventors’ employer, to administer the
patent, collect royalties, and so forth.

Assembly language A one-to-one translation of machine code, wherein
each instruction or memory address is given a human-readable
mnemonic. A given processor can only understand one (or at best a
handful of) assembly language(s), while one assembly language is spe-
cific to the handful of pieces of hardware that implement it.

Best-mode rule A patent application must describe the best mode by
which a program can be implemented, which prevents certain types of
gaming of the system. This rule is basically ignored in practice, since it
is so difficult to prove that a work is not in its best mode. I propose
that a claim for a program implemented at the wrong level, without
using available function libraries, or in an obfuscated manner should
not pass this rule.

Blocking patent A patent that can only function if used in conjunction
with another patent. Neither patent-holder can implement the new
innovation until both arrive at mutually agreeable terms.

Breadth A term describing the variety of inventions that a patent or
copyright covers. There are no accurate measures of the true breadth
of a patent, but an examiner for a given patent has the power to mod-
ify the claim language to make it broader or narrower.

161

162 GLOSSARY

CAFC Court of Appeals for the Federal Circuit. A court created in 1982
to hear primarily trade disputes and patent cases. Because the Supreme
Court so rarely hears patent cases, the CAFC is more or less the high-
est court in the land for patent cases.

Church-Turing thesis Any effective computation can be carried out by
a Turing machine, and a Turing machine can carry out any effective
computation. The word effective refers to any finite sequence of precise
instructions. The hypothesis establishes an equivalence class: any pro-
gram that is equivalent to a Turing machine will be equivalent to any
other program that is equivalent to a Turing machine. This thesis
answers the question “What problems are computable?” Alan Turing
addressed the question in a 1936 paper describing the Turing machine,
and in the same year Alonzo Church published his response based on
the lambda calculus. The two were then shown to be equivalent.

Circumvention device 17 U.S.C. §1201(3)(a): “To ‘circumvent a tech-
nological measure’ means to descramble a scrambled work, to decrypt
an encrypted work, or otherwise to avoid, bypass, remove, deactivate,
or impair a technological measure, without the authority of the copy-
right owner.”

Clean room A group of programmers who can document that they have
never looked closely at a competitor’s code (although others in the
same organization may have done so). Thus it can be documented that
all code that comes out of the clean room has been independently
invented, and so all such code runs zero risk of copyright infringe-
ment—but still bears the full risk of patent infringement. (Not to be
confused with the software engineering method by the same name,
which is aimed at producing bug-free code.)

Compiler A program to translate code from a human-readable language
to a computer’s machine code. The user writes the source code, and
then the compiler noninteractively produces a program. Compare with
interpreter.

Computable A problem that can be programmed on a Turing machine
(and that the Turing machine can complete in finite time).

Contributory infringement 35 U.S.C. §271(a) states that selling or even
simply using a device that is known to infringe a patent is itself an
infringement of the patent.

Copy protection 17 U.S.C. §1201(3)(b): “A technological measure
‘effectively controls access to a work’ if the measure, in the ordinary

GLOSSARY 163

course of its operation, requires the application of information, or a
process or a treatment, with the authority of the copyright owner, to
gain access to the work.”

Debugger A program that steps through every instruction of another
program one by one. If the program being debugged includes a symbol
table, then the instructions would be lines of human-readable code; if
no symbol table is included, the instructions would be commands in
machine code.

DMCA Digital Millennium Copyright Act. This act outlawed the dis-
tribution of a circumvention device that gets around or breaks any sort
of copy protection.

Doctrine of equivalents If a device does not literally infringe the text of
a patent but performs substantially the same function in substantially
the same way to achieve substantially the same result, the device is still
taken to be infringing. The doctrine is judicially created but has a his-
tory dating back to 1853 (to Winans v. Denmead, 56 U.S. [15 How]|
330 [1853]).

Enablement rule A patent must enable the reader to do something that
he or she could not have done without the patent. This typically means
that the invention must be described with sufficient detail to enable an
appropriately skilled reader to implement the invention.

Encryption The process of making data illegible by applying a series of
transformations. If the transformations are reversed correctly, then the
data can be read perfectly, but to one who does not know the correct
transformations, the data are gibberish.

Fair use The types of copying a copyrighted work that are considered
acceptable uses, such as excerpting a passage from a novel in a review
or making a backup copy of a CD.

Free software See open-source software.

FLOSS Free, Libre, and Open-Source Software. See open-source software.

Function A list of instructions to a computer that takes a set of inputs
and returns a set of known outputs. Modeled on mathematical func-
tions such as f(x) = x2, which some write as f : x — x? to indicate that
f takes x as an input and spits out x? as an output.

Function library A set of functions and data structures used for a par-
ticular task. If the library has a function named main, the library is
known as a program; if it does not, its functions may be called by other
programs as needed.

164 GLOSSARY

Incomplete appropriability The benefit of intellectual property protec-
tion: competitors cannot appropriate the whole of the original author’s
work as their own.

Interpreter A program to translate code from a human-readable lan-
guage to a computer’s machine code. The user inputs individual com-
mands, and then the interpreter produces the appropriate machine
code and executes that code. Compare with compiler.

Lambda calculus A notation for pure mathematical functions, so named
because a function is expressed as a list of the form (N in out). Pro-
gramming languages that implement some variant of the lambda
calculus include Lisp, Scheme, and Mathematica.

Libre software See open-source software.

Linux An operating system that complies with the POSIX standard. The
first version was written by Linus Torvalds in his spare time, but he has
since added contributions from hundreds of programmers. The com-
piler, shells, and other essential programs are often referred to as a
part of Linux, but the name actually refers only to the kernel, which is
the bridge between the other programs and the hardware.

Machine language A language consisting of hexadecimal numbers that
a computer chip can directly interpret as instructions. The machine
language is the interface that the chip implements.

Object code Code in machine language. It is specific to the few com-
puters that can readily understand the machine language as a series of
instructions. It is not human readable.

Open-source software (OSS) Software whose source code is freely avail-
able, so users can modify or add to it. Most OSS licenses include a
stipulation that users’ changes or additions must also remain open
source.

Patent thicket A large bundle of patents, often all relating to one sub-
field, such that it is very difficult to write in this subfield without using
some patents from the thicket. The metaphor refers to an inventor
attempting to progress through the jungle, blocked at every turn by
dense foliage.

Port Rewriting code written for one set of libraries (such as those for
MacOS) so that it will work on another (such as those for Windows).
Sometimes also used to refer to rewriting code written in one language
(such as C) in another (such as FORTRAN).

POSIX The Portable Operating System Interface standard. By the mid-
1980s, a multitude of variants on the UNIX operating system ap-

GLOSSARY 165

peared; the Institute of Electrical and Electronics Engineers convened
a panel to write this standard so that programs written on one flavor
of UNIX could be more easily ported to another flavor. Santa Cruz
Operation’s UNIX, International Business Machines’ AIX, Hewlett-
Packard’s HP-UX, Linux, and others all more or less comply with this
standard.

Prior art The existing published works that are searched to establish
that a claim is novel. Theoretically, prior art includes all published
works the world over, but since patent examiners are mortal, they
often search only prior patents.

Rent seeking Activity aimed at transferring money to one party from
another. The receiving party is wealthier, but the society as a whole is
no richer (although rent-seeking activity may be a small, unproductive
part of an overall productive activity). If Company A could somehow
extract $1 million from Company B by burning $900,000, it would be
happy to do so, but the total value held by both companies would be
down $900,000.

Sceéne a faire Part of a creative work that “has to be done,” such as
methods of character development or plot devices in a story, or code
that is required to conform to a standard.

Shrink-wrapped software Software that is sold as a good, at a unit cost,
and without customization.

Source code The human-readable version of a program. It will be con-
verted into object code for the computer to execute.

State machine See Turing machine.

Submarine patent A patent that is kept out of sight from other prac-
titioners. Historically, this was achieved through bureaucratic
wrangling with the USPTO to keep an application unpublished. Since
there are so many software patents and the search problem is so
much more difficult for them, it is reasonable to apply this term to a
software patent that has been granted but not announced to the
industry.

Symbol table A table, produced by a compiler or interpreter, showing
how each word in a program translates to machine code. For example,
a variable such as todays_date may translate to the memory
address 0xbff££590. Programmers may choose to leave the symbol
table in the compiled object code (to facilitate debugging) or have the
compiler discard the symbol table (which makes de-compiling by com-
petitors difficult).

166 GLOSSARY

Transistor A solid-state component with two inputs (the base and the
emitter) and one output (the collector). If there is a current flowing
through both the base and emitter, there will also be a current flowing
through the collector. The transistor may thus be used to implement
the logical AND.

Trivial A technical term used by mathematicians to indicate that a prob-
lem can be solved using no creativity but perhaps great effort. Building
an airplane given all the parts and complete instructions is trivial.

Turing complete Describes a programming language that is equivalent
to a Turing machine, in the sense of being equivalent to a set of states
and instructions regarding a data tape. Any Turing complete language
can be #rivially translated into any other Turing complete language.
The lambda calculus is Turing complete.

Turing machine A theoretical device that is capable of a number of
data-processing methods; a program specifies how the device switches
between data-processing states. Also, any physical device that imple-
ments such a machine (such as a personal computer), or software that
implements such a machine. Also known as a state machine.

UNIX An operating system developed at Bell Labs. Many call any
UNIX-like operating system by this name (often by the plural, Unices),
but UNIX properly refers only to the code written by Bell Labs, which
has evolved into code owned by Santa Cruz Operation. Others are cor-
rectly called POSIX-compliant. The name does not stand for anything,
but is a pun on a predecessor operating system, Multics.

References

Aharonian, Greg, and Richard Stim. 2004. “Patenting Art and Enter-
tainment: New Strategies for Protecting Creative Ideas.” Berkeley,
Calif.: NOLO Press.

Allison, John R., and Mark A. Lemley. 2000. “How Federal Circuit
Judges Vote in Patent Validity Cases.” Florida State University Law
Review 27 (Spring): 745-66.

Bakos, Yannis, and Erik Brynjolfsson. 1999. “Bundling Information
Goods: Pricing, Profits, and Efficiency.” Management Science 45
(December): 1613-30.

Battilana, Michael C. 1995. “The GIF Controversy: A Software Devel-
oper’s Perspective.” January 27; rev. June 20, 2004 (cloanto.com/
users/mcb/19950127giflzw.html).

Bessen, James, and Robert M. Hunt. 2004a. “An Empirical Look at Soft-
ware Patents.” Research on Innovation Working Paper 03-17/R.
Draft, March (www.researchoninnovation.org/swpat.pdf).

. 2004b. “A Reply to Hahn and Wallsten.” March 10, 2004
(www.researchoninnovation.org/hahn.pdf).

Bikhchandani, Sushil, David Hirshleifer, and Ivo Welch. 1992, “A Theory
of Fads, Fashion, Custom, and Cultural Change as Informational Cas-
cades.” Journal of Political Economy 100 (51): 992-1026.

Brock, William A., and Steven N. Durlauf. 2001. “Discrete Choice with
Social Interactions.” Review of Economic Studies 68: 235-60.

167

168 REFERENCES

Burk, Dan L., and Mark A. Lemley. 2002. “Is Patent Law Technology-
Specific?” Berkeley Tech. Law Journal 17: 1155 (ssrn.com/abstract=
349761).

Chen, Yongmin. 1997. “Equilibrium Product Bundling.” Journal of Busi-
ness 70 (January): 85-103.

Cherry, Steven M. 2004. “The Patent Profiteers.” IEEE Spectrum, May
28, 2004 (www.spectrum.ieee.org/ WEBONLY/publicfeature/jun04/
0604aca.html).

Church, Alonzo. 1936a. “A Note on the Entscheidungsproblem.” Jour-
nal of Symbolic Logic 1: 40-41.

. 1936b. “An Unsolvable Problem of Elementary Number The-
ory.” American Journal of Mathematics 58: 345-63.

Cifuentes, Cristina, and Anne Fitzgerald. 1999. “Is Reverse Engineering
Always Legal?” Institute of Electrical and Electronics Engineers IT
Pro, March/April, pp. 42-48.

Coase, Ronald H. 1960. “The Problem of Social Cost.” Journal of Law
and Economics 3: 1-23.

Cohen, Wesley M., Richard R. Nelson, and John P. Walsh. 2000. “Pro-
tecting Their Intellectual Assets: Appropriability Conditions and Why
U.S. Manufacturing Firms Patent (or Not).” Working Paper 7552.
Cambridge, Mass.: National Bureau of Economic Research (February).

Crouch, Dennis. 2004. “Eolas, Microsoft, and Pellegrini.” Patently
Obvious, October 14 (www.patentlyobviousblog.com/2004/10/eolas_
microsoft.html).

Dam, Kenneth W. 1995. “Some Economic Considerations in the Intellec-
tual Property Protection of Software.” Journal of Legal Studies 24
(June): 321-77.

Davis, Martin. 2000. The Universal Computer: The Road from Leibniz
to Turing. New York: W.W. Norton.

Federal Trade Commission (FTC). 2002. Hearing on Competition and
Intellectual Property Law and Policy in the Knowledge-Based Economy.
Washington, March 20 (www.ftc.gov/opp/intellect/020320trans.pdf).

. 2003. To Promote Innovation: The Proper Balance of Competi-
tion and Patent Law and Policy. Washington, October (www.ftc.gov/
0s/2003/10/innovationrpt.pdf).

Gale, David, and Lloyd S. Shapley. 1962. “College Admissions and the Sta-
bility of Marriage.” American Mathematical Monthly 69 (January): 9-15.

Galli, Peter. 2003. “Open Source on Rise in Government.” eWeek, July
10 (www.eweek.com/article2/0,3959,1189729,00.asp).

REFERENCES 169

Ghosh, Rishab Aiyer, Ruediger Glott, Bernhard Krieger, and Gregorio
Robles. 2002. “FLOSS Developer Level Analysis.” Working Paper.
Heerlen, Netherlands: International Institute of Infonomics.

Gilbert, Richard J., and Michael L Katz. 2002. “An Economist’s Guide to
U.S. v. Microsoft.” Journal of Economic Perspectives 15 (Spring): 25-44.

Hahn, Robert W., and Scott Jonathan Wallsten. 2003. “A Review of
Bessen and Hunt’s Analysis of Software Patents.” November (ssrn.
com/abstract=467484).

International Institute of Infonomics. 2004. “Free/Libre and Open Source
Software: Survey and Study Final Report.” Heerlen, Netherlands
(www.infonomics.nl/FLOSS/).

Jaffe, Adam B., and Josh Lerner. 2004. Innovation and Its Discontents:
How Our Broken Patent System Is Endangering Innovation and
Progress, and What to Do about It. Princeton University Press.

Kahin, Brian. 1990. “The Software Patent Crisis.” Technology Review
(April): 543-58.

. 1991. “The Case against ‘Software Patents.”” Optima: The Math-
ematical Programming Society Newsletter, no. 33 (June).

Klemens, Ben. 2003. “Information Aggregation, with Application to
Monotone Ordering, Conviviality, and Advocacy.” Ph.D. dissertation,
California Institute of Technology (fluff.info/klemens/klemens_ diss.pdf).

Klemperer, Paul. 1990. “How Broad Should the Scope of Patent Protec-
tion Be?” RAND Journal of Economics 21 (Spring): 113-30.

Knight, Andrew E 2004. “A Potentially New IP: Storyline Patents.” Jour-
nal of the Patent and Trademark Office Society 86 (November).

Krim, Jonathan. 2003. “Patenting Air or Protecting Property? Informa-
tion Age Invents a New Problem.” Washington Post, December 11
(www.washingtonpost.com/ac2/wp-dyn/A54548-2003Dec10).

Landes, William M., and Richard A. Posner. 2003. The Economic Struc-
ture of Intellectual Property Law. Cambridge, Mass.: Belknap Press.

Lessig, Lawrence. 1999. Code and Other Laws of Cyberspace. New
York: Basic Books.

Mann, Ronald. 2004. “The Myth of the Software Patent Thicket: An
Empirical Investigation of the Relationship between Intellectual Prop-
erty and Innovation in Software Firms.” Law and Economics Working
Paper 022. Austin: University of Texas School of Law (February).

Merges, Robert P., Peter S. Menell, and Mark A. Lemley. 2000. Inzellec-
tual Property in the New Technological Age. New York: Aspen Law
and Business.

170 REFERENCES

Merrill, Stephen A., Richard C. Levin, and Mark B. Meyers, eds. 2004. A
Patent System for the 21st Century. Washington: National Academies
Press.

Moore, Carmella C., A. Kimball Romney, and Ti-Lien Hsia. 2002. “Cul-
tural, Gender, and Individual Differences in Perceptual and Semantic
Structures of Basic Colors in Chinese and English.” Journal of Cogni-
tion and Culture 2 (1): 1-28.

National Research Council. 2002. The Digital Dilemma: Intellectual Prop-
erty in the Information Age. Washington: National Academies Press.
Niskanen, William A. 1971. Bureacruacy and Representative Govern-

ment. Hawthorne, N.Y.: Aldine Atherton.

Olson, Mancur. 1971. Logic of Collective Action: Public Goods and the
Theory of Groups. Harvard University Press.

Palfrey, Thomas R. 1983. “Bundling Decisions by a Multiproduct Monop-
olist with Incomplete Information.” Econometrica 51 (March): 463-84.

Poole, Keith T., and Howard Rosenthal. 1985. “A Spatial Model for Leg-
islative Roll Call Analysis.” American Journal of Political Science 29
(May): 357-84.

Rai, Arti Kaur. 2002. “Facts, Law, and Policy: An Allocation-of-Powers
Approach to Patent System Reform.” Law and Economics Research
Paper 02-20. University of Pennsylvania Institute for Law and Eco-
nomics, October (ssrn.com/abstract=335122).

Schoen, Lawrence, and Klingon Language Institute. 2000. The Klingon
Hamlet. New York: Pocket Books.

Trajtenberg, Manuel. 1990. “A Penny for Your Quotes: Patent Citations
and the Value of Innovations.” RAND Journal of Economics 21
(1990): 172-87.

Turing, Alan M. 1936-37. “On Computable Numbers, with an Applica-
tion to the Entscheidungsproblem.” Proceedings of the London Math-
ematical Society, ser. 2 (42): 230-65.

U.S. Patent and Trademark Office (USPTO). 2004. Manual of Patent
Examining Procedure, 8th ed. Washington: Government Printing
Office (May).

Welch, T. A. 1984. “A Technique for High-Performance Data Compres-
sion.” IEEE Computer 17 (6): 8-19.

Williams, Sam. 2002. Free as in Freedom: Richard Stallman’s Crusade
for Free Software. Cambridge, Mass.: O’Reilly Press.

Index

Abstraction-filtration-comparison (AFC)
test. See Courts and judicial systems

Acacia Technologies, 5, 89-90

Adobe Systems, 6, 77-78, 97-98, 103,
127

AFC test (abstraction-filtration-compari-
son test). See Courts and judicial sys-
tems

Agulnik, David, 20-21

Aharonian, Greg, 60

Algorithms. See Mathematics

Amazon.com, 6, 99

American Airlines, 94

American Enterprise Institute-Brookings
Joint Center for Regulatory Studies,
74

American Video Graphics, 6

Antitrust issues, 110, 111

Apache, 95, 99-100

Apple Computer, Inc., 6, 18, 104, 109

Art of Programming (Knuth), 118

Assembly language. See Computer
coding and programming—specific
languages

AT&CT, 143, 145

171

Bell Labs, 33, 143

Berkeley Internet Name Daemon
(BIND), 95, 99

Bernstein, Daniel, 122

Bernstein v. U.S. Department of State,
et al. (1997), 121-22

Bessen, James, 74

Binary Large Object (BLOB). See Files
and formats—specific

Binary numbers. See Computer coding
and programming; Mathematics

BIND. See Berkeley Internet Name
Daemon

Black, Edward J., 87

BLOB (Binary Large Object). See Files
and formats—specific

Bowers v. Baystate Technologies (2003),
139

British Technology Group, 6

Brotz, Douglas, 77

Browne, Lee, 78

Brown, James Cooke, 117

Bureau of Economic Analysis, 92

Burk, Dan, 133

172 INDEX

Cabbage Patch Kids, 14, 142

CADAM, Inc., 94

CAFC. See Court of Appeals for the
Federal Circuit

Calculators. See Computer coding and
programming; Computers

Camino browser. See Software and soft-
ware programs—specific

Carroll, Lewis, 121

Chamberlain Group, Inc. v. Skylink
Techs, Inc. (2004), 128

Chambers, John, 118

Church, Alonzo, 26, 29, 35

Church-Turing thesis, 26, 35, 47, 50,
58,63

Circuit boards. See Computers

Cisco Systems, 103

Coase’s theorem, 48, 81, 102

Coca-Cola Company, 136

Cohen, Wesley, 81-82

Compilers. See Software and software
programs—specific

Computer and Communications
Industry Association, 87

Computer Associates International v.
Altai (1992), 147, 149

Computer coding and programming:
algorithms and, 25, 26; arrays, 37;
binary code or notation, 25, 28,
31-32, 53-54; choice and use of lan-
guages, 34-335; collaborative pro-
gramming, 94-96, 98, 105, 106; data
structures and functions of, 25, 26,
27-29, 36-38, 40-43, 101, 109, 115,
116, 121, 140, 146; debugging,
137-39; decentralized programming,
100-03; field-programmable gate
arrays, 65-68; file formats and, 38,
115; hiding of implementation,
41-42; instructions and rules, 29-31,
33, 34, 36-37; interfaces and imple-
mentation, 26-27; libraries, 41, 42,
61, 81, 100, 101, 109-14, 116, 118,
133-34, 145-46; mathematics and,

26, 51; porting and translating,
145-46; programming languages and
translation, 25, 26, 32, 33-34, 35,
43, 50, 116, 118, 119, 146; protec-
tion of, 118-19; in the public
domain, 135-36; reading and writing
code, 140; registers, 28, 29, 30-31,
32, 33, 40, 137; summary of, 24-27;
symbol tables, 32f, 33, 35-36,
42-43, 137-38; as a trade secret,
137-41; triviality of, 25, 26, 35, 40,
41, 43, 50, 64, 66, 67; Turing com-
pleteness of, 35-36; versions of,
148-49. See also Copyright; Glos-
sary; Logic; Patents; Policy recom-
mendations; Software and software
programs

Computer coding and programming—
examples: assembly-language symbol
table, 32, 33; deCSS code, 126;
find_person, 40, 41; pop-up window,
2; reading Word documents, 39;
signal code, 144; tab-browsing, 22;
translation of code, 146

Computer coding and programming—
specific languages: assembly or
machine code, 31, 33-34, 41-42, 65,
134; C, 33-34, 35-36, 42-43, 134,
144, 145; FORTRAN, 43, 146; Java,
6-7, 66, 67, 86, 96, 110-11;
JavaScript, 2, 134; Mono, 119,
120-21; .NET, 119, 120-21; Perl,
16, 35-36, 118; S, 118; TEX, 118;
VisualBasic, 42-43; XML (extensible
markup language), 37-38, 116n11,
129. See also Glossary

Computers: AND, OR, and NOT gates,
27, 30; building and design of,
30-31, 32; calculators, 29; chips and
chip manufacture, 31, 64, 65; circuits
and circuit boards, 25, 28, 29; down-
loading to, 138; execution of instruc-
tions, 34; field-programmable gate
arrays, 64, 65-68; future of, 104;

hard discs or drives, 37, 57-59, 115;
line between hardware and software,
64-68; memory addresses, 33, 34;
patents and, 31, 32, 57-58, 82-83,
153; processors of, 25, 40; program-
ming languages and, 32, 34; semi-
conductors of, 27; states and state
machines and, 25, 29-30, 45-46, 62,
64-65, 66, 67-68, 153; transistors
in, 27-28, 31. See also Logic;
Software and software programs

Congress (U.S.), 51-53, 68-69, 71, 72,
152, 152-54

Content Scrambling Scheme (CSS and
deCSS), 123-24

Copyright: abstraction-filtration-com-
parison test and, 147, 149; allowable
subjects, 146; basics of, 14-15;
breadth of, 141-42; collaborative
software and, 98; copying and, 130;
of computer programming languages,
116, 119-20, 121; disassembly and,
139; DMCA and, 123, 127, 130;
duration of, 142; economic issues,
15-16, 17, 121, 141-42; fair use
and, 138; function of, 14; of ideas,
117, 119-20, 142, 148-49; of imple-
mentation, 143-49; independent
authorship and invention, 8, 124,
131-32, 142; infringement of, 15,
123-24, 131-32, 139, 141-42,
146-47; of interfaces, 116-21,
141-42; mathematical exception in,
146; plagiarism, 8, 14, 137, 139,
141, 142-44, 145, 147-49; of soft-
ware, 16, 103, 138, 140-41; of
source code, 116, 119-20, 131,
137-49, 158-60. See also Glossary

Copyright—specific, 14, 15, 121

Court of Appeals for the Federal Circuit
(CAFC): cases of, 56-60, 69-70, 78,
128; as a pro-patent court, 45, 70,
71-72; view of mathematics and
software, 53, 63, 68-69, 133, 158

INDEX 173

Court of Appeals for the Federal
Circuit—specific cases: Bowers v.
Baystate Technologies (2003), 139;
Chamberlain Group, Inc. v. Skylink
Techs, Inc. (2004), 128; Information
International Incorporated v. Adobe,
etal., 78; In re Alappat (1994), 45,
57-58, 62, 66, 155, 159; In re
Lowry (1994), 115; State Street Bank
& Trust v. Signature Financial Group
(1998), 45, 58-60, 62, 66, 75, 155

Court of Customs and Patent Appeals,
5SS

Courts and judicial systems: abstraction-
filtration-comparison test, 131,
142013, 148, 149, 159-60; copy-
right infringement cases, 15; determi-
nation of patentability, 44-45, 47,
48; interpretation of Patent Acts,
51-52; patent infringement cases, 13,
69; regulatory capture and, 70-71;
reversal of USPTO errors and, 77;
scéne a faire rule, 144-45; software
patentability, 52, 69-70. See also
Court of Appeals for the Federal
Circuit; Supreme Court

Creative Labs, 6

CSS. See Content Scrambling Scheme

Dam, Kenneth, 3

Defense, Department of, 105

Dell Computer Corporation, 6

DE Technologies, 6

Diamond Rio, 18

Diamond v. Chakrabarty (1980), 59

Diamond v. Diebr (1981), 8, 44-435,
55-56, 57, 69n32

Diehr, James, 55

Digital Millennium Copyright Act
(DMCA; 1998), 1, 108, 109, 115,
121-30, 139

Digital processors, 25

Digital Versatile Disc Copy Control Asso-
ciation (DVD CCA), 123-24, 125

174 INDEX

Digital versatile discs. See DVDs

District Court of the Eastern District of
Kentucky, 128

District Court of the Sixth Circuit, 128

DMCA. See Digital Millennium
Copyright Act

Dudas, John W., 70-71

DVD CCA. See Digital Versatile Disc
Copy Control Association

DVDs (digital versatile discs), 123-25,
130

Eastman Kodak v. Sun Microsystems
(2004), 6-7, 86

eBooks. See Electronic books

Economic issues: competition, 112, 113,
116, 128-29, 149; copyrights, 15-16,
17; costs, 96-97, 102; DMCA, 130;
implementation versus interface, 116;
innovation, 74; lock-in problems,
112; markets, 17, 112; monopolies
and monopolists, 112, 151, 152, 156;
patents, 3, 5, 14, 15, 16-23, 47-48,
76,132, 151-52; prices, 96, 112-14;
property rights, 81; rent seeking, 82;
software, 3-4, 9, 10, 92-93, 96-100;
standards, 115

Eharmony.com, 61, 63

Electronic books (eBooks), 127

Electronic Frontier Foundation, 99

Electronics and electronic components,
28-29, 51-52. See also Computers

Eli Lilly, 18. See also Prozac

Encryption, 121-30

End-user license agreement (EULA), 139

Enigma code, 122

Folas, 6, 86-87

Eolas Technologies v. Microsoft (2003),
86

EU. See European Union

EULA. See End-user license agreement

European Commission, 96

European Patent Office, 9

European Union (EU), 9, 95, 103, 139

Extensible markup language (XML). See
Computer coding and program-
ming—specific languages

Federal-Mogul Corporation, 55

Federal Trade Commission (FTC),
76-77,133, 151, 152

Feist Publications, 147

Field-programmable gate arrays
(FPGAs). See Computers

Files and formats, 38, 115-16

Files and formats—specific: Binary
Large Object (BLOB), 94, 129;
DOGC, 38, 115, 129; eBook, 127;
PDF, 35, 127; Windows Media
Audio (WMA), 129

Firefox browser. See Software and soft-
ware programs—specific

Firewire. See IEEE 1394 standard

First Amendment issues, 122, 124, 125

FLOSS (Free, Libre, and Open-Source
Software), 95

Flowcharts, 21-23, 43, 50-51, 59, 78,
131, 133

FPGAs (field-programmable gate
arrays). See Computers

Fraunhofer Institute for Integrated
Circuits, 89

Free, Libre, and Open-Source Software.
See FLOSS

Free-Walter-Abele test, 56

FTC. See Federal Trade Commission

Gable, R. Lewis, 79

Gale, David, 48-49, 50-51, 59-60, 63

Garage door openers, 128

Garbage Pail Kids, 14, 142

Gates, Bill, 84, 111. See also Microsoft
Corporation

Germany, 95, 122

GIE. See Graphics Interchange Format

GNU (GNU’s Not Unix), 98

GNU Public License (GPL), 98

GNU Scientific Library (GSL), 61, 99

GNU’s Not Unix. See GNU

Google, 6, 106

Gottschalk v. Benson (1972), 44, 53-54,
55,59, 69, 77, 134, 154, 155

GPL. See GNU Public License

Graphics Interchange Format (GIF), 88

Gravity, 56

GSL. See GNU Scientific Library

Hahn, Robert, 74
Hardware, 63-68. See also Computers
Hunt, Robert M., 74

IBM (International Business Machines),
6, 84-85, 86, 96, 97, 103, 143

Ideaflood, Inc., 2

Ideas. See Copyright; Intellectual prop-
erty; Patents

Id Software, 6

IE (Internet Explorer). See Software and
software programs—specific

IEEE. See Institute of Electrical and
Electronics Engineers

IEEE 1394 standard (Firewire), 115

11S, 99-100

Information International Incorporated
v. Adobe, et al., 78

In re Alappat (1994), 45, 57-58, 62, 65,
69,100n17, 155, 159

In re Lowry (1994), 57-58, 69, 115

Institute of Electrical and Electronics
Engineers (IEEE), 144

Intellectual property (IP): copyright ver-
sus patent, 137; interoperability and,
108-14; legal issues, 108-11, 130;
protection of, 1, 16-23, 46-47, 53,
103, 112-13, 114, 125, 129, 130;
software intellectual property, 42,
43; trade-related intellectual prop-
erty, 9. See also Copyright; Digital
Millennium Copyright Act; Patent
law issues; Patents

Intellectual Property Owners
Association (IPO), 151-52

INDEX 175

International Business Machines. See
IBM

International Obfuscated C Code con-
test, 118

International Standards Organization
(ISO), 88

Internet, 89-90, 94, 129

Internet Explorer (IE). See Software and
software programs—specific

Interoperability, 108. See also Software
and software programs

Inventions and inventors, 51, 130, 136,
155,160

IP. See Intellectual property

IPO. See Intellectual Property Owners
Association

iPod, 18

ISO. See International Standards
Organization

“Jabberwocky” (Carroll), 121

Jaffe, Adam, 71, 75

Java. See Computer coding and pro-
gramming—specific languages

JavaScript. See Computer coding and
programming—specific languages

Jefferson, Thomas, 20, 46-47, 51, 62,
155

Johansen, Jon Lech, 123, 124

J2 Global Communications v. Mijanda,
Inc., 100

Judicial and court systems. See Courts
and judicial systems

Justice, Department of, 110

Kahin, Brian, 156

Kernighan, Brian, 143

Klingon, 117-18

Klingon Language Institute, 117

Knight, Andrew E.,, 60

Knuth, Donald, 118

Kodak. See Eastman Kodak v. Sun
Microsystems

176 INDEX

Language, 32n8, 117-18. See also
Computer coding and programming

Lempel, Abraham, 88

Lerner, Josh, 71, 75

Lessig, Lawrence, 152

Lexmark International v. Static Control
Components (2003), 127-28, 145

Libraries. See Computer coding and
programming

Lilly. See Eli Lilly

Links browser. See Software and soft-
ware programs—specific

Linux. See Operating systems

Lloyd’s of London, 97

Lockheed, 94

Logic: binary notation and, 28; debug-
gers and, 137; design of computers
and, 31, 32; electrical equivalents
and, 27, 28; field-programmable gate
arrays and, 65; gates and circuits,
28-29; implementation of, 29. See
also Computer coding and program-
ming; Computers; Mathematics;
Software and software programs

Loglan, 117, 118, 119

Lojban, 117, 118, 119

Lutton, Theodore, 55

Lynx browser. See Software and soft-
ware programs—specific

LZW algorithm, 88

Machine code. See Computer coding
and programming—specific
languages

Mackay Radio & Telegraph Co. v.
Radio Corp. of America (1939), 146

MacOS. See Operating systems

Macromedia, 6, 97-98

Mann, Ronald, 5, 81, 84, 86, 140-41

Manual of Patent Examining Procedure
(MPEP), 58, 75, 90

Massachusetts, 106

Mathematics: binary numbers, 25, 28,
31-32, 53-54; combinatorial opti-

mization, 49; computer coding and,
26, 28, 31, 42-43; definition of, 51;
factor analysis, 61; lambda calculus,
26, 35-36, 42-43, 50; language of,
32; ownership of results and algo-
rithms, viii, ix, 6; patentability of, 4,
44-51, 53, 54, 55-56, 62; principal
component analysis, 61. See also
Software and software programs

Mathematics—algorithms and equa-
tions: independent invention and, 26;
mathematical utility of, 48-51;
patentability of, 45, 53-54, 56,
59-60, 63-64, 66, 69, 72, 154, 155;
patent claims and, 131, 134, 136;
publishing of, 130; software pro-
grams and, 42-43, 57

Mathematics—specific problems:
marriage algorithm, 48-49, 50;
Pythagorean Theorem, 54; singular
value decomposition, 61; traveling
salesman problem, 49, 49-50

Meredith Corporation, 147

Microsoft Corporation: antitrust action
against, 110-11; libraries of, 109-10;
patent infringement and, vii, viii, 6,
86, 99-100; patents of, 21-23, 38,
103, 115-16; standards and inter-
operability and, 109. See also Eolas
v. Microsoft; Gates, Bill; Operating
systems; Software and software pro-
grams—specific

Microsoft Excel. See Software and soft-
ware programs—specific

Microsoft Word. See Software and soft-
ware programs—specific

Molloy, Bryan, 2, 3

Morse, Samuel E. B., 51-52

Moscow on the Hudson (film), 15

Motion Picture Association of America
(MPAA), 125

Motion Picture Experts Group, 88

Morzilla browser. See Software and soft-
ware programs—specific

MPAA. See Motion Picture Association
of America

MPAA v. 2600 Magazine (2000),
123-25

MPEG-I standard, 88-89

MPEP. See Manual of Patent Examining
Procedure

MP3.com, 96

MP3s and MP3 players, 18, 88-89

Munich (Germany), 7

Music and movie industries, 10

National Academy of Sciences, 71, 72

National Research Council (NRC), 155

Nelson, Richard, 81-82

NET. See Computer coding and pro-
gramming—specific languages

Netscape, Inc., 110

Netscape Navigator. See Software and
software programs—specific

Newspring, 19

Newton, Isaac, 24

New Yorker magazine, 15

Northern Telecom v. Datapoint, 133

Novell, Inc., 111, 143

Novell v. Microsoft (2001), 111

NRC. See National Research Council

Open-source projects. See Software and
software programs

Opera browser. See Software and soft-
ware programs—specific

Operating systems, 144

Operating systems—specific: Linux,
vii-viii, 7, 100, 101, 123, 143-44;
MacOS, 109, 110; UNIX, 96, 118,
143-44; Windows, vii, 99-100, 106,
109-10, 119. See also Glossary

Outsourcing and offshoring, 106

Ownership concepts, viii—ix

Palfrey, Tom, 112
Paramount Pictures, 118
Parker v. Flook (1978), 44, 54, 55, 59, 68

INDEX 177

Patent Acts (1793, 1836, 1870, 1874,
1952), 51-53, 146

Patenting Art and Entertainment: New
Strategies for Protecting Creative
Ideas (Aharonian and Stim), 60

Patent law issues: economic factors, 97;
Freeman-Walter-Abele test, 56; the
future of software and, 107; inde-
pendent invention, 47, 102, 157;
mathematics, 51-60; patentable
inventions, 51 ; infringement, 56,
1314, 22-23, 38, 47, 79, 81, 83-90,
100n17, 131, 136, 157; suits, 13,
85-86, 90-91, 97-98, 100, 107

Patents: basics of, 12-14, 132, 135; best-
mode rule, 135; blocking patents and
compound inventions, 80-81, 82-835;
breadth of, 16, 17-19, 68, 77, 78=79,
80-90, 108, 120, 136; collaborative
software and, 98-99; of complex
industries, 81-85; of computer pro-
gramming languages, 120; computers
and, 57-58; costs and benefits of, 5,
17-23, 102; coverage of, 8, 13,
18-19, 22-23; decentralization and,
101; descriptions and claims of, 4,
13, 135; doctrine of equivalents, 136;
duration of, 2n2, 13, 132; enable-
ment requirement, 132-33; general
functions of, 12, 17, 85, 88, 91, 132,
159-60; GNU General Public License
and, 98; guidelines for good patents,
18, 21, 23, 68, 135; of ideas, 47, 117,
120n16, 155-56; independent inven-
tion, 131; instability of, 90-91; on
interfaces, 112, 114, 115-16; inter-
operability and, 115; licensing and,
80-81, 82, 84-85, 86, 116n10; for
mathematics, 51-60, 146; motives
for, 82-83; open source and, 97-100;
patent searches and reviews, 13,
74-76, 79-80, 87, 91, 102, 155, 157;
patent thickets, 83-85, 100, 101-02;
prior art and, 75, 98-99, 154-55;

178 INDEX

process of, 74-75; rejected and over-
turned patents, 75-76, 155; require-
ments of, 13n2, 44-45, 49; software
markets and, 103-04, 107; of source
code, 32, 37, 38-40, 43—44, 131-37;
state of patents today, 62—-68; subma-
rine patents, 16, §7-90, 91; viewing
and obtaining copies of, 2n2. See also
Courts and judicial systems;
Economic issues; Glossary; Policy rec-
ommendations; Software and soft-
ware programs—patents and
patentability; individual courts
Patents—specific devices and programs:
Amazon’s one-click purchasing, 99;
audio and video transmission system,
78-79, 89; banana protective
devices, 20-21; business methods,
59-60, 69; computer chips, 31;
Eharmony.com, 61; field-program-
mable gate arrays, 65-68; GIFs, 88;
hard drives, 57-59, 115; Java meta-
data interfaces, 66; Microsoft Word,
38-39; morse code and telegraph,
51-52; MP3s and MP3 players,
17-18, 88-89; online bill paying,
122; pop-up browser windows, 1, 2,
80; Prozac, 2, 3, 18-19; rubber-
curing and -molding machine, 44-435,
55; singular value decomposition
(SVD), 61, 102; streaming media, 89;
tabbed browsing, 21-23, 78, 80;
XML reading, 37-38, 78
Patents—specific numbers: 1,647,
51-52; 4,314,081, 25 4,558,302, 88;
5,132,992, 78, 89; 5,484,378, 50;
5,579,430, 89; 5,742,735, 89;
5,835,392, 63; 5,886,908, 63;
5,933,841, 86; 5,960,422, 99;
5.974.686, 19; 6.035.769, 19;
6.055.556, 63; 6,056,138, 19;
6.078.938, 63; 6.196,404, 19;
6,289,319,122; 6,356,926, 63;
6,389,458, 1-2; 6,434,582, 63;

6,442,574, 86; 6,612,440, 20;
6.640.237, 63; 6.665.697, 63;
6.735.568, 61; 6,745,215, 63;
6.785.865,21-23; 6.792.569, 63;
6.807.536, 63; 6.905.665, 50;
6,918,122, 66, 67

PDF (Portable Document Format). See
Files and file formats—specific

Perl programming language. See
Computer coding and program-

ming—specific languages

Plagiarism. See Copyright

Policy recommendations: Congress and,
152-53; economic issues, 151-52;
elimination of software patents,
158-60; interface versus implementa-
tion, 156; mathematical issues,
155-56; software patents, 153-56;
source code issues, 156-58

Political issues: intellectual property pro-
tection, 8-9; patentability, 51-53;
regulatory capture, 70-71; software
and collective action, 102-03

Portable Document Format (PDF). See
Computer coding and program-
ming—specific languages

POSIX (Portable Operating System
Interface). See Standards

Private sector, 95

Programming. See Computer coding and
programming; Software and software
programs

Property rights, viii-ix, 81. See also
Intellectual property

Prozac, 2-3, 4, 18-19

Publications International, 146-47

Public domain, 2, 135-36, 158

Public sector, 95

Qualcomm Incorporated, 94
Rai, Arti Kaur, 72

Reback, Gary L., 84-85
Red Hat, 96

Reiser, Hans, 96

Remote controls, 128
Reverse engineering, 138-41
Rich, Giles, 58

Rio player, 18

Ritchie, Dennis, 143
Rubbermaid, 19

Rural Telephone Service, 147

SABRE Holdings, 94

Sachan/Eiger Labs, 18

Safari browser, 23

Santa Cruz Operation (SCO), 143

SAP, 84

Schmiegel, Klaus, 2, 3

Schwartz, Jonathan, 64

SCO. See Santa Cruz Operation

SCO v. IBM (2003), 143-44, 160

Sega Enterprises, Ltd. v. Accolade, Inc.
(1992), 139

Selective serotonin reuptake inhibitor
(SSRI), 4. See also Prozac

Semiconductors. See Computers

Shapley, Lloyd S., 48-49, 50-51, 59-60,

63
Shuster, Brian, 1-2, 134

Singular value decomposition (SVD), 61,

102
Sklyarov, Dmitri, 127
Skylink Techs, Inc., 128
Social contract, 132-37
Software and software programs: as

complex products, 82; decentralized

production, 100-03; downloading

and running of, 13; economic issues,

3-4,9, 96-97; fair use of, 10, 138;
free and open-source software, 67,
94-100, 101, 103, 104, 105-06,
107, 116n11; as function libraries,

41, 42; future of, 104-07; hardware
and, 63-68; implementation of,
26-27, 116, 131, 156; in-house pro-
gramming, 93-96; interfaces, 26-27,
112, 114, 115-17, 156; interoper-

INDEX 179

ability, 108-14, 115, 125-26; mar-
kets of, 10, 92-93, 100-04, 106-07;
mathematics of, 4, 10, 49-51, 158;
pricing of, 92-93; prior art, 23; pro-
tection of, 1, 21-23; text of source
code, 131-49; tracking versions of,
148-49; writing of, 5, 34-35. See
also Copyright; Computer coding
and programming; Computers;
Intellectual property

Software and software programs—

patents and patentability: breadth of,
68, 73, 80, 136, 158; computers and,
57, 153; courts and, 53-60, 69-72;
disclosure requirements for, 133,
134; elimination of patents, 158-60;
equations and, 59-60; example of,
21-23; filing source code, 132-37;
hard discs and, 57-58; hold-up prob-
lem of, 85-87; innovation and inven-
tion and, 73-74, 77-78, 87, 158-59;
legal aspects of, 62, 80; line between
hardware and software, 44-45,
64-68; mathematics and, 47, 50-51;
obfuscation and, 133-35; patent
length of, 16; patent thickets, 83-85;
policy recommendations, 153-60;
problems of patenting, 1-6, 74-80;
submarine patents, 87-90

Software and software programs—spe-

cific: Adobe Acrobat, 127; Apache,
95, 99-100; Berkeley Internet Name
Daemon (BIND), 95, 99; business
software, 105; Camino browser, 23;
cdrecord, 130; compilers and inter-
preters, 33-34, 41-42, 65, 137; con-
current versioning system, 148;
debuggers, 137-38; disassemblers,
138; doxygen, 140; Eharmony.com,
61; e-mail, 95; encryption and
decryption software, 122; field-pro-
grammable gate arrays, 65-68;
Firefox browser, 23; games, 1035;
GAMS mathematical modeling soft-

180 INDEX

ware, 94; ghostview, 127; Internet
Explorer, 86, 99, 110; Links browser,
23; Lynx browser, 23; Microsoft
Excel, 145; Microsoft Word, 35,
38-39, 42, 115-16, 119; Mozilla
browser, 23; navigation of hyperlinks
via tabs, 21-23; Netscape Navigator,
110, 122; OpenOffice.org, 105, 116;
Opera browser, 23; pop-up browser
windows, 1-2, 4; Postfix, 95;
SABRE flight reservation system, 94;
Sendmail, 95; spreadsheets, 41, 105,
145; StarOffice, 35, 116; subversion,
148; virus protection, 6;
WordPerfect, 111, 116; word proces-
sors, 25, 37-38, 41, 105, 106, 116,
118-19; xine D5D, 130. See also
Computer coding and program-
ming—specific languages; Files and
formats—specific; Glossary;
Operating systems

Southwestern Bell Corporation, 86

Spaceships, 51

SSRI. See Selective serotonin reuptake
inhibitor

Standards: creation of, 114-15; de facto
standards, 108, 109-14; file formats,
115; MPEG-I standard, 88-89;
Microsoft and, 109; Portable
Operating System Interface (POSIX),
144, 145; USB standards, 114

Stanford University, 84-85

StarOffice. See Software and software
programs—specific

Star Trek (TV), 117

State machines. See Computers

State Street Bank & Trust v. Signature
Financial Group (1998), 45, 58-60,
62, 66, 72,75, 155

Static Control Components, 127-28, 145

Steinberg, Saul, 15

Stim, Richard, 60

Sun Microsystems Inc.: IBM and,
84-85; Java, 6-7, 66, 67, 86, 96,

110; Kodak and, 86; libraries of,
110; open-source authors and, 97;
patents of, 66, 67; president and
CEO of, 64; word processor of, 35
Supreme Court: appeals of patent cases
in, 13, 69; differences between state
machines and states, 53; patent pro-
tection for software and, 8, 53-56,
128; telecommunications, 52
Supreme Court—specific cases:
Diamond v. Chakrabarty (1980), 59;
Diamond v. Diebr (1981), 8, 44-45,
55-56, 57, 69n32; Gottschalk v.
Benson (1972), 44, 53-54, 55, 59,
69, 77, 134, 154, 155; Mackay
Radio & Telegraph Co. v. Radio
Corp. of America (1939), 146;
Parker v. Flook (1978), 44, 54, 55
SVD. See Singular value decomposition
“Sweat of the brow protection,” 150n22
Sweden, 95

Terrorism, 99, 122, 130

1394 Trade Association, 115

Toomey, Warren, 145

Topps baseball cards, 14

Torvalds, Linus, 144-45

Trademarks, 114, 115

Trade-related intellectual property
(TRIP). See Intellectual property

Trade secrets, 124, 136, 137-41

Tupperware, 19

Turing, Alan, 26, 29, 30, 122

Turing machine, 29-30, 35, 102. See
also Glossary

2600 Magazine: The Hacker Quarterly,
124-25

Unisys, 7, 88

United Kingdom (UK), 95, 122

United States (U.S.), 7, 122

United States v. Microsoft (2001), 110,
111nS

Universal serial bus (USB), 114

University of Illinois, 94

UNIX. See Operating systems

UNIX Heritage Society, 145

UNIX Systems Lab (USL), 143

USB. See Universal serial bus

USB Implementer’s Forum, Inc. (USB-
IF), 114, 115

USB.org, 114

USL. See UNIX Systems Lab

U.S. Patent and Trademark Office
(USPTO): algorithms and, 56, 62-63;
examiners and review process, 13,
74-80, 132, 154; funding for, 70-71,
159; monopolies and, 151; overload
of, 74-75, 159; role and rulings of,
99, 154; software and, 2, 4, 5-6, 45,
74-75, 159; submarine patents and,
16. See also Patents

U.S. Supreme Court. See Supreme Court

USPTO. See U.S. Patent and Trademark
Office

Vacuum tubes, 27, 28

INDEX 181

Wall, Larry, 118

Wallsten, Scott, 74

Walsh, John, 81-82

Wang Laboratories, 7

Webbink, Mark, 87

Welch, Terry, 88

Windows. See Operating systems

Windows Media Audio (WMA). See
Files and formats—specific

WordPerfect. See Software and software
programs—specific

World Bank, 94

World War I1, 122

XML (Extensible markup language). See
Computer coding and program-

ming—specific languages

Yahoo!, 6
Yurt, Paul, 78

Ziv, Jacob, 88

	Contents
	Preface
	CHAPTER ONE Introduction
	CHAPTER TWO Optimal Breadth
	CHAPTER THREE From Equations to Software
	CHAPTER FOUR Patenting Math
	CHAPTER FIVE Profiting from Overbroad Patents
	CHAPTER SIX The Decentralized Software Market
	CHAPTER SEVEN Interoperability
	CHAPTER EIGHT Protecting Text
	CHAPTER NINE Policy Recommendations
	Glossary
	A
	B
	C
	D
	E
	F
	I
	L
	M
	O
	P
	R
	S
	T
	U

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

